Developmental origins of novel gut morphology in frogs
Bloom, Stephanie; Ledon-Rettig, Cris; Infante, Carlos; Everly, Anne; Hanken, James; Nascone-Yoder, Nanette
2013-01-01
SUMMARY Phenotypic variation is a prerequisite for evolution by natural selection, yet the processes that give rise to the novel morphologies upon which selection acts are poorly understood. We employed a chemical genetic screen to identify developmental changes capable of generating ecologically relevant morphological variation as observed among extant species. Specifically, we assayed for exogenously applied small molecules capable of transforming the ancestral larval foregut of the herbivorous Xenopus laevis to resemble the derived larval foregut of the carnivorous Lepidobatrachus laevis. Appropriately, the small molecules that demonstrate this capacity modulate conserved morphogenetic pathways involved in gut development, including downregulation of retinoic acid (RA) signaling. Identical manipulation of RA signaling in a species that is more closely related to Lepidobatrachus, Ceratophrys cranwelli, yielded even more similar transformations, corroborating the relevance of RA signaling variation in interspecific morphological change. Finally, we were able to recover the ancestral gut phenotype in Lepidobatrachus by performing a reverse chemical manipulation to upregulate RA signaling, providing strong evidence that modifications to this specific pathway promoted the emergence of a lineage-specific phenotypic novelty. Interestingly, our screen also revealed pathways that have not yet been implicated in early gut morphogenesis, such as thyroid hormone signaling. In general, the chemical genetic screen may be a valuable tool for identifying developmental mechanisms that underlie ecologically and evolutionarily relevant phenotypic variation. PMID:23607305
Developmental origins of a novel gut morphology in frogs.
Bloom, Stephanie; Ledon-Rettig, Cris; Infante, Carlos; Everly, Anne; Hanken, James; Nascone-Yoder, Nanette
2013-05-01
Phenotypic variation is a prerequisite for evolution by natural selection, yet the processes that give rise to the novel morphologies upon which selection acts are poorly understood. We employed a chemical genetic screen to identify developmental changes capable of generating ecologically relevant morphological variation as observed among extant species. Specifically, we assayed for exogenously applied small molecules capable of transforming the ancestral larval foregut of the herbivorous Xenopus laevis to resemble the derived larval foregut of the carnivorous Lepidobatrachus laevis. Appropriately, the small molecules that demonstrate this capacity modulate conserved morphogenetic pathways involved in gut development, including downregulation of retinoic acid (RA) signaling. Identical manipulation of RA signaling in a species that is more closely related to Lepidobatrachus, Ceratophrys cranwelli, yielded even more similar transformations, corroborating the relevance of RA signaling variation in interspecific morphological change. Finally, we were able to recover the ancestral gut phenotype in Lepidobatrachus by performing a reverse chemical manipulation to upregulate RA signaling, providing strong evidence that modifications to this specific pathway promoted the emergence of a lineage-specific phenotypic novelty. Interestingly, our screen also revealed pathways that have not yet been implicated in early gut morphogenesis, such as thyroid hormone signaling. In general, the chemical genetic screen may be a valuable tool for identifying developmental mechanisms that underlie ecologically and evolutionarily relevant phenotypic variation. © 2013 Wiley Periodicals, Inc.
Image masking using polygon fills and morphological transformations
NASA Technical Reports Server (NTRS)
Simpson, James J.
1992-01-01
Polygon-fill operations and morphological transformations are effective computational tools for the land-masking and coastline-correction preprocessing operations often applied to AVHRR data prior to oceanographic applications. These masking operations, in conjunction with cloud-screening techniques, can be used on such other oceanographically significant remote-sensing data as those of the Coastal Zone Color Scanner, GOES, and Landsat. The sensitivity of the methods to regional variations in atmospheric conditions and land-ocean temperature gradients is assessed for tropical, midlatitude, and high latitude regions.
Identification of novel GHRHR and GH1 mutations in patients with isolated growth hormone deficiency.
Birla, Shweta; Khadgawat, Rajesh; Jyotsna, Viveka P; Jain, Vandana; Garg, M K; Bhalla, Ashu Seith; Sharma, Arundhati
2016-08-01
Human growth is an elementary process which starts at conception and continues through different stages of development under the influence of growth hormone (GH) secreted by the anterior pituitary gland. Variation affecting the production, release and functional activity of GH leads to growth hormone deficiency (GHD), which is of two types: isolated growth hormone deficiency (IGHD) and combined pituitary hormone deficiency (CPHD). IGHD may result from mutations in GH1 and GHRHR while CPHD is associated with defects in transcription factor genes PROP1, POU1F1 and HESX1. The present study reports on the molecular screening of GHRHR and GH1 in IGHD patients. A total of 116 clinically diagnosed IGHD patients and 100 controls were enrolled for the study after taking informed consent. Family history was noted and 5ml blood sample was drawn. Anatomical and/or morphological pituitary gland alterations were studied using magnetic resonance imaging (MRI). DNA from blood samples was processed for screening the GHRHR and GH1 by Sanger sequencing. Mean age at presentation of the 116 patients (67 males and 49 females) was 11.71±3.5years. Mean height standard deviation score (SDS) and weight SDS were -4.5 and -3.5 respectively. Nine (7.8%) were familial and parental consanguinity was present in 21 (19.8%) families. Eighty-three patients underwent MRI and morphological alterations of the pituitary were observed in 39 (46.9%). GH1 and GHRHR screening revealed eleven variations in 24 (21%) patients of which, four were novel deleterious, one novel non-pathogenic and six reported changes. GHRHR contributed more to IGHD in our patients which confirmed that GHRHR should be screened first before GH1 in our population. Identification of GH1 and GHRHR variations helped in defining our mutational spectrum which will play a crucial role in providing predictive and prenatal genetic testing to the patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kamrava, Brandon; Roehm, Pamela C
2017-08-01
Objective To systematically review the anatomy of the ossicular chain. Data Sources Google Scholar, PubMed, and otologic textbooks. Review Methods A systematic literature search was performed on January 26, 2015. Search terms used to discover articles consisted of combinations of 2 keywords. One keyword from both groups was used: [ ossicular, ossicle, malleus, incus, stapes] and [ morphology, morphometric, anatomy, variation, physiology], yielding more than 50,000 hits. Articles were then screened by title and abstract if they did not contain information relevant to human ossicular chain anatomy. In addition to this search, references of selected articles were studied as well as suggested relevant articles from publication databases. Standard otologic textbooks were screened using the search criteria. Results Thirty-three sources were selected for use in this review. From these studies, data on the composition, physiology, morphology, and morphometrics were acquired. In addition, any correlations or lack of correlations between features of the ossicular chain and other features of the ossicular chain or patient were noted, with bilateral symmetry between ossicles being the only important correlation reported. Conclusion There was significant variation in all dimensions of each ossicle between individuals, given that degree of variation, custom fitting, or custom manufacturing of prostheses for each patient could optimize prosthesis fit. From published data, an accurate 3-dimensional model of the malleus, incus, and stapes can be created, which can then be further modified for each patient's individual anatomy.
Genetical genomics of Populus leaf shape variation
Drost, Derek R.; Puranik, Swati; Novaes, Evandro; ...
2015-06-30
Leaf morphology varies extensively among plant species and is under strong genetic control. Mutagenic screens in model systems have identified genes and established molecular mechanisms regulating leaf initiation, development, and shape. However, it is not known whether this diversity across plant species is related to naturally occurring variation at these genes. Quantitative trait locus (QTL) analysis has revealed a polygenic control for leaf shape variation in different species suggesting that loci discovered by mutagenesis may only explain part of the naturally occurring variation in leaf shape. Here we undertook a genetical genomics study in a poplar intersectional pseudo-backcross pedigree tomore » identify genetic factors controlling leaf shape. Here, the approach combined QTL discovery in a genetic linkage map anchored to the Populus trichocarpa reference genome sequence and transcriptome analysis.« less
Tharmatha, T; Gajapathy, K; Ramasamy, R; Surendran, S N
2017-02-01
The correct identification of sand fly vectors of leishmaniasis is important for controlling the disease. Genetic, particularly DNA sequence data, has lately become an important adjunct to the use of morphological criteria for this purpose. A recent DNA sequencing study revealed the presence of two cryptic species in the Sergentomyia bailyi species complex in India. The present study was undertaken to ascertain the presence of cryptic species in the Se. bailyi complex in Sri Lanka using morphological characteristics and DNA sequences from cytochrome c oxidase subunits. Sand flies were collected from leishmaniasis endemic and non-endemic dry zone districts of Sri Lanka. A total of 175 Se. bailyi specimens were initially screened for morphological variations and the identified samples formed two groups, tentatively termed as Se. bailyi species A and B, based on the relative length of the sensilla chaeticum and antennal flagellomere. DNA sequences from the mitochondrial cytochrome c oxidase subunit I (COI) and subunit II (COII) genes of morphologically identified Se. bailyi species A and B were subsequently analyzed. The two species showed differences in the COI and COII gene sequences and were placed in two separate clades by phylogenetic analysis. An allele specific polymerase chain reaction assay based on sequence variation in the COI gene accurately differentiated species A and B. The study therefore describes the first morphological and genetic evidence for the presence of two cryptic species within the Se. bailyi complex in Sri Lanka and a DNA-based laboratory technique for differentiating them.
Carrell, Douglas T; Cartmill, Deborah; Jones, Kirtly P; Hatasaka, Harry H; Peterson, C Matthew
2002-07-01
To evaluate variability in donor semen quality between seven commercial donor sperm banks, within sperm banks, and between intracervical insemination and intrauterine insemination. Prospective, randomized, blind evaluation of commercially available donor semen samples. An academic andrology laboratory. Seventy-five cryopreserved donor semen samples were evaluated. Samples were coded, then blindly evaluated for semen quality. Standard semen quality parameters, including concentration, motility parameters, World Health Organization criteria morphology, and strict criteria morphology. Significant differences were observed between donor semen banks for most semen quality parameters analyzed in intracervical insemination samples. In general, the greatest variability observed between banks was in percentage progressive sperm motility (range, 8.8 +/- 5.8 to 42.4 +/- 5.5) and normal sperm morphology (strict criteria; range, 10.1 +/- 3.3 to 26.6 +/- 4.7). Coefficients of variation within sperm banks were generally high. These data demonstrate the variability of donor semen quality provided by commercial sperm banks, both between banks and within a given bank. No relationship was observed between the size or type of sperm bank and the degree of variability. The data demonstrate the lack of uniformity in the criteria used to screen potential semen donors and emphasize the need for more stringent screening criteria and strict quality control in processing samples.
Media additives to promote spheroid circularity and compactness in hanging drop platform.
Leung, Brendan M; Lesher-Perez, Sasha Cai; Matsuoka, Toshiki; Moraes, Christopher; Takayama, Shuichi
2015-02-01
Three-dimensional spheroid cultures have become increasingly popular as drug screening platforms, especially with the advent of different high throughput spheroid forming technologies. However, comparing drug efficacy across different cell types in spheroid culture can be difficult due to variations in spheroid morphologies and transport characteristics. Improving the reproducibility of compact, circular spheroids contributes to standardizing and increasing the fidelity of the desired gradient profiles in these drug screening three-dimensional tissue cultures. In this study we discuss the role that circularity and compaction has on spheroids, and demonstrate the impact methylcellulose (MethoCel) and collagen additives in the culture media can contribute to more compact and circular spheroid morphology. We demonstrate that improved spheroid formation is not a simple function of increased viscosity of the different macromolecule additives, suggesting that other macromolecular characteristics contribute to improved spheroid formation. Of the various macromolecular additives tested for hanging drop culture, MethoCel provided the most desirable spheroid formation. Additionally, the higher viscosity of MethoCel-containing media improved the ease of imaging of cellular spheroids within hanging drop cultures by reducing motion-induced image blur.
NASA Astrophysics Data System (ADS)
Geng, Li; Feng, Jiantao; Sun, Quanmei; Liu, Jing; Hua, Wenda; Li, Jing; Ao, Zhuo; You, Ke; Guo, Yanli; Liao, Fulong; Zhang, Youyi; Guo, Hongyan; Han, Jinsong; Xiong, Guangwu; Zhang, Lufang; Han, Dong
2015-09-01
Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis.Applying an atomic force microscope, we performed a nanomechanical analysis of morphologically normal cervical squamous cells (MNSCs) which are commonly used in cervical screening. Results showed that nanomechanical parameters of MNSCs correlate well with cervical malignancy, and may have potential in cancer screening to provide early diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03662c
Bertrand, J A M; Delahaie, B; Bourgeois, Y X C; Duval, T; García-Jiménez, R; Cornuault, J; Pujol, B; Thébaud, C; Milá, B
2016-04-01
Adaptation to local environmental conditions and the range dynamics of populations can influence evolutionary divergence along environmental gradients. Thus, it is important to investigate patterns of both phenotypic and genetic variations among populations to reveal the respective roles of these two types of factors in driving population differentiation. Here, we test for evidence of phenotypic and genetic structure across populations of a passerine bird (Zosterops borbonicus) distributed along a steep elevational gradient on the island of Réunion. Using 11 microsatellite loci screened in 401 individuals from 18 localities distributed along the gradient, we found that genetic differentiation occurred at two spatial levels: (i) between two main population groups corresponding to highland and lowland areas, respectively, and (ii) within each of these two groups. In contrast, several morphological traits varied gradually along the gradient. Comparison of neutral genetic differentiation (FST ) and phenotypic differentiation (PST ) showed that PST largely exceeds FST at several morphological traits, which is consistent with a role for local adaptation in driving morphological divergence along the gradient. Overall, our results revealed an area of secondary contact midway up the gradient between two major, cryptic, population groups likely diverged in allopatry. Remarkably, local adaptation has shaped phenotypic differentiation irrespective of population history, resulting in different patterns of variation along the elevational gradient. Our findings underscore the importance of understanding both historical and selective factors when trying to explain variation along environmental gradients. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Morphological Variation in the Adult Hard Palate and Posterior Pharyngeal Wall
Lammert, Adam; Proctor, Michael; Narayanan, Shrikanth
2013-01-01
Purpose Adult human vocal tracts display considerable morphological variation across individuals, but the nature and extent of this variation has not been extensively studied for many vocal tract structures. There exists a need to analyze morphological variation and, even more basically, to develop a methodology for morphological analysis of the vocal tract. Such analysis will facilitate fundamental characterization of the speech production system, with broad implications from modeling to explaining inter-speaker variability. Method A data-driven methodology to automatically analyze the extent and variety of morphological variation is proposed and applied to a diverse subject pool of 36 adults. Analysis is focused on two key aspects of vocal tract structure: the midsagittal shape of the hard palate and the posterior pharyngeal wall. Result Palatal morphology varies widely in its degree of concavity, but also in anteriority and sharpness. Pharyngeal wall morphology, by contrast, varies mostly in terms of concavity alone. The distribution of morphological characteristics is complex, and analysis suggests that certain variations may be categorical in nature. Conclusion Major modes of morphological variation are identified, including their relative magnitude, distribution and categorical nature. Implications of these findings for speech articulation strategies and speech acoustics are discussed. PMID:23690566
Webster, Mike M.; Atton, Nicola; Hart, Paul J. B.; Ward, Ashley J. W.
2011-01-01
Habitat-specific morphological variation, often corresponding to resource specialization, is well documented in freshwater fishes. In this study we used landmark based morphometric analyses to investigate morphological variation among threespine sticklebacks (Gasterosteus aculeatus L.) from four interconnected habitat types within a single lowland drainage basin in eastern England. These included the upper and lower reaches of the river, the estuary, a connected ditch network and a coastal salt marsh. We found significant habitat-specific differences in morphology, with three axes of variation describing differences in orbit diameter, body depth, caudal peduncle shape and pectoral fin positioning as well as variation in relative dorsal and pelvic spine size. Interestingly, the ditch system, an artificial and heavily managed habitat, is populated by sticklebacks with a characteristic morphology, suggesting that human management of habitats can in some circumstances lead to morphological variation among the animals that inhabit them. We discuss the mechanisms that conceivably underlie the observed morphological variation and the further work necessary to identify them. Finally, we consider the implications of habitat-specific body shape variation for the behavioural ecology of this ecologically generalist species. PMID:21698269
Cryptic diversity in European bats.
Mayer, F.; von Helversen, O.
2001-01-01
Different species of bat can be morphologically very similar. In order to estimate the amount of cryptic diversity among European bats we screened the intra- and interspecific genetic variation in 26 European vespertilionid bat species. We sequenced the DNA of subunit 1 of the mitochondrial protein NADH dehydrogenase (ND1) from several individuals of a species, which were sampled in a variety of geographical regions. A phylogeny based on the mitochondrial (mt) DNA data is in good agreement with the current classification in the family. Highly divergent mitochondrial lineages were found in two taxa, which differed in at least 11% of their ND1 sequence. The two mtDNA lineages in Plecotus austriacus correlated with the two subspecies Plecotus austriacus austriacus and Plecotus austriacus kolombatovici. The two mtDNA lineages in Myotis mystacinus were partitioned among two morphotypes. The evidence for two new bat species within Europe is discussed. Convergent adaptive evolution might have contributed to the morphological similarity among distantly related species if they occupy similar ecological niches. Closely related species may differ in their ecology but not necessarily in their morphology. On the other hand, two morphologically clearly different species (Eptesicus serotinus and Eptesicus nilssonii) were found to be genetically very similar. Neither morphological nor mitochondrial DNA sequence analysis alone can be guaranteed to identify species. PMID:11522202
Morphological variation of 508 hatchling alligators from three lakes in north central Florida (Lakes Woodruff, Apopka, and Orange) was analyzed using multivariate statistics. Morphological variation was found among clutches as well as among lakes. Principal components analysis wa...
NASA Technical Reports Server (NTRS)
1982-01-01
A highly thromboresistant blood contacting interface for use in implanatable blood pump is investigated. Biomaterials mechanics, dynamics, durability, surface morphology, and chemistry are among the critical consideration pertinent to the choice of an appropriate blood pump bladder material. The use of transfer cast biopolymers from ion beam textured surfaces is investigated to detect subtle variations in blood pump surface morphology using Biomer as the biomaterial of choice. The efficacy of ion beam sputtering as an acceptable method of fabricating textured blood interfaces is evaluated. Aortic grafts and left ventricular assist devices were implanted in claves; the blood interfaces were fabricated by transfer casting methods from ion beam textured polytetrafluorethylene mandrels. The mandrels were textured by superimposing a 15 micron screen mesh; ion sputtering conditions were 300 volts beam energy, 40 to 50 mA beam, and a mandrel to source distance of 25 microns.
Variation in tooth morphology of Gorilla gorilla.
Uchida, A
1998-01-01
Gorilla gorilla exemplifies a species that shows considerable variation in habitat, behaviour, genetic structure and morphology. This study examines variation of dental morphology in gorillas. Despite the marked size dimorphism, there are no significant shape differences between the sexes within subspecies. Differences in dental morphology, including tooth cusp proportions between the western G. g. gorilla and the eastern G. g. beringei are considerable. Although more similar to G. g. beringei than to the western G. g. gorilla, G. g. graueri also shows distinct morphological features. This indicates that the morphology of G. g. graueri is not merely intermediate, and genetic isolation between the two eastern subspecies could have had a substantial influence. Such extensive variation in dental morphology in Gorilla gorilla can be considered to be the result of an interesting combination of factors, including local dietary adaptations.
Liu, Tao; Sims, David; Baum, Buzz
2009-01-01
In recent years RNAi screening has proven a powerful tool for dissecting gene functions in animal cells in culture. However, to date, most RNAi screens have been performed in a single cell line, and results then extrapolated across cell types and systems. Here, to dissect generic and cell type-specific mechanisms underlying cell morphology, we have performed identical kinome RNAi screens in six different Drosophila cell lines, derived from two distinct tissues of origin. This analysis identified a core set of kinases required for normal cell morphology in all lines tested, together with a number of kinases with cell type-specific functions. Most significantly, the screen identified a role for minibrain (mnb/DYRK1A), a kinase associated with Down's syndrome, in the regulation of actin-based protrusions in CNS-derived cell lines. This cell type-specific requirement was not due to the peculiarities in the morphology of CNS-derived cells and could not be attributed to differences in mnb expression. Instead, it likely reflects differences in gene expression that constitute the cell type-specific functional context in which mnb/DYRK1A acts. Using parallel RNAi screens and gene expression analyses across cell types we have identified generic and cell type-specific regulators of cell morphology, which include mnb/DYRK1A in the regulation of protrusion morphology in CNS-derived cell lines. This analysis reveals the importance of using different cell types to gain a thorough understanding of gene function across the genome and, in the case of kinases, the difficulties of using the differential gene expression to predict function.
Quantification of cell response to polymeric composites using a two-dimensional gradient platform.
Lin, Nancy J; Hu, Haiqing; Sung, Lipin; Lin-Gibson, Sheng
2009-07-01
A simple and straightforward screening process to assess the toxicity and corresponding cell response of dental composites would be useful prior to extensive in vitro or in vivo characterization. To this end, gradient composite samples were prepared with variations in filler content/type and in degree of conversion (DC). The DC was determined using near infrared spectroscopy (NIR), and the surface morphology was evaluated by laser scanning confocal microscopy (LSCM). RAW 264.7 macrophage-like cells were cultured directly on the composite gradient samples, and cell viability, density, and area were measured at 24 h. All three measures of cell response varied as a function of material properties. For instance, compositions with higher filler content had no reduction in cell viability or cell density, even at low conversions of 52%, whereas significant decreases in viability and density were present when the filler content was 35% or below (by mass). The overall results demonstrate the complexity of the cell-material interactions, with properties including DC, filler type, filler mass ratio, and surface morphology influencing the cell response. The combinatorial approach described herein enables simultaneous screening of multiple compositions and material properties, providing a more thorough characterization of cell response for the improved selection of biocompatible composite formulations and processing conditions.
Relationship between orofacial function, dentofacial morphology, and bite force in young subjects.
Marquezin, M C S; Gavião, M B D; Alonso, M B C C; Ramirez-Sotelo, L R; Haiter-Neto, F; Castelo, P M
2014-09-01
The aim was to evaluate the relationship between orofacial function, dentofacial morphology, and bite force in young subjects. Three hundred and sixteen subjects were divided according to dentition stage (early, intermediate, and late mixed and permanent dentition). Orofacial function was screened using the Nordic Orofacial Test-Screening (NOT-S). Orthodontic treatment need, bite force, lateral and frontal craniofacial dimensions and presence of sleep bruxism were also assessed. The results were submitted to descriptive statistics, normality and correlation tests, analysis of variance, and multiple linear regression to test the relationship between NOT-S scores and the studied independent variables. The variance of NOT-S scores between groups was not significant. The evaluation of the variables that significantly contributed to NOT-S scores variation showed that age and presence of bruxism related to higher NOT-S total scores, while the increase in overbite measurement and presence of closed lip posture related to lower scores. Bite force did not show a significant relationship with scores of orofacial dysfunction. No significant correlations between craniofacial dimensions and NOT-S scores were observed. Age and sleep bruxism were related to higher NOT-S scores, while the increase in overbite measurement and closed lip posture contributed to lower scores of orofacial dysfunction. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hossain, Md Kamal; Jena, Kshirod Kumar; Bhuiyan, Md Atiqur Rahman; Wickneswari, Ratnam
2016-01-01
Sheath blight is considered the most significant disease of rice and causes enormous yield losses over the world. Breeding for resistant varieties is the only viable option to combat the disease efficiently. Seventeen diverged rice genotypes along with 17 QTL-linked SSR markers were evaluated under greenhouse conditions. Pearson’s correlation showed only the flag leaf angle had a significant correlation with sheath blight resistance under greenhouse screening. Multivariate analysis based on UPGMA clustering and principal component analysis (PCA) indicated that the flag leaf angle, flag leaf length, and plant compactness were significantly associated with the following SSR marker alleles: RM209 (116,130), RM202 (176), RM224 (126), RM257 (156), RM426 (175), and RM6971 (196), which are linked to the SB QTLs: QRlh11, qSBR11-3, qSBR11-1, qSBR9-1, qShB3-2, and qSB-9. A Mantel test suggested a weak relationship between the observed phenotypes and allelic variation patterns, implying the independent nature of morphological and molecular variations. Teqing and Tetep were found to be the most resistant cultivars. IR65482-4-136-2-2, MR219-4, and MR264 showed improved resistance potentials. These results suggest that the morphological traits and QTLs which have been found to associate with sheath blight resistance are a good choice to enhance resistance through pyramiding either 2 QTLs or QTLs and traits in susceptible rice cultivars. PMID:27795687
López-Aguirre, Camilo; Pérez-Torres, Jairo; Wilson, Laura A B
2015-01-01
Neotropical bats of the genus Carollia are widely studied due to their abundance, distribution and relevance for ecosystems. However, the ecomorphological boundaries of these species are poorly differentiated, and consequently correspondence between their geographic distribution, ecological plasticity and morphological variation remains unclear. In this study, patterns of cranial and mandibular morphological variation were assessed for Carollia brevicauda, C. castanea and C. perspicillata from Colombia. Using geometric morphometrics, morphological variation was examined with respect to: differences in intraspecific variation, morphological modularity and integration, and biogeographic patterns. Patterns of intraspecific variation were different for each species in both cranial and mandibular morphology, with functional differences apparent according to diet. Cranial modularity varied between species whereas mandibular modularity did not. High cranial and mandibular correlation reflects Cranium-Mandible integration as a functional unit. Similarity between the biogeographic patterns in C. brevicauda and C. perspicillata indicates that the Andes do not act as a barrier but rather as an independent region, isolating the morphology of Andean populations of larger-bodied species. The biogeographic pattern for C. castanea was not associated with the physiography of the Andes, suggesting that large body size does not benefit C. brevicauda and C. perspicillata in maintaining homogeneous morphologies among populations.
Pérez-Torres, Jairo; Wilson, Laura A. B.
2015-01-01
Neotropical bats of the genus Carollia are widely studied due to their abundance, distribution and relevance for ecosystems. However, the ecomorphological boundaries of these species are poorly differentiated, and consequently correspondence between their geographic distribution, ecological plasticity and morphological variation remains unclear. In this study, patterns of cranial and mandibular morphological variation were assessed for Carollia brevicauda, C. castanea and C. perspicillata from Colombia. Using geometric morphometrics, morphological variation was examined with respect to: differences in intraspecific variation, morphological modularity and integration, and biogeographic patterns. Patterns of intraspecific variation were different for each species in both cranial and mandibular morphology, with functional differences apparent according to diet. Cranial modularity varied between species whereas mandibular modularity did not. High cranial and mandibular correlation reflects Cranium-Mandible integration as a functional unit. Similarity between the biogeographic patterns in C. brevicauda and C. perspicillata indicates that the Andes do not act as a barrier but rather as an independent region, isolating the morphology of Andean populations of larger-bodied species. The biogeographic pattern for C. castanea was not associated with the physiography of the Andes, suggesting that large body size does not benefit C. brevicauda and C. perspicillata in maintaining homogeneous morphologies among populations. PMID:26413433
Cosmic web and environmental dependence of screening: Vainshtein vs. chameleon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo, E-mail: bridget.falck@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: gong-bo.zhao@port.ac.uk
Theories which modify general relativity to explain the accelerated expansion of the Universe often use screening mechanisms to satisfy constraints on Solar System scales. We investigate the effects of the cosmic web and the local environmental density of dark matter halos on the screening properties of the Vainshtein and chameleon screening mechanisms. We compare the cosmic web morphology of dark matter particles, mass functions of dark matter halos, mass and radial dependence of screening, velocity dispersions and peculiar velocities, and environmental dependence of screening mechanisms in f(R) and nDGP models. Using the ORIGAMI cosmic web identification routine we find thatmore » the Vainshtein mechanism depends on the cosmic web morphology of dark matter particles, since these are defined according to the dimensionality of their collapse, while the chameleon mechanism shows no morphology dependence. The chameleon screening of halos and their velocity dispersions depend on halo mass, and small halos and subhalos can be environmentally screened in the chameleon mechanism. On the other hand, the screening of halos in the Vainshtein mechanism does not depend on mass nor environment, and their velocity dispersions are suppressed. The peculiar velocities of halos in the Vainshtein mechanism are enhanced because screened objects can still feel the fifth force generated by external fields, while peculiar velocities of chameleon halos are suppressed when the halo centers are screened.« less
Disparity between Clinical and Ultrasound Examinations in Neonatal Hip Screening.
Kyung, Bong Soo; Lee, Soon Hyuck; Jeong, Woong Kyo; Park, Si Young
2016-06-01
For early detection of developmental dysplasia of the hip (DDH), neonatal hip screening using clinical examination and/or ultrasound has been recommended. Although there have been many studies on the reliability of both screening techniques, there is still controversy in the screening strategies; clinical vs. selective or universal ultrasound screening. To determine the screening strategy, we assessed the agreement among the methods; clinical examination by an experienced pediatric orthopedic surgeon, sonographic morphology, and sonographic stability. From January 2004 to June 2009, a single experienced pediatric orthopedic surgeon performed clinical hip screenings for 2,686 infants in the neonatal unit and 43 infants who were referred due to impressions of hip dysplasia before 3 months of age. Among them, 156 clinically unstable or high-risk babies selectively received bilateral hip ultrasound examinations performed by the same surgeon using the modified Graf method. The results were analyzed statistically to detect any correlations between the clinical and sonographic findings. Although a single experienced orthopedic surgeon conducted all examinations, we detected only a limited relationship between the results of clinical and ultrasound examinations. Ninety-three percent of the clinically subluxatable hips were normal or immature based on static ultrasound examination, and 74% of dislocating hips and 67% of limited abduction hips presented with the morphology below Graf IIa. A total of 80% of clinically subluxatable, 42% of dislocating and 67% of limited abduction hips appeared stable or exhibited minor instability on dynamic ultrasound examination. About 7% of clinically normal hips were abnormal upon ultrasound examination; 5% showed major instability and 3% showed dysplasia above Graf IIc. Clinical stability had small coefficients between ultrasound examinations; 0.39 for sonographic stability and 0.37 for sonographic morphology. Between sonographic stability and morphology, although 71% of hips with major instability showed normal or immature morphology according to static ultrasound examination, the coefficient was as high as 0.64. Discrepancies between clinical and ultrasound examinations were present even if almost all of the exams were performed by a single experienced pediatric orthopedic surgeon. In relation to screening for DDH, it is recommended that both sonographic morphology and stability be checked in addition to clinical examination.
Giles, Courtney D; Brown, Lawrie K; Adu, Michael O; Mezeli, Malika M; Sandral, Graeme A; Simpson, Richard J; Wendler, Renate; Shand, Charles A; Menezes-Blackburn, Daniel; Darch, Tegan; Stutter, Marc I; Lumsdon, David G; Zhang, Hao; Blackwell, Martin S A; Wearing, Catherine; Cooper, Patricia; Haygarth, Philip M; George, Timothy S
2017-02-01
Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants' response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Triest, L; De Greef, B; De Bondt, R; Van Slycken, J
2000-05-01
The polyploid Salix alba-Salix fragilis hybrid complex is rather difficult to study when using only morphological characters. Most of the features have a low diagnostic value for unambiguously identifying the hybrids, introgression patterns and population structures, though morphological traits have proved to be useful in making a hybrid index. Morphology and molecular variation from RAPDs were investigated in several case studies on willows from Belgium. A thorough screening of full-sib progenies of interspecific controlled crosses was made to select homologous amplification products. The selected amplified products proved to be useful in a principal coordinate analysis for the estimation of variability of hybrid progenies. On the basis of genetic similarities and ordination analysis, a method for the identification of clones in the field was established using presumed pure species and presumed introgressants. The chosen reference clones were checked against additional European samples of putative pure species to ensure the reliability of the method beyond a regional scale. The RAPDs suggested that both species have kept their gene pools well separated and that hybridization actually does not seem to be a dominating process. The observation that molecular markers do not always follow the morphological traits or allozyme data is discussed.
Origins of domestication and polyploidy in oca (Oxalis tuberosa : Oxalidaceae): nrDNA ITS data.
Emshwiller, E; Doyle, J
1998-07-01
As part of a study aimed at elucidating the origins of the octoploid tuber crop "oca," Oxalis tuberosa, DNA sequences of the internal trancribed spacer of nuclear ribosomal DNA (nrDNA ITS) were determined for oca and several wild Oxalis species, mostly from Bolivia. Phylogenetic analysis of these data supports a group of these species as being close relatives of oca, in agreement with morphology and cytology, but at odds with traditional infrageneric taxonomy. Variation in ITS sequences within this group is quite low (0-7 substitutions in the entire ITS region), contrasting with the highly divergent (unalignable in some cases) sequences within the genus overall. Some groups of morphologically differentiated species were found to have identical sequences, notably a group that includes oca, wild populations of Oxalis that bear small tubers, and several other clearly distinct species. The presence of a second, minor sequence type in at least some oca accessions suggests a possible contribution from a second genome donor, also from within this same species group. ITS data lack sufficient variation to elucidate the origins of oca precisely, but have identified a pool of candidate species and so can be used as a tool to screen yet unsampled species for possible progenitors.
Chen, C; Li, H; Zhou, X; Wong, S T C
2008-05-01
Image-based, high throughput genome-wide RNA interference (RNAi) experiments are increasingly carried out to facilitate the understanding of gene functions in intricate biological processes. Automated screening of such experiments generates a large number of images with great variations in image quality, which makes manual analysis unreasonably time-consuming. Therefore, effective techniques for automatic image analysis are urgently needed, in which segmentation is one of the most important steps. This paper proposes a fully automatic method for cells segmentation in genome-wide RNAi screening images. The method consists of two steps: nuclei and cytoplasm segmentation. Nuclei are extracted and labelled to initialize cytoplasm segmentation. Since the quality of RNAi image is rather poor, a novel scale-adaptive steerable filter is designed to enhance the image in order to extract long and thin protrusions on the spiky cells. Then, constraint factor GCBAC method and morphological algorithms are combined to be an integrated method to segment tight clustered cells. Compared with the results obtained by using seeded watershed and the ground truth, that is, manual labelling results by experts in RNAi screening data, our method achieves higher accuracy. Compared with active contour methods, our method consumes much less time. The positive results indicate that the proposed method can be applied in automatic image analysis of multi-channel image screening data.
Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster
Carreira, Valeria Paula; Mensch, Julián; Hasson, Esteban; Fanara, Juan José
2016-01-01
Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact epistatically with mutant alleles. PMID:27459710
Evolutionary developmental genetics of fruit morphological variation within the Solanaceae
Wang, Li; Li, Jing; Zhao, Jing; He, Chaoying
2015-01-01
Morphological variations of fruits such as shape and size, and color are a result of adaptive evolution. The evolution of morphological novelties is particularly intriguing. An understanding of these evolutionary processes calls for the elucidation of the developmental and genetic mechanisms that result in particular fruit morphological characteristics, which determine seed dispersal. The genetic and developmental basis for fruit morphological variation was established at a microevolutionary time scale. Here, we summarize the progress on the evolutionary developmental genetics of fruit size, shape and color in the Solanaceae. Studies suggest that the recruitment of a pre-existing gene and subsequent modification of its interaction and regulatory networks are frequently involved in the evolution of morphological diversity. The basic mechanisms underlying changes in plant morphology are alterations in gene expression and/or gene function. We also deliberate on the future direction in evolutionary developmental genetics of fruit morphological variation such as fruit type. These studies will provide insights into plant developmental processes and will help to improve the productivity and fruit quality of crops. PMID:25918515
Anthropometric Measurements Usage in Medical Sciences
Utkualp, Nevin; Ercan, Ilker
2015-01-01
Morphometry is introduced as quantitative approach to seek information concerning variations and changes in the forms of organisms that described the relationship between the human body and disease. Scientists of all civilization, who existed until today, examined the human body using anthropometric methods. For these reasons, anthropometric data are used in many contexts to screen for or monitor disease. Anthropometry, a branch of morphometry, is the study of the size and shape of the components of biological forms and their variations in populations. Morphometrics can also be defined as the quantitative analysis of biological forms. The field has developed rapidly over the last two decades to the extent that we now distinguish between traditional morphometrics and the more recent geometric morphometrics. Advances in imaging technology have resulted in the protection of a greater amount of morphological information and have permitted the analysis of this information. The oldest and most commonly used of these methods is radiography. With developments in this area, CT and MRI have also been started to be used in screening of the internal organs. Morphometric measurements that are used in medicine, are widely used in the diagnosis and the follow-up and the treatment of the disease, today. In addition, in cosmetology use of these new measurements is increasing every day. PMID:26413519
Phenotype-Based Screening of Small Molecules to Modify Plant Cell Walls Using BY-2 Cells.
Okubo-Kurihara, Emiko; Matsui, Minami
2018-01-01
The plant cell wall is an important and abundant biomass with great potential for use as a modern recyclable resource. For effective utilization of this cellulosic biomass, its ability to degrade efficiently is key point. With the aim of modifying the cell wall to allow easy decomposition, we used chemical biological technology to alter its structure. As a first step toward evaluating the chemicals in the cell wall we employed a phenotype-based approach using high-throughput screening. As the plant cell wall is essential in determining cell morphology, phenotype-based screening is particularly effective in identifying compounds that bring about alterations in the cell wall. For rapid and reproducible screening, tobacco BY-2 cell is an excellent system in which to observe cell morphology. In this chapter, we provide a detailed chemical biological methodology for studying cell morphology using tobacco BY-2 cells.
Morphologic and morphometric studies of impact craters in the northern plains of Mars
NASA Technical Reports Server (NTRS)
Barlow, N. G.
1993-01-01
Fresh impact craters in the northern plains of Mars display a variety of morphologic and morphometric properties. Ejecta morphologies range from radial to fluidized, interior features include central peaks and central pits, fluidized morphologies display a range of sinuosities, and depth-diameter ratios are being measured to determine regional variations. Studies of the martian northern plains over the past five years have concentrated in three areas: (1) determining correlations of ejecta morphologies with crater diameter, latitude, and underlying terrain; (2) determining variations in fluidized ejecta blanket sinuosity across the planet; and (3) measurement of depth-diameter ratios and determination of regional variations in this ratio.
Maxillary and Mandibular First Premolars Showing Three-Cusp Pattern: An Unusual Presentation
Kotrashetti, Vijayalakshmi; Nayak, Aarati; Patil, Viraj; Kulkarni, Mayuri; Somannavar, Pradeep
2013-01-01
Dental anatomy is the study of morphology of various teeth in human dentitions. The application of dental anatomy in clinical practice is important, and dentist should have a thorough knowledge regarding the morphology of the teeth. At times as a result of genetic variation, environmental factors, diet of an individual and race, variations in the morphology of the teeth can be observed. These variations have been extensively studied by the researcher in the field of anthropology to define a particular race. The most commonly observed changes include peg-shaped laterals, shovel-shaped incisors, and extra cusp on molar. Common variations documented with regard to maxillary and mandibular first premolars are the variation in the number of roots. But the variations with respect to crown morphology are few. We report a first documented unusual presentation of maxillary and mandibular first premolars with three-cusps pattern in a female patient. PMID:23476817
Birla, S; Khadgawat, R; Jyotsna, V P; Jain, V; Garg, M K; Bhalla, A S; Sharma, A
2016-12-01
Growth hormone deficiency (GHD) results from variations affecting the production and release of growth hormone (GH) and is of 2 types: isolated growth hormone deficiency (IGHD) and combined pituitary hormone deficiency (CPHD). IGHD results from mutations in GH1 and GHRHR while CPHD is associated with defects in transcription factor genes PROP1 , POU1F1 , and HESX1. The present study reports on screening of POU1F1 , PROP1 , and HESX1 in CPHD patients and the novel variations identified. Fifty-one CPHD patients from 49 unrelated families clinically diagnosed on the basis of biochemical and imaging investigations along with 100 controls were enrolled. Detailed family history was noted from all participants and 5 ml blood samples drawn were processed for DNA isolation followed by direct sequencing of POU1F1 , PROP1 , and HESX1 genes. Of the 51 patients, 8 were females and 43 were males. Mean height standard deviation score (SDS) and weight SDS were -5.50 and -2.76, respectively. Thirty-six of the 51 patients underwent MRI of which 9 (25%) had normal pituitary structure and morphology while 27 (75%) showed abnormalities. Molecular analysis revealed 10 (20%) patients to have POU1F1 and PROP1 mutations/variations of which 5 were novel and 2 previously reported. No mutations were identified in HESX1. The novel variations identified were absent in the 100 healthy individuals screened and the control database Exome Aggregation Consortium (ExAC). Reported POU1F1 and PROP1 mutation hotspots were absent in our patients. Instead, novel POU1F1 changes were identified suggesting existence of a distinct mutation spectrum in our population. © Georg Thieme Verlag KG Stuttgart · New York.
Alexis, Matamoro-Vidal; Isaac, Salazar-Ciudad; David, Houle
2015-01-01
One of the aims of evolutionary developmental biology is to discover the developmental origins of morphological variation. The discipline has mainly focused on qualitative morphological differences (e.g., presence or absence of a structure) between species. Studies addressing subtle, quantitative variation are less common. The Drosophila wing is a model for the study of development and evolution, making it suitable to investigate the developmental mechanisms underlying the subtle quantitative morphological variation observed in nature. Previous reviews have focused on the processes involved in wing differentiation, patterning and growth. Here, we investigate what is known about how the wing achieves its final shape, and what variation in development is capable of generating the variation in wing shape observed in nature. Three major developmental stages need to be considered: larval development, pupariation, and pupal development. The major cellular processes involved in the determination of tissue size and shape are cell proliferation, cell death, oriented cell division and oriented cell intercalation. We review how variation in temporal and spatial distribution of growth and transcription factors affects these cellular mechanisms, which in turn affects wing shape. We then discuss which aspects of the wing morphological variation are predictable on the basis of these mechanisms. PMID:25619644
Lu, Jun-Xia; Bayro, Marvin J.; Tycko, Robert
2016-01-01
We present the results of solid state nuclear magnetic resonance (NMR) experiments on HIV-1 capsid protein (CA) assemblies with three different morphologies, namely wild-type CA (WT-CA) tubes with 35–60 nm diameters, planar sheets formed by the Arg18-Leu mutant (R18L-CA), and R18L-CA spheres with 20–100 nm diameters. The experiments are intended to elucidate molecular structural variations that underlie these variations in CA assembly morphology. We find that multidimensional solid state NMR spectra of 15N,13C-labeled CA assemblies are remarkably similar for the three morphologies, with only small differences in 15N and 13C chemical shifts, no significant differences in NMR line widths, and few differences in the number of detectable NMR cross-peaks. Thus, the pronounced differences in morphology do not involve major differences in the conformations and identities of structurally ordered protein segments. Instead, morphological variations are attributable to variations in conformational distributions within disordered segments, which do not contribute to the solid state NMR spectra. Variations in solid state NMR signals from certain amino acid side chains are also observed, suggesting differences in the intermolecular dimerization interface between curved and planar CA lattices, as well as possible differences in intramolecular helix-helix packing. PMID:27129282
Wellington, Gerrard M.; Fox, George E.; Toonen, Robert J.
2015-01-01
Morphological variation in the geographically widespread coral Porites lobata can make it difficult to distinguish from other massive congeneric species. This morphological variation could be attributed to geographic variability, phenotypic plasticity, or a combination of such factors. We examined genetic and microscopic morphological variability in P. lobata samples from the Galápagos, Easter Island, Tahiti, Fiji, Rarotonga, and Australia. Panamanian P. evermanni specimens were used as a previously established distinct outgroup against which to test genetic and morphological methods of discrimination. We employed a molecular analysis of variance (AMOVA) based on ribosomal internal transcribed spacer region (ITS) sequence, principal component analysis (PCA) of skeletal landmarks, and Mantel tests to compare genetic and morphological variation. Both genetic and morphometric methods clearly distinguished P. lobata and P. evermanni, while significant genetic and morphological variance was attributed to differences among geographic regions for P. lobata. Mantel tests indicate a correlation between genetic and morphological variation for P. lobata across the Pacific. Here we highlight landmark morphometric measures that correlate well with genetic differences, showing promise for resolving species of Porites, one of the most ubiquitous yet challenging to identify architects of coral reefs. PMID:25674364
Fuller, Trevon L.; Thomassen, Henri A.; Peralvo, Manuel; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M.; Jarrín-V, Pablo; Devitt, Susan E. Cameron; Mason, Eliza; Schweizer, Rena M.; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Schneider, Christopher J.; Pollinger, John P.; Saatchi, Sassan; Graham, Catherine H.; Wayne, Robert K.; Smith, Thomas B.
2013-01-01
Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible. PMID:23595273
Porto, Arthur; Sebastião, Harley; Pavan, Silvia Eliza; VandeBerg, John L.; Marroig, Gabriel; Cheverud, James M.
2015-01-01
We tested the hypothesis that the rate of marsupial cranial evolution is dependent on the distribution of genetic variation in multivariate space. To do so, we carried out a genetic analysis of cranial morphological variation in laboratory strains of Monodelphis domestica and used estimates of genetic covariation to analyze the morphological diversification of the Monodelphis brevicaudata species group. We found that within-species genetic variation is concentrated in only a few axes of the morphospace and that this strong genetic covariation influenced the rate of morphological diversification of the brevicaudata group, with between-species divergence occurring fastest when occurring along the genetic line of least resistance. Accounting for the geometric distribution of genetic variation also increased our ability to detect the selective regimen underlying species diversification, with several instances of selection only being detected when genetic covariances were taken into account. Therefore, this work directly links patterns of genetic covariation among traits to macroevolutionary patterns of morphological divergence. Our findings also suggest that the limited distribution of Monodelphis species in morphospace is the result of a complex interplay between the limited dimensionality of available genetic variation and strong stabilizing selection along two major axes of genetic variation. PMID:25818173
O'Mahony, Aoife M; Samek, Izabela A; Sattayasamitsathit, Sirilak; Wang, Joseph
2014-08-19
Field-deployable voltammetric screening coupled with complementary laboratory-based analysis to confirm the presence of gunshot residue (GSR) from the hands of a subject who has handled, loaded, or discharged a firearm is described. This protocol implements the orthogonal identification of the presence of GSR utilizing square-wave stripping voltammetry (SWSV) as a rapid screening tool along with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) to confirm the presence of the characteristic morphology and metal composition of GSR particles. This is achieved through the judicious modification of the working electrode of a carbon screen-printed electrode (CSPE) with carbon tape (used in SEM analysis) to fix and retain a sample. A comparison between a subject who has handled and loaded a firearm and a subject who has had no contact with GSR shows the significant variations in voltammetric signals and the presence or absence of GSR-consistent particles and constituent metals. This initial electrochemical screening has no effect on the integrity of the metallic particles, and SEM/EDX analysis conducted prior to and postvoltammetry show no differences in analytical output. The carbon tape is instrumental in retaining the GSR sample after electrochemical analysis, supported by comparison with orthogonal detection at a bare CSPE. This protocol shows great promise as a two-tier detection system for the presence of GSR from the hands of a subject, whereby initial screening can be conducted rapidly onsite by minimally trained operators; confirmation can follow at the same substrate to substantiate the voltammetric results.
Faull, Katherine J; Williams, Craig R
2016-05-01
Aedes notoscriptus and Aedes aegypti are both peri-domestic, invasive container-breeding mosquitoes. While the two potential arboviral vectors are bionomically similar, their sympatric distribution in Australia is limited. In this study, analyses of Ae. aegypti and Ae. notoscriptus eggs were enabled using scanning electron microscopy. Significant variations in egg length to width ratio and outer chorionic cell field morphology between Ae. aegypti and Ae. notoscriptus enabled distinction of the two species. Intraspecific variations in cell field morphology also enabled differentiation of the separate populations of both species, highlighting regional and global variation. Our study provides a comprehensive comparative analysis of inter- and intraspecific egg morphological and morphometric variation between two invasive container-breeding mosquitoes. The results indicate a high degree of intraspecific variation in Ae. notoscriptus egg morphology when compared to the eggs of Ae. aegypti. Comparative morphological analyses of Ae. aegypti and Ae. notoscriptus egg attributes using SEM allows differentiation of the species and may be helpful in understanding egg biology in relation to biotope of origin. Copyright © 2016 Elsevier Ltd. All rights reserved.
Flight biomechanics of developmentally-induced size variation in the solitary bee Osmia lignaria
USDA-ARS?s Scientific Manuscript database
Body size covaries with morphology, functional performance, and fitness. For insects, variation in adult phenotypies are derived from developmental variation in larval growth and metamorphosis. In this study, we asked how larval growth impacted adult morphology in Osmia lignaria—especially traits th...
Ellison, Aaron M; Buckley, Hannah L; Miller, Thomas E; Gotelli, Nicholas J
2004-11-01
Geographic variation in morphology reflects phenotypic responses to environmental gradients and evolutionary history of populations and species and may indicate local or regional changes in environmental conditions. The pitcher plant (Sarracenia purpurea) illustrates these principles. At local scales, its morphology reflects nutrient availability. At points along its broad geographic range (from Florida to northern Canada) morphology has been used to distinguish subspecies and varieties, but there has been no detailed study of the continuum of morphological variation across this entire range. Patterns of morphological variation in S. purpurea were characterized as a function of climatic and environmental conditions at 39 sites spanning its range. Differences in pitcher size and shape were strongly correlated with temperature, annual precipitation, and availability of ammonium and calcium in peat pore water. Pitcher shape (lip width, mouth diameter, and pitcher width) in Florida panhandle populations differed significantly from pitcher shape of all other populations, even after accounting for environmental correlations. In contrast, the northern and southern subspecies of S. purpurea (the latter exclusive of the Florida panhandle populations) cannot be distinguished based on these morphological measurements alone. These results support a recent proposal that identifies the Florida populations as a distinct species, Sarracenia rosea.
Sands, Chester J; Convey, Peter; Linse, Katrin; McInnes, Sandra J
2008-04-30
Meiofauna - multicellular animals captured between sieve size 45 mum and 1000 mum - are a fundamental component of terrestrial, and marine benthic ecosystems, forming an integral element of food webs, and playing a critical roll in nutrient recycling. Most phyla have meiofaunal representatives and studies of these taxa impact on a wide variety of sub-disciplines as well as having social and economic implications. However, studies of variation in meiofauna are presented with several important challenges. Isolating individuals from a sample substrate is a time consuming process, and identification requires increasingly scarce taxonomic expertise. Finding suitable morphological characters in many of these organisms is often difficult even for experts. Molecular markers are extremely useful for identifying variation in morphologically conserved organisms. However, for many species markers need to be developed de novo, while DNA can often only be extracted from pooled samples in order to obtain sufficient quantity and quality. Importantly, multiple independent markers are required to reconcile gene evolution with species evolution. In this primarily methodological paper we provide a proof of principle of a novel and effective protocol for the isolation of meiofauna from an environmental sample. We also go on to illustrate examples of the implications arising from subsequent screening for genetic variation at the level of the individual using ribosomal, mitochondrial and single copy nuclear markers. To isolate individual tardigrades from their habitat substrate we used a non-toxic density gradient media that did not interfere with downstream biochemical processes. Using a simple DNA release technique and nested polymerase chain reaction with universal primers we were able amplify multi-copy and, to some extent, single copy genes from individual tardigrades. Maximum likelihood trees from ribosomal 18S, mitochondrial cytochrome oxidase subunit 1, and the single copy nuclear gene Wingless support a recent study indicating that the family Hypsibiidae is a non-monophyletic group. From these sequences we were able to detect variation between individuals at each locus that allowed us to identify the presence of cryptic taxa that would otherwise have been overlooked. Molecular results obtained from individuals, rather than pooled samples, are a prerequisite to enable levels of variation to be placed into context. In this study we have provided a proof of principle of this approach for meiofaunal tardigrades, an important group of soil biota previously not considered amenable to such studies, thereby paving the way for more comprehensive phylogenetic studies using multiple nuclear markers, and population genetic studies.
Sands, Chester J; Convey, Peter; Linse, Katrin; McInnes, Sandra J
2008-01-01
Background Meiofauna – multicellular animals captured between sieve size 45 μm and 1000 μm – are a fundamental component of terrestrial, and marine benthic ecosystems, forming an integral element of food webs, and playing a critical roll in nutrient recycling. Most phyla have meiofaunal representatives and studies of these taxa impact on a wide variety of sub-disciplines as well as having social and economic implications. However, studies of variation in meiofauna are presented with several important challenges. Isolating individuals from a sample substrate is a time consuming process, and identification requires increasingly scarce taxonomic expertise. Finding suitable morphological characters in many of these organisms is often difficult even for experts. Molecular markers are extremely useful for identifying variation in morphologically conserved organisms. However, for many species markers need to be developed de novo, while DNA can often only be extracted from pooled samples in order to obtain sufficient quantity and quality. Importantly, multiple independent markers are required to reconcile gene evolution with species evolution. In this primarily methodological paper we provide a proof of principle of a novel and effective protocol for the isolation of meiofauna from an environmental sample. We also go on to illustrate examples of the implications arising from subsequent screening for genetic variation at the level of the individual using ribosomal, mitochondrial and single copy nuclear markers. Results To isolate individual tardigrades from their habitat substrate we used a non-toxic density gradient media that did not interfere with downstream biochemical processes. Using a simple DNA release technique and nested polymerase chain reaction with universal primers we were able amplify multi-copy and, to some extent, single copy genes from individual tardigrades. Maximum likelihood trees from ribosomal 18S, mitochondrial cytochrome oxidase subunit 1, and the single copy nuclear gene Wingless support a recent study indicating that the family Hypsibiidae is a non-monophyletic group. From these sequences we were able to detect variation between individuals at each locus that allowed us to identify the presence of cryptic taxa that would otherwise have been overlooked. Conclusion Molecular results obtained from individuals, rather than pooled samples, are a prerequisite to enable levels of variation to be placed into context. In this study we have provided a proof of principle of this approach for meiofaunal tardigrades, an important group of soil biota previously not considered amenable to such studies, thereby paving the way for more comprehensive phylogenetic studies using multiple nuclear markers, and population genetic studies. PMID:18447908
The Vainshtein mechanism in the cosmic web
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falck, Bridget; Koyama, Kazuya; Zhao, Gong-bo
We investigate the dependence of the Vainshtein screening mechanism on the cosmic web morphology of both dark matter particles and halos as determined by ORIGAMI. Unlike chameleon and symmetron screening, which come into effect in regions of high density, Vainshtein screening instead depends on the dimensionality of the system, and screened bodies can still feel external fields. ORIGAMI is well-suited to this problem because it defines morphologies according to the dimensionality of the collapsing structure and does not depend on a smoothing scale or density threshold parameter. We find that halo particles are screened while filament, wall, and void particlesmore » are unscreened, and this is independent of the particle density. However, after separating halos according to their large scale cosmic web environment, we find no difference in the screening properties of halos in filaments versus halos in clusters. We find that the fifth force enhancement of dark matter particles in halos is greatest well outside the virial radius. We confirm the theoretical expectation that even if the internal field is suppressed by the Vainshtein mechanism, the object still feels the fifth force generated by the external fields, by measuring peculiar velocities and velocity dispersions of halos. Finally, we investigate the morphology and gravity model dependence of halo spins, concentrations, and shapes.« less
Size-associated morphological variation in the red tree vole (Arborimus longicaudus)
Mark P. Miller; Eric D. Forsman; James K. Swingle; Stephanie A. Miller; Susan M. Haig
2010-01-01
We examined patterns of size-associated morphological variation within the Red Tree Vole (Arborimus longicaudus) for the purposes of 1) identifying differences between the Red Tree Vole and the Dusky Tree Vole (A. l. silvicola), a putative subspecies of the Red Tree Vole; and 2) examining spatial patterns of morphological...
Naturally occurring variation in tadpole morphology and performance linked to predator regime
Johnson, James B; Saenz, Daniel; Adams, Cory K; Hibbitts, Toby J
2015-01-01
Divergent natural selection drives a considerable amount of the phenotypic and genetic variation observed in natural populations. For example, variation in the predator community can generate conflicting selection on behavioral, life-history, morphological, and performance traits. Differences in predator regime can subsequently increase phenotypic and genetic variations in the population and result in the evolution of reproductive barriers (ecological speciation) or phenotypic plasticity. We evaluated morphology and swimming performance in field collected Bronze Frog larvae (Lithobates clamitans) in ponds dominated by predatory fish and those dominated by invertebrate predators. Based on previous experimental findings, we hypothesized that tadpoles from fish-dominated ponds would have small bodies, long tails, and large tail muscles and that these features would facilitate fast-start speed. We also expected to see increased tail fin depth (i.e., the tail-lure morphology) in tadpoles from invertebrate-dominated ponds. Our results support our expectations with respect to morphology in affecting swimming performance of tadpoles in fish-dominated ponds. Furthermore, it is likely that divergent natural selection is playing a role in the diversification on morphology and locomotor performance in this system. PMID:26357533
Naturally occurring variation in tadpole morphology and performance linked to predator regime
James B. Johnson; Daniel Saenz; Cory K. Adams; Toby J. Hibbitts
2015-01-01
Divergent natural selection drives a considerable amount of the phenotypic and genetic variation observed in natural populations. For example, variation in the predator community can generate conflicting selection on behavioral, life-history, morphological, and performance traits. Differences in predator regime can subsequently increase phenotypic and genetic...
NASA Astrophysics Data System (ADS)
Gomes, Verónica; Carretero, Miguel A.; Kaliontzopoulou, Antigoni
2018-02-01
A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.
Gomes, Verónica; Carretero, Miguel A; Kaliontzopoulou, Antigoni
2018-01-02
A central issue in evolutionary biology is how morphology, performance, and habitat use coevolve. If morphological variation is tightly associated with habitat use, then differences in morphology should affect fitness through their effect on performance within specific habitats. In this study, we investigate how evolutionary forces mold morphological traits and performance differently given the surrounding environment, at the intraspecific level. For this purpose, we selected populations of the lizard Podarcis bocagei from two different habitat types, agricultural walls and dunes, which we expected to reflect saxicolous vs ground-dwelling habits. In the laboratory, we recorded morphological traits as well as performance traits by measuring sprint speed, climbing capacity, maneuverability, and bite force. Our results revealed fast-evolving ecomorphological variation among populations of P. bocagei, where a direct association existed between head morphology and bite performance. However, we could not establish links between limb morphology and locomotor performance at the individual level. Lizards from walls were better climbers than those from dunes, suggesting a very fast evolutionary response. Interestingly, a significant interaction between habitat and sex was detected in climbing performance. In addition, lizards from dunes bit harder than those from walls, although sexual differentiation was definitely the main factor driving variation in head functional morphology. Taking into account all the results, we found a complex interaction between natural and sexual selection on whole-organism performance, which are, in some cases, reflected in morphological variation.
Mutagenic effects of carbon ion beam irradiations on dry Lotus japonicus seeds
NASA Astrophysics Data System (ADS)
Luo, Shanwei; Zhou, Libin; Li, Wenjian; Du, Yan; Yu, Lixia; Feng, Hui; Mu, Jinhu; Chen, Yuze
2016-09-01
Carbon ion beam irradiation is a powerful method for creating mutants and has been used in crop breeding more and more. To investigate the effects of carbon ion beams on Lotus japonicus, dry seeds were irradiated by 80 MeV/u carbon ion beam at dosages of 0, 100, 200, 300, 400, 500 and 600 Gy. The germination rate, survival rate and root length of M1 populations were explored and the dose of 400 Gy was selected as the median lethal dose (LD50) for a large-scale mutant screening. Among 2472 M2 plants, 127 morphological mutants including leaf, stem, flower and fruit phenotypic variation were found, and the mutation frequency was approximately 5.14%. Inter simple sequence repeat (ISSR) assays were utilized to investigate the DNA polymorphism between seven mutants and eight plants without phenotypic variation from M2 populations. No remarkable differences were detected between these two groups, and the total polymorphic rate was 0.567%.
Thórsson, Æ. Th.; Pálsson, S.; Sigurgeirsson, A.; Anamthawat-Jónsson, K.
2007-01-01
Background and Aims Introgressive hybridization between two co-existing Betula species in Iceland, diploid dwarf birch B. nana and tetraploid downy birch B. pubescens, has been well documented. The two species are highly variable morphologically, making taxonomic delineation difficult despite stable ploidy levels. Here an analysis is made of morphological variation within each ploidy group with an aim to establishing a reliable means to distinguish the species. Methods Plant materials were collected from 14 woodlands in Iceland. The plants were identified based on 2n chromosome numbers. Morphological variation in species-specific characters within each ploidy group was analysed qualitatively and quantitatively. The morphological index was based on eight discrete characters, whereas the multivariate analysis was based on nine leaf variables. Key Results Of the 461 plants examined, 9·5 % were found to be triploid hybrids. The three ploidy groups were morphologically distinguishable but their variation overlapped. The diploid, triploid and tetraploid groups had average scores of 1·3, 4·1 and 8·3, respectively, in the morphology index scale from 0 (B. nana) to 13 (B. pubescens). A linear discriminant analysis also revealed significant separation among the three ploidy groups and the model assigned 96 % and 97 % of the B. nana and B. pubescens individuals correctly. The triploid hybrids were difficult to predict since only half of them could be assigned correctly. Leaf length was the most useful variable identifying triploid hybrids. Geographical patterns within the ploidy groups could partly be explained by differences in mean July temperature. Conclusions Hybridization between B. nana and B. pubescens is widespread in Iceland. The species can be distinguished from each other morphologically, and from the triploid hybrids. The overlapping morphological variation indicates bidirectional introgression between the two species via triploid hybrids. Iceland could be considered a birch hybrid zone, harbouring genetic variation which may be advantageous in subarctic regions. PMID:17495985
Lopez, Gerardo; Pallas, Benoît; Martinez, Sébastien; Lauri, Pierre-Éric; Regnard, Jean-Luc; Durel, Charles-Éric; Costes, Evelyne
2015-01-01
Water use efficiency (WUE) is a quantitative measurement which improvement is a major issue in the context of global warming and restrictions in water availability for agriculture. In this study, we aimed at studying the variation and genetic control of WUE and the respective role of its components (plant biomass and transpiration) in a perennial fruit crop. We explored an INRA apple core collection grown in a phenotyping platform to screen one-year-old scions for their accumulated biomass, transpiration and WUE under optimal growing conditions. Plant biomass was decompose into morphological components related to either growth or organ expansion. For each trait, nine mixed models were evaluated to account for the genetic effect and spatial heterogeneity inside the platform. The Best Linear Unbiased Predictors of genetic values were estimated after model selection. Mean broad-sense heritabilities were calculated from variance estimates. Heritability values indicated that biomass (0.76) and WUE (0.73) were under genetic control. This genetic control was lower in plant transpiration with an heritability of 0.54. Across the collection, biomass accounted for 70% of the WUE variability. A Hierarchical Ascendant Classification of the core collection indicated the existence of six groups of genotypes with contrasting morphology and WUE. Differences between morphotypes were interpreted as resulting from differences in the main processes responsible for plant growth: cell division leading to the generation of new organs and cell elongation leading to organ dimension. Although further studies will be necessary on mature trees with more complex architecture and multiple sinks such as fruits, this study is a first step for improving apple plant material for the use of water.
Lopez, Gerardo; Pallas, Benoît; Martinez, Sébastien; Lauri, Pierre-Éric; Regnard, Jean-Luc; Durel, Charles-Éric; Costes, Evelyne
2015-01-01
Water use efficiency (WUE) is a quantitative measurement which improvement is a major issue in the context of global warming and restrictions in water availability for agriculture. In this study, we aimed at studying the variation and genetic control of WUE and the respective role of its components (plant biomass and transpiration) in a perennial fruit crop. We explored an INRA apple core collection grown in a phenotyping platform to screen one-year-old scions for their accumulated biomass, transpiration and WUE under optimal growing conditions. Plant biomass was decompose into morphological components related to either growth or organ expansion. For each trait, nine mixed models were evaluated to account for the genetic effect and spatial heterogeneity inside the platform. The Best Linear Unbiased Predictors of genetic values were estimated after model selection. Mean broad-sense heritabilities were calculated from variance estimates. Heritability values indicated that biomass (0.76) and WUE (0.73) were under genetic control. This genetic control was lower in plant transpiration with an heritability of 0.54. Across the collection, biomass accounted for 70% of the WUE variability. A Hierarchical Ascendant Classification of the core collection indicated the existence of six groups of genotypes with contrasting morphology and WUE. Differences between morphotypes were interpreted as resulting from differences in the main processes responsible for plant growth: cell division leading to the generation of new organs and cell elongation leading to organ dimension. Although further studies will be necessary on mature trees with more complex architecture and multiple sinks such as fruits, this study is a first step for improving apple plant material for the use of water. PMID:26717192
The relevance of morphology for habitat use and locomotion in two species of wall lizards
NASA Astrophysics Data System (ADS)
Gomes, Verónica; Carretero, Miguel A.; Kaliontzopoulou, Antigoni
2016-01-01
Understanding if morphological differences between organisms that occupy different environments are associated to differences in functional performance can suggest a functional link between environmental and morphological variation. In this study we examined three components of the ecomorphological paradigm - morphology, locomotor performance and habitat use - using two syntopic wall lizards endemic to the Iberian Peninsula as a case study to establish whether morphological variation is associated with habitat use and determine the potential relevance of locomotor performance for such an association. Differences in habitat use between both lizards matched patterns of morphological variation. Indeed, individuals of Podarcis guadarramae lusitanicus, which are more flattened, used more rocky environments, whereas Podarcis bocagei, which have higher heads, used more vegetation than rocks. These patterns translated into a significant association between morphology and habitat use. Nevertheless, the two species were only differentiated in some of the functional traits quantified, and locomotor performance did not exhibit an association with morphological traits. Our results suggest that the link between morphology and habitat use is mediated by refuge use, rather than locomotor performance, in this system, and advise caution when extrapolating morphology-performance-environment associations across organisms.
Ruiz-Montoya, L; Zúñiga, G; Cisneros, R; Salinas-Moreno, Y; Peña-Martínez, R; Machkour-M'Rabet, S
2015-12-01
The study of phenotypic and genetic variation of obligate parthenogenetic organisms contributes to an understanding of evolution in the absence of genetic variation produced by sexual reproduction. Eriosoma lanigerum Hausmann undergoes obligate parthenogenesis in Mexico City, Mexico, due to the unavailability of the host plants required for sexual reproduction. We analysed the phenotypic and genetic variation of E. lanigerum in relation to the dry and wet season and plant phenology. Aphids were collected on two occasions per season on a secondary host plant, Pyracantha koidzumii, at five different sites in the southern area of Mexico City, Mexico. Thirteen morphological characteristics were measured from 147 to 276 individuals per site and per season. A multivariate analysis of variance was performed to test the effect of the season, site and their interaction on morphological traits. Morphological variation was summarised using a principal component analysis. Genetic variation was described using six enzymatic loci, four of which were polymorphic. Our study showed that the site and season has a significant effect on morphological trait variation. The largest aphids were recorded during cold temperatures with low relative humidity and when the plant was at the end of the fruiting period. The mean genetic diversity was low (mean H e = .161), and populations were genetically structured by season and site. Morphological and genetic variations appear to be associated with environmental factors that directly affect aphid development and/or indirectly by host plant phenology.
Nir, Oaz; Bakal, Chris; Perrimon, Norbert; Berger, Bonnie
2010-03-01
Biological networks are highly complex systems, consisting largely of enzymes that act as molecular switches to activate/inhibit downstream targets via post-translational modification. Computational techniques have been developed to perform signaling network inference using some high-throughput data sources, such as those generated from transcriptional and proteomic studies, but comparable methods have not been developed to use high-content morphological data, which are emerging principally from large-scale RNAi screens, to these ends. Here, we describe a systematic computational framework based on a classification model for identifying genetic interactions using high-dimensional single-cell morphological data from genetic screens, apply it to RhoGAP/GTPase regulation in Drosophila, and evaluate its efficacy. Augmented by knowledge of the basic structure of RhoGAP/GTPase signaling, namely, that GAPs act directly upstream of GTPases, we apply our framework for identifying genetic interactions to predict signaling relationships between these proteins. We find that our method makes mediocre predictions using only RhoGAP single-knockdown morphological data, yet achieves vastly improved accuracy by including original data from a double-knockdown RhoGAP genetic screen, which likely reflects the redundant network structure of RhoGAP/GTPase signaling. We consider other possible methods for inference and show that our primary model outperforms the alternatives. This work demonstrates the fundamental fact that high-throughput morphological data can be used in a systematic, successful fashion to identify genetic interactions and, using additional elementary knowledge of network structure, to infer signaling relations.
Cold Shock as a Screen for Genes Involved in Cold Acclimatization in Neurospora crassa
Watters, Michael K.; Manzanilla, Victor; Howell, Holly; Mehreteab, Alexander; Rose, Erik; Walters, Nicole; Seitz, Nicholas; Nava, Jacob; Kekelik, Sienna; Knuth, Laura; Scivinsky, Brianna
2018-01-01
When subjected to rapid drops of temperature (cold shock), Neurospora responds with a temporary shift in its morphology. This report is the first to examine this response genetically. We report here the results of a screen of selected mutants from the Neurospora knockout library for alterations in their morphological response to cold shock. Three groups of knockouts were selected to be subject to this screen: genes previously suspected to be involved in hyphal development as well as knockouts resulting in morphological changes; transcription factors; and genes homologous to E. coli genes known to alter their expression in response to cold shock. A total of 344 knockout strains were subjected to cold shock. Of those, 118 strains were identified with altered responses. We report here the cold shock morphologies and GO categorizations of strains subjected to this screen. Of strains with knockouts in genes associated with hyphal growth or morphology, 33 of 131 tested (25%) showed an altered response to cold shock. Of strains with knockouts in transcription factor genes, 30 of 145 (20%) showed an altered response to cold shock. Of strains with knockouts in genes homologous to E. coli genes which display altered levels of transcription in response to cold shock, a total of 55 of 68 tested (81%) showed an altered cold shock response. This suggests that the response to cold shock in these two organisms is largely shared in common. PMID:29563189
Using the Screened Coulomb Potential to Illustrate the Variational Method
ERIC Educational Resources Information Center
Zuniga, Jose; Bastida, Adolfo; Requena, Alberto
2012-01-01
The screened Coulomb potential, or Yukawa potential, is used to illustrate the application of the single and linear variational methods. The trial variational functions are expressed in terms of Slater-type functions, for which the integrals needed to carry out the variational calculations are easily evaluated in closed form. The variational…
Tosteson, Anna N A; Beaber, Elisabeth F; Tiro, Jasmin; Kim, Jane; McCarthy, Anne Marie; Quinn, Virginia P; Doria-Rose, V Paul; Wheeler, Cosette M; Barlow, William E; Bronson, Mackenzie; Garcia, Michael; Corley, Douglas A; Haas, Jennifer S; Halm, Ethan A; Kamineni, Aruna; Rutter, Carolyn M; Tosteson, Tor D; Trentham-Dietz, Amy; Weaver, Donald L
2016-04-01
Primary care providers and health systems have prominent roles in guiding effective cancer screening. To characterize variation in screening abnormality rates and timely initial follow-up for common cancer screening tests. Population-based cohort undergoing screening in 2011, 2012, or 2013 at seven research centers comprising the National Cancer Institute-sponsored Population-based Research Optimizing Screening through Personalized Regimens (PROSPR) consortium. Adults undergoing mammography with or without digital breast tomosynthesis (n = 97,683 ages 40-75 years), fecal occult blood or fecal immunochemical tests (n = 759,553 ages 50-75 years), or Papanicolaou with or without human papillomavirus tests (n = 167,330 ages 21-65 years). Breast, colorectal, or cervical cancer screening. Abnormality rates per 1000 screens; percentage with timely initial follow-up (within 90 days, except 9-month window for BI-RADS 3). Primary care clinic-level variation in percentage with screening abnormality and percentage with timely initial follow-up. There were 10,248/97,683 (104.9 per 1000) abnormal breast cancer screens, 35,847/759,553 (47.2 per 1000) FOBT/FIT-positive colorectal cancer screens, and 13,266/167,330 (79.3 per 1000) abnormal cervical cancer screens. The percentage with timely follow-up was 93.2 to 96.7 % for breast centers, 46.8 to 68.7 % for colorectal centers, and 46.6 % for the cervical cancer screening center (low-grade squamous intraepithelial lesions or higher). The primary care clinic variation (25th to 75th percentile) was smaller for the percentage with an abnormal screen (breast, 8.5-10.3 %; colorectal, 3.0-4.8 %; cervical, 6.3-9.9 %) than for the percentage with follow-up within 90 days (breast, 90.2-95.8 %; colorectal, 43.4-52.0 %; cervical, 29.6-61.4 %). Variation in both the rate of screening abnormalities and their initial follow-up was evident across organ sites and primary care clinics. This highlights an opportunity for improving the delivery of cancer screening through focused study of patient, provider, clinic, and health system characteristics associated with timely follow-up of screening abnormalities.
Lynge, Elsebeth; Ponti, Antonio; James, Ted; Májek, Ondřej; von Euler-Chelpin, My; Anttila, Ahti; Fitzpatrick, Patricia; Frigerio, Alfonso; Kawai, Masaaki; Scharpantgen, Astrid; Broeders, Mireille; Hofvind, Solveig; Vidal, Carmen; Ederra, Maria; Salas, Dolores; Bulliard, Jean-Luc; Tomatis, Mariano; Kerlikowske, Karla; Taplin, Stephen
2013-01-01
Background There is concern about detection of Ductal Carcinoma in Situ (DCIS) in screening mammography. DCIS accounts for a substantial proportion of screen detected lesions but its effect on breast cancer mortality is debated. The International Cancer Screening Network conducted a comparative analysis to determine variation in DCIS detection. Patients and Methods Data were collected during 2004–2008 on number of screening examinations, detected breast cancers, DCIS cases, and Globocan 2008 breast cancer incidence rates derived from national or regional cancer registers. We calculated screen-detection rates for breast cancers and DCIS. Results Data were obtained from 15 screening settings in 12 countries; 7,176,050 screening examinations; 29,605 breast cancers; and 5,324 DCIS cases. The ratio between highest and lowest breast cancer incidence was 2.88 (95% confidence interval (CI) 2.76–3.00); 2.97 (95% CI 2.51–3.51) for detection of breast cancer; and 3.49 (95% CI 2.70–4.51) for detection of DCIS. Conclusions Considerable international variation was found in DCIS detection. This variation could not be fully explained by variation in incidence nor in breast cancer detection rates. It suggests the potential for wide discrepancies in management of DCIS resulting in overtreatment of indolent DCIS or undertreatment of potentially curable disease. Comprehensive cancer registration is needed to monitor DCIS detection. Efforts to understand discrepancies and standardize management may improve care. PMID:24041876
Anticounterfeiting features of artistic screening
NASA Astrophysics Data System (ADS)
Ostromoukhov, Victor; Rudaz, Nicolas; Amidror, Isaac; Emmel, Patrick; Hersch, Roger D.
1996-12-01
In a recent publication (Ostromoukhov95), a new image reproduction technique, artistic screening, was presented. It incorporates freely created artistic screen elements for generating halftones. Fixed predefined dot contours associated with given intensity levels determine the screen dot shape's growing behavior. Screen dot contours associated with each intensity level are obtained by interpolation between the fixed predefined dot contours. A user-defined mapping transforms screen elements from screen element definition space to screen element rendition space. This mapping can be tuned to produce various effects such as dilatations, contractions and non-linear deformations of the screen element grid. Although artistic screening has been designed mainly for performing the creation of graphic designs of high artistic quality, it also incorporates several important anti-counterfeiting features. For example, bank notes or other valuable printed matters produced with artistic screening may incorporate both full size and microscopic letters of varying shape into the image halftoning process. Furthermore, artistic screening can be used for generating screen dots at varying frequencies and orientations, which are well known for inducing strong moire effects when scanned by a digital color copier or a desktop scanner. However, it is less known that frequency-modulated screen dots have at each screen element size a different reproduction behavior (dot gain). When trying to reproduce an original by analog means, such as a photocopier, the variations in dot gain induce strong intensity variations at the same original intensity levels. In this paper, we present a method for compensating such variations for the target printer, on which the original security document is to be printed. Potential counterfeiters who would like to reproduce the original with a photocopying device may only be able to adjust the dot gain for the whole image and will therefore be unable to eliminate the undesired intensity variations produced by variable frequency screen elements.
Reactive solid surface morphology variation via ionic diffusion.
Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih
2012-08-14
In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.
Lostrom, Samantha; Evans, Jonathan P; Grierson, Pauline F; Collin, Shaun P; Davies, Peter M; Kelley, Jennifer L
2015-01-01
Environmental variation is a potent force affecting phenotypic expression. While freshwater fishes have provided a compelling example of the link between the environment and phenotypic diversity, few studies have been conducted with arid-zone fishes, particularly those that occur in geographically isolated regions where species typically inhabit intermittent and ephemeral creeks. We investigated morphological variation of a freshwater fish (the western rainbowfish, Melanotaenia australis) inhabiting creeks in the Pilbara region of northwest Australia to determine whether body shape variation correlated with local environmental characteristics, including water velocity, habitat complexity, predator presence, and food availability. We expected that the geographic isolation of creeks within this arid region would result in habitat-specific morphological specializations. We used landmark-based geometric morphometrics to quantify the level of morphological variability in fish captured from 14 locations within three distinct subcatchments of a major river system. Western rainbowfish exhibited a range of morphologies, with variation in body depth accounting for a significant proportion (>42%) of the total variance in shape. Sexual dimorphism was also apparent, with males displaying deeper bodies than females. While the measured local habitat characteristics explained little of the observed morphological variation, fish displayed significant morphological differentiation at the level of the subcatchment. Local adaptation may partly explain the geographic patterns of body shape variation, but fine-scale genetic studies are required to disentangle the effects of genetic differentiation from environmentally determined phenotypic plasticity in body shape. Developing a better understanding of environment–phenotype relationships in species from arid regions will provide important insights into ecological and evolutionary processes in these unique and understudied habitats. PMID:26380663
An intelligent identification algorithm for the monoclonal picking instrument
NASA Astrophysics Data System (ADS)
Yan, Hua; Zhang, Rongfu; Yuan, Xujun; Wang, Qun
2017-11-01
The traditional colony selection is mainly operated by manual mode, which takes on low efficiency and strong subjectivity. Therefore, it is important to develop an automatic monoclonal-picking instrument. The critical stage of the automatic monoclonal-picking and intelligent optimal selection is intelligent identification algorithm. An auto-screening algorithm based on Support Vector Machine (SVM) is proposed in this paper, which uses the supervised learning method, which combined with the colony morphological characteristics to classify the colony accurately. Furthermore, through the basic morphological features of the colony, system can figure out a series of morphological parameters step by step. Through the establishment of maximal margin classifier, and based on the analysis of the growth trend of the colony, the selection of the monoclonal colony was carried out. The experimental results showed that the auto-screening algorithm could screen out the regular colony from the other, which meets the requirement of various parameters.
The Yucatan miniature swine as an in vivo model for screening skin depigmentation.
Nair, X; Tramposch, K M
1991-12-01
The usefulness of the Yucatan miniature pig as a screen for skin dipigmenting activity by topical application was evaluated with standard compounds. This is a naturally occurring breed of swine with light brown to dark brown skin that is relatively hairless. The skin morphology, including the pattern of pigment distribution, in this breed of swine closely resembles the human skin. Test compounds examined in this study included the three standard compounds with known clinical depigmenting activity, hydroquinone (HQ), 4-hydroxyanisole (4HA) and tert-butyl catechol (TBC), each at a 5% concentration. Test materials in 25 microliters of propylene glycol/ethanol (50:50) were applied topically twice daily, 7 days a week for 90 days to test sites on each side of the dorsal mid-line. Test sites were graded weekly for variation in pigmentation and local irritation. After 90 days of test material application, skin biopsies of the test sites were taken for histological evaluation. Topical application of HQ, 4HA and TBC promoted marked skin depigmentation which was substantiated by reductions of pigment and melanocytes observed on microscopic examination. While both HQ and TBC produced marked local irritation, 4HA was only mildly irritating. These results suggest that the Yucatan pig, could be a potentially useful model for screening compounds with skin depigmenting activity.
Characterization of terpenoid volatiles from cultivars of eastern hemlock (Tsuga canadensis).
Lagalante, Anthony F; Montgomery, Michael E; Calvosa, Frank C; Mirzabeigi, Michael N
2007-12-26
The volatile terpenoid fraction from needles in 13 cultivars of Tsuga canadensis L. (Carriere) was analyzed by gas chromatography with mass spectrometry (GC-MS). The results of this study are considered along with previously reported results for foliar terpenoid levels of the Asian (T. sieboldii, T. chinensis, T. diversifolia), western North American (T. mertensiana, T. heterophylla), and eastern North American species (T. canadensis, T. caroliniana) of hemlock to draw conclusions about the potential of cultivar host resistance to the hemlock woolly adelgid (Adelges tsugae Annand). It is suggested that hemlocks in eastern North America have adapted their terpenoid chemistry for protection against endemic defoliators and that this has made them vulnerable to non-native, sucking pests such as adelgids and scales. Some cultivars of T. canadensis have a terpenoid profile that resembles that of the resistant noneastern North American species and are candidates for biological screening for resistance. Among the cultivars, the variation in terpenoid chemistry did not absolutely correspond with the considerable differences in morphological characters observed, indicating that the terpenoid chemistry is not definitively coupled with hemlock morphology.
Paveley, Ross A.; Mansour, Nuha R.; Hallyburton, Irene; Bleicher, Leo S.; Benn, Alex E.; Mikic, Ivana; Guidi, Alessandra; Gilbert, Ian H.; Hopkins, Andrew L.; Bickle, Quentin D.
2012-01-01
Sole reliance on one drug, Praziquantel, for treatment and control of schistosomiasis raises concerns about development of widespread resistance, prompting renewed interest in the discovery of new anthelmintics. To discover new leads we designed an automated label-free, high content-based, high throughput screen (HTS) to assess drug-induced effects on in vitro cultured larvae (schistosomula) using bright-field imaging. Automatic image analysis and Bayesian prediction models define morphological damage, hit/non-hit prediction and larval phenotype characterization. Motility was also assessed from time-lapse images. In screening a 10,041 compound library the HTS correctly detected 99.8% of the hits scored visually. A proportion of these larval hits were also active in an adult worm ex-vivo screen and are the subject of ongoing studies. The method allows, for the first time, screening of large compound collections against schistosomes and the methods are adaptable to other whole organism and cell-based screening by morphology and motility phenotyping. PMID:22860151
NASA Astrophysics Data System (ADS)
Déau, Estelle; Flandes, Alberto; Spilker, Linda J.; Petazzoni, Jérôme
2013-11-01
Typical variations in the opposition effect morphology of laboratory samples at optical wavelengths are investigated to probe the role of the textural properties of the surface (roughness, porosity and grain size). A previously published dataset of 34 laboratory phase curves is re-analyzed and fit with several morphological models. The retrieved morphological parameters that characterize the opposition surge, amplitude, width and slope (A, HWHM and S respectively) are correlated to the single scattering albedo, the roughness, the porosity and the grain size of the samples. To test the universality of the laboratory samples’ trends, we use previously published phase curves of planetary surfaces, including the Moon, satellites and rings of the giant planets. The morphological parameters of the surge (A and HWHM) for planetary surfaces are found to have a non-monotonic variation with the single scattering albedo, similar to that observed in asteroids (Belskaya, I.N., Shevchenko, V.G. [2000]. Icarus 147, 94-105), which is unexplained so far. The morphological parameters of the surge (A and HWHM) for laboratory samples seem to exhibit the same non-monotonic variation with single scattering albedo. While the non-monotonic variation with albedo was already observed by Nelson et al. (Nelson, R.M., Hapke, B.W., Smythe, W.D., Hale, A.S., Piatek, J.L. [2004]. Planetary regolith microstructure: An unexpected opposition effect result. In: Mackwell, S., Stansbery, E. (Eds.), Proc. Lunar Sci. Conf. 35, p. 1089), we report here the same variation for the angular width.
Modular diversification of the locomotor system in damselfishes (Pomacentridae).
Aguilar-Medrano, Rosalía; Frédérich, Bruno; Barber, Paul H
2016-05-01
As fish move and interact with their aquatic environment by swimming, small morphological variations of the locomotor system can have profound implications on fitness. Damselfishes (Pomacentridae) have inhabited coral reef ecosystems for more than 50 million years. As such, habitat preferences and behavior could significantly constrain the morphology and evolvability of the locomotor system. To test this hypothesis, we used phylogenetic comparative methods on morphometric, ecological and behavioral data. While body elongation represented the primary source of variation in the locomotor system of damselfishes, results also showed a diverse suite of morphological combinations between extreme morphologies. Results show clear associations between behavior, habitat preferences, and morphology, suggesting ecological constraints on shape diversification of the locomotor system. In addition, results indicate that the three modules of the locomotor system are weakly correlated, resulting in versatile and independent characters. These results suggest that Pomacentridae is shape may result from the interaction between (1) integrated parts of morphological variation that maintain overall swimming ability and (2) relatively independent parts of the morphology that facilitate adaptation and diversification. © 2016 Wiley Periodicals, Inc.
Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique.
Vikhe, P S; Thool, V R
2016-04-01
Detection of mass in mammogram for early diagnosis of breast cancer is a significant assignment in the reduction of the mortality rate. However, in some cases, screening of mass is difficult task for radiologist, due to variation in contrast, fuzzy edges and noisy mammograms. Masses and micro-calcifications are the distinctive signs for diagnosis of breast cancer. This paper presents, a method for mass enhancement using piecewise linear operator in combination with wavelet processing from mammographic images. The method includes, artifact suppression and pectoral muscle removal based on morphological operations. Finally, mass segmentation for detection using adaptive threshold technique is carried out to separate the mass from background. The proposed method has been tested on 130 (45 + 85) images with 90.9 and 91 % True Positive Fraction (TPF) at 2.35 and 2.1 average False Positive Per Image(FP/I) from two different databases, namely Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM). The obtained results show that, the proposed technique gives improved diagnosis in the early breast cancer detection.
He, Jiankang; Du, Yanan; Guo, Yuqi; Hancock, Matthew J.; Wang, Ben; Shin, Hyeongho; Wu, Jinhui; Li, Dichen; Khademhosseini, Ali
2010-01-01
Combinatorial material synthesis is a powerful approach for creating composite material libraries for the high-throughput screening of cell–material interactions. Although current combinatorial screening platforms have been tremendously successful in identifying target (termed “hit”) materials from composite material libraries, new material synthesis approaches are needed to further optimize the concentrations and blending ratios of the component materials. Here we employed a microfluidic platform to rapidly synthesize composite materials containing cross-gradients of gelatin and chitosan for investigating cell–biomaterial interactions. The microfluidic synthesis of the cross-gradient was optimized experimentally and theoretically to produce quantitatively controllable variations in the concentrations and blending ratios of the two components. The anisotropic chemical compositions of the gelatin/chitosan cross-gradients were characterized by Fourier transform infrared spectrometry and X-ray photoelectron spectrometry. The three-dimensional (3D) porous gelatin/chitosan cross-gradient materials were shown to regulate the cellular morphology and proliferation of smooth muscle cells (SMCs) in a gradient-dependent manner. We envision that our microfluidic cross-gradient platform may accelerate the material development processes involved in a wide range of biomedical applications. PMID:20721897
Corallite skeletal morphological variation in Hawaiian Porites lobata
NASA Astrophysics Data System (ADS)
Tisthammer, Kaho H.; Richmond, Robert H.
2018-06-01
Due to their high morphological plasticity and complex evolutionary history, the species boundaries of many reef-building corals are poorly understood. The skeletal structures of corals have traditionally been used for species identification, but these structures can be highly variable, and currently we lack knowledge regarding the extent of morphological variation within species. Porites species are notorious for their taxonomic difficulties, both morphologically and genetically, and currently there are several unresolved species complexes in the Pacific. Despite its ubiquitous presence and broad use in coral research, Porites lobata belongs to one such unresolved species complex. To understand the degree of intraspecific variation in skeletal morphology, 120 corallites from the Hawaiian P. lobata were examined. A subset of samples from two genetically differentiated populations from contrasting high- and low-stress environments in Maunalua Bay, Hawaii, were then quantitatively analyzed using multivariate morphometrics. Our observations revealed high intraspecific variation in corallite morphology, as well as significant morphological differences between the two populations of P. lobata. Additionally, significant correlation was found between the morphological and genetic distances calculated from approximately 18,000 loci generated from restriction site-associated DNA sequencing. The unique morphological characters observed from the genetically differentiated population under environmental stress suggest that these characters may have adaptive values, but how such traits relate to fitness and how much plasticity they can exhibit remain to be determined by future studies. Relatively simple morphometric analyses used in our study can be useful in clarifying the existing ambiguity in skeletal architecture, thus contributing to resolving species issues in corals.
Are Phenacoccus solani Ferris and P. defectus Ferris (Hemiptera: Pseudococcidae) distinct species?
Chatzidimitriou, Evangelia; Simonato, Mauro; Watson, Gillian W; Martinez-Sañudo, Isabel; Tanaka, Hirotaka; Zhao, Jing; Pellizzari, Giuseppina
2016-03-24
Among the Nearctic species of Phenacoccus (Hemiptera: Pseudococcidae), Phenacoccus solani Ferris and P. defectus Ferris are morphologically similar and it can be difficult to separate them on the basis of microscopic morphological characters of the adult female alone. In order to resolve their identity, a canonical variates morphological analysis of 199 specimens from different geographical origins and host plants and a molecular analysis of the COI and 28S genes were performed. The morphological analysis supported synonymy of the two species, as although the type specimens of the "species" are widely separated from each other in the canonical variates plot, they are all part of a continuous range of variation. The molecular analysis showed that P. solani and P. defectus are grouped in the same clade. On the basis of the morphological and molecular analyses, P. defectus is synonymized under the senior name P. solani, syn. n.
2011-01-01
Background An important objective of evolutionary biology is to understand the processes that govern phenotypic variation in natural populations. We assessed patterns of morphological and genetic divergence among coastal and inland lake populations of nine-spined stickleback in northern Sweden. Coastal populations are either from the Baltic coast (n = 5) or from nearby coastal lakes (n = 3) that became isolated from the Baltic Sea (< 100 years before present, ybp). Inland populations are from freshwater lakes that became isolated from the Baltic approximately 10,000 ybp; either single species lakes without predators (n = 5), or lakes with a recent history of predation (n = 5) from stocking of salmonid predators (~50 ybp). Results Coastal populations showed little variation in 11 morphological traits and had longer spines per unit of body length than inland populations. Inland populations were larger, on average, and showed greater morphological variation than coastal populations. A principal component analysis (PCA) across all populations revealed two major morphological axes related to spine length (PC1, 47.7% variation) and body size (PC2, 32.9% variation). Analysis of PCA scores showed marked similarity in coastal (Baltic coast and coastal lake) populations. PCA scores indicate that inland populations with predators have higher within-group variance in spine length and lower within-group variance in body size than inland populations without predators. Estimates of within-group PST (a proxy for QST) from PCA scores are similar to estimates of FST for coastal lake populations but PST >FST for Baltic coast populations. PST >FST for PC1 and PC2 for inland predator and inland no predator populations, with the exception that PST
Stock, Christian; Brenner, Hermann
2017-01-01
Screening for colorectal cancer (CRC) is implemented in an increasing number of countries. We aimed to assess international variation in the prevalence of preclinical CRC and the resulting variation in positive and negative predictive values (PPVs, NPVs) of existing and potential CRC screening tests in various countries. Using age‐ and sex‐specific CRC incidence data and transition rates from preclinical to clinical CRC we estimated overall and age‐ and sex‐specific prevalence of preclinical CRC in the target population aged 50–74 years in different parts of the world. These prevalence estimates were used to derive PPVs and NPVs for existing and potential noninvasive screening tests with varying levels of sensitivity and specificity. Within all regions and countries, prevalence strongly increases with age and is higher in men than in women. In addition, major variation was seen between regions and countries, with overall prevalence varying between 1 and 0.1%. As a result, PPVs are expected to strongly vary between ∼10% for men in high incidence countries, such as Australia and Germany, and 1% for women in low incidence countries, whereas NPVs are expected to be consistently well above 99%. Variation in CRC prevalence profoundly affects expected PPVs of screening tests, and PPVs should be carefully considered when decisions on screening tests and strategies are made for specific populations and health care systems. Here, we provide estimates of preclinical CRC and expected PPVs and NPVs of noninvasive screening tests, which may enhance the empirical basis for planning of population‐based CRC screening strategies. PMID:28670788
Hulsman, Marc; Hulshof, Frits; Unadkat, Hemant; Papenburg, Bernke J; Stamatialis, Dimitrios F; Truckenmüller, Roman; van Blitterswijk, Clemens; de Boer, Jan; Reinders, Marcel J T
2015-03-01
Surface topographies of materials considerably impact cellular behavior as they have been shown to affect cell growth, provide cell guidance, and even induce cell differentiation. Consequently, for successful application in tissue engineering, the contact interface of biomaterials needs to be optimized to induce the required cell behavior. However, a rational design of biomaterial surfaces is severely hampered because knowledge is lacking on the underlying biological mechanisms. Therefore, we previously developed a high-throughput screening device (TopoChip) that measures cell responses to large libraries of parameterized topographical material surfaces. Here, we introduce a computational analysis of high-throughput materiome data to capture the relationship between the surface topographies of materials and cellular morphology. We apply robust statistical techniques to find surface topographies that best promote a certain specified cellular response. By augmenting surface screening with data-driven modeling, we determine which properties of the surface topographies influence the morphological properties of the cells. With this information, we build models that predict the cellular response to surface topographies that have not yet been measured. We analyze cellular morphology on 2176 surfaces, and find that the surface topography significantly affects various cellular properties, including the roundness and size of the nucleus, as well as the perimeter and orientation of the cells. Our learned models capture and accurately predict these relationships and reveal a spectrum of topographies that induce various levels of cellular morphologies. Taken together, this novel approach of high-throughput screening of materials and subsequent analysis opens up possibilities for a rational design of biomaterial surfaces. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
SOCKMAN, KEITH W.
2009-01-01
Morphology may affect behavioural performance through a direct, physical link or through indirect, secondary mechanisms. Although some evidence suggests that the bill morphology of songbirds directly constrains vocal performance, bill morphology may influence vocal performance through indirect mechanisms also, such as one in which morphology influences foraging and thus the ability to perform some types of vocal behaviour. This raises the possibility for ecologically induced variation in the relationship between morphology and behaviour. To investigate this, I used an information theoretic approach to examine the relationship between bill morphology and several measures of vocal performance in Lincoln’s sparrows (Melospiza lincolnii). I compared this relationship between two breeding seasons that differed markedly in ambient temperatures, phenology of habitat maturation, and food abundance. I found a strong curvilinear relationship between bill shape (height/width) and vocal performance in the seemingly less hospitable season but not in the other, leading to a difference between seasons in the population’s mean vocal performance. Currently, I do not know the cause of this annual variation. However, it could be due to the effects of bill shape on foraging and therefore on time budget, energy balance, or some other behavioural or physiological response that manifests mostly under difficult environmental conditions or, alternatively, to associations between male quality and both vocal performance and bill shape. Regardless of the cause, these results suggest the presence of an indirect, ecologically mediated link between morphology and behavioural performance, leading to annual variation in the prevailing environment of acoustic signals. PMID:20160859
NASA Technical Reports Server (NTRS)
De Hon, R. A.
1980-01-01
Craters vary in morphology as a function of crater diameter, age, and mode of origin. This study concentrates on the morphology of young lunar impact craters within a limited size range. Elimination of morphologic variations generally attributed to crater size or age leaves a small population which should nearly reflect the varying properties of the lunar substrate. The sample consists of 17 craters 15-20 km in diameter with both simple and complex morphologies. While depth/diameter ratios do not obviously differ between mare and highland subsets, apparent depth, rim height, and profile data do differ distinctly. Highland craters tend to be deep, simple, and bowl-shaped. Mare craters tend to be shallow and flat-floored. Rim heights of complex mare craters are typically greater than those of simple craters. Differences of highland and mare crater morphologies are attributed to variations in the thickness of the lunar megaregolith. Highland craters in this size range do not penetrate the megaregolith. The depth and morphology of complex craters are controlled by the discontinuity at the transition from highly brecciated megaregolith to more coherent crystalline material of the upper crust.
Dynamics of genetic and morphological variability within Neandertals.
Hawks, John
2012-01-01
Paleogenomics may suggest changes to the way anthropologists have discussed the dynamics and morphological diversity among Neandertals. Genetic comparisons show that later Neandertals had relatively low autosomal genetic variation compared to recent humans. The known mitochondrial sample from Neandertals covers a broader geographic and temporal range, and shows greater diversity. This review addresses how genetic data compare to morphological and archaeological evidence about Neandertal variation and dynamics. Traditional views emphasized the morphological differences between western and eastern Neandertal populations, and between early and later Neandertals. Genomes broadly support these groupings, without resolving the outstanding question of the affinities of specimens from southwest Asia. However, the pattern of genetic variation appears to reject a long, in situ transformation of Neandertal groups over time, suggesting instead a more rapid process of regional dispersal and partial population replacement. Archaeological indicators sample dynamics on a much finer timescale than morphological or genetic evidence, and point to dispersal and turnover among Neandertals on a regional scale. In this way, genetic evidence may provide a bridge between the timescales relevant to morphological and archaeological comparisons. New ways of looking at the morphology of Neandertals may yield a better picture of their interactions and movements.
Liu, Jiaen; Yang, Zhihong; Salem, Shala A; Rahil, Tayyab; Collins, Gary S; Liu, Xiaohong; Salem, Rifaat D
2012-01-01
Objective During IVF, non-transferred embryos are usually selected for cryopreservation on the basis of morphological criteria. This investigation evaluated an application for array comparative genomic hybridization (aCGH) in assessment of surplus embryos prior to cryopreservation. Methods First-time IVF patients undergoing elective single embryo transfer and having at least one extra non-transferred embryo suitable for cryopreservation were offered enrollment in the study. Patients were randomized into two groups: Patients in group A (n=55) had embryos assessed first by morphology and then by aCGH, performed on cells obtained from trophectoderm biopsy on post-fertilization day 5. Only euploid embryos were designated for cryopreservation. Patients in group B (n=48) had embryos assessed by morphology alone, with only good morphology embryos considered suitable for cryopreservation. Results Among biopsied embryos in group A (n=425), euploidy was confirmed in 226 (53.1%). After fresh single embryo transfer, 64 (28.3%) surplus euploid embryos were cryopreserved for 51 patients (92.7%). In group B, 389 good morphology blastocysts were identified and a single top quality blastocyst was selected for fresh transfer. All group B patients (48/48) had at least one blastocyst remaining for cryopreservation. A total of 157 (40.4%) blastocysts were frozen in this group, a significantly larger proportion than was cryopreserved in group A (p=0.017, by chi-squared analysis). Conclusion While aCGH and subsequent frozen embryo transfer are currently used to screen embryos, this is the first investigation to quantify the impact of aCGH specifically on embryo cryopreservation. Incorporation of aCGH screening significantly reduced the total number of cryopreserved blastocysts compared to when suitability for freezing was determined by morphology only. IVF patients should be counseled that the benefits of aCGH screening will likely come at the cost of sharply limiting the number of surplus embryos available for cryopreservation. PMID:22816070
Geographic variation in the black bear (Ursus americanus) in the eastern United States and Canada
Kennedy, M.L.; Kennedy, P.K.; Bogan, M.A.; Waits, J.L.
2002-01-01
The pattern of geographic variation in morphologic characters of the black bear (Ursus americanus) was assessed at 13 sites in the eastern United States and Canada. Thirty measurements from 206 males and 207 females were recorded to the nearest 0.01 mm using digital calipers and subjected to principal components analysis. A matrix of correlations among skull characters was computed, and the first 3 principal components were extracted. These accounted for 90.5% of the variation in the character set for males and 87.1% for females. Three-dimensional projection of localities onto principal components showed that, for males and females, largest individuals occurred in the more southern localities (e.g., males--Louisiana-Mississippi, eastern Texas; females--Louisiana-eastern Texas) and the smallest animals occurred in the northernmost locality (Quebec). Generally, bears were similar morphologically to those in nearby geographic areas. For males, correlations between morphologic variation and environmental factors indicated a significant relationship between size variation and mean January temperature, mean July temperature, mean annual precipitation, latitude, and actual evapotranspiration; for females, a significant relationship was observed between morphologic variation and mean annual temperature, mean January temperature, mean July temperature, latitude, and actual evapotranspiration. There was no significant correlation for either sex between environmental factors and projections onto components II and III.
Geographic variation and effect of area-level poverty rate on colorectal cancer screening.
Lian, Min; Schootman, Mario; Yun, Shumei
2008-10-16
With a secular trend of increasing colorectal cancer (CRC) screening, concerns about disparities in CRC screening also have been rising. It is unclear if CRC screening varies geographically, if area-level poverty rate affects CRC screening, and if individual-level characteristics mediate the area-level effects on CRC screening. Using 2006 Missouri Behavioral Risk Factor Surveillance System (BRFSS) data, a multilevel study was conducted to examine geographic variation and the effect of area-level poverty rate on CRC screening use among persons age 50 or older. Individuals were nested within ZIP codes (ZIP5 areas), which in turn, were nested within aggregations of ZIP codes (ZIP3 areas). Six groups of individual-level covariates were considered as potential mediators. An estimated 51.8% of Missourians aged 50 or older adhered to CRC screening recommendations. Nearly 15% of the total variation in CRC screening lay between ZIP5 areas. Persons residing in ZIP5 areas with > or = 10% of poverty rate had lower odds of CRC screening use than those residing in ZIP5 areas with <10% poverty rate (unadjusted odds ratio [OR], 0.69; 95% confidence interval [95% CI], 0.58-0.81; adjusted OR, 0.81; 95% CI, 0.67-0.98). Persons who resided in ZIP3 areas with > or = 20% poverty rate also had lower odds of following CRC screening guidelines than those residing in ZIP3 areas with <20% poverty rate (unadjusted OR, 0.66; 95% CI, 0.52-0.83; adjusted OR, 0.64; 95% CI, 0.50-0.83). Obesity, history of depression/anxiety and access to care were associated with CRC screening, but did not mediate the effect of area-level poverty on CRC screening. Large geographic variation of CRC screening exists in Missouri. Area-level poverty rate, independent of individual-level characteristics, is a significant predictor of CRC screening, but it only explains a small portion of the geographic heterogeneity of CRC screening. Individual-level factors we examined do not mediate the effect of the area-level poverty rate on CRC screening. Future studies should identify other area- and individual-level characteristics associated with CRC screening in Missouri.
USDA-ARS?s Scientific Manuscript database
Rhagoletis jamaicensis Foote, 1981 and an undetermined species of the psalida group, are recorded for the first time in Colombia. The morphological variation of the Colombian specimens of these species and of other species closely related are discussed....
Ren, Na; Liu, Jiajia; Yang, Dongliang; Chen, Jianhua; Luan, Mingbao; Hong, Juan
2012-01-01
A total of 20 endophytic fungi stains were classified into four groups using traditional morphological identification method, and were studied for genetic diversity by sequence-related amplified polymorphism (SRAP) technique. Genomic DNA (deoxyribonucleic acid) of these strains was extracted with CTAB method. SRAP analysis was done with 24 pairs of primers. All strains could be uniquely distinguished with 584 bands and 446 polymorphism bands which generated 76.4% of polymorphic ratio. Unweighted pair-group method with arithmetical averages cluster analysis enabled construction of a dendrogram for estimating genetic distances between different strains. All strains, which were just divided into four groups by traditional morphology identification, were clustered into four major groups at GS = 0.603 and further separated into eight sub-groups at GS = 0.921. Dendrogram also revealed a large genetic variation in 20 strains; different primer combinations allowed them distinctly distinguished one from others with relatively low genetic similarity. The results show that the SRAP technology is more efficient than traditional morphology identification. It is found that SRAP markers could more really reflect the genetic diversity of endophytic fungi strains from Taxus, and also could be used as a method for identification of endophytic fungi from Taxus. It also suggests that SRAP can be used to establish foundation for further screening of taxol-producing endophytic fungi strains which can produce high levels of paclitaxel.
Rosas, Antonio; Bastir, Markus
2004-06-01
Allometry is an important factor of morphological integration that contributes to the organization of the phenotype and its variation. Variation in the allometric shape of the mandible is particularly important in hominid evolution because the mandible carries important taxonomic traits. Some of these traits are known to covary with size, particularly the retromolar space, symphyseal curvature, and position of the mental foramen. The mandible is a well studied system in the context of the evolutionary development of complex morphological structures because it is composed of different developmental units that are integrated within a single bone. In the present study, we investigated the allometric variation of two important developmental units that are separated by the inferior nerve (a branch of CN V3). We tested the null hypothesis that there would be no difference in allometric variation between the two components. Procrustes-based geometric morphometrics of 20 two-dimensional (2D) landmarks were analyzed by multivariate regressions of shape on size in samples from 121 humans, 48 chimpanzees, and 50 gorillas (all recent specimens), eight fossil hominids from Atapuerca, Sima de los Huesos (AT-SH), and 17 Neandertals. The findings show that in all of the examined species, there was significantly greater allometric variation in the supra-nerve unit than in the infra-nerve unit. The formation of the retromolar space exhibited an allometric relationship with the supra-nerve unit in all of the species studied. The formation of the chin-like morphology is an "apodynamic" feature of the infra-nerve unit in the AT-SH hominids. The results of this study support the hypothesis that allometry contributes to the organization of variation in complex morphological structures. Copyright 2004 Wiley-Liss, Inc.
Morphological variation and host range of two Ganoderma species from Papua New Guinea.
Pilotti, Carmel A; Sanderson, Frank R; Aitken, Elizabeth A B; Armstrong, Wendy
2004-08-01
Two species of Ganoderma belonging to different subgenera which cause disease on oil palms in PNG are identified by basidiome morphology and the morphology of their basidiospores. The names G. boninense and G. tornatum have been applied. Significant pleiomorphy was observed in basidiome characters amongst the specimens examined. This variation in most instances did not correlate well with host or host status. Spore morphology appeared uniform within a species and spore indices varied only slightly. G. tornatum was found to have a broad host range whereas G. boninense appears to be restricted to palms in Papua New Guinea.
Paradis, Johanne; Tulpar, Yasemin; Arppe, Antti
2016-05-01
This study examined accuracy in production and grammaticality judgements of verb morphology by eighteen Chinese-speaking children learning English as a second language (L2) followed longitudinally from four to six years of exposure to English, and who began to learn English at age 4;2. Children's growth in accuracy with verb morphology reached a plateau by six years, where 11/18 children did not display native-speaker levels of accuracy for one or more morphemes. Variation in children's accuracy with verb morphology was predicted by their English vocabulary size and verbal short-term memories primarily, and quality and quantity of English input at home secondarily. This study shows that even very young L2 learners might not all catch up to native speakers in this time frame and that non-age factors play a role in determining individual variation in child L2 learners' long-term outcomes with English morphology.
USDA-ARS?s Scientific Manuscript database
Discrepancies in reports on the presence of Podisus maculiventris (Say) (Hemiptera: Pentatomidae) in the western region of USA, and morphological variations of the species brought into question whether the species existed west of the Rocky Mountains. In this study, morphological variations in color ...
Body shape, burst speed and escape behavior of larval anurans
Gage H. Dayton; Daniel Saenz; Kristen A. Baum; R. Brian Langerhans; Thomas J. DeWitt
2005-01-01
Variation in behavior, morphology and life history traits of larval anurans across predator gradients, and consequences of that variation, have been abundantly studied. Yet the functional link between morphology and burst-swimming speed is largely unknown. We conducted experiments with two divergent species of anurans, Scaphiopus holbrookii and
Martínez-Alava, Javier O; Serna, Francisco; Norrbom, Allen L
2017-06-07
Rhagoletis jamaicensis Foote, 1981 and an undetermined species of the psalida group, are recorded for the first time in Colombia. The morphological variations of the Colombian specimens of these species and of other species closely related are discussed.
Screening of antagonistic bacteria isolated from Amorphophallus konjac rhizosphere soil
NASA Astrophysics Data System (ADS)
Lin, Tianxing; Gong, Mingfu; Guan, Qinlan; Huang, Ying; Qin, Fang
2018-04-01
Bacteria lived in Amorphaphallus konjac rhizosphere soil have the potential ability of antagonistic bacterial pathogen activity against to Erwinia carotovora subsp carotovora (Ecc). The paper was to study and analyze all strains of 18 bacteria isolated from A. konjac rhizosphere soil with strong antagonistic effect against to Ecc and to identify antagonistic bacteria with morphology, physiology and biochemistry characteristic. The antagonistic bacterial pathogen activity of different bacterial strains were significantly different. Five of 18 strains isolated from A. konjac rhizosphere soil, including AKSB03, AKSB05, AKSB08, AKSB13 and AKSB16 was screened with antagonistic wider more than 15 mm in first screening test. Strain AKSB08 and strain AKSB16 had a strong antagonism activity for Ecc with antagonistic wider more than 20 mm in second screening test. Strain AKSB08 and strain AKSB16 belonged to Bacillus with morphology, physiology and biochemistry characteristic.
Gibs, Jacob; Brown, G. Allan; Turner, Kenneth S.; MacLeod, Cecilia L.; Jelinski, James; Koehnlein, Susan A.
1993-01-01
Because a water sample collected from a well is an integration of water from different depths along the well screen, measured concentrations can be biased if analyte concentrations are not uniform along the length of the well screen. The resulting concentration in the sample, therefore, is a function of variations in well-screen inflow rate and analyte concentration with depth. A multiport sampler with seven short screened intervals was designed and used to investigate small-scale vertical variations in water chemistry and aquifer hydraulic conductivity in ground water contaminated by leaded gasoline at Galloway Township, Atlantic County, New Jersey. The multiport samplers were used to collect independent samples from seven intervals within the screened zone that were flow-rate weighted and integrated to simulate a 5-foot-long, 2.375-inch- outside-diameter conventional wire-wound screen. The integration of the results of analyses of samples collected from two multiport samplers showed that a conventional 5-foot-long well screen would integrate contaminant concentrations over its length and resulted in an apparent contaminant concentration that was a little as 28 percent of the maximum concentration observed in the multiport sampler.
Bailey, Brennan M.; Nail, Lindsay N.; Grunlan, Melissa A.
2013-01-01
In tissue engineering, the physical and chemical properties of the scaffold mediates cell behavior including regeneration. Thus, a strategy that permits rapid screening of cell-scaffold interactions is critical. Herein, we have prepared eight “hybrid” hydrogel scaffolds in the form of continuous gradients such that a single scaffold contains spatially varied properties. These scaffolds are based on combining an inorganic macromer [methacrylated star polydimethylsiloxane, PDMSstar-MA] and organic macromer [poly(ethylene glycol)diacrylate, PEG-DA] as well both aqueous and organic fabrication solvents. Having previously demonstrated its bioactivity and osteoinductivity, PDMSstar-MA is a particularly powerful component to incorporate into instructive gradient scaffolds based on PEG-DA. The following parameters were varied to produce the different gradients or gradual transitions in: (1) the wt% ratio of PDMSstar-MA to PEG-DA macromers, (2) the total wt% macromer concentration, (3) the number average molecular weight (Mn) of PEG-DA and (4) the Mn of PDMSstar-MA. Upon dividing each scaffold into four “zones” perpendicular to the gradient, we were able to demonstrate the spatial variation in morphology, bioactivity, swelling and modulus. Among these gradient scaffolds are those in which swelling and modulus are conveniently decoupled. In addition to rapid screening of cell-material interactions, these scaffolds are well-suited for regeneration of interfacial tissues (e.g. osteochondral tissues) that transition from one tissue type to another. PMID:23707502
Langham, Erika; McCalman, Janya; Matthews, Veronica; Bainbridge, Roxanne Gwendalyn; Nattabi, Barbara; Kinchin, Irina; Bailie, Ross
2017-01-01
Social and emotional wellbeing (SEWB) is a critical determinant of health outcomes for Indigenous Australians. This study examined the extent to which primary healthcare services (PHSs) undertake SEWB screening and management of Aboriginal and Torres Strait Islander clients, and the variation in SEWB screening and management across Indigenous PHS. Cross-sectional analysis between 2012 and 2014 of 3,407 Indigenous client records from a non-representative sample of 100 PHSs in 4 Australian states/territory was undertaken to examine variation in the documentation of: (1) SEWB screening using identified measurement instruments, (2) concern regarding SEWB, (3) actions in response to concern, and (4) follow up actions. Binary logistic regression was used to determine the factors associated with screening. The largest variation in SEWB screening occurred at the state/territory level. The mean rate of screening across the sample was 26.6%, ranging from 13.7 to 37.1%. Variation was also related to PHS characteristics. A mean prevalence of identified SEWB concern was 13% across the sample, ranging from 9 to 45.1%. For the clients where SEWB concern was noted, 25.4% had no referral or PHS action recorded. Subsequent internal PHS follow up after 1 month occurred in 54.7% of cases; and six-monthly follow up of referrals to external services occurred in 50.9% of cases. Our findings suggest that the lack of a clear model or set of guidelines on best practice for screening for SEWB in Indigenous health may contribute to the wide variation in SEWB service provision. The results tell a story of missed opportunities: 73.4% of clients were not screened and no further action was taken for 25.4% for whom an SEWB concern was identified. There was no follow up for just under half of those for whom action was taken. There is a need for the development of national best practice guidelines for SEWB screening and management, accompanied by dedicated SEWB funding, and training for health service providers as well as ongoing monitoring of adherence with the guidelines. Further research on barriers to screening and follow up actions is also warranted.
Liu, Yifei; Li, Dawei; Yan, Ling; Huang, Hongwen
2015-01-01
Polyploidy and hybridization are thought to have significant impacts on both the evolution and diversification of the genus Actinidia, but the structure and patterns of morphology and molecular diversity relating to ploidy variation of wild Actinidia plants remain much less understood. Here, we examine the distribution of morphological variation and ploidy levels along geographic and environmental variables of a large mixed-ploidy population of the A. chinensis species complex. We then characterize the extent of both genetic and epigenetic diversity and differentiation exhibited between individuals of different ploidy levels. Our results showed that while there are three ploidy levels in this population, hexaploids were constituted the majority (70.3%). Individuals with different ploidy levels were microgeographically structured in relation to elevation and extent of niche disturbance. The morphological characters examined revealed clear difference between diploids and hexaploids, however tetraploids exhibited intermediate forms. Both genetic and epigenetic diversity were high but the differentiation among cytotypes was weak, suggesting extensive gene flow and/or shared ancestral variation occurred in this population even across ploidy levels. Epigenetic variation was clearly correlated with changes in altitudes, a trend of continuous genetic variation and gradual increase of epigenomic heterogeneities of individuals was also observed. Our results show that complex interactions between the locally microgeographical environment, ploidy and gene flow impact A. chinensis genetic and epigenetic variation. We posit that an increase in ploidy does not broaden the species habitat range, but rather permits A. chinensis adaptation to specific niches.
Ingram, Travis; Stutz, William E.; Bolnick, Daniel I.
2011-01-01
It has long been known that intraspecific variation impacts evolutionary processes, but only recently have its potential ecological effects received much attention. Theoretical models predict that genetic or phenotypic variance within species can alter interspecific interactions, and experiments have shown that genotypic diversity in clonal species can impact a wide range of ecological processes. To extend these studies to quantitative trait variation within populations, we experimentally manipulated the variance in body size of threespine stickleback in enclosures in a natural lake environment. We found that body size of stickleback in the lake is correlated with prey size and (to a lesser extent) composition, and that stickleback can exert top-down control on their benthic prey in enclosures. However, a six-fold contrast in body size variance had no effect on the degree of diet variation among individuals, or on the abundance or composition of benthic or pelagic prey. Interestingly, post-hoc analyses revealed suggestive correlations between the degree of diet variation and the strength of top-down control by stickleback. Our negative results indicate that, unless the correlation between morphology and diet is very strong, ecological variation among individuals may be largely decoupled from morphological variance. Consequently we should be cautious in our interpretation both of theoretical models that assume perfect correlations between morphology and diet, and of empirical studies that use morphological variation as a proxy for resource use diversity. PMID:21687670
Ingram, Travis; Stutz, William E; Bolnick, Daniel I
2011-01-01
It has long been known that intraspecific variation impacts evolutionary processes, but only recently have its potential ecological effects received much attention. Theoretical models predict that genetic or phenotypic variance within species can alter interspecific interactions, and experiments have shown that genotypic diversity in clonal species can impact a wide range of ecological processes. To extend these studies to quantitative trait variation within populations, we experimentally manipulated the variance in body size of threespine stickleback in enclosures in a natural lake environment. We found that body size of stickleback in the lake is correlated with prey size and (to a lesser extent) composition, and that stickleback can exert top-down control on their benthic prey in enclosures. However, a six-fold contrast in body size variance had no effect on the degree of diet variation among individuals, or on the abundance or composition of benthic or pelagic prey. Interestingly, post-hoc analyses revealed suggestive correlations between the degree of diet variation and the strength of top-down control by stickleback. Our negative results indicate that, unless the correlation between morphology and diet is very strong, ecological variation among individuals may be largely decoupled from morphological variance. Consequently we should be cautious in our interpretation both of theoretical models that assume perfect correlations between morphology and diet, and of empirical studies that use morphological variation as a proxy for resource use diversity.
Wong, Mark K L; Woodman, James D; Rowell, David M
2017-07-01
Speciation involves divergence at genetic and phenotypic levels. Where substantial genetic differentiation exists among populations, examining variation in multiple phenotypic characters may elucidate the mechanisms by which divergence and speciation unfold. Previous work on the Australian funnel-web spider Atrax sutherlandi Gray (2010; Records of the Australian Museum 62 , 285-392; Mygalomorphae: Hexathelidae: Atracinae) has revealed a marked genetic structure along a 110-kilometer transect, with six genetically distinct, parapatric populations attributable to past glacial cycles. In the present study, we explore variation in three classes of phenotypic characters (metabolic rate, water loss, and morphological traits) within the context of this phylogeographic structuring. Variation in metabolic and water loss rates shows no detectable association with genetic structure; the little variation observed in these rates may be due to the spiders' behavioral adaptations (i.e., burrowing), which buffer the effects of climatic gradients across the landscape. However, of 17 morphological traits measured, 10 show significant variation among genetic populations, in a disjunct manner that is clearly not latitudinal. Moreover, patterns of variation observed for morphological traits serving different organismic functions (e.g., prey capture, burrowing, and locomotion) are dissimilar. In contrast, a previous study of an ecologically similar sympatric spider with little genetic structure indicated a strong latitudinal response in 10 traits over the same range. The congruence of morphological variation with deep phylogeographic structure in Tallaganda's A. sutherlandi populations, as well as the inconsistent patterns of variation across separate functional traits, suggest that the spiders are likely in early stages of speciation, with parapatric populations independently responding to local selective forces.
Alarcón-Ríos, Lucía; Velo-Antón, Guillermo; Kaliontzopoulou, Antigoni
2017-04-01
The study of morphological variation among and within taxa can shed light on the evolution of phenotypic diversification. In the case of urodeles, the dorso-ventral view of the head captures most of the ontogenetic and evolutionary variation of the entire head, which is a structure with a high potential for being a target of selection due to its relevance in ecological and social functions. Here, we describe a non-invasive procedure of geometric morphometrics for exploring morphological variation in the external dorso-ventral view of urodeles' head. To explore the accuracy of the method and its potential for describing morphological patterns we applied it to two populations of Salamandra salamandra gallaica from NW Iberia. Using landmark-based geometric morphometrics, we detected differences in head shape between populations and sexes, and an allometric relationship between shape and size. We also determined that not all differences in head shape are due to size variation, suggesting intrinsic shape differences across sexes and populations. These morphological patterns had not been previously explored in S. salamandra, despite the high levels of intraspecific diversity within this species. The methodological procedure presented here allows to detect shape variation at a very fine scale, and solves the drawbacks of using cranial samples, thus increasing the possibilities of using collection specimens and alive animals for exploring dorsal head shape variation and its evolutionary and ecological implications in urodeles. J. Morphol. 278:475-485, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Martinez, Christopher M; Sparks, John S
2017-09-01
Patterns of trait covariation, such as integration and modularity, are vital factors that influence the evolution of vertebrate body plans. In functional systems, decoupling of morphological modules buffers functional change in one trait by reducing correlated variation with another. However, for complex morphologies with many-to-one mapping of form to function (MTOM), resistance to functional change may also be achieved by constraining morphological variation within a functionally stable region of morphospace. For this research, we used geometric morphometrics to evaluate the evolution of body shape and its relationship with jaw functional morphology in two independent radiations of endemic Malagasy cichlid (Teleostei: Cichlidae). Our results suggested that the two subfamilies used different strategies to mitigate impacts of body shape variation on a metric of jaw function, maxillary kinematic transmission (MKT): (1) modularity between cranial and postcranial morphologies, and (2) integration of body and jaw evolution, with jaw morphologies varying in a manner that limits change in MKT. This research shows that, unlike modularity, MTOM allows traits to retain strong evolutionary covariation while still reducing impacts on functionality. These results suggest that MTOM, and its influence on the evolution of correlated traits, is likely much more widespread than is currently understood. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Arrieira, Rodrigo Leite; Schwind, Leilane Talita Fatoreto; Joko, Ciro Yoshio; Alves, Geziele Mucio; Velho, Luiz Felipe Machado; Lansac-Tôha, Fábio Amodêo
2016-10-01
Planktonic testate amoebae in floodplains exhibit a broad-range of morphological variability. The variation size is already known, but it is necessary to know how this is for morphological variables. This study aimed to identify the relationships between testate amoebae morphology and environmental factors in four neotropical floodplains. We conducted detailed morphometric analyses on 27 common species of planktonic testate amoebae from genera Arcella, Centropyxis, Cucurbitella, Suiadifflugia, Difflugia, Lesquereusia and Netzelia. We sampled subsurface water from each lake in 72 lakes in four Brazilian floodplain lakes. Our goals were to assess: (1) the range of their morphological variability (a) over space within each floodplain, and (b) among the four floodplains, and (c) over time, and (2) which environmental factors explained this variation. Mean shell height and breadth varied considerably among the different floodplain lakes, especially in the Pantanal and Amazonian floodplains. The morphological variability of testate amoeba was correlated to environmental conditions (ammonia, nitrate, phosphate, chlorophyll-a, turbidity, temperature, and depth). Thus, understanding the morphological variation of the testate amoeba species can elucidate many questions involving the ecology of these organisms. Furthermore, could help molecular studies, bioindicator role of these organisations, environmental reconstruction, among others. Copyright © 2016 Elsevier GmbH. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Bean leaf beetle (BLB) exhibits a relatively large amount of morphological variation in terms of color but little is known about the underlying genetic structure and gene flow. Genetic variation among four color phenotypes of the BLB was analyzed using amplified fragment length polymorphisms (AFLP) ...
Pinus ponderosa: geographic races and subspecies based on morphological variation
Robert Z. Callaham
2013-01-01
Morphological variation of ponderosa pine (Pinus ponderosa Dougl. ex Laws.), growing north of Mexico, is described. A map shows distributions of five putative races that are analyzed and discussed. Characteristics of branches, shoots, and needles were measured for 10 or fewer trees growing on 147 plots located at 1,500-ft elevational intervals...
Does body type really matter? Relating climate change, coral morphology and resiliency
NASA Astrophysics Data System (ADS)
Camp, M.; Shein, K. A.; Foster, K.; Hendee, J. C.
2016-02-01
Average sea temperatures in many tropical regions are rising approximately 1-2˚C per century, and are thought to be a major driver of increased frequency of coral bleaching. However, certain coral morphologies appear to be more resilient to changes in the environment, particularly to sea temperature variations resulting from global climate change. Although branching corals (e.g., Acropora cervicornis, A. palmata) are highly susceptible to coral bleaching, this morphology is commonly used in coral restoration efforts because of its fast growth rate. Massive corals show higher resistance and resilience to elevated temperature events than branching species, but are less common in coral nurseries. The objective of this study was to compare coral resilience among morphology types in Little Cayman, a remote tropical island with <200 inhabitants where it is possible to decouple environmental and anthropogenic stressors. Three morphological groups (branching, intermediary and massive) were surveyed at 17 sites to estimate the percent cover of each group. Temperature profiles were observed at six moorings around the island, allowing for direct comparison between sea surface temperature, sea temperature at the reef depths, and coral cover, per morphology. The relationship between coral morphological coverage and temperature variation at depth was assessed in the context of geographic variation around the island. Understanding the relationship between coral morphology and resilience to temperature variability will enhance current coral restoration practices by identifying which morphologies have the highest chance of long-term survivorship following outplanting, concurrently optimizing cumulative reef survivorship.
Morphological and biochemical variations in the gills of 12 aquatic air-breathing anabantoid fish.
Huang, Chun-Yen; Lin, Chung-Ping; Lin, Hui-Chen
2011-01-01
All fish species in the Anabantoidei suborder are aquatic air-breathing fish. These species have an accessory air-breathing organ, called the labyrinth organ, in the branchial cavity and can engulf air at the surface of the water to assist in gas exchange. It is therefore necessary to examine the extent of gill modification among anabantoid fish species and the potential trade-offs in their function. The experimental hypothesis that we aimed to test is whether anabantoid fishes have both morphological and functional variations in the gills among different species. We examined the gills of 12 species from three families and nine genera of Anabantoidei. Though the sizes of the fourth gill arch in three species of Trichogaster were reduced significantly, not all anabantoid species had morphological and functional variations in the gills. In these three species, the specific enzyme activity and relative protein abundance of Na(+)/K(+)-ATPase were significantly higher in the anterior gills as compared with the posterior gills and the labyrinth organ. The relative abundance of cytosolic carbonic anhydrase, an indicator of gas exchange, was found to be highest in the labyrinth organ. The phylogenetic distribution of the fourth gill's morphological differentiation suggests that these variations are lineage specific, which may imply a phylogenetic influence on gill morphology in anabantoid species.
Yokoyama, Jun; Fukuda, Tatsuya; Tsukaya, Hirokazu
2003-08-01
Morphological and molecular variation in Mitchella undulata Siebold et Zucc. was examined to evaluate the genetic basis for recognizing the dwarf variety, M. undulata var. minor Masamune. Considerable variation in leaf size in M. undulata, but no obvious morphological discontinuities, were found between the normal and dwarf varieties. Instead, a weak cline running from the Pacific Ocean to the Sea of Japan was found. Anatomical observations of leaf blades revealed that the large variation in leaf size can be attributed to variation in the number of leaf cells and not to differences in cell size. A molecular analysis based on sequences of rDNA internal transcribed spacer regions indicated that there were two major genotypes in M. undulata with minor variation in haplotypes resulting from additional substitutions or putative recombination. The dwarf form from Yakushima was neither genetically uniform nor apparently differentiated from other populations. From these results, we conclude that the dwarf form of M. undulata should be treated at the rank of forma.
Screen printed silver top electrode for efficient inverted organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Junwoo; Duraisamy, Navaneethan; Lee, Taik-Min
2015-10-15
Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinitymore » and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells.« less
NASA Astrophysics Data System (ADS)
Somogyi, Andrea; Medjoubi, Kadda; Sancho-Tomas, Maria; Visscher, P. T.; Baranton, Gil; Philippot, Pascal
2017-09-01
The understanding of real complex geological, environmental and geo-biological processes depends increasingly on in-depth non-invasive study of chemical composition and morphology. In this paper we used scanning hard X-ray nanoprobe techniques in order to study the elemental composition, morphology and As speciation in complex highly heterogeneous geological samples. Multivariate statistical analytical techniques, such as principal component analysis and clustering were used for data interpretation. These measurements revealed the quantitative and valance state inhomogeneity of As and its relation to the total compositional and morphological variation of the sample at sub-μm scales.
How many landmarks are enough to characterize shape and size variation?
Watanabe, Akinobu
2018-01-01
Accurate characterization of morphological variation is crucial for generating reliable results and conclusions concerning changes and differences in form. Despite the prevalence of landmark-based geometric morphometric (GM) data in the scientific literature, a formal treatment of whether sampled landmarks adequately capture shape variation has remained elusive. Here, I introduce LaSEC (Landmark Sampling Evaluation Curve), a computational tool to assess the fidelity of morphological characterization by landmarks. This task is achieved by calculating how subsampled data converge to the pattern of shape variation in the full dataset as landmark sampling is increased incrementally. While the number of landmarks needed for adequate shape variation is dependent on individual datasets, LaSEC helps the user (1) identify under- and oversampling of landmarks; (2) assess robustness of morphological characterization; and (3) determine the number of landmarks that can be removed without compromising shape information. In practice, this knowledge could reduce time and cost associated with data collection, maintain statistical power in certain analyses, and enable the incorporation of incomplete, but important, specimens to the dataset. Results based on simulated shape data also reveal general properties of landmark data, including statistical consistency where sampling additional landmarks has the tendency to asymptotically improve the accuracy of morphological characterization. As landmark-based GM data become more widely adopted, LaSEC provides a systematic approach to evaluate and refine the collection of shape data--a goal paramount for accumulation and analysis of accurate morphological information.
Mapping evolutionary process: a multi-taxa approach to conservation prioritization
Thomassen, Henri A; Fuller, Trevon; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M; Jarrín-V, Pablo; Cameron, Susan E; Mason, Eliza; Schweizer, Rena; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Peralvo, Manuel; Schneider, Christopher J; Graham, Catherine H; Pollinger, John P; Saatchi, Sassan; Wayne, Robert K; Smith, Thomas B
2011-01-01
Human-induced land use changes are causing extensive habitat fragmentation. As a result, many species are not able to shift their ranges in response to climate change and will likely need to adapt in situ to changing climate conditions. Consequently, a prudent strategy to maintain the ability of populations to adapt is to focus conservation efforts on areas where levels of intraspecific variation are high. By doing so, the potential for an evolutionary response to environmental change is maximized. Here, we use modeling approaches in conjunction with environmental variables to model species distributions and patterns of genetic and morphological variation in seven Ecuadorian amphibian, bird, and mammal species. We then used reserve selection software to prioritize areas for conservation based on intraspecific variation or species-level diversity. Reserves selected using species richness and complementarity showed little overlap with those based on genetic and morphological variation. Priority areas for intraspecific variation were mainly located along the slopes of the Andes and were largely concordant among species, but were not well represented in existing reserves. Our results imply that in order to maximize representation of intraspecific variation in reserves, genetic and morphological variation should be included in conservation prioritization. PMID:25567981
Mapping evolutionary process: a multi-taxa approach to conservation prioritization.
Thomassen, Henri A; Fuller, Trevon; Buermann, Wolfgang; Milá, Borja; Kieswetter, Charles M; Jarrín-V, Pablo; Cameron, Susan E; Mason, Eliza; Schweizer, Rena; Schlunegger, Jasmin; Chan, Janice; Wang, Ophelia; Peralvo, Manuel; Schneider, Christopher J; Graham, Catherine H; Pollinger, John P; Saatchi, Sassan; Wayne, Robert K; Smith, Thomas B
2011-03-01
Human-induced land use changes are causing extensive habitat fragmentation. As a result, many species are not able to shift their ranges in response to climate change and will likely need to adapt in situ to changing climate conditions. Consequently, a prudent strategy to maintain the ability of populations to adapt is to focus conservation efforts on areas where levels of intraspecific variation are high. By doing so, the potential for an evolutionary response to environmental change is maximized. Here, we use modeling approaches in conjunction with environmental variables to model species distributions and patterns of genetic and morphological variation in seven Ecuadorian amphibian, bird, and mammal species. We then used reserve selection software to prioritize areas for conservation based on intraspecific variation or species-level diversity. Reserves selected using species richness and complementarity showed little overlap with those based on genetic and morphological variation. Priority areas for intraspecific variation were mainly located along the slopes of the Andes and were largely concordant among species, but were not well represented in existing reserves. Our results imply that in order to maximize representation of intraspecific variation in reserves, genetic and morphological variation should be included in conservation prioritization.
Camargo, Anyela V; Mott, Richard; Gardner, Keith A; Mackay, Ian J; Corke, Fiona; Doonan, John H; Kim, Jan T; Bentley, Alison R
2016-01-01
The appropriate timing of developmental transitions is critical for adapting many crops to their local climatic conditions. Therefore, understanding the genetic basis of different aspects of phenology could be useful in highlighting mechanisms underpinning adaptation, with implications in breeding for climate change. For bread wheat ( Triticum aestivum ), the transition from vegetative to reproductive growth, the start and rate of leaf senescence and the relative timing of different stages of flowering and grain filling all contribute to plant performance. In this study we screened under Smart house conditions a large, multi-founder "NIAB elite MAGIC" wheat population, to evaluate the genetic elements that influence the timing of developmental stages in European elite varieties. This panel of recombinant inbred lines was derived from eight parents that are or recently have been grown commercially in the UK and Northern Europe. We undertook a detailed temporal phenotypic analysis under Smart house conditions of the population and its parents, to try to identify known or novel Quantitative Trait Loci associated with variation in the timing of key phenological stages in senescence. This analysis resulted in the detection of QTL interactions with novel traits such the time between "half of ear emergence above flag leaf ligule" and the onset of senescence at the flag leaf as well as traits associated with plant morphology such as stem height. In addition, strong correlations between several traits and the onset of senescence of the flag leaf were identified. This work establishes the value of systematically phenotyping genetically unstructured populations to reveal the genetic architecture underlying morphological variation in commercial wheat.
Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation
NASA Astrophysics Data System (ADS)
Li, Mingming; Zhong, Shijie; Olson, Peter
2018-04-01
The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.
Contour variations of the body and tail of the pancreas: evaluation with MDCT.
Omeri, Ahmad Khalid; Matsumoto, Shunro; Kiyonaga, Maki; Takaji, Ryo; Yamada, Yasunari; Kosen, Kazuhisa; Mori, Hiromu; Miyake, Hidetoshi
2017-06-01
To analyze morphology/contour variations of the pancreatic body and tail in subjects free of pancreatic disease. We retrospectively reviewed triple-phase, contrast-enhanced multi-detector row computed tomography (3P-CE-MDCT) examinations of 449 patients who had no clinical or CT evidence of pancreatic diseases. These patients were evaluated for morphologic/contour variations of the pancreatic body and tail, which were classified into two types. In Type I, a portion of normal pancreatic parenchyma protrudes >1 cm in maximum diameter from the body or tail (Ia-anteriorly; Ib-posteriorly). Type II was defined as a morphologic anomaly of the pancreatic tail (IIa-globular; IIb-lobulated; IIc-tapered; IId-bifid). Thirty-eight (8.5%) out of 449 patients had body or tail variations. Of those, 23 patients showed Type I variant: Ia in 21 and Ib in two. Type II variant was identified in 15 patients: IIa in eight, IIb in two, IIc in two and IId in three. Protrusion of the anterior surface of the normal pancreas, especially in the tail, was the most frequently occurring variant. Recognizing the types and subtypes of morphology/contour variations of the pancreatic body and tail could help prevent misinterpretation of normal variants as pancreatic tumors on unenhanced MDCT.
Chiou, Shu-Ti; Lu, Tsung-Hsueh
2014-01-01
Wennberg proposed the "practice style factor" to explain the large variations in the use of medical care. As a corollary, we propose the "leadership style factor" of the director of the city/county bureau of public health to explain changes in geographic variation in the uptake of cervical cancer screening. We first calculated the triennial Pap smear rates for women aged 30-69 years from 1997 through 2010 for each city/county in Taiwan and the rate difference and rate ratio between the highest and the lowest city/county to illustrate the geographic variation in the uptake of cervical cancer screening. We then created an expert panel to conduct a hypothesis generation process to examine the possible effects of "leadership style factors" in explaining the changes. The Pap smear rate in Taiwan as a whole was 35% in 1997 and increased to 56% in 2001, and was then stable until 2010 (55%). In 2002, the geographic variation in the Pap smear rate was the smallest, ranging from 49% in Penghu County to 63% in I-lan County, with a rate ratio of 1.28. Unfortunately, the rate ratio increased to 1.49 in 2010, the rate being lowest in Penghu County (42%) and highest in Tainan City (63%). We identified four cities/counties with unique patterns of change in Pap smear rates, which were highly associated with the leadership style of the director of the city/county bureau of public health. Despite the launch of an organized cancer screening program in Taiwan, geographic variation in the uptake of cervical cancer screening still exists and has increased during the past decade. The "leadership style factor" of the director of the city/county bureau of public health might play a plausible role in explaining the pattern of change in geographic variation in the use of cervical cancer screening in Taiwan. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Martin, Heather L.; Adams, Matthew; Higgins, Julie; Bond, Jacquelyn; Morrison, Ewan E.; Bell, Sandra M.; Warriner, Stuart; Nelson, Adam; Tomlinson, Darren C.
2014-01-01
Toxicity is a major cause of failure in drug discovery and development, and whilst robust toxicological testing occurs, efficiency could be improved if compounds with cytotoxic characteristics were identified during primary compound screening. The use of high-content imaging in primary screening is becoming more widespread, and by utilising phenotypic approaches it should be possible to incorporate cytotoxicity counter-screens into primary screens. Here we present a novel phenotypic assay that can be used as a counter-screen to identify compounds with adverse cellular effects. This assay has been developed using U2OS cells, the PerkinElmer Operetta high-content/high-throughput imaging system and Columbus image analysis software. In Columbus, algorithms were devised to identify changes in nuclear morphology, cell shape and proliferation using DAPI, TOTO-3 and phosphohistone H3 staining, respectively. The algorithms were developed and tested on cells treated with doxorubicin, taxol and nocodazole. The assay was then used to screen a novel, chemical library, rich in natural product-like molecules of over 300 compounds, 13.6% of which were identified as having adverse cellular effects. This assay provides a relatively cheap and rapid approach for identifying compounds with adverse cellular effects during screening assays, potentially reducing compound rejection due to toxicity in subsequent in vitro and in vivo assays. PMID:24505478
Takahashi, Kazuo H
2015-11-01
Cryptic genetic variation (CGV) is defined as the genetic variation that has little effect on phenotypic variation under a normal condition, but contributes to heritable variation under environmental or genetic perturbations. Genetic buffering systems that suppress the expression of CGV and store it in a population are called genetic capacitors, and the opposite systems are called genetic potentiators. One of the best-known candidates for a genetic capacitor and potentiator is the molecular chaperone protein, HSP90, and one of its characteristics is that it affects the genetic variation in various morphological traits. However, it remains unclear whether the wide-ranging effects of HSP90 on a broad range of traits are a general feature of genetic capacitors and potentiators. In the current study, I searched for novel genetic capacitors and potentiators for quantitative bristle traits of Drosophila melanogaster and then investigated the trait specificity of their genetic buffering effect. Three bristle traits of D. melanogaster were used as the target traits, and the genomic regions with genetic buffering effects were screened using the 61 genomic deficiencies examined previously for genetic buffering effects in wing shape. As a result, four and six deficiencies with significant effects on increasing and decreasing the broad-sense heritability of the bristle traits were identified, respectively. Of the 18 deficiencies with significant effects detected in the current study and/or by the previous study, 14 showed trait-specific effects, and four affected the genetic buffering of both bristle traits and wing shape. This suggests that most genetic capacitors and potentiators exert trait-specific effects, but that general capacitors and potentiators with effects on multiple traits also exist. © 2015 John Wiley & Sons Ltd.
Stott, Joshua; Scior, Katrina; Mandy, William; Charlesworth, Georgina
2017-01-01
Scores on cognitive screening tools for dementia are associated with premorbid IQ. It has been suggested that screening scores should be adjusted accordingly. However, no study has examined whether premorbid IQ variation affects screening accuracy. To investigate whether the screening accuracy of a widely used cognitive screening tool for dementia, the Addenbrooke's cognitive examination-III (ACE-III), is improved by adjusting for premorbid IQ. 171 UK based adults (96 memory service attendees diagnosed with dementia and 75 healthy volunteers over the age of 65 without subjective memory impairments) completed the ACE-III and the Test of Premorbid Function (TOPF). The difference in screening performance between the ACE-III alone and the ACE-III adjusted for TOPF was assessed against a reference standard; the presence or absence of a diagnosis of dementia (Alzheimer's disease, vascular dementia, or others). Logistic regression and receiver operating curve analyses indicated that the ACE-III has excellent screening accuracy (93% sensitivity, 94% specificity) in distinguishing those with and without a dementia diagnosis. Although ACE-III scores were associated with TOPF scores, TOPF scores may be affected by having dementia and screening accuracy was not improved by accounting for premorbid IQ, age, or years of education. ACE-III screening accuracy is high and screening performance is robust to variation in premorbid IQ, age, and years of education. Adjustment of ACE-III cut-offs for premorbid IQ is not recommended in clinical practice. The analytic strategy used here may be useful to assess the impact of premorbid IQ on other screening tools.
Evolution of Body Elongation in Gymnophthalmid Lizards: Relationships with Climate
Grizante, Mariana B.; Brandt, Renata; Kohlsdorf, Tiana
2012-01-01
The evolution of elongated body shapes in vertebrates has intrigued biologists for decades and is particularly recurrent among squamates. Several aspects might explain how the environment influences the evolution of body elongation, but climate needs to be incorporated in this scenario to evaluate how it contributes to morphological evolution. Climatic parameters include temperature and precipitation, two variables that likely influence environmental characteristics, including soil texture and substrate coverage, which may define the selective pressures acting during the evolution of morphology. Due to development of geographic information system (GIS) techniques, these variables can now be included in evolutionary biology studies and were used in the present study to test for associations between variation in body shape and climate in the tropical lizard family Gymnophthalmidae. We first investigated how the morphological traits that define body shape are correlated in these lizards and then tested for associations between a descriptor of body elongation and climate. Our analyses revealed that the evolution of body elongation in Gymnophthalmidae involved concomitant changes in different morphological traits: trunk elongation was coupled with limb shortening and a reduction in body diameter, and the gradual variation along this axis was illustrated by less-elongated morphologies exhibiting shorter trunks and longer limbs. The variation identified in Gymnophthalmidae body shape was associated with climate, with the species from more arid environments usually being more elongated. Aridity is associated with high temperatures and low precipitation, which affect additional environmental features, including the habitat structure. This feature may influence the evolution of body shape because contrasting environments likely impose distinct demands for organismal performance in several activities, such as locomotion and thermoregulation. The present study establishes a connection between morphology and a broader natural component, climate, and introduces new questions about the spatial distribution of morphological variation among squamates. PMID:23166767
Herrera, Brianne; Peart, Daniel; Hernandez, Nicole; Spradley, Kate; Hubbe, Mark
2017-05-01
Cranial morphology has previously been used to estimate phylogenetic relationships among populations, and has been an important tool in the reconstruction of ancient human dispersals across the planet. In the Americas, previous morphological studies support a scenario of people entering the Americas and dispersing from North America into South America through Meso America, making the Mexican territory the natural funnel through which biological diversity entered South America. We explore the cranial morphological affinities of three late Holocene Mexican series, in relation to ancient and modern crania from North and South America, Australo-Melanesia, and East Asia. Morphological affinities were assessed through Mahalanobis Distances, and represented via Multidimensional Scaling and Ward's Linkage Cluster analysis. Minimum F ST values were also calculated for each series. Our results show Mexican groups share morphological affinities with the Native American series, but do not cluster together as would be expected. The minimum F ST estimates show between-group variation in the Americas is higher than the Asian or Australo-Melanesian populations, and that Mexican series have high between-group variance (F ST = 0.124), compared to the geographically larger South America (F ST = 0.116) and North America (F ST = 0.076). These results show that the Mexican series share morphological affinities with the East Asian series, but maintains high levels of between-group variation, similar to South America. This supports the suggestion that the high phenotypic variation seen the Americas is not a result of its size, as it can be found in more constricted areas, such as the Mexican territory. © 2017 Wiley Periodicals, Inc.
Endodontic management of maxillary first molar with atypical canal morphology: Report of three cases
Sherwani, Osama Adeel Khan; Kapoor, Bhumika; Sharma, Rajat; Mishra, Surendra Kumar
2016-01-01
Maxillary first molar with three roots and 3–4 canals is a common occurrence. However, extreme variations in their canal morphology have been reported ranging from one single canal and one root to as many as eight root canals. This article presents three cases of successful endodontic management of maxillary first molars with atypical canal morphologies, thus highlighting the fact that variations do occur and an endodontist should always be aware of aberrancies in root canal system apart from the knowledge of normal root canal anatomy. PMID:27994427
NASA Astrophysics Data System (ADS)
Laman, Charlie J. M.; Kho, Angel
Bornean Hornbills (Family Bucerotidae) are omnivorous creatures, distinguished for their large size and large bill. In our study, only five out of eight species of Bornean hornbills were available. Our aims were to determine the taxonomic, morphological and sexual variations, among the species. Nine morphological features were measured from 83 specimens. Canonical Discriminant and Cluster analyses showed that the data were successfully clustered into 5 species. Logistic regression analyses showed that the diagnostic character differentiation is total length. Further results showed that males tend to be bigger than females.
Orbit orientation in didelphid marsupials (Didelphimorphia: Didelphidae)
Pilatti, Patricia
2017-01-01
Abstract Usually considered a morphologically conservative group, didelphid marsupials present considerable variation in ecology and body size, some of which were shown to relate to morphological structures. Thus, changes on orbit morphology are likely and could be related to that variation. We calculated orbit orientation in 873 specimens of 16 Didelphidae genera yielding estimates of orbits convergence (their position relative to midsagittal line) and verticality (their position relative to frontal plane). We then compared similarities in these variables across taxa to ecological, morphological and phylogenetic data to evaluate the influencing factors on orbit orientation in didelphids. We found an inverse relation between convergence and verticality. Didelphids orbits have low verticality but are highly convergent, yet orbit orientation differs significantly between taxa, and that variation is related to morphological aspects of the cranium. Rostral variables are the only morphological features correlated with orbit orientation: increasing snout length yields more convergent orbits, whereas increase on snout breadth imply in more vertical orbits. Size and encephalization quotients are uncorrelated with orbit orientation. Among ecological data, diet showed significant correlation whereas locomotion is the factor that less affects the position of orbits. Phylogeny is uncorrelated to any orbital parameters measured. Ecological factors seemingly play a more important role on orbit orientation than previously expected, and differentiation on orbit orientation seems to be more functional than inherited. Thus, despite the apparent homogeneity on didelphid morphology, there is subtle morphological variability that may be directly related to feeding behavior. PMID:29492000
Analysis of Europan Cycloid Morphology and Implications for Formation Mechanisms
NASA Technical Reports Server (NTRS)
Marshall, S. T.; Kattenhorn, S. A.
2004-01-01
Europa's highly fractured crust has been shown to contain features with a range of differing morphologies. Most lineaments on Europa are believed to have initiated as cracks, although the type of cracking (e.g. tensile vs. shear) remains unclear and may vary for different morphologies. Arcuate lineaments, called cycloids or flexi, have been observed in nearly all imaged regions of Europa and have been modeled as tensile fractures that were initiated in response to diurnal variations in tides. Despite this hypothesis about the formation mechanism, there have been no detailed analyses of the variable morphologies of cycloids. We have examined Galileo images of numerous locations on Europa to develop a catalog of the different morphologies of cycloids. This study focuses on variations in morphology along individual cycloid segments and differences in cusp styles between segments, while illustrating how morphologic evidence can help unravel formation mechanisms. In so doing, we present evidence for cycloid cusps forming due to secondary fracturing during strike-slip sliding on pre-existing cycloid segments.
Identifying Structural Alerts Based on Zebrafish Developmental Morphological Toxicity (TDS)
Zebrafish constitute a powerful alternative animal model for chemical hazard evaluation. To provide an in vivo complement to high-throughput screening data from the ToxCast program, zebrafish developmental toxicity screens were conducted on the ToxCast Phase I (Padilla et al., 20...
Sarkar, Kuhu; Braden, Erik V; Bonke, Shannon A; Bach, Udo; Müller-Buschbaum, Peter
2015-08-24
Diblock copolymers have been used in sol-gel synthesis to successfully tailor the nanoscale morphology of thin ZnO films. As the fabrication of several-micron-thick mesoporous films such as those required in dye-sensitized solar cells (DSSCs) was difficult with this approach, we exploited the benefits of diblock-copolymer-directed synthesis that made it compatible with screen printing. The simple conversion of the diblock copolymer ZnO precursor sol to a screen-printing paste was not possible as it resulted in poor film properties. To overcome this problem, an alternative route is proposed in which the diblock copolymer ZnO precursor sol is first blade coated and calcined, then converted to a screen-printing paste. This allows the benefits of diblock-copolymer-directed particle formation to be compatible with printing methods. The morphologies of the ZnO nanostructures were studied by SEM and correlated with the current density-voltage characteristics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
China, S.; Mazzoleni, C.; Dubey, M. K.; Chakrabarty, R. K.; Moosmuller, H.; Onasch, T. B.; Herndon, S. C.
2010-12-01
We present an analysis of morphological characteristics of atmospheric aerosol collected during the MILAGRO (Megacity Initiative: Local and Global Research Observations) field campaign that took place in Mexico City in March 2006. The sampler was installed on the Aerodyne mobile laboratory. The aerosol samples were collected on nuclepore clear polycarbonate filters mounted in Costar pop-top membrane holders. More than one hundred filters were collected at different ground sites with different atmospheric and geographical characteristics (urban, sub-urban, mountain-top, industrial, etc.) over a month period. Selected subsets of these filters were analyzed for aerosol morphology using a scanning electron microscope and image analysis techniques. In this study we investigate spatial and temporal variations of aerosol shape descriptors, morphological parameters, and fractal dimension. We also compare the morphological results with other aerosol measurements such as aerosol optical properties(scattering and absorption) and size distribution data. Atmospheric aerosols have different morphological characteristics depending on many parameters such as emission sources, atmospheric formation pathways, aging processes, and aerosol mixing state. The aerosol morphology influences aerosol chemical and mechanical interactions with the environment, physical properties, and radiative effects. In this study, ambient aerosol particles have been classified in different shape groups as spherical, irregularly shaped, and fractal-like aggregates. Different morphological parameters such as aspect ratio, roundness, feret diameter, etc. have been estimated for irregular shaped and spherical particles and for different kinds of soot particles including fresh soot, collapsed and coated soot. Fractal geometry and image processing have been used to obtain morphological characteristics of different soot particles. The number of monomers constituting each aggregate and their diameters were measured and used to estimate an ensemble three-dimensional (3-d) fractal dimension. One-dimensional (1-d) and two-dimensional (2-d) fractal geometries have been measured using a power-law scaling relationship between 1-d and 2-d properties of projected images. Temporal variations in fractal dimension of soot-like aggregates have been observed at the mountaintop site and spatial variation of fractal dimension and other morphological descriptors of different shaped particles have been investigated for the different ground sites.
Goldzweig, Caroline Lubick; Parkerton, Patricia H; Washington, Donna L; Lanto, Andrew B; Yano, Elizabeth M
2004-04-01
Despite the importance of early cancer detection, variation in screening rates among physicians is high. Insights into factors influencing variation can guide efforts to decrease variation and increase screening rates. To explore the association of primary care practice features and a facility's quality orientation with breast and cervical cancer screening rates. Cross-sectional study of screening rates among 144 Department of Veterans Affairs (VA) medical centers and for a national sample of women. We linked practice structure and quality improvement characteristics of individual VA medical centers from 2 national surveys (1 to primary care directors and 1 to a stratified random sample of employees) to breast and cervical cancer screening rates determined from a review of random medical records. We conducted bivariate analyses and multivariate logistic regression of primary care practice and facility features on cancer screening rates, above and below the median. While the national screening rates were high for breast (87%) and cervical cancer (90%), higher screening rates were more likely when primary care providers were consistently notified of specialty visits and when staff perceived a greater organizational commitment to quality and anticipated rewards and recognition for better performance. Organization and quality orientation of the primary care practice and its facility can enhance breast and cervical cancer screening rates. Internal recognition of quality performance and an overall commitment to quality improvement may foster improved prevention performance, with impact varying by clinical service.
Buyuk, C; Gunduz, K; Avsever, H
2018-01-01
The aim of this investigation was to evaluate the length, thickness, sagittal and transverse angulations and the morphological variations of the stylohyoid complex (SHC), to assess their probable associations with age and gender, and to investigate the prevalence of it in a wide range of a Turkish sub-population by using cone beam computed tomography (CBCT). The CBCT images of the 1000 patients were evaluated retrospectively. The length, thickness, sagittal and transverse angulations, morphological variations and ossification degrees of SHC were evaluated on multiplanar reconstructions (MPR) adnd three-dimensional (3D) volume rendering (3DVR) images. The data were analysed statistically by using nonparametric tests, Pearson's correlation coefficient, Student's t test, c2 test and one-way ANOVA. Statistical significance was considered at p < 0.05. It was determined that 684 (34.2%) of all 2000 SHCs were elongated (> 35 mm). The mean sagittal angle value was measured to be 72.24° and the mean transverse angle value was 70.81°. Scalariform shape, elongated type and nodular calcification pattern have the highest mean age values between the morphological groups, respectively. Calcified outline was the most prevalent calcification pattern in males. There was no correlation between length and the calcification pattern groups while scalariform shape and pseudoarticular type were the longest variations. We observed that as the anterior sagittal angle gets wider, SHC tends to get longer. The most observed morphological variations were linear shape, elongated type and calcified outline pattern. Detailed studies on the classification will contribute to the literature. (Folia Morphol 2018; 77, 1: 79-89).
NASA Astrophysics Data System (ADS)
Shah, Anjana K.; SempéRé, Jean-Christophe
1998-03-01
The Southeast Indian Ridge exhibits a transition in axial morphology from an East Pacific Rise-like axial high near 100°E to a Mid-Atlantic Ridge-like rift valley near 116°E but spreads at a nearly constant rate of 74-76 mm/yr. Assuming that the source of this transition lies in variations in mantle temperature, we use shipboard gravity-derived crustal thickness and ridge flank depth to estimate the variations in temperature associated with the changes in morphological style. Within the transitional region, SeaBeam 2000 bathymetry shows scattered instances of highs, valleys, and split volcanic ridges at the axis. A comparison of axial morphology to abyssal hill shapes and symmetry properties suggests that this unorganized distribution is due to the ridge axis episodically alternating between an axial valley and a volcanic ridge. Axial morphology can then be divided into three classes, with distinct geographic borders: axial highs and rifted highs are observed west of a transform fault at 102°45'E; rift valleys are observed east of a transform fault at 114°E; and an intermediate-style morphology which alternates between a volcanic ridge and a shallow axial valley is observed between the two. One segment, between 107° and 108°30'E, forms an exception to the geographical boundaries. Gravity-derived crustal thickness and flank depth generally vary monotonically over the region, with the exception of the segment between 107°E and 108°30'E. The long-wavelength variations in these properties correlate with the above morphological classification. Gravity-derived crustal thickness varies on average ˜2 km between the axial high and rift valley regions. The application of previous models relating crustal thickness and mantle temperature places the corresponding temperature variation at 25°C-50°C, depending on the model used. The average depth of ridge flanks varies by ˜550 m over the study area. For a variation of 25°-50°C, thermal models of the mantle predict depth variations of 75-150 m. These values are consistent with observations when the combined contributions of crustal thickness and mantle density to ridge flank depth are considered, assuming Airy isostasy. Crustal thickness variations differ at the two transitions described above: A difference of 750 m in crustal thickness is observed at the rift valley/intermediate-style transition, suggesting small variations in crustal thickness and mantle temperature drive this transition. At the axial high-rifted high/intermediate-style transition, crustal thickness variations are not resolvable, suggesting that this transition is controlled by threshold values of crustal thickness and mantle temperature, and is perhaps related to the presence of a steady state magma chamber.
Rawlings, T A
1990-12-01
Intraspecific variation in the morphology of egg capsules is ideal for assessing the costs and benefits of encapsulation, yet little is known about the extent of such variation among populations of a single species. In the present study, I compared capsule morphology among three populations of the intertidal gastropod, Nucella emarginata. Significant differences were found both in capsule wall thickness and capsule strength. Mean capsule wall thickness varied as much as 25% among populations, with the dry weight of capsular cases differing accordingly. Capsule strength, measured as resistance to puncturing and squeezing forces, also varied among populations, but did not directly reflect differences in capsule wall thickness. Despite extensive variation in capsule morphology within this species, the number and size of eggs contained within capsules of equal volume did not differ significantly among populations. I also compared the type of capsule-eating predators that were present at each site. Shore crabs, Hemigrapsus spp., were abundant at all three sites; however, the predatory isopods Idotea wosnesenskii were only present at sites containing relatively thick-walled capsules. Although Hemigrapsus and Idotea were able to chew through both thick- and thin-walled capsules, laboratory experiments revealed that Idotea preferentially opened thin-walled capsules. These results suggest that variation in capsule morphology among populations of N. emarginata may, at least in part, reflect selection for the protection of embryos against predation.
Variation in brain anatomy in frogs and its possible bearing on their locomotor ecology.
Manzano, Adriana S; Herrel, Anthony; Fabre, Anne-Claire; Abdala, Virginia
2017-07-01
Despite the long-standing interest in the evolution of the brain, relatively little is known about variation in brain anatomy in frogs. Yet, frogs are ecologically diverse and, as such, variation in brain anatomy linked to differences in lifestyle or locomotor behavior can be expected. Here we present a comparative morphological study focusing on the macro- and micro-anatomy of the six regions of the brain and its choroid plexus: the olfactory bulbs, the telencephalon, the diencephalon, the mesencephalon, the rhombencephalon, and the cerebellum. We also report on the comparative anatomy of the plexus brachialis responsible for the innervation of the forelimbs. It is commonly thought that amphibians have a simplified brain organization, associated with their supposedly limited behavioral complexity and reduced motor skills. We compare frogs with different ecologies that also use their limbs in different contexts and for other functions. Our results show that brain morphology is more complex and more variable than typically assumed. Moreover, variation in brain morphology among species appears related to locomotor behavior as suggested by our quantitative analyses. Thus we propose that brain morphology may be related to the locomotor mode, at least in the frogs included in our analysis. © 2017 Anatomical Society.
Morphological and performance measures of polyurethane foams using X-ray CT and mechanical testing.
Patterson, Brian M; Henderson, Kevin; Gilbertson, Robert D; Tornga, Stephanie; Cordes, Nikolaus L; Chavez, Manuel E; Smith, Zachary
2014-08-01
Meso-scale structure in polymeric foams determines the mechanical properties of the material. Density variations, even more than variations in the anisotropic void structure, can greatly vary the compressive and tensile response of the material. With their diverse use as both a structural material and space filler, polyurethane (PU) foams are widely studied. In this manuscript, quantitative measures of the density and anisotropic structure are provided by using micro X-ray computed tomography (microCT) to better understand the results of mechanical testing. MicroCT illustrates the variation in the density, cell morphology, size, shape, and orientation in different regions in blown foam due to the velocity profile near the casting surface. "Interrupted" in situ imaging of the material during compression of these sub-regions indicates the pathways of the structural response to the mechanical load and the changes in cell morphology as a result. It is found that molded PU foam has a 6 mm thick "skin" of higher density and highly eccentric morphological structure that leads to wide variations in mechanical performance depending upon sampling location. This comparison is necessary to understand the mechanical performance of the anisotropic structure.
Vaux, Felix; Trewick, Steven A; Crampton, James S; Marshall, Bruce A; Beu, Alan G; Hills, Simon F K; Morgan-Richards, Mary
2018-06-15
The relationship between morphology and inheritance is of perennial interest in evolutionary biology and palaeontology. Using three marine snail genera Penion, Antarctoneptunea and Kelletia, we investigate whether systematics based on shell morphology accurately reflect evolutionary lineages indicated by molecular phylogenetics. Members of these gastropod genera have been a taxonomic challenge due to substantial variation in shell morphology, conservative radular and soft tissue morphology, few known ecological differences, and geographical overlap between numerous species. Sampling all sixteen putative taxa identified across the three genera, we infer mitochondrial and nuclear ribosomal DNA phylogenetic relationships within the group, and compare this to variation in adult shell shape and size. Results of phylogenetic analysis indicate that each genus is monophyletic, although the status of some phylogenetically derived and likely more recently evolved taxa within Penion is uncertain. The recently described species P. lineatus is supported by genetic evidence. Morphology, captured using geometric morphometric analysis, distinguishes the genera and matches the molecular phylogeny, although using the same dataset, species and phylogenetic subclades are not identified with high accuracy. Overall, despite abundant variation, we find that shell morphology accurately reflects genus-level classification and the corresponding deep phylogenetic splits identified in this group of marine snails. Copyright © 2018 Elsevier Inc. All rights reserved.
Billet, Guillaume; Hautier, Lionel; Asher, Robert J.; Schwarz, Cathrin; Crumpton, Nick; Martin, Thomas; Ruf, Irina
2012-01-01
The semicircular canals (SCs), part of the vestibular apparatus of the inner ear, are directly involved in the detection of angular motion of the head for maintaining balance, and exhibit adaptive patterns for locomotor behaviour. Consequently, they are generally believed to show low levels of intraspecific morphological variation, but few studies have investigated this assumption. On the basis of high-resolution computed tomography, we present here, to our knowledge, the first comprehensive study of the pattern of variation of the inner ear with a focus on Xenarthra. Our study demonstrates that extant three-toed sloths show a high level of morphological variation of the bony labyrinth of the inner ear. Especially, the variation in shape, relative size and angles of their SCs greatly differ from those of other, faster-moving taxa within Xenarthra and Placentalia in general. The unique pattern of variation in three-toed sloths suggests that a release of selection and/or constraints on their organ of balance is associated with the observed wide range of phenotypes. This release is coincident with their slow and infrequent locomotion and may be related, among other possible factors, to a reduced functional demand for a precise sensitivity to movement. PMID:22859594
Wood, Laura D; Heaphy, Christopher M; Daniel, Hubert Darius-J; Naini, Bita V; Lassman, Charles R; Arroyo, May R; Kamel, Ihab R; Cosgrove, David P; Boitnott, John K; Meeker, Alan K; Torbenson, Michael S
2014-01-01
Hepatocellular carcinomas exhibit heterogeneous morphologies by routine light microscopy. Although some morphologies represent insignificant variations in growth patterns, others may represent unrecognized subtypes of hepatocellular carcinoma. Identification of these subtypes could lead to separation of hepatocellular carcinomas into discrete groups with unique underlying genetic changes, prognosis, or therapeutic responses. In order to identify potential subtypes, two pathologists independently screened a cohort of 219 unselected hepatocellular carcinoma resection specimens and divided cases into potential subtypes. One of these promising candidate subtypes was further evaluated using histological and molecular techniques. This subtype was characterized by a unique and consistent set of histological features: smooth chromophobic cytoplasm, abrupt focal nuclear anaplasia (small clusters of tumor cells with marked nuclear anaplasia in a background of tumor cells with bland nuclear cytology), and scattered microscopic pseudocysts—we designate this variant as ‘chromophobe hepatocellular carcinoma with abrupt anaplasia’. Thirteen cases were identified (6% of all hepatocellular carcinomas), including 6 men and 7 women with an average age of 61 years. Six cases occurred in cirrhotic livers. Serum AFP was elevated in 6 out of 10 cases. There were a variety of underlying liver diseases, but cases were enrichment for chronic hepatitis B, P = 0.006. Interestingly, at the molecular level, this variant was strongly associated with the alternative lengthening of telomere (ALT) phenotype by telomere FISH. ALT is a telomerase-independent mechanism of telomere maintenance and is found in approximately 8% of unselected hepatocellular carcinomas. In contrast, 11/12 (92%) of the cases of chromophobe hepatocellular carcinoma with abrupt anaplasia were ALT-positive. In summary, we propose that chromophobe hepatocellular carcinoma with abrupt anaplasia represents a new subtype of hepatocellular carcinoma with unique morphological and molecular features. PMID:23640129
Wood, Laura D; Heaphy, Christopher M; Daniel, Hubert Darius-J; Naini, Bita V; Lassman, Charles R; Arroyo, May R; Kamel, Ihab R; Cosgrove, David P; Boitnott, John K; Meeker, Alan K; Torbenson, Michael S
2013-12-01
Hepatocellular carcinomas exhibit heterogeneous morphologies by routine light microscopy. Although some morphologies represent insignificant variations in growth patterns, others may represent unrecognized subtypes of hepatocellular carcinoma. Identification of these subtypes could lead to separation of hepatocellular carcinomas into discrete groups with unique underlying genetic changes, prognosis, or therapeutic responses. In order to identify potential subtypes, two pathologists independently screened a cohort of 219 unselected hepatocellular carcinoma resection specimens and divided cases into potential subtypes. One of these promising candidate subtypes was further evaluated using histological and molecular techniques. This subtype was characterized by a unique and consistent set of histological features: smooth chromophobic cytoplasm, abrupt focal nuclear anaplasia (small clusters of tumor cells with marked nuclear anaplasia in a background of tumor cells with bland nuclear cytology), and scattered microscopic pseudocysts--we designate this variant as 'chromophobe hepatocellular carcinoma with abrupt anaplasia'. Thirteen cases were identified (6% of all hepatocellular carcinomas), including 6 men and 7 women with an average age of 61 years. Six cases occurred in cirrhotic livers. Serum AFP was elevated in 6 out of 10 cases. There were a variety of underlying liver diseases, but cases were enrichment for chronic hepatitis B, P=0.006. Interestingly, at the molecular level, this variant was strongly associated with the alternative lengthening of telomere (ALT) phenotype by telomere FISH. ALT is a telomerase-independent mechanism of telomere maintenance and is found in approximately 8% of unselected hepatocellular carcinomas. In contrast, 11/12 (92%) of the cases of chromophobe hepatocellular carcinoma with abrupt anaplasia were ALT-positive. In summary, we propose that chromophobe hepatocellular carcinoma with abrupt anaplasia represents a new subtype of hepatocellular carcinoma with unique morphological and molecular features.
Morita, Wataru; Yano, Wataru; Nagaoka, Tomohito; Abe, Mikiko; Ohshima, Hayato; Nakatsukasa, Masato
2014-01-01
Tooth crown patterning is governed by the growth and folding of the inner enamel epithelium (IEE) and the following enamel deposition forms outer enamel surface (OES). We hypothesized that overall dental crown shape and covariation structure are determined by processes that configurate shape at the enamel–dentine junction (EDJ), the developmental vestige of IEE. This this hypothesis was tested by comparing patterns of morphological variation between EDJ and OES in human permanent maxillary first molar (UM1) and deciduous second molar (um2). Using geometric morphometric methods, we described morphological variation and covariation between EDJ and OES, and evaluated the strength of two components of phenotypic variability, canalization and morphological integration, in addition to the relevant evolutionary flexibility, i.e. the ability to respond to selective pressure. The strength of covariation between EDJ and OES was greater in um2 than in UM1, and the way that multiple traits covary between EDJ and OES was different between these teeth. The variability analyses showed that EDJ had less shape variation and a higher level of morphological integration than OES, which indicated that canalization and morphological integration acted as developmental constraints. These tendencies were greater in UM1 than in um2. On the other hand, EDJ and OES had a comparable level of evolvability in these teeth. Amelogenesis could play a significant role in tooth shape and covariation structure, and its influence was not constant among teeth, which may be responsible for the differences in the rate and/or period of enamel formation. PMID:24689536
Zhang, Xue; Wen, Ming; Li, Junjian; Zhu, Hui; Wang, Yinliang; Ren, Bingzhong
2015-01-01
Abstract In an attempt to explain the variation within this species and clarify the subspecies classification, an analysis of the genetic, calling songs, and morphological variations within the species Gampsocleis sedakovii is presented from Inner Mongolia, China. Recordings were compared of the male calling songs and analysis performed of selected acoustic variables. This analysis is combined with sequencing of mtDNA - COI and examination of morphological traits to perform cluster analyses. The trees constructed from different datasets were structurally similar, bisecting the six geographical populations studied. Based on two large branches in the analysis, the species Gampsocleis sedakovii was partitioned into two subspecies, Gampsocleis sedakovii sedakovii (Fischer von Waldheim, 1846) and Gampsocleis sedakovii obscura (Walker, 1869). Comparing all the traits, the individual of Elunchun (ELC) was the intermediate type in this species according to the acoustic, genetic, and morphological characteristics. This study provides evidence for insect acoustic signal divergence and the process of subspeciation. PMID:26692795
Caldon, L J M; Walters, S J; Reed, J A; Murphy, A; Worley, A; Reed, M W R
2004-01-01
Wide variation in the surgical management of breast cancer exists at hospital, regional, national and international level. To demonstrate whether variation in surgical practice observed at aggregate level between breast units persists following adjustment for case-mix, individual patient-level data from the Trent Breast Screening Programme Quality Assurance database (1997–2003) was analysed. Expected case-mix adjusted mastectomy rates were derived by logistic regression using the variables tumour size, site and grade, patient age and year of presentation, employing the region's overall case-mix adjusted practice as the reference population. The region's 11 breast screening units detected 5109 (3989 invasive) surgically managed primary breast cancers over the 6-year period. A total of 1828 mastectomies (Mx) were performed (Mx rate 35.8%, 95% confidence interval: 34.5–37.1%). Significant variation in mastectomy rates were observed between units (range 25–45%, P<0.0001), and persists following case-mix adjustment (P<0.0001). Two-fold variation in observed to expected unit mastectomy rate coefficient is demonstrated overall (range 0.66–1.36), increasing to almost four-fold variation in cancers less than 15 mm diameter (range 0.55–1.95). Significant variation in surgery for screen-detected primary breast cancer is not explained by case-mix. Further research is required to investigate potential patient and professional causative factors. PMID:15611797
[Variations in the diagnostic confirmation process between breast cancer mass screening units].
Natal, Carmen; Fernández-Somoano, Ana; Torá-Rocamora, Isabel; Tardón, Adonina; Castells, Xavier
2016-01-01
To analyse variations in the diagnostic confirmation process between screening units, variations in the outcome of each episode and the relationship between the use of the different diagnostic confirmation tests and the lesion detection rate. Observational study of variability of the standardised use of diagnostic and lesion detection tests in 34 breast cancer mass screening units participating in early-detection programmes in three Spanish regions from 2002-2011. The diagnostic test variation ratio in percentiles 25-75 ranged from 1.68 (further appointments) to 3.39 (fine-needle aspiration). The variation ratio in detection rates of benign lesions, ductal carcinoma in situ and invasive cancer were 2.79, 1.99 and 1.36, respectively. A positive relationship between rates of testing and detection rates was found with fine-needle aspiration-benign lesions (R(2): 0.53), fine-needle aspiration-invasive carcinoma (R(2): 0 28), core biopsy-benign lesions (R(2): 0.64), core biopsy-ductal carcinoma in situ (R(2): 0.61) and core biopsy-invasive carcinoma (R(2): 0.48). Variation in the use of invasive tests between the breast cancer screening units participating in early-detection programmes was found to be significantly higher than variations in lesion detection. Units which conducted more fine-needle aspiration tests had higher benign lesion detection rates, while units that conducted more core biopsies detected more benign lesions and cancer. Copyright © 2016 SESPAS. Published by Elsevier Espana. All rights reserved.
Larion, Sebastian; Warsof, Steven L; Romary, Letty; Mlynarczyk, Margaret; Peleg, David; Abuhamad, Alfred Z
2015-08-01
To report changes in the use of the combined first-trimester screen (FTS) in patients classified as high and low risk for fetal aneuploidy, including after introduction of noninvasive prenatal testing (NIPT). A prospectively collected database was reviewed to investigate changes in FTS use before and after American College of Obstetricians and Gynecologists (ACOG) Practice Bulletin No. 77 (Obstet Gynecol 2007; 109:217-227), which recommended that all patients be offered aneuploidy screening, and after NIPT introduction. High-risk patients were classified as 35 years or older at the estimated time of delivery or those with an abnormal prior screen, abnormal ultrasound findings, or family history of aneuploidy. Data were normalized per 100 morphologic ultrasound examinations to account for changes in patient number over time. Statistical significance was defined as P < .05. A total of 10,125 FTSs were recorded during the 88-month study period, including 2962 in high-risk patients and 7163 in low-risk patients. The total number of FTSs performed per 100 morphologic ultrasound examinations significantly increased after ACOG Practice Bulletin No. 77 and significantly decreased after NIPT introduction. In high-risk patients, the total number of FTSs performed per 100 morphologic ultrasound examinations significantly increased after ACOG Practice Bulletin No. 77 but significantly decreased after NIPT introduction. In contrast, in low-risk patients, the total number of FTSs performed per 100 morphologic ultrasound examinations significantly increased after ACOG Practice Bulletin No.77 but was not statistically different after NIPT introduction. American College of Obstetricians and Gynecologists Practice Bulletin No. 77 significantly increased patient use of FTS. The introduction of NIPT significantly decreased FTS use in the high-risk population but not in the low-risk population. © 2015 by the American Institute of Ultrasound in Medicine.
Zhao, Peng; Wang, Qing-Hong; Tian, Cheng-Ming; Kakishima, Makoto
2015-01-01
The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC) model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2) regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and molecular variations was an effective approach for delimitating Melampsora species on willows in China. PMID:26680416
NASA Astrophysics Data System (ADS)
Wen, Yu; Xia, Dehong
2018-03-01
The purpose of this study is to provide scientific guidance for the morphological control of nanoparticle synthesis using the gas phase method. A universal thermodynamics model is developed to predict the morphology of nanoparticles fabricated using the inert gas condensation method. By using this model, the morphologies of aluminum nanocrystals are predicted under various preparation conditions. There are two types of energy that jointly determine the formation of nanoparticle morphology—Gibbs free energy for nanoparticles and energy variation during the process. The results show that energy variation dominates morphology formation when the cooling rate is less than 2 × 1011 K s-1 in the aluminum nanocrystal production process. At the beginning of the nanoparticle growth, the most stable morphology is predicted to be spherical, but the energetically preferred morphology becomes cubic as the particle grows. The turning point in the particle size at which spherical morphology is no longer the most stable morphology is exhibited as a function of pressure in a condensation chamber for different cooling rates. In this paper, we focus on the need for morphology prediction based on preparation conditions. It is concluded that nanoparticles with various morphologies could be obtained by adjusting the cooling rate and pressure in the condensation chamber.
Morphological and Genetic Analysis of Four Color Morphs of Bean Leaf Beetle.
Tiroesele, Bamphitlhi; Skoda, Steven R; Hunt, Thomas E; Lee, Donald J; Ullah, Muhammad Irfan; Molina-Ochoa, Jaime; Foster, John E
2018-03-01
Bean leaf beetle (BLB), Cerotoma trifurcata (Forster; Coleoptera: Chrysomelidae), exhibits considerable color variation but little is known about the underlying genetic structure and gene flow among color phenotypes. Genetic and morphological variation among four color phenotypes-green with spots (G+S), green without spots (G-S), red with spots (R+S) and red without spots (R-S)-were analyzed using amplified fragment length polymorphisms (AFLP) and morphometrics, respectively. AFLP generated 175 markers that showed ≥80% polymorphism. Analysis of molecular variance (AMOVA) indicated that genetic variation was greatest within phenotypes (82.6-84.0%); gene flow among the four phenotypes was relatively high (Nm = 3.82). The dendrogram and STRUCTURE analysis indicated some population divergence of G-S from the other phenotypes. Morphological parameters were similar among phenotypes except that R+S showed significant differences in weight and body-length. Canonical variables 1 and 2, based on average morphometric characters, accounted for 98% of the total variation; some divergence was indicated between G+S and R+S from each other and from the G-S/R-S BLB color morphs. The pattern of genetic variation indicated potential divergence of G-S and G+S from each other and from R-S and R+S. Although these results indicate that the four different color morphs are not genetically or reproductively isolated, there is some genetic differentiation/structure and morphological dissimilarity suggesting weak/incomplete isolation.
Lineage-specific evolutionary rate in plants: Contributions of a screening for Cereus (Cactaceae).
Romeiro-Brito, Monique; Moraes, Evandro M; Taylor, Nigel P; Zappi, Daniela C; Franco, Fernando F
2016-01-01
Predictable chloroplast DNA (cpDNA) sequences have been listed for the shallowest taxonomic studies in plants. We investigated whether plastid regions that vary between closely allied species could be applied for intraspecific studies and compared the variation of these plastid segments with two nuclear regions. We screened 16 plastid and two nuclear intronic regions for species of the genus Cereus (Cactaceae) at three hierarchical levels (species from different clades, species of the same clade, and allopatric populations). Ten plastid regions presented interspecific variation, and six of them showed variation at the intraspecific level. The two nuclear regions showed both inter- and intraspecific variation, and in general they showed higher levels of variability in almost all hierarchical levels than the plastid segments. Our data suggest no correspondence between variation of plastid regions at the interspecific and intraspecific level, probably due to lineage-specific variation in cpDNA, which appears to have less effect in nuclear data. Despite the heterogeneity in evolutionary rates of cpDNA, we highlight three plastid segments that may be considered in initial screenings in plant phylogeographic studies.
Fafin-Lefevre, Mélanie; Morlais, Fabrice; Guittet, Lydia; Clin, Bénédicte; Launoy, Guy; Galateau-Sallé, Françoise; Plancoulaine, Benoît; Herlin, Paulette; Letourneux, Marc
2011-08-01
To identify which morphologic or densitometric parameters are modified in cell nuclei from bronchopulmonary cancer based on 18 parameters involving shape, intensity, chromatin, texture, and DNA content and develop a bronchopulmonary cancer screening method relying on analysis of sputum sample cell nuclei. A total of 25 sputum samples from controls and 22 bronchial aspiration samples from patients presenting with bronchopulmonary cancer who were professionally exposed to cancer were used. After Feulgen staining, 18 morphologic and DNA content parameters were measured on cell nuclei, via image cytom- etry. A method was developed for analyzing distribution quantiles, compared with simply interpreting mean values, to characterize morphologic modifications in cell nuclei. Distribution analysis of parameters enabled us to distinguish 13 of 18 parameters that demonstrated significant differences between controls and cancer cases. These parameters, used alone, enabled us to distinguish two population types, with both sensitivity and specificity > 70%. Three parameters offered 100% sensitivity and specificity. When mean values offered high sensitivity and specificity, comparable or higher sensitivity and specificity values were observed for at least one of the corresponding quantiles. Analysis of modification in morphologic parameters via distribution analysis proved promising for screening bronchopulmonary cancer from sputum.
Reeder, Matthew R; Kim, Jaewhan; Nance, Amy; Krikov, Sergey; Feldkamp, Marcia L; Randall, Harper; Botto, Lorenzo D
2015-11-01
Newborn screening for critical congenital heart disease (CCHD) using pulse oximetry is being implemented in the United States and internationally; however, few data are available on the associated in-hospital costs and use of resources. Time and motion study in well-baby nurseries at two large urban hospitals in Utah using different approaches to pulse oximetry screening. Two observers recorded the time for each screening step together with provider and equipment characteristics. Structured questionnaire provided additional information on labor and equipment costs. Fifty-three CCHD screens were observed. At site A (n = 22), screening was mostly done by medical assistants (95%) using disposable probes (100%); at site B (n = 31), screening was mostly performed by certified nursing assistants (90%) using reusable probes (90%). Considering only first screens (n = 53), the median screen time was 8.6 min (range: 3.2-23.2), with no significant difference between sites. The overall cost ($ in 2014) of screening per baby was $24.52 at site A and $2.60 at site B. Nearly all the variation in cost (90%) was due to the cost of disposable probes; labor costs were similar between sites. CCHD screening by means of pulse oximetry is reasonably fast for most babies, leading to relative small labor costs with little variation by provider type. The main driver of costs is equipment: in a high throughput setting, reusable probes are currently associated with considerable cost saving compared with disposable probes. As programs expand to universal screening, improved and cheaper technologies could lead to considerable economies of scale. © 2015 Wiley Periodicals, Inc.
Lin, Douglas I; Hecht, Jonathan L
2016-06-01
Endometrial cancer is associated with Lynch syndrome in 2% to 6% of cases. Adequate screening may prevent of a second cancer and incident cancers in family members via risk-reducing strategies. The goal of the study was to evaluate the detection rate of Lynch syndrome via a targeted screening approach. In 2009, we incorporated targeted Lynch syndrome screening via immunohistochemistry for MLH1, PMS2, MSH2, and MSH6, followed by MLH1 promoter hypermethylation, in select cases of endometrial carcinoma. Criteria for patient selection included (1) all patients <50 years; (2) patients of any age with tumors showing features of microsatellite instability (lower uterine segment-centered tumors, hard to classify carcinomas, increased peritumoral or tumor infiltrating lymphocytes and cases with synchronous ovarian carcinomas); (3) clinician's request based on family or personal history; and (4) ad hoc retrospective testing based on the established criteria on patients discovered on follow-up visits. By using a targeted screening approach in a 4.5-year period, approximately 2.1% of endometrial cancers (7 of 328) were potentially associated with Lynch syndrome. Therefore, targeted screening with combined age and morphology based criteria enriches detection of Lynch syndrome in endometrial cancer. However, the detection rate is lower than the rates from published series that offer universal screening. © The Author(s) 2016.
A screening tool for delineating subregions of steady recharge within groundwater models
Dickinson, Jesse; Ferré, T.P.A.; Bakker, Mark; Crompton, Becky
2014-01-01
We have developed a screening method for simplifying groundwater models by delineating areas within the domain that can be represented using steady-state groundwater recharge. The screening method is based on an analytical solution for the damping of sinusoidal infiltration variations in homogeneous soils in the vadose zone. The damping depth is defined as the depth at which the flux variation damps to 5% of the variation at the land surface. Groundwater recharge may be considered steady where the damping depth is above the depth of the water table. The analytical solution approximates the vadose zone diffusivity as constant, and we evaluated when this approximation is reasonable. We evaluated the analytical solution through comparison of the damping depth computed by the analytic solution with the damping depth simulated by a numerical model that allows variable diffusivity. This comparison showed that the screening method conservatively identifies areas of steady recharge and is more accurate when water content and diffusivity are nearly constant. Nomograms of the damping factor (the ratio of the flux amplitude at any depth to the amplitude at the land surface) and the damping depth were constructed for clay and sand for periodic variations between 1 and 365 d and flux means and amplitudes from nearly 0 to 1 × 10−3 m d−1. We applied the screening tool to Central Valley, California, to identify areas of steady recharge. A MATLAB script was developed to compute the damping factor for any soil and any sinusoidal flux variation.
Bailey, Brennan M; Nail, Lindsay N; Grunlan, Melissa A
2013-09-01
In tissue engineering, the physical and chemical properties of the scaffold mediates cell behavior, including regeneration. Thus a strategy that permits rapid screening of cell-scaffold interactions is critical. Herein, we have prepared eight "hybrid" hydrogel scaffolds in the form of continuous gradients such that a single scaffold contains spatially varied properties. These scaffolds are based on combining an inorganic macromer (methacrylated star polydimethylsiloxane, PDMSstar-MA) and organic macromer (poly(ethylene glycol)diacrylate, PEG-DA) as well as both aqueous and organic fabrication solvents. Having previously demonstrated its bioactivity and osteoinductivity, PDMSstar-MA is a particularly powerful component to incorporate into instructive gradient scaffolds based on PEG-DA. The following parameters were varied to produce the different gradients or gradual transitions in: (1) the wt.% ratio of PDMSstar-MA to PEG-DA macromers, (2) the total wt.% macromer concentration, (3) the number average molecular weight (Mn) of PEG-DA and (4) the Mn of PDMSstar-MA. Upon dividing each scaffold into four "zones" perpendicular to the gradient, we were able to demonstrate the spatial variation in morphology, bioactivity, swelling and modulus. Among these gradient scaffolds are those in which swelling and modulus are conveniently decoupled. In addition to rapid screening of cell-material interactions, these scaffolds are well suited for regeneration of interfacial tissues (e.g. osteochondral tissues) that transition from one tissue type to another. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Seia, Marco A; Pereira, Sirley V; Fernández-Baldo, Martin A; De Vito, Irma E; Raba, Julio; Messina, Germán A
2014-07-01
In this article, we present an innovative approach for congenital hypothyroidism (CHT) screening. This pathology is the most common preventable cause of mental retardation, affecting newborns around the world. Its consequences could be avoided with an early diagnosis through the thyrotropin (TSH) level measurement. To accomplish the determination of TSH, synthesized zinc oxide (ZnO) nanobeads (NBs) covered by chitosan (CH), ZnO-CH NBs, were covalently attached to the central channel of the designed microfluidic device. These beads were employed as platform for anti-TSH monoclonal antibody immobilization to specifically recognize and capture TSH in neonatal samples without any special pretreatment. Afterwards, the amount of this trapped hormone was quantified by horseradish peroxidase (HRP)-conjugated anti-TSH antibody. HRP reacted with its enzymatic substrate in a redox process, which resulted in the appearance of a current whose magnitude was directly proportional to the level of TSH in the neonatal sample. The structure and morphology of synthesized ZnO-CH NBs were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The calculated detection limits for electrochemical detection and the enzyme-linked immunosorbent assay procedure were 0.00087 μUI mL(-1) and 0.015 μUI mL(-1), respectively, and the within- and between-assay coefficients of variation were below 6.31% for the proposed method. According to the cut-off value for TSH neonatal screening, a reasonably good limit of detection was achieved. These above-mentioned features make the system advantageous for routine clinical analysis adaptation.
Leaf morphology shift linked to climate change.
Guerin, Greg R; Wen, Haixia; Lowe, Andrew J
2012-10-23
Climate change is driving adaptive shifts within species, but research on plants has been focused on phenology. Leaf morphology has demonstrated links with climate and varies within species along climate gradients. We predicted that, given within-species variation along a climate gradient, a morphological shift should have occurred over time due to climate change. We tested this prediction, taking advantage of latitudinal and altitudinal variations within the Adelaide Geosyncline region, South Australia, historical herbarium specimens (n = 255) and field sampling (n = 274). Leaf width in the study taxon, Dodonaea viscosa subsp. angustissima, was negatively correlated with latitude regionally, and leaf area was negatively correlated with altitude locally. Analysis of herbarium specimens revealed a 2 mm decrease in leaf width (total range 1-9 mm) over 127 years across the region. The results are consistent with a morphological response to contemporary climate change. We conclude that leaf width is linked to maximum temperature regionally (latitude gradient) and leaf area to minimum temperature locally (altitude gradient). These data indicate a morphological shift consistent with a direct response to climate change and could inform provenance selection for restoration with further investigation of the genetic basis and adaptive significance of observed variation.
Lewandowski, Mariusz; Skoracka, Anna; Szydło, Wiktoria; Kozak, Marcin; Druciarek, Tobiasz; Griffiths, Don A
2014-08-01
Eriophyoid species belonging to the genus Trisetacus are economically important as pests of conifers. A narrow host specialization to conifers and some unique morphological characteristics have made these mites interesting subjects for scientific inquiry. In this study, we assessed morphological and genetic variation of seven Trisetacus species originating from six coniferous hosts in Poland by morphometric analysis and molecular sequencing of the mitochondrial cytochrome oxidase subunit I gene and the nuclear D2 region of 28S rDNA. The results confirmed the monophyly of the genus Trisetacus as well as the monophyly of five of the seven species studied. Both DNA sequences were effective in discriminating between six of the seven species tested. Host-dependent genetic and morphological variation in T. silvestris and T. relocatus, and habitat-dependent genetic and morphological variation in T. juniperinus were detected, suggesting the existence of races or even distinct species within these Trisetacus taxa. This is the first molecular phylogenetic analysis of the Trisetacus species. The findings presented here will stimulate further investigations on the evolutionary relationships of Trisetacus as well as the entire Phytoptidae family.
Mamatha, Gandra; Umashankar, Vetrivel; Kasinathan, Nachiappan; Krishnan, Tandava; Sathyabaarathi, Ravichandran; Karthiyayini, Thirumalai; Amali, John; Rao, Chetan
2011-01-01
Purpose Bietti crystalline dystrophy (BCD) is an autosomal recessive disease characterized by intraretinal deposits of multiple small crystals, with or without associated crystal deposits in the cornea. The disease is caused by mutation in the cytochrome p450, family 4, subfamily v, polypeptide 2 (CYP4V2) gene. Choroidal neovascularization (CNV) is a rare event in BCD. We report two cases of BCD associated with CNV. CYP4V2 and exon 5 of tissue inhibitor of metalloproteinase 3 (TIMP3) were screened in both cases. A patient with BCD, but without CNV, was also screened to identify pathogenic variations. Methods Three BCD families of Asian Indian origin were recruited after a comprehensive ophthalmic examination. Genomic DNA was isolated from blood leukocytes, and coding exons and flanking introns of CYP4V2 and exon 5 of TIMP3 were amplified via polymerase chain reaction (PCR) and were sequenced. Family segregation, control screening, and bioinformatics tools were used to assess the pathogenicity of the novel variations. Results Of the three BCD patients, two had parafoveal CNV. The patient with BCD, but without CNV had novel single base-pair duplication (c.1062_1063dupA). This mutation results in a structurally defective and unstable protein with impaired protein function. Four novel benign variations (three in exons and one in an intron) were observed in the cohort. Screening of exon 5 of TIMP3 did not reveal any variation in these families. Conclusions A novel mutation was found in a patient with BCD but without CNV, while patients with BCD and CNV did not show any pathogenic variation. The modifier role of TIMP3 in the pathogenesis of CNV in BCD was partly ruled out, as no variation was observed in exon 5 of the gene. A larger BCD cohort with CNV needs to be studied and screened to understand the genetics of CNV in BCD. PMID:21850171
Morphological basis for the evolution of acoustic diversity in oscine songbirds.
Riede, Tobias; Goller, Franz
2014-03-22
Acoustic properties of vocalizations arise through the interplay of neural control with the morphology and biomechanics of the sound generating organ, but in songbirds it is assumed that the main driver of acoustic diversity is variation in telencephalic motor control. Here we show, however, that variation in the composition of the vibrating tissues, the labia, underlies diversity in one acoustic parameter, fundamental frequency (F0) range. Lateral asymmetry and arrangement of fibrous proteins in the labia into distinct layers is correlated with expanded F0 range of species. The composition of the vibrating tissues thus represents an important morphological foundation for the generation of a broad F0 range, indicating that morphological specialization lays the foundation for the evolution of complex acoustic repertoires.
Montanez-Sauri, Sara I; Sung, Kyung Eun; Berthier, Erwin; Beebe, David J
2013-03-01
During breast carcinoma progression, the three-dimensional (3D) microenvironment is continuously remodeled, and changes in the composition of the extracellular matrix (ECM) occur. High throughput screening platforms have been used to decipher the complexity of the microenvironment and to identify ECM components responsible for cancer progression. However, traditional screening platforms are typically limited to two-dimensional (2D) cultures, and often exclude the influence of ECM and stromal components. In this work, a system that integrates 3-dimensional cell culture techniques with an automated microfluidic platform was used to create a new ECM screening platform that cultures cells in more physiologically relevant 3D in vitro microenvironments containing stromal cells and different ECM molecules. This new ECM screening platform was used to culture T47D breast carcinoma cells in mono- and co-culture with human mammary fibroblasts (HMF) with seven combinations of three different ECM proteins (collagen, fibronectin, laminin). Differences in the morphology of T47D clusters, and the proliferation of T47D cells were found in ECM compositions rich in fibronectin or laminin. In addition, an MMP enzyme activity inhibition screening showed the capabilities of the platform for small molecule screening. The platform presented in this work enables screening for the effects of matrix and stromal compositions and show promises for providing new insights in the identification of key ECM components involved in breast cancer.
Rodríguez-González, Abril; Míguez-Lozano, Raúl; Llopis-Belenguer, Cristina; Balbuena, Juan Antonio
2015-04-01
Evaluating phenotypic plasticity in attachment organs of parasites can provide information on the capacity to colonise new hosts and illuminate evolutionary processes driving host specificity. We analysed the variability in shape and size of the dorsal and ventral anchors of Ligophorus cephali from Mugil cephalus by means of geometric morphometrics and multivariate statistics. We also assessed the morphological integration between anchors and between the roots and points in order to gain insight into their functional morphology. Dorsal and ventral anchors showed a similar gradient of overall shape variation, but the amount of localised changes was much higher in the former. Statistical models describing variations in shape and size revealed clear differences between anchors. The dorsal anchor/bar complex seems more mobile than the ventral one in Ligophorus, and these differences may reflect different functional roles in attachment to the gills. The lower residual variation associated with the ventral anchor models suggests a tighter control of their shape and size, perhaps because these anchors seem to be responsible for firmer attachment and their size and shape would allow more effective responses to characteristics of the microenvironment within the individual host. Despite these putative functional differences, the high level of morphological integration indicates a concerted action between anchors. In addition, we found a slight, although significant, morphological integration between roots and points in both anchors, which suggests that a large fraction of the observed phenotypic variation does not compromise the functional role of anchors as levers. Given the low level of genetic variation in our sample, it is likely that much of the morphological variation reflects host-driven plastic responses. This supports the hypothesis of monogenean specificity through host-switching and rapid speciation. The present study demonstrates the potential of geometric morphometrics to provide new and previously unexplored insights into the functional morphology of attachment and evolutionary processes of host-parasite coevolution. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Yang, Jinjian; Wu, Qijia; Xiao, Rong; Zhao, Jupeng; Chen, Jian; Jiao, Xiaoguo
2018-04-01
Variations in species morphology and life-history traits strongly correlate with geographic and climatic characteristics. Most studies on morphological variations in animals focus on ectotherms distributed on a large geographic scale across latitudinal and/or altitudinal gradient. However, the morphological variations of spiders living in the same habitats across different seasons have not been reported. In this study, we used the wolf spider, Pardosa astrigera , as a model to determine seasonal differences in adult body size, melanism, fecundity, and egg diameter both in the overwintering and the first generation for 2010 and 2016. The results showed that in 2010, both females and males of the overwintering generation were significantly darker than the first generation. Moreover, the overwintering females were markedly larger and produced more and bigger eggs than the first generation in both 2010 and 2016. Considering the overwintering P. astrigera experiencing low temperature and/or desiccation stress, these results suggest that substantially darker and larger body of the overwintering generation is adaptive to adverse conditions.
Pinton, Aurélie; Le Fur, Soizic; Otero, Olga
2016-11-01
In the fossil record, the quantification of continuous morphological variation has become a central issue when dealing with species identification and speciation. In this context, fossil taxa with living representatives hold great promise, because of the potential to characterise patterns of intraspecific morphological variation in extant species prior to any interpretation in the fossil record. The vast majority of catfish families fulfil this prerequisite, as most of them are represented by extant genera. However, although they constitute a major fish group in terms of distribution, and ecological and taxonomic diversity, the quantitative study of their past morphological variation has been neglected, as fossil specimens are generally identified based on the scarcest remains, that is, complete neurocrania that bear discrete characters. Consequently, a part of freshwater catfish history is unprospected and unknown. In this study, we explored the morphological continuous variation of the humeral plate shape in Synodontis catfishes using Elliptic Fourier Analysis (EFA), and compared extant members and fossil counterparts. We analysed 153 extant specimens of 11 Synodontis species present in the Chad basin, in addition to 23 fossil specimens from the Chadian fossiliferous area of Toros Menalla which is dated around 7 Ma. This highly speciose genus, which is one of the most diversified in Africa, exhibits a rich fossil record with several hundred remains mostly identified as Synodontis sp. The analysis of the outline of the humeral plate reveals that some living morphological types were already represented in the Chad Basin 7 My ago, and allows for the discovery of extinct species. Beside illuminating the complex Neogene evolutionary history of Synodontis, these results underline the interest in the ability of isolated remains to reconstruct a past dynamic history and to validate the relevance of EFA as a tool to explore specific diversity through time. J. Morphol. 277:1486-1496, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Morphological variation in salamanders and their potential response to climate change.
Ficetola, Gentile Francesco; Colleoni, Emiliano; Renaud, Julien; Scali, Stefano; Padoa-Schioppa, Emilio; Thuiller, Wilfried
2016-06-01
Despite the recognition that some species might quickly adapt to new conditions under climate change, demonstrating and predicting such a fundamental response is challenging. Morphological variations in response to climate may be caused by evolutionary changes or phenotypic plasticity, or both, but teasing apart these processes is difficult. Here, we built on the number of thoracic vertebrae (NTV) in ectothermic vertebrates, a known genetically based feature, to establish a link with body size and evaluate how climate change might affect the future morphological response of this group of species. First, we show that in old-world salamanders, NTV variation is strongly related to changes in body size. Secondly, using 22 salamander species as a case study, we found support for relationships between the spatial variation in selected bioclimatic variables and NTV for most of species. For 44% of species, precipitation and aridity were the predominant drivers of geographical variation of the NTV. Temperature features were dominant for 31% of species, while for 19% temperature and precipitation played a comparable role. This two-step analysis demonstrates that ectothermic vertebrates may evolve in response to climate change by modifying the number of thoracic vertebrae. These findings allow to develop scenarios for potential morphological evolution under future climate change and to identify areas and species in which the most marked evolutionary responses are expected. Resistance to climate change estimated from species distribution models was positively related to present-day species morphological response, suggesting that the ability of morphological evolution may play a role for species' persistence under climate change. The possibility that present-day capacity for local adaptation might help the resistance response to climate change can be integrated into analyses of the impact of global changes and should also be considered when planning management actions favouring species persistence. © 2016 John Wiley & Sons Ltd.
Fruciano, Carmelo; Franchini, Paolo; Raffini, Francesca; Fan, Shaohua; Meyer, Axel
2016-06-01
Established empirical cases of sympatric speciation are scarce, although there is an increasing consensus that sympatric speciation might be more common than previously thought. Midas cichlid fish are one of the few substantiated cases of sympatric speciation, and they formed repeated radiations in crater lakes. In contrast, in the same environment, such radiation patterns have not been observed in other species of cichlids and other families of fish. We analyze morphological and genetic variation in a cichlid species (Archocentrus centrarchus) that co-inhabits several crater lakes with the Midas species complex. In particular, we analyze variation in body and pharyngeal jaw shape (two ecologically important traits in sympatrically divergent Midas cichlids) and relate that to genetic variation in mitochondrial control region and microsatellites. Using these four datasets, we analyze variation between and within two Nicaraguan lakes: a crater lake where multiple Midas cichlids have been described and a lake where the source population lives. We do not observe any within-lake clustering consistent across morphological traits and genetic markers, suggesting the absence of sympatric divergence in A. centrarchus. Genetic differentiation between lakes was low and morphological divergence absent. Such morphological similarity between lakes is found not only in average morphology, but also when analyzing covariation between traits and degree of morphospace occupation. A combined analysis of the mitochondrial control region in A. centrarchus and Midas cichlids suggests that a difference between lineages in the timing of crater lake colonization cannot be invoked as an explanation for the difference in their levels of diversification. In light of our results, A. centrarchus represents the ideal candidate to study the genomic differences between these two lineages that might explain why some lineages are more likely to speciate and diverge in sympatry than others.
2013-01-01
Background In assisted reproductive treatments, embryos remaining after fresh embryo transfer are usually selected for cryopreservation based on traditional morphology assessment. Our previous report has demonstrated that array comparative genomic hybridization (aCGH) screening for IVF patients with good prognosis significantly improves clinical and ongoing pregnancy rates in fresh embryo transfer cycles. The current study further investigates the efficiency of applying aCGH in the selection of euploid embryos for cryopreservation as related to pregnancy and implantation outcomes in subsequent frozen embryo transfer (FET) cycles. Methods First-time IVF patients with good prognosis undergoing fresh single embryo transfer and having at least one remaining blastocyst for cryopreservation were prospectively randomized into two groups: 1) Group A patients had embryos assessed by morphology first and then by aCGH screening of trophectoderm cells and 2) Group B patients had embryos evaluated by morphology alone. All patients had at least one blastocyst available for cryopreservation after fresh embryo transfer. There were 15 patients in Group A and 23 patients in Group B who failed to conceive after fresh embryo transfer and completed the FET cycles. Blastocyst survival and implantation rates were compared between the two groups. Results There were no significant differences in blastocyst survival rates between Group A and Group B (90.9% vs. 91.3%, respectively; p >0.05). However, a significantly higher implantation rate was observed in the morphology assessment plus aCGH screening group compared to the morphology assessment alone group (65.0% vs. 33.3%, respectively; p = 0.038). There was no miscarriage observed in Group A while a 16.7% miscarriage rate was recorded in Group B (0% vs. 16.7%, respectively; p >0.05). Conclusions While aCGH screening has been recently applied to select euploid blastocysts for fresh transfer in young, low-risk IVF patients, this is the first prospective study on the impact of aCGH specifically on blastocyst survival and implantation outcomes in the subsequent FET cycles of IVF patients with good prognosis. The present study demonstrates that aCGH screening of blastocysts prior to cryopreservation significantly improves implantation rates and may reduce the risk of miscarriage in subsequent FET cycles. Further randomized clinical studies with a larger sample size are needed to validate these preliminary findings. PMID:23937723
Inter-Physician Variation in Follow-Up Colonoscopies after Screening Colonoscopy
Stock, Christian; Hoffmeister, Michael; Birkner, Berndt; Brenner, Hermann
2013-01-01
Background and Aims Surveillance is an integral part of the colorectal cancer (CRC) screening process. We aimed to investigate inter-physician variation in follow-up procedures after screening colonoscopy in an opportunistic CRC screening program. Methods A historical cohort study in the German statutory health insurance system was conducted. 55,301 individuals who underwent screening colonoscopy in 2006 in Bavaria, Germany, and who were not diagnosed with CRC were included. Utilization of follow-up colonoscopies performed by the same physician (328 physicians overall) within 3 years was ascertained. Mixed effects logistic regression modelling was used to assess the effect of physicians and other potential predictors (screening result, age group, and sex) on re-utilization of colonoscopy. Physicians were grouped into quintiles according to individual effects estimated in a preliminary model. Predicted probabilities of follow-up colonoscopy by screening result and physician group were calculated. Results The observed rate of follow-up colonoscopy was 6.2% (95% confidence interval: 5.9-6.4%), 18.6% (17.8-19.4%), and 37.0% (35.5-38.4%) after negative colonoscopy, low-risk adenoma and high-risk adenoma detection, respectively. All considered predictors were statistically significantly associated with follow-up colonoscopy. The predicted probabilities of follow-up colonoscopy ranged from 1.7% (1.4-2.0%) to 11.0% (10.2-11.7%), from 7.3% (6.2-8.5%) to 35.1% (32.6-37.7%), and from 17.9% (15.5-20.6%) to 56.9% (53.5-60.3%) in the 1st quintile (lowest rates of follow-up) and 5th quintile (highest rates of follow-up) of physicians after negative colonoscopy, low-risk adenoma and high-risk adenoma detection, respectively. Conclusions This study suggests substantial inter-physician variation in follow-up habits after screening colonoscopy. Interventions, including organizational changes in CRC screening should be considered to reduce this variation. PMID:23874941
Enríquez, Susana; Pantoja-Reyes, Norma I
2005-09-01
The variation in seagrass morphology and the magnitude of leaf self-shading within the canopy of Thalassia testudinum, were compared among nine sites in a fringing reef lagoon. We found a significant variation in the growth-form of T. testudinum reflected in a 5.4-fold variation in the attenuation coefficient (K (d)) within the canopy. The largest morphological variation was observed in shoot density. Leaf biomass, leaf area index (LAI), and shoot density were positively associated with canopy-K (d) and with the percentage of surface irradiance received by the top of the seagrass canopy (% Es). These results provide an explanation for the consistent pattern of depth reduction in seagrass leaf biomass and shoot density reported in the literature. Shoot density and shoot size are two descriptors of the growth-form of T. testudinum related to its clonal life-form. Shoot size was not significantly correlated with canopy-K (d), nevertheless, it showed a significant effect on the slope of the relationship between shoot density and canopy-K (d). According to this model, shoot size also contributes to light attenuation within the seagrass canopy by increasing the effect of shoot density. This form-function analysis suggests that light may have a relevant role in the regulation of the optimal plant balance between horizontal (variation in shoot density) and vertical (variation in shoot size) growth of seagrasses. Other environmental factors and interactions also need to be examined to fully understand the mechanistic bases of the morphological responses of seagrasses to the environment.
Razzolini, Novella L.; Vila, Bernat; Castanera, Diego; Falkingham, Peter L.; Barco, José Luis; Canudo, José Ignacio; Manning, Phillip L.; Galobart, Àngel
2014-01-01
An ichnological and sedimentological study of the El Frontal dinosaur tracksite (Early Cretaceous, Cameros basin, Soria, Spain) highlights the pronounced intra-trackway variation found in track morphologies of four theropod trackways. Photogrammetric 3D digital models revealed various and distinct intra-trackway morphotypes, which reflect changes in footprint parameters such as the pace length, the track length, depth, and height of displacement rims. Sedimentological analyses suggest that the original substrate was non-homogenous due to lateral changes in adjoining microfacies. Multidata analyses indicate that morphological differences in these deep and shallow tracks represent a part of a continuum of track morphologies and geometries produced by a gradient of substrate consistencies across the site. This implies that the large range of track morphologies at this site resulted from similar trackmakers crossing variable facies. The trackways at the El Frontal site present an exemplary case of how track morphology, and consequently potential ichnotaxa, can vary, even when produced by a single trackmaker. PMID:24699696
Express yourself: bold individuals induce enhanced morphological defences
Hulthén, Kaj; Chapman, Ben B.; Nilsson, P. Anders; Hollander, Johan; Brönmark, Christer
2014-01-01
Organisms display an impressive array of defence strategies in nature. Inducible defences (changes in morphology and/or behaviour within a prey's lifetime) allow prey to decrease vulnerability to predators and avoid unnecessary costs of expression. Many studies report considerable interindividual variation in the degree to which inducible defences are expressed, yet what underlies this variation is poorly understood. Here, we show that individuals differing in a key personality trait also differ in the magnitude of morphological defence expression. Crucian carp showing risky behaviours (bold individuals) expressed a significantly greater morphological defence response when exposed to a natural enemy when compared with shy individuals. Furthermore, we show that fish of different personality types differ in their behavioural plasticity, with shy fish exhibiting greater absolute plasticity than bold fish. Our data suggest that individuals with bold personalities may be able to compensate for their risk-prone behavioural type by expressing enhanced morphological defences. PMID:24335987
NASA Astrophysics Data System (ADS)
Shukla, Mayoorika; Pramila; Agrawal, Jitesh; Dixit, Tejendra; Palani, I. A.; Singh, Vipul
2018-05-01
Mn doped ZnO nanopencils were synthesized via low temperature hydrothermal process for fabrication of enzymatic electrochemical glucose biosensor. The KMnO4 was found to play a dual role in modifying morphology and inducing Mn doping. Interestingly, two different types of morphologies viz nanorods and nanopencils along with Mn doping in the later were obtained. Incorporation of Mn has shown a tremendous effect on the morphological variations, repression of defects and electrochemical charge transfer at electrode electrolyte interface. The possible reason behind obtained morphological changes has been proposed which in turn were responsible for the improvement in the different figure of merits of as fabricated enzymatic electrochemical biosensor. There has been a 17 fold enhancement in the sensitivity of the as fabricated glucose biosensor from ZnO nanorods to Mn doped ZnO nanopencils which can be attributed to morphological variation and Mn doping.
ERIC Educational Resources Information Center
Terry, Nicole P.; Petscher, Yaacov; Rhodes, Katherine T.
2017-01-01
The purpose of this study was to extend a previous investigation of the psychometrics of the "Diagnostic Evaluation of Language Variation-Screening Test" (DELV-S) to include pre-kindergarten children (primarily African American and from low-income households). The previous study (Petscher, Connor, & Al Otaiba, 2012) included a…
Intraspecific variation in Cryptocaryon irritans.
Diggles, B K; Adlard, R D
1997-01-01
Intraspecific variation in the ciliate Cryptocaryon irritans was examined using sequences of the first internal transcribed spacer region (ITS-1) of ribosomal DNA (rDNA) combined with developmental and morphological characters. Amplified rDNA sequences consisting of 151 bases of the flanking 18 S and 5.8 S regions, and the entire ITS-1 region (169 or 170 bases), were determined and compared for 16 isolates of C. irritans from Australia, Israel and the USA. There was one variable base between isolates in the 18 S region and 11 variable bases in the ITS-1 region. Despite their similar morphology, significant sequence variation (4.1% divergence) and developmental differences indicate that Australian C. irritans isolates from estuarine (Moreton Bay) and coral reef (Heron Island) environments are distinct. The Heron Island isolate was genetically closer to morphologically dissimilar isolates from Israel (1.8% divergence) and the USA (2.3% divergence) than it was to the Moreton Bay isolates. Three isolates maintained in our laboratory since February 1994 differed in sequence from earlier laboratory isolates (2.9% to 3.5% divergence), even though all were similar morphologically and originated from the same source. During this time the sequence of the isolates from wild fish in Moreton Bay remained unchanged. These genetic differences indicate the existence of a founder effect in laboratory populations of C. irritans. The genetic variation found here, combined with known morphological and developmental differences, is used to characterise four strains of C. irritans.
Mechanisms that Underlie Co-variation of the Brain and Face
Marcucio, Ralph S.; Young, Nathan M.; Hu, Diane; Hallgrimsson, Benedikt
2011-01-01
The effect of the brain on the morphology of the face has long been recognized in both evolutionary biology and clinical medicine. In this paper we describe factors that are active between development of the brain and face and how these might impact craniofacial variation. First, there is the physical influence of the brain, which contributes to overall growth and morphology of the face through direct structural interactions. Second, there is the molecular influence of the brain, which signals to facial tissues to establish signaling centers that regulate patterned growth. Importantly, subtle alterations to these physical or molecular interactions may contribute to both normal and abnormal variation. These interactions are therefore critical to our understanding of how a diversity of facial morphologies can be generated both within species and across evolutionary time. PMID:21381182
Kitazawa, Miho S; Fujimoto, Koichi
2016-04-01
Phenotypic variation in floral morphologies contributes to speciation by testing various morphologies that might have higher adaptivity, leading eventually to phylogenetic diversity. Species diversity has been recognized, however, by modal morphologies where the variation is averaged out, so little is known about the relationship between the variation and the diversity. We analysed quantitatively the intraspecific variation of the organ numbers within flowers of Ranunculaceae, a family which branched near the monocot-eudicot separation, and the numbers of flowers within the capitula of Asteraceae, one of the most diverse families of eudicots. We used four elementary statistical quantities: mean, standard deviation (s.d.), degree of symmetry (skewness) and steepness (kurtosis). While these four quantities vary among populations, we found a common relationship between s.d. and the mean number of petals and sepals in Ranunculaceae and number of flowers per capitulum in Asteraceae. The s.d. is equal to the square root of the difference between the mean and specific number, showing robustness: for example, 3 in Ficaria sepals, 5 in Ranunculus petals and Anemone tepals, and 13 in Farfugium ray florets. This square-root relationship was not applicable to Eranthis petals which show little correlation between the s.d. and mean, and the stamens and carpels of Ranunculaceae whose s.d. is proportional to the mean. The specific values found in the square-root relationship provide a novel way to find the species-representative phenotype among varied morphologies. The representative phenotype is, in most cases, unique to the species or genus level, despite intraspecific differences of average phenotype among populations. The type of variation shown by the statistical quantities indicates not only the robustness of the morphologies but also how flowering plants changed during evolution among representative phenotypes that eventually led to phylogenetic diversification. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kitazawa, Miho S.; Fujimoto, Koichi
2016-01-01
Background and Aims Phenotypic variation in floral morphologies contributes to speciation by testing various morphologies that might have higher adaptivity, leading eventually to phylogenetic diversity. Species diversity has been recognized, however, by modal morphologies where the variation is averaged out, so little is known about the relationship between the variation and the diversity. Methods We analysed quantitatively the intraspecific variation of the organ numbers within flowers of Ranunculaceae, a family which branched near the monocot–eudicot separation, and the numbers of flowers within the capitula of Asteraceae, one of the most diverse families of eudicots. We used four elementary statistical quantities: mean, standard deviation (s.d.), degree of symmetry (skewness) and steepness (kurtosis). Key Results While these four quantities vary among populations, we found a common relationship between s.d. and the mean number of petals and sepals in Ranunculaceae and number of flowers per capitulum in Asteraceae. The s.d. is equal to the square root of the difference between the mean and specific number, showing robustness: for example, 3 in Ficaria sepals, 5 in Ranunculus petals and Anemone tepals, and 13 in Farfugium ray florets. This square-root relationship was not applicable to Eranthis petals which show little correlation between the s.d. and mean, and the stamens and carpels of Ranunculaceae whose s.d. is proportional to the mean. The specific values found in the square-root relationship provide a novel way to find the species-representative phenotype among varied morphologies. Conclusions The representative phenotype is, in most cases, unique to the species or genus level, despite intraspecific differences of average phenotype among populations. The type of variation shown by the statistical quantities indicates not only the robustness of the morphologies but also how flowering plants changed during evolution among representative phenotypes that eventually led to phylogenetic diversification. PMID:27052344
Ennen, Joshua R.; Kalis, Marley E.; Patterson, Adam L.; Kreiser, Brian R.; Lovich, Jeffrey E.; Godwin, James; Qualls, Carl P.
2014-01-01
Widely distributed species often display intraspecific morphological variation due to the abiotic and biotic gradients experienced across their ranges. Historically, in many vertebrate taxa, such as birds and reptiles, these morphological differences within a species were used to delimit subspecies. Graptemys nigrinoda is an aquatic turtle species endemic to the Mobile Bay Basin. Colour pattern and morphological variability were used to describe a subspecies (G. n. delticola) from the lower reaches of the system, although it and the nominate subspecies also reportedly intergrade over a large portion of the range. Other researchers have suggested that these morphological differences merely reflect clinal variation. Our molecular data (mtDNA) did not support the existence of the subspecies, as the haplotypes were differentiated by only a few base pairs and one haplotype was shared between the putative subspecies. While there were significant morphological and pattern differences among putative specimens of G. n. nigrinoda, G. n. delticola and G. n. nigrinoda × delticola, these differences probably represent clinal variation as they were also related to environmental variables [i.e. cumulative drainage area and drainage (categorical)]. Specimens occupying slow-current, high-turbidity river reaches (e.g. the Tensaw River) exhibited greater relative carapace heights and more dark pigmentation, while specimens occupying fast-current, clearer rivers (e.g. the upper Alabama, Cahaba and Tallapoosa rivers) exhibited lower carapace heights and more yellow pigmentation. Given the absence of clear molecular and morphological differences that are related to drainage characteristics, we suggest that there is not sufficient evidence for the recognition of G. n. delticola as a distinct subspecies.
Morphological Variations within the Ontogeny of Deinonychus antirrhopus (Theropoda, Dromaeosauridae)
Parsons, William L.; Parsons, Kristen M.
2015-01-01
This research resulted from the determination that MCZ 8791 is a specimen of Deinonychus antirrhopus between one and two years of age and that the morphological variations within particular growth stages of this taxon have yet to be described. The primary goal of the research is to identify ontogenetic variations in this taxon. Histological analyses determined that the Deinonychus specimens AMNH 3015 and MOR 1178 were adults. Comparisons are made between MCZ 8791 and these adult specimens. The holotype, YPM 5205, and the other associated specimens of this taxon within the YPM collection are similar in size and morphology to AMNH 3015. Further comparisons were made with the three partial specimens OMNH 50268, MCZ 4371, and MOR 1182. Although these specimens represent only a partial ontogenetic series, a number of morphological variations can be described. One secondary goal of this research is to compare the known pattern of variable, informative, ontogenetic characters in MCZ 8791 to a similar pattern of morphological characters in the sub-adult dromaeosaurid specimen Bambiraptor feinbergorum, AMNH FR: 30556. If the characters that have been determined to represent variable juvenile morphology in the ontogeny of Deinonychus are exhibited in Bambiraptor, this study will begin the process of determining whether a similar, conservative, ontogenetic pattern exists throughout the rest of Dromaeosauridae. If defensible, it may reduce the number of sympatric taxa within this clade. The other secondary goal relates to the forelimb function. The approximate body size, forelimb length, wrist development, and the presence of a more prominent olecranon on the ulna of MCZ 8791 support the hypothesis that juveniles of this taxon possessed some form of flight capability. PMID:25875499
Song, Qiong; Du, Bao-Jie; Shi, Fu-Ming
2015-07-16
The paper describes the male of Cyrtopsis t-sigillata Liu, Zhou & Bi, 2010 for the first time, and discusses individual variations in the species. It provides the photos of important morphological features, and offers a distribution map about the genus Cyrtopsis Bey-Bienko, 1962. The examined material is deposited in the Museum of Hebei University. Morphological images were acquired using Leica M205 A digital imaging system.
Cross-Linguistic Variations in L2 Morphological Awareness.
ERIC Educational Resources Information Center
Koda, Keiko
2000-01-01
Investigated effects of first language processing on second language morphological awareness. Preliminary cross-linguistic comparisons indicated that morphological awareness in two typologically distinct languages, Chinese and English, differs in several major ways. Tested hypotheses from the study with two groups of English-as-a-Second-Language…
Ma, Na; Hu, Guilin; Zhang, Junxia; Hua, Baozhen
2014-01-01
Background The overabundance of synonyms is an unavoidable by-product of taxonomic practice in insects. How to reduce or even eliminate synonymy has long been a great challenge for insect taxonomists. The scorpionflies Panorpa obtusa Cheng, 1949 and Panorpa leei Cheng, 1949 (Insecta: Mecoptera: Panorpidae) were originally described from Taibaishan in the Qinling Mountains with identical collection data and both are based on a single gender, the former on a male and the latter on two females. However, whether P. leei is conspecific with P. obtusa or a good species remains an unsolved problem. Results On the basis of intensive morphological comparison of 93 males and 53 females of scorpionflies collected from the type locality using light and scanning electron microscopy, we found P. obtusa has considerable morphological variation (especially the wing markings and genitalia in both male and female), and Panorpa leei is totally comprised of one of the morphs of P. obtusa. Conclusions In combination with identical type localities and overlapping morphological variation, P. leei Cheng is proposed as a junior subjective synonym of P. obtusa Cheng. To avoid synonyms, taxonomists should pay more attention to individual variation and base decisions on a series of specimens to describe new species. PMID:25250880
El Zerey-Belaskri, Asma; Benhassaini, Hachemi
2016-04-01
The effect of bioclimate range on the variation in Pistacia atlantica Desf. subsp. atlantica leaf morphology was studied on 16 sites in Northwest Algeria. The study examined biometrically mature leaves totaling 3520 compound leaves. Fifteen characters (10 quantitative and 5 qualitative) were assessed on each leaf. For each quantitative character, the nested analysis of variance (ANOVA) was used to examine relative magnitude of variation at each level of the nested hierarchy. The correlation between the climatic parameters and the leaf morphology was examined. The statistical analysis applied on the quantitative leaf characters showed highly significant variation at the within-site level and between-site variation. The correlation coefficient (r) showed also an important correlation between climatic parameters and leaf morphology. The results of this study exhibited several values reported for the first time on the species, such as the length and the width of the leaf (reaching up to 24.5 cm/21.9 cm), the number of leaflets (up to 18 leaflets/leaf), and the petiole length of the terminal leaflet (reaching up to 3.4 cm). The original findings of this study are used to update the P. atlantica subsp. atlantica identification key.
Comparative morphology among northern populations of breeding Cooper's Hawks
Rosenfield, Robert N.; Rosenfield, Laura J.; Bielefeldt, John; Murphy, Robert K.; Stewart, Andrew C.; Stout, William E.; Driscoll, Timothy G.; Bozek, Michael A.
2010-01-01
Few studies at a broad geographical scale have characterized intraspecific variation in morphology of woodland hawks in the genus Accipiter. From 1999 to 2007 we investigated morphological variation in large samples of live Cooper's Hawks (A. cooperii) nesting in four study areas: coniferous woodland around Victoria, British Columbia, Canada, isolated deciduous woodlands in short-grass prairies of northwestern North Dakota, towns and rural deciduous woodlands along the border of North Dakota and Minnesota, and urban and rural mixed deciduous and coniferous landscapes of Wisconsin. These sites span 2660 km across the northern part of the species' breeding range. We measured body mass (i.e., size), wing chord, tail length, tarsus diameter, hallux length, and culmen length of breeding adults, finding significant and clinal variation in body mass (or size). The smallest and most similar-sized birds occurred in British Columbia and western North Dakota, larger birds along the border between North Dakota and Minnesota, and the largest birds in Wisconsin. Several other characters varied significantly when mass was used as a covariate. Variation by study site in mean indices of sexual size dimorphism was negligible and not significant. We speculate that the morphological differences we found, in part, are the result of geographic isolation, where diets, migratory behavior, and structural characteristics of nesting habitats vary across landscape types.
Gómez-Robles, Aida; Martinón-Torres, María; Bermúdez de Castro, José María; Prado-Simón, Leyre; Arsuaga, Juan Luis
2011-12-01
This paper continues the series of articles initiated in 2006 that analyse hominin dental crown morphology by means of geometric morphometric techniques. The detailed study of both upper premolar occlusal morphologies in a comprehensive sample of hominin fossils, including those coming from the Gran Dolina-TD6 and Sima de los Huesos sites from Atapuerca, Spain, complement previous works on lower first and second premolars and upper first molars. A morphological gradient consisting of the change from asymmetric to symmetric upper premolars and a marked reduction of the lingual cusp in recent Homo species has been observed in both premolars. Although percentages of correct classification based on upper premolar morphologies are not very high, significant morphological differences between Neanderthals (and European middle Pleistocene fossils) and modern humans have been identified, especially in upper second premolars. The study of morphological integration between premolar morphologies reveals significant correlations that are weaker between upper premolars than between lower ones and significant correlations between antagonists. These results have important implications for understanding the genetic and functional factors underlying dental phenotypic variation and covariation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Archaeobatrachian paraphyly and pangaean diversification of crown-group frogs.
Roelants, Kim; Bossuyt, Franky
2005-02-01
Current models for the early diversification of living frogs inferred from morphological, ontogenetic, or DNA sequence data invoke very different scenarios of character evolution and biogeography. To explore central controversies on the phylogeny of Anura, we analyzed nearly 4000 base pairs of mitochondrial and nuclear DNA for the major frog lineages. Likelihood-based analyses of this data set are congruent with morphological evidence in supporting a paraphyletic arrangement of archaeobatrachian frogs, with an (Ascaphus + Leiopelma) clade as the sister-group of all other living anurans. The stability of this outcome is reinforced by screening for phylogenetic bias resulting from site-specific rate variation, homoplasy, or the obligatory use of distantly related outgroups. Twenty-one alternative branching and rooting hypotheses were evaluated using a nonparametric multicomparison test and parametric bootstrapping. Relaxed molecular clock estimates situate the emergence of crown-group anurans in the Triassic, approximately 55 million years prior to their first appearance in the fossil record. The existence of at least four extant frog lineages on the supercontinent Pangaea before its breakup gains support from the estimation that three early splits between Laurasia- and Gondwana-associated families coincide with the initial rifting of these landmasses. This observation outlines the potential significance of this breakup event in the formation of separate Mesozoic faunal assemblages in both hemispheres.
Andrews, R H; Monis, P T; Ey, P L; Mayrhofer, G
1998-08-01
The extent of intra-specific genetic variation between isolates of Giardia muris was assessed by allozyme electrophoresis. Additionally, the levels of allozymic variation detected within G. muris were compared with those observed between members of the two major assemblages of the morphologically distinct species Giardia intestinalis. Four isolates of G. muris were analysed. Three (Ad-120, -150, -151) were isolated from mice in Australia, while the fourth (R-T) was isolated from a golden hamster in North America. The 11 isolates of G. intestinalis (Ad-1, -12, -2, -62, representing genetic Groups I and II of Assemblage A and BAH-12, BRIS/87/HEPU/694, Ad-19, -22, -28, -45, -52, representing genetic Groups III and IV of Assemblage B) were from humans in Australia. Intra-specific genetic variation was detected between G. muris isolates at four of the 23 enzyme loci examined. Similar levels of variation were found within the genetic groups that comprise Assemblages A and B of G. intestinalis. These levels of intra-specific variation are similar to those observed within other morphologically-distinct species of protozoan parasites. We suggest that the magnitude of the genetic differences detected within G. muris provides an indication of the range of genetic variation within other species of Giardia and that this can be used as a model to delineate morphologically similar but genetically distinct (cryptic) species within this genus.
Tymon, Anna M; Shah, Paresh A; Pell, Judith K
2004-04-01
Studies were performed to assess the genetic variation amongst isolates of the aphid-pathogenic fungus Pandora neoaphidis (syn. Erynia neoaphidis). 37 isolates were examined, from a range of pest and non-pest aphid species, as well as 21 from eight other entomophthoralean species. Universal primers were used to amplify the ITS rDNA regions and all of the species tested produced discrete ITS groups, with the exception of Conidiobolus spp. Neighbour-joining analysis of the ITS2 regions from P. neoaphidis, P. kondoiensis and Zoophthora radicans demonstrated that these three species formed distinct groups with sequence identities of 58-82% between the groups. An ITS size of ca 1,100 bp was diagnostic for P. neoaphidis, while ca 1,450 bp was characteristic of P. kondoiensis. ITS-RFLP analysis failed to yield intraspecific polymorphisms in any of the P. neoaphidis isolates screened, although it was useful in distinguishing between different entomophthoralean species. Some intraspecific variation in the ITS region was detected in a number of isolates of Z. radicans and Conidiobolus spp. We propose that two isolates previously identified as P. neoaphidis based on conidia morphology, are actually P. kondoiensis based on molecular studies. Sequencing analysis of the complete ITS region from P. neoaphidis and P. kondoiensis allowed species-specific primers to be developed for P. neoaphidis and P. kondoiensis. These were used to screen aphids infected in laboratory bioassays and from field-collected samples, without prior isolation of the fungus. The primers are useful tools for quantifying the epizootiology of P. neoaphidis in aphid populations, as well as assessing competitive interactions between these two species.
Huber, Heidrun; Jacobs, Elke; Visser, Eric J. W.
2009-01-01
Background and Aims Soil flooding leads to low soil oxygen concentrations and thereby negatively affects plant growth. Differences in flooding tolerance have been explained by the variation among species in the extent to which traits related to acclimation were expressed. However, our knowledge of variation within natural species (i.e. among individual genotypes) in traits related to flooding tolerance is very limited. Such data could tell us on which traits selection might have taken place, and will take place in future. The aim of the present study was to show that variation in flooding-tolerance-related traits is present among genotypes of the same species, and that both the constitutive variation and the plastic variation in flooding-induced changes in trait expression affect the performance of genotypes during soil flooding. Methods Clones of Trifolium repens originating from a river foreland were subjected to either drained, control conditions or to soil flooding. Constitutive expression of morphological traits was recorded on control plants, and flooding-induced changes in expression were compared with these constitutive expression levels. Moreover, the effect of both constitutive and flooding-induced trait expression on plant performance was determined. Key Results Constitutive and plastic variation of several morphological traits significantly affected plant performance. Even relatively small increases in root porosity and petiole length contributed to better performance during soil flooding. High specific leaf area, by contrast, was negatively correlated with performance during flooding. Conclusions The data show that different genotypes responded differently to soil flooding, which could be linked to variation in morphological trait expression. As flooded and drained conditions exerted different selection pressures on trait expression, the optimal value for constitutive and plastic traits will depend on the frequency and duration of flooding. These data will help us understanding the mechanisms affecting short- and long-term dynamics in flooding-prone ecosystems. PMID:18713824
Maddock, Simon T; Day, Julia J; Nussbaum, Ronald A; Wilkinson, Mark; Gower, David J
2014-06-01
The hyperoliid frog Tachycnemis seychellensis, the only species of its genus, is endemic to the four largest granitic islands of the Seychelles archipelago and is reliant on freshwater bodies for reproduction. Its presence in the Seychelles is thought to be the product of a transoceanic dispersal, diverging from the genus Heterixalus, its closest living relative (currently endemic to Madagascar), between approximately 10-35Ma. A previous study documented substantial intraspecific morphological variation among island populations and also among populations within the largest island (Mahé). To assess intraspecific genetic variation and to infer the closest living relative(s) of T. seychellensis, DNA sequence data were generated for three mitochondrial and four nuclear markers. These data support a sister-group relationship between T. seychellensis and Heterixalus, with the divergence between the two occurring between approximately 11-19Ma based on cytb p-distances. Low levels of genetic variation were found among major mitochondrial haplotype clades of T. seychellensis (maximum 0.7% p-distance concatenated mtDNA), and samples from each of the islands (except La Digue) comprised multiple mitochondrial haplotype clades. Two nuclear genes (rag1 and tyr) showed no variation, and the other two (rho and pomc) lacked any notable geographic structuring, counter to patterns observed within presumably more vagile Seychelles taxa such as lizards. The low levels of genetic variation and phylogeographic structure support an interpretation that there is a single but morphologically highly variable species of Seychelles treefrog. The contrasting genetic and morphological intraspecific variation may be attributable to relatively recent admixture during low sea-level stands, ecophenotypic plasticity, local adaptation to different environmental conditions, and/or current and previously small population sizes. Low genetic phylogeographic structure but substantial morphological variation is unusual within anurans. Copyright © 2014 Elsevier Inc. All rights reserved.
Morphological basis for the evolution of acoustic diversity in oscine songbirds
Riede, Tobias; Goller, Franz
2014-01-01
Acoustic properties of vocalizations arise through the interplay of neural control with the morphology and biomechanics of the sound generating organ, but in songbirds it is assumed that the main driver of acoustic diversity is variation in telencephalic motor control. Here we show, however, that variation in the composition of the vibrating tissues, the labia, underlies diversity in one acoustic parameter, fundamental frequency (F0) range. Lateral asymmetry and arrangement of fibrous proteins in the labia into distinct layers is correlated with expanded F0 range of species. The composition of the vibrating tissues thus represents an important morphological foundation for the generation of a broad F0 range, indicating that morphological specialization lays the foundation for the evolution of complex acoustic repertoires. PMID:24500163
Chiaverano, Luciano M.; Bayha, Keith W.; Graham, William M.
2016-01-01
For individuals living in environmentally heterogeneous environments, a key component for adaptation and persistence is the extent of phenotypic differentiation in response to local environmental conditions. In order to determine the extent of environmentally induced morphological variation in a natural population distributed along environmental gradients, it is necessary to account for potential genetic differences contributing to morphological differentiation. In this study, we set out to quantify geographic morphological variation in the moon jellyfish Aurelia exposed at the extremes of a latitudinal environmental gradient in the Gulf of Mexico (GoM). We used morphological data based on 28 characters, and genetic data taken from mitochondrial cytochrome oxidase I (COI) and nuclear internal transcribed spacer 1 (ITS-1). Molecular analyses revealed the presence of two genetically distinct species of Aurelia co-occurring in the GoM: Aurelia sp. 9 and Aurelia c.f. sp. 2, named for its divergence from (for COI) and similarity to (for ITS-1) Aurelia sp. 2 (Brazil). Neither species exhibited significant population genetic structure between the Northern and the Southeastern Gulf of Mexico; however, they differed greatly in the degree of geographic morphological variation. The morphology of Aurelia sp. 9 exhibited ecophenotypic plasticity and varied significantly between locations, while morphology of Aurelia c.f. sp. 2 was geographically invariant (i.e., canalized). The plastic, generalist medusae of Aurelia sp. 9 are likely able to produce environmentally-induced, “optimal” phenotypes that confer high relative fitness in different environments. In contrast, the non-plastic generalist individuals of Aurelia c.f. sp. 2 likely produce environmentally-independent phenotypes that provide the highest fitness across environments. These findings suggest the two Aurelia lineages co-occurring in the GoM were likely exposed to different past environmental conditions (i.e., different selective pressures) and evolved different strategies to cope with environmental variation. This study highlights the importance of using genetics and morphometric data to understand jellyfish ecology, evolution and systematics. PMID:27332545
Chiaverano, Luciano M; Bayha, Keith W; Graham, William M
2016-01-01
For individuals living in environmentally heterogeneous environments, a key component for adaptation and persistence is the extent of phenotypic differentiation in response to local environmental conditions. In order to determine the extent of environmentally induced morphological variation in a natural population distributed along environmental gradients, it is necessary to account for potential genetic differences contributing to morphological differentiation. In this study, we set out to quantify geographic morphological variation in the moon jellyfish Aurelia exposed at the extremes of a latitudinal environmental gradient in the Gulf of Mexico (GoM). We used morphological data based on 28 characters, and genetic data taken from mitochondrial cytochrome oxidase I (COI) and nuclear internal transcribed spacer 1 (ITS-1). Molecular analyses revealed the presence of two genetically distinct species of Aurelia co-occurring in the GoM: Aurelia sp. 9 and Aurelia c.f. sp. 2, named for its divergence from (for COI) and similarity to (for ITS-1) Aurelia sp. 2 (Brazil). Neither species exhibited significant population genetic structure between the Northern and the Southeastern Gulf of Mexico; however, they differed greatly in the degree of geographic morphological variation. The morphology of Aurelia sp. 9 exhibited ecophenotypic plasticity and varied significantly between locations, while morphology of Aurelia c.f. sp. 2 was geographically invariant (i.e., canalized). The plastic, generalist medusae of Aurelia sp. 9 are likely able to produce environmentally-induced, "optimal" phenotypes that confer high relative fitness in different environments. In contrast, the non-plastic generalist individuals of Aurelia c.f. sp. 2 likely produce environmentally-independent phenotypes that provide the highest fitness across environments. These findings suggest the two Aurelia lineages co-occurring in the GoM were likely exposed to different past environmental conditions (i.e., different selective pressures) and evolved different strategies to cope with environmental variation. This study highlights the importance of using genetics and morphometric data to understand jellyfish ecology, evolution and systematics.
Colombelli-Négrel, Diane
2016-11-01
Morphological variation between populations of the same species can arise as a response to genetic variation, local environmental conditions, or a combination of both. In this study, I examined small-scale geographic variation in bill size and body mass in little penguins ( Eudyptula minor ) across five breeding colonies in South Australia separated by <150 km. To help understand patterns driving the differences, I investigated these variations in relation to environmental parameters (air temperature, sea surface temperature, and water depth) and geographic distances between the colonies. I found substantial morphological variation among the colonies for body mass and bill measurements (except bill length). Colonies further located from each other showed greater morphological divergence overall than adjacent colonies. In addition, phenotypic traits were somewhat correlated to environmental parameters. Birds at colonies surrounded by hotter sea surface temperatures were heavier with longer and larger bills. Birds with larger and longer bills were also found at colonies surrounded by shallower waters. Overall, the results suggest that both environmental factors (natural selection) and interpopulation distances (isolation by distance) are causes of phenotypic differentiation between South Australian little penguin colonies.
A meta-analysis of the social communication questionnaire: Screening for autism spectrum disorder.
Chesnut, Steven R; Wei, Tianlan; Barnard-Brak, Lucy; Richman, David M
2017-11-01
The current meta-analysis examines the previous research on the utility of the Social Communication Questionnaire as a screening instrument for autism spectrum disorder. Previously published reports have highlighted the inconsistencies between Social Communication Questionnaire-screening results and formal autism spectrum disorder diagnoses. The variations in accuracy resulted in some researchers questioning the validity of the Social Communication Questionnaire. This study systematically examined the accuracy of the Social Communication Questionnaire as a function of the methodological decisions made by researchers screening for autism spectrum disorder over the last 15 years. Findings from this study suggest that the Social Communication Questionnaire is an acceptable screening instrument for autism spectrum disorder (area under the curve = 0.885). Variations in methodological decisions, however, greatly influenced the accuracy of the Social Communication Questionnaire in screening for autism spectrum disorder. Of these methodological variations, using the Current instead of the Lifetime version of the Social Communication Questionnaire resulted in the largest detrimental effect ( d = -3.898), followed by using the Social Communication Questionnaire with individuals younger than 4 years of age ( d = -2.924) and relying upon convenience samples ( d = -4.828 for clinical samples, -2.734 for convenience samples, and -1.422 for community samples). Directions for future research and implications for using the Social Communication Questionnaire to screen for autism spectrum disorder are discussed.
Lineage-specific evolutionary rate in plants: Contributions of a screening for Cereus (Cactaceae)1
Romeiro-Brito, Monique; Moraes, Evandro M.; Taylor, Nigel P.; Zappi, Daniela C.; Franco, Fernando F.
2016-01-01
Premise of the study: Predictable chloroplast DNA (cpDNA) sequences have been listed for the shallowest taxonomic studies in plants. We investigated whether plastid regions that vary between closely allied species could be applied for intraspecific studies and compared the variation of these plastid segments with two nuclear regions. Methods: We screened 16 plastid and two nuclear intronic regions for species of the genus Cereus (Cactaceae) at three hierarchical levels (species from different clades, species of the same clade, and allopatric populations). Results: Ten plastid regions presented interspecific variation, and six of them showed variation at the intraspecific level. The two nuclear regions showed both inter- and intraspecific variation, and in general they showed higher levels of variability in almost all hierarchical levels than the plastid segments. Discussion: Our data suggest no correspondence between variation of plastid regions at the interspecific and intraspecific level, probably due to lineage-specific variation in cpDNA, which appears to have less effect in nuclear data. Despite the heterogeneity in evolutionary rates of cpDNA, we highlight three plastid segments that may be considered in initial screenings in plant phylogeographic studies. PMID:26819857
USDA-ARS?s Scientific Manuscript database
Calligonum spp. are common plant species in desert areas of central Asia. Since they are drought-resistant, salt-tolerant and grow successfully in sand, they are useful for wind-breaks and dune stabilization. The fruit morphology is regarded as a key taxonomic character for the genus. Morphological ...
Rajaraman, Sivaramakrishnan; Antani, Sameer K; Poostchi, Mahdieh; Silamut, Kamolrat; Hossain, Md A; Maude, Richard J; Jaeger, Stefan; Thoma, George R
2018-01-01
Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx) methods using machine learning (ML) techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI). In contrast, Convolutional Neural Networks (CNN), a class of deep learning (DL) models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.
Digital microfluidics for automated hanging drop cell spheroid culture.
Aijian, Andrew P; Garrell, Robin L
2015-06-01
Cell spheroids are multicellular aggregates, grown in vitro, that mimic the three-dimensional morphology of physiological tissues. Although there are numerous benefits to using spheroids in cell-based assays, the adoption of spheroids in routine biomedical research has been limited, in part, by the tedious workflow associated with spheroid formation and analysis. Here we describe a digital microfluidic platform that has been developed to automate liquid-handling protocols for the formation, maintenance, and analysis of multicellular spheroids in hanging drop culture. We show that droplets of liquid can be added to and extracted from through-holes, or "wells," and fabricated in the bottom plate of a digital microfluidic device, enabling the formation and assaying of hanging drops. Using this digital microfluidic platform, spheroids of mouse mesenchymal stem cells were formed and maintained in situ for 72 h, exhibiting good viability (>90%) and size uniformity (% coefficient of variation <10% intraexperiment, <20% interexperiment). A proof-of-principle drug screen was performed on human colorectal adenocarcinoma spheroids to demonstrate the ability to recapitulate physiologically relevant phenomena such as insulin-induced drug resistance. With automatable and flexible liquid handling, and a wide range of in situ sample preparation and analysis capabilities, the digital microfluidic platform provides a viable tool for automating cell spheroid culture and analysis. © 2014 Society for Laboratory Automation and Screening.
Akbari, M; Salehi, H; Niazi, A
2018-04-01
The main goals of the present study were to screen Iranian common bermudagrasses to find cold-tolerant accessions and evaluate their genetic and morphological variabilities. In this study, 49 accessions were collected from 18 provinces of Iran. One foreign cultivar of common bermudagrass was used as control. Morphological variation was evaluated based on 14 morphological traits to give information about taxonomic position of Iranian common bermudagrass. Data from morphological traits were evaluated to categorize all accessions as either cold sensitive or tolerant using hierarchical clustering with Ward's method in SPSS software. Inter-Simple Sequence Repeat (ISSR) primers were employed to evaluate genetic variability of accessions. The results of our taxonomic investigation support the existence of two varieties of Cynodon dactylon in Iran: var. dactylon (hairless plant) and var. villosous (plant with hairs at leaf underside and/or upper side surfaces or exterior surfaces of sheath). All 15 primers amplified and gave clear and highly reproducible DNA fragments. In total, 152 fragments were produced, of which 144 (94.73%) being polymorphic. The polymorphic information content (PIC) values ranged from 0.700 to 0.928. The average PIC value obtained with 15 ISSR primers was 0.800, which shows that all primers were informative. Probability identity (PI) and discriminating power between all primers ranged from 0.029 to 0.185 and 0.815 to 0.971, respectively. Genetic data were converted into a binary data matrix. NTSYS software was used for data analysis. Clustering was done by the unweighted pair-group method with arithmetic averages and principle coordinate analysis, separated the accessions into six main clusters. According to both morphological and genetic diversity investigations of accessions, they can be clustered into three groups: cold sensitive, cold semi-tolerant, and cold tolerant. The most cold-tolerant accessions were: Taft, Malayear, Gorgan, Safashahr, Naein, Aligoudarz, and the foreign cultivar. This study may provide useful information for further breeding programs on common bermudagrass. Selected genotypes can be evaluated for other abiotic stresses such as drought and salinity.
Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis
2011-12-01
Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.
Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F
2013-11-01
Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.
Clavert, Philippe; Kempf, Jean-François; Wolfram-Gabel, Renée; Kahn, Jean-Luc
2005-12-01
Different anterosuperior aspects of the glenoid labrum have already been described and are thought to be normal anatomical variations. The goals of this study were first to characterize these anterosuperior labral morphologies and then to analyze their variations in function of the patients' age. One hundred shoulder arthroscopies were recorded to study the macroscopic characteristics of the anterosuperior labrum of the glenohumeral joint and its relationships with the proximal insertion of the tendon of the long head of the biceps. Then, patients were divided into two groups in function of their age (below and over 30 years old). Morphological modifications of the labrum were found in function of the age of the patient with an increase of the nonpathologic "mobile labrum" type after 30 years (P=0.0423). Therefore a mobile and loosely attached superior labrum should not always be considered as abnormal, especially in case of patient older than 30 years.
Characterizing the Morphology, Distribution, and Formation Geometry of Mercury's Pyroclastic Vents
NASA Astrophysics Data System (ADS)
Jozwiak, L. M.; Head, J. W.; Wilson, L.
2018-05-01
We present a final catalog of pyroclastic vents on Mercury, identifying 104 candidate pyroclastic vents. We then assess the vent distribution, morphologic variation, and probable formation geometries.
Harris, L N; Chavarie, L; Bajno, R; Howland, K L; Wiley, S H; Tonn, W M; Taylor, E B
2015-01-01
Range expansion in north-temperate fishes subsequent to the retreat of the Wisconsinan glaciers has resulted in the rapid colonization of previously unexploited, heterogeneous habitats and, in many situations, secondary contact among conspecific lineages that were once previously isolated. Such ecological opportunity coupled with reduced competition likely promoted morphological and genetic differentiation within and among post-glacial fish populations. Discrete morphological forms existing in sympatry, for example, have now been described in many species, yet few studies have directly assessed the association between morphological and genetic variation. Morphotypes of Lake Trout, Salvelinus namaycush, are found in several large-lake systems including Great Bear Lake (GBL), Northwest Territories, Canada, where several shallow-water forms are known. Here, we assess microsatellite and mitochondrial DNA variation among four morphotypes of Lake Trout from the five distinct arms of GBL, and also from locations outside of this system to evaluate several hypotheses concerning the evolution of morphological variation in this species. Our data indicate that morphotypes of Lake Trout from GBL are genetically differentiated from one another, yet the morphotypes are still genetically more similar to one another compared with populations from outside of this system. Furthermore, our data suggest that Lake Trout colonized GBL following dispersal from a single glacial refugium (the Mississippian) and support an intra-lake model of divergence. Overall, our study provides insights into the origins of morphological and genetic variation in post-glacial populations of fishes and provides benchmarks important for monitoring Lake Trout biodiversity in a region thought to be disproportionately susceptible to impacts from climate change. PMID:25204304
Harris, L N; Chavarie, L; Bajno, R; Howland, K L; Wiley, S H; Tonn, W M; Taylor, E B
2015-01-01
Range expansion in north-temperate fishes subsequent to the retreat of the Wisconsinan glaciers has resulted in the rapid colonization of previously unexploited, heterogeneous habitats and, in many situations, secondary contact among conspecific lineages that were once previously isolated. Such ecological opportunity coupled with reduced competition likely promoted morphological and genetic differentiation within and among post-glacial fish populations. Discrete morphological forms existing in sympatry, for example, have now been described in many species, yet few studies have directly assessed the association between morphological and genetic variation. Morphotypes of Lake Trout, Salvelinus namaycush, are found in several large-lake systems including Great Bear Lake (GBL), Northwest Territories, Canada, where several shallow-water forms are known. Here, we assess microsatellite and mitochondrial DNA variation among four morphotypes of Lake Trout from the five distinct arms of GBL, and also from locations outside of this system to evaluate several hypotheses concerning the evolution of morphological variation in this species. Our data indicate that morphotypes of Lake Trout from GBL are genetically differentiated from one another, yet the morphotypes are still genetically more similar to one another compared with populations from outside of this system. Furthermore, our data suggest that Lake Trout colonized GBL following dispersal from a single glacial refugium (the Mississippian) and support an intra-lake model of divergence. Overall, our study provides insights into the origins of morphological and genetic variation in post-glacial populations of fishes and provides benchmarks important for monitoring Lake Trout biodiversity in a region thought to be disproportionately susceptible to impacts from climate change.
Investigation of topographical anatomy of Broca's area: an anatomic cadaveric study.
Eser Ocak, Pınar; Kocaelı, Hasan
2017-04-01
The sulci constituting the structure of the pars triangularis and opercularis, considered as 'Broca's area', present wide anatomical and morphological variations between different hemispheres. The boundaries are described differently from one another in various studies. The aim of this study was to explore the topographical anatomy, confirm the morphological asymmetry and highlight anatomical variations in Broca's area. This study was performed with 100 hemispheres to investigate the presence, continuity, patterns and connections of the sulcal structures that constitute the morphological asymmetry of Broca's area. Considerable individual anatomical and morphological variations between the inferior frontal gyrus and related sulcal structures were detected. Rare bilateralism findings supported the morphological asymmetry. The inferior frontal sulcus was identified as a single segment in 54 % of the right and two separate segments in 52 % of the left hemispheres, which was the most common pattern. The diagonal sulcus was present in 48 % of the right and 54 % of the left hemispheres. It was most frequently connected to the ascending ramus on both sides. A 'V' shape was observed in 42.5 % of the right hemispheres and a 'Y' shape in 38.3 % of the left hemispheres, which was the most common shape of the pars triangularis. Moreover, the full results are specified in detail. Knowledge of the anatomical variations in this region is indispensable for understanding the functional structure and performing safe surgery. However, most previously published studies have aimed to determine the anatomical asymmetry of the motor speech area without illuminating the topographical anatomy encountered during surgery.
Maxillary molars with morphologic variations of the palatal root canals: a report of four cases.
Holderrieth, Silke; Gernhardt, Christian Ralf
2009-07-01
The purpose of this article was to show the importance of the knowledge of the anatomy of root canals. Unusual root and root canal morphologies associated with both buccal roots of upper molars have been recorded in several studies in the literature. However, scientific information focusing on variations of the palatal root is rare. In this report, four cases are presented involving the root canal treatment of maxillary first and second molars with unusual morphologic configurations of the palatal root canals. During root canal treatment, type IV and V configurations as defined by Vertucci of the palatal canals of two first and two second maxillary molars were identified. After mechanical instrumentation, the canals were obturated. Radiologic and clinical re-evaluation showed no signs of inflammation. This report describes and discusses the possibility of different root and canal variations of the maxillary molars from a clinical point of view. Anatomic variations can occur in any tooth, and palatal roots of maxillary first and second molars are no exception. Therefore, careful examination of radiographs and internal anatomy of teeth is essential.
Krings, Markus; Klein, Benjamin; Heneka, Markus J; Rödder, Dennis
2017-01-01
The morphology of larvae stages of most amphibians are often completely different than in adults. Tadpole descriptions have historically been based on external characters like morphometrics, color pattern and oral disc structure. Other papers described anatomical details by the use of dissections. The increase in micro-CT scanning technology provides an opportunity to quantify and describe in detail internal characters like skeleton, musculature and organs. To date, no such tadpole descriptions exist for the well-studied Neotropical poison dart frog genus Ranitomeya (Anura: Dendrobatidae). Here we provide descriptions of the internal skeletal, musculature and organ structures of five Ranitomeya species and then provide morphological comparisons. Contrary to previous observations, closely related species display several morphological differences. For example, we observed considerable variation in chondrocranial characters, the extent of cranial ossifications, the appearance of some cranial muscles and the arrangement of inner organs. Further studies on the tadpole morphology of more species of Ranitomeya and other dendrobatid genera are needed to enable us to understand the complete morphological variation in this group.
Krings, Markus; Klein, Benjamin; Heneka, Markus J.
2017-01-01
The morphology of larvae stages of most amphibians are often completely different than in adults. Tadpole descriptions have historically been based on external characters like morphometrics, color pattern and oral disc structure. Other papers described anatomical details by the use of dissections. The increase in micro-CT scanning technology provides an opportunity to quantify and describe in detail internal characters like skeleton, musculature and organs. To date, no such tadpole descriptions exist for the well-studied Neotropical poison dart frog genus Ranitomeya (Anura: Dendrobatidae). Here we provide descriptions of the internal skeletal, musculature and organ structures of five Ranitomeya species and then provide morphological comparisons. Contrary to previous observations, closely related species display several morphological differences. For example, we observed considerable variation in chondrocranial characters, the extent of cranial ossifications, the appearance of some cranial muscles and the arrangement of inner organs. Further studies on the tadpole morphology of more species of Ranitomeya and other dendrobatid genera are needed to enable us to understand the complete morphological variation in this group. PMID:28235032
Anzai, Wataru; Omura, Ayano; Diaz, Antonio Cadiz; Kawata, Masakado; Endo, Hideki
2014-07-01
We examined the diversity of the musculoskeletal morphology in the limbs of Anolis lizards with different habitats and identified variations in functional and morphological adaptations to different ecologies or behaviors. Dissection and isolation of 40 muscles from the fore- and hindlimbs of five species of Anolis were performed, and the muscle mass and length of the moment arm were compared after body size effects were removed. Ecologically and behaviorally characteristic morphological differences were observed in several muscles. Well-developed hindlimb extensors were observed in ground-dwelling species, A. sagrei and A. bremeri, and were considered advantageous for running, whereas adept climber species possessed expanded femoral retractors for weight-bearing during climbing. Moreover, morphological variations were observed among arboreal species. Wider excursions of the forelimb joint characterized A. porcatus, presumably enabling branch-to-branch locomotion, while A. equestris and A. angusticeps possessed highly developed adductor muscles for grasping thick branches or twigs. These findings suggest divergent evolution of musculoskeletal characteristic in the limbs within the genus Anolis, with correlations observed among morphological traits, locomotor performance, and habitat uses.
Correlation between Hox code and vertebral morphology in archosaurs.
Böhmer, Christine; Rauhut, Oliver W M; Wörheide, Gert
2015-07-07
The relationship between developmental genes and phenotypic variation is of central interest in evolutionary biology. An excellent example is the role of Hox genes in the anteroposterior regionalization of the vertebral column in vertebrates. Archosaurs (crocodiles, dinosaurs including birds) are highly variable both in vertebral morphology and number. Nevertheless, functionally equivalent Hox genes are active in the axial skeleton during embryonic development, indicating that the morphological variation across taxa is likely owing to modifications in the pattern of Hox gene expression. By using geometric morphometrics, we demonstrate a correlation between vertebral Hox code and quantifiable vertebral morphology in modern archosaurs, in which the boundaries between morphological subgroups of vertebrae can be linked to anterior Hox gene expression boundaries. Our findings reveal homologous units of cervical vertebrae in modern archosaurs, each with their specific Hox gene pattern, enabling us to trace these homologies in the extinct sauropodomorph dinosaurs, a group with highly variable vertebral counts. Based on the quantifiable vertebral morphology, this allows us to infer the underlying genetic mechanisms in vertebral evolution in fossils, which represents not only an important case study, but will lead to a better understanding of the origin of morphological disparity in recent archosaur vertebral columns.
Correlation between Hox code and vertebral morphology in archosaurs
Böhmer, Christine; Rauhut, Oliver W. M.; Wörheide, Gert
2015-01-01
The relationship between developmental genes and phenotypic variation is of central interest in evolutionary biology. An excellent example is the role of Hox genes in the anteroposterior regionalization of the vertebral column in vertebrates. Archosaurs (crocodiles, dinosaurs including birds) are highly variable both in vertebral morphology and number. Nevertheless, functionally equivalent Hox genes are active in the axial skeleton during embryonic development, indicating that the morphological variation across taxa is likely owing to modifications in the pattern of Hox gene expression. By using geometric morphometrics, we demonstrate a correlation between vertebral Hox code and quantifiable vertebral morphology in modern archosaurs, in which the boundaries between morphological subgroups of vertebrae can be linked to anterior Hox gene expression boundaries. Our findings reveal homologous units of cervical vertebrae in modern archosaurs, each with their specific Hox gene pattern, enabling us to trace these homologies in the extinct sauropodomorph dinosaurs, a group with highly variable vertebral counts. Based on the quantifiable vertebral morphology, this allows us to infer the underlying genetic mechanisms in vertebral evolution in fossils, which represents not only an important case study, but will lead to a better understanding of the origin of morphological disparity in recent archosaur vertebral columns. PMID:26085583
Moreno, E.; Barbosa, A.; Carrascal, L. M.
1997-01-01
We studied the relationship between leg morphology and posture while feeding in a population of great tits (Parus major) under controlled conditions to investigate to what extent morphology and ecology are linked at the individual level. From predictions generated at the interspecific level within the genus Parus (Moreno and Carrascal 1993), we tested whether intra- and interspecific ecomorphological relationships are consistent. Within our population, neither leg bone lengths nor leg muscle morphology were related to the feeding posture of individuals. However, differences in body weight were correlated with inter-individual differences in time spent hanging. These results demonstrate that the association between intra- and interspecific ecomorphological relationships is not uniform. We argue that, at the intraspecific level, body weight overrides the significance of other traits that have a functional meaning at the interspecific level (i.e. leg segment lengths, muscular morphology), due to isometric variation of morphological traits (muscular and skeletal) with body mass. Thus, the discrepancy between the ecomorphological associations at intra- and interspecific levels is the result of a problem of scale (morphological changes in evolutionary time and isometric variation of morphological traits with body mass in ecological time).
Chiari, Ylenia; Glaberman, Scott; Tarroso, Pedro; Caccone, Adalgisa; Claude, Julien
2016-07-01
Oceanic islands are often inhabited by endemic species that have undergone substantial morphological evolutionary change due to processes of multiple colonizations from various source populations, dispersal, and local adaptation. Galápagos marine iguanas are an example of an island endemic exhibiting high morphological diversity, including substantial body size variation among populations and sexes, but the causes and magnitude of this variation are not well understood. We obtained morphological measurements from marine iguanas throughout their distribution range. These data were combined with genetic and local environmental data from each population to investigate the effects of evolutionary history and environmental conditions on body size and shape variation and sexual dimorphism. Our results indicate that body size and shape are highly variable among populations. Sea surface temperature and island perimeter, but not evolutionary history as depicted by phylogeographic patterns in this species, explain variation in body size among populations. Conversely, evolutionary history, but not environmental parameters or island size, was found to influence variation in body shape among populations. Finally, in all populations except one, we found strong sexual dimorphism in body size and shape in which males are larger, with higher heads than females, while females have longer heads than males. Differences among populations suggest that plasticity and/or genetic adaptation may shape body size and shape variation in marine iguanas. This study will help target future investigations to address the contribution of plasticity versus genetic adaptation on size and shape variation in marine iguanas.
Petersson, Richard; Mosén, Henrik; Steding-Ehrenborg, Katarina; Carlson, Jonas; Faxén, Lisa; Mohtadi, Alan; Platonov, Pyotr G; Holmqvist, Fredrik
2017-03-01
It has previously been demonstrated that orthogonal P-wave morphology in healthy athletes does not depend on atrial size, but the possible impact of left atrial orientation on P-wave morphology remains unknown. In this study, we investigated if left atrial transverse orientation affects P-wave morphology in different populations. Forty-seven patients with atrial fibrillation, 21 patients with arrhythmogenic right ventricular cardiomyopathy, 67 healthy athletes, and 56 healthy volunteers were included. All underwent cardiac magnetic resonance imaging or computed tomography and the orientation of the left atrium was determined. All had 12-lead electrocardiographic recordings, which were transformed into orthogonal leads and orthogonal P-wave morphology was obtained. The median left atrial transverse orientation was 87 (83, 91) degrees (lower and upper quartiles) in the total study population. There was no difference in left atrial transverse orientation between individuals with different orthogonal P-wave morphologies. The physiological variation in left atrial orientation was small within as well as between the different populations. There was no difference in left atrial transverse orientation between subjects with type 1 and type 2 P-wave morphology, implying that in this setting the P-wave morphology was more dependent on atrial conduction than orientation. © 2016 Wiley Periodicals, Inc.
Liao, Ting T; Wang, Lei; Jia, Ru W; Fu, Xiao H; Chua, Hong
2014-01-01
Membrane damage related to morphological change in Vero cells is a sensitive index of the composite biotoxicity of trace lipophilic chemicals. However, judging whether the morphological change in Vero cells happens and its ratio are difficult because it is not a quantitative characteristic. To find biomarkers of cell morphological change for quantitatively representing the ratio of morphological changed cell, the mechanism of cell membrane damage driven by typical lipophilic chemicals, such as trichlorophenol (TCP) and perfluorooctanesulphonate (PFOS), was explored. The ratio of morphologically changed cells generally increased with increased TCP or PFOS concentrations, and the level of four major components of phospholipids varied with concentrations of TCP or PFOS, but only the ratio of phosphatidylcholine (PC)/phosphatidylethanolamine (PE) decreased regularly as TCP or PFOS concentrations increased. Analysis of membrane proteins showed that the level of vimentin in normal cell membranes is high, while it decreases or vanishes after TCP exposure. These variations in phospholipid and membrane protein components may result in membrane leakage and variation in rigid structure, which leads to changes in cell morphology. Therefore, the ratio of PC/PE and amount of vimentin may be potential biomarkers for representing the ratio of morphological changed Vero cell introduced by trace lipophilic compounds, thus their composite bio-toxicity.
Chen, G; Brecker, L; Felsinger, S; Cai, X-H; Kongkiatpaiboon, S; Schinnerl, J
2017-09-01
The occurrence of bioactive alkaloids and tocopherols was studied in 15 different provenances of Stemona tuberosa Lour. collected in southern China, to examine chemical variation of individuals that show notable differences in flower characteristics. Morphological variations stimulated examination of chemical characteristics of these individuals. Methanolic root extracts of 15 individuals of S. tuberosa were comparatively assessed with HPLC-UV-DAD/ELSD. Five of seven compounds were co-chromatographically identified. Two compounds were isolated and their structure elucidated using NMR and MS. Amounts of alkaloids and tocopherols were determined using HPLC-UV-DAD/ELSD with the external standard method. Five alkaloids, tuberostemonine (1), tuberostemonine A (2), neotuberostemonine (3), tuberostemonine N (4), stemoninine (5) and two 3,4-dehydrotocopherol derivatives were identified. Within S. tuberosa alkaloid accumulation tends either towards tuberostemonine (1) or stemoninine (5). All individuals show a notable co-occurrence of compounds 1 or 5 and 3,4-dehydro-δ-tocopherol (6). These results coincide with differences in flower morphology of S. tuberosa. Stemona tuberosa, as defined in the Flora of China, shows a remarkable variation in flower morphology and additionally in the accumulation of alkaloids. The obtained data show the need for future species delimitation to either species or subspecies level. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Ornelas-García, Claudia P; Bastir, Markus; Doadrio, Ignacio
2014-07-01
Phenotypic variation is important for evolutionary processes because it can allow local adaptation, promote genetic segregation, and ultimately give rise to speciation. Lacustrine systems provide a unique opportunity to study the mechanisms by which sister species can co-occur by means of ecological segregation. The fish genus Astyanax is characterized by high levels of phenotypic variability, providing an excellent model for the study of local specialization. Here, we analyze the morphological specializations through geometric morphometrics of two sympatric species described as different genera: Bramocharax caballeroi endemic to Lake Catemaco, and the widely distributed Astyanax aeneus. Additionally, we assess the correlation between phenotypic and genetic structure, and the phylogenetic signal of morphological variation. We examined body size and shape variation in 196 individuals and analyzed mitochondrial cytochrome b sequences in 298 individuals. Our results confirm the striking morphological divergence among the sympatric characids. Differences between them were mainly found in the body depth and profile and orientation of the head, where B. caballeroi in contrast with the A. aeneus, presented a fusiform body and an upward mouth. Moreover, different growth trajectories were observed among morphotypes, suggesting that a heterochronic process could be involved in the diversification of our study system. Morphological differences did not correspond with the molecular differentiation, suggesting high levels of homoplasy among the lineages of B. caballeroi morphs. © 2014 Wiley Periodicals, Inc.
Margvelashvili, Ann; Zollikofer, Christoph P. E.; Lordkipanidze, David; Peltomäki, Timo; Ponce de León, Marcia S.
2013-01-01
The Plio-Pleistocene hominin sample from Dmanisi (Georgia), dated to 1.77 million years ago, is unique in offering detailed insights into patterns of morphological variation within a paleodeme of early Homo. Cranial and dentoalveolar morphologies exhibit a high degree of diversity, but the causes of variation are still relatively unexplored. Here we show that wear-related dentoalveolar remodeling is one of the principal mechanisms causing mandibular shape variation in fossil Homo and in modern human hunter–gatherer populations. We identify a consistent pattern of mandibular morphological alteration, suggesting that dental wear and compensatory remodeling mechanisms remained fairly constant throughout the evolution of the genus Homo. With increasing occlusal and interproximal tooth wear, the teeth continue to erupt, the posterior dentition tends to drift in a mesial direction, and the front teeth become more upright. The resulting changes in dentognathic size and shape are substantial and need to be taken into account in comparative taxonomic analyses of isolated hominin mandibles. Our data further show that excessive tooth wear eventually leads to a breakdown of the normal remodeling mechanisms, resulting in dentognathic pathologies, tooth loss, and loss of masticatory function. Complete breakdown of dentognathic homeostasis, however, is unlikely to have limited the life span of early Homo because this effect was likely mediated by the preparation of soft foods. PMID:24101504
Pravosudov, V V; Roth, T C; Forister, M L; Ladage, L D; Burg, T M; Braun, M J; Davidson, B S
2012-09-01
Food-caching birds rely on stored food to survive the winter, and spatial memory has been shown to be critical in successful cache recovery. Both spatial memory and the hippocampus, an area of the brain involved in spatial memory, exhibit significant geographic variation linked to climate-based environmental harshness and the potential reliance on food caches for survival. Such geographic variation has been suggested to have a heritable basis associated with differential selection. Here, we ask whether population genetic differentiation and potential isolation among multiple populations of food-caching black-capped chickadees is associated with differences in memory and hippocampal morphology by exploring population genetic structure within and among groups of populations that are divergent to different degrees in hippocampal morphology. Using mitochondrial DNA and 583 AFLP loci, we found that population divergence in hippocampal morphology is not significantly associated with neutral genetic divergence or geographic distance, but instead is significantly associated with differences in winter climate. These results are consistent with variation in a history of natural selection on memory and hippocampal morphology that creates and maintains differences in these traits regardless of population genetic structure and likely associated gene flow. Published 2012. This article is a US Government work and is in the public domain in the USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Michael D.; Dater, Manasi; Whitaker, Ross
In this study, statistical shape modeling (SSM) was used to quantify three-dimensional (3D) variation and morphologic differences between femurs with and without cam femoroacetabular impingement (FAI). 3D surfaces were generated from CT scans of femurs from 41 controls and 30 cam FAI patients. SSM correspondence particles were optimally positioned on each surface using a gradient descent energy function. Mean shapes for control and patient groups were defined from the resulting particle configurations. Morphological differences between group mean shapes and between the control mean and individual patients were calculated. Principal component analysis was used to describe anatomical variation present in bothmore » groups. The first 6 modes (or principal components) captured statistically significant shape variations, which comprised 84% of cumulative variation among the femurs. Shape variation was greatest in femoral offset, greater trochanter height, and the head-neck junction. The mean cam femur shape protruded above the control mean by a maximum of 3.3 mm with sustained protrusions of 2.5-3.0 mm along the anterolateral head-neck junction and distally along the anterior neck, corresponding well with reported cam lesion locations and soft-tissue damage. This study provides initial evidence that SSM can describe variations in femoral morphology in both controls and cam FAI patients and may be useful for developing new measurements of pathological anatomy. SSM may also be applied to characterize cam FAI severity and provide templates to guide patient-specific surgical resection of bone.« less
Kooke, Rik; Kruijer, Willem; Bours, Ralph; Becker, Frank; Kuhn, André; van de Geest, Henri; Buntjer, Jaap; Doeswijk, Timo; Guerra, José; Bouwmeester, Harro; Vreugdenhil, Dick; Keurentjes, Joost J B
2016-04-01
Quantitative traits in plants are controlled by a large number of genes and their interaction with the environment. To disentangle the genetic architecture of such traits, natural variation within species can be explored by studying genotype-phenotype relationships. Genome-wide association studies that link phenotypes to thousands of single nucleotide polymorphism markers are nowadays common practice for such analyses. In many cases, however, the identified individual loci cannot fully explain the heritability estimates, suggesting missing heritability. We analyzed 349 Arabidopsis accessions and found extensive variation and high heritabilities for different morphological traits. The number of significant genome-wide associations was, however, very low. The application of genomic prediction models that take into account the effects of all individual loci may greatly enhance the elucidation of the genetic architecture of quantitative traits in plants. Here, genomic prediction models revealed different genetic architectures for the morphological traits. Integrating genomic prediction and association mapping enabled the assignment of many plausible candidate genes explaining the observed variation. These genes were analyzed for functional and sequence diversity, and good indications that natural allelic variation in many of these genes contributes to phenotypic variation were obtained. For ACS11, an ethylene biosynthesis gene, haplotype differences explaining variation in the ratio of petiole and leaf length could be identified. © 2016 American Society of Plant Biologists. All Rights Reserved.
Brazenor, Alexander K; Saunders, Richard J; Miller, Terrence L; Hutson, Kate S
2018-02-01
Intra-species morphological variation presents a considerable problem for species identification and can result in taxonomic confusion. This is particularly pertinent for species of Neobenedenia which are harmful agents in captive fish populations and have historically been identified almost entirely based on morphological characters. This study aimed to understand how the morphology of Neobenedenia girellae varies with host fish species and the environment. Standard morphological features of genetically indistinct parasites from various host fish species were measured under controlled temperatures and salinities. An initial field-based investigation found that parasite morphology significantly differed between genetically indistinct parasites infecting various host fish species. The majority of the morphological variation observed (60%) was attributed to features that assist in parasite attachment to the host (i.e. the posterior and anterior attachment organs and their accessory hooks) which are important characters in monogenean taxonomy. We then experimentally examined the effects of the interaction between host fish species and environmental factors (temperature and salinity) on the morphology of isogenic parasites derived from a single, isolated hermaphroditic N. girellae infecting barramundi, Lates calcarifer. Experimental infection of L. calcarifer and cobia, Rachycentron canadum, under controlled laboratory conditions did not confer host-mediated phenotypic plasticity in N. girellae, suggesting that measured morphological differences could be adaptive and only occur over multiple parasite generations. Subsequent experimental infection of a single host species, L. calcarifer, at various temperatures (22, 30 and 32 °C) and salinities (35 and 40‰) showed that in the cooler environments (22 °C) N. girellae body proportions were significantly smaller compared with warmer temperatures (30 and 32 °C; P < 0.0001), whereas salinity had no effect. This is evidence that temperature can drive phenotypic plasticity in key taxonomic characters of N. girellae under certain environmental conditions. Copyright © 2017. Published by Elsevier Ltd.
Bao, Heling; Zhang, Lei; Wang, Limin; Zhang, Mei; Zhao, Zhenping; Fang, Liwen; Cong, Shu; Zhou, Maigeng; Wang, Linhong
2018-05-01
Variations in cervical cancer screening rates in China have rarely been studied in depth. This study aimed to investigate cervical cancer screening rates in relation to both individual-level and geographical measures of socioeconomic status (SES). Data were obtained from women aged 21 years or older by face-to-face interviews between August 2013 and July 2014 as part of the Chinese Chronic Diseases and Risk Factors Surveillance. The geographical variables were obtained from the 2010 Chinese population census. The cervical cancer screening rates and 95% confidence interval (CI) were estimated and mapped. Multilevel logistic regression models were fitted. Overall, only 21.4% (95% CI: 19.6-23.1%) of 91,816 women aged ≥21 years reported having ever been screened for cervical cancer and significant geographical variations at both province and county levels were identified (P < 0.01). The cervical cancer screening rates were the lowest among the poor [13.9% (95% CI: 12.1-15.7%)], uninsured [14.4% (95% CI: 10.3-18.4%)], less-educated [16.0% (95% CI: 14.3-17.6%)], and agricultural employment [18.1% (95% CI: 15.8-20.4%)] women along with those residing in areas of low economic status [15.0% (95% CI: 11.8-18.2%)], of low urbanization [15.6% (95% CI: 13.4-17.7%)], and of low education status [16.0% (95% CI: 14.0-18.1%)]. The multilevel analysis also indicated that women with lower individual-level measures of SES residing in areas with low geographical measures of SES were significantly less likely to receive cervical cancer screening (P < 0.0001). Despite the launch of an organized cancer screening program in China, cervical cancer screening rates remain alarmingly low and significant variations based on geographical regions and measures of SES still exist. It is therefore essential to adopt strategies to better direct limited available public resources to priority groups. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Epigenetic Variation in Mangrove Plants Occurring in Contrasting Natural Environment
Lira-Medeiros, Catarina Fonseca; Parisod, Christian; Fernandes, Ricardo Avancini; Mata, Camila Souza; Cardoso, Monica Aires; Ferreira, Paulo Cavalcanti Gomes
2010-01-01
Background Epigenetic modifications, such as cytosine methylation, are inherited in plant species and may occur in response to biotic or abiotic stress, affecting gene expression without changing genome sequence. Laguncularia racemosa, a mangrove species, occurs in naturally contrasting habitats where it is subjected daily to salinity and nutrient variations leading to morphological differences. This work aims at unraveling how CpG-methylation variation is distributed among individuals from two nearby habitats, at a riverside (RS) or near a salt marsh (SM), with different environmental pressures and how this variation is correlated with the observed morphological variation. Principal Findings Significant differences were observed in morphological traits such as tree height, tree diameter, leaf width and leaf area between plants from RS and SM locations, resulting in smaller plants and smaller leaf size in SM plants. Methyl-Sensitive Amplified Polymorphism (MSAP) was used to assess genetic and epigenetic (CpG-methylation) variation in L. racemosa genomes from these populations. SM plants were hypomethylated (14.6% of loci had methylated samples) in comparison to RS (32.1% of loci had methylated samples). Within-population diversity was significantly greater for epigenetic than genetic data in both locations, but SM also had less epigenetic diversity than RS. Frequency-based (GST) and multivariate (βST) methods that estimate population structure showed significantly greater differentiation among locations for epigenetic than genetic data. Co-Inertia analysis, exploring jointly the genetic and epigenetic data, showed that individuals with similar genetic profiles presented divergent epigenetic profiles that were characteristic of the population in a particular environment, suggesting that CpG-methylation changes may be associated with environmental heterogeneity. Conclusions In spite of significant morphological dissimilarities, individuals of L. racemosa from salt marsh and riverside presented little genetic but abundant DNA methylation differentiation, suggesting that epigenetic variation in natural plant populations has an important role in helping individuals to cope with different environments. PMID:20436669
Chaves, Maximiliano; Aguilera-Merlo, Claudia; Cruceño, Albana; Fogal, Teresa; Mohamed, Fabian
2015-11-01
The viscacha (Lagostomus maximus maximus) is a rodent with photoperiod-dependent seasonal reproduction. The aim of this work was to study the morphological variations of the prostate during periods of maximal (summer, long photoperiod) and minimal (winter, short photoperiod) reproductive activity. Prostates of adult male viscachas were studied by light and electron microscopy, immunohistochemistry for androgen receptor, and morphometric analysis. The prostate consisted of two regions: peripheral and central. The peripheral zone exhibited large adenomeres with a small number of folds and lined with a pseudostratified epithelium. The central zone had small adenomeres with pseudostratified epithelium and the mucosa showed numerous folds. The morphology of both zones showed variations during periods of maximal and minimal reproductive activity. The prostate weight, prostate-somatic index, luminal diameter of adenomeres, epithelial height and major nuclear diameter decreased during the period of minimal reproductive activity. Principal cells showed variations in their shape, size and ultrastructural characteristics during the period of minimal reproductive activity in comparison with the active period. The androgen receptor expression in epithelial and fibromuscular stromal cells was different between the studied periods. Our results suggest a reduced secretory activity of viscacha prostate during the period of minimal reproductive activity. Thus, the morphological variations observed in both the central and peripheral zones of the viscacha prostate agree with the results previously obtained in the gonads of this rodent of photoperiod-dependent reproduction. Additionally, the variations observed in the androgen receptors suggest a direct effect of the circulating testosterone on the gland. © 2015 Wiley Periodicals, Inc.
Hakama, Matti; Moss, Sue M; Stenman, Ulf-Hakan; Roobol, Monique J; Zappa, Marco; Carlsson, Sigrid; Randazzo, Marco; Nelen, Vera; Hugosson, Jonas
2017-06-01
Objectives To calculate design-corrected estimates of the effect of screening on prostate cancer mortality by centre in the European Randomised Study of Screening for Prostate Cancer (ERSPC). Setting The ERSPC has shown a 21% reduction in prostate cancer mortality in men invited to screening with follow-up truncated at 13 years. Centres either used pre-consent randomisation (effectiveness design) or post-consent randomisation (efficacy design). Methods In six centres (three effectiveness design, three efficacy design) with follow-up until the end of 2010, or maximum 13 years, the effect of screening was estimated as both effectiveness (mortality reduction in the target population) and efficacy (reduction in those actually screened). Results The overall crude prostate cancer mortality risk ratio in the intervention arm vs control arm for the six centres was 0.79 ranging from a 14% increase to a 38% reduction. The risk ratio was 0.85 in centres with effectiveness design and 0.73 in those with efficacy design. After correcting for design, overall efficacy was 27%, 24% in pre-consent and 29% in post-consent centres, ranging between a 12% increase and a 52% reduction. Conclusion The estimated overall effect of screening in attenders (efficacy) was a 27% reduction in prostate cancer mortality at 13 years' follow-up. The variation in efficacy between centres was greater than the range in risk ratio without correction for design. The centre-specific variation in the mortality reduction could not be accounted for by the randomisation method.
The effects of soil moisture and plant morphology on the radar backscatter from vegetation
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Bush, T. F.; Batlivala, P. P.; Cihlar, J.
1974-01-01
The results of experimental studies on the backscattering properties of corn, milo, soybeans and alfalfa are presented. The measurements were made during the summer of 1973 over the 8 to 18 GHz frequency band. The data indicate that soil moisture estimation is best accomplished at incidence angles near nadir with lower frequencies, while crop discrimination is best accomplished using two frequencies at incidence angles ranging from 30 deg to 65 deg. It is also shown that temporal plant morphology variations can cause extreme variations in the values of the scattering coefficients. These morphological changes can be caused by growth, heavy rain and in the case of alfalfa, harvesting.
NASA Astrophysics Data System (ADS)
Sudheer, Mukherjee, C.; Rai, S. K.; Rai, V. N.; Srivastava, A. K.
2018-04-01
Instability in morphological and optical properties of sputtered grown percolated gold (Au) film has been experimentally investigated during ambient aging. Optical absorbance of the film recorded at various stage of aging shows huge variation in the spectra. A schematic is drawn to explain aging-assist evolution in the morphology (dewetting) and correlated with the variation in optical properties. The validity of model is confirmed by X-ray reflectivity (XRR) techniques, performed for both as-deposited and aged samples. Furthermore, change in the color of Au thin film with aging also seen in the photographic images of the samples that also support the absorbance and XRR results.
Complex flow morphologies in shock-accelerated gaseous flows
NASA Astrophysics Data System (ADS)
Kumar, S.; Vorobieff, P.; Orlicz, G.; Palekar, A.; Tomkins, C.; Goodenough, C.; Marr-Lyon, M.; Prestridge, K. P.; Benjamin, R. F.
2007-11-01
A Mach 1.2 planar shock wave impulsively and simultaneously accelerates a row of three heavy gas (SF 6) cylinders surrounded by a lighter gas (air), producing pairs of vortex columns. The heavy gas cylinders (nozzle diameter D) are initially equidistant in the spanwise direction (center to center spacing S), with S/D=1.5. The interaction of the vortex columns is investigated with planar laser-induced fluorescence (PLIF) in the plane normal to the axes of the cylinders. Several distinct post-shock morphologies are observed, apparently due to rather small variations of the initial conditions. We report the variation of the streamwise and spanwise growth rates of the integral scales for these flow morphologies.
Partin, Melissa R; Gravely, Amy A; Burgess, James F; Haggstrom, David A; Lillie, Sarah E; Nelson, David B; Nugent, Sean M; Shaukat, Aasma; Sultan, Shahnaz; Walter, Louise C; Burgess, Diana J
2017-09-15
Patient, physician, and environmental factors were identified, and the authors examined the contribution of these factors to demographic and health variation in colonoscopy follow-up after a positive fecal occult blood test/fecal immunochemical test (FOBT/FIT) screening. In total, 76,243 FOBT/FIT-positive patients were identified from 120 Veterans Health Administration (VHA) facilities between August 16, 2009 and March 20, 2011 and were followed for 6 months. Patient demographic (race/ethnicity, sex, age, marital status) and health characteristics (comorbidities), physician characteristics (training level, whether primary care provider) and behaviors (inappropriate FOBT/FIT screening), and environmental factors (geographic access, facility type) were identified from VHA administrative records. Patient behaviors (refusal, private sector colonoscopy use) were estimated with statistical text mining conducted on clinic notes, and follow-up predictors and adjusted rates were estimated using hierarchical logistic regression. Roughly 50% of individuals completed a colonoscopy at a VHA facility within 6 months. Age and comorbidity score were negatively associated with follow-up. Blacks were more likely to receive follow-up than whites. Environmental factors attenuated but did not fully account for these differences. Patient behaviors (refusal, private sector colonoscopy use) and physician behaviors (inappropriate screening) fully accounted for the small reverse race disparity and attenuated variation by age and comorbidity score. Patient behaviors (refusal and private sector colonoscopy use) contributed more to variation in follow-up rates than physician behaviors (inappropriate screening). In the VHA, blacks are more likely to receive colonoscopy follow-up for positive FOBT/FIT results than whites, and follow-up rates markedly decline with advancing age and comorbidity burden. Patient and physician behaviors explain race variation in follow-up rates and contribute to variation by age and comorbidity burden. Cancer 2017;123:3502-12. Published 2017. This article is a US Government work and is in the public domain in the USA. © 2017 American Cancer Society.
High temperatures reveal cryptic genetic variation in a polymorphic female sperm storage organ.
Berger, David; Bauerfeind, Stephanie Sandra; Blanckenhorn, Wolf Ulrich; Schäfer, Martin Andreas
2011-10-01
Variation in female reproductive morphology may play a decisive role in reproductive isolation by affecting the relative fertilization success of alternative male phenotypes. Yet, knowledge of how environmental variation may influence the development of the female reproductive tract and thus alter the arena of postcopulatory sexual selection is limited. Yellow dung fly females possess either three or four sperm storage compartments, a polymorphism with documented influence on sperm precedence. We performed a quantitative genetics study including 12 populations reared at three developmental temperatures complemented by extensive field data to show that warm developmental temperatures increase the frequency of females with four compartments, revealing striking hidden genetic variation for the polymorphism. Systematic genetic differentiation in growth rate and spermathecal number along latitude, and phenotypic covariance between the traits across temperature treatments suggest that the genetic architecture underlying the polymorphism is shaped by selection on metabolic rate. Our findings illustrate how temperature can modulate the preconditions for sexual selection by differentially exposing novel variation in reproductive morphology. This implies that environmental change may substantially alter the dynamics of sexual selection. We further discuss how temperature-dependent developmental plasticity may have contributed to observed rapid evolutionary transitions in spermathecal morphology. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Genetic spectrum of low density lipoprotein receptor gene variations in South Indian population.
ArulJothi, K N; Suruthi Abirami, B; Devi, Arikketh
2018-03-01
Low density lipoprotein receptor (LDLR) is a membrane bound receptor maintaining cholesterol homeostasis along with Apolipoprotein B (APOB), Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) and other genes of lipid metabolism. Any pathogenic variation in these genes alters the function of the receptor and leads to Familial Hypercholesterolemia (FH) and other cardiovascular diseases. This study was aimed at screening the LDLR, APOB and PCSK9 genes in Hypercholesterolemic patients to define the genetic spectrum of FH in Indian population. Familial Hypercholesterolemia patients (n=78) of South Indian Tamil population with LDL cholesterol and Total cholesterol levels above 4.9mmol/l and 7.5mmol/l with family history of Myocardial infarction were involved. DNA was isolated by organic extraction method from blood samples and LDLR, APOB and PCSK9 gene exons were amplified using primers that cover exon-intron boundaries. The amplicons were screened using High Resolution Melt (HRM) Analysis and the screened samples were sequenced after purification. This study reports 20 variations in South Indian population for the first time. In this set of variations 9 are novel variations which are reported for the first time, 11 were reported in other studies also. The in silico analysis for all the variations detected in this study were done to predict the probabilistic effect in pathogenicity of FH. This study adds 9 novel variations and 11 recurrent variations to the spectrum of LDLR gene mutations in Indian population. All these variations are reported for the first time in Indian population. This spectrum of variations was different from the variations of previous Indian reports. Copyright © 2017 Elsevier B.V. All rights reserved.
Detection and measurement of the intracellular calcium variation in follicular cells.
Herrera-Navarro, Ana M; Terol-Villalobos, Iván R; Jiménez-Hernández, Hugo; Peregrina-Barreto, Hayde; Gonzalez-Barboza, José-Joel
2014-01-01
This work presents a new method for measuring the variation of intracellular calcium in follicular cells. The proposal consists in two stages: (i) the detection of the cell's nuclei and (ii) the analysis of the fluorescence variations. The first stage is performed via watershed modified transformation, where the process of labeling is controlled. The detection process uses the contours of the cells as descriptors, where they are enhanced with a morphological filter that homogenizes the luminance variation of the image. In the second stage, the fluorescence variations are modeled as an exponential decreasing function, where the fluorescence variations are highly correlated with the changes of intracellular free Ca(2+). Additionally, it is introduced a new morphological called medium reconstruction process, which helps to enhance the data for the modeling process. This filter exploits the undermodeling and overmodeling properties of reconstruction operators, such that it preserves the structure of the original signal. Finally, an experimental process shows evidence of the capabilities of the proposal.
Detection and Measurement of the Intracellular Calcium Variation in Follicular Cells
Herrera-Navarro, Ana M.; Terol-Villalobos, Iván R.; Jiménez-Hernández, Hugo; Peregrina-Barreto, Hayde; Gonzalez-Barboza, José-Joel
2014-01-01
This work presents a new method for measuring the variation of intracellular calcium in follicular cells. The proposal consists in two stages: (i) the detection of the cell's nuclei and (ii) the analysis of the fluorescence variations. The first stage is performed via watershed modified transformation, where the process of labeling is controlled. The detection process uses the contours of the cells as descriptors, where they are enhanced with a morphological filter that homogenizes the luminance variation of the image. In the second stage, the fluorescence variations are modeled as an exponential decreasing function, where the fluorescence variations are highly correlated with the changes of intracellular free Ca2+. Additionally, it is introduced a new morphological called medium reconstruction process, which helps to enhance the data for the modeling process. This filter exploits the undermodeling and overmodeling properties of reconstruction operators, such that it preserves the structure of the original signal. Finally, an experimental process shows evidence of the capabilities of the proposal. PMID:25342958
Morphology of pulp fiber from hardwoods and influence on paper strength
Richard A. Horn
1978-01-01
The results of this investigation showed that physical properties of sheets made from hardwood fiber are very dependent upon fiber morphology. Chemical variation of pulp fibers did not exhibit an influence on sheet strength. Of the morphological characteristics investigated, those contributing the most were fiber length, L/T ratio, and fibril angle. Hardwood fines (...
Loose, E L; Hilton, E J; Graves, J E
2017-04-01
The comparative morphology of the scales of roundscale spearfish Tetrapturus georgii and white marlin Kajikia albida was investigated. In addition, variation in scale morphology across different body regions within each species was analysed. Although considerable morphological variation was observed among scales from different body regions in both species, scales of K. albida generally have pointed anterior ends, fewer posterior points and are more heavily imbricated than those of T. georgii, which are frequently rounded anteriorly, often have many posterior points and are separated farther within the skin. In all sampled body regions and individuals, scales of T. georgii are significantly broader and have a lower length-to-width aspect ratio than those of K. albida. Superficial to the scales are denticular plates, which are ossified formations occurring on the surface layer of the epidermis; these were observed and described for T. georgii, K. albida and blue marlin Makaira nigricans. Detailed scale descriptions allow for a more accurate characterization of the variation within and differences between these two species and could potentially be a valuable tool for investigating istiophorid systematics. © 2017 The Fisheries Society of the British Isles.
Geographical variation in the skeletal morphology of red jungle fowl.
Endo, H; Tsunekawa, N; Sonoe, M; Sasaki, Tї; Ogawa, H; Amano, T; Nguyen, T S; Phimphachanhvongsod, V; Kudo, K; Yonezawa, T; Akishinonomiya, F
2017-08-01
1. The skulls and postcranial skeletons of the red jungle fowl (Gallus gallus) were compared osteometrically between the populations from North and South Vietnam, North and Central Laos and Southeast Bangladesh. The populations include the three subspecies of G. g. spadiceus, G. g. gallus and G. g. murghi and were sampled to reveal the geographical morphological variations among populations in G. gallus. 2. The morphometric characteristics of subspecies murghi could be clearly distinguished from those of the other subspecies using a canonical discriminant analysis. However, the size and shape of the skull of the gallus population from South Vietnam were not statistically different from that of the subspecies spadiceus from North Laos. The canonical discriminant scores also clearly indicated that there were morphological similarities in the skulls of the populations from North Laos and South Vietnam. 3. From the results, therefore, it is concluded that red jungle fowls do not exhibit high levels of osteometric variation between geographical localities at least within the Indochinese Peninsula. 4. This contrasts with previous studies which have described these subspecies as having various external morphological differences and have argued that zoogeographical barriers exist between the north and south areas of the Indochinese Peninsula.
Tan, Alai; Freeman, Daniel H; Goodwin, James S; Freeman, Jean L
2006-12-01
The accuracy of mammography reading varies among radiologists. We conducted a population-based assessment on radiologist variation in false- positive rates of screening mammography and its associated radiologist characteristics. About 27,394 screening mammograms interpreted by 1067 radiologists were identified from a 5% non-cancer sample of Medicare claims during 1998-1999. The data were linked to the American Medical Association Masterfile to obtain radiologist characteristics. Multilevel logistic regression models were used to examine the radiologist variation in false-positive rates of screening mammography and the associated radiologist characteristics. Radiologists varied substantially in the false-positive rates of screening mammography (ranging from 1.5 to 24.1%, adjusting for patient characteristics). A longer time period since graduation is associated with lower false-positive rates (odds ratio [OR] for every 10 years increase: 0.87, 95% Confidence Interval [CI], 0.81-0.94) and female radiologists had higher false-positive rates than male radiologists (OR = 1.25, 95% CI, 1.05-1.49), adjusting for patient and other radiologist characteristics. The unmeasured factors contributed to about 90% of the between-radiologist variance. Radiologists varied greatly in accuracy of mammography reading. Female and more recently trained radiologists had higher false-positive rates. The variation among radiologists was largely due to unmeasured factors, especially unmeasured radiologist factors. If our results are confirmed in further studies, they suggest that system-level interventions would be required to reduce variation in mammography interpretation.
Valdez, Ernest W.; Bogan, Michael A.
2009-01-01
Few studies have investigated the relationship between morphological variation and local feeding habits of bats in the United States. We used discriminant function analysis (DFA) to compare cranial morphology of Myotis occultus from southern Colorado, and central, and southern New Mexico. We analyzed guano collected from maternity colonies in southern Colorado and central New Mexico to compare food habits. Bats from southern Colorado had the smallest values on the first canonical variate (CV1) that also reflected the smallest measurements of key cranial and dental variables, including height of coronoid process, width of molar, and dentary thickness. Bats from central and southern New Mexico had intermediate and large CV1 values, respectively. Overall, CV1 discriminated individuals occurring in southern Colorado and central New Mexico from those in southern New Mexico. CV2 served best at discriminating bats of southern Colorado from those of central New Mexico. Comparison of food habits revealed that individuals from southern Colorado ate more soft-bodied prey items (e.g., flies) whereas bats from central New Mexico ate more hard-bodied prey items (e.g., beetles). As shown in earlier studies that investigated relationships between morphology and diet of insectivorous bats, we found differences in skull morphology of M. occultusthat were correlated with differences in food habits.
Colihueque, Nelson; Corrales, Olga; Yáñez, Miguel
2017-01-01
Trichomycterus areolatus Valenciennes, 1846 is a small endemic catfish inhabiting the Andean river basins of Chile. In this study, the morphological variability of three T. areolatus populations, collected in two river basins from southern Chile, was assessed with multivariate analyses, including principal component analysis (PCA) and discriminant function analysis (DFA). It is hypothesized that populations must segregate morphologically from each other based on the river basin that they were sampled from, since each basin presents relatively particular hydrological characteristics. Significant morphological differences among the three populations were found with PCA (ANOSIM test, r = 0.552, p < 0.0001) and DFA (Wilks's λ = 0.036, p < 0.01). PCA accounted for a total variation of 56.16% by the first two principal components. The first Principal Component (PC1) and PC2 explained 34.72 and 21.44% of the total variation, respectively. The scatter-plot of the first two discriminant functions (DF1 on DF2) also validated the existence of three different populations. In group classification using DFA, 93.3% of the specimens were correctly-classified into their original populations. Of the total of 22 transformed truss measurements, 17 exhibited highly significant ( p < 0.01) differences among populations. The data support the existence of T. areolatus morphological variation across different rivers in southern Chile, likely reflecting the geographic isolation underlying population structure of the species.
Chapman, Ben B; Hulthén, Kaj; Brönmark, Christer; Nilsson, P Anders; Skov, Christian; Hansson, Lars-Anders; Brodersen, Jakob
2015-09-01
1. Migration is a widespread phenomenon, with powerful ecological and evolutionary consequences. Morphological adaptations to reduce the energetic costs associated with migratory transport are commonly documented for migratory species. However, few studies have investigated whether variation in body morphology can be explained by variation in migratory strategy within a species. 2. We address this question in roach Rutilus rutilus, a partially migratory freshwater fish that migrates from lakes into streams during winter. We both compare body shape between populations that differ in migratory opportunity (open vs. closed lakes), and between individuals from a single population that vary in migratory propensity (migrants and residents from a partially migratory population). Following hydrodynamic theory, we posit that migrants should have a more shallow body depth, to reduce the costs associated with migrating into streams with higher flow conditions than the lakes the residents occupy all year round. 3. We find evidence both across and within populations to support our prediction, with individuals from open lakes and migrants from the partially migratory population having a more slender, shallow-bodied morphology than fish from closed lakes and all-year residents. 4. Our data suggest that a shallow body morphology is beneficial to migratory individuals and our study is one of the first to link migratory strategy and intraspecific variation in body shape. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
USDA-ARS?s Scientific Manuscript database
Sorghum population for Targeting Induced Local Lesion IN Genome (TILLING) was generated from BTx623 in 2005 and publicly available in 2009. After releasing to the public, this population was intensively screened by morphological observation in the field and a number of mutants with useful traits wer...
Otolith patterns of rockfishes from the northeastern Pacific.
Tuset, Victor M; Imondi, Ralph; Aguado, Guillermo; Otero-Ferrer, José L; Santschi, Linda; Lombarte, Antoni; Love, Milton
2015-04-01
Sagitta otolith shape was analysed in twenty sympatric rockfishes off the southern California coast (Northeastern Pacific). The variation in shape was quantified using canonical variate analysis based on fifth wavelet function decomposition of otolith contour. We selected wavelets because this representation allow the identifications of zones or single morphological points along the contour. The entire otoliths along with four subsections (anterior, ventral, posterodorsal, and anterodorsal) with morphological meaning were examined. Multivariate analyses (MANOVA) showed significant differences in the contours of whole otolith morphology and corresponding subsection among rockfishes. Four patterns were found: fusiform, oblong, and two types of elliptic. A redundancy analysis indicated that anterior and anterodorsal subsections contribute most to define the entire otolith shape. Complementarily, the eco-morphological study indicated that the depth distribution and strategies for capture prey were correlated to otolith shape, especially with the anterodorsal zone. © 2014 Wiley Periodicals, Inc.
Forsman, Zac H.; Concepcion, Gregory T.; Haverkort, Roxanne D.; Shaw, Ross W.; Maragos, James E.; Toonen, Robert J.
2010-01-01
M. dilatata, M. flabellata, and M. patula and 80 other scleractinian corals were petitioned to be listed under the US Endangered Species Act (ESA), which would have major conservation implications. One of the difficulties with this evaluation is that reproductive boundaries between morphologically defined coral species are often permeable, and morphology can be wildly variable. We examined genetic and morphological variation in Hawaiian Montipora with a suite of molecular markers (mitochondrial: COI, CR, Cyt-B, 16S, ATP6; nuclear: ATPsβ, ITS) and microscopic skeletal measurements. Mitochondrial markers and the ITS region revealed four distinct clades: I) M. patula/M. verrilli, II) M. cf. incrassata, III) M. capitata, IV) M. dilatata/M. flabellata/M. cf. turgescens. These clades are likely to occur outside of Hawai'i according to mitochondrial control region haplotypes from previous studies. The ATPsβ intron data showed a pattern often interpreted as resulting from hybridization and introgression; however, incomplete lineage sorting may be more likely since the multicopy nuclear ITS region was consistent with the mitochondrial data. Furthermore, principal components analysis (PCA) of skeletal microstructure was concordant with the mitochondrial clades, while nominal taxa overlapped. The size and shape of verrucae or papillae contributed most to identifying groups, while colony-level morphology was highly variable. It is not yet clear if these species complexes represent population-level variation or incipient speciation (CA<1MYA), two alternatives that have very different conservation implications. This study highlights the difficulty in understanding the scale of genetic and morphological variation that corresponds to species as opposed to population-level variation, information that is essential for conservation and for understanding coral biodiversity. PMID:21151995
Forsman, Zac H; Concepcion, Gregory T; Haverkort, Roxanne D; Shaw, Ross W; Maragos, James E; Toonen, Robert J
2010-12-02
M. dilatata, M. flabellata, and M. patula and 80 other scleractinian corals were petitioned to be listed under the US Endangered Species Act (ESA), which would have major conservation implications. One of the difficulties with this evaluation is that reproductive boundaries between morphologically defined coral species are often permeable, and morphology can be wildly variable. We examined genetic and morphological variation in Hawaiian Montipora with a suite of molecular markers (mitochondrial: COI, CR, Cyt-B, 16S, ATP6; nuclear: ATPsβ, ITS) and microscopic skeletal measurements. Mitochondrial markers and the ITS region revealed four distinct clades: I) M. patula/M. verrilli, II) M. cf. incrassata, III) M. capitata, IV) M. dilatata/M. flabellata/M. cf. turgescens. These clades are likely to occur outside of Hawai'i according to mitochondrial control region haplotypes from previous studies. The ATPsβ intron data showed a pattern often interpreted as resulting from hybridization and introgression; however, incomplete lineage sorting may be more likely since the multicopy nuclear ITS region was consistent with the mitochondrial data. Furthermore, principal components analysis (PCA) of skeletal microstructure was concordant with the mitochondrial clades, while nominal taxa overlapped. The size and shape of verrucae or papillae contributed most to identifying groups, while colony-level morphology was highly variable. It is not yet clear if these species complexes represent population-level variation or incipient speciation (CA<1MYA), two alternatives that have very different conservation implications. This study highlights the difficulty in understanding the scale of genetic and morphological variation that corresponds to species as opposed to population-level variation, information that is essential for conservation and for understanding coral biodiversity.
Biogeography, phylogeny, and morphological evolution of central Texas cave and spring salamanders
2013-01-01
Background Subterranean faunal radiations can result in complex patterns of morphological divergence involving both convergent or parallel phenotypic evolution and cryptic species diversity. Salamanders of the genus Eurycea in central Texas provide a particularly challenging example with respect to phylogeny reconstruction, biogeography and taxonomy. These predominantly aquatic species inhabit karst limestone aquifers and spring outflows, and exhibit a wide range of morphological and genetic variation. We extensively sampled spring and cave populations of six Eurycea species within this group (eastern Blepsimolge clade), to reconstruct their phylogenetic and biogeographic history using mtDNA and examine patterns and origins of cave- and surface-associated morphological variation. Results Genetic divergence is generally low, and many populations share ancestral haplotypes and/or show evidence of introgression. This pattern likely indicates a recent radiation coupled with a complex history of intermittent connections within the aquatic karst system. Cave populations that exhibit the most extreme troglobitic morphologies show no or very low divergence from surface populations and are geographically interspersed among them, suggesting multiple instances of rapid, parallel phenotypic evolution. Morphological variation is diffuse among cave populations; this is in contrast to surface populations, which form a tight cluster in morphospace. Unexpectedly, our analyses reveal two distinct and previously unrecognized morphological groups encompassing multiple species that are not correlated with spring or cave habitat, phylogeny or geography, and may be due to developmental plasticity. Conclusions The evolutionary history of this group of spring- and cave-dwelling salamanders reflects patterns of intermittent isolation and gene flow influenced by complex hydrogeologic dynamics that are characteristic of karst regions. Shallow genetic divergences among several species, evidence of genetic exchange, and nested relationships across morphologically disparate cave and spring forms suggests that cave invasion was recent and many troglobitic morphologies arose independently. These patterns are consistent with an adaptive-shift hypothesis of divergence, which has been proposed to explain diversification in other karst fauna. While cave and surface forms often do not appear to be genetically isolated, morphological diversity within and among populations may be maintained by developmental plasticity, selection, or a combination thereof. PMID:24044519
Evolution of the structure and function of the vertebrate tongue
Iwasaki, Shin-ichi
2002-01-01
Abstract Studies of the comparative morphology of the tongues of living vertebrates have revealed how variations in the morphology and function of the organ might be related to evolutional events. The tongue, which plays a very important role in food intake by vertebrates, exhibits significant morphological variations that appear to represent adaptation to the current environmental conditions of each respective habitat. This review examines the fundamental importance of morphology in the evolution of the vertebrate tongue, focusing on the origin of the tongue and on the relationship between morphology and environmental conditions. Tongues of various extant vertebrates, including those of amphibians, reptiles, birds and mammals, were analysed in terms of gross anatomy and microanatomy by light microscopy and by scanning and transmission electron microscopy. Comparisons of tongue morphology revealed a relationship between changes in the appearance of the tongue and changes in habitat, from a freshwater environment to a terrestrial environment, as well as a relationship between the extent of keratinization of the lingual epithelium and the transition from a moist or wet environment to a dry environment. The lingual epithelium of amphibians is devoid of keratinization while that of reptilians is keratinized to different extents. Reptiles live in a variety of habitats, from seawater to regions of high temperature and very high or very low humidity. Keratinization of the lingual epithelium is considered to have been acquired concomitantly with the evolution of amniotes. The variations in the extent of keratinization of the lingual epithelium, which is observed between various amniotes, appear to be secondary, reflecting the environmental conditions of different species. PMID:12171472
Mielke, Ben; Lam, Richard; Ter Haar, Gert
2017-09-01
Anatomic variations in skull morphology have been previously described for brachycephalic dogs; however there is little published information on interbreed variations in tympanic bulla morphology. This retrospective observational study aimed to (1) provide detailed descriptions of the computed tomographic (CT) morphology of tympanic bullae in a sample of dogs representing four brachycephalic breeds (Pugs, French Bulldogs, English Bulldog, and Cavalier King Charles Spaniels) versus two mesaticephalic breeds (Labrador retrievers and Jack Russell Terriers); and (2) test associations between tympanic bulla morphology and presence of middle ear effusion. Archived head CT scans for the above dog breeds were retrieved and a single observer measured tympanic bulla shape (width:height ratio), wall thickness, position relative to the temporomandibular joint, and relative volume (volume:body weight ratio). A total of 127 dogs were sampled. Cavalier King Charles Spaniels had significantly flatter tympanic bullae (greater width:height ratios) versus Pugs, English Bulldogs, Labrador retrievers, and Jack Russell terriers. French Bulldogs and Pugs had significantly more overlap between tympanic bullae and temporomandibular joints versus other breeds. All brachycephalic breeds had significantly lower tympanic bulla volume:weight ratios versus Labrador retrievers. Soft tissue attenuating material (middle ear effusion) was present in the middle ear of 48/100 (48%) of brachycephalic breeds, but no significant association was found between tympanic bulla CT measurements and presence of this material. Findings indicated that there are significant interbreed variations in tympanic bulla morphology, however no significant relationship between tympanic bulla morphology and presence of middle ear effusion could be identified. © 2017 American College of Veterinary Radiology.
Evolution of the structure and function of the vertebrate tongue.
Iwasaki, Shin-ichi
2002-07-01
Studies of the comparative morphology of the tongues of living vertebrates have revealed how variations in the morphology and function of the organ might be related to evolutional events. The tongue, which plays a very important role in food intake by vertebrates, exhibits significant morphological variations that appear to represent adaptation to the current environmental conditions of each respective habitat. This review examines the fundamental importance of morphology in the evolution of the vertebrate tongue, focusing on the origin of the tongue and on the relationship between morphology and environmental conditions. Tongues of various extant vertebrates, including those of amphibians, reptiles, birds and mammals, were analysed in terms of gross anatomy and microanatomy by light microscopy and by scanning and transmission electron microscopy. Comparisons of tongue morphology revealed a relationship between changes in the appearance of the tongue and changes in habitat, from a freshwater environment to a terrestrial environment, as well as a relationship between the extent of keratinization of the lingual epithelium and the transition from a moist or wet environment to a dry environment. The lingual epithelium of amphibians is devoid of keratinization while that of reptilians is keratinized to different extents. Reptiles live in a variety of habitats, from seawater to regions of high temperature and very high or very low humidity. Keratinization of the lingual epithelium is considered to have been acquired concomitantly with the evolution of amniotes. The variations in the extent of keratinization of the lingual epithelium, which is observed between various amniotes, appear to be secondary, reflecting the environmental conditions of different species.
Left-right asymmetries and shape analysis on Ceroglossus chilensis (Coleoptera: Carabidae)
NASA Astrophysics Data System (ADS)
Bravi, Raffaella; Benítez, Hugo A.
2013-10-01
Bilateral symmetry is widespread in animal kingdom, however most animal can deviate from expected symmetry and manifest some kind of asymmetries. Fluctuating asymmetry is considered as a tool for valuating developmental instability, whereas directional asymmetry is inherited and could be used for evaluating evolutionary development. We use the method of geometric morphometrics to analyze left/right asymmetries in the whole body, in two sites and totally six populations of Ceroglossus chilensis with the aim to infer and explain morphological disparities between populations and sexes in this species. In all individuals analyzed we found both fluctuating asymmetry and directional asymmetry for size and shape variation components, and a high sexual dimorphism. Moreover a high morphological variability between the two sites emerged as well. Differences in diet could influence the expression of morphological variation and simultaneously affect body sides, and therefore contribute to the symmetric component of variation. Moreover differences emerged between two sites could be a consequence of isolation and fragmentation, rather than a response to local environmental differences between sampling sites.
Schmieder, Daniela A.; Benítez, Hugo A.; Borissov, Ivailo M.; Fruciano, Carmelo
2015-01-01
External morphology is commonly used to identify bats as well as to investigate flight and foraging behavior, typically relying on simple length and area measures or ratios. However, geometric morphometrics is increasingly used in the biological sciences to analyse variation in shape and discriminate among species and populations. Here we compare the ability of traditional versus geometric morphometric methods in discriminating between closely related bat species – in this case European horseshoe bats (Rhinolophidae, Chiroptera) – based on morphology of the wing, body and tail. In addition to comparing morphometric methods, we used geometric morphometrics to detect interspecies differences as shape changes. Geometric morphometrics yielded improved species discrimination relative to traditional methods. The predicted shape for the variation along the between group principal components revealed that the largest differences between species lay in the extent to which the wing reaches in the direction of the head. This strong trend in interspecific shape variation is associated with size, which we interpret as an evolutionary allometry pattern. PMID:25965335
A deep learning and novelty detection framework for rapid phenotyping in high-content screening
Sommer, Christoph; Hoefler, Rudolf; Samwer, Matthias; Gerlich, Daniel W.
2017-01-01
Supervised machine learning is a powerful and widely used method for analyzing high-content screening data. Despite its accuracy, efficiency, and versatility, supervised machine learning has drawbacks, most notably its dependence on a priori knowledge of expected phenotypes and time-consuming classifier training. We provide a solution to these limitations with CellCognition Explorer, a generic novelty detection and deep learning framework. Application to several large-scale screening data sets on nuclear and mitotic cell morphologies demonstrates that CellCognition Explorer enables discovery of rare phenotypes without user training, which has broad implications for improved assay development in high-content screening. PMID:28954863
Tschopp, Emanuel
2016-01-01
Vertebral laminae are bony ridges or sheets that connect important morphological landmarks on the vertebrae, like diapophyses or zygapophyses. They usually exhibit some serial variation throughout the column. A consistent terminology facilitates the morphological description of this variation, and the recognition of patterns that could be taxonomically significant and could serve as phylogenetic characters. Such a terminology was designed for saurischian dinosaurs, and has also been applied to other members of Archosauriformes. Herein, this terminology is applied for the first time to lizards (Squamata). Probably due to their generally smaller size compared to saurischian dinosaurs, lizards have less developed vertebral laminae. Some laminae could not be recognized in this group and others require new names to account for differences in basic vertebral morphology. For instance, the fusion of diapophysis and parapophysis in lacertids into a structure called synapophysis necessitates the creation of the new term synapophyseal laminae for both diapophyseal and parapophyseal laminae. An assessment of occurrence and serial variation in a number of lacertid species shows that some laminae develop throughout ontogeny or only occur in large-sized species, whereas the distribution of other laminae might prove to be taxonomically significant in future. PMID:26907769
Tschopp, Emanuel
2016-01-01
Vertebral laminae are bony ridges or sheets that connect important morphological landmarks on the vertebrae, like diapophyses or zygapophyses. They usually exhibit some serial variation throughout the column. A consistent terminology facilitates the morphological description of this variation, and the recognition of patterns that could be taxonomically significant and could serve as phylogenetic characters. Such a terminology was designed for saurischian dinosaurs, and has also been applied to other members of Archosauriformes. Herein, this terminology is applied for the first time to lizards (Squamata). Probably due to their generally smaller size compared to saurischian dinosaurs, lizards have less developed vertebral laminae. Some laminae could not be recognized in this group and others require new names to account for differences in basic vertebral morphology. For instance, the fusion of diapophysis and parapophysis in lacertids into a structure called synapophysis necessitates the creation of the new term synapophyseal laminae for both diapophyseal and parapophyseal laminae. An assessment of occurrence and serial variation in a number of lacertid species shows that some laminae develop throughout ontogeny or only occur in large-sized species, whereas the distribution of other laminae might prove to be taxonomically significant in future.
Harnessing the Power of Light to See and Treat Breast Cancer
2014-10-01
effect of novel therapeutic agents in vivo. 15. SUBJECT TERMS optical spectroscopy, imaging , fiber-optic, molecular, screening, breast cancer 16...therapeutic agents in vivo. a. Original Statement of Work for 5 Years Aim 1: Optical imaging of margin morphology on breast lumpectomy specimens: To...evaluate the role of wide-field imaging (coverage) and high-resolution interrogation (localization) of breast margin morphology to guide surgical
ERIC Educational Resources Information Center
Liu, Duo
2016-01-01
The processing of morphological information during Chinese word memorization was investigated in the present study. Participants were asked to study words presented to them on a computer screen in the studying phase and then judge whether presented words were old or new in the test phase. In addition to parent words (i.e. the words studied in the…
NASA Astrophysics Data System (ADS)
Rees, D. J.; Byrkjedal, I.; Sutton, T. T.
2017-03-01
The genus Maurolicus comprises extremely abundant vertically-migrating fishes that have considerable biomass in a number of regions worldwide. The genus was generally considered monotypic, with a single species, M. muelleri (Gmelin, 1789), inhabiting all world oceans. Based on differences in combinations of a limited number of morphometric characters, 15 separate species have been proposed, mostly associated with different ocean basins and seamounts. However, due to similarities in external morphology and overlap in ranges of morphometric characteristics, there remains a need for further validation of these species. Here, we present results of a multi-gene analysis, together with morphological data, for five putative Maurolicus species from multiple locations in the northern and southern hemispheres. Sampling encompasses described species from the North and South Atlantic, Mediterranean Sea, south-east Indian Ocean and the western South Pacific. Mitochondrial (16S and COI) and nuclear (ITS-2) gene sequences for 120 specimens were used in Maximum Parsimony and Bayesian Inference analyses as well as creation of haplotype networks. Morphological character analyses were based on data from 279 adult individuals. Several clear groupings emerge, conflicting with previously recognised species: (1) a 'northern' clade comprising Maurolicus muelleri and M. amethystinopunctatus, (2) a 'southern' clade comprising M. australis, M. walvisensis (also M. japonicus) and (3) eastern Equatorial and western North Atlantic M. weitzmani. The southern clade taxa are genetically indistinguishable and not well defined morphologically and present a clear case for synonymisation as M. australis. Synonymisation is also proposed for M. muelleri and M. amethystinopunctatus, with limited morphological variation likely to reflect physical and biological differences experienced north / south of the sub-polar front. Maurolicus weitzmani is clearly differentiated from all other Maurolicus species on both a molecular and morphological basis. Studies of genetic and morphological diversity in Maurolicus will further contribute to the question of 'what constitutes a species in the open ocean?', where a complex picture is emerging of both unexpected variation, as well as the unexpectantly absent genetic variation, in cosmopolitan taxa.
Zafar A Handoo; Lynn K. Carta; Andrea M. Skantar; Sergei A. Subbotin; Stephen W. Fraedrich
2016-01-01
A population of Xiphinema chambersi from the root zone around live oak (Quercus virginiana Mill.) trees on Jekyll Island, GA, is described using both morphological and molecular tools and compared with descriptions of type specimens. Initially, because of a few morphological differences, this nematode was thought to represent...
ERIC Educational Resources Information Center
Paradis, Joanne; Tulpar, Yasemin; Arppe, Antti
2016-01-01
This study examined accuracy in production and grammaticality judgements of verb morphology by eighteen Chinese-speaking children learning English as a second language (L2) followed longitudinally from four to six years of exposure to English, and who began to learn English at age 4;2. Children's growth in accuracy with verb morphology reached a…
Ely, Craig R.; Fox, A.D.; Alisauskas, R.T.; Andreev, A.; Bromley, R.G.; Degtyarev, Andrei G.; Ebbinge, B.; Gurtovaya, E.N.; Kerbes, R.; Kondratyev, Alexander V.; Kostin, I.; Krechmar, A.V.; Litvin, K.E.; Miyabayashi, Y.; Moou, J.H.; Oates, R.M.; Orthmeyer, D.L.; Sabano, Yutaka; Simpson, S.G.; Solovieva, D.V.; Spindler, Michael A.; Syroechkovsky, Y.V.; Takekawa, John Y.; Walsh, A.
2005-01-01
Capsule: Greater White-fronted Geese show significant variation in body size from sampling locations throughout their circumpolar breeding range. Aims: To determine the degree of geographical variation in body size of Greater White-fronted Geese and identify factors contributing to any apparent patterns in variation. Methods: Structural measures of >3000 geese from 16 breeding areas throughout the Holarctic breeding range of the species were compared statistically. Results: Palearctic forms varied clinally, and increased in size from the smallest forms on the Kanin and Taimyr peninsulas in western Eurasia to the largest forms breeding in the Anadyr Lowlands of eastern Chukotka. Clinal variation was less apparent in the Nearctic, as both the smallest form in the Nearctic and the largest form overall (the Tule Goose) were from different breeding areas in Alaska. The Tule Goose was 25% larger than the smallest form. Birds from Greenland (A. a. flavirostris) were the second largest, although only slightly larger than geese from several North American populations. Body size was not correlated with breeding latitude but was positively correlated with temperature on the breeding grounds, breeding habitat, and migration distance. Body mass of Greater White-fronted Geese from all populations remained relatively constant during the period of wing moult. Morphological distinctness of eastern and western Palearctic forms concurs with earlier findings of complete range disjunction. Conclusions: Patterns of morphological variation in Greater White-fronted Geese across the Holarctic can be generally attributed to adaptation to variable breeding environments, migration requirements, and phylo-geographical histories.
Barbosa, Ariane R; Fiorini, Cecília F; Silva-Pereira, Viviane; Mello-Silva, Renato; Borba, Eduardo L
2012-09-01
Vellozia hirsuta forms a complex presenting wide morphological and anatomical variation, resulting in five specific names and 14 morpho-anatomical patterns occurring in disjunct populations. We carried out a phylogeographical study to investigate the existence of correlation among the genetic and morphological patterns within this complex, and to determine whether it is composed of various species or should be treated as an ochlospecies, a species having widely polymorphic and weakly polytypic complex variation, with morphological characteristics varying independently. We carried out phylogeographical analyses using cpDNA rpl32F-trnL intergenic region. We found 20 haplotypes in 23 populations sampled. The populations are genetically structured (Φ(ST) = 0.818) into four phylogeographical groups demonstrating geographical structuring but with no correlation with morpho-anatomical patterns. Our analyses do not support recognizing any of the species now synonymized under Vellozia hirsuta. The northern populations were the most genetically differentiated and could be considered a distinct taxon, as they are also morphologically different. It is recommended that Vellozia hirsuta be considered a single enormously variable species. The patterns of variation within V. hirsuta probably are related to climatic changes that occurred during the Pleistocene Epoch in tropical Brazil when reductions in forest cover favored the expansion of V. hirsuta populations into extensive lowland areas. The expansion of forest cover at the end of the glaciations would have again restricted the occurrence of campos rupestres vegetation to high elevations, which constitute the current centers of diversity of this species.
Hidden in plain view: Cryptic diversity in the emblematic Araucaria of New Caledonia.
Ruhsam, Markus; Clark, Alexandra; Finger, Aline; Wulff, Adrien S; Mill, Robert R; Thomas, Philip I; Gardner, Martin F; Gaudeul, Myriam; Ennos, Richard A; Hollingsworth, Peter M
2016-05-01
Cryptic species represent a conservation challenge, because distributions and threats cannot be accurately assessed until species are recognized and defined. Cryptic species are common in diminutive and morphologically simple organisms, but are rare in charismatic and/or highly visible groups such as conifers. New Caledonia, a small island in the southern Pacific is a hotspot of diversity for the emblematic conifer genus Araucaria (Araucariaceae, Monkey Puzzle trees) where 13 of the 19 recognized species are endemic. We sampled across the entire geographical distribution of two closely related species (Araucaria rulei and A. muelleri) and screened them for genetic variation at 12 nuclear and 14 plastid microsatellites and one plastid minisatellite; a subset of the samples was also examined using leaf morphometrics. The genetic data show that populations of the endangered A. muelleri fall into two clearly distinct genetic groups: one corresponding to montane populations, the other corresponding to trees from lower elevation populations from around the Goro plateau. These Goro plateau populations are more closely related to A. rulei, but are sufficiently genetically and morphological distinct to warrant recognition as a new species. Our study shows the presence of a previously unrecognized species in this flagship group, and that A. muelleri has 30% fewer individuals than previously thought. Combined, this clarification of species diversity and distributions provides important information to aid conservation planning for New Caledonian Araucaria. © 2016 Botanical Society of America.
Optoelectronic image processing for cervical cancer screening
NASA Astrophysics Data System (ADS)
Narayanswamy, Ramkumar; Sharpe, John P.; Johnson, Kristina M.
1994-05-01
Automation of the Pap-smear cervical screening method is highly desirable as it relieves tedium for the human operators, reduces cost and should increase accuracy and provide repeatability. We present here the design for a high-throughput optoelectronic system which forms the first stage of a two stage system to automate pap-smear screening. We use a mathematical morphological technique called the hit-or-miss transform to identify the suspicious areas on a pap-smear slide. This algorithm is implemented using a VanderLugt architecture and a time-sequential ANDing smart pixel array.
Li, Chunjia; Lu, Xin; Xu, Chaohua; Cai, Qing; Basnayake, Jayapathi; Lakshmanan, Prakash; Ghannoum, Oula; Fan, Yuanhong
2017-01-01
Abstract Sugarcane, derived from the hybridization of Saccharum officinarum×Saccharum spontaneum, is a vegetative crop in which the final yield is highly driven by culm biomass production. Cane yield under irrigated or rain-fed conditions could be improved by developing genotypes with leaves that have high intrinsic transpiration efficiency, TEi (CO2 assimilation/stomatal conductance), provided this is not offset by negative impacts from reduced conductance and growth rates. This study was conducted to partition genotypic variation in TEi among a sample of diverse clones from the Chinese collection of sugarcane-related germplasm into that due to variation in stomatal conductance versus that due to variation in photosynthetic capacity. A secondary goal was to define protocols for optimized larger-scale screening of germplasm collections. Genotypic variation in TEi was attributed to significant variation in both stomatal and photosynthetic components. A number of genotypes were found to possess high TEi as a result of high photosynthetic capacity. This trait combination is expected to be of significant breeding value. It was determined that a small number of observations (16) is sufficient for efficiently screening TEi in larger populations of sugarcane genotypes The research methodology and results reported are encouraging in supporting a larger-scale screening and introgression of high transpiration efficiency in sugarcane breeding. However, further research is required to quantify narrow sense heritability as well as the leaf-to-field translational potential of genotypic variation in transpiration efficiency-related traits observed in this study. PMID:28444313
Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor
NASA Astrophysics Data System (ADS)
Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.
2016-04-01
Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.
Hur, Matthew; Gistelinck, Charlotte A; Huber, Philippe; Lee, Jane; Thompson, Marjorie H; Monstad-Rios, Adrian T; Watson, Claire J; McMenamin, Sarah K; Willaert, Andy; Parichy, David M; Coucke, Paul; Kwon, Ronald Y
2017-09-08
Phenomics, which ideally involves in-depth phenotyping at the whole-organism scale, may enhance our functional understanding of genetic variation. Here, we demonstrate methods to profile hundreds of phenotypic measures comprised of morphological and densitometric traits at a large number of sites within the axial skeleton of adult zebrafish. We show the potential for vertebral patterns to confer heightened sensitivity, with similar specificity, in discriminating mutant populations compared to analyzing individual vertebrae in isolation. We identify phenotypes associated with human brittle bone disease and thyroid stimulating hormone receptor hyperactivity. Finally, we develop allometric models and show their potential to aid in the discrimination of mutant phenotypes masked by alterations in growth. Our studies demonstrate virtues of deep phenotyping in a spatially distributed organ system. Analyzing phenotypic patterns may increase productivity in genetic screens, and facilitate the study of genetic variants associated with smaller effect sizes, such as those that underlie complex diseases.
Solovyeva, Evgeniya N; Dunayev, Evgeniy N; Nazarov, Roman A; Mehdi Radjabizadeh; Poyarkov, Nikolay A
2018-01-01
The morphological and genetic variation of a wide-ranging Secret Toad-headed agama, Phrynocephalus mystaceus that inhabits sand deserts of south-eastern Europe, Middle East, Middle Asia, and western China is reviewed. Based on the morphological differences and high divergence in COI (mtDNA) gene sequences a new subspecies of Ph. mystaceus is described from Khorasan Razavi Province in Iran. Partial sequences of COI mtDNA gene of 31 specimens of Ph. mystaceus from 17 localities from all major parts of species range were analyzed. Genetic distances show a deep divergence between Ph. mystaceus khorasanus ssp. n. from Khorasan Razavi Province and all other populations of Ph. mystaceus . The new subspecies can be distinguished from other populations of Ph. mystaceus by a combination of several morphological features. Molecular and morphological analyses do not support the validity of other Ph. mystaceus subspecies described from Middle Asia and Caspian basin. Geographic variations in the Ph. mystaceus species complex and the status of previously described subspecies were discussed.
Demeter, Fabrice; Shackelford, Laura; Westaway, Kira; Duringer, Philippe; Bacon, Anne-Marie; Ponche, Jean-Luc; Wu, Xiujie; Sayavongkhamdy, Thongsa; Zhao, Jian-Xin; Barnes, Lani; Boyon, Marc; Sichanthongtip, Phonephanh; Sénégas, Frank; Karpoff, Anne-Marie; Patole-Edoumba, Elise; Coppens, Yves; Braga, José
2015-01-01
Little is known about the timing of modern human emergence and occupation in Eastern Eurasia. However a rapid migration out of Africa into Southeast Asia by at least 60 ka is supported by archaeological, paleogenetic and paleoanthropological data. Recent discoveries in Laos, a modern human cranium (TPL1) from Tam Pa Ling‘s cave, provided the first evidence for the presence of early modern humans in mainland Southeast Asia by 63-46 ka. In the current study, a complete human mandible representing a second individual, TPL 2, is described using discrete traits and geometric morphometrics with an emphasis on determining its population affinity. The TPL2 mandible has a chin and other discrete traits consistent with early modern humans, but it retains a robust lateral corpus and internal corporal morphology typical of archaic humans across the Old World. The mosaic morphology of TPL2 and the fully modern human morphology of TPL1 suggest that a large range of morphological variation was present in early modern human populations residing in the eastern Eurasia by MIS 3. PMID:25849125
FlowerMorphology: fully automatic flower morphometry software.
Rozov, Sergey M; Deineko, Elena V; Deyneko, Igor V
2018-05-01
The software FlowerMorphology is designed for automatic morphometry of actinomorphic flowers. The novel complex parameters of flowers calculated by FlowerMorphology allowed us to quantitatively characterize a polyploid series of tobacco. Morphological differences of plants representing closely related lineages or mutants are mostly quantitative. Very often, there are only very fine variations in plant morphology. Therefore, accurate and high-throughput methods are needed for their quantification. In addition, new characteristics are necessary for reliable detection of subtle changes in morphology. FlowerMorphology is an all-in-one software package to automatically image and analyze five-petal actinomorphic flowers of the dicotyledonous plants. Sixteen directly measured parameters and ten calculated complex parameters of a flower allow us to characterize variations with high accuracy. The program was developed for the needs of automatic characterization of Nicotiana tabacum flowers, but is applicable to many other plants with five-petal actinomorphic flowers and can be adopted for flowers of other merosity. A genetically similar polyploid series of N. tabacum plants was used to investigate differences in flower morphology. For the first time, we could quantify the dependence between ploidy and size and form of the tobacco flowers. We found that the radius of inner petal incisions shows a persistent positive correlation with the chromosome number. In contrast, a commonly used parameter-radius of outer corolla-does not discriminate 2n and 4n plants. Other parameters show that polyploidy leads to significant aberrations in flower symmetry and are also positively correlated with chromosome number. Executables of FlowerMorphology, source code, documentation, and examples are available at the program website: https://github.com/Deyneko/FlowerMorphology .
Liu, Dexin; Liu, Fang; Shan, Xiaoru; Zhang, Jian; Tang, Shiyi; Fang, Xiaomei; Liu, Xueying; Wang, Wenwen; Tan, Zhaoyun; Teng, Zhonghua; Zhang, Zhengsheng; Liu, Dajun
2015-10-01
Upland cotton plays a critical role not only in the textile industry, but also in the production of important secondary metabolites, such as oil and proteins. Construction of a high-density linkage map and identifying yield and seed trait quantitative trail loci (QTL) are prerequisites for molecular marker-assisted selective breeding projects. Here, we update a high-density upland cotton genetic map from recombinant inbred lines. A total of 25,313 SSR primer pairs were screened for polymorphism between Yumian 1 and T586, and 1712 SSR primer pairs were used to genotype the mapping population and construct a map. An additional 1166 loci have been added to our previously published map with 509 SSR markers. The updated genetic map spans a total recombinant length of 3338.2 cM and contains 1675 SSR loci and nine morphological markers, with an average interval of 1.98 cM between adjacent markers. Green lint (Lg) mapped on chromosome 15 in a previous report is mapped in an interval of 2.6 cM on chromosome 21. Based on the map and phenotypic data from multiple environments, 79 lint percentage and seed nutrient trait QTL are detected. These include 8 lint percentage, 13 crude protein, 15 crude oil, 8 linoleic, 10 oleic, 13 palmitic, and 12 stearic acid content QTL. They explain 3.5-62.7 % of the phenotypic variation observed. Four morphological markers identified have a major impact on lint percentage and cottonseed nutrients traits. In this study, our genetic map provides new sights into the tetraploid cotton genome. Furthermore, the stable QTL and morphological markers could be used for fine-mapping and map-based cloning.
Genomics-based precision breeding approaches to improve drought tolerance in rice.
Swamy, B P Mallikarjuna; Kumar, Arvind
2013-12-01
Rice (Oryza sativa L.), the major staple food crop of the world, faces a severe threat from widespread drought. The development of drought-tolerant rice varieties is considered a feasible option to counteract drought stress. The screening of rice germplasm under drought and its characterization at the morphological, genetic, and molecular levels revealed the existence of genetic variation for drought tolerance within the rice gene pool. The improvements made in managed drought screening and selection for grain yield under drought have significantly contributed to progress in drought breeding programs. The availability of rice genome sequence information, genome-wide molecular markers, and low-cost genotyping platforms now makes it possible to routinely apply marker-assisted breeding approaches to improve grain yield under drought. Grain yield QTLs with a large and consistent effect under drought have been indentified and successfully pyramided in popular rice mega-varieties. Various rice functional genomics resources, databases, tools, and recent advances in "-omics" are facilitating the characterization of genes and pathways involved in drought tolerance, providing the basis for candidate gene identification and allele mining. The transgenic approach is successful in generating drought tolerance in rice under controlled conditions, but field-level testing is necessary. Genomics-assisted drought breeding approaches hold great promise, but a well-planned integration with standardized phenotyping is highly essential to exploit their full potential. Copyright © 2013 Elsevier Inc. All rights reserved.
Case Definitions for Conditions Identified by Newborn Screening Public Health Surveillance.
Sontag, Marci K; Sarkar, Deboshree; Comeau, Anne M; Hassell, Kathryn; Botto, Lorenzo D; Parad, Richard; Rose, Susan R; Wintergerst, Kupper A; Smith-Whitley, Kim; Singh, Sikha; Yusuf, Careema; Ojodu, Jelili; Copeland, Sara; Hinton, Cynthia F
2018-01-01
Newborn screening (NBS) identifies infants with rare conditions to prevent death or the onset of irreversible morbidities. Conditions on the Health and Human Services Secretary's Recommended Uniform Screening Panel have been adopted by most state NBS programs, providing a consistent approach for identification of affected newborns across the United States. Screen-positive newborns are identified and referred for confirmatory diagnosis and follow-up. The designation of a clinically significant phenotype precursor to a clinical diagnosis may vary between clinical specialists, resulting in diagnostic variation. Determination of disease burden and birth prevalence of the screened conditions by public health tracking is made challenging by these variations. This report describes the development of a core group of new case definitions, along with implications, plans for their use, and links to the definitions that were developed by panels of clinical experts. These definitions have been developed through an iterative process and are piloted in NBS programs. Consensus public health surveillance case definitions for newborn screened disorders will allow for consistent categorization and tracking of short- and long-term follow-up of identified newborns at the local, regional, and national levels.
Case Definitions for Conditions Identified by Newborn Screening Public Health Surveillance
Sontag, Marci K.; Sarkar, Deboshree; Comeau, Anne M.; Hassell, Kathryn; Botto, Lorenzo D.; Parad, Richard; Rose, Susan R.; Wintergerst, Kupper A.; Smith-Whitley, Kim; Singh, Sikha; Yusuf, Careema; Ojodu, Jelili; Copeland, Sara; Hinton, Cynthia F.
2018-01-01
Newborn screening (NBS) identifies infants with rare conditions to prevent death or the onset of irreversible morbidities. Conditions on the Health and Human Services Secretary’s Recommended Uniform Screening Panel have been adopted by most state NBS programs, providing a consistent approach for identification of affected newborns across the United States. Screen-positive newborns are identified and referred for confirmatory diagnosis and follow-up. The designation of a clinically significant phenotype precursor to a clinical diagnosis may vary between clinical specialists, resulting in diagnostic variation. Determination of disease burden and birth prevalence of the screened conditions by public health tracking is made challenging by these variations. This report describes the development of a core group of new case definitions, along with implications, plans for their use, and links to the definitions that were developed by panels of clinical experts. These definitions have been developed through an iterative process and are piloted in NBS programs. Consensus public health surveillance case definitions for newborn screened disorders will allow for consistent categorization and tracking of short- and long-term follow-up of identified newborns at the local, regional, and national levels.
Qureshi, Samera Azeem; Lund, Annette Christin; Veierød, Marit Bragelien; Carlsen, Monica Hauger; Blomhoff, Rune; Andersen, Lene Frost; Ursin, Giske
2014-01-16
Fruit and vegetable intake has been found to reduce the risk of cardiovascular disease, certain types of cancer and diabetes mellitus. It is possible that antioxidants play a large part in this protective effect. However, which foods account for the variation in antioxidant intake in a population is not very clear. We used food frequency data from a population-based sample of women to identify the food items that contributed most to the variation in antioxidant intake in Norwegian diet. We used data from a study conducted among participants in the Norwegian Breast Cancer Screening Program (NBCSP), the national program which invites women aged 50-69 years to mammographic screening every 2 years. A subset of 6514 women who attended the screening in 2006/2007 completed a food frequency questionnaire (FFQ). Daily intake of energy, nutrients and antioxidant intake were estimated. We used multiple linear regression analysis to capture the variation in antioxidant intake. The mean (SD) antioxidant intake was 23.0 (8.5) mmol/day. Coffee consumption explained 54% of the variation in antioxidant intake, while fruits and vegetables explained 22%. The twenty food items that contributed most to the total variation in antioxidant intake explained 98% of the variation in intake. These included different types of coffee, tea, red wine, blueberries, walnuts, oranges, cinnamon and broccoli. In this study we identified a list of food items which capture the variation in antioxidant intake among these women. The major contributors to dietary total antioxidant intake were coffee, tea, red wine, blueberries, walnuts, oranges, cinnamon and broccoli. These items should be assessed in as much detail as possible in studies that wish to capture the variation in antioxidant intake.
Colihueque, Nelson; Corrales, Olga; Yáñez, Miguel
2017-01-01
Abstract Trichomycterus areolatus Valenciennes, 1846 is a small endemic catfish inhabiting the Andean river basins of Chile. In this study, the morphological variability of three T. areolatus populations, collected in two river basins from southern Chile, was assessed with multivariate analyses, including principal component analysis (PCA) and discriminant function analysis (DFA). It is hypothesized that populations must segregate morphologically from each other based on the river basin that they were sampled from, since each basin presents relatively particular hydrological characteristics. Significant morphological differences among the three populations were found with PCA (ANOSIM test, r = 0.552, p < 0.0001) and DFA (Wilks’s λ = 0.036, p < 0.01). PCA accounted for a total variation of 56.16% by the first two principal components. The first Principal Component (PC1) and PC2 explained 34.72 and 21.44% of the total variation, respectively. The scatter-plot of the first two discriminant functions (DF1 on DF2) also validated the existence of three different populations. In group classification using DFA, 93.3% of the specimens were correctly-classified into their original populations. Of the total of 22 transformed truss measurements, 17 exhibited highly significant (p < 0.01) differences among populations. The data support the existence of T. areolatus morphological variation across different rivers in southern Chile, likely reflecting the geographic isolation underlying population structure of the species. PMID:29134012
Padial, J.M.; McDiarmid, R.; De la Riva, I.
2006-01-01
We report new distributional information for Eleutherodactylus mercedesae in Bolivia, and provide the first record for Peru based on an adult female. This species, previously endemic to Bolivia, now ranges across about 1000 km in cloud forests on the Amazonian slopes of the Andes from southern Peru to central Bolivia. We provide the first morphological description of females based on two specimens, compare them with the male type and paratype, add some observations to the original description, and comment on variation in the species.
NASA Astrophysics Data System (ADS)
Jain, Neha; Shukla, Prashant; Singh, Jai
2018-05-01
Correlation images are very useful in determining the morphological changes. We have investigated the correlation image analysis on depolarization and retardance matrices of polystyrene and gelatine samples respectively. We observed that that correlation images have a potential to show a significant variation with change in the concentration of samples (polystyrene and gelatine). For polystyrene microspheres the correlation value decreases with increasing scattering coefficient. In gelatine samples the correlation also decreases with sample concentration. This variation in correlation for retardance shows the change in a birefringence property of gelatine solution.
Zafar A. Handoo; Lynn K. Carta; Andrea M. Skantar; Sergei A. Subbotin; Stephen Fraedrich
2016-01-01
A population of Xiphinema chambersi from the root zone around live oak (Quercus virginiana Mill.) trees on Jekyll Island, GA, is described using both morphological and molecular tools and compared with descriptions of type specimens. Initially, because of a few morphological differences, this nematode was thought to represent an undescribed species. However, on further...
USDA-ARS?s Scientific Manuscript database
A population of Xiphinema chambersi from the root zone around live oak (Quercus virginiana Mill.) trees on Jekyll Island, Georgia, USA is described using both morphological and molecular tools and compared with descriptions of type specimens. Initially, because of a few morphological differences thi...
Lajus, Dmitry; Sukhikh, Natalia; Alekseev, Victor
2015-01-01
Interest in cryptic species has increased significantly with current progress in genetic methods. The large number of cryptic species suggests that the resolution of traditional morphological techniques may be insufficient for taxonomical research. However, some species now considered to be cryptic may, in fact, be designated pseudocryptic after close morphological examination. Thus the “cryptic or pseudocryptic” dilemma speaks to the resolution of morphological analysis and its utility for identifying species. We address this dilemma first by systematically reviewing data published from 1980 to 2013 on cryptic species of Copepoda and then by performing an in-depth morphological study of the former Eurytemora affinis complex of cryptic species. Analyzing the published data showed that, in 5 of 24 revisions eligible for systematic review, cryptic species assignment was based solely on the genetic variation of forms without detailed morphological analysis to confirm the assignment. Therefore, some newly described cryptic species might be designated pseudocryptic under more detailed morphological analysis as happened with Eurytemora affinis complex. Recent genetic analyses of the complex found high levels of heterogeneity without morphological differences; it is argued to be cryptic. However, next detailed morphological analyses allowed to describe a number of valid species. Our study, using deep statistical analyses usually not applied for new species describing, of this species complex confirmed considerable differences between former cryptic species. In particular, fluctuating asymmetry (FA), the random variation of left and right structures, was significantly different between forms and provided independent information about their status. Our work showed that multivariate statistical approaches, such as principal component analysis, can be powerful techniques for the morphological discrimination of cryptic taxons. Despite increasing cryptic species designations, morphological techniques have great potential in determining copepod taxonomy. PMID:26120427
NASA Astrophysics Data System (ADS)
Yang, Ting; Gurnis, Michael; Zhan, Zhongwen
2017-07-01
The subducted old and cold Pacific Plate beneath the young Philippine Sea Plate at the Izu-Bonin trench over the Cenozoic hosts regional deep earthquakes. We investigate slab morphology and stress regimes under different trench motion histories with mantle convection models. Viscosity, temperature, and deviatoric stress are inherently heterogeneous within the slab, which we link to the occurrence of isolated earthquakes. Models expand on previous suggestions that observed slab morphology variations along the Izu-Bonin subduction zone, exhibited as shallow slab dip angles in the north and steeper dip angles in the south, are mainly due to variations in the rate of trench retreat from the north (where it is fast) to the south (where it is slow). Geodynamic models consistent with the regional plate tectonics, including oceanic plate age, plate convergence rate, and trench motion history, reproduce the seismologically observed principal stress direction and slab morphology. We suggest that the isolated 680 km deep, 30 May 2015 Mw 7.9 Bonin Islands earthquake, which lies east of the well-defined Benioff zone and has its principal compressional stress direction oriented toward the tip of the previously defined Benioff zone, can be explained by Pacific slab buckling in response to the slow trench retreat.
Benedict, John C.; Smith, Selena Y.; Specht, Chelsea D.; Collinson, Margaret E.; Leong-Škorničková, Jana; Parkinson, Dilworth Y.; Marone, Federica
2016-01-01
Phenotypic variation can be attributed to genetic heritability as well as biotic and abiotic factors. Across Zingiberales, there is a high variation in the number of species per clade and in phenotypic diversity. Factors contributing to this phenotypic variation have never been studied in a phylogenetic or ecological context. Seeds of 166 species from all eight families in Zingiberales were analyzed for 51 characters using synchrotron based 3D X-ray tomographic microscopy to determine phylogenetically informative characters and to understand the distribution of morphological disparity within the order. All families are distinguishable based on seed characters. Non-metric multidimensional scaling analyses show Zingiberaceae occupy the largest seed morphospace relative to the other families, and environmental analyses demonstrate that Zingiberaceae inhabit both temperate and tropical regions, while other Zingiberales are almost exclusively tropical. Temperate species do not cluster in morphospace nor do they share a common suite of character states. This suggests that the diversity seen is not driven by adaptation to temperate niches; rather, the morphological disparity seen likely reflects an underlying genetic plasticity that allowed Zingiberaceae to repeatedly colonize temperate environments. The notable morphoanatomical variety in Zingiberaceae seeds may account for their extraordinary ecological success and high species diversity as compared to other Zingiberales. PMID:27594701
Craniofacial variation and dietary adaptations of African colobines.
Koyabu, Daisuke B; Endo, Hideki
2009-06-01
African colobine monkeys show considerable craniofacial variation among species, although the evolutionary causes of this diversity are unclear. In light of growing evidence that diet varies considerably among colobine species, we investigated whether colobine craniofacial morphology varies as a function of their diet. We compared craniofacial morphology among five African species: Colobus angolensis, C. guereza, C. polykomos, Piliocolobus badius, and P. verus. Matrix correlation analysis indicated a significant correlation between species-specific morphological distance and dietary distance matrices. The mechanical advantage of the masseter muscle was higher in seed-eaters (C. angolensis and C. polykomos) and lower in those that eat mainly young leaves (C. guereza, P. badius, and P. verus). Canonical correspondence analysis revealed that the durophagous colobines possess relatively wider bigonial breadths, anteroposteriorly shorter faces, shorter postcanine tooth rows, more medially positioned dental batteries, wider bizygomatic arches, and anteroposteriorly longer zygomatic arches. Under the constrained lever model, these morphological features suggest that durophagous colobines have the capacity to generate relatively greater maximum bite forces. However, no consistent relationship was observed between diet and variation in the mandibular corpus and symphysis, implying that robust mandibles are not necessarily adaptations for stress resistance. Factors that may influence mandibular robusticity include allometry of symphyseal curvature and canine tooth support. Finally, linear measures of mandibular robusticity may suffer from error.
Optical biopsy of lymph node morphology using optical coherence tomography.
Luo, Wei; Nguyen, Freddy T; Zysk, Adam M; Ralston, Tyler S; Brockenbrough, John; Marks, Daniel L; Oldenburg, Amy L; Boppart, Stephen A
2005-10-01
Optical diagnostic imaging techniques are increasingly being used in the clinical environment, allowing for improved screening and diagnosis while minimizing the number of invasive procedures. Diffuse optical tomography, for example, is capable of whole-breast imaging and is being developed as an alternative to traditional X-ray mammography. While this may eventually be a very effective screening method, other optical techniques are better suited for imaging on the cellular and molecular scale. Optical Coherence Tomography (OCT), for instance, is capable of high-resolution cross-sectional imaging of tissue morphology. In a manner analogous to ultrasound imaging except using optics, pulses of near-infrared light are sent into the tissue while coherence-gated reflections are measured interferometrically to form a cross-sectional image of tissue. In this paper we apply OCT techniques for the high-resolution three-dimensional visualization of lymph node morphology. We present the first reported OCT images showing detailed morphological structure and corresponding histological features of lymph nodes from a carcinogen-induced rat mammary tumor model, as well as from a human lymph node containing late stage metastatic disease. The results illustrate the potential for OCT to visualize detailed lymph node structures on the scale of micrometastases and the potential for the detection of metastatic nodal disease intraoperatively.
Anatomical Variations of the Circulus Arteriosus in Cadaveric Human Brains
Gunnal, S. A.; Farooqui, M. S.; Wabale, R. N.
2014-01-01
Objective. Circulus arteriosus/circle of Willis (CW) is a polygonal anastomotic channel at the base of the brain which unites the internal carotid and vertebrobasilar system. It maintains the steady and constant supply to the brain. The variations of CW are seen often. The Aim of the present work is to find out the percentage of normal pattern of CW, and the frequency of variations of the CW and to study the morphological and morphometric aspects of all components of CW. Methods. Circulus arteriosus of 150 formalin preserved brains were dissected. Dimensions of all the components forming circles were measured. Variations of all the segments were noted and well photographed. The variations such as aplasia, hypoplasia, duplication, fenestrations, and difference in dimensions with opposite segments were noted. The data collected in the study was analyzed. Results. Twenty-one different types of CW were found in the present study. Normal and complete CW was found in 60%. CW with gross morphological variations was seen in 40%. Maximum variations were seen in the PCoA followed by the ACoA in 50% and 40%, respectively. Conclusion. As it confirms high percentage of variations, all surgical interventions should be preceded by angiography. Awareness of these anatomical variations is important in neurovascular procedures. PMID:24891951
Crombag, Neeltje M T H; Vellinga, Ynke E; Kluijfhout, Sandra A; Bryant, Louise D; Ward, Pat A; Iedema-Kuiper, Rita; Schielen, Peter C J I; Bensing, Jozien M; Visser, Gerard H A; Tabor, Ann; Hirst, Janet
2014-09-25
The offer of prenatal Down's syndrome screening is part of routine antenatal care in most of Europe; however screening uptake varies significantly across countries. Although a decision to accept or reject screening is a personal choice, it is unlikely that the widely differing uptake rates across countries can be explained by variation in individual values alone.The aim of this study was to compare Down's syndrome screening policies and programmes in the Netherlands, where uptake is relatively low (<30%) with England and Denmark where uptake is higher (74 and > 90% respectively), in an attempt to explain the observed variation in national uptake rates. We used a mixed methods approach with an embedded design: a) documentary analysis and b) expert stakeholder analysis. National central statistical offices and legal documents were studied first to gain insight in demographic characteristics, cultural background, organization and structure of healthcare followed by documentary analysis of primary and secondary sources on relevant documents on DSS policies and programme. To enhance interpretation of these findings we performed in-depth interviews with relevant expert stakeholders. There were many similarities in the demographics, healthcare systems, government abortion legislation and Down's syndrome screening policy across the studied countries. However, the additional cost for Down's syndrome screening over and above standard antenatal care in the Netherlands and an emphasis on the 'right not to know' about screening in this country were identified as potential explanations for the 'low' uptake rates of Down's syndrome screening in the Netherlands. The social context and positive framing of the offer at the service delivery level may play a role in the relatively high uptake rates in Denmark. This paper makes an important contribution to understanding how macro-level demographic, social and healthcare delivery factors may have an impact on national uptake rates for Down's syndrome screening. It has suggested a number of policy level and system characteristics that may go some way to explaining the relatively low uptake rates of Down's syndrome screening in the Netherlands when compared to England and Denmark.
Phenotypic variation among Phytophthora ramorum isolates from California and Oregon
Daniel Hüberli; Tamar Harnik; Matthew Meshriy; Lori Miles; Matteo Garbelotto
2006-01-01
To manage and control Phytophthora ramorum successfully, it is important to know the amount of phenotypic variation within a given pathogen population. Because the pathogen has only recently been described, there are few studies on morphological and pathological variation of isolates from the United States. One study has compared growth rate on agar...
Phenotypic divergence despite low genetic differentiation in house sparrow populations.
Ben Cohen, Shachar; Dor, Roi
2018-01-10
Studying patterns of phenotypic variation among populations can shed light on the drivers of evolutionary processes. The house sparrow (Passer domesticus) is one of the world's most ubiquitous bird species, as well as a successful invader. We investigated phenotypic variation in house sparrow populations across a climatic gradient and in relation to a possible scenario of an invasion. We measured variation in morphological, coloration, and behavioral traits (exploratory behavior and neophobia) and compared it to the neutral genetic variation. We found that sparrows were larger and darker in northern latitudes, in accordance with Bergmann's and Gloger's biogeographic rules. Morphology and behavior mostly differed between the southernmost populations and the other regions, supporting the possibility of an invasion. Genetic differentiation was low and diversity levels were similar across populations, indicating high gene flow. Nevertheless, the southernmost and northern populations differed genetically to some extent. Furthermore, genetic differentiation (F ST ) was lower in comparison to phenotypic variation (P ST ), indicating that the phenotypic variation is shaped by directional selection or by phenotypic plasticity. This study expands our knowledge on evolutionary mechanisms and biological invasions.
Moniuszko, Hanna; Zaleśny, Grzegorz; Mąkol, Joanna
2015-09-01
Examination of host-associated variation in the chigger mite Hirsutiella zachvatkini (Schluger) revealed morphological differences among larvae infesting sympatric hosts: Apodemus agrarius, Apodemus flavicollis and Myodes glareolus. The analysis included 61 variables of larvae obtained from their gnathosoma, idiosoma and legs (measurements and counts). Statistically significant differences were observed for metric characters of the legs as opposed to the scutum. In view of the conspecificity of the mites, supported by comparison of COI gene products obtained from larvae and laboratory-reared deutonymphs, the observed variation is attributed to phenotypic plasticity. The knowledge of larval morphology, including intraspecific variation of metric characters, supported by molecular and host range data, places H. zachvatkini among the most comprehensively defined members of Trombiculidae.
Interactive Effects of Nutrient and Mechanical Stresses on Plant Morphology
Puijalon, Sara; Lena, Jean-Paul; Bornette, Gudrun
2007-01-01
Background and Aims Plant species frequently encounter multiple stresses under natural conditions, and the way they cope with these stresses is a major determinant of their ecological breadth. The way mechanical (e.g. wind, current) and resource stresses act simultaneously on plant morphological traits has been poorly addressed, even if both stresses often interact. This paper aims to assess whether hydraulic stress affects plant morphology in the same way at different nutrient levels. Methods An examination was made of morphological variations of an aquatic plant species growing under four hydraulic stress (flow velocity) gradients located in four habitats distributed along a nutrient gradient. Morphological traits covering plant size, dry mass allocation, organ water content and foliage architecture were measured. Key Results Significant interactive effects of flow velocity and nutrient level were observed for all morphological traits. In particular, increased flow velocity resulted in size reductions under low nutrient conditions, suggesting an adaptive response to flow stress (escape strategy). On the other hand, moderate increases in flow velocity resulted in increased size under high nutrient conditions, possibly related to an inevitable growth response to a higher nutrient supply induced by water renewal at the plant surface. For some traits (e.g. dry mass allocation), a consistent sense of variation as a result of increasing flow velocity was observed, but the amount of variation was either reduced or amplified under nutrient-rich compared with nutrient-poor conditions, depending on the traits considered. Conclusions These results suggest that, for a given species, a stress factor may result, in contrasting patterns and hence strategies, depending on a second stress factor. Such results emphasize the relevance of studies on plant responses to multiple stresses for understanding the actual ecological breadth of species. PMID:17913725
Mandibular ramus shape variation and ontogeny in Homo sapiens and Homo neanderthalensis.
Terhune, Claire E; Ritzman, Terrence B; Robinson, Chris A
2018-04-27
As the interface between the mandible and cranium, the mandibular ramus is functionally significant and its morphology has been suggested to be informative for taxonomic and phylogenetic analyses. In primates, and particularly in great apes and humans, ramus morphology is highly variable, especially in the shape of the coronoid process and the relationship of the ramus to the alveolar margin. Here we compare ramus shape variation through ontogeny in Homo neanderthalensis to that of modern and fossil Homo sapiens using geometric morphometric analyses of two-dimensional semilandmarks and univariate measurements of ramus angulation and relative coronoid and condyle height. Results suggest that ramus, especially coronoid, morphology varies within and among subadult and adult modern human populations, with the Alaskan Inuit being particularly distinct. We also identify significant differences in overall anterosuperior ramus and coronoid shapes between H. sapiens and H. neanderthalensis, both in adults and throughout ontogeny. These shape differences are subtle, however, and we therefore suggest caution when using ramus morphology to diagnose group membership for individual specimens of these taxa. Furthermore, we argue that these morphologies are unlikely to be representative of differences in masticatory biomechanics and/or paramasticatory behaviors between Neanderthals and modern humans, as has been suggested by previous authors. Assessments of ontogenetic patterns of shape change reveal that the typical Neanderthal ramus morphology is established early in ontogeny, and there is little evidence for divergent postnatal ontogenetic allometric trajectories between Neanderthals and modern humans as a whole. This analysis informs our understanding of intraspecific patterns of mandibular shape variation and ontogeny in H. sapiens and can shed further light on overall developmental and life history differences between H. sapiens and H. neanderthalensis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Variation and inheritance of some physiological and morphological traits in Douglas-fir
Oscar Sziklai
1966-01-01
Forest genetics is the study of variation and heritability in forest trees. It is concerned with similarities and differences of various traits between related trees and their transmittance to the next generation.
PGS-FISH in reproductive medicine and perspective directions for improvement: a systematic review.
Zamora, Sandra; Clavero, Ana; Gonzalvo, M Carmen; de Dios Luna Del Castillo, Juan; Roldán-Nofuentes, Jose Antonio; Mozas, Juan; Castilla, Jose Antonio
2011-08-01
Embryo selection can be carried out via morphological criteria or by using genetic studies based on Preimplantation Genetic Screening. In the present study, we evaluate the clinical validity of Preimplantation Genetic Screening with fluorescence in situ hybridization (PGS-FISH) compared with morphological embryo criteria. A systematic review was made of the bibliography, with the following goals: firstly, to determine the prevalence of embryo chromosome alteration in clinical situations in which the PGS-FISH technique has been used; secondly, to calculate the statistics of diagnostic efficiency (negative Likelihood Ratio), using 2 × 2 tables, derived from PGS-FISH. The results obtained were compared with those obtained from embryo morphology. We calculated the probability of transferring at least one chromosome-normal embryo when it was selected using either morphological criteria or PGS-FISH, and considered what diagnostic performance should be expected of an embryo selection test with respect to achieving greater clinical validity than that obtained from embryo morphology. After an embryo morphology selection that produced a negative result (normal morphology), the likelihood of embryo aneuploidies was found to range from a pre-test value of 65% (prevalence of embryo chromosome alteration registered in all the study groups) to a post-test value of 55% (Confidence interval: 50-61), while after PGS-FISH with a negative result (euploid), the post-test probability was 42% (Confidence interval: 35-49) (p < 0.05). The probability of transferring at least one euploid embryo was the same whether 3 embryos were selected according to morphological criteria or whether 2, selected by PGS-FISH, were transferred. Any embryo selection test, if it is to provide greater clinical validity than embryo morphology, must present a LR-value of 0.40 (Confidence interval: 0.32-0.51) in single embryo transfer, and 0.06 (CI: 0.05-0.07) in double embryo transfer. With currently available technology, and taking into account the number of embryos to be transferred, the clinical validity of PGS-FISH, although superior to that of morphological criteria, does not appear to be clinically relevant.
The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes
Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H
2014-01-01
Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848
What Has Natural Variation Taught Us about Plant Development, Physiology, and Adaptation?
Alonso-Blanco, Carlos; Aarts, Mark G.M.; Bentsink, Leonie; Keurentjes, Joost J.B.; Reymond, Matthieu; Vreugdenhil, Dick; Koornneef, Maarten
2009-01-01
Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop breeding. In wild plants, comparable traits have been dissected mainly in Arabidopsis thaliana. In this review, we discuss the major contributions of the analysis of natural variation to our understanding of plant development and physiology, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation. Overall, functional polymorphisms appear in all types of genes and gene regions, and they may have multiple mutational causes. However, understanding this diversity in relation to adaptation and environmental variation is a challenge for which tools are now available. PMID:19574434
Thomson, Ian R.; Darveau, Charles-A.; Bertram, Susan M.
2014-01-01
High mating success in animals is often dependent on males signalling attractively with high effort. Since males should be selected to maximize their reproductive success, female preferences for these traits should result in minimal signal variation persisting in the population. However, extensive signal variation persists. The genic capture hypothesis proposes genetic variation persists because fitness-conferring traits depend on an individual's basic processes, including underlying physiological, morphological, and biochemical traits, which are themselves genetically variable. To explore the traits underlying signal variation, we quantified among-male differences in signalling, morphology, energy stores, and the activities of key enzymes associated with signalling muscle metabolism in two species of crickets, Gryllus assimilis (chirper: <20 pulses/chirp) and G. texensis (triller: >20 pulses/chirp). Chirping G. assimilis primarily fuelled signalling with carbohydrate metabolism: smaller individuals and individuals with increased thoracic glycogen stores signalled for mates with greater effort; individuals with greater glycogen phosphorylase activity produced more attractive mating signals. Conversely, the more energetic trilling G. texensis fuelled signalling with both lipid and carbohydrate metabolism: individuals with increased β-hydroxyacyl-CoA dehydrogenase activity and increased thoracic free carbohydrate content signalled for mates with greater effort; individuals with higher thoracic and abdominal carbohydrate content and higher abdominal lipid stores produced more attractive signals. Our findings suggest variation in male reproductive success may be driven by hidden physiological trade-offs that affect the ability to uptake, retain, and use essential nutrients, although the results remain correlational in nature. Our findings indicate that a physiological perspective may help us to understand some of the causes of variation in behaviour. PMID:24608102
Pawar, Ajinkya Mansing; Pawar, Mansing; Kfir, Anda; Singh, Shishir; Salve, Prashant; Thakur, Bhagyashree; Neelakantan, Prasanna
2017-12-01
This study aims to investigate the root canal morphology of permanent mandibular second molars of an Indian population in vivo using cone-beam computed tomography (CBCT) images. CBCT images (n = 983; males = 489, females = 494) of untreated, completely developed permanent mandibular second molar teeth were examined. CBCT scans were acquired as part of diagnosis and treatment planning for treatments unrelated to the present study. The number of roots and root canals were recorded. Canal configuration was classified based on Vertucci's and Fan's classifications. The most common configuration was two-root (79.35%) and three-root canals (53.50%). The incidence of three-rooted molars was 7.53%, whereas 13.12% of the studied teeth studied have fused roots with C-shaped canals. The predominant canal morphology in the mesial roots was Vertucci's type IV (45.17%), followed by type II (32.55%), type I (7.23%), type V (1.02%), and type III (0.91%). The distal root in contrast showed type I (61.14%) as the predominant canal configuration, followed by type II (18.21%) and type IV (7.53%). The incidence of three-rooted molars was higher in males (n = 55; 5.59%) than in females (n = 19; 1.94%) (p < 0.01). The canals in the extra roots exhibited type I (100%) root canal morphology. In teeth with C-shaped root canal (13.12%), the variations in the coronal, middle, and apical third ranged from C1 to C4. Root canal systems of the mesial roots of mandibular second molars of the study population demonstrated a high degree of variability. While three roots were rare, there was a sexual predisposition. Fused roots with C-shaped canals were rare and demonstrated significant variations from the coronal to apical third. Root canal morphology can demonstrate variations based on race and sex of patients. Clinicians must always consider the possible variations to ensure successful endodontic treatment.
2008-01-01
Background Sperm morphology can be highly variable among species, but less is known about patterns of population differentiation within species. Most studies of sperm morphometric variation are done in species with internal fertilization, where sexual selection can be mediated by complex mating behavior and the environment of the female reproductive tract. Far less is known about patterns of sperm evolution in broadcast spawners, where reproductive dynamics are largely carried out at the gametic level. We investigated variation in sperm morphology of a broadcast spawner, the green sea urchin (Strongylocentrotus droebachiensis), within and among spawnings of an individual, among individuals within a population, and among populations. We also examined population-level variation between two reproductive seasons for one population. We then compared among-population quantitative genetic divergence (QST) for sperm characters to divergence at neutral microsatellite markers (FST). Results All sperm traits except total length showed strong patterns of high diversity among populations, as did overall sperm morphology quantified using multivariate analysis. We also found significant differences in almost all traits among individuals in all populations. Head length, axoneme length, and total length had high within-male repeatability across multiple spawnings. Only sperm head width had significant within-population variation across two reproductive seasons. We found signatures of directional selection on head length and head width, with strong selection possibly acting on head length between the Pacific and West Atlantic populations. We also discuss the strengths and limitations of the QST-FST comparison. Conclusion Sperm morphology in S. droebachiensis is highly variable, both among populations and among individuals within populations, and has low variation within an individual across multiple spawnings. Selective pressures acting among populations may differ from those acting within, with directional selection implicated in driving divergence among populations and balancing selection as a possible mechanism for producing variability among males. Sexual selection in broadcast spawners may be mediated by different processes from those acting on internal fertilizers. Selective divergence in sperm head length among populations is associated with ecological differences among populations that may play a large role in mediating sexual selection in this broadcast spawner. PMID:18851755
The role of polyploidy in shaping morphological diversity in natural populations of Phlox amabilis.
Chansler, Matthew T; Ferguson, Carolyn J; Fehlberg, Shannon D; Prather, L Alan
2016-09-01
Studies of natural populations of polyploids increasingly highlight complex patterns of variation in ploidy and geographic distribution of cytotypes. As our understanding of the complexity of polyploidy grows, our understanding of the morphological correlates of polyploidy should expand as well. Here we examine in what ways, and to what degree, polyploidy affects the overall phenotype of a species across its distribution when there are three ploidies and geographic complexity in cytotype distribution. We measured 31 morphological traits from stems, leaves, and flowers from up to 25 individuals from 11 sites across the distribution of Phlox amabilis. Chromosome counts and flow cytometry confirmed and expanded upon earlier research documenting diploid, tetraploid, and hexaploid populations, and also identified a site with two ploidies. Univariate and multivariate statistics were used to characterize the morphological effects of polyploidy. We detected significant associations between morphology and ploidy in 11 traits spread across vegetative and reproductive structures. Generally, diploid individuals differed from polyploid individuals to a greater extent, and in different ways, than tetraploid and hexaploid plants differed from each other. Multivariate morphometrics demonstrated that the two primary axes of overall variation are driven by morphological traits associated with polyploidy, and individuals of different ploidies can be discriminated with 95% success. Polyploidy plays a major role in shaping overall morphological diversity in natural populations of P. amabilis. © 2016 Botanical Society of America.
Campbell, Megan; Ganetzky, Barry
2012-03-13
Although the complexity and circuitry of nervous systems undergo evolutionary change, we lack understanding of the general principles and specific mechanisms through which it occurs. The Drosophila larval neuromuscular junction (NMJ), which has been widely used for studies of synaptic development and function, is also an excellent system for studies of synaptic evolution because the genus spans >40 Myr of evolution and the same identified synapse can be examined across the entire phylogeny. We have now characterized morphology of the NMJ on muscle 4 (NMJ4) in >20 species of Drosophila. Although there is little variation within a species, NMJ morphology and complexity vary extensively between species. We find no significant correlation between NMJ phenotypes and phylogeny for the species examined, suggesting that drift alone cannot explain the phenotypic variation and that selection likely plays an important role. However, the nature of the selective pressure is still unclear because basic parameters of synaptic function remain uniform. Whatever the mechanism, NMJ morphology is evolving rapidly in comparison with other morphological features because NMJ phenotypes differ even between several sibling species pairs. The discovery of this unexpectedly extensive divergence in NMJ morphology among Drosophila species provides unique opportunities to investigate mechanisms that regulate synaptic growth; the interrelationships between synaptic morphology, neural function, and behavior; and the evolution of nervous systems and behavior in natural populations.
Morphological and Physiological Alteration of Maize Root Architectures on Drought Stress.
USDA-ARS?s Scientific Manuscript database
Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Research experiments were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought s...
Developmental Dyslexia, Neurolinguistic Theory and Deviations in Brain Morphology.
ERIC Educational Resources Information Center
Hynd, George W.; And Others
1991-01-01
Reviews computer tomography and magnetic resonance imaging studies examining deviations in brain morphology. Discusses methodological and technical issues. Concludes that dyslexics show variations in specific brain regions. Suggests that neuroimaging procedures appear to provide direct evidence supporting the importance of deviations in normal…
Pattern of morphological variation and diversity of Cocos nucifera (Arecaceae) in Mexico.
Zizumbo-Villarreal, D; Piñero, D
1998-06-01
The pattern of morphological variation of Cocos nucifera in Mexico was statistically and numerically evaluated. Forty-one populations were analyzed, using 17 morphological fruit characters. Principal components and cluster analyses indicated four main groups of coconut populations that showed high similarity with four different genotypes recently imported into Mexico from areas that could be the origin of Mexican coconut populations. These four genotypes were evaluated with regard to the lethal yellowing disease in Jamaica and showed a differential susceptibility. Therefore it is possible to speculate upon a difference in susceptibility of the Mexican genotypes. The analysis of correlation between morphological and geographical distances showed a high positive correlation that supports: (1) historical evidence that indicates early introductions of coconut from different regions of the world, (2) that on both coasts of Mexico two different patterns of dispersal were involved: continuous and in jumps. Collectively these results suggest that the impact of the lethal yellowing disease on coconut populations will vary depending on the specific area and the origin of its coconuts.
Morphometric Analysis of Chemoreception Organ in Male and Female Ticks (Acari: Ixodidae).
Josek, Tanya; Allan, Brian F; Alleyne, Marianne
2018-05-04
The Haller's organ plays a crucial role in a tick's ability to detect hosts. Even though this sensory organ is vital to tick survival, the morphology of this organ is not well understood. The objective of this study was to characterize variation in the morphological components of the Haller's organ of three medically important tick species using quantitative methods. The Haller's organs of Ixodes scapularis Say (Ixodida: Ixodidae) (black-legged tick), Amblyomma americanum (L.) (Ixodida: Ixodidae) (lone star tick), and Dermacentor variabilis (Say) (Ixodida: Ixodidae) (American dog tick) were morphologically analyzed using environmental scanning electron microscopy and geometric morphometrics, and the results were statistically interpreted using canonical variate analysis. Our data reveal significant, quantitative differences in the morphology of the Haller's organ among all three tick species and that in D. variabilis the sensory structure is sexually dimorphic. Studies like this can serve as a quantitative basis for further studies on sensor physiology, behavior, and tick species life history, potentially leading to novel methods for the prevention of tick-borne disease.
Color Variations in Screen Text: Effects on Proofreading.
ERIC Educational Resources Information Center
Szul, Linda; Berry, Louis
As the use of computers has become more common in society, human engineering and ergonomics have lagged behind the sciences which developed the equipment. Some research has been done in the past on the effects of screen colors on computer use efficiency, but results were inconclusive. This paper describes a study of the impact of screen color…
Development of an Attitudes Measure for Prenatal Screening in Diverse Populations
ERIC Educational Resources Information Center
Posner, S. F.; Learman, L. A.; Gates, E. A.; Washington, A. E.; Kuppermann, M.
2004-01-01
Background: Prenatal screening for chromosomal abnormalities is routinely offered to all pregnant women who present for care by their 20th gestational week. Not all women, however, choose to undergo one of these tests, and choice of which test(s) to undergo also vary. The reasons for variation in screening test behavior have not been fully…
USDA-ARS?s Scientific Manuscript database
The comprehensive identification of genes underlying phenotypic variation of complex traits remains a major challenge. Most genome-wide screens lack sufficient resolving power as they typically depend on linkage. An alternate method is to screen for allele-specific expression (ASE), a simple yet pow...
Haire, Timothy C.; Bell, Cody; Cutshaw, Kirstin; Swiger, Brendan; Winkelmann, Kurt; Palmer, Andrew G.
2018-01-01
Chlamydomonas reinhardtii (Cr), a unicellular alga, is routinely utilized to study photosynthetic biochemistry, ciliary motility, and cellular reproduction. Its minimal culture requirements, unicellular morphology, and ease of transformation have made it a popular model system. Despite its relatively slow doubling time, compared with many bacteria, it is an ideal eukaryotic system for microplate-based studies utilizing either, or both, absorbance as well as fluorescence assays. Such microplate assays are powerful tools for researchers in the areas of toxicology, pharmacology, chemical genetics, biotechnology, and more. However, while microplate-based assays are valuable tools for screening biological systems, these methodologies can significantly alter the conditions in which the organisms are cultured and their subsequent physiology or morphology. Herein we describe a novel method for the microplate culture and in vivo phenotypic analysis of growth, viability, and photosynthetic pigments of C. reinhardtii. We evaluated the utility of our assay by screening silver nanoparticles for their effects on growth and viability. These methods are amenable to a wide assortment of studies and present a significant advancement in the methodologies available for research involving this model organism. PMID:29623083
Haire, Timothy C; Bell, Cody; Cutshaw, Kirstin; Swiger, Brendan; Winkelmann, Kurt; Palmer, Andrew G
2018-01-01
Chlamydomonas reinhardtii (Cr), a unicellular alga, is routinely utilized to study photosynthetic biochemistry, ciliary motility, and cellular reproduction. Its minimal culture requirements, unicellular morphology, and ease of transformation have made it a popular model system. Despite its relatively slow doubling time, compared with many bacteria, it is an ideal eukaryotic system for microplate-based studies utilizing either, or both, absorbance as well as fluorescence assays. Such microplate assays are powerful tools for researchers in the areas of toxicology, pharmacology, chemical genetics, biotechnology, and more. However, while microplate-based assays are valuable tools for screening biological systems, these methodologies can significantly alter the conditions in which the organisms are cultured and their subsequent physiology or morphology. Herein we describe a novel method for the microplate culture and in vivo phenotypic analysis of growth, viability, and photosynthetic pigments of C. reinhardtii . We evaluated the utility of our assay by screening silver nanoparticles for their effects on growth and viability. These methods are amenable to a wide assortment of studies and present a significant advancement in the methodologies available for research involving this model organism.
Spatial structure of morphological and neutral genetic variation in Brook Trout
Kazyak, David C.; Hilderbrand, Robert H.; Keller, Stephen R.; Colaw, Mark C.; Holloway, Amanda E.; Morgan, Raymond P.; King, Timothy L.
2015-01-01
Brook Trout Salvelinus fontinalis exhibit exceptional levels of life history variation, remarkable genetic variability, and fine-scale population structure. In many cases, neighboring populations may be highly differentiated from one another to an extent that is comparable with species-level distinctions in other taxa. Although genetic samples have been collected from hundreds of populations and tens of thousands of individuals, little is known about whether differentiation at neutral markers reflects phenotypic differences among Brook Trout populations. We compared differentiation in morphology and neutral molecular markers among populations from four geographically proximate locations (all within 24 km) to examine how genetic diversity covaries with morphology. We found significant differences among and/or within streams for all three morphological axes examined and identified the source stream of many individuals based on morphology (52.3% classification efficiency). Although molecular and morphological differentiation among streams ranged considerably (mean pairwise FST: 0.023–0.264; pairwise PST: 0.000–0.339), the two measures were not significantly correlated. While in some cases morphological characters appear to have diverged to a greater extent than expected by neutral genetic drift, many traits were conserved to a greater extent than were neutral genetic markers. Thus, while Brook Trout exhibit fine-scale spatial patterns in both morphology and neutral genetic diversity, these types of biological variabilities are being structured by different ecological and evolutionary processes. The relative influences of genetic drift versus selection and phenotypic plasticity in shaping morphology appear to vary among populations occupying nearby streams.
Quantification of Dune Response over the Course of a 6-Day Nor'Easter, Outer Banks, NC
NASA Astrophysics Data System (ADS)
Brodie, K. L.; Spore, N.; Swann, C.
2014-12-01
The amount and type of foredune morphologic change during a storm event primarily scales with the level of inundation during that event. Specifically, external hydrodynamic forcing (total water level) can be compared with antecedent beach and foredune morphology to predict an impact regime that relates to the type of expected morphologic evolution of the system. For example, when total water levels are above the dune toe, but below the dune crest, the impact regime is classified as "collision" and the expected morphology response is slumping or scarping of the dune face. While the amount of dune retreat scales largely with the duration of wave attack to the dune face, characteristics of the dune other than its crest or toe elevation may also enhance or impede rates of morphologic change. The aftermath of Hurricane Sandy provided a unique opportunity to observe alongshore variations in dune response to a 6-day Nor'Easter (Hs >4 m in 6 m depth), as a variety of dunes were constructed (or not) by individual home owners in preparation for the winter storm season. Daily terrestrial lidar scans were conducted along 20 km of coastline in Duck, NC using Coastal Lidar And Radar Imaging System (CLARIS) during the first dune collision event following Sandy. Foredunes were grouped by their pre-storm form (e.g. vegetated, pushed, scarped, etc) using automated feature extraction tools based on surface curvature and slope, and daily rates of morphologic volume change were calculated. The highest dune retreat rates were focused along a 1.5 km region where cross-shore erosion of recently pushed, un-vegetated dunes reached 2 m/day. Variations in dune response were analyzed in relation to their pre-storm morphology, with care taken to normalize for alongshore variations in hydrodynamic forcing. Ongoing research is focused on identifying specific metrics that can be easily extracted from topographic DEMs to aid in dune retreat predictions.
Reyda, Florian B.; Marques, Fernando P. L.
2011-01-01
Background Neotropical freshwater stingrays (Batoidea: Potamotrygonidae) host a diverse parasite fauna, including cestodes. Both cestodes and their stingray hosts are marine-derived, but the taxonomy of this host/parasite system is poorly understood. Methodology Morphological and molecular (Cytochrome oxidase I) data were used to investigate diversity in freshwater lineages of the cestode genus Rhinebothrium Linton, 1890. Results were based on a phylogenetic hypothesis for 74 COI sequences and morphological analysis of over 400 specimens. Cestodes studied were obtained from 888 individual potamotrygonids, representing 14 recognized and 18 potentially undescribed species from most river systems of South America. Results Morphological species boundaries were based mainly on microthrix characters observed with scanning electron microscopy, and were supported by COI data. Four species were recognized, including two redescribed (Rhinebothrium copianullum and R. paratrygoni), and two newly described (R. brooksi n. sp. and R. fulbrighti n. sp.). Rhinebothrium paranaensis Menoret & Ivanov, 2009 is considered a junior synonym of R. paratrygoni because the morphological features of the two species overlap substantially. The diagnosis of Rhinebothrium Linton, 1890 is emended to accommodate the presence of marginal longitudinal septa observed in R. copianullum and R. brooksi n. sp. Patterns of host specificity and distribution ranged from use of few host species in few river basins, to use of as many as eight host species in multiple river basins. Significance The level of intra-specific morphological variation observed in features such as total length and number of proglottids is unparalleled among other elasmobranch cestodes. This is attributed to the large representation of host and biogeographical samples. It is unclear whether the intra-specific morphological variation observed is unique to this freshwater system. Nonetheless, caution is urged when using morphological discontinuities to delimit elasmobranch cestode species because the amount of variation encountered is highly dependent on sample size and/or biogeographical representation. PMID:21857936
Doanh, N Pham; Tu, A Luu; Bui, T Dung; Loan, T Ho; Nonaka, Nariaki; Horii, Yoichiro; Blair, David; Nawa, Yukifumi
2016-10-01
Paragonimus westermani is one of the most medically important lung flukes and is widely distributed in Asia. It exhibits considerable variation in morphological, genetic and biological features. In central provinces of Vietnam, a high prevalence of metacercariae of this species has been reported from the crab intermediate host, Vietopotamon aluoiense. In this study, we detected P. westermani metacercariae in two additional crab hosts, Donopotamon haii in Quang Tri Province, central Vietnam and Indochinamon tannanti in Yen Bai Province in the north. The latter is a new locality for P. westermani in a northern region of Vietnam where P. heterotremus is the only species currently known to cause human paragonimiasis. Paragonimus westermani metacercariae found in Vietnam showed considerable morphological variation but slight genetic variation based on DNA sequences from the nuclear ribosomal ITS2 region and the mitochondrial 16S gene. Co-infection of the same individual crabs with P. westermani and P. heterotremus and/or some other Paragonimus species was found frequently, suggesting potential for co-infection in humans. The findings of the present study emphasize the need for highly specific molecular and immunodiagnostic methods to differentially diagnose between P. westermani and P. heterotremus infections.
Why are the seed cones of conifers so diverse at pollination?
Losada, Juan M; Leslie, Andrew B
2018-06-08
Form and function relationships in plant reproductive structures have long fascinated biologists. Although the intricate associations between specific pollinators and reproductive morphology have been widely explored among animal-pollinated plants, the evolutionary processes underlying the diverse morphologies of wind-pollinated plants remain less well understood. Here we study how this diversity may have arisen by focusing on two conifer species in the pine family that have divergent reproductive cone morphologies at pollination. Standard histology methods, artificial wind pollination assays and phylogenetic analyses were used in this study. A detailed study of cone ontogeny in these species reveals that variation in the rate at which their cone scales mature means that pollination occurs at different stages in their development, and thus in association with different specific morphologies. Pollination experiments nevertheless indicate that both species effectively capture pollen. In wind-pollinated plants, morphological diversity may result from simple variation in development among lineages rather than selective pressures for any major differences in function or performance. This work also illustrates the broader importance of developmental context in understanding plant form and function relationships; because plant reproductive structures perform many different functions over their lifetime, subtle differences in development may dramatically alter the specific morphologies that they use to meet these demands.
Billman, E.J.; Whitman, L.D.; Schroeder, R.K.; Sharpe, C.S.; Noakes, David L. G.; Schreck, Carl B.
2014-01-01
Body morphology of juvenile Chinook salmon Oncorhynchus tshawytscha in the upper Willamette River, Oregon, U.S.A., was analysed to determine if variation in body shape is correlated with migratory life-history tactics followed by juveniles. Body shape was compared between migrating juveniles that expressed different life-history tactics, i.e. autumn migrants and yearling smolts, and among parr sampled at three sites along a longitudinal river gradient. In the upper Willamette River, the expression of life-history tactics is associated with where juveniles rear in the basin with fish rearing in downstream locations generally completing ocean ward migrations earlier in life than fish rearing in upstream locations. The morphological differences that were apparent between autumn migrants and yearling smolts were similar to differences between parr rearing in downstream and upstream reaches, indicating that body morphology is correlated with life-history tactics. Autumn migrants and parr from downstream sampling sites had deeper bodies, shorter heads and deeper caudal peduncles compared with yearling smolts and parr from the upstream sampling site. This study did not distinguish between genetic and environmental effects on morphology; however, the results suggest that downstream movement of juveniles soon after emergence is associated with differentiation in morphology and with the expression of life-history variation.
Li, Chunjia; Jackson, Phillip; Lu, Xin; Xu, Chaohua; Cai, Qing; Basnayake, Jayapathi; Lakshmanan, Prakash; Ghannoum, Oula; Fan, Yuanhong
2017-04-01
Sugarcane, derived from the hybridization of Saccharum officinarum×Saccharum spontaneum, is a vegetative crop in which the final yield is highly driven by culm biomass production. Cane yield under irrigated or rain-fed conditions could be improved by developing genotypes with leaves that have high intrinsic transpiration efficiency, TEi (CO2 assimilation/stomatal conductance), provided this is not offset by negative impacts from reduced conductance and growth rates. This study was conducted to partition genotypic variation in TEi among a sample of diverse clones from the Chinese collection of sugarcane-related germplasm into that due to variation in stomatal conductance versus that due to variation in photosynthetic capacity. A secondary goal was to define protocols for optimized larger-scale screening of germplasm collections. Genotypic variation in TEi was attributed to significant variation in both stomatal and photosynthetic components. A number of genotypes were found to possess high TEi as a result of high photosynthetic capacity. This trait combination is expected to be of significant breeding value. It was determined that a small number of observations (16) is sufficient for efficiently screening TEi in larger populations of sugarcane genotypes The research methodology and results reported are encouraging in supporting a larger-scale screening and introgression of high transpiration efficiency in sugarcane breeding. However, further research is required to quantify narrow sense heritability as well as the leaf-to-field translational potential of genotypic variation in transpiration efficiency-related traits observed in this study. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Baier, Felix; Schmitz, Andreas; Sauer-Gürth, Hedwig; Wink, Michael
2017-06-09
Many animal and plant species in the Middle East and northern Africa have a predominantly longitudinal distribution, extending from Iran and Turkey along the eastern Mediterranean coast into northern Africa. These species are potentially characterized by longitudinal patterns of biological diversity, but little is known about the underlying biogeographic mechanisms and evolutionary timescales. We examined these questions in the striped skink, Heremites vittatus, one such species with a roughly longitudinal distribution across the Middle East and northern Africa, by analyzing range-wide patterns of mitochondrial DNA (mtDNA) sequence and multi-trait morphological variation. The striped skink exhibits a basic longitudinal organization of mtDNA diversity, with three major mitochondrial lineages inhabiting northern Africa, the eastern Mediterranean coast, and Turkey/Iran. Remarkably, these lineages are of pre-Quaternary origin, and are characterized by p-distances of 9-10%. In addition, within each of these lineages a more recent Quaternary genetic diversification was observed, as evidenced by deep subclades and high haplotype diversity especially in the Turkish/Iranian and eastern Mediterranean lineages. Consistent with the genetic variation, our morphological analysis revealed that the majority of morphological traits show significant mean differences between specimens from northern Africa, the eastern Mediterranean coast, and Turkey/Iran, suggesting lineage-specific trait evolution. In addition, a subset of traits exhibits clinal variation along the eastern Mediterranean coast, potentially indicating selection gradients at the geographic transition from northern Africa to Anatolia. The existence of allopatric, morphologically and genetically divergent lineages suggests that Heremites vittatus might represent a complex with several taxa. Our work demonstrates that early divergence events in the Pliocene, likely driven by both climatic and geological factors, established the longitudinal patterns and distribution of Heremites vittatus. Subsequent radiation during the Pleistocene generated the genetic and morphological diversity observed today. Our study provides further evidence that longitudinal diversity patterns and species distributions in the Middle East and northern Africa were shaped by complex evolutionary processes, involving the region's intricate geological history, climatic oscillations, and the presence of the Sahara.
Mullin, Lucy P; Sillett, Stephen C; Koch, George W; Tu, Kevin P; Antoine, Marie E
2009-08-01
This study examined relationships between foliar morphology and gas exchange characteristics as they vary with height within and among crowns of Sequoia sempervirens D. Don trees ranging from 29 to 113 m in height. Shoot mass:area (SMA) ratio increased with height and was less responsive to changes in light availability as height increased, suggesting a transition from light to water relations as the primary determinant of morphology with increasing height. Mass-based rates of maximum photosynthesis (A(max,m)), standardized photosynthesis (A(std,m)) and internal CO(2) conductance (g(i,m)) decreased with height and SMA, while the light compensation point, light saturation point, and mass and area-based rates of dark respiration (R(m)) increased with height and SMA. Among foliage from different heights, much of the variation in standardized photosynthesis was explained by variation in g(i,) consistent with increasing limitation of photosynthesis by internal conductance in foliage with higher SMA. The syndrome of lower internal and stomatal conductance to CO(2) and higher respiration may contribute to reductions in upper crown growth efficiency with increasing height in S. sempervirens trees.
Craniofacial divergence and ongoing adaptation via the hedgehog pathway.
Roberts, Reade B; Hu, Yinan; Albertson, R Craig; Kocher, Thomas D
2011-08-09
Adaptive variation in craniofacial structure contributes to resource specialization and speciation, but the genetic loci that underlie craniofacial adaptation remain unknown. Here we show that alleles of the hedgehog pathway receptor Patched1 (Ptch1) gene are responsible for adaptive variation in the shape of the lower jaw both within and among genera of Lake Malawi cichlid fish. The evolutionarily derived allele of Ptch1 reduces the length of the retroarticular (RA) process of the lower jaw, a change predicted to increase speed of jaw rotation for improved suction-feeding. The alternate allele is associated with a longer RA and a more robustly mineralized jaw, typical of species that use a biting mode of feeding. Genera with the most divergent feeding morphologies are nearly fixed for different Ptch1 alleles, whereas species with intermediate morphologies still segregate variation at Ptch1. Thus, the same alleles that help to define macroevolutionary divergence among genera also contribute to microevolutionary fine-tuning of adaptive traits within some species. Variability of craniofacial morphology mediated by Ptch1 polymorphism has likely contributed to niche partitioning and ecological speciation of these fishes.
Hu, Yue; Miao, Zhao-Yi; Zhang, Xiao-Jing; Yang, Xiao-Tong; Tang, Ying-Ying; Yu, Sheng; Shan, Chen-Xiao; Wen, Hong-Mei; Zhu, Dong
2018-05-01
The currently utilized ligand fishing for bioactive molecular screening from complex matrixes cannot perform imaging screening. Here, we developed a new solid-phase ligand fishing coupled with an in situ imaging protocol for the specific enrichment and identification of heat shock protein 90 (Hsp 90) inhibitors from Tripterygium wilfordii, utilizing a multiple-layer and microkernel-based mesoporous nanostructure composed of a protective silica coating CdTe quantum dot (QD) core and a mesoporous silica shell, i.e., microkernel-based mesoporous (SiO 2 -CdTe-SiO 2 )@SiO 2 fluorescent nanoparticles (MMFNPs) as extracting carries and fluorescent probes. The prepared MMFNPs showed a highly uniform spherical morphology, retention of fluorescence emission, and great chemical stability. The fished ligands by Hsp 90α-MMFNPs were evaluated via the preliminary bioactivity based on real-time cellular morphology imaging by confocal laser scanning microscopy (CLSM) and then identified by mass spectrometry (MS). Celastrol was successfully isolated as an Hsp 90 inhibitor, and two other specific components screened by Hsp 90α-MMFNPs, i.e., demecolcine and wilforine, were preliminarily identified as potential Hsp 90 inhibitors through the verification of strong affinity to Hsp 90 and antitumor bioactivity. The approach based on the MMFNPs provides a strong platform for imaging screening and discovery of plant-derived biologically active molecules with high efficiency and selectivity.
Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait
Craig S. Echt; L.L. DeVerno; M. Anzidei; G.G. Vendramin
1998-01-01
Variation in paternally inherited chloroplast microsatellite (cpSSR) DNA was used to study population genetic structure in red pine (Pinus resinosa Ait.), a species characterized by morphological uniformity, no allozyme variation, and limited RAPD variation. Using nine cpSSR loci, a total of 23 chloroplast haplotypes and 25 cpSSR alleles were were...
Colorectal cancer development and advances in screening.
Simon, Karen
2016-01-01
Most colon tumors develop via a multistep process involving a series of histological, morphological, and genetic changes that accumulate over time. This has allowed for screening and detection of early-stage precancerous polyps before they become cancerous in individuals at average risk for colorectal cancer (CRC), which may lead to substantial decreases in the incidence of CRC. Despite the known benefits of early screening, CRC remains the second leading cause of cancer-related deaths in the United States. Hence, it is important for health care providers to have an understanding of the risk factors for CRC and various stages of disease development in order to recommend appropriate screening strategies. This article provides an overview of the histological/molecular changes that characterize the development of CRC. It describes the available CRC screening methods and their advantages and limitations and highlights the stages of CRC development in which each screening method is most effective.
Colorectal cancer development and advances in screening
Simon, Karen
2016-01-01
Most colon tumors develop via a multistep process involving a series of histological, morphological, and genetic changes that accumulate over time. This has allowed for screening and detection of early-stage precancerous polyps before they become cancerous in individuals at average risk for colorectal cancer (CRC), which may lead to substantial decreases in the incidence of CRC. Despite the known benefits of early screening, CRC remains the second leading cause of cancer-related deaths in the United States. Hence, it is important for health care providers to have an understanding of the risk factors for CRC and various stages of disease development in order to recommend appropriate screening strategies. This article provides an overview of the histological/molecular changes that characterize the development of CRC. It describes the available CRC screening methods and their advantages and limitations and highlights the stages of CRC development in which each screening method is most effective. PMID:27486317
Morphological and Biological alteration of maize root architectures on drought stress
USDA-ARS?s Scientific Manuscript database
Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Studies were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought stress in corn...
Morphological and biological alteration of maize root architectures on drought stress
USDA-ARS?s Scientific Manuscript database
Drought tolerance is a complex agronomic trait and root characteristics logically play an important role in determining the response of plants to drought stress. Studies were conducted to investigate genotypic variations in morphological and physiological responses of roots to drought stress in corn...
Chen, Hui-Xia; Zhang, Lu-Ping; Nakao, Minoru; Li, Liang
2018-06-01
A new cosmocercid species, Cosmocercoides qingtianensis sp. n., collected from the intestine of the Asiatic toad Bufo gargarizans Cantor (Amphibia: Anura) is described using integrated approaches, including light and scanning electron microscopy, and sequencing and analyzing the ribosomal [small ribosomal DNA (18S) and internal transcribed spacer (ITS)] and mitochondrial [cytochrome c oxidase subunit 1 (cox1)] target regions, respectively. The new species can be distinguished from its congeners by the combination of the following morphological characters, including the large body size, the presence of lateral alae and somatic papillae in both sexes, the length of spicules, the particular morphology and length of gubernaculum, the number, arrangement and morphology of caudal rosettes, the presence of large medioventral precloacal papilla and the long tail. Our molecular analysis revealed the level of intraspecific genetic variation of C. qingtianensis sp. n. distinctly lower than that of the interspecific genetic variation in the ITS and cox1 regions. However, there are some overlaps in the range of intra- and interspecific 18S sequence divergence between the new species and some closely related species. The results of molecular analysis supported the validity of the new species based on the morphological observations. The 18S, ITS, and cox1 regions of C. pulcher collected from Bufo japonicus formosus in Japan were also sequenced and analyzed. The results showed a low level of intraspecific genetic variation in 18S and ITS regions (0-0.12% and 0-0.23% nucleotide differences, respectively), but a relatively high level of intraspecific genetic variation in cox1 region (0.78-4.69% nucleotide differences). In addition, it seems more powerful and practical to use the cox1 region as a genetic marker for the accurate identification and differentiation of species of Cosmocercoides than the 18S and ITS regions, especially for the closely related species.
Shahba, Mohamed A; Bauerle, William L
2009-07-01
Our understanding of leaf acclimation in relation to temperature of fully grown or juvenile tree crowns is mainly based on research involving spatially uncontrolled growth temperature. In this study, we test the hypothesis that leaf morphology and chemical elements are modulated by within-crown growth temperature differences. We ask whether within-species variation can influence acclimation to elevated temperatures. Within-crown temperature dependence of leaf morphology, carbon and nitrogen was examined in two genotypes of Acer rubrum L. (red maple) from different latitudes, where the mean annual temperature varies between 7.2 and 19.4 degrees C. Crown sections were grown in temperature-controlled chambers at three daytime growth temperatures (25, 33 and 38 degrees C). Leaf growth and resource acquisition were measured at regular intervals over long-term (50 days) controlled daytime growth temperatures. We found significant intraspecific variation in temperature dependence of leaf carbon and nitrogen accumulation between genotypes. Additionally, there was evidence that leaf morphology depended on inherited adaptation. Leaf dry matter and nitrogen content decreased as growth temperature was elevated above 25 degrees C in the genotype native to the cooler climate, whereas they remained fairly constant in response to temperature in the genotype native to the warmer climate. Specific leaf area (SLA) was correlated positively to leaf nitrogen content in both genotypes. The SLA and the relative leaf dry matter content (LM), on the other hand, were correlated negatively to leaf thickness. However, intraspecific variation in SLA and LM versus leaf thickness was highly significant. Intraspecific differences in leaf temperature response between climatically divergent genotypes yielded important implications for convergent evolution of leaf adaptation. Comparison of our results with those of previous studies showed that leaf carbon allocation along a vertical temperature gradient was modulated by growth temperature in the genotype native to the cooler climate. This indicates that within-crown temperature-induced variations in leaf morphology and chemical content should be accounted for in forest ecosystem models.
Aiello, Brett R; Hardy, Adam R; Cherian, Chery; Olsen, Aaron M; Orsbon, Courtney P; Hale, Melina E; Westneat, Mark W
2018-04-25
The organization of tissues in appendages often affects their mechanical properties and function. In the fish family Labridae, swimming behavior is associated with pectoral fin flexural stiffness and morphology, where fins range on a continuum from stiff to relatively flexible fins. Across this diversity, pectoral fin flexural stiffness decreases exponentially along the length of any given fin ray, and ray stiffness decreases along the chord of the fin from the leading to trailing edge. In this study, we examine the morphological properties of fin rays, including the effective modulus in bending (E), second moment of area (I), segmentation, and branching patterns, and their impact on fin ray stiffness. We quantify intrinsic pectoral fin ray stiffness in similarly sized fins of two closely related species that employ fins of divergent mechanics, the flapping Gomphosus varius and the rowing Halichoeres bivittatus. While segmentation patterns and E were similar between species, measurements of I and the number of fin ray branch nodes were greater in G. varius than in H. bivittatus. A multiple regression model found that of these variables, I was always significantly correlated with fin ray flexural stiffness and that variation in I always explained the majority of the variation in flexural stiffness. Thus, while most of the morphological variables quantified in this study correlate with fin ray flexural stiffness, second moment of area is the greatest factor contributing to variation in flexural stiffness. Further, interspecific variation in fin ray branching pattern could be used as a means of tuning the effective stiffness of the fin webbing to differences in swimming behavior and hydrodynamics. The comparison of these results to other systems begins to unveil fundamental morphological features of biological beams and yields insight into the role of mechanical properties in fin deformation for aquatic locomotion. © 2018 Wiley Periodicals, Inc.
Vanderpham, J P; Nakagawa, S; Senior, A M; Closs, G P
2016-04-01
An investigation of intraspecific habitat-related patterns of variation in oculoscapular lateral-line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat-generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat-related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat-specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral-line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments. © 2016 The Fisheries Society of the British Isles.
Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T.
2009-01-01
In this paper we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the inter-material dividing surface (IMDS). By manipulating the strength of these interactions the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nano-patterning applications without manipulation of the surface chemistry or the application of external fields. PMID:18763835
2013-01-01
Abstract Echinorhynchus truttae and the Echinorhynchus bothniensis species complex are common parasites of salmoniform and other fishes in northern Europe. Echinorhynchus bothniensis and its sibling species Echinorhynchus 'bothniensis' are thought to be closely related to the Nearctic Echinorhynchus leidyi Van Cleave, 1924 based on morphological similarity and common usage of a mysid intermediate host. This study provides the first analysis of morphological and meristic variation in Echinorhynchus truttae and expands our knowledge of anatomical variability in the Echinorhynchus bothniensis group. Morphological variability in Echinorhynchus truttae was found to be far greater than previously reported, with part of the variance attributable to sexual dimorphism. Echinorhynchus truttae, the two species of the Echinorhynchus bothniensis group and Echinorhynchus leidyi displayed considerable interspecific overlap in the ranges of all conventional morphological characters. However, Proboscis profiler, a tool for detecting acanthocephalan morphotypes using multivariate analysis of hook morphometrics, successfully separated Echinorhynchus truttae from the other taxa. The Echinorhynchus bothniensis species group could not be reliably distinguished from Echinorhynchus leidyi (or each other), providing further evidence of the affinity of these taxa. Observations on the distribution of Echinorhynchus truttae in its definitive host population are also reported. PMID:24723769
Hopwood, Paul E.; Head, Megan L.; Jordan, Eleanor J.; Carter, Mauricio J.; Davey, Emma; Moore, Allen J.; Royle, Nick J.
2016-01-01
Male and female genital morphology varies widely across many taxa, and even among populations. Disentangling potential sources of selection on genital morphology is problematic because each sex is predicted to respond to adaptations in the other due to reproductive conflicts of interest. To test how variation in this sexual conflict trait relates to variation in genital morphology we used our previously developed artificial selection lines for high and low repeated mating rates. We selected for high and low repeated mating rates using monogamous pairings to eliminate contemporaneous female choice and male–male competition. Male and female genital shape responded rapidly to selection on repeated mating rate. High and low mating rate lines diverged from control lines after only 10 generations of selection. We also detected significant patterns of male and female genital shape coevolution among selection regimes. We argue that because our selection lines differ in sexual conflict, these results support the hypothesis that sexually antagonistic coevolution can drive the rapid divergence of genital morphology. The greatest divergence in morphology corresponded with lines in which the resolution of sexual conflict over mating rate was biased in favor of male interests. PMID:27144373
Verploegen, Eric; Zhang, Tejia; Jung, Yeon Sik; Ross, Caroline; Hammond, Paula T
2008-10-01
In this paper, we describe methods for manipulating the morphology of side-chain liquid crystalline block copolymers through variations in the liquid crystalline content. By systematically controlling the covalent attachment of side chain liquid crystals to a block copolymer (BCP) backbone, the morphology of both the liquid crystalline (LC) mesophase and the phase-segregated BCP microstructures can be precisely manipulated. Increases in LC functionalization lead to stronger preferences for the anchoring of the LC mesophase relative to the substrate and the intermaterial dividing surface. By manipulating the strength of these interactions, the arrangement and ordering of the ultrathin film block copolymer nanostructures can be controlled, yielding a range of morphologies that includes perpendicular and parallel cylinders, as well as both perpendicular and parallel lamellae. Additionally, we demonstrate the utilization of selective etching to create a nanoporous liquid crystalline polymer thin film. The unique control over the orientation and order of the self-assembled morphologies with respect to the substrate will allow for the custom design of thin films for specific nanopatterning applications without manipulation of the surface chemistry or the application of external fields.
A Geographic Cline of Skull and Brain Morphology among Individuals of European Ancestry
Bakken, Trygve E.; Dale, Anders M.; Schork, Nicholas J.
2011-01-01
Background Human skull and brain morphology are strongly influenced by genetic factors, and skull size and shape vary worldwide. However, the relationship between specific brain morphology and genetically-determined ancestry is largely unknown. Methods We used two independent data sets to characterize variation in skull and brain morphology among individuals of European ancestry. The first data set is a historical sample of 1,170 male skulls with 37 shape measurements drawn from 27 European populations. The second data set includes 626 North American individuals of European ancestry participating in the Alzheimer's Disease Neuroimaging Initiative (ADNI) with magnetic resonance imaging, height and weight, neurological diagnosis, and genome-wide single nucleotide polymorphism (SNP) data. Results We found that both skull and brain morphological variation exhibit a population-genetic fingerprint among individuals of European ancestry. This fingerprint shows a Northwest to Southeast gradient, is independent of body size, and involves frontotemporal cortical regions. Conclusion Our findings are consistent with prior evidence for gene flow in Europe due to historical population movements and indicate that genetic background should be considered in studies seeking to identify genes involved in human cortical development and neuropsychiatric disease. PMID:21849792
Morphological feature detection for cervical cancer screening
NASA Astrophysics Data System (ADS)
Narayanswamy, Ramkumar; Sharpe, John P.; Duke, Heather J.; Stewart, Rosemary J.; Johnson, Kristina M.
1995-03-01
An optoelectronic system has been designed to pre-screen pap-smear slides and detect the suspicious cells using the hit/miss transform. Computer simulation of the algorithm tested on 184 pap-smear images detected 95% of the suspicious region as suspect while tagging just 5% of the normal regions as suspect. An optoelectronic implementation of the hit/miss transform using a 4f Vander-Lugt correlator architecture is proposed and demonstrated with experimental results.
Kong, Wei-Dong; Ke, Jun-Yu; Hu, Xiang-Quan; Zhang, Wu; Li, Shu-Shu; Feng, Yi
2016-11-01
Currently, cone-beam computed tomography (CBCT) has been widely used because of its capacity to evaluate the anatomic structures of the maxilla, mandible, and teeth in 3 dimensions. However, articles about the use of CBCT to evaluate the relationships between the morphology of individual teeth and torque expression remain rare. In this study, we aimed to determine the influence of labial crown morphologies and collum angles on torque for maxillary anterior teeth using CBCT. A total of 206 extracted maxillary anterior teeth were selected to establish scanning models using dental wax, and they were scanned by CBCT. Three-dimensionally reconstructed images and median sagittal sections of the teeth were digitized and analyzed with AutoCAD software (Autodesk, San Rafael, Calif). The angle α, formed by the intersection of the tangent at a certain vertical height on the labial surface from the incisal edge with the crown long axis, and the collum angle, were measured. The variations in angle α at different heights from the incisal edge for the same type of tooth were statistically significantly different (P <0.001). Moreover, the variations between collum angles and 0° for any type of maxillary anterior tooth were statistically significant (P <0.01). This study suggested that there are great differences in labial crown morphologies and collum angles for maxillary anterior teeth between persons, indicating that the morphologies of these teeth do play important roles in torque variations. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Stahlschmidt, Zachary R; Lourdais, Olivier; Lorioux, Sophie; Butler, Michael W; Davis, Jon R; Salin, Karine; Voituron, Yann; DeNardo, Dale F
2013-01-01
Current reproductive effort typically comes at a cost to future reproductive value by altering somatic function (e.g., growth or self-maintenance). Furthermore, effects of reproduction often depend on both fecundity and stage of reproduction, wherein allocation of resources into additional offspring and/or stages of reproduction results in increased costs. Despite these widely accepted generalities, interindividual variation in the effects of reproduction is common-yet the proximate basis that allows some individuals to mitigate these detrimental effects is unclear. We serially measured several variables of morphology (e.g., musculature) and physiology (e.g., antioxidant defenses) in female Children's pythons (Antaresia childreni) throughout reproduction to examine how these traits change over the course of reproduction and whether certain physiological traits are associated with reduced effects of reproduction in some individuals. Reproduction in this capital breeder was associated with changes in both morphology and physiology, but only morphological changes varied with fecundity and among specific reproductive stages. During reproduction, we detected negative relationships between morphology and self-maintenance (e.g., increased muscle allocation to reproduction was related to reduced immune function). Additionally, females that allocated resources more heavily into current reproduction also did so during future reproduction, and these females assimilated resources more efficiently, experienced reduced detriments to self-maintenance (e.g., lower levels of oxidative damage and glucocorticoids) during reproduction, and produced clutches with greater hatching success. Our results suggest that interindividual variation in specific aspects of physiology (assimilation efficiency and oxidative status) may drive variation in reproductive performance.
Gaurav, Vivek; Srivastava, Nikhil; Rana, Vivek; Adlakha, Vivek Kumar
2013-01-01
Variations in morphology of root canals in primary teeth usually leads to complications during and after endodontic therapy. To improve the success in endodontics, a thorough knowledge of the root canal morphology is essential. The aim of this study was to assess the variation in number and morphology of the root canals of primary incisors and molars and to study the applicability of cone beam computerized tomography (CBCT) in assessing the same. A total of 60 primary molars and incisors with full root length were collected and various parameters such as the number of roots, number of canals, diameter of root canal at cementoenamel junction and middle-third, length and angulations of roots of primary molars and incisors were studied using CBCT. The observations were put to descriptive statistics to find out the frequency, mean, standard deviation and range for all four subgroups. Further, unpaired t-test was used to compare these parameters between subgroups and analysis of variance test was implemented to evaluate the parameters within the subgroups. The CBCT showed the presence of bifurcation of root canal at middle third in 13% of mandibular incisors while 20% of mandibular molars had two canals in distal root. The diameter of distobuccal root canal of maxillary molars and mesiolingual canal of mandibular molars was found to be minimum. CBCT is a relatively new and effective technology, which provides an auxiliary imaging modality to supplement conventional radiography for assessing the variation in root canal morphology of primary teeth.
Hutchison, J. Howard; Townsend, K. E. Beth; Adrian, Brent; Jager, Daniel
2017-01-01
We described newly discovered baenid specimens from the Uintan North American Land Mammal Age (NALMA), in the Uinta Formation, Uinta Basin, Utah. These specimens include a partial skull and several previously undescribed postcranial elements of Baena arenosa, and numerous well-preserved shells of B. arenosa and Chisternon undatum. Baenids from the Uintan NALMA (46.5–40 Ma) are critical in that they provide valuable insight into the morphology and evolution of the diverse and speciose baenid family near the end of its extensive radiation, just prior to the disappearance of this clade from the fossil record. These Uintan specimens greatly increase the known variation in these late-surviving taxa and indicate that several characters thought to define these species should be reassessed. The partial cranium of B. arenosa, including portions of the basicranium, neurocranium, face, and lower jaw, was recently recovered from Uinta B sediments. While its morphology is consistent with known specimens of B. arenosa, we observed several distinct differences: a crescent-shaped condylus occipitalis that is concave dorsally, tuberculum basioccipitale that flare out laterally, and a distinct frontal-nasal suture. The current sample of plastral and carapacial morphology considerably expands the documented variation in the hypodigms of B. arenosa and C. undatum. Novel shell characters observed include sigmoidal extragular-humeral sulci, and small, subtriangular gular scutes. Subadult specimens reveal ontogenetic processes in both taxa, and demonstrate that diagnostic morphological differences between them were present from an early developmental age. PMID:28686718
Smith, Heather F; Hutchison, J Howard; Townsend, K E Beth; Adrian, Brent; Jager, Daniel
2017-01-01
We described newly discovered baenid specimens from the Uintan North American Land Mammal Age (NALMA), in the Uinta Formation, Uinta Basin, Utah. These specimens include a partial skull and several previously undescribed postcranial elements of Baena arenosa, and numerous well-preserved shells of B. arenosa and Chisternon undatum. Baenids from the Uintan NALMA (46.5-40 Ma) are critical in that they provide valuable insight into the morphology and evolution of the diverse and speciose baenid family near the end of its extensive radiation, just prior to the disappearance of this clade from the fossil record. These Uintan specimens greatly increase the known variation in these late-surviving taxa and indicate that several characters thought to define these species should be reassessed. The partial cranium of B. arenosa, including portions of the basicranium, neurocranium, face, and lower jaw, was recently recovered from Uinta B sediments. While its morphology is consistent with known specimens of B. arenosa, we observed several distinct differences: a crescent-shaped condylus occipitalis that is concave dorsally, tuberculum basioccipitale that flare out laterally, and a distinct frontal-nasal suture. The current sample of plastral and carapacial morphology considerably expands the documented variation in the hypodigms of B. arenosa and C. undatum. Novel shell characters observed include sigmoidal extragular-humeral sulci, and small, subtriangular gular scutes. Subadult specimens reveal ontogenetic processes in both taxa, and demonstrate that diagnostic morphological differences between them were present from an early developmental age.
Jacobs, Bob; Johnson, Nicholas L.; Wahl, Devin; Schall, Matthew; Maseko, Busisiwe C.; Lewandowski, Albert; Raghanti, Mary A.; Wicinski, Bridget; Butti, Camilla; Hopkins, William D.; Bertelsen, Mads F.; Walsh, Timothy; Roberts, John R.; Reep, Roger L.; Hof, Patrick R.; Sherwood, Chet C.; Manger, Paul R.
2014-01-01
Although the basic morphological characteristics of neurons in the cerebellar cortex have been documented in several species, virtually nothing is known about the quantitative morphological characteristics of these neurons across different taxa. To that end, the present study investigated cerebellar neuronal morphology among eight different, large-brained mammalian species comprising a broad phylogenetic range: afrotherians (African elephant, Florida manatee), carnivores (Siberian tiger, clouded leopard), cetartiodactyls (humpback whale, giraffe) and primates (human, common chimpanzee). Specifically, several neuron types (e.g., stellate, basket, Lugaro, Golgi, and granule neurons; N = 317) of the cerebellar cortex were stained with a modified rapid Golgi technique and quantified on a computer-assisted microscopy system. There was a 64-fold variation in brain mass across species in our sample (from clouded leopard to the elephant) and a 103-fold variation in cerebellar volume. Most dendritic measures tended to increase with cerebellar volume. The cerebellar cortex in these species exhibited the trilaminate pattern common to all mammals. Morphologically, neuron types in the cerebellar cortex were generally consistent with those described in primates (Fox et al., 1967) and rodents (Palay and Chan-Palay, 1974), although there was substantial quantitative variation across species. In particular, Lugaro neurons in the elephant appeared to be disproportionately larger than those in other species. To explore potential quantitative differences in dendritic measures across species, MARSplines analyses were used to evaluate whether species could be differentiated from each other based on dendritic characteristics alone. Results of these analyses indicated that there were significant differences among all species in dendritic measures. PMID:24795574
Knigge, Ryan P; Tocheri, Matthew W; Orr, Caley M; Mcnulty, Kieran P
2015-01-01
Western gorillas (Gorilla gorilla) are known to climb significantly more often than eastern gorillas (Gorilla beringei), a behavioral distinction attributable to major differences in their respective habitats (i.e., highland vs. lowland). Genetic evidence suggests that the lineages leading to these taxa began diverging from one another between approximately 1 and 3 million years ago. Thus, gorillas offer a special opportunity to examine the degree to which morphology of recently diverged taxa may be "fine-tuned" to differing ecological requirements. Using three-dimensional (3D) geometric morphometrics, we compared talar morphology in a sample of 87 specimens including western (lowland), mountain (highland), and grauer gorillas (lowland and highland populations). Talar shape was captured with a series of landmarks and semilandmarks superimposed by generalized Procrustes analysis. A between-group principal components analysis of overall talar shape separates gorillas by ecological habitat and by taxon. An analysis of only the trochlea and lateral malleolar facet identifies subtle variations in trochlear shape between western lowland and lowland grauer gorillas, potentially indicative of convergent evolution of arboreal adaptations in the talus. Lastly, talar shape scales differently with centroid size for highland and lowland gorillas, suggesting that ankle morphology may track body-size mediated variation in arboreal behaviors differently depending on ecological setting. Several of the observed shape differences are linked biomechanically to the facilitation of climbing in lowland gorillas and to stability and load-bearing on terrestrial substrates in the highland taxa, providing an important comparative model for studying morphological variation in groups known only from fossils (e.g., early hominins). © 2014 Wiley Periodicals, Inc.
Taucce, Pedro P G; Pinheiro, Paulo D P; Leite, Felipe S F; Garcia, Paulo C A
2015-02-02
Bokermannohyla juiju is a member of the B. martinsi species group and it was described based on one male specimen. In order to enhance the knowledge about the species, we describe its advertisement call and morphological variation, including for the first time data on females. We also provide additional comments about its natural history, geographic distribution, and conservation. The advertisement call of B. juiju consists of a single note, non-pulsed, harmonic structured call emitted several times in a row. Four out of five males were found calling in bromeliads. The female, as it is common in many Bokermannohyla species, presents some morphological features not shared with the males, like a non-hypertrophied forearm and less developed prepollex.
Pogorzelska, Monika; Stone, Patricia W; Larson, Elaine L
2012-10-01
We performed a survey of National Healthcare Safety Network hospitals in 2008 to describe adoption of screening and infection control policies aimed at multidrug-resistant organisms (MDRO) in intensive care units (ICUs) and identify predictors of their presence, monitoring, and implementation. Four hundred forty-one infection control directors were surveyed using a modified Dillman technique. To explore differences in screening and infection control policies by setting characteristics, bivariate and multivariable logistic regression models were constructed. In total, 250 hospitals participated (57% response rate). Study ICUs (n = 413) routinely screened for methicillin-resistant Staphylococcus aureus (59%); vancomycin-resistant Enterococcus (22%); multidrug-resistant, gram-negative rods (12%); and Clostridium difficile (11%). Directors reported ICU policies to screen all admissions for any MDRO (40%), screen periodically (27%), utilize presumptive isolation/contact precautions pending a screen (31%), and cohort colonized patients (42%). Several independent predictors of the presence and implementation of different interventions including mandatory reporting and teaching status were identified. This study found wide variation in adoption of MDRO screening and infection control interventions, which may reflect differences in published recommendations or their interpretation. Further research is needed to provide additional insight on effective strategies and how best to promote compliance. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
2018-01-01
Characterization of morphological variation in the shells of extant Eastern Box Turtles, Terrapene carolina, provides a baseline for comparison to fossil populations. It also provides an example of the difficulties inherent to recognizing intraspecific diversity in the fossil record. The degree to which variation in fossils of T. carolina can be accommodated by extant variation in the species has been disagreed upon for over eighty years. Using morphometric analyses of the carapace, I address the relationship between modern and fossil T. carolina in terms of sexual dimorphism, geographic and subspecific variation, and allometric variation. Modern T. carolina display weak male-biased sexual size dimorphism. Sexual shape dimorphism cannot be reliably detected in the fossil record. Rather than a four-part subspecific division, patterns of geographic variation are more consistent with clinal variation between various regions in the species distribution. Allometric patterns are qualitatively similar to those documented in other emydid turtles and explain a significant amount of shape variation. When allometric patterns are accounted for, Holocene specimens are not significantly different from modern specimens. In contrast, several geologically older specimens have significantly different carapace shape with no modern analogue. Those large, fossilized specimens represent extinct variation occupying novel portions of morphospace. This study highlights the need for additional documentation of modern osteological variation that can be used to test hypotheses of intraspecific evolution in the fossil record. PMID:29513709
Role of re-screening of cervical smears in internal quality control.
Baker, A; Melcher, D; Smith, R
1995-01-01
AIMS--To investigate the use of rapid re-screening as a quality control method for previously screened cervical slides; to compare this method with 10% random re-screening and clinically indicated double screening. METHODS--Between June 1990 and December 1994, 117,890 negative smears were subjected to rapid re-screening. RESULTS--This study shows that rapid re-screening detects far greater numbers of false negative cases when compared with both 10% random re-screening and clinically indicated double screening, with no additional demand on human resources. The technique also identifies variation in the performance of screening personnel as an additional benefit. CONCLUSION--Rapid re-screening is an effective method of quality control. Although less sensitive, rapid re-screening should replace 10% random re-screening and selected re-screening as greater numbers of false negative results are detected while consuming less resources. PMID:8543619
Differences in creosotebush (Larrea tridentata) crown morphology may reflect changes in the relative demand for water vs. nutrient resources, coinciding with shrub growth and development Creosotebushes with inverted cone-shaped crowns were more abundant in water-limited environme...
Measuring lip force by oral screens. Part 1: Importance of screen size and individual variability.
Wertsén, Madeleine; Stenberg, Manne
2017-06-01
To reduce drooling and facilitate food transport in rehabilitation of patients with oral motor dysfunction, lip force can be trained using an oral screen. Longitudinal studies evaluating the effect of training require objective methods. The aim of this study was to evaluate a method for measuring lip strength, to investigate normal values and fluctuation of lip force in healthy adults on 1 occasion and over time, to study how the size of the screen affects the force, to evaluate the most appropriate measure of reliability, and to identify force performed in relation to gender. Three different sizes of oral screens were used to measure the lip force for 24 healthy adults on 3 different occasions, during a period of 6 months, using an apparatus based on strain gauge. The maximum lip force as evaluated with this method depends on the area of the screen size. By calculating the projected area of the screen, the lip force could be normalized to an oral screen pressure quantity expressed in kPa, which can be used for comparing measurements from screens with different sizes. Both the mean value and standard deviation were shown to vary between individuals. The study showed no differences regarding gender and only small variation with age. Normal variation over time (months) may be up to 3 times greater than the standard error of measurement at a certain occasion. The lip force increases in relation to the projected area of the screen. No general standard deviation can be assigned to the method and all measurements should be analyzed individually based on oral screen pressure to compensate for different screen sizes.
Pearce, John M.; Bollinger, Karen S.
2003-01-01
Subspecies of Canada Geese (Branta canadensis) exhibit wide variation in body size across their range. To monitor harvest levels in the Pacific Flyway, biologists commonly use culmen length and plumage color to differentiate among subspecies on sympatric wintering grounds. Among the four large-bodied Pacific subspecies (B. c. parvipes, B. c. occidentalis, B. c. fulva, and B. c. moffitti), overlap in culmen length and subjectivity of visually assessing color results in misclassification and inaccurate harvest estimates. We examined the morphology of Pacific large-bodied Canada Geese to characterize body size variation among subspecies and provide more discriminatory measures for harvest assessments. We found that culmen length, one of the most commonly used field measures, overlapped widely among subspecies, and it had little support for inclusion in discriminatory models. Morphological measures with greater explanatory power included bill width at nail, bill width at base, head length, and mid wing. If culmen length and plumage color continue to be used to assess winter harvest, we recommend the addition of at least one sex-specific measurement to reduce levels of misclassification among subspecies. If an additional morphological measure is included, further evaluation on the wintering grounds should be conducted as this measure's effectiveness may vary depending upon observer bias, temporal and spatial variation in subspecies abundance, and the proportion of birds accurately sexed by cloacal examination.
Benedict, John C; Smith, Selena Y; Specht, Chelsea D; Collinson, Margaret E; Leong-Škorničková, Jana; Parkinson, Dilworth Y; Marone, Federica
2016-01-01
Phenotypic variation can be attributed to genetic heritability as well as biotic and abiotic factors. Across Zingiberales, there is a high variation in the number of species per clade and in phenotypic diversity. Factors contributing to this phenotypic variation have never been studied in a phylogenetic or ecological context. Seeds of 166 species from all eight families in Zingiberales were analyzed for 51 characters using synchrotron based 3D X-ray tomographic microscopy to determine phylogenetically informative characters and to understand the distribution of morphological disparity within the order. All families are distinguishable based on seed characters. Non-metric multidimensional scaling analyses show Zingiberaceae occupy the largest seed morphospace relative to the other families, and environmental analyses demonstrate that Zingiberaceae inhabit both temperate and tropical regions, while other Zingiberales are almost exclusively tropical. Temperate species do not cluster in morphospace nor do they share a common suite of character states. This suggests that the diversity seen is not driven by adaptation to temperate niches; rather, the morphological disparity seen likely reflects an underlying genetic plasticity that allowed Zingiberaceae to repeatedly colonize temperate environments. The notable morphoanatomical variety in Zingiberaceae seeds may account for their extraordinary ecological success and high species diversity as compared to other Zingiberales. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
Anton, K A; Ward, J R; Cruzan, M B
2013-03-01
Hybridization between closely related lineages is a mechanism that might promote substantive changes in phenotypic traits of descendants, resulting in transgressive evolution. Interbreeding between divergent but morphologically similar lineages can produce exceptional phenotypes, but the potential for transgressive variation to facilitate long-term trait changes in derived hybrid lineages has received little attention. We compare pollinator-mediated selection on transgressive floral traits in both early-generation and derived hybrid lineages of the Piriqueta cistoides ssp. caroliniana complex. The bowl-shaped flowers of morphotypes in this complex have similar gross morphologies and attract a common suite of small insect pollinators. However, they are defined by significant differences in characters that generate pollinator interest and visitation, including floral area and petal separation. In common garden experiments, patterns of pollen deposition in early-generation recombinant hybrids indicate that Piriqueta's pollinators favour flowers with greater area and reduced petal separation. Changes in floral morphology in derived hybrid lineages are consistent with predictions from selection gradients, but the magnitude of change is limited relative to the range of transgressive variation. These results suggest that hybridization provides variation for evolution of divergent floral traits. However, the potential for extreme transgressive variants to contribute to phenotypic shifts may be limited due to reduced heritability, evolutionary constraints or fitness trade-offs. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Baktoft, Henrik; Jacobsen, Lene; Skov, Christian; Koed, Anders; Jepsen, Niels; Berg, Søren; Boel, Mikkel; Aarestrup, Kim; Svendsen, Jon C.
2016-01-01
Ongoing climate change is affecting animal physiology in many parts of the world. Using metabolism, the oxygen- and capacity-limitation of thermal tolerance (OCLTT) hypothesis provides a tool to predict the responses of ectothermic animals to variation in temperature, oxygen availability and pH in the aquatic environment. The hypothesis remains controversial, however, and has been questioned in several studies. A positive relationship between aerobic metabolic scope and animal activity would be consistent with the OCLTT but has rarely been tested. Moreover, the performance model and the allocation model predict positive and negative relationships, respectively, between standard metabolic rate and activity. Finally, animal activity could be affected by individual morphology because of covariation with cost of transport. Therefore, we hypothesized that individual variation in activity is correlated with variation in metabolism and morphology. To test this prediction, we captured 23 wild European perch (Perca fluviatilis) in a lake, tagged them with telemetry transmitters, measured standard and maximal metabolic rates, aerobic metabolic scope and fineness ratio and returned the fish to the lake to quantify individual in situ activity levels. Metabolic rates were measured using intermittent flow respirometry, whereas the activity assay involved high-resolution telemetry providing positions every 30 s over 12 days. We found no correlation between individual metabolic traits and activity, whereas individual fineness ratio correlated with activity. Independent of body length, and consistent with physics theory, slender fish maintained faster mean and maximal swimming speeds, but this variation did not result in a larger area (in square metres) explored per 24 h. Testing assumptions and predictions of recent conceptual models, our study indicates that individual metabolism is not a strong determinant of animal activity, in contrast to individual morphology, which is correlated with in situ activity patterns. PMID:27382465
Media formulation influences chemical effects on neuronal growth and morphology
Abstract Screening for developmental neurotoxicity (DNT) using in vitro, cell-based test systems has been proposed as an efficient and cost-effective alternative to performing in vivo DNT studies. One of the pri...
Using Microelectrode Arrays for Neurotoxicity Screening
Chemicals can disrupt nervous system electrical activity, rapidly causing toxicity prior to, or in the absence of, biochemical or morphological changes. However, high-throughput, functional approaches to detect chemical induced changes in electrical excitability are lacking. Micr...
Anatomical Variability in the Termination of the Basilar Artery in the Human Cadaveric Brain.
Gunnal, Sandhya; Farooqui, Mujeebuddin; Wabale, Rajendra
2015-01-01
The basilar artery (BA) is the prominent median vessel of the vertebrobasilar circulation and usually terminates into two posterior cerebral arteries forming the posterior angle of the Circle of Willis (CW). To tackle different variations of CW, basilar artery acts as a guideline for neuroradiologists and neurosurgeons. Basilar termination is the most frequent site of aneurysm. Abnormalities at the site of termination may compress the oculomotor nerve. Variations at the termination may complicate surgeries at the base of brain. The present study aims to add to the knowledge regarding the termination pattern of the BA. 170 BA terminations were studied. Morphological variations in the termination pattern were noted. Frequency of variations in termination patterns was recorded. Dimensions of BA were measured. Data were analyzed. Morphological variations in termination were seen in 17.64%. Bifurcation, Trifurcation, Quadrifurcation, Pentafurcation and Nonfurcation of BA was seen in 82.35%, 5.29%, 5.88%, 3.52% and 2.94% respectively. BA associated with aneurysm and Fenestration was seen in 3.52% and 1.17% respectively. Mean length and diameter of BA was 30.27 mm and 4.8 mm respectively. Awareness of these anatomical variations in termination patterns of BA is important in neurovascular procedures.
Kaliontzopoulou, Antigoni; Carretero, M A; Llorente, G A
2010-06-01
Morphological variation in relation to habitat is known to occur in several lizard groups. Comparative studies have linked morphology and habitat use, showing that locomotion is the principal mediator of this evolutionary relationship. Here, we investigate intraspecific ecomorphological variation in Podarcis bocagei by examining three habitat types, representing a variety between saxicolous and ground-dwelling habits. Our results indicate variation in absolute and relative limb length, but patterns are only partially concordant to biomechanical predictions. Whereas the femur and hind foot are longer in ground-dwelling lizards, confirming previous observations, the tibia and hind limb are relatively shorter, contradicting expectations. Additionally, head shape varies substantially between habitats, in line with a hypothesis of mechanical restrictions related to microhabitat and refuge use. Finally, we detect male-specific variation between habitats in total body size and head size, providing evidence for interactions between natural and sexual selection. Although performance and behaviour studies are necessary to definitely confirm the functional and evolutionary significance of the observed patterns, our study indicates that ecomorphological adaptations can arise in a very short evolutionary time in this group of lizards.
Clinal variation of some mammals during the Holocene in Missouri
NASA Astrophysics Data System (ADS)
Purdue, James R.
1980-03-01
Eastern cottontail ( Sylvilagus floridanus), fox squirrel ( Sciurus niger), and gray squirrel ( Sciurus carolinensis) were examined for clinal variation during the Holocene. Modern samples of all three species displayed strong east-west patterns along the western edge of the eastern deciduous forest: S. floridanus and S. niger decrease and S. carolinensis increases in size. Archeological samples of S. carolinensis from Rodgers Shelter (23BE125), Benton County, Missouri, and Graham Cave (23MT2), Montgomery County, Missouri, indicated an increase in size from early to middle Holocene. Sylvilagus floridanus from Rodgers Shelter decreased in size from early to middle Holocene and then increased during the late Holocene to modern proportions. A literature survey reveals that clinal variation is a common phenomenon among modern homeotherms. In introduced species, clinal variation has developed after relatively few generations, indicating rapid adaptations to environmental conditions; often winter climatic variables are implicated. Morphological variation in the study species during the Holocene is interpreted as a response to changing climates. Studies of morphological clines may lead to another valuable data source for reconstructing past ecologies.
Automatic detection of spiculation of pulmonary nodules in computed tomography images
NASA Astrophysics Data System (ADS)
Ciompi, F.; Jacobs, C.; Scholten, E. T.; van Riel, S. J.; W. Wille, M. M.; Prokop, M.; van Ginneken, B.
2015-03-01
We present a fully automatic method for the assessment of spiculation of pulmonary nodules in low-dose Computed Tomography (CT) images. Spiculation is considered as one of the indicators of nodule malignancy and an important feature to assess in order to decide on a patient-tailored follow-up procedure. For this reason, lung cancer screening scenario would benefit from the presence of a fully automatic system for the assessment of spiculation. The presented framework relies on the fact that spiculated nodules mainly differ from non-spiculated ones in their morphology. In order to discriminate the two categories, information on morphology is captured by sampling intensity profiles along circular patterns on spherical surfaces centered on the nodule, in a multi-scale fashion. Each intensity profile is interpreted as a periodic signal, where the Fourier transform is applied, obtaining a spectrum. A library of spectra is created by clustering data via unsupervised learning. The centroids of the clusters are used to label back each spectrum in the sampling pattern. A compact descriptor encoding the nodule morphology is obtained as the histogram of labels along all the spherical surfaces and used to classify spiculated nodules via supervised learning. We tested our approach on a set of nodules from the Danish Lung Cancer Screening Trial (DLCST) dataset. Our results show that the proposed method outperforms other 3-D descriptors of morphology in the automatic assessment of spiculation.
Guillygomarc'h, Anne; Christian, Jacquelinet; Romain, Moirand; Vincent, Quentin; Véronique, David; Deugnier, Yves
2003-01-01
The phenotypic screening for genetic haemochromatosis (GH) relies upon the determination of transferrin saturation (TS). In large-scale screening programs, the time of blood sampling can be uneasy to control. We studied the circadian variations of TS at 08.00 hours, 12.00 hours, 18.00 hours and 00.00 hours in 46 C282Y homozygous patients (GH) and 47 non-GH patients (NH), to determine whether the time of blood sampling influenced the results of screening. In both groups, there were significant circadian variations in TS, with the highest values at 08.00 hours and the lowest at 00.00 hours. For any given time-point, TS was significantly higher in the GH group when compared with the NH group (P < 0.0001). For both groups, there was a significant decrease in TS between 08.00 hours and 00.00 hours (P < 0.0001) but this decrease was not as significant in GH when compared with NH patients (interaction P < 0.0073). Receiver operating characteristics (ROC) curves generated for TS at 08.00 hours, 12.00 hours, 18.00 hours and 00.00 hours, presented the same efficiency of diagnosis of GH, with TS threshold varying between 64% at 08.00 hours and 36% at 00.00 hours. In conclusion, for screening studies of C282Y homozygosity, determination of transferrin saturation may be performed at any time during the day.
NASA Astrophysics Data System (ADS)
Voepel, H.; Ahmed, S. I.; Hodge, R. A.; Leyland, J.; Sear, D. A.
2016-12-01
One of the major causes of uncertainty in estimates of bedload transport rates in gravel bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on bed stability. Furthermore, grain-scale structure varies throughout a channel and over time in ways that have not been fully quantified. Our research aims to quantify variations in sediment structure caused by two key variables; morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel bed with a riffle-pool morphology. The fine sediment content of the bed was incrementally increased over a series of runs from gravel only, to coarse sand, fine sand and two concentrations of clay. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure through metrics including measurement of grain pivot angles, grain exposure and protrusion, and vertical variation in bed porosity and fine sediment content. Metrics derived from the CT data were verified using data from grain counts and tilt-table measurements on co-located samples. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure. These results have implications for the development of sediment entrainment models for gravel bed rivers.
Greek classicism in living structure? Some deductive pathways in animal morphology.
Zweers, G A
1985-01-01
Classical temples in ancient Greece show two deterministic illusionistic principles of architecture, which govern their functional design: geometric proportionalism and a set of illusion-strengthening rules in the proportionalism's "stochastic margin". Animal morphology, in its mechanistic-deductive revival, applies just one architectural principle, which is not always satisfactory. Whether a "Greek Classical" situation occurs in the architecture of living structure is to be investigated by extreme testing with deductive methods. Three deductive methods for explanation of living structure in animal morphology are proposed: the parts, the compromise, and the transformation deduction. The methods are based upon the systems concept for an organism, the flow chart for a functionalistic picture, and the network chart for a structuralistic picture, whereas the "optimal design" serves as the architectural principle for living structure. These methods show clearly the high explanatory power of deductive methods in morphology, but they also make one open end most explicit: neutral issues do exist. Full explanation of living structure asks for three entries: functional design within architectural and transformational constraints. The transformational constraint brings necessarily in a stochastic component: an at random variation being a sort of "free management space". This variation must be a variation from the deterministic principle of the optimal design, since any transformation requires space for plasticity in structure and action, and flexibility in role fulfilling. Nevertheless, finally the question comes up whether for animal structure a similar situation exists as in Greek Classical temples. This means that the at random variation, that is found when the optimal design is used to explain structure, comprises apart from a stochastic part also real deviations being yet another deterministic part. This deterministic part could be a set of rules that governs actualization in the "free management space".
Gao, Yi-ning; Wang, Dan-ying; Pan, Zong-fu; Mei, Yu-qin; Wang, Zhi-qiang; Zhu, Dan-yan; Lou, Yi-jia
2012-07-01
To set up a platform for phenotype-based primary screening of drug candidates promoting neuronal subtype differentiation in embryonic stem cells (ES) with light microscope. Hanging drop culture 4-/4+ method was employed to harvest the cells around embryoid body (EB) at differentiation endpoint. Morphological evaluation for neuron-like cells was performed with light microscope. Axons for more than three times of the length of the cell body were considered as neuron-like cells. The compound(s) that promote neuron-like cells was further evaluated. Icariin (ICA, 10(-6)mol/L) and Isobavachin (IBA, 10(-7)mol/L) were selected to screen the differentiation-promoting activity on ES cells. Immunofluorescence staining with specific antibodies (ChAT, GABA) was used to evaluate the neuron subtypes. The cells treated with IBA showed neuron-like phenotype, but the cells treated with ICA did not exhibit the morphological changes. ES cells treated with IBA was further confirmed to be cholinergic and GABAergic neurons. Phenotypic screening with light microscope for molecules promoting neuronal differentiation is an effective method with advantages of less labor and material consuming and time saving, and false-positive results derived from immunofluorescence can be avoided. The method confirms that IBA is able to facilitate ES cells differentiating into neuronal cells, including cholinergic neurons and GABAergic neurons.
Siemens, Frederike C; van Haaften, Carolien; Kuijpers, Johan C; Helmerhorst, Theo J M; Boon, Mathilde E
2006-01-01
To assess, in a longitudinal study in women diagnosed with high grade squamous epithelial lesion (HSIL), the progression over time of proliferative activity in reserve cells using population screening cervical cytology specimens. Twenty consecutive, unselected patients with HSIL lesions were part of the national cervical screening program. From the archives, for each patient, the last prior normal population screening smear was included in the study. Concurrent sets of cervical smears from 80 age-matched women without pathology formed the controls. The original slides were stained using MIB-1 monoclonal antibody. The fraction of MIB-1-positive reserve cells was assessed using systematic random sampling and running progressive means assessment to ensure a sufficient sample size. The proliferation fraction in reserve cells of HSIL patients was significantly raised (mean, 65.0%; range, 53.5-94.1%; p < 0.01) as compared with that in concurrent controls (mean, 12.8%; range, 1.9-45.4%). Prior smears from HSIL patients, although without morphologic abnormalities, had abnormally high proliferation fractions (mean, 59.1%; range, 1.0-94.7%), significantly raised over those from concurrent controls (mean, 9.4%; range In population-based cervical smear screening, HSIL patients already have abnormally raised proliferation fractions of reserve cells, even without morphologic changes in squamous cells, 1-5 (mean, 3.6) years prior to diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, Yasmin; Thomas, C David L.; Clement, John G
2013-04-09
In recent years there has been growing interest in the spatial properties of osteocytes (including density and morphology) and how these potentially relate to adaptation, disease and aging. This interest has, in part, arisen from the availability of increasingly high-resolution 3D imaging modalities such as synchrotron radiation (SR) micro-CT. As resolution increases, field of view generally decreases. Thus, while increasingly detailed spatial information is obtained, it is unclear how representative this information is of the skeleton or even the isolated bone. The purpose of this research was to describe the variation in osteocyte lacunar density, morphology and orientation within themore » femur from a healthy young male human. Multiple anterior, posterior, medial and lateral blocks (2 mm × 2 mm) were prepared from the proximal femoral shaft and SR micro-CT imaged at the Advanced Photon Source. Average lacunar densities (± standard deviation) from the anterior, posterior, medial and lateral regions were 27,169 ± 1935, 26,3643 ± 1262, 37,521 ± 6416 and 33,972 ± 2513 lacunae per mm 3 of bone tissue, respectively. These values were significantly different between the medial and both the anterior and posterior regions (p < 0.05). The density of the combined anterior and posterior regions was also significantly lower (p = 0.001) than the density of the combined medial and lateral regions. Although no difference was found in predominant orientation, shape differences were found; with the combined anterior and posterior regions having more elongated (p = 0.004) and flattened (p = 0.045) lacunae, than those of the medial and lateral regions. This study reveals variation in osteocyte lacunar density and morphology within the cross-section of a single bone and that this variation can be considerable (up to 30% difference in density between regions). The underlying functional significance of the observed variation in lacunar density likely relates to localized variations in loading conditions as the pattern corresponds well with mechanical axes. Lower density and more elongate shapes being associated with the antero-posterior oriented neutral axis. Our findings demonstrate that the functional and pathological interpretations that are increasingly being drawn from high resolution imaging of osteocyte lacunae need to be better situated within the broader context of normal variation, including that which occurs even within a single skeletal element.« less
Hip morphologic measurements in an Egyptian population.
Aly, Tarek A
2011-04-11
The study of acetabular morphology has shown that there are geographic differences in the morphology and prevalence of acetabular dysplasia among different ethnic groups. However, few data exist on the shape of the acetabulum in various populations around the world. In this study, we examined samples of pelvic radiographs from Egyptian adults. Acetabular dysplasia in adults is characterized by a shallow and relatively vertical acetabulum.The aim of this study was to examine acetabular morphology to determine the prevalence of hip dysplasia in adult Egyptians. This included 244 adults, 134 men and 110 women between 18 and 60 years, who were used to measure center edge angle, acetabular Sharp angle, acetabular head index on anteroposterior radiographic views of the hip joints, and vertical center anterior margin angle on false profile views. The radiographs were taken of patients with no hip complaints at Tanta University Hospital.The results were statistically studied according to the age, height, and weight of patients. The prevalence of acetabular dysplasia was 2.25% for Egyptian men and 3.6% for women with respect to center edge angles, vertical center anterior margin angle, and acetabular head index.We concluded that gender variations in the morphology of the acetabulum and sex influences geometrical measurements of the acetabulum. Egyptian women were more dysplastic than men using the 4 parameters of hip measurements. There are also racial variations in hip morphology. Copyright 2011, SLACK Incorporated.
Variation in vertebral number and its morphological implication in Galaxias platei.
Barriga, J P; Milano, D; Cussac, V E
2013-11-01
Variation in the vertebral number of the puyen grande Galaxias platei was examined for specimens from 22 localities that span the entire distribution range of the species (from 40° to 55° S). The mean vertebral number (NMW ) increases towards high latitudes, i.e. Jordan's rule is applicable to this species. Owing to the wide geographic variation of the species, not only in latitude but also in altitude, the most explicative variable for NMW was mean winter air temperature, showing negative dependence. Morphological data suggest that the increment in vertebral number lies in the pre-pelvic region of the trunk and in the caudal region, but not in the segment between pelvic-fin insertion and the origin of the anal fin. As these alterations in body shape have important consequences for hydrodynamics and swimming performance, vertebral number variation in G. platei also holds implications for both individual and population fitness. © 2013 The Fisheries Society of the British Isles.
Mack, Deborah S; Epstein, Mara M; Dubé, Catherine; Clark, Robin E; Lapane, Kate L
2018-06-04
United States (US) guidelines regarding when to stop routine breast cancer screening remain unclear. No national studies to-date have evaluated the use of screening mammography among US long-stay nursing home residents. This cross-sectional study was designed to identify prevalence, predictors, and geographic variation of screening mammography among that population in the context of current US guidelines. Screening mammography prevalence, identified with Physician/Supplier Part B claims and stratified by guideline age classification (65-74, ≥75 years), was estimated for all women aged ≥65 years residing in US Medicare- and Medicaid- certified nursing homes (≥1 year) with an annual Minimum Data Set (MDS) 3.0 assessment, continuous Medicare Part B enrollment, and no clinical indication for screening mammography as of 2011 (n = 389,821). The associations between resident- and regional- level factors, and screening mammography, were estimated by crude and adjusted prevalence ratios from robust Poisson regressions clustered by facility. Women on average were 85.4 (standard deviation ±8.1) years old, 77.9% were disabled, and 76.3% cognitively impaired. Screening mammography prevalence was 7.1% among those aged 65-74 years (95% Confidence Interval (CI): 6.8%-7.3%) and 1.7% among those ≥75 years (95% CI, 1.7%-1.8%), with geographic variation observed. Predictors of screening in both age groups included race, cognitive impairment, frailty, hospice, and some comorbidities. These results shed light on the current screening mammography practices in US nursing homes. Thoughtful consideration about individual screening recommendations and the implementation of more clear guidelines for this special population are warranted to prevent overscreening. Copyright © 2018 Elsevier Inc. All rights reserved.
The effect of the presence of the accessory maxillary ostium on the maxillary sinus.
Yenigun, Alper; Fazliogullari, Zeliha; Gun, Cihat; Uysal, Ismihan Ilknur; Nayman, Alaaddin; Karabulut, Ahmet Kagan
2016-12-01
This study was conducted to investigate the presence of the accessory maxillary ostium and its effects on the maxillary sinus, and the concurrent occurrence of morphological variations of neighboring anatomical structures. This study was performed in a tertiary referral center. This is a cross-sectional retrospective study that evaluated coronal CTs of patients to determine the frequency of the accessory maxillary ostium and investigated any simultaneous morphological variations in neighboring anatomical structures. The presence of the accessory maxillary ostium (AMO) plus any concurrent morphological variations of neighboring structures were investigated in 377 patients, with 754 sides. AMO was found to be present in 19.1 % (72/377) of the patients. A concurrent mucus retention cyst was found to be statistically significant on both sides (right side: p = 0.00, left side: p = 0.00), as well as mucosal thickening (right side: p = 0.00, left side: p = 0.00), and maxillary sinusitis (right side: p = 0.04, left side: p = 0.03). No other concurrent variations of statistical significance were detected in the neighboring structures. Our study demonstrated that with the presence of AMO, the likelihood of encountering a mucus retention cyst (48.6 %) had an approximately threefold increase, and that of encountering mucosal thickening (43.0 %) and maxillary sinusitis (29.1 %) had a twofold increase.
Hirata, Sho; Abdelrahman, Mostafa; Yamauchi, Naoki; Shigyo, Masayoshi
2016-11-26
The aim of this study was to obtain primary information about the global diversity of garlic (Allium sativum L.) by evaluating morphological, physiological and isozyme variation. A total of 107 garlic accessions collected worldwide were grown in Yamaguchi, Japan. Five morphological traits (bulb weight, bulb diameter, number of cloves per bulb, number of bulbils and scape length) and one physiological trait (bolting period) of the collected garlic showed wide variation. Meanwhile, a total of 140 garlic accessions, including the 107 mentioned above, were characterized by leucine aminopeptidase (LAP) and phosphoglucoisomerase (PGI) isozyme analyses; they clearly showed polymorphisms in putative isozyme loci (Lap-1, Lap-2 and Pgi-1). Allelic frequencies were estimated in each group of accessions categorized by their geographical origin, and the observed (H o ) and expected (H e ) heterozygosities were calculated. The allelic frequencies differed between groups. A principal component analysis based on morpho-physiological data indicated a grouping of the garlic accessions into Central Asian and Northern Mediterranean groups as well as others. We discuss the roles of artificial and natural selection that may have caused differentiation in these traits, on the assumption that ancestral domesticated garlic populations have adapted in various regions using standing variation or mutations that accumulated during expansion, and have evolved along with human-preferred traits over a long history of cultivation.
Hanušová, Kristýna; Ekrt, Libor; Vít, Petr; Kolář, Filip; Urfus, Tomáš
2014-01-01
Introgressive hybridization is an important evolutionary process frequently contributing to diversification and speciation of angiosperms. Its extent in other groups of land plants has only rarely been studied, however. We therefore examined the levels of introgression in the genus Diphasiastrum, a taxonomically challenging group of Lycopodiophytes, using flow cytometry and numerical and geometric morphometric analyses. Patterns of morphological and cytological variation were evaluated in an extensive dataset of 561 individuals from 57 populations of six taxa from Central Europe, the region with the largest known taxonomic complexity. In addition, genome size values of 63 individuals from Northern Europe were acquired for comparative purposes. Within Central European populations, we detected a continuous pattern in both morphological variation and genome size (strongly correlated together) suggesting extensive levels of interspecific gene flow within this region, including several large hybrid swarm populations. The secondary character of habitats of Central European hybrid swarm populations suggests that man-made landscape changes might have enhanced unnatural contact of species, resulting in extensive hybridization within this area. On the contrary, a distinct pattern of genome size variation among individuals from other parts of Europe indicates that pure populations prevail outside Central Europe. All in all, introgressive hybridization among Diphasiastrum species in Central Europe represents a unique case of extensive interspecific gene flow among spore producing vascular plants that cause serious complications of taxa delimitation. PMID:24932509
Large Topographic Rises on Venus: Implications for Mantle Upwelling
NASA Technical Reports Server (NTRS)
Stofan, Ellen R.; Smrekar, Suzanne E.; Bindschandler, Duane L.; Senske, David A.
1995-01-01
Topographic rises on Venus have been identified that are interpreted to be the surface manifestation of mantle upwellings. These features are classified into groups based on their dominant morphology. Atla and Beta Regiones are classified as rift-dominated, Dione, western Eistla, Bell, and Imdr Regiones as volcano-dominated, and Themis, eastern Eistla, and central Eistla Regiones as corona-dominated. At several topographic rises, geologic indicators were identified that may provide evidence of uplifted topography (e.g., volcanic flow features trending upslope). We assessed the minimum contribution of volcanic construction to the topography of each rise, which in general represents less than 5% of the volume of the rise, similar to the volumes of edifices at terrestrial hotspot swells. The total melt volume at each rise is approximated to be 10(exp 4) - 10(exp 6) cu km. The variations in morphology, topography, and gravity signatures at topographic rises are not interpreted to indicate variations in stage of evolution of a mantle upwelling. Instead, the morphologic variations between the three classes of topographic rises are interpreted to indicate the varying influences of lithospheric structure, plume characteristics, and regional tectonic environment. Within each class, variations in topography, gravity, and amount of volcanism may be indicative of differing stages of evolution. The similarity between swell and volcanic volumes for terrestrial and Venusian hotspots implies comparable time-integrated plume strengths for individual upwellings on the two planets.
Fazly, Ahmed; Jain, Charu; Dehner, Amie C; Issi, Luca; Lilly, Elizabeth A; Ali, Akbar; Cao, Hong; Fidel, Paul L; Rao, Reeta P; Kaufman, Paul D
2013-08-13
Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis.
Fazly, Ahmed; Jain, Charu; Dehner, Amie C.; Issi, Luca; Lilly, Elizabeth A.; Ali, Akbar; Cao, Hong; Fidel, Paul L.; P. Rao, Reeta; Kaufman, Paul D.
2013-01-01
Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis. PMID:23904484
Collins, Adam; Huett, Alan
2018-05-15
We present a high-content screen (HCS) for the simultaneous analysis of multiple phenotypes in HeLa cells expressing an autophagy reporter (mcherry-LC3) and one of 224 GFP-fused proteins from the Crohn's Disease (CD)-associated bacterium, Adherent Invasive E. coli (AIEC) strain LF82. Using automated confocal microscopy and image analysis (CellProfiler), we localised GFP fusions within cells, and monitored their effects upon autophagy (an important innate cellular defence mechanism), cellular and nuclear morphology, and the actin cytoskeleton. This data will provide an atlas for the localisation of 224 AIEC proteins within human cells, as well as a dataset to analyse their effects upon many aspects of host cell morphology. We also describe an open-source, automated, image-analysis workflow to identify bacterial effectors and their roles via the perturbations induced in reporter cell lines when candidate effectors are exogenously expressed.
CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging.
Held, Michael; Schmitz, Michael H A; Fischer, Bernd; Walter, Thomas; Neumann, Beate; Olma, Michael H; Peter, Matthias; Ellenberg, Jan; Gerlich, Daniel W
2010-09-01
Fluorescence time-lapse imaging has become a powerful tool to investigate complex dynamic processes such as cell division or intracellular trafficking. Automated microscopes generate time-resolved imaging data at high throughput, yet tools for quantification of large-scale movie data are largely missing. Here we present CellCognition, a computational framework to annotate complex cellular dynamics. We developed a machine-learning method that combines state-of-the-art classification with hidden Markov modeling for annotation of the progression through morphologically distinct biological states. Incorporation of time information into the annotation scheme was essential to suppress classification noise at state transitions and confusion between different functional states with similar morphology. We demonstrate generic applicability in different assays and perturbation conditions, including a candidate-based RNA interference screen for regulators of mitotic exit in human cells. CellCognition is published as open source software, enabling live-cell imaging-based screening with assays that directly score cellular dynamics.
Morphometric variation of extant platyrrhine molars: taxonomic implications for fossil platyrrhines
Nova Delgado, Mónica; Galbany, Jordi
2016-01-01
The phylogenetic position of many fossil platyrrhines with respect to extant ones is not yet clear. Two main hypotheses have been proposed: the layered or successive radiations hypothesis suggests that Patagonian fossils are Middle Miocene stem platyrrhines lacking modern descendants, whereas the long lineage hypothesis argues for an evolutionary continuity of all fossil platyrrhines with the extant ones. Our geometric morphometric analysis of a 15 landmark-based configuration of platyrrhines’ first and second lower molars suggest that morphological stasis may explain the reduced molar shape variation observed. Platyrrhine lower molar shape might be a primitive retention of the ancestral state affected by strong ecological constraints throughout the radiation of the main platyrrhine families. The Patagonian fossil specimens showed two distinct morphological patterns of lower molars, Callicebus—like and Saguinus—like, which might be the precursors of the extant forms, whereas the Middle Miocene specimens, though showing morphological resemblances with the Patagonian fossils, also displayed new, derived molar patterns, Alouatta—like and Pitheciinae—like, thereby suggesting that despite the overall morphological stasis of molars, phenotypic diversification of molar shape was already settled during the Middle Miocene. PMID:27190704
How hollow melanosomes affect iridescent colour production in birds
Eliason, Chad M.; Bitton, Pierre-Paul; Shawkey, Matthew D.
2013-01-01
Developmental constraints and trade-offs can limit diversity, but organisms have repeatedly evolved morphological innovations that overcome these limits by expanding the range and functionality of traits. Iridescent colours in birds are commonly produced by melanin-containing organelles (melanosomes) organized into nanostructured arrays within feather barbules. Variation in array type (e.g. multilayers and photonic crystals, PCs) is known to have remarkable effects on plumage colour, but the optical consequences of variation in melanosome shape remain poorly understood. Here, we used a combination of spectrophotometric, experimental and theoretical methods to test how melanosome hollowness—a morphological innovation largely restricted to birds—affects feather colour. Optical analyses of hexagonal close-packed arrays of hollow melanosomes in two species, wild turkeys (Meleagris gallopavo) and violet-backed starlings (Cinnyricinclus leucogaster), indicated that they function as two-dimensional PCs. Incorporation of a larger dataset and optical modelling showed that, compared with solid melanosomes, hollow melanosomes allow birds to produce distinct colours with the same energetically favourable, close-packed configurations. These data suggest that a morphological novelty has, at least in part, allowed birds to achieve their vast morphological and colour diversity. PMID:23902909
Hagino, Kyoko; Bendif, El Mahdi; Young, Jeremy R; Kogame, Kazuhiro; Probert, Ian; Takano, Yoshihito; Horiguchi, Takeo; de Vargas, Colomban; Okada, Hisatake
2011-10-01
Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler is a cosmopolitan coccolithophore occurring from tropical to subpolar waters and exhibiting variations in morphology of coccoliths possibly related to environmental conditions. We examined morphological characters of coccoliths and partial mitochondrial sequences of the cytochrome oxidase 1b (cox1b) through adenosine triphosphate synthase 4 (atp4) genes of 39 clonal E. huxleyi strains from the Atlantic and Pacific Oceans, Mediterranean Sea, and their adjacent seas. Based on the morphological study of culture strains by SEM, Type O, a new morphotype characterized by coccoliths with an open central area, was separated from existing morphotypes A, B, B/C, C, R, and var. corona, characterized by coccoliths with central area elements. Molecular phylogenetic studies revealed that E. huxleyi consists of at least two mitochondrial sequence groups with different temperature preferences/tolerances: a cool-water group occurring in subarctic North Atlantic and Pacific and a warm-water group occurring in the subtropical Atlantic and Pacific and in the Mediterranean Sea. © 2011 Phycological Society of America.
Wetten, Andy; Campbell, Colin; Allainguillaume, Joël
2016-03-01
Mealybugs (Hemiptera: Coccoidea: Pseudococcidae) are key vectors of badnaviruses, including Cacao swollen shoot virus (CSSV), the most damaging virus affecting cacao (Theobroma cacao L.). The effectiveness of mealybugs as virus vectors is species dependent, and it is therefore vital that CSSV resistance breeding programmes in cacao incorporate accurate mealybug identification. In this work, the efficacy of a CO1-based DNA barcoding approach to species identification was evaluated by screening a range of mealybugs collected from cacao in seven countries. Morphologically similar adult females were characterised by scanning electron microscopy, and then, following DNA extraction, were screened with CO1 barcoding markers. A high degree of CO1 sequence homology was observed for all 11 individual haplotypes, including those accessions from distinct geographical regions. This has allowed the design of a high-resolution melt (HRM) assay capable of rapid identification of the commonly encountered mealybug pests of cacao. HRM analysis readily differentiated between mealybug pests of cacao that cannot necessarily be identified by conventional morphological analysis. This new approach, therefore, has potential to facilitate breeding for resistance to CSSV and other mealybug-transmitted diseases. © 2015 Society of Chemical Industry.
Asymmetry in mesial root number and morphology in mandibular second molars: a case report
Shetty, Shashit; Shekhar, Rhitu
2014-01-01
Ambiguity in the root morphology of the mandibular second molars is quite common. The most common root canal configuration is 2 roots and 3 canals, nonetheless other possibilities may still exist. The presence of accessory roots is an interesting example of anatomic root variation. While the presence of radix entomolaris or radix paramolaris is regarded as a typical clinical finding of a three-rooted mandibular second permanent molar, the occurrence of an additional mesial root is rather uncommon and represents a possibility of deviation from the regular norms. This case report describes successful endodontic management of a three-rooted mandibular second molar presenting with an unusual accessory mesial root, which was identified with the aid of multiangled radiographs and cone-beam computed tomography imaging. This article also discusses the prevalence, etiology, morphological variations, clinical approach to diagnosis, and significance of supernumerary roots in contemporary clinical dentistry. PMID:24516829
Multi-classification of cell deformation based on object alignment and run length statistic.
Li, Heng; Liu, Zhiwen; An, Xing; Shi, Yonggang
2014-01-01
Cellular morphology is widely applied in digital pathology and is essential for improving our understanding of the basic physiological processes of organisms. One of the main issues of application is to develop efficient methods for cell deformation measurement. We propose an innovative indirect approach to analyze dynamic cell morphology in image sequences. The proposed approach considers both the cellular shape change and cytoplasm variation, and takes each frame in the image sequence into account. The cell deformation is measured by the minimum energy function of object alignment, which is invariant to object pose. Then an indirect analysis strategy is employed to overcome the limitation of gradual deformation by run length statistic. We demonstrate the power of the proposed approach with one application: multi-classification of cell deformation. Experimental results show that the proposed method is sensitive to the morphology variation and performs better than standard shape representation methods.
Tsai, Yihuan; Cutts, Josh; Kimura, Azuma; Varun, Divya; Brafman, David A
2015-07-01
Due to the limitation of current pharmacological therapeutic strategies, stem cell therapies have emerged as a viable option for treating many incurable neurological disorders. Specifically, human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs), a multipotent cell population that is capable of near indefinite expansion and subsequent differentiation into the various cell types that comprise the central nervous system (CNS), could provide an unlimited source of cells for such cell-based therapies. However the clinical application of these cells will require (i) defined, xeno-free conditions for their expansion and neuronal differentiation and (ii) scalable culture systems that enable their expansion and neuronal differentiation in numbers sufficient for regenerative medicine and drug screening purposes. Current extracellular matrix protein (ECMP)-based substrates for the culture of hNPCs are expensive, difficult to isolate, subject to batch-to-batch variations, and, therefore, unsuitable for clinical application of hNPCs. Using a high-throughput array-based screening approach, we identified a synthetic polymer, poly(4-vinyl phenol) (P4VP), that supported the long-term proliferation and self-renewal of hNPCs. The hNPCs cultured on P4VP maintained their characteristic morphology, expressed high levels of markers of multipotency, and retained their ability to differentiate into neurons. Such chemically defined substrates will eliminate critical roadblocks for the utilization of hNPCs for human neural regenerative repair, disease modeling, and drug discovery. Copyright © 2015. Published by Elsevier B.V.
A Multiwell Platform for Studying Stiffness-Dependent Cell Biology
Mih, Justin D.; Sharif, Asma S.; Liu, Fei; Marinkovic, Aleksandar; Symer, Matthew M.; Tschumperlin, Daniel J.
2011-01-01
Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes. PMID:21637769
A multiwell platform for studying stiffness-dependent cell biology.
Mih, Justin D; Sharif, Asma S; Liu, Fei; Marinkovic, Aleksandar; Symer, Matthew M; Tschumperlin, Daniel J
2011-01-01
Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes.
Semenov, Georgy A; Scordato, Elizabeth S C; Khaydarov, David R; Smith, Chris C R; Kane, Nolan C; Safran, Rebecca J
2017-11-01
Phenotypic differentiation plays an important role in the formation and maintenance of reproductive barriers. In some cases, variation in a few key aspects of phenotype can promote and maintain divergence; hence, the identification of these traits and their associations with patterns of genomic divergence is crucial for understanding the patterns and processes of population differentiation. We studied hybridization between the alba and personata subspecies of the white wagtail (Motacilla alba), and quantified divergence and introgression of multiple morphological traits and 19,437 SNP loci on a 3,000 km transect. Our goal was to identify traits that may contribute to reproductive barriers and to assess how variation in these traits corresponds to patterns of genome-wide divergence. Variation in only one trait-head plumage patterning-was consistent with reproductive isolation. Transitions in head plumage were steep and occurred over otherwise morphologically and genetically homogeneous populations, whereas cline centres for other traits and genomic ancestry were displaced over 100 km from the head cline. Field observational data show that social pairs mated assortatively by head plumage, suggesting that these phenotypes are maintained by divergent mating preferences. In contrast, variation in all other traits and genetic markers could be explained by neutral diffusion, although weak ecological selection cannot be ruled out. Our results emphasize that assortative mating may maintain phenotypic differences independent of other processes shaping genome-wide variation, consistent with other recent findings that raise questions about the relative importance of mate choice, ecological selection and selectively neutral processes for divergent evolution. © 2017 John Wiley & Sons Ltd.
Lagercrantz, Ulf; Ryman, Nils
1990-02-01
This study describes the population structure of Norway spruce (Picea abies) as revealed by protein polymorphisms and morphological variation. Electrophoretically detectable genetic variability was examined at 22 protein loci in 70 populations from the natural range of the species in Europe. Like other conifers, Norway spruce exhibits a relatively large amount of genetic variability and little differentiation among populations. Sixteen polymorphic loci (73%) segregate for a total of 51 alleles, and average heterozygosity per population is 0.115. Approximately 5% of the total genetic diversity is explained by differences between populations (G ST = 0.052), and Nei's standard genetic distance is less than 0.04 in all cases. We suggest that the population structure largely reflects relatively recent historical events related to the last glaciation and that Norway spruce is still in a process of adaptation and differentiation. There is a clear geographic pattern in the variation of allele frequencies. A major part of the allelefrequency variation can be accounted for by a few synthetic variables (principal components), and 80% of the variation of the first principal component is "explained" by latitude and longitude. The central European populations are consistently depauperate of genetic variability, most likely as an effect of severe restrictions of population size during the last glaciation. The pattern of differentiation at protein loci is very similar to that observed for seven morphological traits examined. This similarity suggests that the same evolutionary forces have acted upon both sets of characters. © 1990 The Society for the Study of Evolution.
Radar response to vegetation. II - 8-18 GHz band
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Bush, T. F.; Batlivala, P. P.
1975-01-01
The results of experimental studies on the backscattering properties of corn, milo, soybeans, and alfalfa are presented. The measurements were made during the summer of 1973 over the 8-18 GHz frequency band. The data indicate that soil moisture estimation is best accomplished at incidence angles near nadir with lower frequencies while crop discrimination is best accomplished using two frequencies at incidence angles ranging from 30 deg to 65 deg. It is also shown that temporal plant morphology variations can cause extreme variations in the values of the scattering coefficients. These morphological changes can be caused by growth, heavy rain, and in the case of alfalfa, harvesting.
Barrera-Redondo, Josué; Ramírez-Barahona, Santiago; Eguiarte, Luis E
2018-05-01
Variation in rates of molecular evolution (heterotachy) is a common phenomenon among plants. Although multiple theoretical models have been proposed, fundamental questions remain regarding the combined effects of ecological and morphological traits on rate heterogeneity. Here, we used tree ferns to explore the correlation between rates of molecular evolution in chloroplast DNA sequences and several morphological and environmental factors within a Bayesian framework. We revealed direct and indirect effects of body size, biological productivity, and temperature on substitution rates, where smaller tree ferns living in warmer and less productive environments tend to have faster rates of molecular evolution. In addition, we found that variation in the ratio of nonsynonymous to synonymous substitution rates (dN/dS) in the chloroplast rbcL gene was significantly correlated with ecological and morphological variables. Heterotachy in tree ferns may be influenced by effective population size associated with variation in body size and productivity. Macroevolutionary hypotheses should go beyond explaining heterotachy in terms of mutation rates and instead, should integrate population-level factors to better understand the processes affecting the tempo of evolution at the molecular level. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Pascoal, Sonia; Carvalho, Gary; Creer, Simon; Rock, Jenny; Kawaii, Kei; Mendo, Sonia; Hughes, Roger
2012-01-01
Assessment of plastic and heritable components of phenotypic variation is crucial for understanding the evolution of adaptive character traits in heterogeneous environments. We assessed the above in relation to adaptive shell morphology of the rocky intertidal snail Nucella lapillus by reciprocal transplantation of snails between two shores differing in wave action and rearing snails of the same provenance in a common garden. Results were compared with those reported for similar experiments conducted elsewhere. Microsatellite variation indicated limited gene flow between the populations. Intrinsic growth rate was greater in exposed-site than sheltered-site snails, but the reverse was true of absolute growth rate, suggesting heritable compensation for reduced foraging opportunity at the exposed site. Shell morphology of reciprocal transplants partially converged through plasticity toward that of native snails. Shell morphology of F2s in the common garden partially retained characteristics of the P-generation, suggesting genetic control. A maternal effect was revealed by greater resemblance of F1s than F2s to the P-generation. The observed synergistic effects of plastic, maternal and genetic control of shell-shape may be expected to maximise fitness when environmental characteristics become unpredictable through dispersal. PMID:22299035
Pascoal, Sonia; Carvalho, Gary; Creer, Simon; Rock, Jenny; Kawaii, Kei; Mendo, Sonia; Hughes, Roger
2012-01-01
Assessment of plastic and heritable components of phenotypic variation is crucial for understanding the evolution of adaptive character traits in heterogeneous environments. We assessed the above in relation to adaptive shell morphology of the rocky intertidal snail Nucella lapillus by reciprocal transplantation of snails between two shores differing in wave action and rearing snails of the same provenance in a common garden. Results were compared with those reported for similar experiments conducted elsewhere. Microsatellite variation indicated limited gene flow between the populations. Intrinsic growth rate was greater in exposed-site than sheltered-site snails, but the reverse was true of absolute growth rate, suggesting heritable compensation for reduced foraging opportunity at the exposed site. Shell morphology of reciprocal transplants partially converged through plasticity toward that of native snails. Shell morphology of F(2)s in the common garden partially retained characteristics of the P-generation, suggesting genetic control. A maternal effect was revealed by greater resemblance of F(1)s than F(2)s to the P-generation. The observed synergistic effects of plastic, maternal and genetic control of shell-shape may be expected to maximise fitness when environmental characteristics become unpredictable through dispersal.
Logan, M.L.; Montgomery, Chad E.; Boback, Scott M.; Reed, R.N.; Campbell, J.A.
2012-01-01
Studies of recently isolated populations are useful because observed differences can often be attributed to current environmental variation. Two populations of the lizard Anolis lemurinus have been isolated on the islands of Cayo Menor and Cayo Mayor in the Cayos Cochinos Archipelago of Honduras for less than 15 000 y. We measured 12 morphometric and 10 habitat-use variables on 220 lizards across these islands in 2 y, 2008 and 2009. The goals of our study were (1) to explore patterns of sexual dimorphism, and (2) to test the hypothesis that differences in environment among islands may have driven divergence in morphology and habitat use despite genetic homogeneity among populations. Although we found no differences among sexes in habitat use, males had narrower pelvic girdles and longer toe pads on both islands. Between islands, males differed in morphology, but neither males nor females differed in habitat use. Our data suggest that either recent selection has operated differentially on males despite low genetic dill'erentiation, or that they display phenotypic plasticity in response to environmental variation. We suggest that patterns may be driven by variation in intrapopulation density or differences in predator diversity among islands.
Thulin, Carl-Gustaf; Simberloff, Daniel; Barun, Arijana; McCracken, Gary; Pascal, Michel; Islam, M Anwarul
2006-11-01
The combination of founder events, random drift and new selective forces experienced by introduced species typically lowers genetic variation and induces differentiation from the ancestral population. Here, we investigate microsatellite differentiation between introduced and native populations of the small Indian mongoose (Herpestes auropunctatus). Many expectations based on introduction history, such as loss of alleles and relationships among populations, are confirmed. Nevertheless, when applying population assignment methods to our data, we observe a few specimens that are incorrectly assigned and/or appear to have a mixed ancestry, despite estimates of substantial population differentiation. Thus, we suggest that population assignments of individuals should be viewed as tentative and that there should be agreement among different algorithms before assignments are applied in conservation or management. Further, we find no congruence between previously reported morphological differentiation and the sorting of microsatellite variation. Some introduced populations have retained much genetic variation while others have not, irrespective of morphology. Finally, we find alleles from the sympatric grey mongoose (Herpestes edwardsii) in one small Indian mongoose within the native range, suggesting an alternative explanation for morphological differentiation involving a shift in female preferences in allopatry.
NASA Astrophysics Data System (ADS)
Hooke, Janet
2017-04-01
Flow and sediment processes in ephemeral channels are highly dynamic and spatially variable. The connectivity characteristics in a range of events are examined for several semi-arid catchments in Southeast Spain. Rainfall thresholds for runoff generation on slopes and for flow generation in channels have been identified at various scales. In many events, flow is not continuous down the channel system due partly to localised rainfall and to transmission losses but also to structural and morphological conditions. One extreme flow event with high sediment supply produced very high flow and sediment connectivity throughout the system. Results of spatial analysis of variation in hydraulics and sediment processes are presented and the effects are analysed. Amounts and locations of sediment storage were identified from repeat surveys. The overall contribution of such an event to morphological and sedimentological changes in the channel and longer-term landscape evolution is assessed. Land use and management are demonstrated to have a profound influence on the sediment delivery and connectivity functioning. The implications for land, channel and flood management in such an environment, together with the impacts of longer-term variations in flow regime due to land use and climate change, are considered.
Pultz, M A; Zimmerman, K K; Alto, N M; Kaeberlein, M; Lange, S K; Pitt, J N; Reeves, N L; Zehrung, D L
2000-01-01
We have screened for zygotic embryonic lethal mutations affecting cuticular morphology in Nasonia vitripennis (Hymenoptera; Chalcidoidea). Our broad goal was to investigate the use of Nasonia for genetically surveying conservation and change in regulatory gene systems, as a means to understand the diversity of developmental strategies that have arisen during the course of evolution. Specifically, we aim to compare anteroposterior patterning gene functions in two long germ band insects, Nasonia and Drosophila. In Nasonia, unfertilized eggs develop as haploid males while fertilized eggs develop as diploid females, so the entire genome can be screened for recessive zygotic mutations by examining the progeny of F1 females. We describe 74 of >100 lines with embryonic cuticular mutant phenotypes, including representatives of coordinate, gap, pair-rule, segment polarity, homeotic, and Polycomb group functions, as well as mutants with novel phenotypes not directly comparable to those of known Drosophila genes. We conclude that Nasonia is a tractable experimental organism for comparative developmental genetic study. The mutants isolated here have begun to outline the extent of conservation and change in the genetic programs controlling embryonic patterning in Nasonia and Drosophila. PMID:10866651
2013-01-01
Background The taxonomic and phylogenetic relationships of the genus Phyllomedusa have been amply discussed. The marked morphological similarities among some species hamper the reliable identification of specimens and may often lead to their incorrect taxonomic classification on the sole basis of morphological traits. Phenotypic variation was observed among populations assigned to either P. azurea or P. hypochondrialis. In order to evaluate whether the variation observed in populations assigned to P. hypochondrialis is related to that in genotypes, a cytogenetic analysis was combined with phylogenetic inferences based on mitochondrial and nuclear sequences. Results The inter- and intra-population variation in the external morphology observed among the specimens analyzed in the present study do not reflect the phylogenetic relationships among populations. A monophyletic clade was recovered, grouping all the specimens identified as P. hypochondrialis and specimens assigned P. azurea from Minas Gerais state. This clade is characterized by conserved chromosomal morphology and a common C-banding pattern. Extensive variation in the nucleolar organizing region (NOR) was observed among populations, with four distinct NOR positions being recognized in the karyotypes. Intra-population polymorphism of the additional rDNA clusters observed in specimens from Barreiras, Bahia state, also highlights the marked genomic instability of the rDNA in the genome of this group. Based on the topology obtained in the phylogenetic analyses, the re-evaluation of the taxonomic status of the specimens from the southernmost population known in Brazil is recommended. Conclusions The results of this study support the need for a thorough revision of the phenotypic features used to discriminate P. azurea and P. hypochondrialis. The phylogenetic data presented here also contribute to an extension of the geographic range of P. hypochondrialis, which is known to occur in the Amazon basin and neighboring areas of the Cerrado savanna, where it may be sympatric with P. azurea, within contact zones. The misidentification of specimens may have led to inconsistencies in the original definition of the geographic range of P. azurea. The variability observed in the NOR of P. hypochondrialis reinforces the conclusion that these sites represent hotspots of rearrangement. Intraspecific variation in the location of these sites is the result of constant rearrangements that are not detected by classical cytogenetic methods or are traits of an ancestral, polymorphic karyotype, which would not be phylogenetically informative for this group. PMID:23937545
[Proliferative activity of cells in dyshormonal fibroadenomatosis of the human breast].
Gudim-Levkovich, K A; Iakhimovich, L V; Slinchak, S M; Kaminskaia, L P; Kovbasiuk, S A
1981-11-01
Fibroadenomatous tissue of the human mammary gland was cultivated in diffuse chambers implanted into mice. On day 6 of culture the growing cells were subjected to morphological and autoradiographic analysis. The index of 3H-thymidine labeling of cell nuclei was found to correlate with the morphological pattern of dyshormonal fibroadenomatosis of the mammary gland. It is discussed whether it is desirable to use the culture in diffuse chambers for screening the actively proliferating forms human mammary gland dyshormonal dysplasias prone to malignancy.
Morphology and development of the placentae in Eulamprus quoyii group skinks (Squamata: Scincidae)
Murphy, Bridget F; Brandley, Matthew C; Murphy, Christopher R; Thompson, Michael B
2012-01-01
Frequent evolutionary changes in reproductive mode have produced a wide range of placental structures in viviparous squamate reptiles. Closely related species with different placental structures and resolved phylogenetic relationships are particularly useful for reconstructing how placentae might have transformed during the evolutionary process. We used light microscopy to study placental morphology in mid- to late stage embryos of four closely related species of Eulamprus, a genus of viviparous scincid lizards that we had reason to suspect may display significant interspecific variation in placental morphology. Embryos from all four species possess a chorioallantoic placenta, an omphaloplacenta and an interomphalopleuric membrane, characteristics present in other viviparous skinks. However, unlike other viviparous skinks but characteristic of oviparous skinks, the allantois expands to surround the yolk sac in each species, supplanting the omphalopleure with a larger area of chorioallantois until a chorioallantoic placenta surrounds the entire egg in one specimen that is only a few days from birth. All four Eulamprus species share the same extraembryonic membrane morphology, but the cellular morphology of the uterine epithelium in the chorioallantoic placenta and omphaloplacenta varies between species. We determined that the interomphalopleuric membrane is a shared derived character of the Eulamprus quoyii species group. New phylogenetic information indicates that variation in the chorioallantoic placenta is a result of two independent transitions, but that variation in the omphaloplacenta can be explained using a single change within the species studied. Our results indicate that E. quoyii group skinks are a valuable model for investigating the evolution of viviparity, as extraembryonic membrane development in these species shows features characteristic of both oviparous and viviparous skinks. PMID:22420511
Adibzadeh, Fatemeh; Bakker, Jurriaan F; Paulides, Margarethus M; Verhaart, René F; van Rhoon, Gerard C
2015-01-01
Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology. © 2014 Wiley Periodicals, Inc.
Pereira, Felipe B; Luque, José L
2017-02-01
Genetic and morphological variations in two component populations of Raphidascaris (Sprentascaris) lanfrediae collected in the intestine of Geophagus argyrosticus and G. proximus (Cichlidae) from States of Pará and Amapá, Brazil, respectively, were explored for the first time. A phylogenetic study including two genes (18S and 28S of the rDNA) plus morphological and life history traits of "anisakid-related" nematodes (Anisakidae, Raphidascarididae) was also performed in order to clarify taxonomic and systematic issues related to these taxa. Gene alignments were subjected to maximum likelihood (ML) and Bayesian Inference (BI), and combined data of the genetic and morphological datasets was subjected to maximum parsimony (MP) analysis. Despite of the subtle differences in the morphology (mainly in male caudal papillae) and morphometry between specimens of R. (S.) lanfrediae from the two different hosts and from the type material of the species, no genetic variation was found among representatives of the newly collected material. This find may represent an example of gene-environment interactions, similar to that recently observed for Raphidascaroides brasiliensis. Phylogenetic reconstructions indicated the paraphyly of Anisakidae represented by two subfamilies, i.e., Anisakinae and Contracaecinae and the monophyly of Raphidascarididae. Analysis of the combined datasets revealed that some morphological traits may represent apomorphic characters of Raphidascarididae and Anisakidae, whereas others are highly homoplastic and some may be interpreted with careful to avoid errors. The results support the premise that taxonomists should consider Anisakidae and Raphidascarididae as separate families, and only two subfamilies of Anisakidae, i.e., Anisakinae and Contracaecinae. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Koo, Seungbum; Rylander, Jonathan H.; Andriacchi, Thomas P.
2010-01-01
The regional adaptation of knee cartilage morphology to the kinematics of walking has been suggested as an important factor in the evaluation of the consequences of alteration in normal gait leading to osteoarthritis. The purpose of this study was to investigate the association of spatial cartilage thickness distributions of the femur and tibia in the knee to the knee kinematics during walking. Gait data and knee MR images were obtained from 17 healthy volunteers (age 33.2±9.8 years). Cartilage thickness maps were created for the femoral and tibial cartilage. Locations of thickest cartilage in the medial and lateral compartments in the femur and tibia were identified using a numerical method. The flexion-extension (FE) angle associated with the cartilage contact regions on the femur, and the anterior-posterior (AP) translation and internal-external (IE) rotation associated with the cartilage contact regions on the tibia at the heel strike of walking were tested for correlation with the locations of thickest cartilage. The locations of the thickest cartilage had relatively large variation (SD 8.9°) and was significantly associated with the FE angle at heel strike only in the medial femoral condyle (R2=0.41, p<0.01). The natural knee kinematics and contact surface shapes seem to affect the functional adaptation of knee articular cartilage morphology. The sensitivity of cartilage morphology to kinematics at the knee during walking suggests that regional cartilage thickness variations are influenced by both loading and the number of loading cycles. Thus walking is an important consideration in the analysis of the morphological variations of articular cartilage, since it is the dominant cyclic activity of daily living. The sensitivity of cartilage morphology to gait kinematics is also important in understanding the etiology and pathomechanics of osteoarthritis. PMID:21371712
High content screening in neurodegenerative diseases.
Jain, Shushant; van Kesteren, Ronald E; Heutink, Peter
2012-01-06
The functional annotation of genomes, construction of molecular networks and novel drug target identification, are important challenges that need to be addressed as a matter of great urgency. Multiple complementary 'omics' approaches have provided clues as to the genetic risk factors and pathogenic mechanisms underlying numerous neurodegenerative diseases, but most findings still require functional validation. For example, a recent genome wide association study for Parkinson's Disease (PD), identified many new loci as risk factors for the disease, but the underlying causative variant(s) or pathogenic mechanism is not known. As each associated region can contain several genes, the functional evaluation of each of the genes on phenotypes associated with the disease, using traditional cell biology techniques would take too long. There is also a need to understand the molecular networks that link genetic mutations to the phenotypes they cause. It is expected that disease phenotypes are the result of multiple interactions that have been disrupted. Reconstruction of these networks using traditional molecular methods would be time consuming. Moreover, network predictions from independent studies of individual components, the reductionism approach, will probably underestimate the network complexity. This underestimation could, in part, explain the low success rate of drug approval due to undesirable or toxic side effects. Gaining a network perspective of disease related pathways using HT/HC cellular screening approaches, and identifying key nodes within these pathways, could lead to the identification of targets that are more suited for therapeutic intervention. High-throughput screening (HTS) is an ideal methodology to address these issues. but traditional methods were one dimensional whole-well cell assays, that used simplistic readouts for complex biological processes. They were unable to simultaneously quantify the many phenotypes observed in neurodegenerative diseases such as axonal transport deficits or alterations in morphology properties. This approach could not be used to investigate the dynamic nature of cellular processes or pathogenic events that occur in a subset of cells. To quantify such features one has to move to multi-dimensional phenotypes termed high-content screening (HCS). HCS is the cell-based quantification of several processes simultaneously, which provides a more detailed representation of the cellular response to various perturbations compared to HTS. HCS has many advantages over HTS, but conducting a high-throughput (HT)-high-content (HC) screen in neuronal models is problematic due to high cost, environmental variation and human error. In order to detect cellular responses on a 'phenomics' scale using HC imaging one has to reduce variation and error, while increasing sensitivity and reproducibility. Herein we describe a method to accurately and reliably conduct shRNA screens using automated cell culturing and HC imaging in neuronal cellular models. We describe how we have used this methodology to identify modulators for one particular protein, DJ1, which when mutated causes autosomal recessive parkinsonism. Combining the versatility of HC imaging with HT methods, it is possible to accurately quantify a plethora of phenotypes. This could subsequently be utilized to advance our understanding of the genome, the pathways involved in disease pathogenesis as well as identify potential therapeutic targets. Copyright © 2012 Creative Commons Attribution License
NASA Astrophysics Data System (ADS)
Urrutia, Isabel; Moreno, Marcos; Oncken, Onno
2016-04-01
Morphological features at subduction zones are undoubtedly influenced by the complex interplay between the subducting slab and the overriding plate. Several studies suggest that the subduction dynamics is strongly dependent on the geometry and rheology of the margin (including gravity/density anomalies, viscous mantle flow and roughness of the slab, among others). However, it is not clear how the geomorphological variation of the forearc along strike can be used as a proxy for better understanding the mechanics on the interface and seismotectonic segmentation. Here we investigate the links between the kinematics of the plate interface and the morphology of the overriding plate along the Chilean margin by combining morphometrical and statistical analysis. We constructed swath profiles subtracting the averaged topography and performed gradient analysis to characterize variations of morphological features, and we compared these results with the locking degree distribution derived from the inversion of GPS data. On the coastal area the bathymetry and topography analysis shows a planar feature, gently dipping ocean-wards and backed by a cliff, which exhibits spatial variations in its width, height and extension along-strike. This morphology suggests a quiescence process or a "stable tectonic condition", at least since the late Quaternary (over multiple seismic cycles). The results indicate that this planar feature spatially correlates with the rupture size of recent great earthquakes and locking degree areas, suggesting that earthquake cycle deformation has an imprint on the offshore morphology, which can be used to study the transfer of stresses among adjacent seismotectonic segments and the periodicity and location of large earthquakes. In addition, the longevity of this correlation between topography, earthquake rupture and geodetic locking that likely integrates over a time window of several 103 to several 105 years indicates that the instrumentally inferred locking has a long term memory across multiple seismic cycles.
Optimization of flowrate for expansion of human embryonic stem cells in perfusion microbioreactors.
Titmarsh, Drew; Hidalgo, Alejandro; Turner, Jennifer; Wolvetang, Ernst; Cooper-White, Justin
2011-12-01
Microfluidic systems create significant opportunities to establish highly controlled microenvironmental conditions for screening pluripotent stem cell fate. However, since cell fate is crucially dependent on this microenvironment, it remains unclear as to whether continual perfusion of culture medium supports pluripotent stem cell maintenance in feeder-free, chemically defined conditions, and further, whether optimum perfusion conditions exist for subsequent use of human embryonic stem cell (hESCs) in other microfludic systems. To investigate this, we designed microbioreactors based on resistive flow to screen hESCs under a linear range of flowrates. We report that at low rates (conditions where glucose transport is convection-limited with Péclet number <1), cells are affected by apparent nutrient depletion and waste accumulation, evidenced by reduced cell expansion and altered morphology. At higher rates, cells are spontaneously washed out, and display morphological changes which may be indicative of early-stage differentiation. However, between these thresholds exists a narrow range of flowrates in which hESCs expand comparably to the equivalent static culture system, with regular morphology and maintenance of the pluripotency marker TG30 in >95% of cells over 7 days. For MEL1 hESCs the optimum flowrate also coincided with the time-averaged medium exchange rate in static cultures, which may therefore provide a good first estimate of appropriate perfusion rates. Overall, we demonstrate hESCs can be maintained in microbioreactors under continual flow for up to 7 days, a critical outcome for the future development of microbioreactor-based screening systems and assays for hESC culture. Copyright © 2011 Crown in the right of Canada.
High content analysis of phagocytic activity and cell morphology with PuntoMorph.
Al-Ali, Hassan; Gao, Han; Dalby-Hansen, Camilla; Peters, Vanessa Ann; Shi, Yan; Brambilla, Roberta
2017-11-01
Phagocytosis is essential for maintenance of normal homeostasis and healthy tissue. As such, it is a therapeutic target for a wide range of clinical applications. The development of phenotypic screens targeting phagocytosis has lagged behind, however, due to the difficulties associated with image-based quantification of phagocytic activity. We present a robust algorithm and cell-based assay system for high content analysis of phagocytic activity. The method utilizes fluorescently labeled beads as a phagocytic substrate with defined physical properties. The algorithm employs statistical modeling to determine the mean fluorescence of individual beads within each image, and uses the information to conduct an accurate count of phagocytosed beads. In addition, the algorithm conducts detailed and sophisticated analysis of cellular morphology, making it a standalone tool for high content screening. We tested our assay system using microglial cultures. Our results recapitulated previous findings on the effects of microglial stimulation on cell morphology and phagocytic activity. Moreover, our cell-level analysis revealed that the two phenotypes associated with microglial activation, specifically cell body hypertrophy and increased phagocytic activity, are not highly correlated. This novel finding suggests the two phenotypes may be under the control of distinct signaling pathways. We demonstrate that our assay system outperforms preexisting methods for quantifying phagocytic activity in multiple dimensions including speed, accuracy, and resolution. We provide a framework to facilitate the development of high content assays suitable for drug screening. For convenience, we implemented our algorithm in a standalone software package, PuntoMorph. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wiendartun, Syarif, Dani Gustaman
2010-10-01
Fabrication of CuFe2O4 thick film ceramics utilizing Fe2O3 derived from yarosite using screen printing technique for NTC thermistor has been carried out. Effect of thickness variation due to different size of screen (screen 225; 300 and 375 mesh) has been studied. X-ray diffraction analyses (XRD) was done to know crystal structure and phases formation. SEM analyses was carried out to know microstructure of the films. Electrical properties characterization was done through measurement of electrical resistance at various temperatures (room temperature to 100° C). The XRD data showed that the films crystalize in tetragonal spinel. The SEM images showed that the screen with the smaller of the hole size, made the grain size was bigger. Electrical data showed that the larger the screen different size thickness variation (mesh), the larger the resistance, thermistor constant and sensitivity. From the electrical characteristics data, it was known that the electrical characteristics of the CuFe2O4 thick film ceramics followed the NTC characteristic. The value of B and RRT of the produced CuFe2O4 ceramics namely B = 3241-3484 K and RRT = 25.6-87.0 M Ohm, fitted market requirement.
Hopwood, Paul E; Head, Megan L; Jordan, Eleanor J; Carter, Mauricio J; Davey, Emma; Moore, Allen J; Royle, Nick J
2016-06-01
Male and female genital morphology varies widely across many taxa, and even among populations. Disentangling potential sources of selection on genital morphology is problematic because each sex is predicted to respond to adaptations in the other due to reproductive conflicts of interest. To test how variation in this sexual conflict trait relates to variation in genital morphology we used our previously developed artificial selection lines for high and low repeated mating rates. We selected for high and low repeated mating rates using monogamous pairings to eliminate contemporaneous female choice and male-male competition. Male and female genital shape responded rapidly to selection on repeated mating rate. High and low mating rate lines diverged from control lines after only 10 generations of selection. We also detected significant patterns of male and female genital shape coevolution among selection regimes. We argue that because our selection lines differ in sexual conflict, these results support the hypothesis that sexually antagonistic coevolution can drive the rapid divergence of genital morphology. The greatest divergence in morphology corresponded with lines in which the resolution of sexual conflict over mating rate was biased in favor of male interests. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Tokita, Masayoshi; Yano, Wataru; James, Helen F.
2017-01-01
Adaptive radiation is the rapid evolution of morphologically and ecologically diverse species from a single ancestor. The two classic examples of adaptive radiation are Darwin's finches and the Hawaiian honeycreepers, which evolved remarkable levels of adaptive cranial morphological variation. To gain new insights into the nature of their diversification, we performed comparative three-dimensional geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried cranial skeletons. We show that cranial shapes in both Hawaiian honeycreepers and Coerebinae (Darwin's finches and their close relatives) are much more diverse than in their respective outgroups, but Hawaiian honeycreepers as a group display the highest diversity and disparity of all other bird groups studied. We also report a significant contribution of allometry to skull shape variation, and distinct patterns of evolutionary change in skull morphology in the two lineages of songbirds that underwent adaptive radiation on oceanic islands. These findings help to better understand the nature of adaptive radiations in general and provide a foundation for future investigations on the developmental and molecular mechanisms underlying diversification of these morphologically distinguished groups of birds. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994122
NASA Astrophysics Data System (ADS)
Rivera Nieves, A.; Loubriel, M.; Rodriguez-Abudo, S.; Canals, M.; Salgado-Domínguez, G.
2016-02-01
Seasonal variations in the wave climate near Rincón, Puerto Rico include high winter swells associated with meteorological disturbances in the north and mid Atlantic, short period waves resulting from local storms, and the occasional south swell. The resulting beach morphology is therefore a complex function of the wave climate, wave-induced currents, and local and remote meteorology, among others. Over the past 75 years, this particular stretch of beach has suffered severe erosion problems, losing as much as 100 meters of beach width at particular locations. The purpose of this study is to develop a high-resolution time series of beach morphology to examine in more detail the seasonal variations at the site. Beach profiles will be collected on a weekly basis using an RTK GPS system at three permanent stations spanning 2 km of coast. Sediment samples will be collected along the profiles to identify sediment properties associated with distinct morphological features, while digital photographs will provide a qualitative sense of beach width. The resulting morphological changes will be assessed in light of the Rincon's directional Waverider buoy data and CariCOOS' SWAN high-resolution wave model. This study will provide quantifiable insights into seasonal erosion/accretion trends at a highly touristic stretch of coast in the US Caribbean.
Morphological and immunohistochemical diversity of endometrial stromal sarcoma in rats.
Kumabe, Shino; Sato, Junko; Tomonari, Yuki; Takahashi, Miwa; Inoue, Kaoru; Yoshida, Midori; Doi, Takuya; Wako, Yumi; Tsuchitani, Minoru
2018-04-01
To clarify the histopathological characteristics of rat endometrial stromal sarcoma (ESS), we morphologically reviewed 12 malignant uterine tumors protruding into the lumen in previous rat carcinogenicity studies. The 12 cases were classified into the following 6 types based on their morphological features: spindle cell and collagen rich type, pleomorphic/spindle cell and compact type, decidual alteration type, histiocytic and multinucleated giant cell mixture type, Antoni A-type schwannoma type, and Antoni B-type schwannoma type. Immunohistochemically, tumor cells in all cases exhibited focal or diffuse positive reactions for vimentin, and 11 of the 12 cases were positive for S-100. Interestingly, 9 cases were positive for desmin or αSMA, indicating tumor cells expressing smooth muscle properties. Both Antoni A- and B-type schwannoma types showed low reactions for both muscle markers. Positive results for estrogen receptor α in the 11 cases suggested that they were derived from endometrial stromal cells. On the basis of their immunohistochemical profiles, they were considered to be derived from endometrial stromal cells while they showed morphological variation. The detection of a basement membrane surrounding tumor cells might not be a definitive indicator for differential diagnosis of ESS from malignant schwannoma. In conclusion, ESS could exhibit wide morphological and immunohistochemical variation including features of schwannoma or smooth muscle tumor.
Melting and its relationship to impact crater morphology
NASA Technical Reports Server (NTRS)
Okeefe, John D.; Ahrens, Thomas J.
1992-01-01
Shock-melting features occur on planets at scales that range from micrometers to megameters. It is the objective of this study to determine the extent of thickness, volume geometry of the melt, and relationship with crater morphology. The variation in impact crater morphology on planets is influenced by a broad range of parameters: e.g., planetary density, thermal state, strength, impact velocity, gravitational acceleration. We modeled the normal impact of spherical projectiles on a semi-infinite planet over a broad range of conditions using numerical techniques.
Early developmental gene enhancers affect subcortical volumes in the adult human brain.
Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E
2016-05-01
Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Gupta, Vishal; Kumari, Puja; Reddy, CRK
2015-01-01
Ulvophycean species with diverse trait characteristics provide an opportunity to create novel allelic recombinant variants. The present study reports the development of seaweed variants with improved agronomic traits through protoplast fusion between Monostroma oxyspermum (Kutz.) Doty and Ulva reticulata Forsskål. A total of 12 putative hybrids were screened based on the variations in morphology and total DNA content over the fusion partners. DNA-fingerprinting by inter simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP) analysis confirmed genomic introgression in the hybrids. The DNA fingerprint revealed sharing of parental alleles in regenerated hybrids and a few alleles that were unique to hybrids. The epigenetic variations in hybrids estimated in terms of DNA methylation polymorphism also revealed sharing of methylation loci with both the fusion partners. The functional trait analysis for growth showed a hybrid with heterotic trait (DGR% = 36.7 ± 1.55%) over the fusion partners U. reticulata (33.2 ± 2.6%) and M. oxyspermum (17.8 ± 1.77%), while others were superior to the mid-parental value (25.2 ± 2.2%) (p < 0.05). The fatty acid (FA) analysis of hybrids showed notable variations over fusion partners. Most hybrids showed increased polyunsaturated FAs (PUFAs) compared to saturated FAs (SFAs) and mainly includes the nutritionally important linoleic acid, α-linolenic acid, oleic acid, stearidonic acid, and docosahexaenoic acid. The other differences observed include superior cellulose content and antioxidative potential in hybrids over fusion partners. The hybrid varieties with superior traits developed in this study unequivocally demonstrate the significance of protoplast fusion technique in developing improved varients of macroalgae. PMID:25688248
Integration of Brain and Skull in Prenatal Mouse Models of Apert and Crouzon Syndromes
Motch Perrine, Susan M.; Stecko, Tim; Neuberger, Thomas; Jabs, Ethylin W.; Ryan, Timothy M.; Richtsmeier, Joan T.
2017-01-01
The brain and skull represent a complex arrangement of integrated anatomical structures composed of various cell and tissue types that maintain structural and functional association throughout development. Morphological integration, a concept developed in vertebrate morphology and evolutionary biology, describes the coordinated variation of functionally and developmentally related traits of organisms. Syndromic craniosynostosis is characterized by distinctive changes in skull morphology and perceptible, though less well studied, changes in brain structure and morphology. Using mouse models for craniosynostosis conditions, our group has precisely defined how unique craniosynostosis causing mutations in fibroblast growth factor receptors affect brain and skull morphology and dysgenesis involving coordinated tissue-specific effects of these mutations. Here we examine integration of brain and skull in two mouse models for craniosynostosis: one carrying the FGFR2c C342Y mutation associated with Pfeiffer and Crouzon syndromes and a mouse model carrying the FGFR2 S252W mutation, one of two mutations responsible for two-thirds of Apert syndrome cases. Using linear distances estimated from three-dimensional coordinates of landmarks acquired from dual modality imaging of skull (high resolution micro-computed tomography and magnetic resonance microscopy) of mice at embryonic day 17.5, we confirm variation in brain and skull morphology in Fgfr2cC342Y/+ mice, Fgfr2+/S252W mice, and their unaffected littermates. Mutation-specific variation in neural and cranial tissue notwithstanding, patterns of integration of brain and skull differed only subtly between mice carrying either the FGFR2c C342Y or the FGFR2 S252W mutation and their unaffected littermates. However, statistically significant and substantial differences in morphological integration of brain and skull were revealed between the two mutant mouse models, each maintained on a different strain. Relative to the effects of disease-associated mutations, our results reveal a stronger influence of the background genome on patterns of brain-skull integration and suggest robust genetic, developmental, and evolutionary relationships between neural and skeletal tissues of the head. PMID:28790902
Molecular diagnosis of cystic fibrosis.
Shrimpton, Antony E
2002-05-01
A review of the current molecular diagnosis of cystic fibrosis including an introduction to cystic fibrosis, the gene function, the phenotypic variation, who should be screened for which mutation, newborn and couple screening, quality assurance, phenotype-genotype correlation, methods and method limitations, options, statements, recommendations, useful Websites and treatments.
Miglioretti, Diana L; Lange, Jane; van den Broek, Jeroen J; Lee, Christoph I; van Ravesteyn, Nicolien T; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J; Melnikow, Joy; de Koning, Harry J; Hubbard, Rebecca A
2016-02-16
Estimates of risk for radiation-induced breast cancer from mammography screening have not considered variation in dose exposure or diagnostic work-up after abnormal screening results. To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening while considering exposure from screening and diagnostic mammography and dose variation among women. 2 simulation-modeling approaches. U.S. population. Women aged 40 to 74 years. Annual or biennial digital mammography screening from age 40, 45, or 50 years until age 74 years. Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality (harms) per 100,000 women screened. Annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancer cases (95% CI, 88 to 178) leading to 16 deaths (CI, 11 to 23), relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 cases of radiation-induced breast cancer leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete examination (8% of population) were projected to have greater radiation-induced breast cancer risk (266 cancer cases and 35 deaths per 100,000 women) than other women (113 cancer cases and 15 deaths per 100,000 women). Biennial screening starting at age 50 years reduced risk for radiation-induced cancer 5-fold. Life-years lost from radiation-induced breast cancer could not be estimated. Radiation-induced breast cancer incidence and mortality from digital mammography screening are affected by dose variability from screening, resultant diagnostic work-up, initiation age, and screening frequency. Women with large breasts may have a greater risk for radiation-induced breast cancer. Agency for Healthcare Research and Quality, U.S. Preventive Services Task Force, National Cancer Institute.
The effects of ecology and evolutionary history on robust capuchin morphological diversity.
Wright, Kristin A; Wright, Barth W; Ford, Susan M; Fragaszy, Dorothy; Izar, Patricia; Norconk, Marilyn; Masterson, Thomas; Hobbs, David G; Alfaro, Michael E; Lynch Alfaro, Jessica W
2015-01-01
Recent molecular work has confirmed the long-standing morphological hypothesis that capuchins are comprised of two distinct clades, the gracile (untufted) capuchins (genus Cebus, Erxleben, 1777) and the robust (tufted) capuchins (genus Sapajus Kerr, 1792). In the past, the robust group was treated as a single, undifferentiated and cosmopolitan species, with data from all populations lumped together in morphological and ecological studies, obscuring morphological differences that might exist across this radiation. Genetic evidence suggests that the modern radiation of robust capuchins began diversifying ∼2.5 Ma, with significant subsequent geographic expansion into new habitat types. In this study we use a morphological sample of gracile and robust capuchin craniofacial and postcranial characters to examine how ecology and evolutionary history have contributed to morphological diversity within the robust capuchins. We predicted that if ecology is driving robust capuchin variation, three distinct robust morphotypes would be identified: (1) the Atlantic Forest species (Sapajus xanthosternos, S. robustus, and S. nigritus), (2) the Amazonian rainforest species (S. apella, S. cay and S. macrocephalus), and (3) the Cerrado-Caatinga species (S. libidinosus). Alternatively, if diversification time between species pairs predicts degree of morphological difference, we predicted that the recently diverged S. apella, S. macrocephalus, S. libidinosus, and S. cay would be morphologically comparable, with greater variation among the more ancient lineages of S. nigritus, S. xanthosternos, and S. robustus. Our analyses suggest that S. libidinosus has the most derived craniofacial and postcranial features, indicative of inhabiting a more terrestrial niche that includes a dependence on tool use for the extraction of imbedded foods. We also suggest that the cranial robusticity of S. macrocephalus and S. apella are indicative of recent competition with sympatric gracile capuchin species, resulting in character displacement. Copyright © 2014 Elsevier Inc. All rights reserved.
OH 83: A new early modern human fossil cranium from the Ndutu beds of Olduvai Gorge, Tanzania.
Reiner, Whitney B; Masao, Fidelis; Sholts, Sabrina B; Songita, Agustino Venance; Stanistreet, Ian; Stollhofen, Harald; Taylor, R E; Hlusko, Leslea J
2017-11-01
Herein we introduce a newly recovered partial calvaria, OH 83, from the upper Ndutu Beds of Olduvai Gorge, Tanzania. We present the geological context of its discovery and a comparative analysis of its morphology, placing OH 83 within the context of our current understanding of the origins and evolution of Homo sapiens. We comparatively assessed the morphology of OH 83 using quantitative and qualitative data from penecontemporaneous fossils and the W.W. Howells modern human craniometric dataset. OH 83 is geologically dated to ca. 60-32 ka. Its morphology is indicative of an early modern human, falling at the low end of the range of variation for post-orbital cranial breadth, the high end of the range for bifrontal breadth, and near average in frontal length. There have been numerous attempts to use cranial anatomy to define the species Homo sapiens and identify it in the fossil record. These efforts have not met wide agreement by the scientific community due, in part, to the mosaic patterns of cranial variation represented by the fossils. The variable, mosaic pattern of trait expression in the crania of Middle and Late Pleistocene fossils implies that morphological modernity did not occur at once. However, OH 83 demonstrates that by ca. 60-32 ka modern humans in Africa included individuals that are at the fairly small and gracile range of modern human cranial variation. © 2017 Wiley Periodicals, Inc.
Morphological Variations and Biometrics of Ear: An Aid to Personal Identification.
Verma, Pradhuman; Sandhu, Harpreet Kaur; Verma, Kanika Gupta; Goyal, Sharry; Sudan, Madhu; Ladgotra, Amit
2016-05-01
The morphological characteristics and dimensions of external ear vary in different human ethnic races which can be utilized in forensics for personal identification of living or deceased. To determine uniqueness of morphological and biometric variations of both ears for individualization among North East (NE) and North West (NW) subpopulation of India. The study was conducted on randomly selected 80 students, 40 from each subgroup. Nine ear parameters were recorded twice using digital Vernier's caliper by single investigator and two indices (Ear Index and Lobule Index) were calculated for both the ears. Morphological ear shapes and lobule attachment were also noted. Pearson's coefficient correlation test was performed on cross-tabulations to evaluate significant relationship between different variables. Of the total 35% free and 65% attached ear lobes were noted in both population groups. Oval ear shape was most commonly noted followed by triangular, rectangular and round in both populations. On comparing anthropometric measurements of ears in two populations it was found that except the tragus length and lobule index all other values were noted more in NW population. No statistical difference was found in ear and lobular indices of males and females although the left ear index and lobule index were found to be higher than right in both populations except in NW females where right lobule index was recorded more than left. The results obtained can be used in anthropological and forensic sciences for the inclusion and exclusion of persons for identification on the basis of ear variations.
Burgio, Gaëtan; Baylac, Michel; Heyer, Evelyne; Montagutelli, Xavier
2012-01-01
Morphological integration and modularity within semi-autonomous modules are essential mechanisms for the evolution of morphological traits. However, the genetic makeup responsible for the control of variational modularity is still relatively unknown. In our study, we tested the hypothesis that the genetic variation for mandible shape clustered into two morphogenetic components: the alveolar group and the ascending ramus. We used the mouse as a model system to investigate genetics determinants of mandible shape. To do this, we used a combination of geometric morphometric tools and a set of 18 interspecific recombinant congenic strains (IRCS) derived from the distantly related species, Mus spretus SEG/Pas and Mus musculus C57BL/6. Quantitative trait loci (QTL) analysis comparing mandible morphometry between the C57BL/6 and the IRCSs identified 42 putative SEG/Pas segments responsible for the genetic variation. The magnitude of the QTL effects was dependent on the proportion of SEG/Pas genome inherited. Using a multivariate correlation coefficient adapted for modularity assessment and a two-block partial least squares analysis to explore the morphological integration, we found that these QTL clustered into two well-integrated morphogenetic groups, corresponding to the ascending ramus and the alveolar region. Together, these results provide evidence that the mouse mandible is subjected to genetic coordination in a modular manner. PMID:23050236
Variability and similarities in the structural properties of two related Laminaria kelp species
NASA Astrophysics Data System (ADS)
Henry, Pierre-Yves
2018-01-01
Kelps of the genus Laminaria have long been studied and shown to exhibit a seasonal shift in growth and morphology, as nutrients and light levels change during the year. However, the variation of kelp biomechanical properties has been little explored despite the importance of these properties for the interaction of kelp with the flow. Previous research showed that aging does influence the algae biomechanical properties, so this study further investigates the variability of kelp biomechanical properties and morphological characteristics at a given site as a function of the season (growth phase), species, and different kelp parts. Mechanical parameters and morphological characteristics were measured on kelps sampled in winter and summer, and DNA sequencing was used to identify the two related species, L. digitata and L. hyperborea. Descriptive statistics and statistical analysis were used to detect trends in the modulation of kelp mechanical design. Although two distinct species were identified, only minor structural differences were observed between them. The biomechanical properties varied significantly along the kelp, and significant seasonal shifts occurred at the blade level, in relation to the different morphological changes during blade renewal. In general, the variations of the structural properties were mostly linked to the blade growth activity. The absence of significant variation in the mechanical design of the two species highlights the significance of the adaptation to the same local environmental conditions, this adaptation being a key process in vegetation-flow interactions and having implications on the interaction between kelp and hydrodynamics.
The lateral line system in anuran tadpoles: neuromast morphology, arrangement, and innervation.
Quinzio, Silvia; Fabrezi, Marissa
2014-08-01
Anuran larvae have been classified into four morphological types which reflect intraordinal macroevolution. At present, complete characterizations of the lateral line system are only available for Xenopus laevis (Type I) and Discoglossus pictus (Type III). We analyzed the morphology, arrangement, and innervation of neuromasts related to the anterodorsal and anteroventral lateral line nerves in 10 anuran species representing Types I, II, and IV with the aim of interpreting the existing variation and discussing the evolution of the lateral line in anuran larvae. We found: (1) the presence of two orbital and three mandibular neuromast lines in all anuran larvae studied, (2) the ventral arrangement of mandibular neuromast lines appears to have evolved convergently in Larval Types I and II, and the lateroventral arrangement of mandibular lines of neuromasts appears to have evolved in Larval Types III and IV; (3) interspecific variation in the organization, size, and number of sensory cells per neuromast within the lines; and (4) the supralabial extension of the Angular line in Lepidobatrachus spp. and the tentacular location of the Oral neuromasts in X. laevis are concomitant with their particular morphologies. Based on the variation described we find that the lateral line system in anuran larvae seems to have been maintained without significant changes, with the exception of Lepidobatrachus spp. and Xenopus. These unique features added to other of Lepidobatrachus tadpoles are sufficient to propose a new Larval Type (V). Copyright © 2014 Wiley Periodicals, Inc.
Multiscale morphological filtering for analysis of noisy and complex images
NASA Astrophysics Data System (ADS)
Kher, A.; Mitra, S.
Images acquired with passive sensing techniques suffer from illumination variations and poor local contrasts that create major difficulties in interpretation and identification tasks. On the other hand, images acquired with active sensing techniques based on monochromatic illumination are degraded with speckle noise. Mathematical morphology offers elegant techniques to handle a wide range of image degradation problems. Unlike linear filters, morphological filters do not blur the edges and hence maintain higher image resolution. Their rich mathematical framework facilitates the design and analysis of these filters as well as their hardware implementation. Morphological filters are easier to implement and are more cost effective and efficient than several conventional linear filters. Morphological filters to remove speckle noise while maintaining high resolution and preserving thin image regions that are particularly vulnerable to speckle noise were developed and applied to SAR imagery. These filters used combination of linear (one-dimensional) structuring elements in different (typically four) orientations. Although this approach preserves more details than the simple morphological filters using two-dimensional structuring elements, the limited orientations of one-dimensional elements approximate the fine details of the region boundaries. A more robust filter designed recently overcomes the limitation of the fixed orientations. This filter uses a combination of concave and convex structuring elements. Morphological operators are also useful in extracting features from visible and infrared imagery. A multiresolution image pyramid obtained with successive filtering and a subsampling process aids in the removal of the illumination variations and enhances local contrasts. A morphology-based interpolation scheme was also introduced to reduce intensity discontinuities created in any morphological filtering task. The generality of morphological filtering techniques in extracting information from a wide variety of images obtained with active and passive sensing techniques is discussed. Such techniques are particularly useful in obtaining more information from fusion of complex images by different sensors such as SAR, visible, and infrared.
Multiscale Morphological Filtering for Analysis of Noisy and Complex Images
NASA Technical Reports Server (NTRS)
Kher, A.; Mitra, S.
1993-01-01
Images acquired with passive sensing techniques suffer from illumination variations and poor local contrasts that create major difficulties in interpretation and identification tasks. On the other hand, images acquired with active sensing techniques based on monochromatic illumination are degraded with speckle noise. Mathematical morphology offers elegant techniques to handle a wide range of image degradation problems. Unlike linear filters, morphological filters do not blur the edges and hence maintain higher image resolution. Their rich mathematical framework facilitates the design and analysis of these filters as well as their hardware implementation. Morphological filters are easier to implement and are more cost effective and efficient than several conventional linear filters. Morphological filters to remove speckle noise while maintaining high resolution and preserving thin image regions that are particularly vulnerable to speckle noise were developed and applied to SAR imagery. These filters used combination of linear (one-dimensional) structuring elements in different (typically four) orientations. Although this approach preserves more details than the simple morphological filters using two-dimensional structuring elements, the limited orientations of one-dimensional elements approximate the fine details of the region boundaries. A more robust filter designed recently overcomes the limitation of the fixed orientations. This filter uses a combination of concave and convex structuring elements. Morphological operators are also useful in extracting features from visible and infrared imagery. A multiresolution image pyramid obtained with successive filtering and a subsampling process aids in the removal of the illumination variations and enhances local contrasts. A morphology-based interpolation scheme was also introduced to reduce intensity discontinuities created in any morphological filtering task. The generality of morphological filtering techniques in extracting information from a wide variety of images obtained with active and passive sensing techniques is discussed. Such techniques are particularly useful in obtaining more information from fusion of complex images by different sensors such as SAR, visible, and infrared.
Runge, Fabian; Ndambi, Beninweck; Thines, Marco
2012-01-01
Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation.
Runge, Fabian; Ndambi, Beninweck; Thines, Marco
2012-01-01
Before the advent of molecular phylogenetics, species concepts in the downy mildews, an economically important group of obligate biotrophic oomycete pathogens, have mostly been based upon host range and morphology. While molecular phylogenetic studies have confirmed a narrow host range for many downy mildew species, others, like Pseudoperonospora cubensis affect even different genera. Although often morphological differences were found for new, phylogenetically distinct species, uncertainty prevails regarding their host ranges, especially regarding related plants that have been reported as downy mildew hosts, but were not included in the phylogenetic studies. In these cases, the basis for deciding if the divergence in some morphological characters can be deemed sufficient for designation as separate species is uncertain, as observed morphological divergence could be due to different host matrices colonised. The broad host range of P. cubensis (ca. 60 host species) renders this pathogen an ideal model organism for the investigation of morphological variations in relation to the host matrix and to evaluate which characteristics are best indicators for conspecificity or distinctiveness. On the basis of twelve morphological characterisitcs and a set of twelve cucurbits from five different Cucurbitaceae tribes, including the two species, Cyclanthera pedata and Thladiantha dubia, hitherto not reported as hosts of P. cubensis, a significant influence of the host matrix on pathogen morphology was found. Given the high intraspecific variation of some characteristics, also their plasticity has to be taken into account. The implications for morphological species determination and the confidence limits of morphological characteristics are discussed. For species delimitations in Pseudoperonospora it is shown that the ratio of the height of the first ramification to the sporangiophore length, ratio of the longer to the shorter ultimate branchlet, and especially the length and width of sporangia, as well as, with some reservations, their ratio, are the most suitable characteristics for species delimitation. PMID:23166582
Controls on coastal dune morphology, shoreline erosion and barrier island response to extreme storms
Houser, C.; Hapke, C.; Hamilton, S.
2008-01-01
The response of a barrier island to an extreme storm depends in part on the surge elevation relative to the height and extent of the foredunes which can exhibit considerable variability alongshore. While it is recognized that alongshore variations in dune height and width direct barrier island response to storm surge, the underlying causes of the alongshore variation remain poorly understood. This study examines the alongshore variation in dune morphology along a 11 km stretch of Santa Rosa Island in northwest Florida and relates the variation in morphology to the response of the island during Hurricane Ivan and historic and storm-related rates of shoreline erosion. The morphology of the foredune and backbarrier dunes was characterized before and after Hurricane Ivan using Empirical Orthogonal Function (EOF) analysis and related through Canonical Correlation Analysis (CCA). The height and extent of the foredune, and the presence and relative location of the backbarrier dunes, varied alongshore at discrete length scales (of ~ 750, 1450 and 4550 m) that are statistically significant at the 95% confidence level. Cospectral analysis suggests that the variation in dune morphology is correlated with transverse ridges on the inner-shelf, the backbarrier cuspate headlands, and the historical and storm-related trends in shoreline change. Sections of the coast with little to no dune development before Hurricane Ivan were observed in the narrowest portions of the island (between headlands), west of the transverse ridges. Overwash penetration tended to be larger in these areas and island breaching was common, leaving the surface close to the watertable and covered by a lag of shell and gravel. In contrast, large foredunes and the backbarrier dunes were observed at the widest sections of the island (the cuspate headlands) and at crest of the transverse ridges. Due to the large dunes and the presence of the backbarrier dunes, these areas experienced less overwash penetration and most of the sediment from the beachface and dunes was deposited within the upper-shoreface. It is argued that this sediment is returned to the beachface through nearshore bar migration following the storm and that the areas with larger foredunes and backbarrier dunes have smaller rates of historical shoreline erosion compared to areas with smaller dunes and greater transfer of sediment to the washover terrace. Since the recovery of the dunes will vary depending on the availability of sediment from the washover and beachface, it is further argued that the alongshore pattern of dune morphology and the response of the island to the next extreme storm is forced by the transverse ridges and island width through alongshore variations in storm surge and overwash gradients respectively. These findings may be particularly important for coastal managers involved in the repair and rebuilding of coastal infrastructure that was damaged or destroyed during Hurricane Ivan.
Variation in salmonid life histories: patterns and perspectives.
Mary F. Willson
1997-01-01
Salmonid fishes differ in degree of anadromy, age of maturation, frequency of reproduction, body size and fecundity, sexual dimorphism, breeding season, morphology, and, to a lesser degree, parental care. Patterns of variation and their possible significance for ecology and evolution and for resource management are the focus of this review.
Stec, Daniel; Morek, Witold; Gąsiorek, Piotr; Kaczmarek, Łukasz; Michalczyk, Łukasz
2016-12-15
Nearly a half of known eutardigrade species lay ornamented eggs. The ornamentation is thought to provide attachment of the egg to the substrate and protection for the developing embryo, but from the taxonomic point of view chorion morphology may also provide key characters for species differentiation and identification, especially between closely related taxa. Nonetheless, despite the evolutionary and taxonomic importance of the egg shell, the determinants of its morphology are very poorly, if at all, understood. Here, we combine morphological, molecular and experimental approaches in an attempt to separate the genetic and environmental factors that shape egg chorion morphology in Ramazzottius subanomalus (Biserov, 1985). Our integrative study, based on a population of R. subanomalus isolated from a single moss sample, revealed (1) remarkable variation in egg shell morphology, but (2) relatively little variation in animal morphometric traits, and (3) genetic differentiation, expressed as two ITS-2 haplotypes, but no parallel polymorphism in COI. Although animals did not differ morphometrically between the haplotypes, eggs laid by haplotype 1 and 2 females exhibited highly statistically significant differences in all measured traits. The study demonstrates, for the first time, a correlation between phenotypic and genetic variability within a tardigrade species. The revealed congruence between genetic and morphological traits might be viewed as an example of incipient speciation that illustrates early evolutionary steps leading to species complexes that differ primarily in terms of egg shell morphology. Moreover, our data confirm the value of the ITS-2 fragment in distinguishing very closely related tardigrade lineages.
Playing with Word Endings: Morphological Variation in the Learning of Russian Noun Inflections
ERIC Educational Resources Information Center
Kempe, Vera; Brooks, Patricia J.; Mironova, Natalija; Pershukova, Angelina; Fedorova, Olga
2007-01-01
This paper documents the occurrence of form variability through diminutive "wordplay", and examines whether this variability facilitates or hinders morphology acquisition in a richly inflected language. First, in a longitudinal speech corpus of eight Russian mothers conversing with their children (1.6-3.6), and with an adult, the use of diminutive…
Yanxiang Zhang; Quanshui Zheng; Melvin T. Tyree
2012-01-01
Physiological ecologists have been fascinated by height- or position-linked differences of leaf morphology within tall trees >25 m, but the exact cause is still debated, i.e., is it due to light or height-induced water stress? The aim of this study was to demonstrate that relatively small trees (
ERIC Educational Resources Information Center
Kieffer, Michael J.; Lesaux, Nonie K.
2012-01-01
Despite acknowledgement of the limited English vocabularies demonstrated by many language minority (LM) learners, few studies have identified skills that relate to variation in vocabulary growth in this population. This study investigated the concurrent development of morphological awareness (i.e., students' understanding of complex words as…
Nancy Grulke; R. Johnson; S. Monschein; P. Nikolova; M. Tausz
2003-01-01
Crown morphology and leaf tissue chemical and biochemical attributes associated with ozone (O3) injury were assessed in the lower, mid- and upper canopy of Jeffrey pine (Pinus jeffreyi Grev. & Balf.) growing in mesic and xeric microsites in Sequoia National Park, California. Microsites were designated mesic or xeric...
John M. Buffington; Daniele Tonina
2009-01-01
We propose that the mechanisms driving hyporheic exchange vary systematically with different channel morphologies and associated fluvial processes that occur in mountain basins, providing a framework for examining physical controls on hyporheic environments and their spatial variation across the landscape. Furthermore, the spatial distribution of hyporheic environments...
Morphological and genetic variation among four high desert Sphaeralcea species
Chalita Sriladda; Heidi A. Kratsch; Steven R. Larson; Roger K. Kjelgren
2012-01-01
The herbaceous perennial species in the genus Sphaeralcea have desirable drought tolerance and aesthetics with potential for low-water use landscapes in the Intermountain West. However, taxonomy of these species is ambiguous, which leads to decreased consumer confidence in the native plant nursery industry. The goal of this study was to test and clarify morphological...
[Genetic variation of geographical provenance of Pinus massoniana--review and analysis].
Li, D; Peng, S
2000-04-01
Pinus massoniana is a significant tree species constituting the subtropical forests in China. Based on morphological, physio-ecological, chromosome, and molecular levels, the genetic variation of geographical provenance of P. massoniana and its distribution were reviewed, and the methodologies on genetic diversity and the genetic variation patterns of geographical provenance of P. massoniana were synthetically analyzed. The Key problems on molecular ecology of P. massoniana were discussed.
Exploring Statistical Characterizations of Morphologic Change and Variability: Fire Island, New York
NASA Astrophysics Data System (ADS)
Lentz, E. E.; Hapke, C. J.
2012-12-01
A comprehensive understanding of coastal barrier behavior requires high-resolution observations that capture a wide range of morphological changes occurring over a range of spatial and temporal scales. Fire Island National Seashore, located along the coast of Long Island, New York, is a well studied barrier island coast where understanding how morphological changes contribute to barrier island vulnerability have important implications for coastal land management. Previous work has shown that morphologic differences in eastern and western reaches are attributable to the underlying geology and variations sediment transport in the system. In this study, we further explore western and eastern differences and variability with lidar-derived topographic surfaces to provide a unique and comprehensive investigation of dune-beach change at Fire Island, New York. Continuous topographic surfaces generated from 12 lidar surveys collected between 1998 and 2011 are used to examine the three-dimensional variability over a range of time periods over the 50 km long island. Because surveys were collected over a range of seasons and in response to a number of storm events, we explore morphologic configurations reflecting the seasonality, post-storm configuration, and replenishment response to the system through the generation of a representative or average surface. These averaged surfaces provide the context for what would be an expected or typical coastal configuration under certain conditions, and through comparison with an individual event, can be used to derive an event-specific spatial-change signature. To investigate anthropogenic influences, differences in morphology between a survey collected after a substantial beach replenishment project and a typical fair-weather configuration averaged from six surveys are determined. Storm response variations are also explored by assessing differences between Tropical Storm Irene (2011), Nor'Ida (2009), and a typical post-storm configuration averaged from five post-storm surveys. In addition to averaged surfaces, surveys are combined to generate a new raster surface reflecting cell by cell standard deviations over a defined period. Standard deviation surfaces are generated to highlight 1) where areas of highest and lowest morphologic variation are located over the entire period, and 2) whether spatial similarities exist in variability between storm and non-storm morphologies. Results show there are distinct and variable responses in eastern and western reaches attributable to wave climate, profile gradient, and offshore bathymetry, as well as to a general along-coast increase in sediment availability.
Miglioretti, Diana L.; Lange, Jane; van den Broek, Jeroen J.; Lee, Christoph I.; van Ravesteyn, Nicolien T.; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J.; Melnikow, Joy; de Koning, Harry J.; Hubbard, Rebecca A.
2016-01-01
Background Estimates of radiation-induced breast cancer risk from mammography screening have not previously considered dose exposure variation or diagnostic work-up after abnormal screening. Objective To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening, considering exposure from screening and diagnostic mammography and dose variation across women. Design Two simulation-modeling approaches using common data on screening mammography from the Breast Cancer Surveillance Consortium and radiation dose from mammography from the Digital Mammographic Imaging Screening Trial. Setting U.S. population. Patients Women aged 40–74 years. Interventions Annual or biennial digital mammography screening from age 40, 45, or 50 until 74. Measurements Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality per 100,000 women screened (harms). Results On average, annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancers (95% confidence interval [CI]=88–178) leading to 16 deaths (95% CI=11–23) relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 radiation-induced breast cancers leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete breast examination (8% of population) were projected to have higher radiation-induced breast cancer incidence and mortality (266 cancers, 35 deaths per 100,000 women), compared to women with small or average breasts (113 cancers, 15 deaths per 100,000 women). Biennial screening starting at age 50 reduced risk of radiation-induced cancers 5-fold. Limitations We were unable to estimate years of life lost from radiation-induced breast cancer. Conclusions Radiation-induced breast cancer incidence and mortality from digital mammography screening are impacted by dose variability from screening and resultant diagnostic work-up, initiation age, and screening frequency. Women with large breasts may be at higher risk of radiation-induced breast cancer; however, the benefits of screening outweigh these risks. PMID:26756460
Large scale variation in DNA copy number in chicken breeds
USDA-ARS?s Scientific Manuscript database
Background Detecting genetic variation is a critical step in elucidating the molecular mechanisms underlying phenotypic diversity. Until recently, such detection has mostly focused on single nucleotide polymorphisms (SNPs) because of the ease in screening complete genomes. Another type of variant, c...
NASA Astrophysics Data System (ADS)
Dumke, Ines; Klaucke, Ingo; Berndt, Christian; Bialas, Jörg
2014-06-01
Cold seeps on the Hikurangi Margin off New Zealand exhibit various seabed morphologies producing different intensity patterns in sidescan backscatter images. Acoustic backscatter characteristics of 25 investigated seep sites fall into four distinct types characterised by variations in backscatter intensity, distribution and inferred structural heights. The types reflect different carbonate morphologies including up to 20-m-high structures (type 1), low-relief crusts (type 2), scattered blocks (type 3) and carbonate-free sites (type 4). Each seep corresponds to a single type; intermediates were not observed. This correlates well with published data on seep fauna at each site, with the four types representing three different faunal habitats of successive stages of seep development. Backscatter signatures in sidescan sonar images of cold seeps may therefore serve as a convenient proxy for variations in faunal habitats.
Aberration in the palatal root of the maxillary first molar
Rajalbandi, Sandeep; Shingte, Sandhya Narayan; Sundaresh, K J; Mallikarjuna, Rachappa
2013-01-01
Thorough knowledge of root canal morphology is essential for the endodontic therapy. Variations in the root and root canal morphology, especially in multirooted teeth, are a constant challenge for diagnosis and management. The dentist needs to be familiar with the various root canal configurations and their variations for successful endodontic therapy. There are rare variations in canal number and configuration in maxillary molars, which could affect treatment outcome. Two lingual root structures are occasionally found on human permanent maxillary molars. One of these is the normal lingual root, which is always present, the other is a supernumerary structure which can be located either mesiolingually (radix mesiolingualis) or distolingually (radix distolingualis). The purpose of this paper is to review the literature and to demonstrate a case report which describes the successful non-surgical endodontic management of an unusual maxillary first molar with four separate roots and four canals. PMID:23632609
NASA Technical Reports Server (NTRS)
Campbell, W. J.; Josberger, E. G.; Gloersen, P.; Johannessen, O. M.; Guest, P. S.
1987-01-01
The data acquired during the summer 1984 Marginal Ice Zone Experiment in the Fram Strait-Greenland Sea marginal ice zone, using airborne active and passive microwave sensors and the Nimbus 7 SMMR, were analyzed to compile a sequential description of the mesoscale and large-scale ice morphology variations during the period of June 6 - July 16, 1984. Throughout the experiment, the long ice edge between northwest Svalbard and central Greenland meandered; eddies were repeatedly formed, moved, and disappeared but the ice edge remained within a 100-km-wide zone. The ice pack behind this alternately diffuse and compact edge underwent rapid and pronounced variations in ice concentration over a 200-km-wide zone. The high-resolution ice concentration distributions obtained in the aircraft images agree well with the low-resolution distributions of SMMR images.
Plasticity as Phenotype: G x E Interaction in a Freshwater Snail
NASA Astrophysics Data System (ADS)
Brunkow, P. E.; Calloway, S. A.
2005-05-01
Plasticity in morphological development allows species to accommodate environmental variation experienced during growth; however, genetic variation for phenotypic plasticity per se has been relatively under-studied. We utilized the well-documented plastic response of shell development to predator cues in a freshwater snail to quantify genetic variation for plasticity in growth rate and shell shape. Field-caught pairs of snails reproduced in the laboratory to create families of full siblings, which were then divided and allowed to grow in control and predator cue treatments. Predator (crayfish) cues had significant effects on both size-corrected growth rate and shell shape; family identity also significantly affected both final shell shape and growth rate. The interaction between predator treatment and family identity significantly affected snail growth rate but not final shell shape, suggesting genetic variation in the plastic response to predator cues for a physiological variable (growth rate) but not for a variable known to mechanically reduce the risk of predation (shell shape), at least in this population of snails. The possibility that risk of multiple modes of predation (i.e., both fish and crayfish) in some populations might maintain genetic variation in morphological plasticity is discussed.
Development of a Nebraska culvert aquatic organism passage screening tool.
DOT National Transportation Integrated Search
2012-12-01
Culverts channelize water relative to natural stream reaches, which can increase the velocity of water passing through them. Increased water velocities can alter stream morphology and create a possible barrier or obstacle to fish passage, which may a...
Costa-Pereira, R; Araújo, M S; Paiva, F; Tavares, L E R
2016-08-01
This study investigated whether the body morphology of the tetra fish Astyanax lacustris (previously Astyanax asuncionensis) varied between populations inhabiting one lagoon (a lentic, shallow environment, with great habitat complexity created by aquatic macrophytes) and an adjacent river (a deeper, lotic environment where aquatic macrophytes are scarce) in a seasonally flooded wetland, despite population mixing during the wet season. Morphological differences matched a priori predictions of the theory relating functional body morphology and swimming performance in fishes between lagoon and river habitats. Observed morphological variation could have resulted from adaptive habitat choice by tetras, predation by piscivores and adaptive phenotypic plasticity during development. © 2016 The Fisheries Society of the British Isles.
Race- and Sex-Related Differences in Retinal Thickness and Foveal Pit Morphology
Wagner-Schuman, Melissa; Dubis, Adam M.; Nordgren, Rick N.; Lei, Yuming; Odell, Daniel; Chiao, Hellen; Weh, Eric; Fischer, William; Sulai, Yusufu; Dubra, Alfredo
2011-01-01
Purpose. To examine sex- and race-associated differences in macular thickness and foveal pit morphology by using spectral-domain optical coherence tomography (SD-OCT). Methods. One hundred eighty eyes of 90 healthy patients (43 women, 47 men) underwent retinal imaging with spectral-domain OCT. The lateral scale of each macular volume scan was corrected for individual differences in axial length by ocular biometry. From these corrected volumes, Early Treatment Diabetic Retinopathy Study (ETDRS) grids of retinal thickness were generated and compared between the groups. Foveal morphology was measured with previously described algorithms. Results. Compared with the Caucasians, the Africans and African Americans had reduced central subfield thickness. Central subfield thickness was also reduced in the women compared with the men, although the women also showed significant thinning in parafoveal regions. There was no difference between the sexes in foveal pit morphology; however, the Africans/African Americans had significantly deeper and broader foveal pits than the Caucasians. Conclusions. Previous studies have reported race- and sex-associated differences in macular thickness, and the inference has been that these differences represent similar anatomic features. However, the data on pit morphology collected in the present study reveal an important and significant variation. Between the sexes, the differences are due to global variability in retinal thickness, whereas the variation in thickness observed between the races appears to be driven by differences in foveal pit morphology. These differences have important implications for the use of SD-OCT in detecting and diagnosing retinal disease. PMID:20861480
Vetterlein, Malte W; Dalela, Deepansh; Sammon, Jesse D; Karabon, Patrick; Sood, Akshay; Jindal, Tarun; Meyer, Christian P; Löppenberg, Björn; Sun, Maxine; Trinh, Quoc-Dien; Menon, Mani; Abdollah, Firas
2018-02-01
To evaluate state-by-state trends in prostate-specific antigen (PSA) screening prevalence after the 2011 United States Preventive Services Task Force (USPSTF) recommendation against this practice. We included 222,475 men who responded to the Behavioral Risk Factor Surveillance System 2012 and 2014 surveys, corresponding to early and late post-USPSTF populations. Logistic regression was used to identify predictors of PSA screening and to calculate the adjusted and weighted state-by-state PSA screening prevalence and respective relative percent changes between 2012 and 2014. To account for unmeasured factors, the correlation between changes in PSA screening over time and changes in screening for colorectal and breast cancer were assessed. All analyses were conducted in 2016. Overall, 38.9% (95% confidence interval [CI] = 38.6%-39.2%) reported receiving PSA screening in 2012 vs 35.8% (95% CI = 35.1%-36.2%) in 2014. State of residence, age, race, education, income, insurance, access to care, marital status, and smoking status were independent predictors of PSA screening in both years (all P <.001). In adjusted analyses, the nationwide PSA screening prevalence decreased by a relative 8.5% (95% CI = 6.4%-10.5%; P <.001) between 2012 and 2014. There was a vast state-by-state heterogeneity, ranging from a relative 26.6% decrease in Vermont to 10.2% increase in Hawaii. Overall, 81.5% and 84.0% of the observed changes were not accompanied by matching changes in respective colorectal and breast cancer screening utilization, for which there were no updates in USPSTF recommendations. There is a significant state-by-state variation in PSA screening trends following the 2011 USPSTF recommendation. Further research is needed to elucidate the reasons for this heterogeneity in screening behavior among the states. Copyright © 2017 Elsevier Inc. All rights reserved.
Payne, Adrienne C.; Clarkson, Graham J.J.; Rothwell, Steve; Taylor, Gail
2015-01-01
Watercress (Nasturtium officinale R. Br.) is a nutrient intense, leafy crop that is consumed raw or in soups across the globe, but for which, currently no genomic resources or breeding programme exists. Promising morphological, biochemical and functional genomic variation was identified for the first time in a newly established watercress germplasm collection, consisting of 48 watercress accessions sourced from contrasting global locations. Stem length, stem diameter and anti-oxidant (AO) potential varied across the accessions. This variation was used to identify three extreme contrasting accessions for further analysis. Variation in global gene expression was investigated using an Affymetrix Arabidopsis ATH1 microarray gene chip, using the commercial control (C), an accession selected for dwarf phenotype with a high AO potential (dwarfAO, called ‘Boldrewood’) and one with high AO potential alone. A set of transcripts significantly differentially expressed between these three accessions, were identified, including transcripts involved in the regulation of growth and development and those involved in secondary metabolism. In particular, when differential gene expression was compared between C and dwarfAO, the dwarfAO was characterised by increased expression of genes encoding glucosinolates, which are known precursors of phenethyl isothiocyanate, linked to the anti-carcinogenic effects well-documented in watercress. This study provides the first analysis of natural variation across the watercress genome and has identified important underpinning information for future breeding for enhanced anti-carcinogenic properties and morphology traits in this nutrient-intense crop. PMID:26504575
Rocha-Olivares, Axayácatl; Morteo, Rodrigo; Weller, David W.
2017-01-01
Geographic variation in external morphology is thought to reflect an interplay between genotype and the environment. Morphological variation has been well-described for a number of cetacean species, including the bottlenose dolphin (Tursiops truncatus). In this study we analyzed dorsal fin morphometric variation in coastal bottlenose dolphins to search for geographic patterns at different spatial scales. A total of 533 dorsal fin images from 19 available photo-identification catalogs across the three Mexican oceanic regions (Pacific Ocean n = 6, Gulf of California n = 6 and, Gulf of Mexico n = 7) were used in the analysis. Eleven fin shape measurements were analyzed to evaluate fin polymorphism through multivariate tests. Principal Component Analysis on log-transformed standardized ratios explained 94% of the variance. Canonical Discriminant Function Analysis on factor scores showed separation among most study areas (p < 0.05) with exception of the Gulf of Mexico where a strong morphometric cline was found. Possible explanations for the observed differences are related to environmental, biological and evolutionary processes. Shape distinction between dorsal fins from the Pacific and those from the Gulf of California were consistent with previously reported differences in skull morphometrics and genetics. Although the functional advantages of dorsal fin shape remains to be assessed, it is not unlikely that over a wide range of environments, fin shape may represent a trade-off among thermoregulatory capacity, hydrodynamic performance and the swimming/hunting behavior of the species. PMID:28626607
van Ekris, Evi; Chinapaw, Mai J M; Rotteveel, Joost; Altenburg, Teatske M
2018-05-17
Evidence of adverse health effects of TV viewing is stronger than for overall sedentary behaviour in youth. One explanation may be that TV viewing involves less body movement than other sedentary activities. Variations in body movement across sedentary activities are currently unknown, as are age differences in such variations. This study examined body movement differences across various sedentary activities in children and adolescents, assessed by hip-, thigh- and wrist-worn accelerometers, muscle activity and heart rate. Body movement differences between sedentary activities and standing were also examined. Fifty-three children (aged 10⁻12 years) and 37 adolescents (aged 16⁻18 years) performed seven different sedentary activities, a standing activity, and a dancing activity (as a control activity) in a controlled setting. Each activity lasted 10 minutes. Participants wore an Actigraph on their hip and both wrists, an activPAL on their thigh and a heart rate monitor. The muscle activity of weight-bearing leg muscles was measured in a subgroup ( n = 38) by surface electromyography. Variations in body movement across activities were examined using general estimation equations analysis. Children showed significantly more body movement during sedentary activities and standing than adolescents. In both age groups, screen-based sedentary activities involved less body movement than non-screen-based sedentary activities. This may explain the stronger evidence for detrimental health effects of TV viewing while evidence for child sedentary behaviour in general is inconsistent. Differences in body movement during standing and sedentary activities were relatively small. Future research should examine the potential health effects of differences in body movement between screen-based versus non-screen based and standing versus sedentary activities.
Genotyping microarray (gene chip) for the ABCR (ABCA4) gene.
Jaakson, K; Zernant, J; Külm, M; Hutchinson, A; Tonisson, N; Glavac, D; Ravnik-Glavac, M; Hawlina, M; Meltzer, M R; Caruso, R C; Testa, F; Maugeri, A; Hoyng, C B; Gouras, P; Simonelli, F; Lewis, R A; Lupski, J R; Cremers, F P M; Allikmets, R
2003-11-01
Genetic variation in the ABCR (ABCA4) gene has been associated with five distinct retinal phenotypes, including Stargardt disease/fundus flavimaculatus (STGD/FFM), cone-rod dystrophy (CRD), and age-related macular degeneration (AMD). Comparative genetic analyses of ABCR variation and diagnostics have been complicated by substantial allelic heterogeneity and by differences in screening methods. To overcome these limitations, we designed a genotyping microarray (gene chip) for ABCR that includes all approximately 400 disease-associated and other variants currently described, enabling simultaneous detection of all known ABCR variants. The ABCR genotyping microarray (the ABCR400 chip) was constructed by the arrayed primer extension (APEX) technology. Each sequence change in ABCR was included on the chip by synthesis and application of sequence-specific oligonucleotides. We validated the chip by screening 136 confirmed STGD patients and 96 healthy controls, each of whom we had analyzed previously by single strand conformation polymorphism (SSCP) technology and/or heteroduplex analysis. The microarray was >98% effective in determining the existing genetic variation and was comparable to direct sequencing in that it yielded many sequence changes undetected by SSCP. In STGD patient cohorts, the efficiency of the array to detect disease-associated alleles was between 54% and 78%, depending on the ethnic composition and degree of clinical and molecular characterization of a cohort. In addition, chip analysis suggested a high carrier frequency (up to 1:10) of ABCR variants in the general population. The ABCR genotyping microarray is a robust, cost-effective, and comprehensive screening tool for variation in one gene in which mutations are responsible for a substantial fraction of retinal disease. The ABCR chip is a prototype for the next generation of screening and diagnostic tools in ophthalmic genetics, bridging clinical and scientific research. Copyright 2003 Wiley-Liss, Inc.
Identification of natural high-oleate mutants from the USDA Peanut Germplasm Collection
USDA-ARS?s Scientific Manuscript database
Natural genetic variation may exist in plant germplasm collections. Identifying genetic variation may provide useful materials for breeders to develop new cultivars. After screening 8,846 cultivated peanut germplasm accessions by gas chromatography analysis, we identified three natural mutant lines ...
Distinguishing modified gravity models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brax, Philippe; Davis, Anne-Christine, E-mail: philippe.brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk
2015-10-01
Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed inmore » both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations.« less
Screening retinal transplants with Fourier-domain OCT
NASA Astrophysics Data System (ADS)
Rao, Bin
2009-02-01
Transplant technologies have been studied for the recovery of vision loss from retinitis pigmentosa (RP) and age-related macular degeneration (AMD). In several rodent retinal degeneration models and in patients, retinal progenitor cells transplanted as layers to the subretinal space have been shown to restore or preserve vision. The methods for evaluation of transplants are expensive considering the large amount of animals. Alternatively, time-domain Stratus OCT was previously shown to be able to image the morphological structure of transplants to some extent, but could not clearly identify laminated transplants. The efficacy of screening retinal transplants with Fourier-domain OCT was studied on 37 S334ter line 3 rats with retinal degeneration 6-67 days after transplant surgery. The transplants were morphologically categorized as no transplant, detachment, rosettes, small laminated area and larger laminated area with both Fourier-domain OCT and histology. The efficacy of Fourier-domain OCT in screening retinal transplants was evaluated by comparing the categorization results with OCT and histology. Additionally, 4 rats were randomly selected for multiple OCT examinations (1, 5, 9, 14 and 21days post surgery) in order to determine the earliest image time of OCT examination since the transplanted tissue may need some time to show its tendency of growing. Finally, we demonstrated the efficacy of Fourier-domain OCT in screening retinal transplants in early stages and determined the earliest imaging time for OCT. Fourier-domain OCT makes itself valuable in saving resource spent on animals with unsuccessful transplants.
Variation in functional ascospore parts in the ascomycetous yeast Dipodascopsis uninucleata.
Bareetseng, A S; Kock, J L F; Pohl, C H; Pretorius, E E; Van Wyk, P W J
2004-04-01
A variation in functional ascospore morphology was detected using electron microscopy (EM) in two varieties of the yeast Dipodascopsis uninucleata, i.e., D. uninucleata var. uninucleata and D. uninucleata var. wickerhamii. It was found that the latter produces ascospores characterized by the absence of small surface hooks which have been implicated in the release and re-assembly of ascospores in D. uninucleata var. uninucleata. These varieties are closely related on the basis of their mode of sexual reproduction, ascospore morphology as observed under the light microscope, physiological characteristics as well as the extent of divergence in the variable D1/D2 domain of the large subunit 26S ribosomal DNA.
Iovita, Radu
2011-01-01
Background Recent findings suggest that the North African Middle Stone Age technocomplex known as the Aterian is both much older than previously assumed, and certainly associated with fossils exhibiting anatomically modern human morphology and behavior. The Aterian is defined by the presence of ‘tanged’ or ‘stemmed’ tools, which have been widely assumed to be among the earliest projectile weapon tips. The present study systematically investigates morphological variation in a large sample of Aterian tools to test the hypothesis that these tools were hafted and/or used as projectile weapons. Methodology/Principal Findings Both classical morphometrics and Elliptical Fourier Analysis of tool outlines are used to show that the shape variation in the sample exhibits size-dependent patterns consistent with a reduction of the tools from the tip down, with the tang remaining intact. Additionally, the process of reduction led to increasing side-to-side asymmetries as the tools got smaller. Finally, a comparison of shape-change trajectories between Aterian tools and Late Paleolithic arrowheads from the North German site of Stellmoor reveal significant differences in terms of the amount and location of the variation. Conclusions/Significance The patterns of size-dependent shape variation strongly support the functional hypothesis of Aterian tools as hafted knives or scrapers with alternating active edges, rather than as weapon tips. Nevertheless, the same morphological patterns are interpreted as one of the earliest evidences for a hafting modification, and for the successful combination of different raw materials (haft and stone tip) into one implement, in itself an important achievement in the evolution of hominin technologies. PMID:22216161
Miller, Nicola A; Gregory, Jennifer S; Aspden, Richard M; Stollery, Peter J; Gilbert, Fiona J
2014-09-01
The shape of the vocal tract and associated structures (eg, tongue and velum) is complicated and varies according to development and function. This variability challenges interpretation of voice experiments. Quantifying differences between shapes and understanding how vocal structures move in relation to each other is difficult using traditional linear and angle measurements. With statistical shape models, shape can be characterized in terms of independent modes of variation. Here, we build an active shape model (ASM) to assess morphologic and pitch-related functional changes affecting vocal structures and the airway. Using a cross-sectional study design, we obtained six midsagittal magnetic resonance images from 10 healthy adults (five men and five women) at rest, while breathing out, and while listening to, and humming low and high notes. Eighty landmark points were chosen to define the shape of interest and an ASM was built using these (60) images. Principal component analysis was used to identify independent modes of variation, and statistical analysis was performed using one-way repeated-measures analysis of variance. Twenty modes of variation were identified with modes 1 and 2 accounting for half the total variance. Modes 1 and 9 were significantly associated with humming low and high notes (P < 0.001) and showed coordinated changes affecting the cervical spine, vocal structures, and airway. Mode 2 highlighted wide structural variations between subjects. This study highlights the potential of active shape modeling to advance understanding of factors underlying morphologic and pitch-related functional variations affecting vocal structures and the airway in health and disease. Copyright © 2014 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Lin, Ke; Zhang, Ningwen; Severing, Edouard I; Nijveen, Harm; Cheng, Feng; Visser, Richard G F; Wang, Xiaowu; de Ridder, Dick; Bonnema, Guusje
2014-03-31
Brassica rapa is an economically important crop species. During its long breeding history, a large number of morphotypes have been generated, including leafy vegetables such as Chinese cabbage and pakchoi, turnip tuber crops and oil crops. To investigate the genetic variation underlying this morphological variation, we re-sequenced, assembled and annotated the genomes of two B. rapa subspecies, turnip crops (turnip) and a rapid cycling. We then analysed the two resulting genomes together with the Chinese cabbage Chiifu reference genome to obtain an impression of the B. rapa pan-genome. The number of genes with protein-coding changes between the three genotypes was lower than that among different accessions of Arabidopsis thaliana, which can be explained by the smaller effective population size of B. rapa due to its domestication. Based on orthology to a number of non-brassica species, we estimated the date of divergence among the three B. rapa morphotypes at approximately 250,000 YA, far predating Brassica domestication (5,000-10,000 YA). By analysing genes unique to turnip we found evidence for copy number differences in peroxidases, pointing to a role for the phenylpropanoid biosynthesis pathway in the generation of morphological variation. The estimated date of divergence among three B. rapa morphotypes implies that prior to domestication there was already considerably divergence among B. rapa genotypes. Our study thus provides two new B. rapa reference genomes, delivers a set of computer tools to analyse the resulting pan-genome and uses these to shed light on genetic drivers behind the rich morphological variation found in B. rapa.
International variation in management of screen-detected ductal carcinoma in situ of the breast
Ponti, Antonio; Lynge, Elsebeth; James, Ted; Májek, Ondřej; von Euler-Chelpin, My; Anttila, Ahti; Fitzpatrick, Patricia; Mano, Maria Piera; Kawai, Masaaki; Scharpantgen, Astrid; Fracheboud, Jacques; Hofvind, Solveig; Vidal, Carmen; Ascunce, Nieves; Salas, Dolores; Bulliard, Jean-Luc; Segnan, Nereo; Kerlikowske, Karla; Taplin, Stephen
2014-01-01
Background Ductal carcinoma in situ (DCIS) incidence has grown with the implementation of screening and its detection varies across International Cancer Screening Network (ICSN) countries. The aim of this survey is to describe the management of screen-detected DCIS in ICSN countries and to evaluate the potential for treatment related morbidity. Methods We sought screen-detected DCIS data from the ICSN countries identified during 2004–2008. We adopted standardised data collection forms and analysis and explored DCIS diagnosis and treatment processes ranging from pre-operative diagnosis to type of surgery and radiotherapy. Results Twelve countries contributed data from a total of 15 screening programmes, all from Europe except the United States of America and Japan. Among women aged 50–69 years, 7,176,050 screening tests and 5324 screen-detected DCIS were reported. From 21% to 93% of DCIS had a pre-operative diagnosis (PO); 67–90% of DCIS received breast conservation surgery (BCS), and in 41–100% of the cases this was followed by radiotherapy; 6.4–59% received sentinel lymph node biopsy (SLNB) only and 0.8–49% axillary dissection (ALND) with 0.6% (range by programmes 0–8.1%) being node positive. Among BCS patients 35% received SLNB only and 4.8% received ALND. Starting in 2006, PO and SLNB use increased while ALND remained stable. SLNB and ALND were associated with larger size and higher grade DCIS lesions. Conclusions Variation in DCIS management among screened women is wide and includes lymph node surgery beyond what is currently recommended. This indicates the presence of varying levels of overtreatment and the potential for its reduction. PMID:25149183
Screening for developmental dysplasia of the hip.
Desprechins, B; Ernst, C; de Mey, J
2007-01-01
The reported prevalence of established dislocation the hip in an unscreened population varies from 0.7 to 1.6 / 1000 children in European and American white populations. In clinically screened populations neonatal hip instability is reported to occur in 3 to 30 / 1000 newborns while established congenital dislocation has a prevalence of 0.1- 4/1000 of which 1/1000 is judged to be in need for surgery. Early diagnosis of DDH is essential for successful treatment and later prognosis of the disorder. Combined procedure including evaluation of both hip morphology and hip stability is currently recommended. Opinions differ about the need for universal versus selective sonographic screening for diagnosis of DDH. Currently selective screening of those infants with recognised risk factors and those with abnormal physical examination would be cost-effective and the only practicable method for most countries.
Kevin M. Potter; Valerie D. Hipkins; Mary F. Mahalovich; Robert E. Means
2015-01-01
Ponderosa pine (Pinus ponderosa) is among the most broadly distributed conifer species of western North America, where it possesses considerable ecological, esthetic, and commercial value. It exhibits complicated patterns of morphological and genetic variation, suggesting that it may be in the process of differentiating into distinct regional...
Galaxy Properties Across and Through the 6dFGS Fundamental Plane
NASA Astrophysics Data System (ADS)
Springob, Chris M.; Magoulas, C.; Proctor, R.; Colless, M.; Jones, D. H.; Kobayashi, C.; Campbell, L.; Lucey, J.; Mould, J.; Merson, A.
2011-05-01
The 6dF Galaxy Survey (6dFGS) is an all southern sky galaxy survey, including 125,000 redshifts and a Fundamental Plane (FP) subsample of 10,000 peculiar velocities, making it the largest peculiar velocity sample to date. We have developed a robust procedure for fitting the FP, performing a maximum likelihood fit to a tri-variate Gaussian. We have subsequently examined the variation of a variety of properties across and through the FP, including environment, morphology, metallicity, alpha-enhancement, and stellar age. We find little variation in the FP with global environment. Some variation of morphology is found along the plane, though this is likely a consequence of selection effects. Elemental abundances are found to vary both across and through the FP. The parameter that varies most directly through the FP is stellar age. We find that galaxies with stellar populations with average ages older than 3 Gyr occupy a thinner FP than those younger than 3 Gyr. Thus, a modest improvement in distance errors is realized if one divides the sample into subsamples segregated by age, and fits the FP of each subsample independently.
Phonological bases for L2 morphological learning.
Hu, Chieh-Fang
2010-08-01
Two experiments examined the hypothesis that L1 phonological awareness plays a role in children's ability to extract morphological patterns of English as L2 from the auditory input. In Experiment 1, 84 Chinese-speaking third graders were tested on whether they extracted the alternation pattern between the base and the derived form (e.g., inflate - inflation) from multiple exposures. Experiment 2 further assessed children's ability to use morphological cues for syntactic categorization through exposures to novel morphologically varying forms (e.g., lutate vs. lutant) presented in the corresponding sentential positions (noun vs. verb). The third-grade EFL learners revealed emergent sensitivity to the morphological cues in the input but failed in fully processing intraword variations. The learners with poorer L1 PA were likely to encounter difficulties in identifying morphological alternation rules and in discovering the syntactic properties of L2 morphology. In addition to L1 PA, L2 vocabulary knowledge also contributed significantly to L2 morphological learning.
Prospective in (Primate) Dental Analysis through Tooth 3D Topographical Quantification
Guy, Franck; Gouvard, Florent; Boistel, Renaud; Euriat, Adelaïde; Lazzari, Vincent
2013-01-01
The occlusal morphology of the teeth is mostly determined by the enamel-dentine junction morphology; the enamel-dentine junction plays the role of a primer and conditions the formation of the occlusal enamel reliefs. However, the accretion of the enamel cap yields thickness variations that alter the morphology and the topography of the enamel–dentine junction (i.e., the differential deposition of enamel by the ameloblasts create an external surface that does not necessarily perfectly parallel the enamel–dentine junction). This self-reliant influence of the enamel on tooth morphology is poorly understood and still under-investigated. Studies considering the relationship between enamel and dentine morphologies are rare, and none of them tackled this relationship in a quantitative way. Major limitations arose from: (1) the difficulties to characterize the tooth morphology in its comprehensive tridimensional aspect and (2) practical issues in relating enamel and enamel–dentine junction quantitative traits. We present new aspects of form representation based exclusively on 3D analytical tools and procedures. Our method is applied to a set of 21 unworn upper second molars belonging to eight extant anthropoid genera. Using geometrical analysis of polygonal meshes representatives of the tooth form, we propose a 3D dataset that constitutes a detailed characterization of the enamel and of the enamel–dentine junction morphologies. Also, for the first time, to our knowledge, we intend to establish a quantitative method for comparing enamel and enamel–dentine junction surfaces descriptors (elevation, inclination, orientation, etc.). New indices that allow characterizing the occlusal morphology are proposed and discussed. In this note, we present technical aspects of our method with the example of anthropoid molars. First results show notable individual variations and taxonomic heterogeneities for the selected topographic parameters and for the pattern and strength of association between enamel–dentine junction and enamel, the enamel cap altering in different ways the “transcription” of the enamel–dentine junction morphology. PMID:23826088
USDA-ARS?s Scientific Manuscript database
Body size is an important trait because it strongly correlates with morphology, performance, and fitness. In insects, the body size model argues that adult size is determined during the larval stage by the mechanisms regulating growth rate and the duration of growth. Though explicit links have been ...
The bald and the beautiful: hairlessness in domestic dog breeds.
Parker, Heidi G; Harris, Alexander; Dreger, Dayna L; Davis, Brian W; Ostrander, Elaine A
2017-02-05
An extraordinary amount of genomic variation is contained within the chromosomes of domestic dogs, manifesting as dramatic differences in morphology, behaviour and disease susceptibility. Morphology, in particular, has been a topic of enormous interest as biologists struggle to understand the small window of dog domestication from wolves, and the division of dogs into pure breeding, closed populations termed breeds. Many traits related to morphology, including body size, leg length and skull shape, have been under selection as part of the standard descriptions for the nearly 400 breeds recognized worldwide. Just as important, however, are the minor traits that have undergone selection by fanciers and breeders to define dogs of a particular appearance, such as tail length, ear position, back arch and variation in fur (pelage) growth patterns. In this paper, we both review and present new data for traits associated with pelage including fur length, curl, growth, shedding and even the presence or absence of fur. Finally, we report the discovery of a new gene associated with the absence of coat in the American Hairless Terrier breed.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Authors.
A new approach to children's footwear based on foot type classification.
Mauch, M; Grau, S; Krauss, I; Maiwald, C; Horstmann, T
2009-08-01
Current shoe designs do not allow for the comprehensive 3-D foot shape, which means they are unable to reproduce the wide variability in foot morphology. Therefore, the purpose of this study was to capture these variations of children's feet by classifying them into groups (types) and thereby provide a basis for their implementation in the design of children's shoes. The feet of 2867 German children were measured using a 3-D foot scanner. Cluster analysis was then applied to classify the feet into three different foot types. The characteristics of these foot types differ regarding their volume and forefoot shape both within and between shoe sizes. This new approach is in clear contrast to previous systems, since it captures the variability of foot morphology in a more comprehensive way by using a foot typing system and therefore paves the way for the unimpaired development of children's feet. Previous shoe systems do not allow for the wide variations in foot morphology. A new approach was developed regarding different morphological foot types based on 3-D measurements relevant in shoe construction. This can be directly applied to create specific designs for children's shoes.
Contrasting Ecosystem-Effects of Morphologically Similar Copepods
Matthews, Blake; Hausch, Stephen; Winter, Christian; Suttle, Curtis A.; Shurin, Jonathan B.
2011-01-01
Organisms alter the biotic and abiotic conditions of ecosystems. They can modulate the availability of resources to other species (ecosystem engineering) and shape selection pressures on other organisms (niche construction). Very little is known about how the engineering effects of organisms vary among and within species, and, as a result, the ecosystem consequences of species diversification and phenotypic evolution are poorly understood. Here, using a common gardening experiment, we test whether morphologically similar species and populations of Diaptomidae copepods (Leptodiaptomus ashlandi, Hesperodiaptomus franciscanus, Skistodiaptomus oregonensis) have similar or different effects on the structure and function of freshwater ecosystems. We found that copepod species had contrasting effects on algal biomass, ammonium concentrations, and sedimentation rates, and that copepod populations had contrasting effects on prokaryote abundance, sedimentation rates, and gross primary productivity. The average size of ecosystem-effect contrasts between species was similar to those between populations, and was comparable to those between fish species and populations measured in previous common gardening experiments. Our results suggest that subtle morphological variation among and within species can cause multifarious and divergent ecosystem-effects. We conclude that using morphological trait variation to assess the functional similarity of organisms may underestimate the importance of species and population diversity for ecosystem functioning. PMID:22140432
Marochi, Murilo Zanetti; Masunari, Setuko; Schubart, Christoph D
2017-02-01
The genetic and morphometric population structures of the semiterrestrial crab Armases angustipes from along the Brazilian coast were examined. The influence of the Central South Equatorial Current on larval dispersal of A. angustipes also was evaluated. Six populations were sampled from estuarine areas in São Luis do Maranhão, Maranhão; Natal, Rio Grande do Norte; Maceió, Alagoas; Ilhéus, Bahia; Aracruz, Espírito Santo; and Guaratuba, Paraná. Patterns of genetic differentiation were assessed using DNA sequence data corresponding to parts of the mitochondrial cytochrome c oxidase subunit 1. Geometric morphometric techniques were used to evaluate morphological variation in shape and size of the carapace and right cheliped propodus. Our results revealed low genetic variability and lack of phylogeographic structure; geometric morphometrics showed statistically significant morphological differentiation and geographic structuring. Our data indicate the absence of possible barriers to gene flow for this mobile species, and no clear correlation of morphological or genetic variation with ocean currents and/or geographic distance. Our results also suggest that historical geological and climatological events and/or possible bottleneck effects influenced the current low genetic variability among the populations of A. angustipes.
Does weather shape rodents? Climate related changes in morphology of two heteromyid species
NASA Astrophysics Data System (ADS)
Wolf, Mosheh; Friggens, Michael; Salazar-Bravo, Jorge
2009-01-01
Geographical variation in morphometric characters in heteromyid rodents has often correlated with climate gradients. Here, we used the long-term database of rodents trapped in the Sevilleta National Wildlife Refuge in New Mexico, USA to test whether significant annual changes in external morphometric characters are observed in a region with large variations in temperature and precipitation. We looked at the relationships between multiple temperature and precipitation variables and a number of morphological traits (body mass, body, tail, hind leg, and ear length) for two heteromyid rodents, Dipodomys merriami and Perognathus flavescens. Because these rodents can live multiple years in the wild, the climate variables for the year of the capture and the previous 2 years were included in the analyses. Using multiple linear regressions, we found that all of our morphometric traits, with the exception of tail length in D. merriami, had a significant relationship with one or more of the climate variables used. Our results demonstrate that effects of climate change on morphological traits occur over short periods, even in noninsular mammal populations. It is unclear, though, whether these changes are the result of morphological plasticity or natural selection.
Siriwut, Warut; Edgecombe, Gregory D.; Sutcharit, Chirasak; Panha, Somsak
2015-01-01
Seven Scolopendra species from the Southeast Asian mainland delimited based on standard external morphological characters represent monophyletic groups in phylogenetic trees inferred from concatenated sequences of three gene fragments (cytochrome c oxidase subunit 1, 16S rRNA and 28S rRNA) using Maximum likelihood and Bayesian inference. Geometric morphometric description of shape variation in the cephalic plate, forcipular coxosternite, and tergite of the ultimate leg-bearing segment provides additional criteria for distinguishing species. Colouration patterns in some Scolopendra species show a high degree of fit to phylogenetic trees at the population level. The most densely sampled species, Scolopendra dehaani Brandt, 1840, has three subclades with allopatric distributions in mainland SE Asia. The molecular phylogeny of S. pinguis Pocock, 1891, indicated ontogenetic colour variation among its populations. The taxonomic validation of S. dawydoffi Kronmüller, 2012, S. japonica Koch, 1878, and S. dehaani Brandt, 1840, each a former subspecies of S. subspinipes Leach, 1814 sensu Lewis, 2010, as full species was supported by molecular information and additional morphological data. Species delimitation in these taxonomically challenging animals is facilitated by an integrative approach that draws on both morphology and molecular phylogeny. PMID:26270342
Agent-Based Computational Modeling to Examine How Individual Cell Morphology Affects Dosimetry
Cell-based models utilizing high-content screening (HCS) data have applications for predictive toxicology. Evaluating concentration-dependent effects on cell fate and state response is a fundamental utilization of HCS data.Although HCS assays may capture quantitative readouts at ...
2012-01-01
Background Single embryo transfer (SET) remains underutilized as a strategy to reduce multiple gestation risk in IVF, and its overall lower pregnancy rate underscores the need for improved techniques to select one embryo for fresh transfer. This study explored use of comprehensive chromosomal screening by array CGH (aCGH) to provide this advantage and improve pregnancy rate from SET. Methods First-time IVF patients with a good prognosis (age <35, no prior miscarriage) and normal karyotype seeking elective SET were prospectively randomized into two groups: In Group A, embryos were selected on the basis of morphology and comprehensive chromosomal screening via aCGH (from d5 trophectoderm biopsy) while Group B embryos were assessed by morphology only. All patients had a single fresh blastocyst transferred on d6. Laboratory parameters and clinical pregnancy rates were compared between the two groups. Results For patients in Group A (n = 55), 425 blastocysts were biopsied and analyzed via aCGH (7.7 blastocysts/patient). Aneuploidy was detected in 191/425 (44.9%) of blastocysts in this group. For patients in Group B (n = 48), 389 blastocysts were microscopically examined (8.1 blastocysts/patient). Clinical pregnancy rate was significantly higher in the morphology + aCGH group compared to the morphology-only group (70.9 and 45.8%, respectively; p = 0.017); ongoing pregnancy rate for Groups A and B were 69.1 vs. 41.7%, respectively (p = 0.009). There were no twin pregnancies. Conclusion Although aCGH followed by frozen embryo transfer has been used to screen at risk embryos (e.g., known parental chromosomal translocation or history of recurrent pregnancy loss), this is the first description of aCGH fully integrated with a clinical IVF program to select single blastocysts for fresh SET in good prognosis patients. The observed aneuploidy rate (44.9%) among biopsied blastocysts highlights the inherent imprecision of SET when conventional morphology is used alone. Embryos randomized to the aCGH group implanted with greater efficiency, resulted in clinical pregnancy more often, and yielded a lower miscarriage rate than those selected without aCGH. Additional studies are needed to verify our pilot data and confirm a role for on-site, rapid aCGH for IVF patients contemplating fresh SET. PMID:22551456
Model-based error diffusion for high fidelity lenticular screening.
Lau, Daniel; Smith, Trebor
2006-04-17
Digital halftoning is the process of converting a continuous-tone image into an arrangement of black and white dots for binary display devices such as digital ink-jet and electrophotographic printers. As printers are achieving print resolutions exceeding 1,200 dots per inch, it is becoming increasingly important for halftoning algorithms to consider the variations and interactions in the size and shape of printed dots between neighboring pixels. In the case of lenticular screening where statistically independent images are spatially multiplexed together, ignoring these variations and interactions, such as dot overlap, will result in poor lenticular image quality. To this end, we describe our use of model-based error-diffusion for the lenticular screening problem where statistical independence between component images is achieved by restricting the diffusion of error to only those pixels of the same component image where, in order to avoid instabilities, the proposed approach involves a novel error-clipping procedure.
Stabilization of glucose-oxidase in the graphene paste for screen-printed glucose biosensor
NASA Astrophysics Data System (ADS)
Pepłowski, Andrzej; Janczak, Daniel; Jakubowska, Małgorzata
2015-09-01
Various methods and materials for enzyme stabilization within screen-printed graphene sensor were analyzed. Main goal was to develop technology allowing immediate printing of the biosensors in single printing process. Factors being considered were: toxicity of the materials used, ability of the material to be screen-printed (squeezed through the printing mesh) and temperatures required in the fabrication process. Performance of the examined sensors was measured using chemical amperometry method, then appropriate analysis of the measurements was conducted. The analysis results were then compared with the medical requirements. Parameters calculated were: correlation coefficient between concentration of the analyte and the measured electrical current (0.986) and variation coefficient for the particular concentrations of the analyte used as the calibration points. Variation of the measured values was significant only in ranges close to 0, decreasing for the concentrations of clinical importance. These outcomes justify further development of the graphene-based biosensors fabricated through printing techniques.
Screenometer: a device for sampling vegetative screening in forested areas
Victor A. Rudis
1985-01-01
A-device for estimating the degree to which vegetation and other obstructions screen forested areas has been adapted to an extensive sampling design for forest surveys. Procedures are recommended to assure that uniform measurements can be made. Examination of sources of sampling variation (observers, points within sampled locations, series of observations within points...
USDA-ARS?s Scientific Manuscript database
Interindividual epigenetic variation that occurs systemically must be established prior to gastrulation in the very early embryo and, because it is systemic, can be assessed in easily biopsiable tissues. We employ two independent genome-wide approaches to search for such variants. First, we screen f...
USDA-ARS?s Scientific Manuscript database
The comprehensive identification of genes underlying phenotypic variation of complex traits such as disease resistance remains one of the greatest challenges in biology despite having genome sequences and more powerful tools. Most genome-wide screens lack sufficient resolving power as they typically...
de Almeida, Juliana Cardoso; Gomes, Luiz Antonio Costa; Owen, Robert D
2018-01-01
We evaluated morphometric variation of the mite Periglischrus torrealbai (Spinturnicidae) on three species of host bats: Phyllostomus discolor, P. hastatus, and Tonatia bidens (Phyllostomidae). A total of 67 females and 74 males of P. torrealbai were collected from 41 host individuals of these three bat species that were sampled in Brazil, Paraguay, and Peru. Twenty-one measurements from the dorsal side and 28 from the ventral side were recorded from female mites and 21 dorsal and 34 ventral measurements were taken from males. To evaluate morphological variation of P. torrealbai on different species of host bats, principal component analysis and unweighted pair-group method using arithmetic averages cluster analysis with Euclidean distances were used. Both analyses showed three groups of mites clearly separated: group 1 comprised all ectoparasites collected from T. bidens, group 2 included all mites from P. hastatus, and group 3 had all those from P. discolor. This result indicates that P. torrealbai varies morphologically by host bat species and suggests that this nominal species comprises three morphologically distinct species. In the present study, we record for the first time, the association between P. torrealbai and T. bidens. Our data reinforce the high relationship of specificity between Periglischrus mites and phyllostomid bat species.
The influence of synaptic size on AMPA receptor activation: a Monte Carlo model.
Montes, Jesus; Peña, Jose M; DeFelipe, Javier; Herreras, Oscar; Merchan-Perez, Angel
2015-01-01
Physiological and electron microscope studies have shown that synapses are functionally and morphologically heterogeneous and that variations in size of synaptic junctions are related to characteristics such as release probability and density of postsynaptic AMPA receptors. The present article focuses on how these morphological variations impact synaptic transmission. We based our study on Monte Carlo computational simulations of simplified model synapses whose morphological features have been extracted from hundreds of actual synaptic junctions reconstructed by three-dimensional electron microscopy. We have examined the effects that parameters such as synaptic size or density of AMPA receptors have on the number of receptors that open after release of a single synaptic vesicle. Our results indicate that the maximum number of receptors that will open after the release of a single synaptic vesicle may show a ten-fold variation in the whole population of synapses. When individual synapses are considered, there is also a stochastical variability that is maximal in small synapses with low numbers of receptors. The number of postsynaptic receptors and the size of the synaptic junction are the most influential parameters, while the packing density of receptors or the concentration of extrasynaptic transporters have little or no influence on the opening of AMPA receptors.
Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling
Pardo-Diaz, Carolina; Hanly, Joseph J.; Martin, Simon H.; Mallet, James; Dasmahapatra, Kanchon K.; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W. Owen; Jiggins, Chris D.
2016-01-01
An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation. PMID:26771987
The Influence of Synaptic Size on AMPA Receptor Activation: A Monte Carlo Model
Montes, Jesus; Peña, Jose M.; DeFelipe, Javier; Herreras, Oscar; Merchan-Perez, Angel
2015-01-01
Physiological and electron microscope studies have shown that synapses are functionally and morphologically heterogeneous and that variations in size of synaptic junctions are related to characteristics such as release probability and density of postsynaptic AMPA receptors. The present article focuses on how these morphological variations impact synaptic transmission. We based our study on Monte Carlo computational simulations of simplified model synapses whose morphological features have been extracted from hundreds of actual synaptic junctions reconstructed by three-dimensional electron microscopy. We have examined the effects that parameters such as synaptic size or density of AMPA receptors have on the number of receptors that open after release of a single synaptic vesicle. Our results indicate that the maximum number of receptors that will open after the release of a single synaptic vesicle may show a ten-fold variation in the whole population of synapses. When individual synapses are considered, there is also a stochastical variability that is maximal in small synapses with low numbers of receptors. The number of postsynaptic receptors and the size of the synaptic junction are the most influential parameters, while the packing density of receptors or the concentration of extrasynaptic transporters have little or no influence on the opening of AMPA receptors. PMID:26107874
Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling.
Wallbank, Richard W R; Baxter, Simon W; Pardo-Diaz, Carolina; Hanly, Joseph J; Martin, Simon H; Mallet, James; Dasmahapatra, Kanchon K; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W Owen; Jiggins, Chris D
2016-01-01
An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation.
Variable permanent mandibular first molar: Review of literature
Ballullaya, Srinidhi V; Vemuri, Sayesh; Kumar, Pabbati Ravi
2013-01-01
Introduction: The success of root canal therapy depends on the locations of all the canals, thourough debridement and proper sealing. At times the clinicians are challenged with variations in morphology of root canal. This review article attempts to list out all the variations of permanent mandibular first molar published so for in the literature. Materials and Methods: An exhaustive search was undertaken using PUBMED database to identify published literature from 1900 to 2010 relating to the root canal morphology of permanent first molar by using key words. The selected artcles were obtained and reviewed. Results: Total ninty seven articles were selected out of which 50 were original article and forty seven were case reports. The incidence of third canal in mesial root was 0.95% to 15%. The incidence of three rooted mandibular first molar was 3% to 33%. Only ninety cases reported with c-shape canal configuration. Incidence of Taurodintism without congenital disorder was very rare. Conclusion: The root canal treatment requires proper knowlegde of variations in root canal morphology in order to recognise, disinfect and seal all portal of exit. This can be accomplished with proper diagnosis using newer modes, modification in access preparation, use of operating microscope, enhanced methods of disinfecting and sealing of all canals. PMID:23716959
Wei, Guang-hui; Zhao, Bo; Wang, Zhen-jun
2008-09-01
To compare the sensibility and specificity between single-stranded conformation polymorphism (SSCP) and denaturing high-performance liquid chromatography (DHPLC) in screening hMSH2 and hMLH1 gene mutations for the diagnosis of hereditary non-polyposis colorectal cancer (HNPCC). Seven Chinese HNPCC kindreds were collected. PCR-SSCP and DHPLC were used to screen the coding regions of hMSH2 and hMLH1 genes and the abnormal profiles were sequenced by a 377 DNA sequencer. Seven gene sequence variations of hMSH2 or hMLH1 were found. Among them, 4 variations were not found by SSCP, but by DHPLC. The sensibility of SSCP and DHPLC were 51.6% and 100% respectively, and the specificity were 66.6% and 93.3% respectively. DHPLC has better sensibility and specificity in screening hMSH2 and hMLH1 gene mutation as compared to SSCP. DHPLC is an ideal method in the diagnosis of HNPCC.
The Return of Lombroso? Ethical Aspects of (Visions of) Preventive Forensic Screening.
Munthe, Christian; Radovic, Susanna
2015-11-01
The vision of legendary criminologist Cesare Lombroso to use scientific theories of individual causes of crime as a basis for screening and prevention programmes targeting individuals at risk for future criminal behaviour has resurfaced, following advances in genetics, neuroscience and psychiatric epidemiology. This article analyses this idea and maps its ethical implications from a public health ethical standpoint. Twenty-seven variants of the new Lombrosian vision of forensic screening and prevention are distinguished, and some scientific and technical limitations are noted. Some lures, biases and structural factors, making the application of the Lombrosian idea likely in spite of weak evidence are pointed out and noted as a specific type of ethical aspect. Many classic and complex ethical challenges for health screening programmes are shown to apply to the identified variants and the choice between them, albeit with peculiar and often provoking variations. These variations are shown to actualize an underlying theoretical conundrum in need of further study, pertaining to the relationship between public health ethics and the ethics and values of criminal law policy.
The Return of Lombroso? Ethical Aspects of (Visions of) Preventive Forensic Screening
Munthe, Christian; Radovic, Susanna
2015-01-01
The vision of legendary criminologist Cesare Lombroso to use scientific theories of individual causes of crime as a basis for screening and prevention programmes targeting individuals at risk for future criminal behaviour has resurfaced, following advances in genetics, neuroscience and psychiatric epidemiology. This article analyses this idea and maps its ethical implications from a public health ethical standpoint. Twenty-seven variants of the new Lombrosian vision of forensic screening and prevention are distinguished, and some scientific and technical limitations are noted. Some lures, biases and structural factors, making the application of the Lombrosian idea likely in spite of weak evidence are pointed out and noted as a specific type of ethical aspect. Many classic and complex ethical challenges for health screening programmes are shown to apply to the identified variants and the choice between them, albeit with peculiar and often provoking variations. These variations are shown to actualize an underlying theoretical conundrum in need of further study, pertaining to the relationship between public health ethics and the ethics and values of criminal law policy. PMID:26566397
Image processing and machine learning in the morphological analysis of blood cells.
Rodellar, J; Alférez, S; Acevedo, A; Molina, A; Merino, A
2018-05-01
This review focuses on how image processing and machine learning can be useful for the morphological characterization and automatic recognition of cell images captured from peripheral blood smears. The basics of the 3 core elements (segmentation, quantitative features, and classification) are outlined, and recent literature is discussed. Although red blood cells are a significant part of this context, this study focuses on malignant lymphoid cells and blast cells. There is no doubt that these technologies may help the cytologist to perform efficient, objective, and fast morphological analysis of blood cells. They may also help in the interpretation of some morphological features and may serve as learning and survey tools. Although research is still needed, it is important to define screening strategies to exploit the potential of image-based automatic recognition systems integrated in the daily routine of laboratories along with other analysis methodologies. © 2018 John Wiley & Sons Ltd.
Identifying Preserved Storm Events on Beaches from Trenches and Cores
NASA Astrophysics Data System (ADS)
Wadman, H. M.; Gallagher, E. L.; McNinch, J.; Reniers, A.; Koktas, M.
2014-12-01
Recent research suggests that even small scale variations in grain size in the shallow stratigraphy of sandy beaches can significantly influence large-scale morphology change. However, few quantitative studies of variations in shallow stratigraphic layers, as differentiated by variations in mean grain size, have been conducted, in no small part due to the difficulty of collecting undisturbed sediment cores in the energetic lower beach and swash zone. Due to this lack of quantitative stratigraphic grain size data, most coastal morphology models assume that uniform grain sizes dominate sandy beaches, allowing for little to no temporal or spatial variations in grain size heterogeneity. In a first-order attempt to quantify small-scale, temporal and spatial variations in beach stratigraphy, thirty-five vibracores were collected at the USACE Field Research Facility (FRF), Duck, NC, in March-April of 2014 using the FRF's Coastal Research and Amphibious Buggy (CRAB). Vibracores were collected at set locations along a cross-shore profile from the toe of the dune to a water depth of ~1m in the surf zone. Vibracores were repeatedly collected from the same locations throughout a tidal cycle, as well as pre- and post a nor'easter event. In addition, two ~1.5m deep trenches were dug in the cross-shore and along-shore directions (each ~14m in length) after coring was completed to allow better interpretation of the stratigraphic sequences observed in the vibracores. The elevations of coherent stratigraphic layers, as revealed in vibracore-based fence diagrams and trench data, are used to relate specific observed stratigraphic sequences to individual storm events observed at the FRF. These data provide a first-order, quantitative examination of the small-scale temporal and spatial variability of shallow grain size along an open, sandy coastline. The data will be used to refine morphological model predictions to include variations in grain size and associated shallow stratigraphy.
Takahashi, Daiki; Teramine, Tsutomu; Sakaguchi, Shota; Setoguchi, Hiroaki
2018-01-25
Clines, the gradual variation in measurable traits along a geographical axis, play a major role in evolution and can contribute to our understanding of the relative roles of selective and neutral process in trait variation. Using genetic and morphological analyses, the relative contributions of neutral and non-neutral processes were explored to infer the evolutionary history of species of the series Sakawanum (genus Asarum), which shows significant clinal variation in calyx lobe length. A total of 27 populations covering the natural geographical distribution of the series Sakawanum were sampled. Six nuclear microsatellite markers were used to investigate genetic structure and genetic diversity. The lengths of calyx lobes of multiple populations were measured to quantify their geographical and taxonomic differentiation. To detect the potential impact of selective pressure, morphological differentiation was compared with genetic differentiation (QCT-FST comparison). Average calyx lobe length of A. minamitanianum was 124.11 mm, while that of A. costatum was 13.80 mm. Though gradually changing along the geographical axis within series, calyx lobe lengths were significantly differentiated among the taxa. Genetic differentiation between taxa was low (FST = 0.099), but a significant geographical structure along the morphological cline was detected. Except for one taxon pair, pairwise QCT values were significantly higher than the neutral genetic measures of FST and G'ST. Divergent selection may have driven the calyx lobe length variation in series Sakawanum taxa, although the underlying mechanism is still not clear. The low genetic differentiation indicates recent divergence and/or gene flows between geographically close taxa. These neutral processes would also affect the clinal variation in calyx lobe lengths. Overall, this study implies the roles of population history and divergent selection in shaping the current cline of a flower trait in the series Sakawanum. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
López-Fernández, Hernán; Winemiller, Kirk O.; Montaña, Carmen; Honeycutt, Rodney L.
2012-01-01
Genera within the South American cichlid tribe Geophagini display specialized feeding and reproductive strategies, with some taxa specialized for both substrate-sifting and mouth brooding. Several lineages within the clade also possess an epibranchial lobe (EBL), a unique pharyngeal structure that has been proposed to have a function in feeding and/or mouth brooding. A recently published genus-level phylogeny of Neotropical cichlids was used as the evolutionary framework for investigating the evolution of morphological features presumably correlated with diet and mouth brooding in the tribe Geophagini. We tested for possible associations between the geophagine epibranchial lobe and benthic feeding and mouth brooding. We also addressed whether the EBL may be associated with unique patterns of diversification in certain geophagine clades. Tests of binary character correlations revealed the EBL was significantly associated with mouth brooding. We also tested for a relationship between diet and morphology. We analyzed stomach contents and morphometric variation among 21 species, with data for two additional species obtained from the literature. Principal Components Analysis revealed axes of morphological variation significantly correlated with piscivory and benthivory, and both morphology and diet were significantly associated with phylogeny. These results suggest that the EBL could be an adaptation for either feeding or mouth brooding. The EBL, however, was not associated with species richness or accelerated rates of phyletic diversification. PMID:22485154
Intrinsic physiological properties of rat retinal ganglion cells with a comparative analysis.
Wong, Raymond C S; Cloherty, Shaun L; Ibbotson, Michael R; O'Brien, Brendan J
2012-10-01
Mammalian retina contains 15-20 different retinal ganglion cell (RGC) types, each of which is responsible for encoding different aspects of the visual scene. The encoding is defined by a combination of RGC synaptic inputs, the neurotransmitter systems used, and their intrinsic physiological properties. Each cell's intrinsic properties are defined by its morphology and membrane characteristics, including the complement and localization of the ion channels expressed. In this study, we examined the hypothesis that the intrinsic properties of individual RGC types are conserved among mammalian species. To do so, we measured the intrinsic properties of 16 morphologically defined rat RGC types and compared these data with cat RGC types. Our data demonstrate that in the rat different morphologically defined RGC types have distinct patterns of intrinsic properties. Variation in these properties across cell types was comparable to that found for cat RGC types. When presumed morphological homologs in rat and cat retina were compared directly, some RGC types had very similar properties. The rat A2 cell exhibited patterns of intrinsic properties nearly identical to the cat alpha cell. In contrast, rat D2 cells (ON-OFF directionally selective) had a very different pattern of intrinsic properties than the cat iota cell. Our data suggest that the intrinsic properties of RGCs with similar morphology and suspected visual function may be subject to variation due to the behavioral needs of the species.
The rat whole embryo culture assay using the Dysmorphology Score system.
Zhang, Cindy; Panzica-Kelly, Julie; Augustine-Rauch, Karen
2013-01-01
The rat whole embryo culture (WEC) system has been used extensively for characterizing teratogenic properties of test chemicals. In this chapter, we describe the methodology for culturing rat embryos as well as a new morphological score system, the Dysmorphology Score (DMS) system for assessing morphology of mid gestation (gestational day 11) rat embryos. In contrast to the developmental stage focused scoring associated with the Brown and Fabro score system, this new score system assesses the respective degree of severity of dysmorphology, which delineates normal from abnormal morphology of specific embryonic structures and organ systems. This score system generates an approach that allows rapid identification and quantification of adverse developmental findings, making it conducive for characterization of compounds for teratogenic properties and screening activities.
NASA Technical Reports Server (NTRS)
Waluschka, Eugene; Xiong, Xiao-Xiong; Guenther, Bruce; Barnes, William; VanSalomonson, Vincent V.
2004-01-01
The MODIS instrument relies on solar calibration to achieve the required radiometric accuracy. This solar calibration occurs as the TERRA spacecraft comes up over the North Pole. The earth underneath the spacecraft is still dark for approximately one minute and the sun is just rising over the earth's north polar regions. During this time the sun moves through about 4 degrees, the scan mirror rotates about 19 times and about 50 frames (exposures) are made of the white solar diffuser. For some of MODIS'S bands the brightness of the screen is reduced, to prevent detector saturation, by means of a pinhole screen, which produces approximately 600 pinhole images of the sun within the field of view of any one detector. Previous attempts at creating a detailed radiometric model of this calibration scenario produced intensity variations on the focal planes with insufficient detail to be useful. The current computational approach produces results, which take into account the motion of the sun and the scan mirror and produces variations, which strongly resemble the observed focal plane intensity variations. The computational approach and results and a comparison with actual observational data are presented.
Effects of physical and chemical heterogeneity on water-quality samples obtained from wells
Reilly, Thomas E.; Gibs, Jacob
1993-01-01
Factors that affect the mass of chemical constituents entering a well include the distributions of flow rate and chemical concentrations along and near the screened or open section of the well. Assuming a layered porous medium (with each layer being characterized by a uniform hydraulic conductivity and chemical concentration), a knowledge of the flow from each layer along the screened zone and of the chemical concentrations in each layer enables the total mass entering the well to be determined. Analyses of hypothetical systems and a site at Galloway, NJ, provide insight into the temporal variation of water-quality data observed when withdrawing water from screened wells in heterogeneous ground-water systems.The analyses of hypothetical systems quantitatively indicate the cause-and-effect relations that cause temporal variability in water samples obtained from wells. Chemical constituents that have relatively uniform concentrations with depth may not show variations in concentrations in the water discharged from a well after the well is purged (evacuation of standing water in the well casing). However, chemical constituents that do not have uniform concentrations near the screened interval of the well may show variations in concentrations in the well discharge water after purging because of the physics of ground-water flow in the vicinity of the screen.Water-quality samples were obtained through time over a 30 minute period from a site at Galloway, NJ. The water samples were analyzed for aromatic hydrocarbons, and the data for benzene, toluene, and meta+para xylene were evaluated for temporal variations. Samples were taken from seven discrete zones, and the flow-weighted concentrations of benzene, toluene, and meta+para xylene all indicate an increase in concentration over time during pumping. These observed trends in time were reproduced numerically based on the estimated concentration distribution in the aquifer and the flow rates from each zone.The results of the hypothetical numerical experiments and the analysis of the field data both corroborate the impact of physical and chemical heterogeneity in the aquifer on water-quality samples obtained from wells. If temporal variations in concentrations of chemical constituents are observed, they may indicate variability in the ground-water system being sampled, which may give insight into the chemical distributions within the aquifer and provide guidance in the positioning of new sampling devices or wells.
Increased frequencies of aberrant sperm as indicators of mutagenic damage in mice.
Soares, E R; Sheridan, W; Haseman, J K; Segall, M
1979-02-01
We have tested the effects of TEM in 3 strains of mice using the sperm morphology assay. In addition, we have made an attempt to evaluate this test system with respect to experimental design, statistical problems and possible interlaboratory differences. Treatment with TEM results in significant increases in the percent of abnormally shaped sperm. These increases are readily detectable in sperm treated as spermatocytes and spermatogonial stages. Our data indicate possible problems associated with inter-laboratory variation in slide analysis. We have found that despite the introduction of such sources of variation, our data were consistent with respect to the effects of TEM. Another area of concern in the sperm morphology test is the presence of "outlier" animals. In our study, such animals comprised 4% of the total number of animals considered. Statistical analysis of the slides from these animals have shown that this problem can be dealt with and that when recognized as such, "outliers" do not effect the outcome of the sperm morphology assay.
Repeatability of nest morphology in African weaver birds.
Walsh, Patrick T; Hansell, Mike; Borello, Wendy D; Healy, Susan D
2010-04-23
It is generally assumed that birds build nests according to a genetic 'template', little influenced by learning or memory. One way to confirm the role of genetics in nest building is to assess the repeatability of nest morphology with repeated nest attempts. Solitary weaver birds, which build multiple nests in a single breeding season, are a useful group with which to do this. Here we show that repeatability of nest morphology was low, but significant, in male Southern Masked weaver birds and not significant in the Village weavers. The larger bodied Village weavers built larger nests than did Southern Masked weavers, but body size did not explain variation in Southern Masked weaver nest dimensions. Nests built by the same male in both species got shorter and lighter as more nests were constructed. While these data demonstrate the potential for a genetic component of variation in nest building in solitary weavers, it is also clear that there remains plenty of scope in both of these species for experience to shape nest construction.
Zhang, Qin-di; Jia, Rui-Zhi; Meng, Chao; Ti, Chao-Wen; Wang, Yi-Ling
2015-01-01
Knowledge of the genetic diversity and structure of tree species across their geographic ranges is essential for sustainable use and management of forest ecosystems. Acer grosseri Pax., an economically and ecologically important maple species, is mainly distributed in North China. In this study, the genetic diversity and population differentiation of 24 natural populations of this species were evaluated using sequence-related amplified polymorphism markers and morphological characters. The results show that highly significant differences occurred in 32 morphological traits. The coefficient of variation of 34 characters was 18.19 %. Principal component analysis indicated that 18 of 34 traits explained 60.20 % of the total variance. The phenotypic differentiation coefficient (VST) was 36.06 % for all morphological traits. The Shannon–Wiener index of 34 morphological characters was 6.09, while at the population level, it was 1.77. The percentage of polymorphic bands of all studied A. grosseri populations was 82.14 %. Nei's gene diversity (He) and Shannon's information index (I) were 0.35 and 0.50, respectively. Less genetic differentiation was detected among the natural populations (GST = 0.20, ΦST = 0.10). Twenty-four populations of A. grosseri formed two main clusters, which is consistent with morphological cluster analysis. Principal coordinates analysis and STRUCTURE analysis supported the UPGMA-cluster dendrogram. There was no significant correlation between genetic and geographical distances among populations. Both molecular and morphological data suggested that A. grosseri is rich in genetic diversity. The high level of genetic variation within populations could be affected by the biological characters, mating system and lifespan of A. grosseri, whereas the lower genetic diversity among populations could be caused by effective gene exchange, selective pressure from environmental heterogeneity and the species' geographical range. PMID:26311734
Morphological transformations of diblock copolymers in binary solvents: A simulation study
NASA Astrophysics Data System (ADS)
Wang, Zheng; Yin, Yuhua; Jiang, Run; Li, Baohui
2017-12-01
Morphological transformations of amphiphilic AB diblock copolymers in mixtures of a common solvent (S1) and a selective solvent (S2) for the B block are studied using the simulated annealing method. We focus on the morphological transformation depending on the fraction of the selective solvent C S2, the concentration of the polymer C p , and the polymer-solvent interactions ɛ ij ( i = A, B; j = S1, S2). Morphology diagrams are constructed as functions of C p , C S2, and/or ɛ AS2. The copolymer morphological sequence from dissolved → sphere → rod → ring/cage → vesicle is obtained upon increasing C S2 at a fixed C p . This morphology sequence is consistent with previous experimental observations. It is found that the selectivity of the selective solvent affects the self-assembled microstructure significantly. In particular, when the interaction ɛ BS2 is negative, aggregates of stacked lamellae dominate the diagram. The mechanisms of aggregate transformation and the formation of stacked lamellar aggregates are discussed by analyzing variations of the average contact numbers of the A or B monomers with monomers and with molecules of the two types of solvent, as well as the mean square end-to-end distances of chains. It is found that the basic morphological sequence of spheres to rods to vesicles and the stacked lamellar aggregates result from competition between the interfacial energy and the chain conformational entropy. Analysis of the vesicle structure reveals that the vesicle size increases with increasing C p or with decreasing C S2, but remains almost unchanged with variations in ɛ AS2.