Sample records for screening non-coding rnas

  1. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR library

    PubMed Central

    Zhu, Shiyou; Li, Wei; Liu, Jingze; Chen, Chen-Hao; Liao, Qi; Xu, Ping; Xu, Han; Xiao, Tengfei; Cao, Zhongzheng; Peng, Jingyu; Yuan, Pengfei; Brown, Myles; Liu, Xiaole Shirley; Wei, Wensheng

    2017-01-01

    CRISPR/Cas9 screens have been widely adopted to analyse coding gene functions, but high throughput screening of non-coding elements using this method is more challenging, because indels caused by a single cut in non-coding regions are unlikely to produce a functional knockout. A high-throughput method to produce deletions of non-coding DNA is needed. Herein, we report a high throughput genomic deletion strategy to screen for functional long non-coding RNAs (lncRNAs) that is based on a lentiviral paired-guide RNA (pgRNA) library. Applying our screening method, we identified 51 lncRNAs that can positively or negatively regulate human cancer cell growth. We individually validated 9 lncRNAs using CRISPR/Cas9-mediated genomic deletion and functional rescue, CRISPR activation or inhibition, and gene expression profiling. Our high-throughput pgRNA genome deletion method should enable rapid identification of functional mammalian non-coding elements. PMID:27798563

  2. Dysregulation of non-coding RNAs in gastric cancer

    PubMed Central

    Yang, Qing; Zhang, Ren-Wen; Sui, Peng-Cheng; He, Hai-Tao; Ding, Lei

    2015-01-01

    Gastric cancer (GC) is one of the most common cancers in the world and a significant threat to the health of patients, especially those from China and Japan. The prognosis for patients with late stage GC receiving the standard of care treatment, including surgery, chemotherapy and radiotherapy, remains poor. Developing novel treatment strategies, identifying new molecules for targeted therapy, and devising screening techniques to detect this cancer in its early stages are needed for GC patients. The discovery of non-coding RNAs (ncRNAs), primarily microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), helped to elucidate the mechanisms of tumorigenesis, diagnosis and treatment of GC. Recently, significant research has been conducted on non-coding RNAs and how the regulatory dysfunction of these RNAs impacts the tumorigenesis of GC. In this study, we review papers published in the last five years concerning the dysregulation of non-coding RNAs, especially miRNAs and lncRNAs, in GC. We summarize instances of aberrant expression of the ncRNAs in GC and their effect on survival-related events, including cell cycle regulation, AKT signaling, apoptosis and drug resistance. Additionally, we evaluate how ncRNA dysregulation affects the metastatic process, including the epithelial-mesenchymal transition, stem cells, transcription factor activity, and oncogene and tumor suppressor expression. Lastly, we determine how ncRNAs affect angiogenesis in the microenvironment of GC. We further discuss the use of ncRNAs as potential biomarkers for use in clinical screening, early diagnosis and prognosis of GC. At present, no ideal ncRNAs have been identified as targets for the treatment of GC. PMID:26494954

  3. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions

    PubMed Central

    Kumari, Pooja; Sampath, Karuna

    2015-01-01

    For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as ‘cncRNAs’, have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions. PMID:26498036

  4. Behind the curtain of non-coding RNAs; long non-coding RNAs regulating hepatocarcinogenesis

    PubMed Central

    El Khodiry, Aya; Afify, Menna; El Tayebi, Hend M

    2018-01-01

    Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers worldwide. HCC is the fifth common malignancy in the world and the second leading cause of cancer death in Asia. Long non-coding RNAs (lncRNAs) are RNAs with a length greater than 200 nucleotides that do not encode proteins. lncRNAs can regulate gene expression and protein synthesis in several ways by interacting with DNA, RNA and proteins in a sequence specific manner. They could regulate cellular and developmental processes through either gene inhibition or gene activation. Many studies have shown that dysregulation of lncRNAs is related to many human diseases such as cardiovascular diseases, genetic disorders, neurological diseases, immune mediated disorders and cancers. However, the study of lncRNAs is challenging as they are poorly conserved between species, their expression levels aren’t as high as that of mRNAs and have great interpatient variations. The study of lncRNAs expression in cancers have been a breakthrough as it unveils potential biomarkers and drug targets for cancer therapy and helps understand the mechanism of pathogenesis. This review discusses many long non-coding RNAs and their contribution in HCC, their role in development, metastasis, and prognosis of HCC and how to regulate and target these lncRNAs as a therapeutic tool in HCC treatment in the future. PMID:29434445

  5. Long non-coding RNAs in cancer metabolism.

    PubMed

    Xiao, Zhen-Dong; Zhuang, Li; Gan, Boyi

    2016-10-01

    Altered cellular metabolism is an emerging hallmark of cancer. Accumulating recent evidence links long non-coding RNAs (lncRNAs), a still poorly understood class of non-coding RNAs, to cancer metabolism. Here we review the emerging findings on the functions of lncRNAs in cancer metabolism, with particular emphasis on how lncRNAs regulate glucose and glutamine metabolism in cancer cells, discuss how lncRNAs regulate various aspects of cancer metabolism through their cross-talk with other macromolecules, explore the mechanistic conceptual framework of lncRNAs in reprogramming metabolism in cancers, and highlight the challenges in this field. A more in-depth understanding of lncRNAs in cancer metabolism may enable the development of novel and effective therapeutic strategies targeting cancer metabolism. © 2016 WILEY Periodicals, Inc.

  6. Pan-cancer transcriptomic analysis associates long non-coding RNAs with key mutational driver events

    PubMed Central

    Ashouri, Arghavan; Sayin, Volkan I.; Van den Eynden, Jimmy; Singh, Simranjit X.; Papagiannakopoulos, Thales; Larsson, Erik

    2016-01-01

    Thousands of long non-coding RNAs (lncRNAs) lie interspersed with coding genes across the genome, and a small subset has been implicated as downstream effectors in oncogenic pathways. Here we make use of transcriptome and exome sequencing data from thousands of tumours across 19 cancer types, to identify lncRNAs that are induced or repressed in relation to somatic mutations in key oncogenic driver genes. Our screen confirms known coding and non-coding effectors and also associates many new lncRNAs to relevant pathways. The associations are often highly reproducible across cancer types, and while many lncRNAs are co-expressed with their protein-coding hosts or neighbours, some are intergenic and independent. We highlight lncRNAs with possible functions downstream of the tumour suppressor TP53 and the master antioxidant transcription factor NFE2L2. Our study provides a comprehensive overview of lncRNA transcriptional alterations in relation to key driver mutational events in human cancers. PMID:28959951

  7. Long Non-Coding RNAs Regulating Immunity in Insects

    PubMed Central

    Satyavathi, Valluri; Ghosh, Rupam; Subramanian, Srividya

    2017-01-01

    Recent advances in modern technology have led to the understanding that not all genetic information is coded into protein and that the genomes of each and every organism including insects produce non-coding RNAs that can control different biological processes. Among RNAs identified in the last decade, long non-coding RNAs (lncRNAs) represent a repertoire of a hidden layer of internal signals that can regulate gene expression in physiological, pathological, and immunological processes. Evidence shows the importance of lncRNAs in the regulation of host–pathogen interactions. In this review, an attempt has been made to view the role of lncRNAs regulating immune responses in insects. PMID:29657286

  8. Role of non-coding RNAs in non-aging-related neurological disorders.

    PubMed

    Vieira, A S; Dogini, D B; Lopes-Cendes, I

    2018-06-11

    Protein coding sequences represent only 2% of the human genome. Recent advances have demonstrated that a significant portion of the genome is actively transcribed as non-coding RNA molecules. These non-coding RNAs are emerging as key players in the regulation of biological processes, and act as "fine-tuners" of gene expression. Neurological disorders are caused by a wide range of genetic mutations, epigenetic and environmental factors, and the exact pathophysiology of many of these conditions is still unknown. It is currently recognized that dysregulations in the expression of non-coding RNAs are present in many neurological disorders and may be relevant in the mechanisms leading to disease. In addition, circulating non-coding RNAs are emerging as potential biomarkers with great potential impact in clinical practice. In this review, we discuss mainly the role of microRNAs and long non-coding RNAs in several neurological disorders, such as epilepsy, Huntington disease, fragile X-associated ataxia, spinocerebellar ataxias, amyotrophic lateral sclerosis (ALS), and pain. In addition, we give information about the conditions where microRNAs have demonstrated to be potential biomarkers such as in epilepsy, pain, and ALS.

  9. [Relevance of long non-coding RNAs in tumour biology].

    PubMed

    Nagy, Zoltán; Szabó, Diána Rita; Zsippai, Adrienn; Falus, András; Rácz, Károly; Igaz, Péter

    2012-09-23

    The discovery of the biological relevance of non-coding RNA molecules represents one of the most significant advances in contemporary molecular biology. It has turned out that a major fraction of the non-coding part of the genome is transcribed. Beside small RNAs (including microRNAs) more and more data are disclosed concerning long non-coding RNAs of 200 nucleotides to 100 kb length that are implicated in the regulation of several basic molecular processes (cell proliferation, chromatin functioning, microRNA-mediated effects, etc.). Some of these long non-coding RNAs have been associated with human tumours, including H19, HOTAIR, MALAT1, etc., the different expression of which has been noted in various neoplasms relative to healthy tissues. Long non-coding RNAs may represent novel markers of molecular diagnostics and they might even turn out to be targets of therapeutic intervention.

  10. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: An update and review

    PubMed Central

    Huang, Ya-Kai; Yu, Jian-Chun

    2015-01-01

    Gastric cancer (GC) is the fourth most common cancer and the third leading cause of cancer mortality worldwide. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most popular non-coding RNAs in cancer research. To date, the roles of miRNAs and lncRNAs have been extensively studied in GC, suggesting that miRNAs and lncRNAs represent a vital component of tumor biology. Furthermore, circulating miRNAs and lncRNAs are found to be dysregulated in patients with GC compared with healthy individuals. Circulating miRNAs and lncRNAs may function as promising biomarkers to improve the early detection of GC. Multiple possibilities for miRNA secretion have been elucidated, including active secretion by microvesicles, exosomes, apoptotic bodies, high-density lipoproteins and protein complexes as well as passive leakage from cells. However, the mechanism underlying lncRNA secretion and the functions of circulating miRNAs and lncRNAs have not been fully illuminated. Concurrently, to standardize results of global investigations of circulating miRNAs and lncRNAs biomarker studies, several recommendations for pre-analytic considerations are put forward. In this review, we summarize the known circulating miRNAs and lncRNAs for GC diagnosis. The possible mechanism of miRNA and lncRNA secretion as well as methodologies for identification of circulating miRNAs and lncRNAs are also discussed. The topics covered here highlight new insights into GC diagnosis and screening. PMID:26379393

  11. [Long non-coding RNAs in the pathophysiology of atherosclerosis].

    PubMed

    Novak, Jan; Vašků, Julie Bienertová; Souček, Miroslav

    2018-01-01

    The human genome contains about 22 000 protein-coding genes that are transcribed to an even larger amount of messenger RNAs (mRNA). Interestingly, the results of the project ENCODE from 2012 show, that despite up to 90 % of our genome being actively transcribed, protein-coding mRNAs make up only 2-3 % of the total amount of the transcribed RNA. The rest of RNA transcripts is not translated to proteins and that is why they are referred to as "non-coding RNAs". Earlier the non-coding RNA was considered "the dark matter of genome", or "the junk", whose genes has accumulated in our DNA during the course of evolution. Today we already know that non-coding RNAs fulfil a variety of regulatory functions in our body - they intervene into epigenetic processes from chromatin remodelling to histone methylation, or into the transcription process itself, or even post-transcription processes. Long non-coding RNAs (lncRNA) are one of the classes of non-coding RNAs that have more than 200 nucleotides in length (non-coding RNAs with less than 200 nucleotides in length are called small non-coding RNAs). lncRNAs represent a widely varied and large group of molecules with diverse regulatory functions. We can identify them in all thinkable cell types or tissues, or even in an extracellular space, which includes blood, specifically plasma. Their levels change during the course of organogenesis, they are specific to different tissues and their changes also occur along with the development of different illnesses, including atherosclerosis. This review article aims to present lncRNAs problematics in general and then focuses on some of their specific representatives in relation to the process of atherosclerosis (i.e. we describe lncRNA involvement in the biology of endothelial cells, vascular smooth muscle cells or immune cells), and we further describe possible clinical potential of lncRNA, whether in diagnostics or therapy of atherosclerosis and its clinical manifestations.Key words

  12. DNA rearrangements directed by non-coding RNAs in ciliates

    PubMed Central

    Mochizuki, Kazufumi

    2013-01-01

    Extensive programmed rearrangement of DNA, including DNA elimination, chromosome fragmentation, and DNA descrambling, takes place in the newly developed macronucleus during the sexual reproduction of ciliated protozoa. Recent studies have revealed that two distant classes of ciliates use distinct types of non-coding RNAs to regulate such DNA rearrangement events. DNA elimination in Tetrahymena is regulated by small non-coding RNAs that are produced and utilized in an RNAi-related process. It has been proposed that the small RNAs produced from the micronuclear genome are used to identify eliminated DNA sequences by whole-genome comparison between the parental macronucleus and the micronucleus. In contrast, DNA descrambling in Oxytricha is guided by long non-coding RNAs that are produced from the parental macronuclear genome. These long RNAs are proposed to act as templates for the direct descrambling events that occur in the developing macronucleus. Both cases provide useful examples to study epigenetic chromatin regulation by non-coding RNAs. PMID:21956937

  13. Facts and updates about cardiovascular non-coding RNAs in heart failure.

    PubMed

    Thum, Thomas

    2015-09-01

    About 11% of all deaths include heart failure as a contributing cause. The annual cost of heart failure amounts to US $34,000,000,000 in the United States alone. With the exception of heart transplantation, there is no curative therapy available. Only occasionally there are new areas in science that develop into completely new research fields. The topic on non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, is such a field. In this short review, we will discuss the latest developments about non-coding RNAs in cardiovascular disease. MicroRNAs are short regulatory non-coding endogenous RNA species that are involved in virtually all cellular processes. Long non-coding RNAs also regulate gene and protein levels; however, by much more complicated and diverse mechanisms. In general, non-coding RNAs have been shown to be of great value as therapeutic targets in adverse cardiac remodelling and also as diagnostic and prognostic biomarkers for heart failure. In the future, non-coding RNA-based therapeutics are likely to enter the clinical reality offering a new treatment approach of heart failure.

  14. Integrating non-coding RNAs in JAK-STAT regulatory networks

    PubMed Central

    Witte, Steven; Muljo, Stefan A

    2014-01-01

    Being a well-characterized pathway, JAK-STAT signaling serves as a valuable paradigm for studying the architecture of gene regulatory networks. The discovery of untranslated or non-coding RNAs, namely microRNAs and long non-coding RNAs, provides an opportunity to elucidate their roles in such networks. In principle, these regulatory RNAs can act as downstream effectors of the JAK-STAT pathway and/or affect signaling by regulating the expression of JAK-STAT components. Examples of interactions between signaling pathways and non-coding RNAs have already emerged in basic cell biology and human diseases such as cancer, and can potentially guide the identification of novel biomarkers or drug targets for medicine. PMID:24778925

  15. MicroRNAs and other non-coding RNAs as targets for anticancer drug development

    PubMed Central

    Ling, Hui; Fabbri, Muller; Calin, George A.

    2015-01-01

    With the first cancer-targeted microRNA drug, MRX34, a liposome-based miR-34 mimic, entering phase I clinical trial in patients with advanced hepatocellular carcinoma in April 2013, miRNA therapeutics are attracting special attention from both academia and biotechnology companies. Although to date the most studied non-coding RNAs (ncRNAs) are miRNAs, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognized. Here we summarize the roles of miRNAs and lncRNAs in cancer, with a focus on the recently identified novel mechanisms of action, and discuss the current strategies in designing ncRNA-targeting therapeutics, as well as the associated challenges. PMID:24172333

  16. Decoding the function of nuclear long non-coding RNAs.

    PubMed

    Chen, Ling-Ling; Carmichael, Gordon G

    2010-06-01

    Long non-coding RNAs (lncRNAs) are mRNA-like, non-protein-coding RNAs that are pervasively transcribed throughout eukaryotic genomes. Rather than silently accumulating in the nucleus, many of these are now known or suspected to play important roles in nuclear architecture or in the regulation of gene expression. In this review, we highlight some recent progress in how lncRNAs regulate these important nuclear processes at the molecular level. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Perspectives of Long Non-Coding RNAs in Cancer Diagnostics

    PubMed Central

    Reis, Eduardo M.; Verjovski-Almeida, Sergio

    2012-01-01

    Long non-coding RNAs (lncRNAs) transcribed from intergenic and intronic regions of the human genome constitute a broad class of cellular transcripts that are under intensive investigation. While only a handful of lncRNAs have been characterized, their involvement in fundamental cellular processes that control gene expression highlights a central role in cell homeostasis. Not surprisingly, aberrant expression of regulatory lncRNAs has been increasingly documented in different types of cancer, where they can mediate both oncogenic or tumor suppressor effects. Interaction with chromatin remodeling complexes that promote silencing of specific genes or modulation of splicing factor proteins seem to be two general modes of lncRNA regulation, but it is conceivable that additional mechanisms of action are yet to be unveiled. LncRNAs show greater tissue specificity compared to protein-coding mRNAs making them attractive in the search of novel diagnostics/prognostics cancer biomarkers in body fluid samples. In fact, lncRNA prostate cancer antigen 3 can be detected in urine samples and has been shown to improve diagnosis of prostate cancer. We suggest that an unbiased screening of the presence of RNAs in easily accessible body fluids such as serum and urine might reveal novel circulating lncRNAs as potential biomarkers in many types of cancer. Annotation and functional characterization of the lncRNA complement of the cancer transcriptome will conceivably provide new venues for early diagnosis and treatment of the disease. PMID:22408643

  18. Non-coding RNAs in lung cancer

    PubMed Central

    Ricciuti, Biagio; Mecca, Carmen; Crinò, Lucio; Baglivo, Sara; Cenci, Matteo; Metro, Giulio

    2014-01-01

    The discovery that protein-coding genes represent less than 2% of all human genome, and the evidence that more than 90% of it is actively transcribed, changed the classical point of view of the central dogma of molecular biology, which was always based on the assumption that RNA functions mainly as an intermediate bridge between DNA sequences and protein synthesis machinery. Accumulating data indicates that non-coding RNAs are involved in different physiological processes, providing for the maintenance of cellular homeostasis. They are important regulators of gene expression, cellular differentiation, proliferation, migration, apoptosis, and stem cell maintenance. Alterations and disruptions of their expression or activity have increasingly been associated with pathological changes of cancer cells, this evidence and the prospect of using these molecules as diagnostic markers and therapeutic targets, make currently non-coding RNAs among the most relevant molecules in cancer research. In this paper we will provide an overview of non-coding RNA function and disruption in lung cancer biology, also focusing on their potential as diagnostic, prognostic and predictive biomarkers. PMID:25593996

  19. Regulation of mammalian cell differentiation by long non-coding RNAs

    PubMed Central

    Hu, Wenqian; Alvarez-Dominguez, Juan R; Lodish, Harvey F

    2012-01-01

    Differentiation of specialized cell types from stem and progenitor cells is tightly regulated at several levels, both during development and during somatic tissue homeostasis. Many long non-coding RNAs have been recognized as an additional layer of regulation in the specification of cellular identities; these non-coding species can modulate gene-expression programmes in various biological contexts through diverse mechanisms at the transcriptional, translational or messenger RNA stability levels. Here, we summarize findings that implicate long non-coding RNAs in the control of mammalian cell differentiation. We focus on several representative differentiation systems and discuss how specific long non-coding RNAs contribute to the regulation of mammalian development. PMID:23070366

  20. [Long non-coding RNAs in plants].

    PubMed

    Xiaoqing, Huang; Dandan, Li; Juan, Wu

    2015-04-01

    Long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides in length, widely exist in organisms and function in a variety of biological processes. Currently, most of lncRNAs found in plants are transcribed by RNA polymerase Ⅱ and mediate gene expression through multiple mechanisms, such as target mimicry, transcription interference, histone methylation and DNA methylation, and play important roles in flowering, male sterility, nutrition metabolism, biotic and abiotic stress and other biological processes as regulators in plants. In this review, we summarize the databases, prediction methods, and possible functions of plant lncRNAs discovered in recent years.

  1. Long Non-Coding RNAs in Haematological Malignancies

    PubMed Central

    Garitano-Trojaola, Andoni; Agirre, Xabier; Prósper, Felipe; Fortes, Puri

    2013-01-01

    Long non-coding RNAs (lncRNAs) are functional RNAs longer than 200 nucleotides in length. LncRNAs are as diverse as mRNAs and they normally share the same biosynthetic machinery based on RNA polymerase II, splicing and polyadenylation. However, lncRNAs have low coding potential. Compared to mRNAs, lncRNAs are preferentially nuclear, more tissue specific and expressed at lower levels. Most of the lncRNAs described to date modulate the expression of specific genes by guiding chromatin remodelling factors; inducing chromosomal loopings; affecting transcription, splicing, translation or mRNA stability; or serving as scaffolds for the organization of cellular structures. They can function in cis, cotranscriptionally, or in trans, acting as decoys, scaffolds or guides. These functions seem essential to allow cell differentiation and growth. In fact, many lncRNAs have been shown to exert oncogenic or tumor suppressor properties in several cancers including haematological malignancies. In this review, we summarize what is known about lncRNAs, the mechanisms for their regulation in cancer and their role in leukemogenesis, lymphomagenesis and hematopoiesis. Furthermore, we discuss the potential of lncRNAs in diagnosis, prognosis and therapy in cancer, with special attention to haematological malignancies. PMID:23887658

  2. Non-coding RNAs in cancer brain metastasis

    PubMed Central

    Wu, Kerui; Sharma, Sambad; Venkat, Suresh; Liu, Keqin; Zhou, Xiaobo; Watabe, Kounosuke

    2017-01-01

    More than 90% of cancer death is attributed to metastatic disease, and the brain is one of the major metastatic sites of melanoma, colon, renal, lung and breast cancers. Despite the recent advancement of targeted therapy for cancer, the incidence of brain metastasis is increasing. One reason is that most therapeutic drugs can’t penetrate blood-brain-barrier and tumor cells find the brain as sanctuary site. In this review, we describe the pathophysiology of brain metastases to introduce the latest understandings of metastatic brain malignancies. This review also particularly focuses on non-coding RNAs and their roles in cancer brain metastasis. Furthermore, we discuss the roles of the extracellular vesicles as they are known to transport information between cells to initiate cancer cell-microenvironment communication. The potential clinical translation of non-coding RNAs as a tool for diagnosis and for treatment is also discussed in this review. At the end, the computational aspects of non-coding RNA detection, the sequence and structure calculation and epigenetic regulation of non-coding RNA in brain metastasis are discussed. PMID:26709907

  3. Standing your Ground to Exoribonucleases: Function of Flavivirus Long Non-coding RNAs

    PubMed Central

    Charley, Phillida A.; Wilusz, Jeffrey

    2015-01-01

    Members of the Flaviviridae (e.g. Dengue virus, West Nile virus, and Hepatitis C virus) contain a positive-sense RNA genome that encodes a large polyprotein. It is now also clear most if not all of these viruses also produce an abundant subgenomic long non-coding RNA. These non-coding RNAs, which are called subgenomicflavivirus RNAs (sfRNAs) or Xrn1-resistant RNAs (xrRNAs), are stable decay intermediates generated from the viral genomic RNA through the stalling of the cellular exoribonuclease Xrn1 at highly structured regions. Several functions of these flavivirus long non-coding RNAs have been revealed in recent years. The generation of these sfRNAs/xrRNAs from viral transcripts results in the repression of Xrn1 and the dysregulation of cellular mRNA stability. The abundant sfRNAs also serve directly as a decoy for important cellular protein regulators of the interferon and RNA interference antiviral pathways. Thus the generation of long non-coding RNAs from flaviviruses, hepaciviruses and pestiviruses likely disrupts aspects of innate immunity and may directly contribute to viral replication, cytopathology and pathogenesis. PMID:26368052

  4. Crosstalk between the Notch signaling pathway and non-coding RNAs in gastrointestinal cancers

    PubMed Central

    Pan, Yangyang; Mao, Yuyan; Jin, Rong; Jiang, Lei

    2018-01-01

    The Notch signaling pathway is one of the main signaling pathways that mediates direct contact between cells, and is essential for normal development. It regulates various cellular processes, including cell proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. It additionally serves an important function in tumor progression. Non-coding RNAs mainly include small microRNAs, long non-coding RNAs and circular RNAs. At present, a large body of literature supports the biological significance of non-coding RNAs in tumor progression. It is also becoming increasingly evident that cross-talk exists between Notch signaling and non-coding RNAs. The present review summarizes the current knowledge of Notch-mediated gastrointestinal cancer cell processes, and the effect of the crosstalk between the three major types of non-coding RNAs and the Notch signaling pathway on the fate of gastrointestinal cancer cells. PMID:29285185

  5. Genome-Wide Discovery of Long Non-Coding RNAs in Rainbow Trout.

    PubMed

    Al-Tobasei, Rafet; Paneru, Bam; Salem, Mohamed

    2016-01-01

    The ENCODE project revealed that ~70% of the human genome is transcribed. While only 1-2% of the RNAs encode for proteins, the rest are non-coding RNAs. Long non-coding RNAs (lncRNAs) form a diverse class of non-coding RNAs that are longer than 200 nt. Emerging evidence indicates that lncRNAs play critical roles in various cellular processes including regulation of gene expression. LncRNAs show low levels of gene expression and sequence conservation, which make their computational identification in genomes difficult. In this study, more than two billion Illumina sequence reads were mapped to the genome reference using the TopHat and Cufflinks software. Transcripts shorter than 200 nt, with more than 83-100 amino acids ORF, or with significant homologies to the NCBI nr-protein database were removed. In addition, a computational pipeline was used to filter the remaining transcripts based on a protein-coding-score test. Depending on the filtering stringency conditions, between 31,195 and 54,503 lncRNAs were identified, with only 421 matching known lncRNAs in other species. A digital gene expression atlas revealed 2,935 tissue-specific and 3,269 ubiquitously-expressed lncRNAs. This study annotates the lncRNA rainbow trout genome and provides a valuable resource for functional genomics research in salmonids.

  6. A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes.

    PubMed

    Hezroni, Hadas; Ben-Tov Perry, Rotem; Meir, Zohar; Housman, Gali; Lubelsky, Yoav; Ulitsky, Igor

    2017-08-30

    Only a small portion of human long non-coding RNAs (lncRNAs) appear to be conserved outside of mammals, but the events underlying the birth of new lncRNAs in mammals remain largely unknown. One potential source is remnants of protein-coding genes that transitioned into lncRNAs. We systematically compare lncRNA and protein-coding loci across vertebrates, and estimate that up to 5% of conserved mammalian lncRNAs are derived from lost protein-coding genes. These lncRNAs have specific characteristics, such as broader expression domains, that set them apart from other lncRNAs. Fourteen lncRNAs have sequence similarity with the loci of the contemporary homologs of the lost protein-coding genes. We propose that selection acting on enhancer sequences is mostly responsible for retention of these regions. As an example of an RNA element from a protein-coding ancestor that was retained in the lncRNA, we describe in detail a short translated ORF in the JPX lncRNA that was derived from an upstream ORF in a protein-coding gene and retains some of its functionality. We estimate that ~ 55 annotated conserved human lncRNAs are derived from parts of ancestral protein-coding genes, and loss of coding potential is thus a non-negligible source of new lncRNAs. Some lncRNAs inherited regulatory elements influencing transcription and translation from their protein-coding ancestors and those elements can influence the expression breadth and functionality of these lncRNAs.

  7. Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice.

    PubMed

    Guo, Jun; Zhou, Yuan; Cheng, Yafen; Fang, Weiwei; Hu, Gang; Wei, Jie; Lin, Yajun; Man, Yong; Guo, Lixin; Sun, Mingxiao; Cui, Qinghua; Li, Jian

    2018-01-01

    Recent studies have suggested that changes in non-coding mRNA play a key role in the progression of non-alcoholic fatty liver disease (NAFLD). Metformin is now recommended and effective for the treatment of NAFLD. We hope the current analyses of the non-coding mRNA transcriptome will provide a better presentation of the potential roles of mRNAs and long non-coding RNAs (lncRNAs) that underlie NAFLD and metformin intervention. The present study mainly analysed changes in the coding transcriptome and non-coding RNAs after the application of a five-week metformin intervention. Liver samples from three groups of mice were harvested for transcriptome profiling, which covered mRNA, lncRNA, microRNA (miRNA) and circular RNA (circRNA), using a microarray technique. A systematic alleviation of high-fat diet (HFD)-induced transcriptome alterations by metformin was observed. The metformin treatment largely reversed the correlations with diabetes-related pathways. Our analysis also suggested interaction networks between differentially expressed lncRNAs and known hepatic disease genes and interactions between circRNA and their disease-related miRNA partners. Eight HFD-responsive lncRNAs and three metformin-responsive lncRNAs were noted due to their widespread associations with disease genes. Moreover, seven miRNAs that interacted with multiple differentially expressed circRNAs were highlighted because they were likely to be associated with metabolic or liver diseases. The present study identified novel changes in the coding transcriptome and non-coding RNAs in the livers of NAFLD mice after metformin treatment that might shed light on the underlying mechanism by which metformin impedes the progression of NAFLD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  8. Identification of Novel Long Non-coding and Circular RNAs in Human Papillomavirus-Mediated Cervical Cancer

    PubMed Central

    Wang, Hongbo; Zhao, Yingchao; Chen, Mingyue; Cui, Jie

    2017-01-01

    Cervical cancer is the third most common cancer worldwide and the fourth leading cause of cancer-associated mortality in women. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) may play key roles in the carcinogenesis of different cancers; however, little is known about the mechanisms of lncRNAs and circRNAs in the progression and metastasis of cervical cancer. In this study, we explored the expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs in HPV16 (human papillomavirus genotype 16) mediated cervical squamous cell carcinoma and matched adjacent non-tumor (ATN) tissues from three patients with high-throughput RNA sequencing (RNA-seq). In total, we identified 19 lncRNAs, 99 circRNAs, 28 miRNAs, and 304 mRNAs that were commonly differentially expressed (DE) in different patients. Among the non-coding RNAs, 3 lncRNAs and 44 circRNAs are novel to our knowledge. Functional enrichment analysis showed that DE lncRNAs, miRNAs, and mRNAs were enriched in pathways crucial to cancer as well as other gene ontology (GO) terms. Furthermore, the co-expression network and function prediction suggested that all 19 DE lncRNAs could play different roles in the carcinogenesis and development of cervical cancer. The competing endogenous RNA (ceRNA) network based on DE coding and non-coding RNAs showed that each miRNA targeted a number of lncRNAs and circRNAs. The link between part of the miRNAs in the network and cervical cancer has been validated in previous studies, and these miRNAs targeted the majority of the novel non-coding RNAs, thus suggesting that these novel non-coding RNAs may be involved in cervical cancer. Taken together, our study shows that DE non-coding RNAs could be further developed as diagnostic and therapeutic biomarkers of cervical cancer. The complex ceRNA network also lays the foundation for future research of the roles of coding and non-coding RNAs in cervical cancer. PMID:28970820

  9. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer

    PubMed Central

    Ren, Zhipeng; Zhang, Guoliang

    2017-01-01

    Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer. PMID:28388588

  10. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer.

    PubMed

    Hou, Xiaobin; Wen, Jiaxin; Ren, Zhipeng; Zhang, Guoliang

    2017-06-27

    Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer.

  11. Non-coding RNAs and Berberine: A new mechanism of its anti-diabetic activities.

    PubMed

    Chang, Wenguang

    2017-01-15

    Type 2 Diabetes (T2D) is a metabolic disease with high mortality and morbidity. Non-coding RNAs, including small and long non-coding RNAs, are a novel class of functional RNA molecules that regulate multiple biological functions through diverse mechanisms. Studies in the last decade have demonstrated that non-coding RNAs may represent compelling therapeutic targets and play important roles in regulating the course of insulin resistance and T2D. Berberine, a plant-based alkaloid, has shown promise as an anti-hyperglycaemic, anti-hyperlipidaemic agent against T2D. Previous studies have primarily focused on a diverse array of efficacy end points of berberine in the pathogenesis of metabolic syndromes and inflammation or oxidative stress. Currently, an increasing number of studies have revealed the importance of non-coding RNAs as regulators of the anti-diabetic effects of berberine. The regulation of non-coding RNAs has been associated with several therapeutic actions of berberine in T2D progression. Thus, this review summarizes the anti-diabetic mechanisms of berberine by focusing on its role in regulating non-coding RNA, thus demonstrating that berberine exerts global anti-diabetic effects by targeting non-coding RNAs and that these effects involve several miRNAs, lncRNAs and multiple signal pathways, which may enhance the current understanding of the anti-diabetic mechanism actions of berberine and provide new pathological targets for the development of berberine-related drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Non-coding RNAs in virology: an RNA genomics approach.

    PubMed

    Isaac, Christopher; Patel, Trushar R; Zovoilis, Athanasios

    2018-04-01

    Advances in sequencing technologies and bioinformatic analysis techniques have greatly improved our understanding of various classes of RNAs and their functions. Despite not coding for proteins, non-coding RNAs (ncRNAs) are emerging as essential biomolecules fundamental for cellular functions and cell survival. Interestingly, ncRNAs produced by viruses not only control the expression of viral genes, but also influence host cell regulation and circumvent host innate immune response. Correspondingly, ncRNAs produced by the host genome can play a key role in host-virus interactions. In this article, we will first discuss a number of types of viral and mammalian ncRNAs associated with viral infections. Subsequently, we also describe the new possibilities and opportunities that RNA genomics and next-generation sequencing technologies provide for studying ncRNAs in virology.

  13. Integrative analysis of long non-coding RNA acting as ceRNAs involved in chilling injury in tomato fruit.

    PubMed

    Wang, Yunxiang; Gao, Lipu; Zhu, Benzhong; Zhu, Hongliang; Luo, Yunbo; Wang, Qing; Zuo, Jinhua

    2018-08-15

    Long-non-coding RNA (LncRNA) is a kind of non-coding endogenous RNA that plays essential roles in diverse biological processes and various stress responses. To identify and elucidate the intricate regulatory roles of lncRNAs in chilling injury in tomato fruit, deep sequencing and bioinformatics methods were performed here. After strict screening, a total of 1411 lncRNAs were identified. Among these lncRNAs, 239 of them were significantly differentially expressed. A large amount of target genes were identified and many of them were found to code chilling stress related proteins, including redox reaction related enzyme, important enzymes about cell wall degradation, membrane lipid peroxidation related enzymes, heat and cold shock protein, energy metabolism related enzymes, salicylic acid and abscisic acid metabolism related genes. Interestingly, 41 lncRNAs were found to be the precursor of 33 miRNAs, and 186 lncRNAs were targets of 45 miRNAs. These lncRNAs targeted by miRNAs might be potential ceRNAs. Particularly, a sophisticated regulatory model including miRNAs, lncRNAs and their targets was set up. This model revealed that some miRNAs and lncRNAs may be involved in chilling injury, which provided a new perspective of lncRNAs role. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Long non-coding RNAs and mRNAs profiling during spleen development in pig.

    PubMed

    Che, Tiandong; Li, Diyan; Jin, Long; Fu, Yuhua; Liu, Yingkai; Liu, Pengliang; Wang, Yixin; Tang, Qianzi; Ma, Jideng; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou

    2018-01-01

    Genome-wide transcriptomic studies in humans and mice have become extensive and mature. However, a comprehensive and systematic understanding of protein-coding genes and long non-coding RNAs (lncRNAs) expressed during pig spleen development has not been achieved. LncRNAs are known to participate in regulatory networks for an array of biological processes. Here, we constructed 18 RNA libraries from developing fetal pig spleen (55 days before birth), postnatal pig spleens (0, 30, 180 days and 2 years after birth), and the samples from the 2-year-old Wild Boar. A total of 15,040 lncRNA transcripts were identified among these samples. We found that the temporal expression pattern of lncRNAs was more restricted than observed for protein-coding genes. Time-series analysis showed two large modules for protein-coding genes and lncRNAs. The up-regulated module was enriched for genes related to immune and inflammatory function, while the down-regulated module was enriched for cell proliferation processes such as cell division and DNA replication. Co-expression networks indicated the functional relatedness between protein-coding genes and lncRNAs, which were enriched for similar functions over the series of time points examined. We identified numerous differentially expressed protein-coding genes and lncRNAs in all five developmental stages. Notably, ceruloplasmin precursor (CP), a protein-coding gene participating in antioxidant and iron transport processes, was differentially expressed in all stages. This study provides the first catalog of the developing pig spleen, and contributes to a fuller understanding of the molecular mechanisms underpinning mammalian spleen development.

  15. Quantitative Profiling of Peptides from RNAs classified as non-coding

    PubMed Central

    Prabakaran, Sudhakaran; Hemberg, Martin; Chauhan, Ruchi; Winter, Dominic; Tweedie-Cullen, Ry Y.; Dittrich, Christian; Hong, Elizabeth; Gunawardena, Jeremy; Steen, Hanno; Kreiman, Gabriel; Steen, Judith A.

    2014-01-01

    Only a small fraction of the mammalian genome codes for messenger RNAs destined to be translated into proteins, and it is generally assumed that a large portion of transcribed sequences - including introns and several classes of non-coding RNAs (ncRNAs) do not give rise to peptide products. A systematic examination of translation and physiological regulation of ncRNAs has not been conducted. Here, we use computational methods to identify the products of non-canonical translation in mouse neurons by analyzing unannotated transcripts in combination with proteomic data. This study supports the existence of non-canonical translation products from both intragenic and extragenic genomic regions, including peptides derived from anti-sense transcripts and introns. Moreover, the studied novel translation products exhibit temporal regulation similar to that of proteins known to be involved in neuronal activity processes. These observations highlight a potentially large and complex set of biologically regulated translational events from transcripts formerly thought to lack coding potential. PMID:25403355

  16. Differential expression and emerging functions of non-coding RNAs in cold adaptation.

    PubMed

    Frigault, Jacques J; Morin, Mathieu D; Morin, Pier Jr

    2017-01-01

    Several species undergo substantial physiological and biochemical changes to confront the harsh conditions associated with winter. Small mammalian hibernators and cold-hardy insects are examples of natural models of cold adaptation that have been amply explored. While the molecular picture associated with cold adaptation has started to become clearer in recent years, notably through the use of high-throughput experimental approaches, the underlying cold-associated functions attributed to several non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), remain to be better characterized. Nevertheless, key pioneering work has provided clues on the likely relevance of these molecules in cold adaptation. With an emphasis on mammalian hibernation and insect cold hardiness, this work first reviews various molecular changes documented so far in these processes. The cascades leading to miRNA and lncRNA production as well as the mechanisms of action of these non-coding RNAs are subsequently described. Finally, we present examples of differentially expressed non-coding RNAs in models of cold adaptation and elaborate on the potential significance of this modulation with respect to low-temperature adaptation.

  17. Present Scenario of Long Non-Coding RNAs in Plants

    PubMed Central

    Bhatia, Garima; Goyal, Neetu; Sharma, Shailesh; Upadhyay, Santosh Kumar; Singh, Kashmir

    2017-01-01

    Small non-coding RNAs have been extensively studied in plants over the last decade. In contrast, genome-wide identification of plant long non-coding RNAs (lncRNAs) has recently gained momentum. LncRNAs are now being recognized as important players in gene regulation, and their potent regulatory roles are being studied comprehensively in eukaryotes. LncRNAs were first reported in humans in 1992. Since then, research in animals, particularly in humans, has rapidly progressed, and a vast amount of data has been generated, collected, and organized using computational approaches. Additionally, numerous studies have been conducted to understand the roles of these long RNA species in several diseases. However, the status of lncRNA investigation in plants lags behind that in animals (especially humans). Efforts are being made in this direction using computational tools and high-throughput sequencing technologies, such as the lncRNA microarray technique, RNA-sequencing (RNA-seq), RNA capture sequencing, (RNA CaptureSeq), etc. Given the current scenario, significant amounts of data have been produced regarding plant lncRNAs, and this amount is likely to increase in the subsequent years. In this review we have documented brief information about lncRNAs and their status of research in plants, along with the plant-specific resources/databases for information retrieval on lncRNAs. PMID:29657289

  18. MicroRNAs and non-coding RNAs in virus-infected cells

    PubMed Central

    Ouellet, Dominique L.; Provost, Patrick

    2010-01-01

    Within the past few years, microRNAs (miRNAs) and other non-coding RNAs (ncRNAs) have emerged as elements with critically high importance in post-transcriptional control of cellular and, more recently, viral processes. Endogenously produced by a component of the miRNA-guided RNA silencing machinery known as Dicer, miRNAs are known to control messenger RNA (mRNA) translation through recognition of specific binding sites usually located in their 3′ untranslated region. Recent evidences indicate that the host miRNA pathway may represent an adapted antiviral defense mechanism that can act either by direct miRNA-mediated modulation of viral gene expression or through recognition and inactivation of structured viral RNA species by the protein components of the RNA silencing machinery, such as Dicer. This latter process, however, is a double-edge sword, as it may yield viral miRNAs exerting gene regulatory properties on both host and viral mRNAs. Our knowledge of the interaction between viruses and host RNA silencing machineries, and how this influences the course of infection, is becoming increasingly complex. This review article aims to summarize our current knowledge about viral miRNAs/ncRNAs and their targets, as well as cellular miRNAs that are modulated by viruses upon infection. PMID:20217543

  19. Long Non-coding RNAs and Their Biological Roles in Plants

    PubMed Central

    Liu, Xue; Hao, Lili; Li, Dayong; Zhu, Lihuang; Hu, Songnian

    2015-01-01

    With the development of genomics and bioinformatics, especially the extensive applications of high-throughput sequencing technology, more transcriptional units with little or no protein-coding potential have been discovered. Such RNA molecules are called non-protein-coding RNAs (npcRNAs or ncRNAs). Among them, long npcRNAs or ncRNAs (lnpcRNAs or lncRNAs) represent diverse classes of transcripts longer than 200 nucleotides. In recent years, the lncRNAs have been considered as important regulators in many essential biological processes. In plants, although a large number of lncRNA transcripts have been predicted and identified in few species, our current knowledge of their biological functions is still limited. Here, we have summarized recent studies on their identification, characteristics, classification, bioinformatics, resources, and current exploration of their biological functions in plants. PMID:25936895

  20. Current Insights into Long Non-Coding RNAs in Renal Cell Carcinoma

    PubMed Central

    Seles, Maximilian; Hutterer, Georg C.; Kiesslich, Tobias; Pummer, Karl; Berindan-Neagoe, Ioana; Perakis, Samantha; Schwarzenbacher, Daniela; Stotz, Michael; Gerger, Armin; Pichler, Martin

    2016-01-01

    Renal cell carcinoma (RCC) represents a deadly disease with rising mortality despite intensive therapeutic efforts. It comprises several subtypes in terms of distinct histopathological features and different clinical presentations. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts in the genome which vary in expression levels and length and perform diverse functions. They are involved in the inititation, evolution and progression of primary cancer, as well as in the development and spread of metastases. Recently, several lncRNAs were described in RCC. This review emphasises the rising importance of lncRNAs in RCC. Moreover, it provides an outlook on their therapeutic potential in the future. PMID:27092491

  1. Long non-coding RNAs in hepatocellular carcinoma: Potential roles and clinical implications

    PubMed Central

    Niu, Zhao-Shan; Niu, Xiao-Jun; Wang, Wen-Hong

    2017-01-01

    Long non-coding RNAs (lncRNAs) are a subgroup of non-coding RNA transcripts greater than 200 nucleotides in length with little or no protein-coding potential. Emerging evidence indicates that lncRNAs may play important regulatory roles in the pathogenesis and progression of human cancers, including hepatocellular carcinoma (HCC). Certain lncRNAs may be used as diagnostic or prognostic markers for HCC, a serious malignancy with increasing morbidity and high mortality rates worldwide. Therefore, elucidating the functional roles of lncRNAs in tumors can contribute to a better understanding of the molecular mechanisms of HCC and may help in developing novel therapeutic targets. In this review, we summarize the recent progress regarding the functional roles of lncRNAs in HCC and explore their clinical implications as diagnostic or prognostic biomarkers and molecular therapeutic targets for HCC. PMID:28932078

  2. Current Research on Non-Coding Ribonucleic Acid (RNA).

    PubMed

    Wang, Jing; Samuels, David C; Zhao, Shilin; Xiang, Yu; Zhao, Ying-Yong; Guo, Yan

    2017-12-05

    Non-coding ribonucleic acid (RNA) has without a doubt captured the interest of biomedical researchers. The ability to screen the entire human genome with high-throughput sequencing technology has greatly enhanced the identification, annotation and prediction of the functionality of non-coding RNAs. In this review, we discuss the current landscape of non-coding RNA research and quantitative analysis. Non-coding RNA will be categorized into two major groups by size: long non-coding RNAs and small RNAs. In long non-coding RNA, we discuss regular long non-coding RNA, pseudogenes and circular RNA. In small RNA, we discuss miRNA, transfer RNA, piwi-interacting RNA, small nucleolar RNA, small nuclear RNA, Y RNA, single recognition particle RNA, and 7SK RNA. We elaborate on the origin, detection method, and potential association with disease, putative functional mechanisms, and public resources for these non-coding RNAs. We aim to provide readers with a complete overview of non-coding RNAs and incite additional interest in non-coding RNA research.

  3. Long non-coding RNAs and their biological roles in plants.

    PubMed

    Liu, Xue; Hao, Lili; Li, Dayong; Zhu, Lihuang; Hu, Songnian

    2015-06-01

    With the development of genomics and bioinformatics, especially the extensive applications of high-throughput sequencing technology, more transcriptional units with little or no protein-coding potential have been discovered. Such RNA molecules are called non-protein-coding RNAs (npcRNAs or ncRNAs). Among them, long npcRNAs or ncRNAs (lnpcRNAs or lncRNAs) represent diverse classes of transcripts longer than 200 nucleotides. In recent years, the lncRNAs have been considered as important regulators in many essential biological processes. In plants, although a large number of lncRNA transcripts have been predicted and identified in few species, our current knowledge of their biological functions is still limited. Here, we have summarized recent studies on their identification, characteristics, classification, bioinformatics, resources, and current exploration of their biological functions in plants. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  4. Identification and role of regulatory non-coding RNAs in Listeria monocytogenes.

    PubMed

    Izar, Benjamin; Mraheil, Mobarak Abu; Hain, Torsten

    2011-01-01

    Bacterial regulatory non-coding RNAs control numerous mRNA targets that direct a plethora of biological processes, such as the adaption to environmental changes, growth and virulence. Recently developed high-throughput techniques, such as genomic tiling arrays and RNA-Seq have allowed investigating prokaryotic cis- and trans-acting regulatory RNAs, including sRNAs, asRNAs, untranslated regions (UTR) and riboswitches. As a result, we obtained a more comprehensive view on the complexity and plasticity of the prokaryotic genome biology. Listeria monocytogenes was utilized as a model system for intracellular pathogenic bacteria in several studies, which revealed the presence of about 180 regulatory RNAs in the listerial genome. A regulatory role of non-coding RNAs in survival, virulence and adaptation mechanisms of L. monocytogenes was confirmed in subsequent experiments, thus, providing insight into a multifaceted modulatory function of RNA/mRNA interference. In this review, we discuss the identification of regulatory RNAs by high-throughput techniques and in their functional role in L. monocytogenes.

  5. Long non-coding RNAs in B-cell malignancies: a comprehensive overview

    PubMed Central

    Taiana, Elisa; Neri, Antonino

    2017-01-01

    B-cell malignancies constitute a large part of hematological neoplasias. They represent a heterogeneous group of diseases, including Hodgkin's lymphoma, most non-Hodgkin's lymphomas (NHL), some leukemias and myelomas. B-cell malignancies reflect defined stages of normal B-cell differentiation and this represents the major basis for their classification. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts longer than 200 nucleotides, for which many recent studies have demonstrated a function in regulating gene expression, cell biology and carcinogenesis. Deregulated expression levels of lncRNAs have been observed in various types of cancers including hematological malignancies. The involvement of lncRNAs in cancer initiation and progression and their attractive features both as biomarker and for therapeutic research are becoming increasingly evident. In this review, we summarize the recent literature to highlight the status of the knowledge of lncRNAs role in normal B-cell development and in the pathogenesis of B-cell tumors. PMID:28947998

  6. Functional Interplay between Small Non-Coding RNAs and RNA Modification in the Brain.

    PubMed

    Leighton, Laura J; Bredy, Timothy W

    2018-06-07

    Small non-coding RNAs are essential for transcription, translation and gene regulation in all cell types, but are particularly important in neurons, with known roles in neurodevelopment, neuroplasticity and neurological disease. Many small non-coding RNAs are directly involved in the post-transcriptional modification of other RNA species, while others are themselves substrates for modification, or are functionally modulated by modification of their target RNAs. In this review, we explore the known and potential functions of several distinct classes of small non-coding RNAs in the mammalian brain, focusing on the newly recognised interplay between the epitranscriptome and the activity of small RNAs. We discuss the potential for this relationship to influence the spatial and temporal dynamics of gene activation in the brain, and predict that further research in the field of epitranscriptomics will identify interactions between small RNAs and RNA modifications which are essential for higher order brain functions such as learning and memory.

  7. Long non-coding RNAs involved in autophagy regulation

    PubMed Central

    Yang, Lixian; Wang, Hanying; Shen, Qi; Feng, Lifeng; Jin, Hongchuan

    2017-01-01

    Autophagy degrades non-functioning or damaged proteins and organelles to maintain cellular homeostasis in a physiological or pathological context. Autophagy can be protective or detrimental, depending on its activation status and other conditions. Therefore, autophagy has a crucial role in a myriad of pathophysiological processes. From the perspective of autophagy-related (ATG) genes, the molecular dissection of autophagy process and the regulation of its level have been largely unraveled. However, the discovery of long non-coding RNAs (lncRNAs) provides a new paradigm of gene regulation in almost all important biological processes, including autophagy. In this review, we highlight recent advances in autophagy-associated lncRNAs and their specific autophagic targets, as well as their relevance to human diseases such as cancer, cardiovascular disease, diabetes and cerebral ischemic stroke. PMID:28981093

  8. Interplay between cardiac transcription factors and non-coding RNAs in predisposing to atrial fibrillation.

    PubMed

    Mikhailov, Alexander T; Torrado, Mario

    2018-05-12

    There is growing evidence that putative gene regulatory networks including cardio-enriched transcription factors, such as PITX2, TBX5, ZFHX3, and SHOX2, and their effector/target genes along with downstream non-coding RNAs can play a potentially important role in the process of adaptive and maladaptive atrial rhythm remodeling. In turn, expression of atrial fibrillation-associated transcription factors is under the control of upstream regulatory non-coding RNAs. This review broadly explores gene regulatory mechanisms associated with susceptibility to atrial fibrillation-with key examples from both animal models and patients-within the context of both cardiac transcription factors and non-coding RNAs. These two systems appear to have multiple levels of cross-regulation and act coordinately to achieve effective control of atrial rhythm effector gene expression. Perturbations of a dynamic expression balance between transcription factors and corresponding non-coding RNAs can provoke the development or promote the progression of atrial fibrillation. We also outline deficiencies in current models and discuss ongoing studies to clarify remaining mechanistic questions. An understanding of the function of transcription factors and non-coding RNAs in gene regulatory networks associated with atrial fibrillation risk will enable the development of innovative therapeutic strategies.

  9. Identification of cyanobacterial non-coding RNAs by comparative genome analysis.

    PubMed

    Axmann, Ilka M; Kensche, Philip; Vogel, Jörg; Kohl, Stefan; Herzel, Hanspeter; Hess, Wolfgang R

    2005-01-01

    Whole genome sequencing of marine cyanobacteria has revealed an unprecedented degree of genomic variation and streamlining. With a size of 1.66 megabase-pairs, Prochlorococcus sp. MED4 has the most compact of these genomes and it is enigmatic how the few identified regulatory proteins efficiently sustain the lifestyle of an ecologically successful marine microorganism. Small non-coding RNAs (ncRNAs) control a plethora of processes in eukaryotes as well as in bacteria; however, systematic searches for ncRNAs are still lacking for most eubacterial phyla outside the enterobacteria. Based on a computational prediction we show the presence of several ncRNAs (cyanobacterial functional RNA or Yfr) in several different cyanobacteria of the Prochlorococcus-Synechococcus lineage. Some ncRNA genes are present only in two or three of the four strains investigated, whereas the RNAs Yfr2 through Yfr5 are structurally highly related and are encoded by a rapidly evolving gene family as their genes exist in different copy numbers and at different sites in the four investigated genomes. One ncRNA, Yfr7, is present in at least seven other cyanobacteria. In addition, control elements for several ribosomal operons were predicted as well as riboswitches for thiamine pyrophosphate and cobalamin. This is the first genome-wide and systematic screen for ncRNAs in cyanobacteria. Several ncRNAs were both computationally predicted and their presence was biochemically verified. These RNAs may have regulatory functions and each shows a distinct phylogenetic distribution. Our approach can be applied to any group of microorganisms for which more than one total genome sequence is available for comparative analysis.

  10. The Hippo pathway in hepatocellular carcinoma: Non-coding RNAs in action.

    PubMed

    Shi, Xuan; Zhu, Hai-Rong; Liu, Tao-Tao; Shen, Xi-Zhong; Zhu, Ji-Min

    2017-08-01

    Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer-related death worldwide. However, current strategies curing HCC are far from satisfaction. The Hippo pathway is an evolutionarily conserved tumor suppressive pathway that plays crucial roles in organ size control and tissue homeostasis. Its dysregulation is commonly observed in various types of cancer including HCC. Recently, the prominent role of non-coding RNAs in the Hippo pathway during normal development and neoplastic progression is also emerging in liver. Thus, further investigation into the regulatory network between non-coding RNAs and the Hippo pathway and their connections with HCC may provide new therapeutic avenues towards developing an effective preventative or perhaps curative treatment for HCC. Herein we summarize the role of non-coding RNAs in the Hippo pathway, with an emphasis on their contribution to carcinogenesis, diagnosis, treatment and prognosis of HCC. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A-to-I editing of coding and non-coding RNAs by ADARs

    PubMed Central

    Nishikura, Kazuko

    2016-01-01

    Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. This A-to-I editing occurs not only in protein-coding regions of mRNAs, but also frequently in non-coding regions that contain inverted Alu repeats. Editing of coding sequences can result in the expression of functionally altered proteins that are not encoded in the genome, whereas the significance of Alu editing remains largely unknown. Certain microRNA (miRNA) precursors are also edited, leading to reduced expression or altered function of mature miRNAs. Conversely, recent studies indicate that ADAR1 forms a complex with Dicer to promote miRNA processing, revealing a new function of ADAR1 in the regulation of RNA interference. PMID:26648264

  12. Long Non-Coding RNAs in Multiple Myeloma

    PubMed Central

    Ronchetti, Domenica; Taiana, Elisa; Vinci, Cristina; Neri, Antonino

    2018-01-01

    Multiple myeloma (MM) is an incurable disease caused by the malignant proliferation of bone marrow plasma cells, whose pathogenesis remains largely unknown. Although a large fraction of the genome is actively transcribed, most of the transcripts do not serve as templates for proteins and are referred to as non-coding RNAs (ncRNAs), broadly divided into short and long transcripts on the basis of a 200-nucleotide threshold. Short ncRNAs, especially microRNAs, have crucial roles in virtually all types of cancer, including MM, and have gained importance in cancer diagnosis and prognosis, predicting the response to therapy and, notably, as innovative therapeutic targets. Long ncRNAs (lncRNAs) are a very heterogeneous group, involved in many physiological cellular and genomic processes as well as in carcinogenesis, cancer metastasis, and invasion. LncRNAs are aberrantly expressed in various types of cancers, including hematological malignancies, showing either oncogenic or tumor suppressive functions. However, the mechanisms of the related disease-causing events are not yet revealed in most cases. Besides emerging as key players in cancer initiation and progression, lncRNAs own many interesting features as biomarkers with diagnostic and prognostic importance and, possibly, for their utility in therapeutic terms as druggable molecules. This review focuses on the role of lncRNAs in the pathogenesis of MM and summarizes the recent literature. PMID:29389884

  13. Current Insights into Long Non-Coding RNAs (LncRNAs) in Prostate Cancer

    PubMed Central

    Smolle, Maria A.; Bauernhofer, Thomas; Pummer, Karl; Calin, George A.; Pichler, Martin

    2017-01-01

    The importance of long non-coding RNAs (lncRNAs) in the pathogenesis of various malignancies has been uncovered over the last few years. Their dysregulation often contributes to or is a result of tumour progression. In prostate cancer, the most common malignancy in men, lncRNAs can promote castration resistance, cell proliferation, invasion, and metastatic spread. Expression patterns of lncRNAs often change during tumour progression; their expression levels may constantly rise (e.g., HOX transcript antisense RNA, HOTAIR), or steadily decrease (e.g., downregulated RNA in cancer, DRAIC). In prostate cancer, lncRNAs likewise have diagnostic (e.g., prostate cancer antigen 3, PCA3), prognostic (e.g., second chromosome locus associated with prostate-1, SChLAP1), and predictive (e.g., metastasis-associated lung adenocarcinoma transcript-1, MALAT-1) functions. Considering their dynamic role in prostate cancer, lncRNAs may also serve as therapeutic targets, helping to prevent development of castration resistance, maintain stable disease, and prohibit metastatic spread. PMID:28241429

  14. Decoding the non-coding RNAs in Alzheimer's disease.

    PubMed

    Schonrock, Nicole; Götz, Jürgen

    2012-11-01

    Non-coding RNAs (ncRNAs) are integral components of biological networks with fundamental roles in regulating gene expression. They can integrate sequence information from the DNA code, epigenetic regulation and functions of multimeric protein complexes to potentially determine the epigenetic status and transcriptional network in any given cell. Humans potentially contain more ncRNAs than any other species, especially in the brain, where they may well play a significant role in human development and cognitive ability. This review discusses their emerging role in Alzheimer's disease (AD), a human pathological condition characterized by the progressive impairment of cognitive functions. We discuss the complexity of the ncRNA world and how this is reflected in the regulation of the amyloid precursor protein and Tau, two proteins with central functions in AD. By understanding this intricate regulatory network, there is hope for a better understanding of disease mechanisms and ultimately developing diagnostic and therapeutic tools.

  15. Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro non-protein-coding RNAs

    PubMed Central

    2014-01-01

    Background The genome is pervasively transcribed but most transcripts do not code for proteins, constituting non-protein-coding RNAs. Despite increasing numbers of functional reports of individual long non-coding RNAs (lncRNAs), assessing the extent of functionality among the non-coding transcriptional output of mammalian cells remains intricate. In the protein-coding world, transcripts differentially expressed in the context of processes essential for the survival of multicellular organisms have been instrumental in the discovery of functionally relevant proteins and their deregulation is frequently associated with diseases. We therefore systematically identified lncRNAs expressed differentially in response to oncologically relevant processes and cell-cycle, p53 and STAT3 pathways, using tiling arrays. Results We found that up to 80% of the pathway-triggered transcriptional responses are non-coding. Among these we identified very large macroRNAs with pathway-specific expression patterns and demonstrated that these are likely continuous transcripts. MacroRNAs contain elements conserved in mammals and sauropsids, which in part exhibit conserved RNA secondary structure. Comparing evolutionary rates of a macroRNA to adjacent protein-coding genes suggests a local action of the transcript. Finally, in different grades of astrocytoma, a tumor disease unrelated to the initially used cell lines, macroRNAs are differentially expressed. Conclusions It has been shown previously that the majority of expressed non-ribosomal transcripts are non-coding. We now conclude that differential expression triggered by signaling pathways gives rise to a similar abundance of non-coding content. It is thus unlikely that the prevalence of non-coding transcripts in the cell is a trivial consequence of leaky or random transcription events. PMID:24594072

  16. Cis-encoded non-coding antisense RNAs in streptococci and other low GC Gram (+) bacterial pathogens

    PubMed Central

    Cho, Kyu Hong; Kim, Jeong-Ho

    2015-01-01

    Due to recent advances of bioinformatics and high throughput sequencing technology, discovery of regulatory non-coding RNAs in bacteria has been increased to a great extent. Based on this bandwagon, many studies searching for trans-acting small non-coding RNAs in streptococci have been performed intensively, especially in the important human pathogen, group A and B streptococci. However, studies for cis-encoded non-coding antisense RNAs in streptococci have been scarce. A recent study shows antisense RNAs are involved in virulence gene regulation in group B streptococcus, S. agalactiae. This suggests antisense RNAs could have important roles in the pathogenesis of streptococcal pathogens. In this review, we describe recent discoveries of chromosomal cis-encoded antisense RNAs in streptococcal pathogens and other low GC Gram (+) bacteria to provide a guide for future studies. PMID:25859258

  17. Cross-species inference of long non-coding RNAs greatly expands the ruminant transcriptome.

    PubMed

    Bush, Stephen J; Muriuki, Charity; McCulloch, Mary E B; Farquhar, Iseabail L; Clark, Emily L; Hume, David A

    2018-04-24

    mRNA-like long non-coding RNAs (lncRNAs) are a significant component of mammalian transcriptomes, although most are expressed only at low levels, with high tissue-specificity and/or at specific developmental stages. Thus, in many cases lncRNA detection by RNA-sequencing (RNA-seq) is compromised by stochastic sampling. To account for this and create a catalogue of ruminant lncRNAs, we compared de novo assembled lncRNAs derived from large RNA-seq datasets in transcriptional atlas projects for sheep and goats with previous lncRNAs assembled in cattle and human. We then combined the novel lncRNAs with the sheep transcriptional atlas to identify co-regulated sets of protein-coding and non-coding loci. Few lncRNAs could be reproducibly assembled from a single dataset, even with deep sequencing of the same tissues from multiple animals. Furthermore, there was little sequence overlap between lncRNAs that were assembled from pooled RNA-seq data. We combined positional conservation (synteny) with cross-species mapping of candidate lncRNAs to identify a consensus set of ruminant lncRNAs and then used the RNA-seq data to demonstrate detectable and reproducible expression in each species. In sheep, 20 to 30% of lncRNAs were located close to protein-coding genes with which they are strongly co-expressed, which is consistent with the evolutionary origin of some ncRNAs in enhancer sequences. Nevertheless, most of the lncRNAs are not co-expressed with neighbouring protein-coding genes. Alongside substantially expanding the ruminant lncRNA repertoire, the outcomes of our analysis demonstrate that stochastic sampling can be partly overcome by combining RNA-seq datasets from related species. This has practical implications for the future discovery of lncRNAs in other species.

  18. Long non-coding RNAs in anti-cancer drug resistance.

    PubMed

    Chen, Qin-Nan; Wei, Chen-Chen; Wang, Zhao-Xia; Sun, Ming

    2017-01-03

    Chemotherapy is one of the basic treatments for cancers; however, drug resistance is mainly responsible for the failure of clinical treatment. The mechanism of drug resistance is complicated because of interaction among various factors including drug efflux, DNA damage repair, apoptosis and targets mutation. Long non-coding RNAs (lncRNAs) have been a focus of research in the field of bioscience, and the latest studies have revealed that lncRNAs play essential roles in drug resistance in breast cancer, gastric cancer and lung cancer, et al. Dysregulation of multiple targets and pathways by lncRNAs results in the occurrence of chemoresistance. In this review, we will discuss the mechanisms underlying lncRNA-mediated resistance to chemotherapy and the therapeutic potential of lncRNAs in future cancer treatment.

  19. Transcription Factor Binding Profiles Reveal Cyclic Expression of Human Protein-coding Genes and Non-coding RNAs

    PubMed Central

    Cheng, Chao; Ung, Matthew; Grant, Gavin D.; Whitfield, Michael L.

    2013-01-01

    Cell cycle is a complex and highly supervised process that must proceed with regulatory precision to achieve successful cellular division. Despite the wide application, microarray time course experiments have several limitations in identifying cell cycle genes. We thus propose a computational model to predict human cell cycle genes based on transcription factor (TF) binding and regulatory motif information in their promoters. We utilize ENCODE ChIP-seq data and motif information as predictors to discriminate cell cycle against non-cell cycle genes. Our results show that both the trans- TF features and the cis- motif features are predictive of cell cycle genes, and a combination of the two types of features can further improve prediction accuracy. We apply our model to a complete list of GENCODE promoters to predict novel cell cycle driving promoters for both protein-coding genes and non-coding RNAs such as lincRNAs. We find that a similar percentage of lincRNAs are cell cycle regulated as protein-coding genes, suggesting the importance of non-coding RNAs in cell cycle division. The model we propose here provides not only a practical tool for identifying novel cell cycle genes with high accuracy, but also new insights on cell cycle regulation by TFs and cis-regulatory elements. PMID:23874175

  20. PLncPRO for prediction of long non-coding RNAs (lncRNAs) in plants and its application for discovery of abiotic stress-responsive lncRNAs in rice and chickpea

    PubMed Central

    Singh, Urminder; Rajkumar, Mohan Singh; Garg, Rohini

    2017-01-01

    Abstract Long non-coding RNAs (lncRNAs) make up a significant portion of non-coding RNAs and are involved in a variety of biological processes. Accurate identification/annotation of lncRNAs is the primary step for gaining deeper insights into their functions. In this study, we report a novel tool, PLncPRO, for prediction of lncRNAs in plants using transcriptome data. PLncPRO is based on machine learning and uses random forest algorithm to classify coding and long non-coding transcripts. PLncPRO has better prediction accuracy as compared to other existing tools and is particularly well-suited for plants. We developed consensus models for dicots and monocots to facilitate prediction of lncRNAs in non-model/orphan plants. The performance of PLncPRO was quite better with vertebrate transcriptome data as well. Using PLncPRO, we discovered 3714 and 3457 high-confidence lncRNAs in rice and chickpea, respectively, under drought or salinity stress conditions. We investigated different characteristics and differential expression under drought/salinity stress conditions, and validated lncRNAs via RT-qPCR. Overall, we developed a new tool for the prediction of lncRNAs in plants and showed its utility via identification of lncRNAs in rice and chickpea. PMID:29036354

  1. Identification and characterization of long non-coding RNAs in rainbow trout eggs

    USDA-ARS?s Scientific Manuscript database

    Long non-coding RNAs (lncRNAs) are in general considered as a diverse class of transcripts longer than 200 nucleotides that structurally resemble mRNAs but do not encode proteins. Recent advances in RNA sequencing (RNA-Seq) and bioinformatics methods have provided an opportunity to indentify and ana...

  2. Long Non-Coding RNAs (lncRNAs) of Sea Cucumber: Large-Scale Prediction, Expression Profiling, Non-Coding Network Construction, and lncRNA-microRNA-Gene Interaction Analysis of lncRNAs in Apostichopus japonicus and Holothuria glaberrima During LPS Challenge and Radial Organ Complex Regeneration.

    PubMed

    Mu, Chuang; Wang, Ruijia; Li, Tianqi; Li, Yuqiang; Tian, Meilin; Jiao, Wenqian; Huang, Xiaoting; Zhang, Lingling; Hu, Xiaoli; Wang, Shi; Bao, Zhenmin

    2016-08-01

    Long non-coding RNA (lncRNA) structurally resembles mRNA but cannot be translated into protein. Although the systematic identification and characterization of lncRNAs have been increasingly reported in model species, information concerning non-model species is still lacking. Here, we report the first systematic identification and characterization of lncRNAs in two sea cucumber species: (1) Apostichopus japonicus during lipopolysaccharide (LPS) challenge and in heathy tissues and (2) Holothuria glaberrima during radial organ complex regeneration, using RNA-seq datasets and bioinformatics analysis. We identified A. japonicus and H. glaberrima lncRNAs that were differentially expressed during LPS challenge and radial organ complex regeneration, respectively. Notably, the predicted lncRNA-microRNA-gene trinities revealed that, in addition to targeting protein-coding transcripts, miRNAs might also target lncRNAs, thereby participating in a potential novel layer of regulatory interactions among non-coding RNA classes in echinoderms. Furthermore, the constructed coding-non-coding network implied the potential involvement of lncRNA-gene interactions during the regulation of several important genes (e.g., Toll-like receptor 1 [TLR1] and transglutaminase-1 [TGM1]) in response to LPS challenge and radial organ complex regeneration in sea cucumbers. Overall, this pioneer systematic identification, annotation, and characterization of lncRNAs in echinoderm pave the way for similar studies and future genetic, genomic, and evolutionary research in non-model species.

  3. Long Non-Coding RNAs: A Novel Paradigm for Toxicology

    PubMed Central

    Dempsey, Joseph L.; Cui, Julia Yue

    2017-01-01

    Long non-coding RNAs (lncRNAs) are over 200 nucleotides in length and are transcribed from the mammalian genome in a tissue-specific and developmentally regulated pattern. There is growing recognition that lncRNAs are novel biomarkers and/or key regulators of toxicological responses in humans and animal models. Lacking protein-coding capacity, the numerous types of lncRNAs possess a myriad of transcriptional regulatory functions that include cis and trans gene expression, transcription factor activity, chromatin remodeling, imprinting, and enhancer up-regulation. LncRNAs also influence mRNA processing, post-transcriptional regulation, and protein trafficking. Dysregulation of lncRNAs has been implicated in various human health outcomes such as various cancers, Alzheimer’s disease, cardiovascular disease, autoimmune diseases, as well as intermediary metabolism such as glucose, lipid, and bile acid homeostasis. Interestingly, emerging evidence in the literature over the past five years has shown that lncRNA regulation is impacted by exposures to various chemicals such as polycyclic aromatic hydrocarbons, benzene, cadmium, chlorpyrifos-methyl, bisphenol A, phthalates, phenols, and bile acids. Recent technological advancements, including next-generation sequencing technologies and novel computational algorithms, have enabled the profiling and functional characterizations of lncRNAs on a genomic scale. In this review, we summarize the biogenesis and general biological functions of lncRNAs, highlight the important roles of lncRNAs in human diseases and especially during the toxicological responses to various xenobiotics, evaluate current methods for identifying aberrant lncRNA expression and molecular target interactions, and discuss the potential to implement these tools to address fundamental questions in toxicology. PMID:27864543

  4. Non-coding RNAs and Their Roles in Stress Response in Plants.

    PubMed

    Wang, Jingjing; Meng, Xianwen; Dobrovolskaya, Oxana B; Orlov, Yuriy L; Chen, Ming

    2017-10-01

    Eukaryotic genomes encode thousands of non-coding RNAs (ncRNAs), which play crucial roles in transcriptional and post-transcriptional regulation of gene expression. Accumulating evidence indicates that ncRNAs, especially microRNAs (miRNAs) and long ncRNAs (lncRNAs), have emerged as key regulatory molecules in plant stress responses. In this review, we have summarized the current progress on the understanding of plant miRNA and lncRNA identification, characteristics, bioinformatics tools, and resources, and provided examples of mechanisms of miRNA- and lncRNA-mediated plant stress tolerance. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  5. Long Non-coding RNAs in the X-inactivation Center

    PubMed Central

    Kalantry, Sundeep

    2014-01-01

    The X-inactivation center is a hotbed of functional long non-coding RNAs in eutherian mammals. These RNAs are thought to help orchestrate the epigenetic transcriptional states of the two X-chromosomes in females as well as of the single X-chromosome in males. To balance X-linked gene expression between the sexes, females undergo transcriptional silencing of most genes on one of the two X-chromosomes in a process termed X-chromosome inactivation. While one X-chromosome is inactivated, the other X-chromosome remains active. Moreover, with a few notable exceptions, the originally established epigenetic transcriptional profiles of the two is maintained as such through many rounds of cell division, essentially for the life of the organism. The stable divergent transcriptional fates of the two X-chromosomes, despite residing in a shared nucleoplasm, make X-inactivation a paradigm of epigenetic transcriptional regulation. Originally proposed in 1961 by Mary Lyon, the X-inactivation hypothesis has been validated through much experimentation over the last fifty years. In the last 25 years, the discovery and functional characterization has firmly established X-linked long non-coding RNAs as key players in choreographing X-chromosome inactivation. PMID:24297756

  6. Non-coding RNAs as regulators of gene expression and epigenetics

    PubMed Central

    Kaikkonen, Minna U.; Lam, Michael T.Y.; Glass, Christopher K.

    2011-01-01

    Genome-wide studies have revealed that mammalian genomes are pervasively transcribed. This has led to the identification and isolation of novel classes of non-coding RNAs (ncRNAs) that influence gene expression by a variety of mechanisms. Here we review the characteristics and functions of regulatory ncRNAs in chromatin remodelling and at multiple levels of transcriptional and post-transcriptional regulation. We also describe the potential roles of ncRNAs in vascular biology and in mediating epigenetic modifications that might play roles in cardiovascular disease susceptibility. The emerging recognition of the diverse functions of ncRNAs in regulation of gene expression suggests that they may represent new targets for therapeutic intervention. PMID:21558279

  7. Long Non-Coding RNAs As Potential Novel Prognostic Biomarkers in Colorectal Cancer

    PubMed Central

    Saus, Ester; Brunet-Vega, Anna; Iraola-Guzmán, Susana; Pegueroles, Cinta; Gabaldón, Toni; Pericay, Carles

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cause of death worldwide. Surgery is usually the first line of treatment for patients with CRC but many tumors with similar histopathological features show significantly different clinical outcomes. The discovery of robust prognostic biomarkers in patients with CRC is imperative to achieve more effective treatment strategies and improve patient's care. Recent progress in next generation sequencing methods and transcriptome analysis has revealed that a much larger part of the genome is transcribed into RNA than previously assumed. Collectively referred to as non-coding RNAs (ncRNAs), some of these RNA molecules such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been shown to be altered and to play critical roles in tumor biology. This discovery leads to exciting possibilities for personalized cancer diagnosis, and therapy. Many lncRNAs are tissue and cancer-type specific and have already revealed to be useful as prognostic markers. In this review, we focus on recent findings concerning aberrant expression of lncRNAs in CRC tumors and emphasize their prognostic potential in CRC. Further studies focused on the mechanisms of action of lncRNAs will contribute to the development of novel biomarkers for diagnosis and disease progression. PMID:27148353

  8. Small non coding RNAs in adipocyte biology and obesity.

    PubMed

    Amri, Ez-Zoubir; Scheideler, Marcel

    2017-11-15

    Obesity has reached epidemic proportions world-wide and constitutes a substantial risk factor for hypertension, type 2 diabetes, cardiovascular diseases and certain cancers. So far, regulation of energy intake by dietary and pharmacological treatments has met limited success. The main interest of current research is focused on understanding the role of different pathways involved in adipose tissue function and modulation of its mass. Whole-genome sequencing studies revealed that the majority of the human genome is transcribed, with thousands of non-protein-coding RNAs (ncRNA), which comprise small and long ncRNAs. ncRNAs regulate gene expression at the transcriptional and post-transcriptional level. Numerous studies described the involvement of ncRNAs in the pathogenesis of many diseases including obesity and associated metabolic disorders. ncRNAs represent potential diagnostic biomarkers and promising therapeutic targets. In this review, we focused on small ncRNAs involved in the formation and function of adipocytes and obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Kinetic models of gene expression including non-coding RNAs

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2011-03-01

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  10. Long Non-Coding RNAs: A Novel Paradigm for Toxicology.

    PubMed

    Dempsey, Joseph L; Cui, Julia Yue

    2017-01-01

    Long non-coding RNAs (lncRNAs) are over 200 nucleotides in length and are transcribed from the mammalian genome in a tissue-specific and developmentally regulated pattern. There is growing recognition that lncRNAs are novel biomarkers and/or key regulators of toxicological responses in humans and animal models. Lacking protein-coding capacity, the numerous types of lncRNAs possess a myriad of transcriptional regulatory functions that include cis and trans gene expression, transcription factor activity, chromatin remodeling, imprinting, and enhancer up-regulation. LncRNAs also influence mRNA processing, post-transcriptional regulation, and protein trafficking. Dysregulation of lncRNAs has been implicated in various human health outcomes such as various cancers, Alzheimer's disease, cardiovascular disease, autoimmune diseases, as well as intermediary metabolism such as glucose, lipid, and bile acid homeostasis. Interestingly, emerging evidence in the literature over the past five years has shown that lncRNA regulation is impacted by exposures to various chemicals such as polycyclic aromatic hydrocarbons, benzene, cadmium, chlorpyrifos-methyl, bisphenol A, phthalates, phenols, and bile acids. Recent technological advancements, including next-generation sequencing technologies and novel computational algorithms, have enabled the profiling and functional characterizations of lncRNAs on a genomic scale. In this review, we summarize the biogenesis and general biological functions of lncRNAs, highlight the important roles of lncRNAs in human diseases and especially during the toxicological responses to various xenobiotics, evaluate current methods for identifying aberrant lncRNA expression and molecular target interactions, and discuss the potential to implement these tools to address fundamental questions in toxicology. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e

  11. Long Non-Coding RNAs Differentially Expressed between Normal versus Primary Breast Tumor Tissues Disclose Converse Changes to Breast Cancer-Related Protein-Coding Genes

    PubMed Central

    Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U.; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N.; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O.

    2014-01-01

    Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the

  12. Long non-coding RNAs differentially expressed between normal versus primary breast tumor tissues disclose converse changes to breast cancer-related protein-coding genes.

    PubMed

    Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O

    2014-01-01

    Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the

  13. Non-coding RNAs, the Trojan horse in two-way communication between tumor and stroma in colorectal and hepatocellular carcinoma.

    PubMed

    Cătană, Cristina- Sorina; Pichler, Martin; Giannelli, Gianluigi; Mader, Robert M; Berindan-Neagoe, Ioana

    2017-04-25

    In a continuous and mutual exchange of information, cancer cells are invariably exposed to microenvironment transformation. This continuous alteration of the genetic, molecular and cellular peritumoral stroma background has become as critical as the management of primary tumor progression events in cancer cells. The communication between stroma and tumor cells within the extracellular matrix is one of the triggers in colon and liver carcinogenesis. All non- codingRNAs including long non-coding RNAs, microRNAs and ultraconserved genes play a critical role in almost all cancers and are responsible for the modulation of the tumor microenvironment in several malignant processes such as initiation, progression and dissemination. This review details the involvement of non codingRNAs in the evolution of human colorectal carcinoma and hepatocellular carcinoma in relationship with the microenvironment. Recent research has shown that a considerable number of dysregulated non- codingRNAs could be valuable diagnostic and prognostic biomarkers in cancer. Therefore, more in-depth knowledge of the role non- codingRNAs play in stroma-tumor communication and of the complex regulatory mechanisms between ultraconserved genes and microRNAs supports the validation of future effective therapeutic targets in patients suffering from hepatocellular and colorectal carcinoma, two distinctive entities which share quite a lot common non-coding RNAs.

  14. Non-coding RNAs, the Trojan horse in two-way communication between tumor and stroma in colorectal and hepatocellular carcinoma

    PubMed Central

    Cătană, Cristina- Sorina; Pichler, Martin; Giannelli, Gianluigi; Mader, Robert M.; Berindan-Neagoe, Ioana

    2017-01-01

    In a continuous and mutual exchange of information, cancer cells are invariably exposed to microenvironment transformation. This continuous alteration of the genetic, molecular and cellular peritumoral stroma background has become as critical as the management of primary tumor progression events in cancer cells. The communication between stroma and tumor cells within the extracellular matrix is one of the triggers in colon and liver carcinogenesis. All non- codingRNAs including long non-coding RNAs, microRNAs and ultraconserved genes play a critical role in almost all cancers and are responsible for the modulation of the tumor microenvironment in several malignant processes such as initiation, progression and dissemination. This review details the involvement of non codingRNAs in the evolution of human colorectal carcinoma and hepatocellular carcinoma in relationship with the microenvironment. Recent research has shown that a considerable number of dysregulated non- codingRNAs could be valuable diagnostic and prognostic biomarkers in cancer. Therefore, more in-depth knowledge of the role non- codingRNAs play in stroma-tumor communication and of the complex regulatory mechanisms between ultraconserved genes and microRNAs supports the validation of future effective therapeutic targets in patients suffering from hepatocellular and colorectal carcinoma, two distinctive entities which share quite a lot common non-coding RNAs. PMID:28392501

  15. Ontological function annotation of long non-coding RNAs through hierarchical multi-label classification.

    PubMed

    Zhang, Jingpu; Zhang, Zuping; Wang, Zixiang; Liu, Yuting; Deng, Lei

    2018-05-15

    Long non-coding RNAs (lncRNAs) are an enormous collection of functional non-coding RNAs. Over the past decades, a large number of novel lncRNA genes have been identified. However, most of the lncRNAs remain function uncharacterized at present. Computational approaches provide a new insight to understand the potential functional implications of lncRNAs. Considering that each lncRNA may have multiple functions and a function may be further specialized into sub-functions, here we describe NeuraNetL2GO, a computational ontological function prediction approach for lncRNAs using hierarchical multi-label classification strategy based on multiple neural networks. The neural networks are incrementally trained level by level, each performing the prediction of gene ontology (GO) terms belonging to a given level. In NeuraNetL2GO, we use topological features of the lncRNA similarity network as the input of the neural networks and employ the output results to annotate the lncRNAs. We show that NeuraNetL2GO achieves the best performance and the overall advantage in maximum F-measure and coverage on the manually annotated lncRNA2GO-55 dataset compared to other state-of-the-art methods. The source code and data are available at http://denglab.org/NeuraNetL2GO/. leideng@csu.edu.cn. Supplementary data are available at Bioinformatics online.

  16. Imprinted and X-linked non-coding RNAs as potential regulators of human placental function

    PubMed Central

    Buckberry, Sam; Bianco-Miotto, Tina; Roberts, Claire T

    2014-01-01

    Pregnancy outcome is inextricably linked to placental development, which is strictly controlled temporally and spatially through mechanisms that are only partially understood. However, increasing evidence suggests non-coding RNAs (ncRNAs) direct and regulate a considerable number of biological processes and therefore may constitute a previously hidden layer of regulatory information in the placenta. Many ncRNAs, including both microRNAs and long non-coding transcripts, show almost exclusive or predominant expression in the placenta compared with other somatic tissues and display altered expression patterns in placentas from complicated pregnancies. In this review, we explore the results of recent genome-scale and single gene expression studies using human placental tissue, but include studies in the mouse where human data are lacking. Our review focuses on the ncRNAs epigenetically regulated through genomic imprinting or X-chromosome inactivation and includes recent evidence surrounding the H19 lincRNA, the imprinted C19MC cluster microRNAs, and X-linked miRNAs associated with pregnancy complications. PMID:24081302

  17. Long non-coding RNAs as regulators of the endocrine system.

    PubMed

    Knoll, Marko; Lodish, Harvey F; Sun, Lei

    2015-03-01

    Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic β cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers.

  18. miRNAs and other non-coding RNAs in posttraumatic stress disorder: A systematic review of clinical and animal studies.

    PubMed

    Schmidt, Ulrike; Keck, Martin E; Buell, Dominik R

    2015-06-01

    In the last couple of years, non-coding (nc) RNAs like micro-RNAs (miRNAs), small interference RNAs (siRNAs) and long ncRNAs (lncRNAs) have emerged as promising candidates for biomarkers and drug-targets in a variety of psychiatric disorders. In contrast to reports on ncRNAs in affective disorders, schizophrenia and anxiety disorders, manuscripts on ncRNAs in posttraumatic stress disorder (PTSD) and associated animal models are scarce. Aiming to stimulate ncRNA research in PTSD and to identify the hitherto most promising ncRNA candidates and associated pathways for psychotrauma research, we conducted the first review on ncRNAs in PTSD. We aimed to identify studies reporting on the expression, function and regulation of ncRNAs in PTSD patients and in animals exhibiting a PTSD-like syndrome. Following the PRISMA guidelines for systematic reviews, we systematically screened the PubMed database for clinical and animal studies on ncRNAs in PTSD, animal models for PTSD and animal models employing a classical fear conditioning paradigm. Using 112 different combinations of search terms, we retrieved 523 articles of which we finally included and evaluated three clinical and 12 animal studies. In addition, using the web-based tool DIANA miRPath v2.0, we searched for molecular pathways shared by the predicted targets of the here-evaluated miRNA candidates. Our findings suggest that mir-132, which has been found to be regulated in three of the here included studies, as well as miRNAs with an already established role in Alzheimer's disease (AD) seem to be particularly promising candidates for future miRNA studies in PTSD. These results are limited by the low number of human trials and by the heterogeneity of included animal studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Molecular interplay of pro-inflammatory transcription factors and non-coding RNAs in esophageal squamous cell carcinoma.

    PubMed

    Sundaram, Gopinath M; Veera Bramhachari, Pallaval

    2017-06-01

    Esophageal squamous cell carcinoma is the sixth most common cancer in the developing world. The aggressive nature of esophageal squamous cell carcinoma, its tendency for relapse, and the poor survival prospects of patients diagnosed at advanced stages, represent a pressing need for the development of new therapies for this disease. Chronic inflammation is known to have a causal link to cancer pre-disposition. Nuclear factor kappa B and signal transducer and activator of transcription 3 are transcription factors which regulate immunity and inflammation and are emerging as key regulators of tumor initiation, progression, and metastasis. Although these pro-inflammatory factors in esophageal squamous cell carcinoma have been well-characterized with reference to protein-coding targets, their functional interactions with non-coding RNAs have only recently been gaining attention. Non-coding RNAs, especially microRNAs and long non-coding RNAs demonstrate potential as biomarkers and alternative therapeutic targets. In this review, we summarize the recent literature and concepts on non-coding RNAs that are regulated by/regulate nuclear factor kappa B and signal transducer and activator of transcription 3 in esophageal cancer progression. We also discuss how these recent discoveries can pave way for future therapeutic options to treat esophageal squamous cell carcinoma.

  20. The Big Entity of New RNA World: Long Non-Coding RNAs in Microvascular Complications of Diabetes.

    PubMed

    Raut, Satish K; Khullar, Madhu

    2018-01-01

    A major part of the genome is known to be transcribed into non-protein coding RNAs (ncRNAs), such as microRNA and long non-coding RNA (lncRNA). The importance of ncRNAs is being increasingly recognized in physiological and pathological processes. lncRNAs are a novel class of ncRNAs that do not code for proteins and are important regulators of gene expression. In the past, these molecules were thought to be transcriptional "noise" with low levels of evolutionary conservation. However, recent studies provide strong evidence indicating that lncRNAs are (i) regulated during various cellular processes, (ii) exhibit cell type-specific expression, (iii) localize to specific organelles, and (iv) associated with human diseases. Emerging evidence indicates an aberrant expression of lncRNAs in diabetes and diabetes-related microvascular complications. In the present review, we discuss the current state of knowledge of lncRNAs, their genesis from genome, and the mechanism of action of individual lncRNAs in the pathogenesis of microvascular complications of diabetes and therapeutic approaches.

  1. Non-coding RNAs in cardiac fibrosis: emerging biomarkers and therapeutic targets.

    PubMed

    Chen, Zhongxiu; Li, Chen; Lin, Ke; Cai, Huawei; Ruan, Weiqiang; Han, Junyang; Rao, Li

    2017-12-14

    Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not encode proteins. ncRNAs are involved in cell proliferation, apoptosis, differentiation, metabolism, and other physiological processes as well as the pathogenesis of diseases. Cardiac fibrosis is increasingly recognized as a common final pathway in advanced heart diseases. Many studies have shown that the occurrence and development of cardiac fibrosis is closely related to the regulation of ncRNAs. This review will highlight recent updates regarding the involvement of ncRNAs in cardiac fibrosis, and their potential as emerging biomarkers and therapeutic targets.

  2. Identification of aberrantly expressed long non-coding RNAs in stomach adenocarcinoma.

    PubMed

    Gu, Jianbin; Li, Yong; Fan, Liqiao; Zhao, Qun; Tan, Bibo; Hua, Kelei; Wu, Guobin

    2017-07-25

    Stomach adenocarcinoma (STAD) is a common malignancy worldwide. This study aimed to identify the aberrantly expressed long non-coding RNAs (lncRNAs) in STAD. Total of 74 DElncRNAs and 449 DEmRNAs were identified in STAD compared with paired non-tumor tissues. The DElncRNA/DEmRNA co-expression network was constructed, which covered 519 nodes and 2993 edges. The qRT-PCR validation results of DElncRNAs were consistent with our bioinformatics analysis based on RNA-sequencing. The DEmRNAs co-expressed with DElncRNAs were significantly enriched in gastric acid secretion, complement and coagulation cascades, pancreatic secretion, cytokine-cytokine receptor interaction and Jak-STAT signaling pathway. The expression levels of the nine candidate DElncRNAs in TCGA database were compatible with our RNA-sequencing. FEZF1-AS1, HOTAIR and LINC01234 had the potential diagnosis value for STAD. The lncRNA and mRNA expression profile of 3 STAD tissues and 3 matched adjacent non-tumor tissues was obtained through high-throughput RNA-sequencing. Differentially expressed lncRNAs/mRNAs (DElncRNAs/DEmRNAs) were identified in STAD. DElncRNA/DEmRNA co-expression network construction, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to predict the biological functions of DElncRNAs. Quantitative real-time polymerase chain reaction (qRT-PCR) was subjected to validate the expression levels of DEmRNAs and DElncRNAs. Moreover, the expression of DElncRNAs was validated through The Cancer Genome Atlas (TCGA) database. The diagnosis value of candidate DElncRNAs was accessed by receiver operating characteristic (ROC) analysis. Our work might provide useful information for exploring the tumorigenesis mechanism of STAD and pave the road for identification of diagnostic biomarkers in STAD.

  3. Understanding the Role of Non-Coding RNAs in Bladder Cancer: From Dark Matter to Valuable Therapeutic Targets

    PubMed Central

    Pop-Bica, Cecilia; Gulei, Diana; Cojocneanu-Petric, Roxana; Braicu, Cornelia; Petrut, Bogdan; Berindan-Neagoe, Ioana

    2017-01-01

    The mortality and morbidity that characterize bladder cancer compel this malignancy into the category of hot topics in terms of biomolecular research. Therefore, a better knowledge of the specific molecular mechanisms that underlie the development and progression of bladder cancer is demanded. Tumor heterogeneity among patients with similar diagnosis, as well as intratumor heterogeneity, generates difficulties in terms of targeted therapy. Furthermore, late diagnosis represents an ongoing issue, significantly reducing the response to therapy and, inevitably, the overall survival. The role of non-coding RNAs in bladder cancer emerged in the last decade, revealing that microRNAs (miRNAs) may act as tumor suppressor genes, respectively oncogenes, but also as biomarkers for early diagnosis. Regarding other types of non-coding RNAs, especially long non-coding RNAs (lncRNAs) which are extensively reviewed in this article, their exact roles in tumorigenesis are—for the time being—not as evident as in the case of miRNAs, but, still, clearly suggested. Therefore, this review covers the non-coding RNA expression profile of bladder cancer patients and their validated target genes in bladder cancer cell lines, with repercussions on processes such as proliferation, invasiveness, apoptosis, cell cycle arrest, and other molecular pathways which are specific for the malignant transformation of cells. PMID:28703782

  4. Understanding the Role of Non-Coding RNAs in Bladder Cancer: From Dark Matter to Valuable Therapeutic Targets.

    PubMed

    Pop-Bica, Cecilia; Gulei, Diana; Cojocneanu-Petric, Roxana; Braicu, Cornelia; Petrut, Bogdan; Berindan-Neagoe, Ioana

    2017-07-13

    The mortality and morbidity that characterize bladder cancer compel this malignancy into the category of hot topics in terms of biomolecular research. Therefore, a better knowledge of the specific molecular mechanisms that underlie the development and progression of bladder cancer is demanded. Tumor heterogeneity among patients with similar diagnosis, as well as intratumor heterogeneity, generates difficulties in terms of targeted therapy. Furthermore, late diagnosis represents an ongoing issue, significantly reducing the response to therapy and, inevitably, the overall survival. The role of non-coding RNAs in bladder cancer emerged in the last decade, revealing that microRNAs (miRNAs) may act as tumor suppressor genes, respectively oncogenes, but also as biomarkers for early diagnosis. Regarding other types of non-coding RNAs, especially long non-coding RNAs (lncRNAs) which are extensively reviewed in this article, their exact roles in tumorigenesis are-for the time being-not as evident as in the case of miRNAs, but, still, clearly suggested. Therefore, this review covers the non-coding RNA expression profile of bladder cancer patients and their validated target genes in bladder cancer cell lines, with repercussions on processes such as proliferation, invasiveness, apoptosis, cell cycle arrest, and other molecular pathways which are specific for the malignant transformation of cells.

  5. Decoding the usefulness of non-coding RNAs as breast cancer markers.

    PubMed

    Amorim, Maria; Salta, Sofia; Henrique, Rui; Jerónimo, Carmen

    2016-09-15

    Although important advances in the management of breast cancer (BC) have been recently accomplished, it still constitutes the leading cause of cancer death in women worldwide. BC is a heterogeneous and complex disease, making clinical prediction of outcome a very challenging task. In recent years, gene expression profiling emerged as a tool to assist in clinical decision, enabling the identification of genetic signatures that better predict prognosis and response to therapy. Nevertheless, translation to routine practice has been limited by economical and technical reasons and, thus, novel biomarkers, especially those requiring non-invasive or minimally invasive collection procedures, while retaining high sensitivity and specificity might represent a significant development in this field. An increasing amount of evidence demonstrates that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are aberrantly expressed in several cancers, including BC. miRNAs are of particular interest as new, easily accessible, cost-effective and non-invasive tools for precise management of BC patients because they circulate in bodily fluids (e.g., serum and plasma) in a very stable manner, enabling BC assessment and monitoring through liquid biopsies. This review focus on how ncRNAs have the potential to answer present clinical needs in the personalized management of patients with BC and comprehensively describes the state of the art on the role of ncRNAs in the diagnosis, prognosis and prediction of response to therapy in BC.

  6. Long non-coding RNAs as regulators of the endocrine system

    PubMed Central

    Knoll, Marko; Lodish, Harvey F.; Sun, Lei

    2015-01-01

    Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic β cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers. PMID:25560704

  7. Non-coding RNAs in crop genetic modification: considerations and predictable environmental risk assessments (ERA).

    PubMed

    Ramesh, S V

    2013-09-01

    Of late non-coding RNAs (ncRNAs)-mediated gene silencing is an influential tool deliberately deployed to negatively regulate the expression of targeted genes. In addition to the widely employed small interfering RNA (siRNA)-mediated gene silencing approach, other variants like artificial miRNA (amiRNA), miRNA mimics, and artificial transacting siRNAs (tasiRNAs) are being explored and successfully deployed in developing non-coding RNA-based genetically modified plants. The ncRNA-based gene manipulations are typified with mobile nature of silencing signals, interference from viral genome-derived suppressor proteins, and an obligation for meticulous computational analysis to prevaricate any inadvertent effects. In a broad sense, risk assessment inquiries for genetically modified plants based on the expression of ncRNAs are competently addressed by the environmental risk assessment (ERA) models, currently in vogue, designed for the first generation transgenic plants which are based on the expression of heterologous proteins. Nevertheless, transgenic plants functioning on the foundation of ncRNAs warrant due attention with respect to their unique attributes like off-target or non-target gene silencing effects, small RNAs (sRNAs) persistence, food and feed safety assessments, problems in detection and tracking of sRNAs in food, impact of ncRNAs in plant protection measures, effect of mutations etc. The role of recent developments in sequencing techniques like next generation sequencing (NGS) and the ERA paradigm of the different countries in vogue are also discussed in the context of ncRNA-based gene manipulations.

  8. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism.

    PubMed

    Shih, Jing-Wen; Wang, Ling-Yu; Hung, Chiu-Lien; Kung, Hsing-Jien; Hsieh, Chia-Ling

    2015-12-04

    Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed.

  9. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism

    PubMed Central

    Shih, Jing-Wen; Wang, Ling-Yu; Hung, Chiu-Lien; Kung, Hsing-Jien; Hsieh, Chia-Ling

    2015-01-01

    Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed. PMID:26690121

  10. Non-coding stem-bulge RNAs are required for cell proliferation and embryonic development in C. elegans

    PubMed Central

    Kowalski, Madzia P.; Baylis, Howard A.; Krude, Torsten

    2015-01-01

    ABSTRACT Stem bulge RNAs (sbRNAs) are a family of small non-coding stem-loop RNAs present in Caenorhabditis elegans and other nematodes, the function of which is unknown. Here, we report the first functional characterisation of nematode sbRNAs. We demonstrate that sbRNAs from a range of nematode species are able to reconstitute the initiation of chromosomal DNA replication in the presence of replication proteins in vitro, and that conserved nucleotide sequence motifs are essential for this function. By functionally inactivating sbRNAs with antisense morpholino oligonucleotides, we show that sbRNAs are required for S phase progression, early embryonic development and the viability of C. elegans in vivo. Thus, we demonstrate a new and essential role for sbRNAs during the early development of C. elegans. sbRNAs show limited nucleotide sequence similarity to vertebrate Y RNAs, which are also essential for the initiation of DNA replication. Our results therefore establish that the essential function of small non-coding stem-loop RNAs during DNA replication extends beyond vertebrates. PMID:25908866

  11. Keeping abreast with long non-coding RNAs in mammary gland development and breast cancer

    PubMed Central

    Hansji, Herah; Leung, Euphemia Y.; Baguley, Bruce C.; Finlay, Graeme J.; Askarian-Amiri, Marjan E.

    2014-01-01

    The majority of the human genome is transcribed, even though only 2% of transcripts encode proteins. Non-coding transcripts were originally dismissed as evolutionary junk or transcriptional noise, but with the development of whole genome technologies, these non-coding RNAs (ncRNAs) are emerging as molecules with vital roles in regulating gene expression. While shorter ncRNAs have been extensively studied, the functional roles of long ncRNAs (lncRNAs) are still being elucidated. Studies over the last decade show that lncRNAs are emerging as new players in a number of diseases including cancer. Potential roles in both oncogenic and tumor suppressive pathways in cancer have been elucidated, but the biological functions of the majority of lncRNAs remain to be identified. Accumulated data are identifying the molecular mechanisms by which lncRNA mediates both structural and functional roles. LncRNA can regulate gene expression at both transcriptional and post-transcriptional levels, including splicing and regulating mRNA processing, transport, and translation. Much current research is aimed at elucidating the function of lncRNAs in breast cancer and mammary gland development, and at identifying the cellular processes influenced by lncRNAs. In this paper we review current knowledge of lncRNAs contributing to these processes and present lncRNA as a new paradigm in breast cancer development. PMID:25400658

  12. Re-analysis of long non-coding RNAs and prediction of circRNAs reveal their novel roles in susceptible tomato following TYLCV infection.

    PubMed

    Wang, Jinyan; Yang, Yuwen; Jin, Lamei; Ling, Xitie; Liu, Tingli; Chen, Tianzi; Ji, Yinghua; Yu, Wengui; Zhang, Baolong

    2018-06-04

    Long Noncoding-RNAs (LncRNAs) are known to be involved in some biological processes, but their roles in plant-virus interactions remain largely unexplored. While circular RNAs (circRNAs) have been studied in animals, there has yet to be extensive research on them in a plant system, especially in tomato-tomato yellow leaf curl virus (TYLCV) interaction. In this study, RNA transcripts from the susceptible tomato line JS-CT-9210 either infected with TYLCV or untreated, were sequenced in a pair-end strand-specific manner using ribo-zero rRNA removal library method. A total of 2056 lncRNAs including 1767 long intergenic non-coding RNA (lincRNAs) and 289 long non-coding natural antisense transcripts (lncNATs) were obtained. The expression patterns in lncRNAs were similar in susceptible tomato plants between control check (CK) and TYLCV infected samples. Our analysis suggested that lncRNAs likely played a role in a variety of functions, including plant hormone signaling, protein processing in the endoplasmic reticulum, RNA transport, ribosome function, photosynthesis, glulathione metabolism, and plant-pathogen interactions. Using virus-induced gene silencing (VIGS) analysis, we found that reduced expression of the lncRNA S-slylnc0957 resulted in enhanced resistance to TYLCV in susceptible tomato plants. Moreover, we identified 184 circRNAs candidates using the CircRNA Identifier (CIRI) software, of which 32 circRNAs were specifically expressed in untreated samples and 83 circRNAs in TYLCV samples. Approximately 62% of these circRNAs were derived from exons. We validated the circRNAs by both PCR and Sanger sequencing using divergent primers, and found that most of circRNAs were derived from the exons of protein coding genes. The silencing of these circRNAs parent genes resulted in decreased TYLCV virus accumulation. In this study, we identified novel lncRNAs and circRNAs using bioinformatic approaches and showed that these RNAs function as negative regulators of TYLCV

  13. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs.

    PubMed

    Zhang, Yunfang; Zhang, Xudong; Shi, Junchao; Tuorto, Francesca; Li, Xin; Liu, Yusheng; Liebers, Reinhard; Zhang, Liwen; Qu, Yongcun; Qian, Jingjing; Pahima, Maya; Liu, Ying; Yan, Menghong; Cao, Zhonghong; Lei, Xiaohua; Cao, Yujing; Peng, Hongying; Liu, Shichao; Wang, Yue; Zheng, Huili; Woolsey, Rebekah; Quilici, David; Zhai, Qiwei; Li, Lei; Zhou, Tong; Yan, Wei; Lyko, Frank; Zhang, Ying; Zhou, Qi; Duan, Enkui; Chen, Qi

    2018-05-01

    The discovery of RNAs (for example, messenger RNAs, non-coding RNAs) in sperm has opened the possibility that sperm may function by delivering additional paternal information aside from solely providing the DNA 1 . Increasing evidence now suggests that sperm small non-coding RNAs (sncRNAs) can mediate intergenerational transmission of paternally acquired phenotypes, including mental stress 2,3 and metabolic disorders 4-6 . How sperm sncRNAs encode paternal information remains unclear, but the mechanism may involve RNA modifications. Here we show that deletion of a mouse tRNA methyltransferase, DNMT2, abolished sperm sncRNA-mediated transmission of high-fat-diet-induced metabolic disorders to offspring. Dnmt2 deletion prevented the elevation of RNA modifications (m 5 C, m 2 G) in sperm 30-40 nt RNA fractions that are induced by a high-fat diet. Also, Dnmt2 deletion altered the sperm small RNA expression profile, including levels of tRNA-derived small RNAs and rRNA-derived small RNAs, which might be essential in composing a sperm RNA 'coding signature' that is needed for paternal epigenetic memory. Finally, we show that Dnmt2-mediated m 5 C contributes to the secondary structure and biological properties of sncRNAs, implicating sperm RNA modifications as an additional layer of paternal hereditary information.

  14. Long non-coding RNAs as molecular players in plant defense against pathogens.

    PubMed

    Zaynab, Madiha; Fatima, Mahpara; Abbas, Safdar; Umair, Muhammad; Sharif, Yasir; Raza, Muhammad Ammar

    2018-05-31

    Long non-coding RNAs (lncRNAs) has significant role in of gene expression and silencing pathways for several biological processes in eukaryotes. lncRNAs has been reported as key player in remodeling chromatin and genome architecture, RNA stabilization and transcription regulation, including enhancer-associated activity. Host lncRNAs are reckoned as compulsory elements of plant defense. In response to pathogen attack, plants protect themselves with the help of lncRNAs -dependent immune systems in which lncRNAs regulate pathogen-associated molecular patterns (PAMPs) and other effectors. Role of lncRNAs in plant microbe interaction has been studied extensively but regulations of several lncRNAs still need extensive research. In this study we discussed and provide as overview the topical advancements and findings relevant to pathogen attack and plant defense mediated by lncRNAs. It is hoped that lncRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases. Copyright © 2018. Published by Elsevier Ltd.

  15. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach

    PubMed Central

    Laurent, Georges St.; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J.L.; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R.R.; Nicolas, Estelle; McCaffrey, Timothy A.; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-01-01

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlincRNAs genes likely function in cis to activate nearby genes. This effect while most pronounced in closely spaced vlincRNA–gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlincRNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. PMID:27001520

  16. Long Non-coding RNAs and their Role in Metastasis

    PubMed Central

    WEIDLE, ULRICH H; BIRZELE, FABIAN; KOLLMORGEN, GWEN; RÜGER, RÜDIGER

    2017-01-01

    The perception of long non-coding RNAs as chunk RNA and transcriptional noise has been steadily replaced by their role as validated targets for a diverse set of physiological processes in the past few years. However, for the vast majority of lncRNAs their precise mode of action and physiological function remain to be uncovered. A large body of evidence has revealed their essential role in all stages of cancirogenesis and metastasis. In this review we focus on the role of lncRNAs in metastasis. We grouped selected lncRNAs into three categories based on in vitro and in vivo mode of action-related studies and clinical relevance for metastasis. Grouped according to their mode of action, in category I we discuss lncRNAs such as CCAT2, DREH, LET, NKILA, treRNA, HOTAIR, H19, FENDRR, lincROR, MALAT, GClnc1, BCAR4, SCHLAP1 and lncRNA ATP, all lncRNAs with in vitro and in vivo metastasis-related data and clinical significance. In category II we discuss lncRNAs CCAT1, PCAT1, PTENgp1, GPLINC, MEG3, ZEB2-AS, LCT13, ANRIL, NBAT1 and lncTCF7 all characterized by their mode of action in vitro and clinical significance, but pending or preliminary in vivo data. Finally, under category III, we discuss lncRNAs BANCR, FRLnc1, SPRY4-IT1 and LIMT with partially or poorly-resolved mode of action and varying degree of validation in clinical metastasis. Finally we discuss metastasis-related translational aspects of lncRNAs. PMID:28446530

  17. LncRNApred: Classification of Long Non-Coding RNAs and Protein-Coding Transcripts by the Ensemble Algorithm with a New Hybrid Feature.

    PubMed

    Pian, Cong; Zhang, Guangle; Chen, Zhi; Chen, Yuanyuan; Zhang, Jin; Yang, Tao; Zhang, Liangyun

    2016-01-01

    As a novel class of noncoding RNAs, long noncoding RNAs (lncRNAs) have been verified to be associated with various diseases. As large scale transcripts are generated every year, it is significant to accurately and quickly identify lncRNAs from thousands of assembled transcripts. To accurately discover new lncRNAs, we develop a classification tool of random forest (RF) named LncRNApred based on a new hybrid feature. This hybrid feature set includes three new proposed features, which are MaxORF, RMaxORF and SNR. LncRNApred is effective for classifying lncRNAs and protein coding transcripts accurately and quickly. Moreover,our RF model only requests the training using data on human coding and non-coding transcripts. Other species can also be predicted by using LncRNApred. The result shows that our method is more effective compared with the Coding Potential Calculate (CPC). The web server of LncRNApred is available for free at http://mm20132014.wicp.net:57203/LncRNApred/home.jsp.

  18. EG-10LONG NON-CODING RNAs IN GLIOBLASTOMA

    PubMed Central

    Pastori, Chiara; Kapranov, Philipp; Penas, Clara; Laurent, Georges St.; Ayad, Nagi; Wahlestedt, Claes

    2014-01-01

    Glioblastoma (GBM) is the most common, aggressive and incurable primary brain tumor in adults. Genome studies have confirmed that GBM is extremely heterogeneous with many genetically different subgroups. Consequently, there is much current interest in epigenetic drugs that may be active across genetically distinct tumors. In support of this, some epigenetic drugs has recently shown efficacy against several cancers including glioblastoma. Much recent interest has also been devoted to long non-coding RNAs (lncRNAs), which can modulate gene expression regulating chromatin architecture, in part through the interaction with epigenetic protein machineries. To date, however, only a few lncRNAs have been studied in human cancer. We therefore embarked on a comprehensive genomic and functional analysis of lncRNAs in GBM. Using the Helicos Single Molecule Sequencing platform glioblastoma samples were sequenced resulting in the identification of hundreds of dysregulated lncRNAs. Among these the lncRNA HOTAIR was found massively increased in GBM. This observation parallels findings in other cancers where HOTAIR's increased expression has been linked to poor prognosis due to metastatic events. Interestingly, here we show that in glioblastoma HOTAIR does not promote metastasis, but instead sustains the ability of these cells to proliferate. In fact, we demonstrate that HOTAIR knockdown in GBM strongly impairs cell proliferation and induces apoptosis in vitro and in vivo. Further, we implicate HOTAIR in the mechanism of action of certain epigenetic drugs. In summary, long noncoding RNAs (newly discovered epigenomic factors) play a vital role in GBM and deserve attention as entirely novel drug targets as well as biomarkers.

  19. Decoding the Emerging Patterns Exhibited in Non-coding RNAs Characteristic of Lung Cancer with Regard to their Clinical Significance.

    PubMed

    Sonea, Laura; Buse, Mihail; Gulei, Diana; Onaciu, Anca; Simon, Ioan; Braicu, Cornelia; Berindan-Neagoe, Ioana

    2018-05-01

    Lung cancer continues to be the leading topic concerning global mortality rate caused by can-cer; it needs to be further investigated to reduce these dramatic unfavorable statistic data. Non-coding RNAs (ncRNAs) have been shown to be important cellular regulatory factors and the alteration of their expression levels has become correlated to extensive number of pathologies. Specifically, their expres-sion profiles are correlated with development and progression of lung cancer, generating great interest for further investigation. This review focuses on the complex role of non-coding RNAs, namely miR-NAs, piwi-interacting RNAs, small nucleolar RNAs, long non-coding RNAs and circular RNAs in the process of developing novel biomarkers for diagnostic and prognostic factors that can then be utilized for personalized therapies toward this devastating disease. To support the concept of personalized medi-cine, we will focus on the roles of miRNAs in lung cancer tumorigenesis, their use as diagnostic and prognostic biomarkers and their application for patient therapy.

  20. Identification and characterization of moonlighting long non-coding RNAs based on RNA and protein interactome.

    PubMed

    Cheng, Lixin; Leung, Kwong-Sak

    2018-05-16

    Moonlighting proteins are a class of proteins having multiple distinct functions, which play essential roles in a variety of cellular and enzymatic functioning systems. Although there have long been calls for computational algorithms for the identification of moonlighting proteins, research on approaches to identify moonlighting long non-coding RNAs (lncRNAs) has never been undertaken. Here, we introduce a novel methodology, MoonFinder, for the identification of moonlighting lncRNAs. MoonFinder is a statistical algorithm identifying moonlighting lncRNAs without a priori knowledge through the integration of protein interactome, RNA-protein interactions, and functional annotation of proteins. We identify 155 moonlighting lncRNA candidates and uncover that they are a distinct class of lncRNAs characterized by specific sequence and cellular localization features. The non-coding genes that transcript moonlighting lncRNAs tend to have shorter but more exons and the moonlighting lncRNAs have a variable localization pattern with a high chance of residing in the cytoplasmic compartment in comparison to the other lncRNAs. Moreover, moonlighting lncRNAs and moonlighting proteins are rather mutually exclusive in terms of both their direct interactions and interacting partners. Our results also shed light on how the moonlighting candidates and their interacting proteins implicated in the formation and development of cancers and other diseases. The code implementing MoonFinder is supplied as an R package in the supplementary material. lxcheng@cse.cuhk.edu.hk or ksleung@cse.cuhk.edu.hk. Supplementary data are available at Bioinformatics online.

  1. Identification and Characterization of Long Non-Coding RNAs Related to Mouse Embryonic Brain Development from Available Transcriptomic Data

    PubMed Central

    He, Hongjuan; Xiu, Youcheng; Guo, Jing; Liu, Hui; Liu, Qi; Zeng, Tiebo; Chen, Yan; Zhang, Yan; Wu, Qiong

    2013-01-01

    Long non-coding RNAs (lncRNAs) as a key group of non-coding RNAs have gained widely attention. Though lncRNAs have been functionally annotated and systematic explored in higher mammals, few are under systematical identification and annotation. Owing to the expression specificity, known lncRNAs expressed in embryonic brain tissues remain still limited. Considering a large number of lncRNAs are only transcribed in brain tissues, studies of lncRNAs in developmental brain are therefore of special interest. Here, publicly available RNA-sequencing (RNA-seq) data in embryonic brain are integrated to identify thousands of embryonic brain lncRNAs by a customized pipeline. A significant proportion of novel transcripts have not been annotated by available genomic resources. The putative embryonic brain lncRNAs are shorter in length, less spliced and show less conservation than known genes. The expression of putative lncRNAs is in one tenth on average of known coding genes, while comparable with known lncRNAs. From chromatin data, putative embryonic brain lncRNAs are associated with active chromatin marks, comparable with known lncRNAs. Embryonic brain expressed lncRNAs are also indicated to have expression though not evident in adult brain. Gene Ontology analysis of putative embryonic brain lncRNAs suggests that they are associated with brain development. The putative lncRNAs are shown to be related to possible cis-regulatory roles in imprinting even themselves are deemed to be imprinted lncRNAs. Re-analysis of one knockdown data suggests that four regulators are associated with lncRNAs. Taken together, the identification and systematic analysis of putative lncRNAs would provide novel insights into uncharacterized mouse non-coding regions and the relationships with mammalian embryonic brain development. PMID:23967161

  2. Non-coding RNAs in Prostate Cancer: From Discovery to Clinical Applications.

    PubMed

    Ceder, Yvonne

    2016-01-01

    Prostate cancer is a heterogeneous disease for which the molecular mechanisms are still not fully elucidated. Prostate cancer research has traditionally focused on genomic and epigenetic alterations affecting the proteome, but over the last decade non-coding RNAs, especially microRNAs, have been recognized to play a key role in prostate cancer progression. A considerable number of individual microRNAs have been found to be deregulated in prostate cancer and their biological significance elucidated in functional studies. This review will delineate the current advances regarding the involvement of microRNAs and their targets in prostate cancer biology as well as their potential usage in the clinical management of the disease. The main focus will be on microRNAs contributing to initiation and progression of prostate cancer, including androgen signalling, cellular plasticity, stem cells biology and metastatic processes. To conclude, implications on potential future microRNA-based therapeutics based on the recent advances regarding the interplay between microRNAs and their targets are discussed.

  3. Non coding RNAs in vascular disease - from basic science to clinical applications: Scientific update from the Working Group of Myocardial Function of the European Society of Cardiology

    PubMed

    Fiedler, Jan; Baker, Andrew H; Dimmeler, Stefanie; Heymans, Stephane; Mayr, Manuel; Thum, Thomas

    2018-05-23

    Non-coding RNAs are increasingly recognized not only as regulators of various biological functions but also as targets for a new generation of RNA therapeutics and biomarkers. We hereby review recent insights relating to non-coding RNAs including microRNAs (e.g. miR-126, miR-146a), long non-coding RNAs (e.g. MIR503HG, GATA6-AS, SMILR) and circular RNAs (e.g. cZNF292) and their role in vascular diseases. This includes identification and therapeutic use of hypoxia-regulated non-coding RNAs and endogenous non-coding RNAs that regulate intrinsic smooth muscle cell signalling, age-related non-coding RNAs and non-coding RNAs involved in the regulation of mitochondrial biology and metabolic control. Finally, we discuss non-coding RNA species with biomarker potential.

  4. Roles of long non-coding RNAs in gastric cancer metastasis

    PubMed Central

    Yang, Zi-Guo; Gao, Ling; Guo, Xiao-Bo; Shi, Yu-Long

    2015-01-01

    Gastric cancer is the second leading cause of cancer-related deaths. Metastasis, which is an important element of gastric cancer, leads to a high mortality rate and to a poor prognosis. Gastric cancer metastasis has a complex progression that involves multiple biological processes. The comprehensive mechanisms of metastasis remain unclear, though traditional regulation modulates the molecular functions associated with metastasis. Long non-coding RNAs (lncRNAs) have a role in different gene regulatory pathways by epigenetic modification and by transcriptional and post-transcription regulation. lncRNAs participate in various diseases, including Alzheimer’s disease, cardiovascular disease, and cancer. The altered expressions of certain lncRNAs are linked to gastric cancer metastasis and invasion, as with tumor suppressor genes or oncogenes. Studies have partly elucidated the roles of lncRNAs as biomarkers and in therapies, as well as their gene regulatory mechanisms. However, comprehensive knowledge regarding the functional mechanisms of gene regulation in metastatic gastric cancer remains scarce. To provide a theoretical basis for therapeutic intervention in metastatic gastric cancer, we reviewed the functions of lncRNAs and their regulatory roles in gastric cancer metastasis. PMID:25954095

  5. New technologies accelerate the exploration of non-coding RNAs in horticultural plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Degao; Mewalal, Ritesh; Hu, Rongbin

    Non-coding RNAs (ncRNAs), that is, RNAs not translated into proteins, are crucial regulators of a variety of biological processes in plants. While protein-encoding genes have been relatively well-annotated in sequenced genomes, accounting for a small portion of the genome space in plants, the universe of plant ncRNAs is rapidly expanding. Recent advances in experimental and computational technologies have generated a great momentum for discovery and functional characterization of ncRNAs. Here we summarize the classification and known biological functions of plant ncRNAs, review the application of next-generation sequencing (NGS) technology and ribosome profiling technology to ncRNA discovery in horticultural plants andmore » discuss the application of new technologies, especially the new genome-editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems, to functional characterization of plant ncRNAs.« less

  6. New technologies accelerate the exploration of non-coding RNAs in horticultural plants

    PubMed Central

    Liu, Degao; Mewalal, Ritesh; Hu, Rongbin; Tuskan, Gerald A; Yang, Xiaohan

    2017-01-01

    Non-coding RNAs (ncRNAs), that is, RNAs not translated into proteins, are crucial regulators of a variety of biological processes in plants. While protein-encoding genes have been relatively well-annotated in sequenced genomes, accounting for a small portion of the genome space in plants, the universe of plant ncRNAs is rapidly expanding. Recent advances in experimental and computational technologies have generated a great momentum for discovery and functional characterization of ncRNAs. Here we summarize the classification and known biological functions of plant ncRNAs, review the application of next-generation sequencing (NGS) technology and ribosome profiling technology to ncRNA discovery in horticultural plants and discuss the application of new technologies, especially the new genome-editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems, to functional characterization of plant ncRNAs. PMID:28698797

  7. Long non-coding RNA expression profile in cervical cancer tissues

    PubMed Central

    Zhu, Hua; Chen, Xiangjian; Hu, Yan; Shi, Zhengzheng; Zhou, Qing; Zheng, Jingjie; Wang, Yifeng

    2017-01-01

    Cervical cancer (CC), one of the most common types of cancer of the female population, presents an enormous challenge in diagnosis and treatment. Long non-coding (lnc)RNAs, non-coding (nc)RNAs with length >200 nucleotides, have been identified to be associated with multiple types of cancer, including CC. This class of nc transcripts serves an important role in tumor suppression and oncogenic signaling pathways. In the present study, the microarray method was used to obtain the expression profile of lncRNAs and protein-coding mRNAs and to compare the expression of lncRNAs between CC tissues and corresponding adjacent non-cancerous tissues in order to screen potential lncRNAs for associations with CC. Overall, 3356 lncRNAs with significantly different expression pattern in CC tissues compared with adjacent non-cancerous tissues were identified, while 1,857 of them were upregulated. These differentially expressed lncRNAs were additionally classified into 5 subgroups. Reverse transcription quantitative polymerase chain reactions were performed to validate the expression pattern of 5 random selected lncRNAs, and 2lncRNAs were identified to have significantly different expression in CC samples compared with adjacent non-cancerous tissues. This finding suggests that those lncRNAs with different expression may serve important roles in the development of CC, and the expression data may provide information for additional study on the involvement of lncRNAs in CC. PMID:28789353

  8. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach.

    PubMed

    St Laurent, Georges; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J L; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R R; Nicolas, Estelle; McCaffrey, Timothy A; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-04-20

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlinc RNAs genes likely function in cisto activate nearby genes. This effect while most pronounced in closely spaced vlinc RNA-gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlinc RNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. A Looking-Glass of Non-Coding RNAs in Oral Cancer

    PubMed Central

    Irimie, Alexandra Iulia; Braicu, Cornelia; Sonea, Laura; Zimta, Alina Andreea; Diudea, Diana; Buduru, Smaranda; Berindan-Neagoe, Ioana

    2017-01-01

    Oral cancer is a multifactorial pathology and is characterized by the lack of efficient treatment and accurate diagnostic tools. This is mainly due the late diagnosis; therefore, reliable biomarkers for the timely detection of the disease and patient stratification are required. Non-coding RNAs (ncRNAs) are key elements in the physiological and pathological processes of various cancers, which is also reflected in oral cancer development and progression. A better understanding of their role could give a more thorough perspective on the future treatment options for this cancer type. This review offers a glimpse into the ncRNA involvement in oral cancer, which can help the medical community tap into the world of ncRNAs and lay the ground for more powerful diagnostic, prognostic and treatment tools for oral cancer that will ultimately help build a brighter future for these patients. PMID:29206174

  10. Differential expression of small non-coding RNAs in serum from cattle challenged with viruses causing bovine respiratory disease

    USDA-ARS?s Scientific Manuscript database

    MicroRNAs and tRNA-derived RNA fragments (tRFs) are the two most abundant groups of small non-coding RNAs. The potential for microRNAs and tRFs to be used as pathogen exposure indicators is yet to be fully explored. Our objective was to identify microRNAs and tRFs in cattle challenged with a non-cy...

  11. EVLncRNAs: a manually curated database for long non-coding RNAs validated by low-throughput experiments.

    PubMed

    Zhou, Bailing; Zhao, Huiying; Yu, Jiafeng; Guo, Chengang; Dou, Xianghua; Song, Feng; Hu, Guodong; Cao, Zanxia; Qu, Yuanxu; Yang, Yuedong; Zhou, Yaoqi; Wang, Jihua

    2018-01-04

    Long non-coding RNAs (lncRNAs) play important functional roles in various biological processes. Early databases were utilized to deposit all lncRNA candidates produced by high-throughput experimental and/or computational techniques to facilitate classification, assessment and validation. As more lncRNAs are validated by low-throughput experiments, several databases were established for experimentally validated lncRNAs. However, these databases are small in scale (with a few hundreds of lncRNAs only) and specific in their focuses (plants, diseases or interactions). Thus, it is highly desirable to have a comprehensive dataset for experimentally validated lncRNAs as a central repository for all of their structures, functions and phenotypes. Here, we established EVLncRNAs by curating lncRNAs validated by low-throughput experiments (up to 1 May 2016) and integrating specific databases (lncRNAdb, LncRANDisease, Lnc2Cancer and PLNIncRBase) with additional functional and disease-specific information not covered previously. The current version of EVLncRNAs contains 1543 lncRNAs from 77 species that is 2.9 times larger than the current largest database for experimentally validated lncRNAs. Seventy-four percent lncRNA entries are partially or completely new, comparing to all existing experimentally validated databases. The established database allows users to browse, search and download as well as to submit experimentally validated lncRNAs. The database is available at http://biophy.dzu.edu.cn/EVLncRNAs. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. EVLncRNAs: a manually curated database for long non-coding RNAs validated by low-throughput experiments

    PubMed Central

    Zhao, Huiying; Yu, Jiafeng; Guo, Chengang; Dou, Xianghua; Song, Feng; Hu, Guodong; Cao, Zanxia; Qu, Yuanxu

    2018-01-01

    Abstract Long non-coding RNAs (lncRNAs) play important functional roles in various biological processes. Early databases were utilized to deposit all lncRNA candidates produced by high-throughput experimental and/or computational techniques to facilitate classification, assessment and validation. As more lncRNAs are validated by low-throughput experiments, several databases were established for experimentally validated lncRNAs. However, these databases are small in scale (with a few hundreds of lncRNAs only) and specific in their focuses (plants, diseases or interactions). Thus, it is highly desirable to have a comprehensive dataset for experimentally validated lncRNAs as a central repository for all of their structures, functions and phenotypes. Here, we established EVLncRNAs by curating lncRNAs validated by low-throughput experiments (up to 1 May 2016) and integrating specific databases (lncRNAdb, LncRANDisease, Lnc2Cancer and PLNIncRBase) with additional functional and disease-specific information not covered previously. The current version of EVLncRNAs contains 1543 lncRNAs from 77 species that is 2.9 times larger than the current largest database for experimentally validated lncRNAs. Seventy-four percent lncRNA entries are partially or completely new, comparing to all existing experimentally validated databases. The established database allows users to browse, search and download as well as to submit experimentally validated lncRNAs. The database is available at http://biophy.dzu.edu.cn/EVLncRNAs. PMID:28985416

  13. Associating schizophrenia, long non-coding RNAs and neurostructural dynamics

    PubMed Central

    Merelo, Veronica; Durand, Dante; Lescallette, Adam R.; Vrana, Kent E.; Hong, L. Elliot; Faghihi, Mohammad Ali; Bellon, Alfredo

    2015-01-01

    Several lines of evidence indicate that schizophrenia has a strong genetic component. But the exact nature and functional role of this genetic component in the pathophysiology of this mental illness remains a mystery. Long non-coding RNAs (lncRNAs) are a recently discovered family of molecules that regulate gene transcription through a variety of means. Consequently, lncRNAs could help us bring together apparent unrelated findings in schizophrenia; namely, genomic deficiencies on one side and neuroimaging, as well as postmortem results on the other. In fact, the most consistent finding in schizophrenia is decreased brain size together with enlarged ventricles. This anomaly appears to originate from shorter and less ramified dendrites and axons. But a decrease in neuronal arborizations cannot explain the complex pathophysiology of this psychotic disorder; however, dynamic changes in neuronal structure present throughout life could. It is well recognized that the structure of developing neurons is extremely plastic. This structural plasticity was thought to stop with brain development. However, breakthrough discoveries have shown that neuronal structure retains some degree of plasticity throughout life. What the neuroscientific field is still trying to understand is how these dynamic changes are regulated and lncRNAs represent promising candidates to fill this knowledge gap. Here, we present evidence that associates specific lncRNAs with schizophrenia. We then discuss the potential role of lncRNAs in neurostructural dynamics. Finally, we explain how dynamic neurostructural modifications present throughout life could, in theory, reconcile apparent unrelated findings in schizophrenia. PMID:26483630

  14. A Transgenic Transcription Factor (TaDREB3) in Barley Affects the Expression of MicroRNAs and Other Small Non-Coding RNAs

    PubMed Central

    Hackenberg, Michael; Shi, Bu-Jun; Gustafson, Perry; Langridge, Peter

    2012-01-01

    Transcription factors (TFs), microRNAs (miRNAs), small interfering RNAs (siRNAs) and other functional non-coding small RNAs (sRNAs) are important gene regulators. Comparison of sRNA expression profiles between transgenic barley over-expressing a drought tolerant TF (TaDREB3) and non-transgenic control barley revealed many group-specific sRNAs. In addition, 42% of the shared sRNAs were differentially expressed between the two groups (|log2| >1). Furthermore, TaDREB3-derived sRNAs were only detected in transgenic barley despite the existence of homologous genes in non-transgenic barley. These results demonstrate that the TF strongly affects the expression of sRNAs and siRNAs could in turn affect the TF stability. The TF also affects size distribution and abundance of sRNAs including miRNAs. About half of the sRNAs in each group were derived from chloroplast. A sRNA derived from tRNA-His(GUG) encoded by the chloroplast genome is the most abundant sRNA, accounting for 42.2% of the total sRNAs in transgenic barley and 28.9% in non-transgenic barley. This sRNA, which targets a gene (TC245676) involved in biological processes, was only present in barley leaves but not roots. 124 and 136 miRNAs were detected in transgenic and non-transgenic barley, respectively. miR156 was the most abundant miRNA and up-regulated in transgenic barley, while miR168 was the most abundant miRNA and up-regulated in non-transgenic barley. Eight out of 20 predicted novel miRNAs were differentially expressed between the two groups. All the predicted novel miRNA targets were validated using a degradome library. Our data provide an insight into the effect of TF on the expression of sRNAs in barley. PMID:22870277

  15. Mechanisms of Long Non-Coding RNAs in the Assembly and Plasticity of Neural Circuitry.

    PubMed

    Wang, Andi; Wang, Junbao; Liu, Ying; Zhou, Yan

    2017-01-01

    The mechanisms underlying development processes and functional dynamics of neural circuits are far from understood. Long non-coding RNAs (lncRNAs) have emerged as essential players in defining identities of neural cells, and in modulating neural activities. In this review, we summarized latest advances concerning roles and mechanisms of lncRNAs in assembly, maintenance and plasticity of neural circuitry, as well as lncRNAs' implications in neurological disorders. We also discussed technical advances and challenges in studying functions and mechanisms of lncRNAs in neural circuitry. Finally, we proposed that lncRNA studies would advance our understanding on how neural circuits develop and function in physiology and disease conditions.

  16. Insights into inner ear-specific gene regulation: epigenetics and non-coding RNAs in inner ear development and regeneration

    PubMed Central

    Avraham, Karen B.

    2016-01-01

    The vertebrate inner ear houses highly specialized sensory organs, tuned to detect and encode sound, head motion and gravity. Gene expression programs under the control of transcription factors orchestrate the formation and specialization of the non-sensory inner ear labyrinth and its sensory constituents. More recently, epigenetic factors and non-coding RNAs emerged as an additional layer of gene regulation, both in inner ear development and disease. In this review, we provide an overview on how epigenetic modifications and non-coding RNAs, in particular microRNAs (miRNAs), influence gene expression and summarize recent discoveries that highlight their critical role in the proper formation of the inner ear labyrinth and its sensory organs. In contrast to non-mammalian vertebrates, adult mammals lack the ability to regenerate inner ear mechano-sensory hair cells. Finally, we discuss recent insights into how epigenetic factors and miRNAs may facilitate, or in the case of mammals, restrict sensory hair cell regeneration. PMID:27836639

  17. Genome-wide screening and identification of long noncoding RNAs and their interaction with protein coding RNAs in bladder urothelial cell carcinoma.

    PubMed

    Wang, Longxin; Fu, Dian; Qiu, Yongbin; Xing, Xiaoxiao; Xu, Feng; Han, Conghui; Xu, Xiaofeng; Wei, Zhifeng; Zhang, Zhengyu; Ge, Jingping; Cheng, Wen; Xie, Hai-Long

    2014-07-10

    To understand lncRNAs expression profiling and their potential functions in bladder cancer, we investigated the lncRNA and coding RNA expression on human bladder cancer and normal bladder tissues. Bioinformatic analysis revealed thousands of significantly differentially expressed lncRNAs and coding mRNA in bladder cancer relative to normal bladder tissue. Co-expression analysis revealed that 50% of lncRNAs and coding RNAs expressed in the same direction. A subset of lncRNAs might be involved in mTOR signaling, p53 signaling, cancer pathways. Our study provides a large scale of co-expression between lncRNA and coding RNAs in bladder cancer cells and lays biological basis for further investigation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Targeting Non-Coding RNAs in Plants with the CRISPR-Cas Technology is a Challenge yet Worth Accepting.

    PubMed

    Basak, Jolly; Nithin, Chandran

    2015-01-01

    Non-coding RNAs (ncRNAs) have emerged as versatile master regulator of biological functions in recent years. MicroRNAs (miRNAs) are small endogenous ncRNAs of 18-24 nucleotides in length that originates from long self-complementary precursors. Besides their direct involvement in developmental processes, plant miRNAs play key roles in gene regulatory networks and varied biological processes. Alternatively, long ncRNAs (lncRNAs) are a large and diverse class of transcribed ncRNAs whose length exceed that of 200 nucleotides. Plant lncRNAs are transcribed by different RNA polymerases, showing diverse structural features. Plant lncRNAs also are important regulators of gene expression in diverse biological processes. There has been a breakthrough in the technology of genome editing, the CRISPR-Cas9 (clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9) technology, in the last decade. CRISPR loci are transcribed into ncRNA and eventually form a functional complex with Cas9 and further guide the complex to cleave complementary invading DNA. The CRISPR-Cas technology has been successfully applied in model plants such as Arabidopsis and tobacco and important crops like wheat, maize, and rice. However, all these studies are focused on protein coding genes. Information about targeting non-coding genes is scarce. Hitherto, the CRISPR-Cas technology has been exclusively used in vertebrate systems to engineer miRNA/lncRNAs, but it is still relatively unexplored in plants. While briefing miRNAs, lncRNAs and applications of the CRISPR-Cas technology in human and animals, this review essentially elaborates several strategies to overcome the challenges of applying the CRISPR-Cas technology in editing ncRNAs in plants and the future perspective of this field.

  19. Perspectives on the mechanism of transcriptional regulation by long non-coding RNAs.

    PubMed

    Roberts, Thomas C; Morris, Kevin V; Weinberg, Marc S

    2014-01-01

    Long non-coding RNAs (lncRNAs) are increasingly being recognized as epigenetic regulators of gene transcription. The diversity and complexity of lncRNA genes means that they exert their regulatory effects by a variety of mechanisms. Although there is still much to be learned about the mechanism of lncRNA function, general principles are starting to emerge. In particular, the application of high throughput (deep) sequencing methodologies has greatly advanced our understanding of lncRNA gene function. lncRNAs function as adaptors that link specific chromatin loci with chromatin-remodeling complexes and transcription factors. lncRNAs can act in cis or trans to guide epigenetic-modifier complexes to distinct genomic sites, or act as scaffolds which recruit multiple proteins simultaneously, thereby coordinating their activities. In this review we discuss the genomic organization of lncRNAs, the importance of RNA secondary structure to lncRNA functionality, the multitude of ways in which they interact with the genome, and what evolutionary conservation tells us about their function.

  20. Insight into the Role of Long Non-coding RNAs During Osteogenesis in Mesenchymal Stem Cells.

    PubMed

    Huo, Sibei; Zhou, Yachuan; He, Xinyu; Wan, Mian; Du, Wei; Xu, Xin; Ye, Ling; Zhou, Xuedong; Zheng, Liwei

    2018-01-01

    Long non-coding RNAs (LncRNAs) are non-protein coding transcripts longer than 200 nucleotides in length. Instead of being "transcriptional noise", lncRNAs are emerging as a key modulator in various biological processes and disease development. Mesenchymal stem cells can be isolated from various adult tissues, such as bone marrow and dental tissues. The differentiation processes into multiple lineages, such as osteogenic differentiation, are precisely orchestrated by molecular signals in both genetic and epigenetic ways. Recently, several lines of evidence suggested the role of lncRNAs participating in cell differentiation through the regulation of gene transcriptions. And the involvement of lncRNAs may be associated with initiation and progression of mesenchymal stem cell-related diseases. We aimed at addressing the role of lncRNAs in the regulation of osteogenesis of mesenchymal stem cells derived from bone marrow and dental tissues, and discussing the potential utility of lncRNAs as biomarkers and therapeutic targets for mesenchymal stem cell-related diseases. Numerous lncRNAs were differentially expressed during osteogenesis or odontogenesis of mesenchymal stem cells, and some of them were confirmed to be able to regulate the differentiation processes through the modifications of chromatin, transcriptional and post-transcriptional processes. LncRNAs were also associated with some diseases related with pathologic differentiation of mesenchymal stem cells. LncRNAs involve in the osteogenic differentiation of bone marrow and dental tissuederived mesenchymal stem cells, and they could become promising therapeutic targets and prognosis parameters. However, the mechanisms of the role of lncRNAs are still enigmatic and require further investigation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Non-coding RNAs' partitioning in the evolution of photosynthetic organisms via energy transduction and redox signaling.

    PubMed

    Kotakis, Christos

    2015-01-01

    Ars longa, vita brevis -Hippocrates Chloroplasts and mitochondria are genetically semi-autonomous organelles inside the plant cell. These constructions formed after endosymbiosis and keep evolving throughout the history of life. Experimental evidence is provided for active non-coding RNAs (ncRNAs) in these prokaryote-like structures, and a possible functional imprinting on cellular electrophysiology by those RNA entities is described. Furthermore, updated knowledge on RNA metabolism of organellar genomes uncovers novel inter-communication bridges with the nucleus. This class of RNA molecules is considered as a unique ontogeny which transforms their biological role as a genetic rheostat into a synchronous biochemical one that can affect the energetic charge and redox homeostasis inside cells. A hypothesis is proposed where such modulation by non-coding RNAs is integrated with genetic signals regulating gene transfer. The implications of this working hypothesis are discussed, with particular reference to ncRNAs involvement in the organellar and nuclear genomes evolution since their integrity is functionally coupled with redox signals in photosynthetic organisms.

  2. Systematic review regulatory principles of non-coding RNAs in cardiovascular diseases.

    PubMed

    Li, Yongsheng; Huo, Caiqin; Pan, Tao; Li, Lili; Jin, Xiyun; Lin, Xiaoyu; Chen, Juan; Zhang, Jinwen; Guo, Zheng; Xu, Juan; Li, Xia

    2017-08-16

    Cardiovascular diseases (CVDs) continue to be a major cause of morbidity and mortality, and non-coding RNAs (ncRNAs) play critical roles in CVDs. With the recent emergence of high-throughput technologies, including small RNA sequencing, investigations of CVDs have been transformed from candidate-based studies into genome-wide undertakings, and a number of ncRNAs in CVDs were discovered in various studies. A comprehensive review of these ncRNAs would be highly valuable for researchers to get a complete picture of the ncRNAs in CVD. To address these knowledge gaps and clinical needs, in this review, we first discussed dysregulated ncRNAs and their critical roles in cardiovascular development and related diseases. Moreover, we reviewed >28 561 published papers and documented the ncRNA-CVD association benchmarking data sets to summarize the principles of ncRNA regulation in CVDs. This data set included 13 249 curated relationships between 9503 ncRNAs and 139 CVDs in 12 species. Based on this comprehensive resource, we summarized the regulatory principles of dysregulated ncRNAs in CVDs, including the complex associations between ncRNA and CVDs, tissue specificity and ncRNA synergistic regulation. The highlighted principles are that CVD microRNAs (miRNAs) are highly expressed in heart tissue and that they play central roles in miRNA-miRNA functional synergistic network. In addition, CVD-related miRNAs are close to one another in the functional network, indicating the modular characteristic features of CVD miRNAs. We believe that the regulatory principles summarized here will further contribute to our understanding of ncRNA function and dysregulation mechanisms in CVDs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Genome-wide characterization of long intergenic non-coding RNAs (lincRNAs) provides new insight into viral diseases in honey bees Apis cerana and Apis mellifera.

    PubMed

    Jayakodi, Murukarthick; Jung, Je Won; Park, Doori; Ahn, Young-Joon; Lee, Sang-Choon; Shin, Sang-Yoon; Shin, Chanseok; Yang, Tae-Jin; Kwon, Hyung Wook

    2015-09-04

    Long non-coding RNAs (lncRNAs) are a class of RNAs that do not encode proteins. Recently, lncRNAs have gained special attention for their roles in various biological process and diseases. In an attempt to identify long intergenic non-coding RNAs (lincRNAs) and their possible involvement in honey bee development and diseases, we analyzed RNA-seq datasets generated from Asian honey bee (Apis cerana) and western honey bee (Apis mellifera). We identified 2470 lincRNAs with an average length of 1011 bp from A. cerana and 1514 lincRNAs with an average length of 790 bp in A. mellifera. Comparative analysis revealed that 5 % of the total lincRNAs derived from both species are unique in each species. Our comparative digital gene expression analysis revealed a high degree of tissue-specific expression among the seven major tissues of honey bee, different from mRNA expression patterns. A total of 863 (57 %) and 464 (18 %) lincRNAs showed tissue-dependent expression in A. mellifera and A. cerana, respectively, most preferentially in ovary and fat body tissues. Importantly, we identified 11 lincRNAs that are specifically regulated upon viral infection in honey bees, and 10 of them appear to play roles during infection with various viruses. This study provides the first comprehensive set of lincRNAs for honey bees and opens the door to discover lincRNAs associated with biological and hormone signaling pathways as well as various diseases of honey bee.

  4. The SLE transcriptome exhibits evidence of chronic endotoxin exposure and has widespread dysregulation of non-coding and coding RNAs.

    PubMed

    Shi, Lihua; Zhang, Zhe; Yu, Angela M; Wang, Wei; Wei, Zhi; Akhter, Ehtisham; Maurer, Kelly; Costa Reis, Patrícia; Song, Li; Petri, Michelle; Sullivan, Kathleen E

    2014-01-01

    Gene expression studies of peripheral blood mononuclear cells from patients with systemic lupus erythematosus (SLE) have demonstrated a type I interferon signature and increased expression of inflammatory cytokine genes. Studies of patients with Aicardi Goutières syndrome, commonly cited as a single gene model for SLE, have suggested that accumulation of non-coding RNAs may drive some of the pathologic gene expression, however, no RNA sequencing studies of SLE patients have been performed. This study was designed to define altered expression of coding and non-coding RNAs and to detect globally altered RNA processing in SLE. Purified monocytes from eight healthy age/gender matched controls and nine SLE patients (with low-moderate disease activity and lack of biologic drug use or immune suppressive treatment) were studied using RNA-seq. Quantitative RT-PCR was used to validate findings. Serum levels of endotoxin were measured by ELISA. We found that SLE patients had diminished expression of most endogenous retroviruses and small nucleolar RNAs, but exhibited increased expression of pri-miRNAs. Splicing patterns and polyadenylation were significantly altered. In addition, SLE monocytes expressed novel transcripts, an effect that was replicated by LPS treatment of control monocytes. We further identified increased circulating endotoxin in SLE patients. Monocytes from SLE patients exhibit globally dysregulated gene expression. The transcriptome is not simply altered by the transcriptional activation of a set of genes, but is qualitatively different in SLE. The identification of novel loci, inducible by LPS, suggests that chronic microbial translocation could contribute to the immunologic dysregulation in SLE, a new potential disease mechanism.

  5. lncRScan-SVM: A Tool for Predicting Long Non-Coding RNAs Using Support Vector Machine.

    PubMed

    Sun, Lei; Liu, Hui; Zhang, Lin; Meng, Jia

    2015-01-01

    Functional long non-coding RNAs (lncRNAs) have been bringing novel insight into biological study, however it is still not trivial to accurately distinguish the lncRNA transcripts (LNCTs) from the protein coding ones (PCTs). As various information and data about lncRNAs are preserved by previous studies, it is appealing to develop novel methods to identify the lncRNAs more accurately. Our method lncRScan-SVM aims at classifying PCTs and LNCTs using support vector machine (SVM). The gold-standard datasets for lncRScan-SVM model training, lncRNA prediction and method comparison were constructed according to the GENCODE gene annotations of human and mouse respectively. By integrating features derived from gene structure, transcript sequence, potential codon sequence and conservation, lncRScan-SVM outperforms other approaches, which is evaluated by several criteria such as sensitivity, specificity, accuracy, Matthews correlation coefficient (MCC) and area under curve (AUC). In addition, several known human lncRNA datasets were assessed using lncRScan-SVM. LncRScan-SVM is an efficient tool for predicting the lncRNAs, and it is quite useful for current lncRNA study.

  6. Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure.

    PubMed

    Xuan, Lina; Sun, Lihua; Zhang, Ying; Huang, Yuechao; Hou, Yan; Li, Qingqi; Guo, Ying; Feng, Bingbing; Cui, Lina; Wang, Xiaoxue; Wang, Zhiguo; Tian, Ye; Yu, Bo; Wang, Shu; Xu, Chaoqian; Zhang, Mingyu; Du, Zhimin; Lu, Yanjie; Yang, Bao Feng

    2017-09-01

    This study sought to evaluate the potential of circulating long non-coding RNAs (lncRNAs) as biomarkers for heart failure (HF). We measured the circulating levels of 13 individual lncRNAs which are known to be relevant to cardiovascular disease in the plasma samples from 72 HF patients and 60 non-HF control participants using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) methods. We found that out of the 13 lncRNAs tested, non-coding repressor of NFAT (NRON) and myosin heavy-chain-associated RNA transcripts (MHRT) had significantly higher plasma levels in HF than in non-HF subjects: 3.17 ± 0.30 versus 1.0 ± 0.07 for NRON (P < 0.0001) and 1.66 ± 0.14 versus 1.0 ± 0.12 for MHRT (P < 0.0001). The area under the ROC curve was 0.865 for NRON and 0.702 for MHRT. Univariate and multivariate analyses identified NRON and MHRT as independent predictors for HF. Spearman's rank correlation analysis showed that NRON was negatively correlated with HDL and positively correlated with LDH, whereas MHRT was positively correlated with AST and LDH. Hence, elevation of circulating NRON and MHRT predicts HF and may be considered as novel biomarkers of HF. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  7. Non-coding RNAs and plant male sterility: current knowledge and future prospects.

    PubMed

    Mishra, Ankita; Bohra, Abhishek

    2018-02-01

    Latest outcomes assign functional role to non-coding (nc) RNA molecules in regulatory networks that confer male sterility to plants. Male sterility in plants offers great opportunity for improving crop performance through application of hybrid technology. In this respect, cytoplasmic male sterility (CMS) and sterility induced by photoperiod (PGMS)/temperature (TGMS) have greatly facilitated development of high-yielding hybrids in crops. Participation of non-coding (nc) RNA molecules in plant reproductive development is increasingly becoming evident. Recent breakthroughs in rice definitively associate ncRNAs with PGMS and TGMS. In case of CMS, the exact mechanism through which the mitochondrial ORFs exert influence on the development of male gametophyte remains obscure in several crops. High-throughput sequencing has enabled genome-wide discovery and validation of these regulatory molecules and their target genes, describing their potential roles performed in relation to CMS. Discovery of ncRNA localized in plant mtDNA with its possible implication in CMS induction is intriguing in this respect. Still, conclusive evidences linking ncRNA with CMS phenotypes are currently unavailable, demanding complementing genetic approaches like transgenics to substantiate the preliminary findings. Here, we review the recent literature on the contribution of ncRNAs in conferring male sterility to plants, with an emphasis on microRNAs. Also, we present a perspective on improved understanding about ncRNA-mediated regulatory pathways that control male sterility in plants. A refined understanding of plant male sterility would strengthen crop hybrid industry to deliver hybrids with improved performance.

  8. Identification of dysregulated long non-coding RNAs/microRNAs/mRNAs in TNM I stage lung adenocarcinoma

    PubMed Central

    Tian, Ziqiang; Wen, Shiwang; Zhang, Yuefeng; Shi, Xinqiang; Zhu, Yonggang; Xu, Yanzhao; Lv, Huilai; Wang, Guiying

    2017-01-01

    Lung adenocarcinoma (LUAD) is the primary subtype in lung cancer, which is the leading cause of cancer-related death worldwide. This study aimed to investigate the aberrant expression profiling of long non-coding RNA (lncRNA) in TNM I stage (stage I) LUAD. The lncRNA/mRNA/miRNA expression profiling of stage I LUAD and adjacent non-tumor tissues from 4 patients were measured by RNA-sequencing. Total of 175 differentially expressed lncRNAs (DELs), 1321 differentially expressed mRNAs (DEMs) and 94 differentially expressed microRNAs (DEMIs) were identified in stage I LUAD. DEMI-DEM regulatory network consisted of 544 nodes and 1123 edge; miR-200 family members had high connectivity with DEMs. In DEL-DEM co-expression network, CDKN2B-AS1, FENDRR and LINC00312 had the high connectivity with DEMs, which co-expressed with 105, 63 and 61 DEMs, respectively. DEL-DEMI-DEM network depicted the links among DELs, DEMI and DEMs. Identified DEMs were significantly enriched in cell adhesion molecules, focal adhesion and tight junction of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways; and enriched in cell adhesion, angiogenesis and regulation of cell proliferation of Gene Ontology biological processes. Quantitative real-time polymerase chain reaction results were generally consistent with our bioinformatics analyses. LINC00312 and FENDRR had diagnostic value for LUAD patients in The Cancer Genome Atlas database. Our study might lay the foundation for illumination of pathogenesis of LUAD and identification of potential therapeutic targets and novel diagnosis biomarkers for LUAD patients. PMID:28881680

  9. Emerging Putative Associations between Non-Coding RNAs and Protein-Coding Genes in Neuropathic Pain: Added Value from Reusing Microarray Data.

    PubMed

    Raju, Hemalatha B; Tsinoremas, Nicholas F; Capobianco, Enrico

    2016-01-01

    Regeneration of injured nerves is likely occurring in the peripheral nervous system, but not in the central nervous system. Although protein-coding gene expression has been assessed during nerve regeneration, little is currently known about the role of non-coding RNAs (ncRNAs). This leaves open questions about the potential effects of ncRNAs at transcriptome level. Due to the limited availability of human neuropathic pain (NP) data, we have identified the most comprehensive time-course gene expression profile referred to sciatic nerve (SN) injury and studied in a rat model using two neuronal tissues, namely dorsal root ganglion (DRG) and SN. We have developed a methodology to identify differentially expressed bioentities starting from microarray probes and repurposing them to annotate ncRNAs, while analyzing the expression profiles of protein-coding genes. The approach is designed to reuse microarray data and perform first profiling and then meta-analysis through three main steps. First, we used contextual analysis to identify what we considered putative or potential protein-coding targets for selected ncRNAs. Relevance was therefore assigned to differential expression of neighbor protein-coding genes, with neighborhood defined by a fixed genomic distance from long or antisense ncRNA loci, and of parental genes associated with pseudogenes. Second, connectivity among putative targets was used to build networks, in turn useful to conduct inference at interactomic scale. Last, network paths were annotated to assess relevance to NP. We found significant differential expression in long-intergenic ncRNAs (32 lincRNAs in SN and 8 in DRG), antisense RNA (31 asRNA in SN and 12 in DRG), and pseudogenes (456 in SN and 56 in DRG). In particular, contextual analysis centered on pseudogenes revealed some targets with known association to neurodegeneration and/or neurogenesis processes. While modules of the olfactory receptors were clearly identified in protein

  10. Non-coding RNAs: Therapeutic Strategies and Delivery Systems.

    PubMed

    Ling, Hui

    The vast majority of the human genome is transcribed into RNA molecules that do not code for proteins, which could be small ones approximately 20 nucleotide in length, known as microRNAs, or transcripts longer than 200 bp, defined as long noncoding RNAs. The prevalent deregulation of microRNAs in human cancers prompted immediate interest on the therapeutic value of microRNAs as drugs and drug targets. Many features of microRNAs such as well-defined mechanisms, and straightforward oligonucleotide design further make them attractive candidates for therapeutic development. The intensive efforts of exploring microRNA therapeutics are reflected by the large body of preclinical studies using oligonucleotide-based mimicking and blocking, culminated by the recent entry of microRNA therapeutics in clinical trial for several human diseases including cancer. Meanwhile, microRNA therapeutics faces the challenge of effective and safe delivery of nucleic acid therapeutics into the target site. Various chemical modifications of nucleic acids and delivery systems have been developed to increase targeting specificity and efficacy, and reduce the associated side effects including activation of immune response. Recently, long noncoding RNAs become attractive targets for therapeutic intervention because of their association with complex and delicate phenotypes, and their unconventional pharmaceutical activities such as capacity of increasing output of proteins. Here I discuss the general therapeutic strategies targeting noncoding RNAs, review delivery systems developed to maximize noncoding RNA therapeutic efficacy, and offer perspectives on the future development of noncoding RNA targeting agents for colorectal cancer.

  11. Identification of mRNA-like non-coding RNAs and validation of a mighty one named MAR in Panax ginseng.

    PubMed

    Wang, Meizhen; Wu, Bin; Chen, Chao; Lu, Shanfa

    2015-03-01

    Increasing evidence suggests that long non-coding RNAs (lncRNAs) play significant roles in plants. However, little is known about lncRNAs in Panax ginseng C. A. Meyer, an economically significant medicinal plant species. A total of 3,688 mRNA-like non-coding RNAs (mlncRNAs), a class of lncRNAs, were identified in P. ginseng. Approximately 40% of the identified mlncRNAs were processed into small RNAs, implying their regulatory roles via small RNA-mediated mechanisms. Eleven miRNA-generating mlncRNAs also produced siRNAs, suggesting the coordinated production of miRNAs and siRNAs in P. ginseng. The mlncRNA-derived small RNAs might be 21-, 22-, or 24-nt phased and could be generated from both or only one strand of mlncRNAs, or from super long hairpin structures. A full-length mlncRNA, termed MAR (multiple-function-associated mlncRNA), was cloned. It generated the most abundant siRNAs. The MAR siRNAs were predominantly 24-nt and some of them were distributed in a phased pattern. A total of 228 targets were predicted for 71 MAR siRNAs. Degradome sequencing validated 68 predicted targets involved in diverse metabolic pathways, suggesting the significance of MAR in P. ginseng. Consistently, MAR was detected in all tissues analyzed and responded to methyl jasmonate (MeJA) treatment. It sheds light on the function of mlncRNAs in plants. © 2014 Institute of Botany, Chinese Academy of Sciences.

  12. Long non-coding RNAs are associated with spatiotemporal gene expression profiles in the marine gastropod Tegula atra.

    PubMed

    Détrée, Camille; Núñez-Acuña, Gustavo; Tapia, Fabian; Gallardo-Escárate, Cristian

    2017-06-01

    Increasing evidence suggests that long non-coding RNAs (lncRNAs) play diverse roles in cellular processes, including in the regulation of embryogenesis and growth. However, little is known about the role of lncRNAs in marine invertebrates inhabiting changing environments. Therefore, the aim of this study was to present the first characterization of lncRNAs in an intertidal marine gastropod. Specifically, Tegula atra individuals were sampled in four sites of the central-northern Chilean coastline (28-31°) during summer and winter. A pipeline was constructed, and 3524 putative lncRNAs were identified from transcriptome databases specific to T. atra. These lncRNAs exhibited characteristics common to known lncRNAs, including a length shorter than coding sequences, low GC-content, and low sequence conservation. Expression analyses revealed that lncRNAs varied more in the summer. Furthermore, a majority of the differentially expressed lncRNAs were found in the southernmost population, the seasonal temperatures of which varied the greatest among all groups. Additionally, co-expression analysis found some lncRNAs strongly correlated with coding genes involved in the environmental stress response, such as heat shock proteins and metalloproteins. In contrast, other lncRNA expressions were strongly uncorrelated with genes involved in lipid/carbohydrates metabolism and cell-cell communication. This study provides the first large-scale characterization of lncRNAs in a marine gastropod, with results suggesting a putative role of lncRNAs in thermal tolerance, as well as an association with molecular mechanisms involved in the local adaptations of marine invertebrate populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Posttranscriptional regulation of lipid metabolism by non-coding RNAs and RNA binding proteins.

    PubMed

    Singh, Abhishek K; Aryal, Binod; Zhang, Xinbo; Fan, Yuhua; Price, Nathan L; Suárez, Yajaira; Fernández-Hernando, Carlos

    2017-11-29

    Alterations in lipoprotein metabolism enhance the risk of cardiometabolic disorders including type-2 diabetes and atherosclerosis, the leading cause of death in Western societies. While the transcriptional regulation of lipid metabolism has been well characterized, recent studies have uncovered the importance of microRNAs (miRNAs), long-non-coding RNAs (lncRNAs) and RNA binding proteins (RBP) in regulating the expression of lipid-related genes at the posttranscriptional level. Work from several groups has identified a number of miRNAs, including miR-33, miR-122 and miR-148a, that play a prominent role in controlling cholesterol homeostasis and lipoprotein metabolism. Importantly, dysregulation of miRNA expression has been associated with dyslipidemia, suggesting that manipulating the expression of these miRNAs could be a useful therapeutic approach to ameliorate cardiovascular disease (CVD). The role of lncRNAs in regulating lipid metabolism has recently emerged and several groups have demonstrated their regulation of lipoprotein metabolism. However, given the high abundance of lncRNAs and the poor-genetic conservation between species, much work will be needed to elucidate the specific role of lncRNAs in controlling lipoprotein metabolism. In this review article, we summarize recent findings in the field and highlight the specific contribution of lncRNAs and RBPs in regulating lipid metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Next-Generation Sequencing of Protein-Coding and Long Non-protein-Coding RNAs in Two Types of Exosomes Derived from Human Whole Saliva.

    PubMed

    Ogawa, Yuko; Tsujimoto, Masafumi; Yanoshita, Ryohei

    2016-01-01

    Exosomes are small extracellular vesicles containing microRNAs and mRNAs that are produced by various types of cells. We previously used ultrafiltration and size-exclusion chromatography to isolate two types of human salivary exosomes (exosomes I, II) that are different in size and proteomes. We showed that salivary exosomes contain large repertoires of small RNAs. However, precise information regarding long RNAs in salivary exosomes has not been fully determined. In this study, we investigated the compositions of protein-coding RNAs (pcRNAs) and long non-protein-coding RNAs (lncRNAs) of exosome I, exosome II and whole saliva (WS) by next-generation sequencing technology. Although 11% of all RNAs were commonly detected among the three samples, the compositions of reads mapping to known RNAs were similar. The most abundant pcRNA is ribosomal RNA protein, and pcRNAs of some salivary proteins such as S100 calcium-binding protein A8 (protein S100-A8) were present in salivary exosomes. Interestingly, lncRNAs of pseudogenes (presumably, processed pseudogenes) were abundant in exosome I, exosome II and WS. Translationally controlled tumor protein gene, which plays an important role in cell proliferation, cell death and immune responses, was highly expressed as pcRNA and pseudogenes in salivary exosomes. Our results show that salivary exosomes contain various types of RNAs such as pseudogenes and small RNAs, and may mediate intercellular communication by transferring these RNAs to target cells as gene expression regulators.

  15. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds.

    PubMed

    Yin, Dan-Dan; Li, Shan-Shan; Shu, Qing-Yan; Gu, Zhao-Yu; Wu, Qian; Feng, Cheng-Yong; Xu, Wen-Zhong; Wang, Liang-Sheng

    2018-08-05

    MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) act as important molecular regulators in a wide range of biological processes during plant development and seed formation, including oil production. Tree peony seeds contain >90% unsaturated fatty acids (UFAs) and high proportions of α-linolenic acid (ALA, > 40%). To dissect the non-coding RNAs (ncRNAs) pathway involved in fatty acids synthesis in tree peony seeds, we construct six small RNA libraries and six transcriptome libraries from developing seeds of two cultivars (J and S) containing different content of fatty acid compositions. After deep sequencing the RNA libraries, the ncRNA expression profiles of tree peony seeds in two cultivars were systematically and comparatively analyzed. A total of 318 known and 153 new miRNAs and 22,430 lncRNAs were identified, among which 106 conserved and 9 novel miRNAs and 2785 lncRNAs were differentially expressed between the two cultivars. In addition, potential target genes of the microRNA and lncRNAs were also predicted and annotated. Among them, 9 miRNAs and 39 lncRNAs were predicted to target lipid related genes. Results showed that all of miR414, miR156b, miR2673b, miR7826, novel-m0027-5p, TR24651|c0_g1, TR24544|c0_g15, and TR27305|c0_g1 were up-regulated and expressed at a higher level in high-ALA cultivar J when compared to low-ALA cultivar S, suggesting that these ncRNAs and target genes are possibly involved in different fatty acid synthesis and lipid metabolism through post-transcriptional regulation. These results provide a better understanding of the roles of ncRNAs during fatty acid biosynthesis and metabolism in tree peony seeds. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize (Zea mays L.).

    PubMed

    Lv, Yuanda; Liang, Zhikai; Ge, Min; Qi, Weicong; Zhang, Tifu; Lin, Feng; Peng, Zhaohua; Zhao, Han

    2016-05-11

    Nitrogen (N) is an essential and often limiting nutrient to plant growth and development. Previous studies have shown that the mRNA expressions of numerous genes are regulated by nitrogen supplies; however, little is known about the expressed non-coding elements, for example long non-coding RNAs (lncRNAs) that control the response of maize (Zea mays L.) to nitrogen. LncRNAs are a class of non-coding RNAs larger than 200 bp, which have emerged as key regulators in gene expression. In this study, we surveyed the intergenic/intronic lncRNAs in maize B73 leaves at the V7 stage under conditions of N-deficiency and N-sufficiency using ribosomal RNA depletion and ultra-deep total RNA sequencing approaches. By integration with mRNA expression profiles and physiological evaluations, 7245 lncRNAs and 637 nitrogen-responsive lncRNAs were identified that exhibited unique expression patterns. Co-expression network analysis showed that the nitrogen-responsive lncRNAs were enriched mainly in one of the three co-expressed modules. The genes in the enriched module are mainly involved in NADH dehydrogenase activity, oxidative phosphorylation and the nitrogen compounds metabolic process. We identified a large number of lncRNAs in maize and illustrated their potential regulatory roles in response to N stress. The results lay the foundation for further in-depth understanding of the molecular mechanisms of lncRNAs' role in response to nitrogen stresses.

  17. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells

    PubMed Central

    Heery, Richard; Finn, Stephen P.; Cuffe, Sinead; Gray, Steven G.

    2017-01-01

    Epithelial mesenchymal transition (EMT), the adoption by epithelial cells of a mesenchymal-like phenotype, is a process co-opted by carcinoma cells in order to initiate invasion and metastasis. In addition, it is becoming clear that is instrumental to both the development of drug resistance by tumour cells and in the generation and maintenance of cancer stem cells. EMT is thus a pivotal process during tumour progression and poses a major barrier to the successful treatment of cancer. Non-coding RNAs (ncRNA) often utilize epigenetic programs to regulate both gene expression and chromatin structure. One type of ncRNA, called long non-coding RNAs (lncRNAs), has become increasingly recognized as being both highly dysregulated in cancer and to play a variety of different roles in tumourigenesis. Indeed, over the last few years, lncRNAs have rapidly emerged as key regulators of EMT in cancer. In this review, we discuss the lncRNAs that have been associated with the EMT process in cancer and the variety of molecular mechanisms and signalling pathways through which they regulate EMT, and finally discuss how these EMT-regulating lncRNAs impact on both anti-cancer drug resistance and the cancer stem cell phenotype. PMID:28430163

  18. Identification of novel non-coding small RNAs from Streptococcus pneumoniae TIGR4 using high-resolution genome tiling arrays

    PubMed Central

    2010-01-01

    Background The identification of non-coding transcripts in human, mouse, and Escherichia coli has revealed their widespread occurrence and functional importance in both eukaryotic and prokaryotic life. In prokaryotes, studies have shown that non-coding transcripts participate in a broad range of cellular functions like gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Streptococcus pneumoniae (pneumococcus), an obligate human respiratory pathogen responsible for significant worldwide morbidity and mortality. Tiling microarrays enable genome wide mRNA profiling as well as identification of novel transcripts at a high-resolution. Results Here, we describe a high-resolution transcription map of the S. pneumoniae clinical isolate TIGR4 using genomic tiling arrays. Our results indicate that approximately 66% of the genome is expressed under our experimental conditions. We identified a total of 50 non-coding small RNAs (sRNAs) from the intergenic regions, of which 36 had no predicted function. Half of the identified sRNA sequences were found to be unique to S. pneumoniae genome. We identified eight overrepresented sequence motifs among sRNA sequences that correspond to sRNAs in different functional categories. Tiling arrays also identified approximately 202 operon structures in the genome. Conclusions In summary, the pneumococcal operon structures and novel sRNAs identified in this study enhance our understanding of the complexity and extent of the pneumococcal 'expressed' genome. Furthermore, the results of this study open up new avenues of research for understanding the complex RNA regulatory network governing S. pneumoniae physiology and virulence. PMID:20525227

  19. Short-lived non-coding transcripts (SLiTs): Clues to regulatory long non-coding RNA.

    PubMed

    Tani, Hidenori

    2017-03-22

    Whole transcriptome analyses have revealed a large number of novel long non-coding RNAs (lncRNAs). Although the importance of lncRNAs has been documented in previous reports, the biological and physiological functions of lncRNAs remain largely unknown. The role of lncRNAs seems an elusive problem. Here, I propose a clue to the identification of regulatory lncRNAs. The key point is RNA half-life. RNAs with a long half-life (t 1/2 > 4 h) contain a significant proportion of ncRNAs, as well as mRNAs involved in housekeeping functions, whereas RNAs with a short half-life (t 1/2 < 4 h) include known regulatory ncRNAs and regulatory mRNAs. This novel class of ncRNAs with a short half-life can be categorized as Short-Lived non-coding Transcripts (SLiTs). I consider that SLiTs are likely to be rich in functionally uncharacterized regulatory RNAs. This review describes recent progress in research into SLiTs.

  20. Integrated analysis of long non-coding RNAs in human gastric cancer: An in silico study.

    PubMed

    Han, Weiwei; Zhang, Zhenyu; He, Bangshun; Xu, Yijun; Zhang, Jun; Cao, Weijun

    2017-01-01

    Accumulating evidence highlights the important role of long non-coding RNAs (lncRNAs) in a large number of biological processes. However, the knowledge of genome scale expression of lncRNAs and their potential biological function in gastric cancer is still lacking. Using RNA-seq data from 420 gastric cancer patients in The Cancer Genome Atlas (TCGA), we identified 1,294 lncRNAs differentially expressed in gastric cancer compared with adjacent normal tissues. We also found 247 lncRNAs differentially expressed between intestinal subtype and diffuse subtype. Survival analysis revealed 33 lncRNAs independently associated with patient overall survival, of which 6 lncRNAs were validated in the internal validation set. There were 181 differentially expressed lncRNAs located in the recurrent somatic copy number alterations (SCNAs) regions and their correlations between copy number and RNA expression level were also analyzed. In addition, we inferred the function of lncRNAs by construction of a co-expression network for mRNAs and lncRNAs. Together, this study presented an integrative analysis of lncRNAs in gastric cancer and provided a valuable resource for further functional research of lncRNAs in gastric cancer.

  1. Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity.

    PubMed

    Hrdlickova, Barbara; Kumar, Vinod; Kanduri, Kartiek; Zhernakova, Daria V; Tripathi, Subhash; Karjalainen, Juha; Lund, Riikka J; Li, Yang; Ullah, Ubaid; Modderman, Rutger; Abdulahad, Wayel; Lähdesmäki, Harri; Franke, Lude; Lahesmaa, Riitta; Wijmenga, Cisca; Withoff, Sebo

    2014-01-01

    Although genome-wide association studies (GWAS) have identified hundreds of variants associated with a risk for autoimmune and immune-related disorders (AID), our understanding of the disease mechanisms is still limited. In particular, more than 90% of the risk variants lie in non-coding regions, and almost 10% of these map to long non-coding RNA transcripts (lncRNAs). lncRNAs are known to show more cell-type specificity than protein-coding genes. We aimed to characterize lncRNAs and protein-coding genes located in loci associated with nine AIDs which have been well-defined by Immunochip analysis and by transcriptome analysis across seven populations of peripheral blood leukocytes (granulocytes, monocytes, natural killer (NK) cells, B cells, memory T cells, naive CD4(+) and naive CD8(+) T cells) and four populations of cord blood-derived T-helper cells (precursor, primary, and polarized (Th1, Th2) T-helper cells). We show that lncRNAs mapping to loci shared between AID are significantly enriched in immune cell types compared to lncRNAs from the whole genome (α <0.005). We were not able to prioritize single cell types relevant for specific diseases, but we observed five different cell types enriched (α <0.005) in five AID (NK cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, and psoriasis; memory T and CD8(+) T cells in juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis; Th0 and Th2 cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis). Furthermore, we show that co-expression analyses of lncRNAs and protein-coding genes can predict the signaling pathways in which these AID-associated lncRNAs are involved. The observed enrichment of lncRNA transcripts in AID loci implies lncRNAs play an important role in AID etiology and suggests that lncRNA genes should be studied in more detail to interpret GWAS

  2. A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation

    PubMed Central

    Fan, Zenghua; Zhao, Meng; Joshi, Parth D.; Li, Ping; Zhang, Yan; Guo, Weimin; Xu, Yichi; Wang, Haifang; Zhao, Zhihu

    2017-01-01

    Abstract Circadian rhythm exerts its influence on animal physiology and behavior by regulating gene expression at various levels. Here we systematically explored circadian long non-coding RNAs (lncRNAs) in mouse liver and examined their circadian regulation. We found that a significant proportion of circadian lncRNAs are expressed at enhancer regions, mostly bound by two key circadian transcription factors, BMAL1 and REV-ERBα. These circadian lncRNAs showed similar circadian phases with their nearby genes. The extent of their nuclear localization is higher than protein coding genes but less than enhancer RNAs. The association between enhancer and circadian lncRNAs is also observed in tissues other than liver. Comparative analysis between mouse and rat circadian liver transcriptomes showed that circadian transcription at lncRNA loci tends to be conserved despite of low sequence conservation of lncRNAs. One such circadian lncRNA termed lnc-Crot led us to identify a super-enhancer region interacting with a cluster of genes involved in circadian regulation of metabolism through long-range interactions. Further experiments showed that lnc-Crot locus has enhancer function independent of lnc-Crot's transcription. Our results suggest that the enhancer-associated circadian lncRNAs mark the genomic loci modulating long-range circadian gene regulation and shed new lights on the evolutionary origin of lncRNAs. PMID:28335007

  3. Advances in esophageal cancer: A new perspective on pathogenesis associated with long non-coding RNAs.

    PubMed

    Huang, Xiaomei; Zhou, Xi; Hu, Qing; Sun, Binyu; Deng, Mingming; Qi, Xiaolong; Lü, Muhan

    2018-01-28

    Esophageal cancer is a malignant digestive tract cancer with high mortality. Although studies have found that esophageal cancer is involved in a complex and important gene regulation network, the pathogenesis remains unclear. The recently described long non-coding RNAs (lncRNAs) are one effective part of the gene regulation network. However, in past decades, lncRNAs were thought to be "transcript noise" or "pseudogenes" and were thus ignored. Early studies indicated that lncRNAs play pivotal roles during evolution. However, in recent years, increasing research has revealed that many lncRNAs are associated with tumorigenesis. In particular, lncRNAs may act as important elements for epigenetic regulation, transcription, post-transcriptional regulation and post-translational modification of proteins. Additionally, they may be novel biomarkers for tumors and therapeutic targets in cancer. Here, we summarize the functions of lncRNAs in esophageal cancer, with an emphasis on lncRNA-mediated regulatory mechanisms that affect the biological characteristics of esophageal cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals

    PubMed Central

    Qi, Lei; Lucks, Julius B.; Liu, Chang C.; Mutalik, Vivek K.; Arkin, Adam P.

    2012-01-01

    Non-coding RNAs (ncRNAs) are versatile regulators in cellular networks. While most trans-acting ncRNAs possess well-defined mechanisms that can regulate transcription or translation, they generally lack the ability to directly sense cellular signals. In this work, we describe a set of design principles for fusing ncRNAs to RNA aptamers to engineer allosteric RNA fusion molecules that modulate the activity of ncRNAs in a ligand-inducible way in Escherichia coli. We apply these principles to ncRNA regulators that can regulate translation (IS10 ncRNA) and transcription (pT181 ncRNA), and demonstrate that our design strategy exhibits high modularity between the aptamer ligand-sensing motif and the ncRNA target-recognition motif, which allows us to reconfigure these two motifs to engineer orthogonally acting fusion molecules that respond to different ligands and regulate different targets in the same cell. Finally, we show that the same ncRNA fused with different sensing domains results in a sensory-level NOR gate that integrates multiple input signals to perform genetic logic. These ligand-sensing ncRNA regulators provide useful tools to modulate the activity of structurally related families of ncRNAs, and building upon the growing body of RNA synthetic biology, our ability to design aptamer–ncRNA fusion molecules offers new ways to engineer ligand-sensing regulatory circuits. PMID:22383579

  5. The expression profiling and ontology analysis of non-coding RNAs in dexamethasone induced steatosis in hepatoma cell.

    PubMed

    Liu, Fengqiong; Gong, Ruijie; Lv, Xiaofei; Li, Huangyuan

    2018-04-15

    Increasing amounts of evidence have indicated that non-coding RNAs (ncRNAs) have important regulatory potential in various biological processes. However, the contribution of ncRNAs, especially long non-coding RNAs (lncRNAs) to drug induced steatosis remain largely unknown. The aim of this study is to investigate miRNA, lncRNA and mRNA expression profiles and their potential roles in the process of drug induced steatosis. Microarray expression profiles of miRNAs, lncRNAs and mRNAs were determined in dexamethasone treated HepG2 cell as well as control cell. Differential expression, pathway and gene network analyses were developed to identify possible functional RNA molecules in dexamethasone induced steatosis. Compared with control HepG2 cell, 652 lncRNAs (528 up-regulated and 124 down-regulated), 655 mRNAs (527 upregulated and 128 down-regulated) and 114 miRNAs (55 miRNAs up-regulated and 59 down-regulated) were differentially expressed in dexamethasone treated HepG2 cell. Pathway analysis showed that the fatty acid biosynthesis, insulin resistance, PPAR signaling pathway, regulation of lipolysis in adipocytes, carbohydrate digestion and absorption, steroid hormone biosynthesis signaling pathways had a close relationship with dexamethasone induced steatosis. 10 highly dysregulated mRNAs and 20 miRNAs, which are closely related to lipid metabolism, were identified and validated by PCR, which followed by ceRNA analysis. CeRNA network analysis identified 5 lipid metabolism related genes, including CYP7A1, CYP11A1, PDK4, ABHD5, ACSL1. It also identified 12 miRNAs (miR-23a-3p, miR-519d-3p, miR-4328, miR-15b-5p etc.) and 177 lncRNAs (ENST00000508884, ENST00000608794, ENST00000568457 etc.). Our results provide a foundation and an expansive view of the roles and mechanisms of ncRNAs in dexamethasone induced steatosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Emerging Putative Associations between Non-Coding RNAs and Protein-Coding Genes in Neuropathic Pain: Added Value from Reusing Microarray Data

    PubMed Central

    Raju, Hemalatha B.; Tsinoremas, Nicholas F.; Capobianco, Enrico

    2016-01-01

    Regeneration of injured nerves is likely occurring in the peripheral nervous system, but not in the central nervous system. Although protein-coding gene expression has been assessed during nerve regeneration, little is currently known about the role of non-coding RNAs (ncRNAs). This leaves open questions about the potential effects of ncRNAs at transcriptome level. Due to the limited availability of human neuropathic pain (NP) data, we have identified the most comprehensive time-course gene expression profile referred to sciatic nerve (SN) injury and studied in a rat model using two neuronal tissues, namely dorsal root ganglion (DRG) and SN. We have developed a methodology to identify differentially expressed bioentities starting from microarray probes and repurposing them to annotate ncRNAs, while analyzing the expression profiles of protein-coding genes. The approach is designed to reuse microarray data and perform first profiling and then meta-analysis through three main steps. First, we used contextual analysis to identify what we considered putative or potential protein-coding targets for selected ncRNAs. Relevance was therefore assigned to differential expression of neighbor protein-coding genes, with neighborhood defined by a fixed genomic distance from long or antisense ncRNA loci, and of parental genes associated with pseudogenes. Second, connectivity among putative targets was used to build networks, in turn useful to conduct inference at interactomic scale. Last, network paths were annotated to assess relevance to NP. We found significant differential expression in long-intergenic ncRNAs (32 lincRNAs in SN and 8 in DRG), antisense RNA (31 asRNA in SN and 12 in DRG), and pseudogenes (456 in SN and 56 in DRG). In particular, contextual analysis centered on pseudogenes revealed some targets with known association to neurodegeneration and/or neurogenesis processes. While modules of the olfactory receptors were clearly identified in protein

  7. Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics

    PubMed Central

    del Val, Coral; Rivas, Elena; Torres-Quesada, Omar; Toro, Nicolás; Jiménez-Zurdo, José I

    2007-01-01

    Bacterial small non-coding RNAs (sRNAs) are being recognized as novel widespread regulators of gene expression in response to environmental signals. Here, we present the first search for sRNA-encoding genes in the nitrogen-fixing endosymbiont Sinorhizobium meliloti, performed by a genome-wide computational analysis of its intergenic regions. Comparative sequence data from eight related α-proteobacteria were obtained, and the interspecies pairwise alignments were scored with the programs eQRNA and RNAz as complementary predictive tools to identify conserved and stable secondary structures corresponding to putative non-coding RNAs. Northern experiments confirmed that eight of the predicted loci, selected among the original 32 candidates as most probable sRNA genes, expressed small transcripts. This result supports the combined use of eQRNA and RNAz as a robust strategy to identify novel sRNAs in bacteria. Furthermore, seven of the transcripts accumulated differentially in free-living and symbiotic conditions. Experimental mapping of the 5′-ends of the detected transcripts revealed that their encoding genes are organized in autonomous transcription units with recognizable promoter and, in most cases, termination signatures. These findings suggest novel regulatory functions for sRNAs related to the interactions of α-proteobacteria with their eukaryotic hosts. PMID:17971083

  8. Development of cytotoxicity-sensitive human cells using overexpression of long non-coding RNAs.

    PubMed

    Tani, Hidenori; Torimura, Masaki

    2015-05-01

    Biosensors using live cells are analytical devices that have the advantage of being highly sensitive for their targets. Although attention has primarily focused on reporter gene assays using functional promoters, cell viability assays are still efficient. We focus on long non-coding RNAs (lncRNAs) that are involved in the molecular mechanisms associated with responses to cellular stresses as a new biological material. Here we have developed human live cells transfected with lncRNAs that can be used as an intelligent sensor of cytotoxicity for a broad range of environmental stresses. We identified three lncRNAs (GAS5, IDI2-AS1, and SNHG15) that responded to cycloheximide in HEK293 cells. Overexpression of these lncRNAs sensitized human cells to cell death in response to various stresses (cycloheximide, ultraviolet irradiation, mercury II chloride, or hydrogen peroxide). In particular, dual lncRNA (GAS5 plus IDI2-AS1, or GAS5 plus SNHG15) overexpression sensitized cells to cell death by more cellular stresses. We propose a method for highly sensitive biosensors using overexpression of lncRNAs that can potentially measure the cytotoxicity signals of various environmental stresses. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Transcriptome analysis reveals long intergenic non-coding RNAs involved in skeletal muscle growth and development in pig.

    PubMed

    Zou, Cheng; Li, Jingxuan; Luo, Wenzhe; Li, Long; Hu, An; Fu, Yuhua; Hou, Ye; Li, Changchun

    2017-08-18

    Long intergenic non-coding RNAs (lincRNAs) play essential roles in numerous biological processes and are widely studied. The skeletal muscle is an important tissue that plays an essential role in individual movement ability. However, lincRNAs in pig skeletal muscles are largely undiscovered and their biological functions remain elusive. In this study, we assembled transcriptomes using RNA-seq data published in previous studies of our laboratory group and identified 323 lincRNAs in porcine leg muscle. We found that these lincRNAs have shorter transcript length, fewer exons and lower expression level than protein-coding genes. Gene ontology and pathway analyses indicated that many potential target genes (PTGs) of lincRNAs were involved in skeletal-muscle-related processes, such as muscle contraction and muscle system process. Combined our previous studies, we found a potential regulatory mechanism in which the promoter methylation of lincRNAs can negatively regulate lincRNA expression and then positively regulate PTG expression, which can finally result in abnormal phenotypes of cloned piglets through a certain unknown pathway. This work detailed a number of lincRNAs and their target genes involved in skeletal muscle growth and development and can facilitate future studies on their roles in skeletal muscle growth and development.

  10. Identification of Transposable Elements Contributing to Tissue-Specific Expression of Long Non-Coding RNAs

    PubMed Central

    Chishima, Takafumi; Iwakiri, Junichi

    2018-01-01

    It has been recently suggested that transposable elements (TEs) are re-used as functional elements of long non-coding RNAs (lncRNAs). This is supported by some examples such as the human endogenous retrovirus subfamily H (HERVH) elements contained within lncRNAs and expressed specifically in human embryonic stem cells (hESCs), as required to maintain hESC identity. There are at least two unanswered questions about all lncRNAs. How many TEs are re-used within lncRNAs? Are there any other TEs that affect tissue specificity of lncRNA expression? To answer these questions, we comprehensively identify TEs that are significantly related to tissue-specific expression levels of lncRNAs. We downloaded lncRNA expression data corresponding to normal human tissue from the Expression Atlas and transformed the data into tissue specificity estimates. Then, Fisher’s exact tests were performed to verify whether the presence or absence of TE-derived sequences influences the tissue specificity of lncRNA expression. Many TE–tissue pairs associated with tissue-specific expression of lncRNAs were detected, indicating that multiple TE families can be re-used as functional domains or regulatory sequences of lncRNAs. In particular, we found that the antisense promoter region of L1PA2, a LINE-1 subfamily, appears to act as a promoter for lncRNAs with placenta-specific expression. PMID:29315213

  11. Characterization and Analysis of Whole Transcriptome of Giant Panda Spleens: Implying Critical Roles of Long Non-Coding RNAs in Immunity.

    PubMed

    Peng, Rui; Liu, Yuliang; Cai, Zhigang; Shen, Fujun; Chen, Jiasong; Hou, Rong; Zou, Fangdong

    2018-01-01

    Giant pandas, an endangered species, are a powerful symbol of species conservation. Giant pandas may suffer from a variety of diseases. Owing to their highly specialized diet of bamboo, giant pandas are thought to have a relatively weak ability to resist diseases. The spleen is the largest organ in the lymphatic system. However, there is little known about giant panda spleen at a molecular level. Thus, clarifying the regulatory mechanisms of spleen could help us further understand the immune system of the giant panda as well as its conservation. The two giant panda spleens were from two male individuals, one newborn and one an adult, in a non-pathological condition. The whole transcriptomes of mRNA, lncRNA, miRNA, and circRNA in the two spleens were sequenced using the Illumina HiSeq platform. EBseq and IDEG6 were used to observe the differentially expressed genes (DEGs) between these two spleens. Gene Ontology and KEGG analyses were used to annotate the function of DEGs. Furthermore, networks between non-coding RNAs and protein-coding genes were constructed to investigate the relationship between non-coding RNAs and immune-associated genes. By comparative analysis of the whole transcriptomes of these two spleens, we found that one of the major roles of lncRNAs could be involved in the regulation of immune responses of giant panda spleens. In addition, our results also revealed that microRNAs and circRNAs may have evolved to regulate a large set of biological processes of giant panda spleens, and circRNAs may function as miRNA sponges. To our knowledge, this is the first report of lncRNAs and circRNAs in giant panda, which could be a useful resource for further giant panda research. Our study reveals the potential functional roles of miRNAs, lncRNAs, and circRNAs in giant panda spleen. © 2018 The Author(s). Published by S. Karger AG, Basel.

  12. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction.

    PubMed

    Thiebaut, Flávia; Rojas, Cristian A; Grativol, Clícia; Calixto, Edmundo P da R; Motta, Mariana R; Ballesteros, Helkin G F; Peixoto, Barbara; de Lima, Berenice N S; Vieira, Lucas M; Walter, Maria Emilia; de Armas, Elvismary M; Entenza, Júlio O P; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S; Ferreira, Paulo C G

    2017-12-20

    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae . Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae , while the siRNAs were repressed in the presence of A. avenae . Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408-a copper-microRNA-was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5'RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly.

  13. Roles of Non-Coding RNA in Sugarcane-Microbe Interaction

    PubMed Central

    Grativol, Clícia; Motta, Mariana R.; Ballesteros, Helkin G. F.; Peixoto, Barbara; Vieira, Lucas M.; Walter, Maria Emilia; de Armas, Elvismary M.; Entenza, Júlio O. P.; Lifschitz, Sergio; Farinelli, Laurent; Hemerly, Adriana S.

    2017-01-01

    Studies have highlighted the importance of non-coding RNA regulation in plant-microbe interaction. However, the roles of sugarcane microRNAs (miRNAs) in the regulation of disease responses have not been investigated. Firstly, we screened the sRNA transcriptome of sugarcane infected with Acidovorax avenae. Conserved and novel miRNAs were identified. Additionally, small interfering RNAs (siRNAs) were aligned to differentially expressed sequences from the sugarcane transcriptome. Interestingly, many siRNAs aligned to a transcript encoding a copper-transporter gene whose expression was induced in the presence of A. avenae, while the siRNAs were repressed in the presence of A. avenae. Moreover, a long intergenic non-coding RNA was identified as a potential target or decoy of miR408. To extend the bioinformatics analysis, we carried out independent inoculations and the expression patterns of six miRNAs were validated by quantitative reverse transcription-PCR (qRT-PCR). Among these miRNAs, miR408—a copper-microRNA—was downregulated. The cleavage of a putative miR408 target, a laccase, was confirmed by a modified 5′RACE (rapid amplification of cDNA ends) assay. MiR408 was also downregulated in samples infected with other pathogens, but it was upregulated in the presence of a beneficial diazotrophic bacteria. Our results suggest that regulation by miR408 is important in sugarcane sensing whether microorganisms are either pathogenic or beneficial, triggering specific miRNA-mediated regulatory mechanisms accordingly. PMID:29657296

  14. Identification of long non-coding RNAs in two anthozoan species and their possible implications for coral bleaching.

    PubMed

    Huang, Chen; Morlighem, Jean-Étienne R L; Cai, Jing; Liao, Qiwen; Perez, Carlos Daniel; Gomes, Paula Braga; Guo, Min; Rádis-Baptista, Gandhi; Lee, Simon Ming-Yuen

    2017-07-13

    Long non-coding RNAs (lncRNAs) have been shown to play regulatory roles in a diverse range of biological processes and are associated with the outcomes of various diseases. The majority of studies about lncRNAs focus on model organisms, with lessened investigation in non-model organisms to date. Herein, we have undertaken an investigation on lncRNA in two zoanthids (cnidarian): Protolpalythoa varibilis and Palythoa caribaeorum. A total of 11,206 and 13,240 lncRNAs were detected in P. variabilis and P. caribaeorum transcriptome, respectively. Comparison using NONCODE database indicated that the majority of these lncRNAs is taxonomically species-restricted with no identifiable orthologs. Even so, we found cases in which short regions of P. caribaeorum's lncRNAs were similar to vertebrate species' lncRNAs, and could be associated with lncRNA conserved regulatory functions. Consequently, some high-confidence lncRNA-mRNA interactions were predicted based on such conserved regions, therefore revealing possible involvement of lncRNAs in posttranscriptional processing and regulation in anthozoans. Moreover, investigation of differentially expressed lncRNAs, in healthy colonies and colonial individuals undergoing natural bleaching, indicated that some up-regulated lncRNAs in P. caribaeorum could posttranscriptionally regulate the mRNAs encoding proteins of Ras-mediated signal transduction pathway and components of innate immune-system, which could contribute to the molecular response of coral bleaching.

  15. A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell

    PubMed Central

    Herbert, Kristina M.; Nag, Anita

    2016-01-01

    Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage. PMID:27271653

  16. Co-expression analysis and identification of fecundity-related long non-coding RNAs in sheep ovaries

    PubMed Central

    Miao, Xiangyang; Luo, Qingmiao; Zhao, Huijing; Qin, Xiaoyu

    2016-01-01

    Small Tail Han sheep, including the FecBBFecBB (Han BB) and FecB+ FecB+ (Han++) genotypes, and Dorset sheep exhibit different fecundities. To identify novel long non-coding RNAs (lncRNAs) associated with sheep fecundity to better understand their molecular mechanisms, a genome-wide analysis of mRNAs and lncRNAs from Han BB, Han++ and Dorset sheep was performed. After the identification of differentially expressed mRNAs and lncRNAs, 16 significant modules were explored by using weighted gene coexpression network analysis (WGCNA) followed by functional enrichment analysis of the genes and lncRNAs in significant modules. Among these selected modules, the yellow and brown modules were significantly related to sheep fecundity. lncRNAs (e.g., NR0B1, XLOC_041882, and MYH15) in the yellow module were mainly involved in the TGF-β signalling pathway, and NYAP1 and BCORL1 were significantly associated with the oxytocin signalling pathway, which regulates several genes in the coexpression network of the brown module. Overall, we identified several gene modules associated with sheep fecundity, as well as networks consisting of hub genes and lncRNAs that may contribute to sheep prolificacy by regulating the target mRNAs related to the TGF-β and oxytocin signalling pathways. This study provides an alternative strategy for the identification of potential candidate regulatory lncRNAs. PMID:27982099

  17. Co-expression analysis and identification of fecundity-related long non-coding RNAs in sheep ovaries.

    PubMed

    Miao, Xiangyang; Luo, Qingmiao; Zhao, Huijing; Qin, Xiaoyu

    2016-12-16

    Small Tail Han sheep, including the FecB B FecB B (Han BB) and FecB + FecB + (Han++) genotypes, and Dorset sheep exhibit different fecundities. To identify novel long non-coding RNAs (lncRNAs) associated with sheep fecundity to better understand their molecular mechanisms, a genome-wide analysis of mRNAs and lncRNAs from Han BB, Han++ and Dorset sheep was performed. After the identification of differentially expressed mRNAs and lncRNAs, 16 significant modules were explored by using weighted gene coexpression network analysis (WGCNA) followed by functional enrichment analysis of the genes and lncRNAs in significant modules. Among these selected modules, the yellow and brown modules were significantly related to sheep fecundity. lncRNAs (e.g., NR0B1, XLOC_041882, and MYH15) in the yellow module were mainly involved in the TGF-β signalling pathway, and NYAP1 and BCORL1 were significantly associated with the oxytocin signalling pathway, which regulates several genes in the coexpression network of the brown module. Overall, we identified several gene modules associated with sheep fecundity, as well as networks consisting of hub genes and lncRNAs that may contribute to sheep prolificacy by regulating the target mRNAs related to the TGF-β and oxytocin signalling pathways. This study provides an alternative strategy for the identification of potential candidate regulatory lncRNAs.

  18. Identification and characterization of long non-coding RNAs in subcutaneous adipose tissue from castrated and intact full-sib pair Huainan male pigs

    USDA-ARS?s Scientific Manuscript database

    Testosterone deficiency is associated with obesity in humans. It has been proven that long non-coding RNAs (lncRNAs) regulate adipose tissue metabolism; therefore, we first study the role of lncRNAs on testosterone deficiency-induced fat deposition using castrated male pigs as the model animal. The ...

  19. Differential expression of non-coding RNAs and continuous evolution of the X chromosome in testicular transcriptome of two mouse species.

    PubMed

    Homolka, David; Ivanek, Robert; Forejt, Jiri; Jansa, Petr

    2011-02-14

    Tight regulation of testicular gene expression is a prerequisite for male reproductive success, while differentiation of gene activity in spermatogenesis is important during speciation. Thus, comparison of testicular transcriptomes between closely related species can reveal unique regulatory patterns and shed light on evolutionary constraints separating the species. Here, we compared testicular transcriptomes of two closely related mouse species, Mus musculus and Mus spretus, which diverged more than one million years ago. We analyzed testicular expression using tiling arrays overlapping Chromosomes 2, X, Y and mitochondrial genome. An excess of differentially regulated non-coding RNAs was found on Chromosome 2 including the intronic antisense RNAs, intergenic RNAs and premature forms of Piwi-interacting RNAs (piRNAs). Moreover, striking difference was found in the expression of X-linked G6pdx gene, the parental gene of the autosomal retrogene G6pd2. The prevalence of non-coding RNAs among differentially expressed transcripts indicates their role in species-specific regulation of spermatogenesis. The postmeiotic expression of G6pdx in Mus spretus points towards the continuous evolution of X-chromosome silencing and provides an example of expression change accompanying the out-of-the X-chromosomal retroposition.

  20. Profiling analysis of long non-coding RNAs in early postnatal mouse hearts

    PubMed Central

    Sun, Xiongshan; Han, Qi; Luo, Hongqin; Pan, Xiaodong; Ji, Yan; Yang, Yao; Chen, Hanying; Wang, Fangjie; Lai, Wenjing; Guan, Xiao; Zhang, Qi; Tang, Yuan; Chu, Jianhong; Yu, Jianhua; Shou, Weinian; Deng, Youcai; Li, Xiaohui

    2017-01-01

    Mammalian cardiomyocytes undergo a critical hyperplastic-to-hypertrophic growth transition at early postnatal age, which is important in establishing normal physiological function of postnatal hearts. In the current study, we intended to explore the role of long non-coding (lnc) RNAs in this transitional stage. We analyzed lncRNA expression profiles in mouse hearts at postnatal day (P) 1, P7 and P28 via microarray. We identified 1,146 differentially expressed lncRNAs with more than 2.0-fold change when compared the expression profiles of P1 to P7, P1 to P28, and P7 to P28. The neighboring genes of these differentially expressed lncRNAs were mainly involved in DNA replication-associated biological processes. We were particularly interested in one novel cardiac-enriched lncRNA, ENSMUST00000117266, whose expression was dramatically down-regulated from P1 to P28 and was also sensitive to hypoxia, paraquat, and myocardial infarction. Knockdown ENSMUST00000117266 led to a significant increase of neonatal mouse cardiomyocytes in G0/G1 phase and reduction in G2/M phase, suggesting that ENSMUST00000117266 is involved in regulating cardiomyocyte proliferative activity and is likely associated with hyperplastic-to-hypertrophic growth transition. In conclusion, our data have identified a large group of lncRNAs presented in the early postnatal mouse heart. Some of these lncRNAs may have important functions in cardiac hyperplastic-to-hypertrophic growth transition. PMID:28266538

  1. Long Non-Coding RNAs Responsive to Salt and Boron Stress in the Hyper-Arid Lluteño Maize from Atacama Desert.

    PubMed

    Huanca-Mamani, Wilson; Arias-Carrasco, Raúl; Cárdenas-Ninasivincha, Steffany; Rojas-Herrera, Marcelo; Sepúlveda-Hermosilla, Gonzalo; Caris-Maldonado, José Carlos; Bastías, Elizabeth; Maracaja-Coutinho, Vinicius

    2018-03-20

    Long non-coding RNAs (lncRNAs) have been defined as transcripts longer than 200 nucleotides, which lack significant protein coding potential and possess critical roles in diverse cellular processes. Long non-coding RNAs have recently been functionally characterized in plant stress-response mechanisms. In the present study, we perform a comprehensive identification of lncRNAs in response to combined stress induced by salinity and excess of boron in the Lluteño maize, a tolerant maize landrace from Atacama Desert, Chile. We use deep RNA sequencing to identify a set of 48,345 different lncRNAs, of which 28,012 (58.1%) are conserved with other maize (B73, Mo17 or Palomero), with the remaining 41.9% belonging to potentially Lluteño exclusive lncRNA transcripts. According to B73 maize reference genome sequence, most Lluteño lncRNAs correspond to intergenic transcripts. Interestingly, Lluteño lncRNAs presents an unusual overall higher expression compared to protein coding genes under exposure to stressed conditions. In total, we identified 1710 putatively responsive to the combined stressed conditions of salt and boron exposure. We also identified a set of 848 stress responsive potential trans natural antisense transcripts ( trans -NAT) lncRNAs, which seems to be regulating genes associated with regulation of transcription, response to stress, response to abiotic stimulus and participating of the nicotianamine metabolic process. Reverse transcription-quantitative PCR (RT-qPCR) experiments were performed in a subset of lncRNAs, validating their existence and expression patterns. Our results suggest that a diverse set of maize lncRNAs from leaves and roots is responsive to combined salt and boron stress, being the first effort to identify lncRNAs from a maize landrace adapted to extreme conditions such as the Atacama Desert. The information generated is a starting point to understand the genomic adaptabilities suffered by this maize to surpass this extremely stressed

  2. Long Non-Coding RNAs Responsive to Salt and Boron Stress in the Hyper-Arid Lluteño Maize from Atacama Desert

    PubMed Central

    Huanca-Mamani, Wilson; Arias-Carrasco, Raúl; Cárdenas-Ninasivincha, Steffany; Rojas-Herrera, Marcelo; Sepúlveda-Hermosilla, Gonzalo; Caris-Maldonado, José Carlos; Bastías, Elizabeth; Maracaja-Coutinho, Vinicius

    2018-01-01

    Long non-coding RNAs (lncRNAs) have been defined as transcripts longer than 200 nucleotides, which lack significant protein coding potential and possess critical roles in diverse cellular processes. Long non-coding RNAs have recently been functionally characterized in plant stress–response mechanisms. In the present study, we perform a comprehensive identification of lncRNAs in response to combined stress induced by salinity and excess of boron in the Lluteño maize, a tolerant maize landrace from Atacama Desert, Chile. We use deep RNA sequencing to identify a set of 48,345 different lncRNAs, of which 28,012 (58.1%) are conserved with other maize (B73, Mo17 or Palomero), with the remaining 41.9% belonging to potentially Lluteño exclusive lncRNA transcripts. According to B73 maize reference genome sequence, most Lluteño lncRNAs correspond to intergenic transcripts. Interestingly, Lluteño lncRNAs presents an unusual overall higher expression compared to protein coding genes under exposure to stressed conditions. In total, we identified 1710 putatively responsive to the combined stressed conditions of salt and boron exposure. We also identified a set of 848 stress responsive potential trans natural antisense transcripts (trans-NAT) lncRNAs, which seems to be regulating genes associated with regulation of transcription, response to stress, response to abiotic stimulus and participating of the nicotianamine metabolic process. Reverse transcription-quantitative PCR (RT-qPCR) experiments were performed in a subset of lncRNAs, validating their existence and expression patterns. Our results suggest that a diverse set of maize lncRNAs from leaves and roots is responsive to combined salt and boron stress, being the first effort to identify lncRNAs from a maize landrace adapted to extreme conditions such as the Atacama Desert. The information generated is a starting point to understand the genomic adaptabilities suffered by this maize to surpass this extremely stressed

  3. Differentially Expressed Long Non-Coding RNAs Were Predicted to Be Involved in the Control of Signaling Pathways in Pediatric Astrocytoma.

    PubMed

    Ruiz Esparza-Garrido, Ruth; Rodríguez-Corona, Juan Manuel; López-Aguilar, Javier Enrique; Rodríguez-Florido, Marco Antonio; Velázquez-Wong, Ana Claudia; Viedma-Rodríguez, Rubí; Salamanca-Gómez, Fabio; Velázquez-Flores, Miguel Ángel

    2017-10-01

    Expression changes for long non-coding RNAs (lncRNAs) have been identified in adult glioblastoma multiforme (GBM) and in a mixture of adult and pediatric astrocytoma. Since adult and pediatric astrocytomas are molecularly different, the mixture of both could mask specific features in each. We determined the global expression patterns of lncRNAs and messenger RNA (mRNAs) in pediatric astrocytoma of different histological grades. Transcript expression changes were determined with an HTA 2.0 array. lncRNA interactions with microRNAs and mRNAs were predicted by using an algorithm and the LncTar tool, respectively. Interactomes were constructed with the HIPPIE database and visualized with the Cytoscape platform. The array showed expression changes in 156 and 207 lncRNAs in tumors (versus the control) and in pediatric GBM (versus low-grade astrocytoma), respectively. Predictions identified lncRNAs that have putative microRNA binding sites, which might suggest that they function as sponges in these tumors. Also, lncRNAs were shown to interact with many mRNAs, such as Pleckstrin homology-like domain, family A, member 1 (PHLDA1) and sulfatase 2 (SULF2). For example, qPCR found long intergenic non-coding RNA regulator of reprogramming (linc-RoR) expression levels upregulated in pediatric GBM when they were compared with control tissues or with low-grade tumors. Meanwhile, PHLDA1 and ELAV-like RNA binding protein 1 (ELAV1) showed expression changes in tumors relative to the control. Our data showed many lncRNAs with expression changes in pediatric astrocytoma, which might be involved in the regulation of different signaling pathways.

  4. Differential Expression of Non-Coding RNAs and Continuous Evolution of the X Chromosome in Testicular Transcriptome of Two Mouse Species

    PubMed Central

    Homolka, David; Ivanek, Robert; Forejt, Jiri; Jansa, Petr

    2011-01-01

    Background Tight regulation of testicular gene expression is a prerequisite for male reproductive success, while differentiation of gene activity in spermatogenesis is important during speciation. Thus, comparison of testicular transcriptomes between closely related species can reveal unique regulatory patterns and shed light on evolutionary constraints separating the species. Methodology/Principal Findings Here, we compared testicular transcriptomes of two closely related mouse species, Mus musculus and Mus spretus, which diverged more than one million years ago. We analyzed testicular expression using tiling arrays overlapping Chromosomes 2, X, Y and mitochondrial genome. An excess of differentially regulated non-coding RNAs was found on Chromosome 2 including the intronic antisense RNAs, intergenic RNAs and premature forms of Piwi-interacting RNAs (piRNAs). Moreover, striking difference was found in the expression of X-linked G6pdx gene, the parental gene of the autosomal retrogene G6pd2. Conclusions/Significance The prevalence of non-coding RNAs among differentially expressed transcripts indicates their role in species-specific regulation of spermatogenesis. The postmeiotic expression of G6pdx in Mus spretus points towards the continuous evolution of X-chromosome silencing and provides an example of expression change accompanying the out-of-the X-chromosomal retroposition. PMID:21347268

  5. Specific expression of novel long non-coding RNAs in high-hyperdiploid childhood acute lymphoblastic leukemia

    PubMed Central

    Drouin, Simon; Caron, Maxime; St-Onge, Pascal; Gioia, Romain; Richer, Chantal; Oualkacha, Karim; Droit, Arnaud; Sinnett, Daniel

    2017-01-01

    Pre-B cell childhood acute lymphoblastic leukemia (pre-B cALL) is a heterogeneous disease involving many subtypes typically stratified using a combination of cytogenetic and molecular-based assays. These methods, although widely used, rely on the presence of known chromosomal translocations, which is a limiting factor. There is therefore a need for robust, sensitive, and specific molecular biomarkers unaffected by such limitations that would allow better risk stratification and consequently better clinical outcome. In this study we performed a transcriptome analysis of 56 pre-B cALL patients to identify expression signatures in different subtypes. In both protein-coding and long non-coding RNAs (lncRNA), we identified subtype-specific gene signatures distinguishing pre-B cALL subtypes, particularly in t(12;21) and hyperdiploid cases. The genes up-regulated in pre-B cALL subtypes were enriched in bivalent chromatin marks in their promoters. LncRNAs is a new and under-studied class of transcripts. The subtype-specific nature of lncRNAs suggests they may be suitable clinical biomarkers to guide risk stratification and targeted therapies in pre-B cALL patients. PMID:28346506

  6. [Epigenetics of plant vernalization regulated by non-coding RNAs].

    PubMed

    Zhang, Shao-Feng; Li, Xiao-Rong; Sun, Chuan-Bao; He, Yu-Ke

    2012-07-01

    Many higher plants must experience a period of winter cold to accomplish the transition from vegetative to reproductive growth. This biological process is called vernalization. Some crops such as wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) produce seeds as edible organs, and therefore special measures of rotation and cultivation are necessary for plants to go through an early vernalization for flower differentiation and development, whereas the other crops such as Chinese cabbage (B rapa ssp. pekinenesis) and cabbage (Brassica napus L.) produce leafy heads as edible organs, and additional practice should be taken to avoid vernalization for a prolonged and fully vegetative growth. Before vernalization, flowering is repressed by the action of a gene called Flowering Locus C (FLC). This paper reviewed the function of non-coding RNAs and some proteins including VRN1, VRN2, and VIN3 in epigenetic regulation of FLC during vernalization.

  7. An improved method for identification of small non-coding RNAs in bacteria using support vector machine

    NASA Astrophysics Data System (ADS)

    Barman, Ranjan Kumar; Mukhopadhyay, Anirban; Das, Santasabuj

    2017-04-01

    Bacterial small non-coding RNAs (sRNAs) are not translated into proteins, but act as functional RNAs. They are involved in diverse biological processes like virulence, stress response and quorum sensing. Several high-throughput techniques have enabled identification of sRNAs in bacteria, but experimental detection remains a challenge and grossly incomplete for most species. Thus, there is a need to develop computational tools to predict bacterial sRNAs. Here, we propose a computational method to identify sRNAs in bacteria using support vector machine (SVM) classifier. The primary sequence and secondary structure features of experimentally-validated sRNAs of Salmonella Typhimurium LT2 (SLT2) was used to build the optimal SVM model. We found that a tri-nucleotide composition feature of sRNAs achieved an accuracy of 88.35% for SLT2. We validated the SVM model also on the experimentally-detected sRNAs of E. coli and Salmonella Typhi. The proposed model had robustly attained an accuracy of 81.25% and 88.82% for E. coli K-12 and S. Typhi Ty2, respectively. We confirmed that this method significantly improved the identification of sRNAs in bacteria. Furthermore, we used a sliding window-based method and identified sRNAs from complete genomes of SLT2, S. Typhi Ty2 and E. coli K-12 with sensitivities of 89.09%, 83.33% and 67.39%, respectively.

  8. PlantRNA_Sniffer: A SVM-Based Workflow to Predict Long Intergenic Non-Coding RNAs in Plants.

    PubMed

    Vieira, Lucas Maciel; Grativol, Clicia; Thiebaut, Flavia; Carvalho, Thais G; Hardoim, Pablo R; Hemerly, Adriana; Lifschitz, Sergio; Ferreira, Paulo Cavalcanti Gomes; Walter, Maria Emilia M T

    2017-03-04

    Non-coding RNAs (ncRNAs) constitute an important set of transcripts produced in the cells of organisms. Among them, there is a large amount of a particular class of long ncRNAs that are difficult to predict, the so-called long intergenic ncRNAs (lincRNAs), which might play essential roles in gene regulation and other cellular processes. Despite the importance of these lincRNAs, there is still a lack of biological knowledge and, currently, the few computational methods considered are so specific that they cannot be successfully applied to other species different from those that they have been originally designed to. Prediction of lncRNAs have been performed with machine learning techniques. Particularly, for lincRNA prediction, supervised learning methods have been explored in recent literature. As far as we know, there are no methods nor workflows specially designed to predict lincRNAs in plants. In this context, this work proposes a workflow to predict lincRNAs on plants, considering a workflow that includes known bioinformatics tools together with machine learning techniques, here a support vector machine (SVM). We discuss two case studies that allowed to identify novel lincRNAs, in sugarcane ( Saccharum spp.) and in maize ( Zea mays ). From the results, we also could identify differentially-expressed lincRNAs in sugarcane and maize plants submitted to pathogenic and beneficial microorganisms.

  9. PlantRNA_Sniffer: A SVM-Based Workflow to Predict Long Intergenic Non-Coding RNAs in Plants

    PubMed Central

    Vieira, Lucas Maciel; Grativol, Clicia; Thiebaut, Flavia; Carvalho, Thais G.; Hardoim, Pablo R.; Hemerly, Adriana; Lifschitz, Sergio; Ferreira, Paulo Cavalcanti Gomes; Walter, Maria Emilia M. T.

    2017-01-01

    Non-coding RNAs (ncRNAs) constitute an important set of transcripts produced in the cells of organisms. Among them, there is a large amount of a particular class of long ncRNAs that are difficult to predict, the so-called long intergenic ncRNAs (lincRNAs), which might play essential roles in gene regulation and other cellular processes. Despite the importance of these lincRNAs, there is still a lack of biological knowledge and, currently, the few computational methods considered are so specific that they cannot be successfully applied to other species different from those that they have been originally designed to. Prediction of lncRNAs have been performed with machine learning techniques. Particularly, for lincRNA prediction, supervised learning methods have been explored in recent literature. As far as we know, there are no methods nor workflows specially designed to predict lincRNAs in plants. In this context, this work proposes a workflow to predict lincRNAs on plants, considering a workflow that includes known bioinformatics tools together with machine learning techniques, here a support vector machine (SVM). We discuss two case studies that allowed to identify novel lincRNAs, in sugarcane (Saccharum spp.) and in maize (Zea mays). From the results, we also could identify differentially-expressed lincRNAs in sugarcane and maize plants submitted to pathogenic and beneficial microorganisms. PMID:29657283

  10. Computational analysis of ribonomics datasets identifies long non-coding RNA targets of γ-herpesviral miRNAs.

    PubMed

    Sethuraman, Sunantha; Thomas, Merin; Gay, Lauren A; Renne, Rolf

    2018-05-29

    Ribonomics experiments involving crosslinking and immuno-precipitation (CLIP) of Ago proteins have expanded the understanding of the miRNA targetome of several organisms. These techniques, collectively referred to as CLIP-seq, have been applied to identifying the mRNA targets of miRNAs expressed by Kaposi's Sarcoma-associated herpes virus (KSHV) and Epstein-Barr virus (EBV). However, these studies focused on identifying only those RNA targets of KSHV and EBV miRNAs that are known to encode proteins. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are also targeted by miRNAs. In this study, we performed a systematic re-analysis of published datasets from KSHV- and EBV-driven cancers. We used CLIP-seq data from lymphoma cells or EBV-transformed B cells, and a crosslinking, ligation and sequencing of hybrids dataset from KSHV-infected endothelial cells, to identify novel lncRNA targets of viral miRNAs. Here, we catalog the lncRNA targetome of KSHV and EBV miRNAs, and provide a detailed in silico analysis of lncRNA-miRNA binding interactions. Viral miRNAs target several hundred lncRNAs, including a subset previously shown to be aberrantly expressed in human malignancies. In addition, we identified thousands of lncRNAs to be putative targets of human miRNAs, suggesting that miRNA-lncRNA interactions broadly contribute to the regulation of gene expression.

  11. Systematic Analysis of Long Non-Coding RNAs and mRNAs in the Ovaries of Duroc Pigs During Different Follicular Stages Using RNA Sequencing.

    PubMed

    Liu, Yi; Li, Mengxun; Bo, Xinwen; Li, Tao; Ma, Lipeng; Zhai, Tenjiao; Huang, Tao

    2018-06-11

    The dynamic process involving the selection and maturation of follicles is regulated and controlled by a highly synchronized and exquisitely timed cascade of gene expression. Studies have shown that long non-coding RNA (lncRNA) is essential for the normal maintenance of animal reproductive function and has an important regulatory function in ovarian development and hormone secretion. In this study, a total of 2076 lncRNAs (1362 known lncRNAs and 714 new lncRNAs) and 25,491 mRNAs were identified in libraries constructed from Duroc ovaries on days 0, 2 and 4 of follicle development. lncRNAs were shorter, had fewer exons, exhibited a shorter ORF (Open Reading Frame) length and lower expression levels, and were less conserved than mRNAs. Furthermore, 1694 transcripts (140 lncRNAs and 1554 mRNAs) were found to be differentially expressed in pairwise comparisons. A total of 6945 co-localized mRNAs were detected in cis in 2076 lncRNAs. The most enriched GO (Gene Ontology) terms were related to developmental processes. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that the differentially expressed lncRNAs targeted mRNAs, and the differentially expressed mRNAs were related to the TGF-β signaling pathway, the PI3K-Akt signaling pathway, the Retinol metabolic pathway and the Wnt signaling pathway. This study deepened our understanding of the genetic basis and molecular mechanisms of follicular development in pigs.

  12. Genome-wide identification and characterization of long non-coding RNAs in developmental skeletal muscle of fetal goat.

    PubMed

    Zhan, Siyuan; Dong, Yao; Zhao, Wei; Guo, Jiazhong; Zhong, Tao; Wang, Linjie; Li, Li; Zhang, Hongping

    2016-08-22

    Long non-coding RNAs (lncRNAs) have been studied extensively over the past few years. Large numbers of lncRNAs have been identified in mouse, rat, and human, and some of them have been shown to play important roles in muscle development and myogenesis. However, there are few reports on the characterization of lncRNAs covering all the development stages of skeletal muscle in livestock. RNA libraries constructed from developing longissimus dorsi muscle of fetal (45, 60, and 105 days of gestation) and postnatal (3 days after birth) goat (Capra hircus) were sequenced. A total of 1,034,049,894 clean reads were generated. Among them, 3981 lncRNA transcripts corresponding to 2739 lncRNA genes were identified, including 3515 intergenic lncRNAs and 466 anti-sense lncRNAs. Notably, in pairwise comparisons between the libraries of skeletal muscle at the different development stages, a total of 577 transcripts were differentially expressed (P < 0.05) which were validated by qPCR using randomly selected six lncRNA genes. The identified goat lncRNAs shared some characteristics, such as fewer exons and shorter length, with the lncRNAs in other mammals. We also found 1153 lncRNAs genes were neighbored 1455 protein-coding genes (<10 kb upstream and downstream) and functionally enriched in transcriptional regulation and development-related processes, indicating they may be in cis-regulatory relationships. Additionally, Pearson's correlation coefficients of co-expression levels suggested 1737 lncRNAs and 19,422 mRNAs were possibly in trans-regulatory relationships (r > 0.95 or r < -0.95). These co-expressed mRNAs were enriched in development-related biological processes such as muscle system processes, regulation of cell growth, muscle cell development, regulation of transcription, and embryonic morphogenesis. This study provides a catalog of goat muscle-related lncRNAs, and will contribute to a fuller understanding of the molecular mechanism underpinning muscle

  13. In silico screening of the chicken genome for overlaps between genomic regions: microRNA genes, coding and non-coding transcriptional units, QTL, and genetic variations.

    PubMed

    Zorc, Minja; Kunej, Tanja

    2016-05-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs involved in posttranscriptional regulation of target genes. Regulation requires complementarity between target mRNA and the mature miRNA seed region, responsible for their recognition and binding. It has been estimated that each miRNA targets approximately 200 genes, and genetic variability of miRNA genes has been reported to affect phenotypic variability and disease susceptibility in humans, livestock species, and model organisms. Polymorphisms in miRNA genes could therefore represent biomarkers for phenotypic traits in livestock animals. In our previous study, we collected polymorphisms within miRNA genes in chicken. In the present study, we identified miRNA-related genomic overlaps to prioritize genomic regions of interest for further functional studies and biomarker discovery. Overlapping genomic regions in chicken were analyzed using the following bioinformatics tools and databases: miRNA SNiPer, Ensembl, miRBase, NCBI Blast, and QTLdb. Out of 740 known pre-miRNA genes, 263 (35.5 %) contain polymorphisms; among them, 35 contain more than three polymorphisms The most polymorphic miRNA genes in chicken are gga-miR-6662, containing 23 single nucleotide polymorphisms (SNPs) within the pre-miRNA region, including five consecutive SNPs, and gga-miR-6688, containing ten polymorphisms including three consecutive polymorphisms. Several miRNA-related genomic hotspots have been revealed in chicken genome; polymorphic miRNA genes are located within protein-coding and/or non-coding transcription units and quantitative trait loci (QTL) associated with production traits. The present study includes the first description of an exonic miRNA in a chicken genome, an overlap between the miRNA gene and the exon of the protein-coding gene (gga-miR-6578/HADHB), and the first report of a missense polymorphism located within a mature miRNA seed region. Identified miRNA-related genomic hotspots in chicken can serve researchers as a

  14. Non-coding landscapes of colorectal cancer

    PubMed Central

    Ragusa, Marco; Barbagallo, Cristina; Statello, Luisa; Condorelli, Angelo Giuseppe; Battaglia, Rosalia; Tamburello, Lucia; Barbagallo, Davide; Di Pietro, Cinzia; Purrello, Michele

    2015-01-01

    For two decades Vogelstein’s model has been the paradigm for describing the sequence of molecular changes within protein-coding genes that would lead to overt colorectal cancer (CRC). This model is now too simplistic in the light of recent studies, which have shown that our genome is pervasively transcribed in RNAs other than mRNAs, denominated non-coding RNAs (ncRNAs). The discovery that mutations in genes encoding these RNAs [i.e., microRNAs (miRNAs), long non-coding RNAs, and circular RNAs] are causally involved in cancer phenotypes has profoundly modified our vision of tumour molecular genetics and pathobiology. By exploiting a wide range of different mechanisms, ncRNAs control fundamental cellular processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis: these data have also confirmed their role as oncogenes or tumor suppressors in cancer development and progression. The existence of a sophisticated RNA-based regulatory system, which dictates the correct functioning of protein-coding networks, has relevant biological and biomedical consequences. Different miRNAs involved in neoplastic and degenerative diseases exhibit potential predictive and prognostic properties. Furthermore, the key roles of ncRNAs make them very attractive targets for innovative therapeutic approaches. Several recent reports have shown that ncRNAs can be secreted by cells into the extracellular environment (i.e., blood and other body fluids): this suggests the existence of extracellular signalling mechanisms, which may be exploited by cells in physiology and pathology. In this review, we will summarize the most relevant issues on the involvement of cellular and extracellular ncRNAs in disease. We will then specifically describe their involvement in CRC pathobiology and their translational applications to CRC diagnosis, prognosis and therapy. PMID:26556998

  15. A Catalogue of Putative cis-Regulatory Interactions Between Long Non-coding RNAs and Proximal Coding Genes Based on Correlative Analysis Across Diverse Human Tumors.

    PubMed

    Basu, Swaraj; Larsson, Erik

    2018-05-31

    Antisense transcripts and other long non-coding RNAs are pervasive in mammalian cells, and some of these molecules have been proposed to regulate proximal protein-coding genes in cis For example, non-coding transcription can contribute to inactivation of tumor suppressor genes in cancer, and antisense transcripts have been implicated in the epigenetic inactivation of imprinted genes. However, our knowledge is still limited and more such regulatory interactions likely await discovery. Here, we make use of available gene expression data from a large compendium of human tumors to generate hypotheses regarding non-coding-to-coding cis -regulatory relationships with emphasis on negative associations, as these are less likely to arise for reasons other than cis -regulation. We document a large number of possible regulatory interactions, including 193 coding/non-coding pairs that show expression patterns compatible with negative cis -regulation. Importantly, by this approach we capture several known cases, and many of the involved coding genes have known roles in cancer. Our study provides a large catalog of putative non-coding/coding cis -regulatory pairs that may serve as a basis for further experimental validation and characterization. Copyright © 2018 Basu and Larsson.

  16. The non-coding RNA landscape of human hematopoiesis and leukemia.

    PubMed

    Schwarzer, Adrian; Emmrich, Stephan; Schmidt, Franziska; Beck, Dominik; Ng, Michelle; Reimer, Christina; Adams, Felix Ferdinand; Grasedieck, Sarah; Witte, Damian; Käbler, Sebastian; Wong, Jason W H; Shah, Anushi; Huang, Yizhou; Jammal, Razan; Maroz, Aliaksandra; Jongen-Lavrencic, Mojca; Schambach, Axel; Kuchenbauer, Florian; Pimanda, John E; Reinhardt, Dirk; Heckl, Dirk; Klusmann, Jan-Henning

    2017-08-09

    Non-coding RNAs have emerged as crucial regulators of gene expression and cell fate decisions. However, their expression patterns and regulatory functions during normal and malignant human hematopoiesis are incompletely understood. Here we present a comprehensive resource defining the non-coding RNA landscape of the human hematopoietic system. Based on highly specific non-coding RNA expression portraits per blood cell population, we identify unique fingerprint non-coding RNAs-such as LINC00173 in granulocytes-and assign these to critical regulatory circuits involved in blood homeostasis. Following the incorporation of acute myeloid leukemia samples into the landscape, we further uncover prognostically relevant non-coding RNA stem cell signatures shared between acute myeloid leukemia blasts and healthy hematopoietic stem cells. Our findings highlight the importance of the non-coding transcriptome in the formation and maintenance of the human blood hierarchy.While micro-RNAs are known regulators of haematopoiesis and leukemogenesis, the role of long non-coding RNAs is less clear. Here the authors provide a non-coding RNA expression landscape of the human hematopoietic system, highlighting their role in the formation and maintenance of the human blood hierarchy.

  17. Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells.

    PubMed

    Autour, Alexis; C Y Jeng, Sunny; D Cawte, Adam; Abdolahzadeh, Amir; Galli, Angela; Panchapakesan, Shanker S S; Rueda, David; Ryckelynck, Michael; Unrau, Peter J

    2018-02-13

    Despite having many key roles in cellular biology, directly imaging biologically important RNAs has been hindered by a lack of fluorescent tools equivalent to the fluorescent proteins available to study cellular proteins. Ideal RNA labelling systems must preserve biological function, have photophysical properties similar to existing fluorescent proteins, and be compatible with established live and fixed cell protein labelling strategies. Here, we report a microfluidics-based selection of three new high-affinity RNA Mango fluorogenic aptamers. Two of these are as bright or brighter than enhanced GFP when bound to TO1-Biotin. Furthermore, we show that the new Mangos can accurately image the subcellular localization of three small non-coding RNAs (5S, U6, and a box C/D scaRNA) in fixed and live mammalian cells. These new aptamers have many potential applications to study RNA function and dynamics both in vitro and in mammalian cells.

  18. RIP-seq of BmAgo2-associated small RNAs reveal various types of small non-coding RNAs in the silkworm, Bombyx mori

    PubMed Central

    2013-01-01

    Background Small non-coding RNAs (ncRNAs) are important regulators of gene expression in eukaryotes. Previously, only microRNAs (miRNAs) and piRNAs have been identified in the silkworm, Bombyx mori. Furthermore, only ncRNAs (50-500nt) of intermediate size have been systematically identified in the silkworm. Results Here, we performed a systematic identification and analysis of small RNAs (18-50nt) associated with the Bombyx mori argonaute2 (BmAgo2) protein. Using RIP-seq, we identified various types of small ncRNAs associated with BmAGO2. These ncRNAs showed a multimodal length distribution, with three peaks at ~20nt, ~27nt and ~33nt, which included tRNA-, transposable element (TE)-, rRNA-, snoRNA- and snRNA-derived small RNAs as well as miRNAs and piRNAs. The tRNA-derived fragments (tRFs) were found at an extremely high abundance and accounted for 69.90% of the BmAgo2-associated small RNAs. Northern blotting confirmed that many tRFs were expressed or up-regulated only in the BmNPV-infected cells, implying that the tRFs play a prominent role by binding to BmAgo2 during BmNPV infection. Additional evidence suggested that there are potential cleavage sites on the D, anti-codon and TψC loops of the tRNAs. TE-derived small RNAs and piRNAs also accounted for a significant proportion of the BmAgo2-associated small RNAs, suggesting that BmAgo2 could be involved in the maintenance of genome stability by suppressing the activities of transposons guided by these small RNAs. Finally, Northern blotting was also used to confirm the Bombyx 5.8 s rRNA-derived small RNAs, demonstrating that various novel small RNAs exist in the silkworm. Conclusions Using an RIP-seq method in combination with Northern blotting, we identified various types of small RNAs associated with the BmAgo2 protein, including tRNA-, TE-, rRNA-, snoRNA- and snRNA-derived small RNAs as well as miRNAs and piRNAs. Our findings provide new clues for future functional studies of the role of small RNAs in insect

  19. Probing the functions of long non-coding RNAs by exploiting the topology of global association and interaction network.

    PubMed

    Deng, Lei; Wu, Hongjie; Liu, Chuyao; Zhan, Weihua; Zhang, Jingpu

    2018-06-01

    Long non-coding RNAs (lncRNAs) are involved in many biological processes, such as immune response, development, differentiation and gene imprinting and are associated with diseases and cancers. But the functions of the vast majority of lncRNAs are still unknown. Predicting the biological functions of lncRNAs is one of the key challenges in the post-genomic era. In our work, We first build a global network including a lncRNA similarity network, a lncRNA-protein association network and a protein-protein interaction network according to the expressions and interactions, then extract the topological feature vectors of the global network. Using these features, we present an SVM-based machine learning approach, PLNRGO, to annotate human lncRNAs. In PLNRGO, we construct a training data set according to the proteins with GO annotations and train a binary classifier for each GO term. We assess the performance of PLNRGO on our manually annotated lncRNA benchmark and a protein-coding gene benchmark with known functional annotations. As a result, the performance of our method is significantly better than that of other state-of-the-art methods in terms of maximum F-measure and coverage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Emerging Roles of Small Epstein-Barr Virus Derived Non-Coding RNAs in Epithelial Malignancy

    PubMed Central

    Lung, Raymond Wai-Ming; Tong, Joanna Hung-Man; To, Ka-Fai

    2013-01-01

    Latent Epstein-Barr virus (EBV) infection is an etiological factor in the progression of several human epithelial malignancies such as nasopharyngeal carcinoma (NPC) and a subset of gastric carcinoma. Reports have shown that EBV produces several viral oncoproteins, yet their pathological roles in carcinogenesis are not fully elucidated. Studies on the recently discovered of EBV-encoded microRNAs (ebv-miRNAs) showed that these small molecules function as post-transcriptional gene regulators and may play a role in the carcinogenesis process. In NPC and EBV positive gastric carcinoma (EBVaGC), 22 viral miRNAs which are located in the long alternative splicing EBV transcripts, named BamH1 A rightward transcripts (BARTs), are abundantly expressed. The importance of several miR-BARTs in carcinogenesis has recently been demonstrated. These novel findings enhance our understanding of the oncogenic properties of EBV and may lead to a more effective design of therapeutic regimens to combat EBV-associated malignancies. This article will review the pathological roles of miR-BARTs in modulating the expression of cancer-related genes in both host and viral genomes. The expression of other small non-coding RNAs in NPC and the expression pattern of miR-BARTs in rare EBV-associated epithelial cancers will also be discussed. PMID:23979421

  1. BASiNET-BiologicAl Sequences NETwork: a case study on coding and non-coding RNAs identification.

    PubMed

    Ito, Eric Augusto; Katahira, Isaque; Vicente, Fábio Fernandes da Rocha; Pereira, Luiz Filipe Protasio; Lopes, Fabrício Martins

    2018-06-05

    With the emergence of Next Generation Sequencing (NGS) technologies, a large volume of sequence data in particular de novo sequencing was rapidly produced at relatively low costs. In this context, computational tools are increasingly important to assist in the identification of relevant information to understand the functioning of organisms. This work introduces BASiNET, an alignment-free tool for classifying biological sequences based on the feature extraction from complex network measurements. The method initially transform the sequences and represents them as complex networks. Then it extracts topological measures and constructs a feature vector that is used to classify the sequences. The method was evaluated in the classification of coding and non-coding RNAs of 13 species and compared to the CNCI, PLEK and CPC2 methods. BASiNET outperformed all compared methods in all adopted organisms and datasets. BASiNET have classified sequences in all organisms with high accuracy and low standard deviation, showing that the method is robust and non-biased by the organism. The proposed methodology is implemented in open source in R language and freely available for download at https://cran.r-project.org/package=BASiNET.

  2. Evolution of coding and non-coding genes in HOX clusters of a marsupial.

    PubMed

    Yu, Hongshi; Lindsay, James; Feng, Zhi-Ping; Frankenberg, Stephen; Hu, Yanqiu; Carone, Dawn; Shaw, Geoff; Pask, Andrew J; O'Neill, Rachel; Papenfuss, Anthony T; Renfree, Marilyn B

    2012-06-18

    The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial.

  3. Evolution of coding and non-coding genes in HOX clusters of a marsupial

    PubMed Central

    2012-01-01

    Background The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Results Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. Conclusions This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial. PMID:22708672

  4. Global assessment of small RNAs reveals a non-coding transcript involved in biofilm formation and attachment in Acinetobacter baumannii ATCC 17978

    PubMed Central

    Pérez, Astrid; Gómez, Manuel J.; Gayoso, Carmen; Vallejo, Juan A.; Ohneck, Emily J.; Valle, Jaione; Actis, Luis A.; Beceiro, Alejandro; Bou, Germán

    2017-01-01

    Many strains of Acinetobacter baumannii have been described as being able to form biofilm. Small non-coding RNAs (sRNAs) control gene expression in many regulatory circuits in bacteria. The aim of the present work was to provide a global description of the sRNAs produced both by planktonic and biofilm-associated (sessile) cells of A. baumannii ATCC 17978, and to compare the corresponding gene expression profiles to identify sRNAs molecules associated to biofilm formation and virulence. sRNA was extracted from both planktonic and sessile cells and reverse transcribed. cDNA was subjected to 454-pyrosequencing using the GS-FLX Titanium chemistry. The global analysis of the small RNA transcriptome revealed different sRNA expression patterns in planktonic and biofilm associated cells, with some of the transcripts only expressed or repressed in sessile bacteria. A total of 255 sRNAs were detected, with 185 of them differentially expressed in the different types of cells. A total of 9 sRNAs were expressed only in biofilm cells, while the expression of other 21 coding regions were repressed only in biofilm cells. Strikingly, the expression level of the sRNA 13573 was 120 times higher in biofilms than in planktonic cells, an observation that prompted us to further investigate the biological role of this non-coding transcript. Analyses of an isogenic mutant and over-expressing strains revealed that the sRNA 13573 gene is involved in biofilm formation and attachment to A549 human alveolar epithelial cells. The present work serves as a basis for future studies examining the complex regulatory network that regulate biofilm biogenesis and attachment to eukaryotic cells in A. baumannii ATCC 17978. PMID:28763494

  5. Small Open Reading Frames, Non-Coding RNAs and Repetitive Elements in Bradyrhizobium japonicum USDA 110

    PubMed Central

    Hahn, Julia; Tsoy, Olga V.; Thalmann, Sebastian; Čuklina, Jelena; Gelfand, Mikhail S.

    2016-01-01

    Small open reading frames (sORFs) and genes for non-coding RNAs are poorly investigated components of most genomes. Our analysis of 1391 ORFs recently annotated in the soybean symbiont Bradyrhizobium japonicum USDA 110 revealed that 78% of them contain less than 80 codons. Twenty-one of these sORFs are conserved in or outside Alphaproteobacteria and most of them are similar to genes found in transposable elements, in line with their broad distribution. Stabilizing selection was demonstrated for sORFs with proteomic evidence and bll1319_ISGA which is conserved at the nucleotide level in 16 alphaproteobacterial species, 79 species from other taxa and 49 other Proteobacteria. Further we used Northern blot hybridization to validate ten small RNAs (BjsR1 to BjsR10) belonging to new RNA families. We found that BjsR1 and BjsR3 have homologs outside the genus Bradyrhizobium, and BjsR5, BjsR6, BjsR7, and BjsR10 have up to four imperfect copies in Bradyrhizobium genomes. BjsR8, BjsR9, and BjsR10 are present exclusively in nodules, while the other sRNAs are also expressed in liquid cultures. We also found that the level of BjsR4 decreases after exposure to tellurite and iron, and this down-regulation contributes to survival under high iron conditions. Analysis of additional small RNAs overlapping with 3’-UTRs revealed two new repetitive elements named Br-REP1 and Br-REP2. These REP elements may play roles in the genomic plasticity and gene regulation and could be useful for strain identification by PCR-fingerprinting. Furthermore, we studied two potential toxin genes in the symbiotic island and confirmed toxicity of the yhaV homolog bll1687 but not of the newly annotated higB homolog blr0229_ISGA in E. coli. Finally, we revealed transcription interference resulting in an antisense RNA complementary to blr1853, a gene induced in symbiosis. The presented results expand our knowledge on sORFs, non-coding RNAs and repetitive elements in B. japonicum and related bacteria. PMID

  6. Genome wide discovery of long intergenic non-coding RNAs in Diamondback moth (Plutella xylostella) and their expression in insecticide resistant strains

    PubMed Central

    Etebari, Kayvan; Furlong, Michael J.; Asgari, Sassan

    2015-01-01

    Long non-coding RNAs (lncRNAs) play important roles in genomic imprinting, cancer, differentiation and regulation of gene expression. Here, we identified 3844 long intergenic ncRNAs (lincRNA) in Plutella xylostella, which is a notorious pest of cruciferous plants that has developed field resistance to all classes of insecticides, including Bacillus thuringiensis (Bt) endotoxins. Further, we found that some of those lincRNAs may potentially serve as precursors for the production of small ncRNAs. We found 280 and 350 lincRNAs that are differentially expressed in Chlorpyrifos and Fipronil resistant larvae. A survey on P. xylostella midgut transcriptome data from Bt-resistant populations revealed 59 altered lincRNA in two resistant strains compared with the susceptible population. We validated the transcript levels of a number of putative lincRNAs in deltamethrin-resistant larvae that were exposed to deltamethrin, which indicated that this group of lincRNAs might be involved in the response to xenobiotics in this insect. To functionally characterize DBM lincRNAs, gene ontology (GO) enrichment of their associated protein-coding genes was extracted and showed over representation of protein, DNA and RNA binding GO terms. The data presented here will facilitate future studies to unravel the function of lincRNAs in insecticide resistance or the response to xenobiotics of eukaryotic cells. PMID:26411386

  7. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data.

    PubMed

    Zhou, Ke-Ren; Liu, Shun; Sun, Wen-Ju; Zheng, Ling-Ling; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2017-01-04

    The abnormal transcriptional regulation of non-coding RNAs (ncRNAs) and protein-coding genes (PCGs) is contributed to various biological processes and linked with human diseases, but the underlying mechanisms remain elusive. In this study, we developed ChIPBase v2.0 (http://rna.sysu.edu.cn/chipbase/) to explore the transcriptional regulatory networks of ncRNAs and PCGs. ChIPBase v2.0 has been expanded with ∼10 200 curated ChIP-seq datasets, which represent about 20 times expansion when comparing to the previous released version. We identified thousands of binding motif matrices and their binding sites from ChIP-seq data of DNA-binding proteins and predicted millions of transcriptional regulatory relationships between transcription factors (TFs) and genes. We constructed 'Regulator' module to predict hundreds of TFs and histone modifications that were involved in or affected transcription of ncRNAs and PCGs. Moreover, we built a web-based tool, Co-Expression, to explore the co-expression patterns between DNA-binding proteins and various types of genes by integrating the gene expression profiles of ∼10 000 tumor samples and ∼9100 normal tissues and cell lines. ChIPBase also provides a ChIP-Function tool and a genome browser to predict functions of diverse genes and visualize various ChIP-seq data. This study will greatly expand our understanding of the transcriptional regulations of ncRNAs and PCGs. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Long non-coding RNAs may serve as biomarkers in breast cancer combined with primary lung cancer

    PubMed Central

    Mao, Weimin; Chen, Bo; Yang, Shifeng; Ding, Xiaowen; Zou, Dehong; Mo, Wenju; He, Xiangming; Zhang, Xiping

    2017-01-01

    Long non-coding RNAs (lncRNAs) have been shown to play important regulatory role in certain type of cancers biology, including breast and lung cancers. However, the lncRNA expression in breast cancer combined with primary lung cancer remains unknown. In this study, databases of the Cancer Genome Atlas (TCGA) and the lncRNA profiler of contained candidate 192 lncRNAs were utilized. 11 lncRNAs were differentially expressed in breast cancer, 9 candidate lncRNAs were differentially expressed in lung cancer. In order to find the aberrant expression of lncRNAs in breast cancer combined with primary lung cancer, seven samples of primary breast cancer and lung cancer were studied for the expression of selected lncRNAs. The results showed that SNHG6 and NEAT1 were reversely expressed in breast cancer combined with primary lung cancer compared with primary breast or lung cancer. In addition, a significant correlation of lncRNAs was found in the patients whose age was above 56 in breast cancer. What's more, PVT1 expression was negatively correlated with the pathological stage, and the level of ER, PR, HER2, p53 in breast cancer. Furthermore, lncRNA expression did not have significant relationship with the 5-year survival of patients with breast cancer combined with primary lung cancer. The findings revealed that PVT1, SNHG6, NEAT1 may serve as a prognostic marker for breast cancer combined with primary lung cancer. Therefore, these lncRNAs are potential molecular indicators in the diagnosis and prognosis of cancer in the future. PMID:28938549

  9. In the shadow: The emerging role of long non-coding RNAs in the immune response of Atlantic salmon.

    PubMed

    Tarifeño-Saldivia, E; Valenzuela-Miranda, D; Gallardo-Escárate, C

    2017-08-01

    The genomic era has increased the research effort to uncover how the genome of an organism, and specifically the transcriptome, is modulated after interplaying with pathogenic microorganisms and ectoparasites. However, the ever-increasing accessibility of sequencing technology has also evidenced regulatory roles of long non-coding RNAs (lncRNAs) related to several biological processes including immune response. This study reports a high-confidence annotation and a comparative transcriptome analysis of lncRNAs from several tissues of Salmo salar infected with the most prevalent pathogens in the Chilean salmon aquaculture such as the infectious salmon anemia (ISA) virus, the intracellular bacterium Piscirickettsia salmonis and the ectoparasite copepod Caligus rogercresseyi. Our analyses showed that lncRNAs are widely modulated during infection. However, this modulation is pathogen-specific and highly correlated with immuno-related genes associated with innate immune response. These findings represent the first discovery for the widespread differential expression of lncRNAs in response to infections with different types of pathogens in Atlantic salmon, suggesting that lncRNAs are pivotal player during the fish immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Vesiculated Long Non-Coding RNAs: Offshore Packages Deciphering Trans-Regulation between Cells, Cancer Progression and Resistance to Therapies

    PubMed Central

    Fatima, Farah; Nawaz, Muhammad

    2017-01-01

    Extracellular vesicles (EVs) are nanosized vesicles secreted from virtually all cell types and are thought to transport proteins, lipids and nucleic acids including non-coding RNAs (ncRNAs) between cells. Since, ncRNAs are central to transcriptional regulation during developmental processes; eukaryotes might have evolved novel means of post-transcriptional regulation by trans-locating ncRNAs between cells. EV-mediated transportation of regulatory elements provides a novel source of trans-regulation between cells. In the last decade, studies were mainly focused on microRNAs; however, functions of long ncRNA (lncRNA) have been much less studied. Here, we review the regulatory roles of EV-linked ncRNAs, placing a particular focus on lncRNAs, how they can foster dictated patterns of trans-regulation in recipient cells. This refers to envisaging novel mechanisms of epigenetic regulation, cellular reprogramming and genomic instability elicited in recipient cells, ultimately permitting the generation of cancer initiating cell phenotypes, senescence and resistance to chemotherapies. Conversely, such trans-regulation may introduce RNA interference in recipient cancer cells causing the suppression of oncogenes and anti-apoptotic proteins; thus favoring tumor inhibition. Collectively, understanding these mechanisms could be of great value to EV-based RNA therapeutics achieved through gene manipulation within cancer cells, whereas the ncRNA content of EVs from cancer patients could serve as non-invasive source of diagnostic biomarkers and prognostic indicators in response to therapies. PMID:29657282

  11. Small non-coding RNAs (sncRNA) regulate gene silencing and modify homeostatic status in animals faced with porcine reproductive and respiratory syndrome virus (PRRSV)

    USDA-ARS?s Scientific Manuscript database

    It has been established that reduced susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) has a genetic component. This genetic component may take the form of small non-coding RNAs (sncRNA), which are molecules that function as regulators of gene expression. Various sncRNAs ...

  12. Long non-coding RNAs, ASAP1-IT1, FAM215A, and LINC00472, in epithelial ovarian cancer.

    PubMed

    Fu, Yuanyuan; Biglia, Nicoletta; Wang, Zhanwei; Shen, Yi; Risch, Harvey A; Lu, Lingeng; Canuto, Emilie Marion; Jia, Wei; Katsaros, Dionyssios; Yu, Herbert

    2016-12-01

    Long non-coding RNAs (lncRNAs) are a class of non-protein coding transcripts that has gained significant attention lately due to their important biological actions and potential involvement in cancer. Ovarian cancer is a devastating disease with poor prognosis, and our understanding of lncRNA's involvement in the malignancy is limited. To further our knowledge, we measured the expression of three lncRNAs, ASAP1-IT1, FAM215A, and LINC00472, in tumor samples, and analyzed their associations with disease characteristics and patient survival. Two hundred sixty-six patients diagnosed with primary epithelial ovarian cancers were recruited for the study. Fresh-frozen tumor samples were obtained from the patients at tumor resection and analyzed by RT-qPCR for expression of ASAP1-IT1, FAM215A, and LINC00472. Associations of lncRNA expression with patient survival were determined using Cox proportional hazards regression models. We observed high expression of ASAP1-IT1, FAM215A and LINC00472 more frequently in low grade tumors and early stage disease compared to high grade tumors and late stage disease, respectively. High expression of ASAP1-IT1 and FAM215A were associated with favorable overall survival, and the survival association with ASAP1-IT1 was independent of tumor grade and disease stage. Analyses of online data also demonstrated similar survival associations with ASAP1-IT1 and FAM215A, suggesting that these lncRNAs may be involved in ovarian cancer progression. LncRNAs may play appreciable roles in ovarian cancer and more research is needed to elucidate their biological mechanisms and clinical implications in tumor characterization as well as disease prognosis and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer.

    PubMed

    Wojcik, Sylwia E; Rossi, Simona; Shimizu, Masayoshi; Nicoloso, Milena S; Cimmino, Amelia; Alder, Hansjuerg; Herlea, Vlad; Rassenti, Laura Z; Rai, Kanti R; Kipps, Thomas J; Keating, Michael J; Croce, Carlo M; Calin, George A

    2010-02-01

    Cancer is a genetic disease in which the interplay between alterations in protein-coding genes and non-coding RNAs (ncRNAs) plays a fundamental role. In recent years, the full coding component of the human genome was sequenced in various cancers, whereas such attempts related to ncRNAs are still fragmentary. We screened genomic DNAs for sequence variations in 148 microRNAs (miRNAs) and ultraconserved regions (UCRs) loci in patients with chronic lymphocytic leukemia (CLL) or colorectal cancer (CRC) by Sanger technique and further tried to elucidate the functional consequences of some of these variations. We found sequence variations in miRNAs in both sporadic and familial CLL cases, mutations of UCRs in CLLs and CRCs and, in certain instances, detected functional effects of these variations. Furthermore, by integrating our data with previously published data on miRNA sequence variations, we have created a catalog of DNA sequence variations in miRNAs/ultraconserved genes in human cancers. These findings argue that ncRNAs are targeted by both germ line and somatic mutations as well as by single-nucleotide polymorphisms with functional significance for human tumorigenesis. Sequence variations in ncRNA loci are frequent and some have functional and biological significance. Such information can be exploited to further investigate on a genome-wide scale the frequency of genetic variations in ncRNAs and their functional meaning, as well as for the development of new diagnostic and prognostic markers for leukemias and carcinomas.

  14. Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer

    PubMed Central

    Wojcik, Sylwia E.; Rossi, Simona; Shimizu, Masayoshi; Nicoloso, Milena S.; Cimmino, Amelia; Alder, Hansjuerg; Herlea, Vlad; Rassenti, Laura Z.; Rai, Kanti R.; Kipps, Thomas J.; Keating, Michael J.

    2010-01-01

    Cancer is a genetic disease in which the interplay between alterations in protein-coding genes and non-coding RNAs (ncRNAs) plays a fundamental role. In recent years, the full coding component of the human genome was sequenced in various cancers, whereas such attempts related to ncRNAs are still fragmentary. We screened genomic DNAs for sequence variations in 148 microRNAs (miRNAs) and ultraconserved regions (UCRs) loci in patients with chronic lymphocytic leukemia (CLL) or colorectal cancer (CRC) by Sanger technique and further tried to elucidate the functional consequences of some of these variations. We found sequence variations in miRNAs in both sporadic and familial CLL cases, mutations of UCRs in CLLs and CRCs and, in certain instances, detected functional effects of these variations. Furthermore, by integrating our data with previously published data on miRNA sequence variations, we have created a catalog of DNA sequence variations in miRNAs/ultraconserved genes in human cancers. These findings argue that ncRNAs are targeted by both germ line and somatic mutations as well as by single-nucleotide polymorphisms with functional significance for human tumorigenesis. Sequence variations in ncRNA loci are frequent and some have functional and biological significance. Such information can be exploited to further investigate on a genome-wide scale the frequency of genetic variations in ncRNAs and their functional meaning, as well as for the development of new diagnostic and prognostic markers for leukemias and carcinomas. PMID:19926640

  15. Non-coding RNA in cystic fibrosis.

    PubMed

    Glasgow, Arlene M A; De Santi, Chiara; Greene, Catherine M

    2018-05-09

    Non-coding RNAs (ncRNAs) are an abundant class of RNAs that include small ncRNAs, long non-coding RNAs (lncRNA) and pseudogenes. The human ncRNA atlas includes thousands of these specialised RNA molecules that are further subcategorised based on their size or function. Two of the more well-known and widely studied ncRNA species are microRNAs (miRNAs) and lncRNAs. These are regulatory RNAs and their altered expression has been implicated in the pathogenesis of a variety of human diseases. Failure to express a functional cystic fibrosis (CF) transmembrane receptor (CFTR) chloride ion channel in epithelial cells underpins CF. Secondary to the CFTR defect, it is known that other pathways can be altered and these may contribute to the pathophysiology of CF lung disease in particular. For example, quantitative alterations in expression of some ncRNAs are associated with CF. In recent years, there has been a series of published studies exploring ncRNA expression and function in CF. The majority have focussed principally on miRNAs, with just a handful of reports to date on lncRNAs. The present study reviews what is currently known about ncRNA expression and function in CF, and discusses the possibility of applying this knowledge to the clinical management of CF in the near future. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. MicroRNAs derived from circulating exosomes as non-invasive biomarkers for screening and diagnose lung cancer

    PubMed Central

    Cazzoli, Riccardo; Buttitta, Fiamma; Di Nicola, Marta; Malatesta, Sara; Marchetti, Antonio; Pass, Harvey I.

    2013-01-01

    Introduction Lung cancer is formerly the highest cause of mortality among tumor pathologies worldwide. There are no validated techniques for an early detection of pulmonary cancer lesions other than low-dose helical CT-scan. Unfortunately, this method have some downside effects. Recent studies have laid the basis for development of exosomes-based techniques to screen/diagnose lung cancers. As the isolation of circulating exosomes is a minimally invasive procedure, this technique opens new possibilities for diagnostic applications. Methods We used a first set of 30 plasma samples from as many patients, including 10 patients affected by Lung Adenocarcinomas, 10 with Lung Granulomas and 10 healthy smokers matched for age and sex as negative controls. Wide range microRNAs analysis (742 microRNAs) was performed by quantitative RT-PCR. Data were compared by lesion characteristics using WEKA software for statistics and modeling. Subsequently, selected microRNAs were evaluated on an independent larger group of samples (105 specimens: 50 Lung Adenocarcinomas, 30 Lung Granulomas and 25 healthy smokers). Results This analysis led to the selection of 4 microRNAs to perform a screening test (miR-378a, miR-379, miR-139-5p and miR-200b-5p), useful to divide population into 2 groups: nodule (lung adenocarcinomas+carcinomas) and non-nodule (healthy former smokers). Six microRNAs (miR-151a-5p, miR-30a-3p, miR-200b-5p, miR-629, miR-100 and miR-154-3p) were selected for a second test on the “nodule” population to discriminate between lung adenocarcinoma and granuloma. Conclusions “Screening test” has shown 97.5% sensitivity, 72.0% specificity, AUC ROC of 90.8%. “Diagnostic test” had 96.0% sensitivity, 60.0% specificity, AUC ROC of 76.0%. Further evaluation is needed to confirm the predictive power of those models on higher cohorts of samples. PMID:23945385

  17. Integrated genomic analysis of recurrence-associated small non-coding RNAs in oesophageal cancer.

    PubMed

    Jang, Hee-Jin; Lee, Hyun-Sung; Burt, Bryan M; Lee, Geon Kook; Yoon, Kyong-Ah; Park, Yun-Yong; Sohn, Bo Hwa; Kim, Sang Bae; Kim, Moon Soo; Lee, Jong Mog; Joo, Jungnam; Kim, Sang Cheol; Yun, Ju Sik; Na, Kook Joo; Choi, Yoon-La; Park, Jong-Lyul; Kim, Seon-Young; Lee, Yong Sun; Han, Leng; Liang, Han; Mak, Duncan; Burks, Jared K; Zo, Jae Ill; Sugarbaker, David J; Shim, Young Mog; Lee, Ju-Seog

    2017-02-01

    Oesophageal squamous cell carcinoma (ESCC) is a heterogeneous disease with variable outcomes that are challenging to predict. A better understanding of the biology of ESCC recurrence is needed to improve patient care. Our goal was to identify small non-coding RNAs (sncRNAs) that could predict the likelihood of recurrence after surgical resection and to uncover potential molecular mechanisms that dictate clinical heterogeneity. We developed a robust prediction model for recurrence based on the analysis of the expression profile data of sncRNAs from 108 fresh frozen ESCC specimens as a discovery set and assessment of the associations between sncRNAs and recurrence-free survival (RFS). We also evaluated the mechanistic and therapeutic implications of sncRNA obtained through integrated analysis from multiple datasets. We developed a risk assessment score (RAS) for recurrence with three sncRNAs (microRNA (miR)-223, miR-1269a and nc886) whose expression was significantly associated with RFS in the discovery cohort (n=108). RAS was validated in an independent cohort of 512 patients. In multivariable analysis, RAS was an independent predictor of recurrence (HR, 2.27; 95% CI, 1.26 to 4.09; p=0.007). This signature implies the expression of ΔNp63 and multiple alterations of driver genes like PIK3CA. We suggested therapeutic potentials of immune checkpoint inhibitors in low-risk patients, and Polo-like kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and histone deacetylase inhibitors in high-risk patients. We developed an easy-to-use prognostic model with three sncRNAs as robust prognostic markers for postoperative recurrence of ESCC. We anticipate that such a stratified and systematic, tumour-specific biological approach will potentially contribute to significant improvement in ESCC treatment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  18. Non-coding RNAs and exercise: pathophysiological role and clinical application in the cardiovascular system.

    PubMed

    Gomes, Clarissa P C; de Gonzalo-Calvo, David; Toro, Rocio; Fernandes, Tiago; Theisen, Daniel; Wang, Da-Zhi; Devaux, Yvan

    2018-05-23

    There is overwhelming evidence that regular exercise training is protective against cardiovascular disease (CVD), the main cause of death worldwide. Despite the benefits of exercise, the intricacies of their underlying molecular mechanisms remain largely unknown. Non-coding RNAs (ncRNAs) have been recognized as a major regulatory network governing gene expression in several physiological processes and appeared as pivotal modulators in a myriad of cardiovascular processes under physiological and pathological conditions. However, little is known about ncRNA expression and role in response to exercise. Revealing the molecular components and mechanisms of the link between exercise and health outcomes will catalyse discoveries of new biomarkers and therapeutic targets. Here we review the current understanding of the ncRNA role in exercise-induced adaptations focused on the cardiovascular system and address their potential role in clinical applications for CVD. Finally, considerations and perspectives for future studies will be proposed. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  19. Biomarker microRNAs for prostate cancer metastasis: screened with a network vulnerability analysis model.

    PubMed

    Lin, Yuxin; Chen, Feifei; Shen, Li; Tang, Xiaoyu; Du, Cui; Sun, Zhandong; Ding, Huijie; Chen, Jiajia; Shen, Bairong

    2018-05-21

    Prostate cancer (PCa) is a fatal malignant tumor among males in the world and the metastasis is a leading cause for PCa death. Biomarkers are therefore urgently needed to detect PCa metastatic signature at the early time. MicroRNAs are small non-coding RNAs with the potential to be biomarkers for disease prediction. In addition, computer-aided biomarker discovery is now becoming an attractive paradigm for precision diagnosis and prognosis of complex diseases. In this study, we identified key microRNAs as biomarkers for predicting PCa metastasis based on network vulnerability analysis. We first extracted microRNAs and mRNAs that were differentially expressed between primary PCa and metastatic PCa (MPCa) samples. Then we constructed the MPCa-specific microRNA-mRNA network and screened microRNA biomarkers by a novel bioinformatics model. The model emphasized the characterization of systems stability changes and the network vulnerability with three measurements, i.e. the structurally single-line regulation, the functional importance of microRNA targets and the percentage of transcription factor genes in microRNA unique targets. With this model, we identified five microRNAs as putative biomarkers for PCa metastasis. Among them, miR-101-3p and miR-145-5p have been previously reported as biomarkers for PCa metastasis and the remaining three, i.e. miR-204-5p, miR-198 and miR-152, were screened as novel biomarkers for PCa metastasis. The results were further confirmed by the assessment of their predictive power and biological function analysis. Five microRNAs were identified as candidate biomarkers for predicting PCa metastasis based on our network vulnerability analysis model. The prediction performance, literature exploration and functional enrichment analysis convinced our findings. This novel bioinformatics model could be applied to biomarker discovery for other complex diseases.

  20. Genome-Wide Analysis of Long Non-Coding RNAs in Potato and Their Potential Role in Tuber Sprouting Process

    PubMed Central

    Hou, Xiaodong; Du, Yongmei; Liu, Xinmin; Zhang, Hongbo; Liu, Yanhua; Yan, Ning; Zhang, Zhongfeng

    2017-01-01

    Sprouting is a key factor affecting the quality of potato tubers. The present study aimed to compare the differential expression of long non-coding RNAs (lncRNAs) in the apical meristem during the dormancy release and sprouting stages by using lncRNA sequencing. Microscopic observations and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed the changes in the morphology and expression of lncRNAs in potato tubers during sprouting. Meristematic cells of potato tuber apical buds divided continuously and exhibited vegetative cone bulging and vascularisation. In all, 3175 lncRNAs were identified from the apical buds of potato tubers, among which 383 lncRNAs were up-regulated and 340 were down-regulated during sprouting. The GO enrichment analysis revealed that sprouting mainly influenced the expression of lncRNAs related to the cellular components of potato apical buds (e.g., cytoplasm and organelles) and cellular metabolic processes. The KEGG enrichment analysis also showed significant enrichment of specific metabolic pathways. In addition, 386 differentially expressed lncRNAs during sprouting were identified as putative targets of 235 potato miRNAs. Quantitative real-time polymerase chain reaction results agreed with the sequencing data. Our study provides the first systematic study of numerous lncRNAs involved in the potato tuber sprouting process and lays the foundation for further studies to elucidate their precise functions. PMID:29286332

  1. Melatonin promotes Cashmere goat (Capra hircus) secondary hair follicle growth: A view from integrated analysis of long non-coding and coding RNAs.

    PubMed

    Ge, Wei; Wang, Shan-He; Sun, Bing; Zhang, Yue-Lang; Shen, Wei; Khatib, Hasan; Wang, Xin

    2018-06-12

    The role of melatonin in promoting the yield of Cashmere goat wool has been demonstrated for decades though there remains a lack of knowledge regarding melatonin mediated hair follicle growth. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are widely transcribed in the genome and play ubiquitous roles in regulating biological processes. However, the role of lncRNAs in regulating melatonin mediated hair follicle growth remains unclear. In this study, we established an in vitro Cashmere goat secondary hair follicle culture system, and demonstrated that 500 ng/L melatonin exposure promoted hair follicle fiber growth. Based on long intergenic RNA sequencing, we demonstrated that melatonin promoted hair follicle elongation via regulating genes involved in focal adhesion and extracellular matrix receptor pathways and further cis predicting of lncRNAs targeted genes indicated that melatonin mediated lncRNAs mainly targeted vascular smooth muscle contraction and signaling pathways regulating the pluripotency of stem cells. We proposed that melatonin exposure not only perturbed key signals secreted from hair follicle stem cells to regulate hair follicle development, but also mediated lncRNAs mainly targeted to pathways involved in the microvascular system and extracellular matrix, which constitute the highly orchestrated microenvironment for hair follicle stem cell. Taken together, our findings here provide a profound view of lncRNAs in regulating Cashmere goat hair follicle circadian rhythms and broaden our knowledge on melatonin mediated hair follicle morphological changes.

  2. Association of Genetic Variants of Small Non-Coding RNAs with Survival in Colorectal Cancer

    PubMed Central

    Pao, Jiunn-Bey; Lu, Te-Ling; Ting, Wen-Chien; Chen, Lu-Min; Bao, Bo-Ying

    2018-01-01

    Background: Single nucleotide polymorphisms (SNPs) of small non-coding RNAs (sncRNAs) can influence sncRNA function and target gene expression to mediate the risk of certain diseases. The aim of the present study was to evaluate the prognostic relevance of sncRNA SNPs for colorectal cancer, which has not been well characterized to date. Methods: We comprehensively examined 31 common SNPs of sncRNAs, and assessed the impact of these variants on survival in a cohort of 188 patients with colorectal cancer. Results: Three SNPs were significantly associated with survival of patients with colorectal cancer after correction for multiple testing, and two of the SNPs (hsa-mir-196a-2 rs11614913 and U85 rs714775) remained significant in multivariate analyses. Additional in silico analysis provided further evidence of this association, since the expression levels of the target genes of the hsa-miR-196a (HOXA7, HOXB8, and AKT1) were significantly correlated with colorectal cancer progression. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that hsa-miR-196a is associated with well-known oncogenic pathways, including cellular protein modification process, mitotic cell cycle, adherens junction, and extracellular matrix receptor interaction pathways. Conclusion: Our results suggest that SNPs of sncRNAs could play a critical role in cancer progression, and that hsa-miR-196a might be a valuable biomarker or therapeutic target for colorectal cancer patients. PMID:29483812

  3. The PRC2-binding long non-coding RNAs in human and mouse genomes are associated with predictive sequence features

    NASA Astrophysics Data System (ADS)

    Tu, Shiqi; Yuan, Guo-Cheng; Shao, Zhen

    2017-01-01

    Recently, long non-coding RNAs (lncRNAs) have emerged as an important class of molecules involved in many cellular processes. One of their primary functions is to shape epigenetic landscape through interactions with chromatin modifying proteins. However, mechanisms contributing to the specificity of such interactions remain poorly understood. Here we took the human and mouse lncRNAs that were experimentally determined to have physical interactions with Polycomb repressive complex 2 (PRC2), and systematically investigated the sequence features of these lncRNAs by developing a new computational pipeline for sequences composition analysis, in which each sequence is considered as a series of transitions between adjacent nucleotides. Through that, PRC2-binding lncRNAs were found to be associated with a set of distinctive and evolutionarily conserved sequence features, which can be utilized to distinguish them from the others with considerable accuracy. We further identified fragments of PRC2-binding lncRNAs that are enriched with these sequence features, and found they show strong PRC2-binding signals and are more highly conserved across species than the other parts, implying their functional importance.

  4. Long non-coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiheng; Liu, Haibai; Wang, Caixia; Lu, Qian; Huang, Qinhai; Zheng, Chanjiao; Lei, Yixiong

    2015-10-01

    Increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in a variety of physiological and pathophysiological processes. Our study was to investigate whether lncRNAs as novel expression signatures are able to modulate DNA damage and repair in cadmium(Cd) toxicity. There were aberrant expression profiles of lncRNAs in 35th Cd-induced cells as compared to untreated 16HBE cells. siRNA-mediated knockdown of ENST00000414355 inhibited the growth of DNA-damaged cells and decreased the expressions of DNA-damage related genes (ATM, ATR and ATRIP), while increased the expressions of DNA-repair related genes (DDB1, DDB2, OGG1, ERCC1, MSH2, RAD50, XRCC1 and BARD1). Cadmium increased ENST00000414355 expression in the lung of Cd-exposed rats in a dose-dependent manner. A significant positive correlation was observed between blood ENST00000414355 expression and urinary/blood Cd concentrations, and there were significant correlations of lncRNA-ENST00000414355 expression with the expressions of target genes in the lung of Cd-exposed rats and the blood of Cd exposed workers. These results indicate that some lncRNAs are aberrantly expressed in Cd-treated 16HBE cells. lncRNA-ENST00000414355 may serve as a signature for DNA damage and repair related to the epigenetic mechanisms underlying the cadmium toxicity and become a novel biomarker of cadmium toxicity.

  5. Long non-coding RNAs and sulforaphane: a target for chemoprevention and suppression of prostate cancer

    PubMed Central

    Beaver, Laura M.; Kuintzle, Rachael; Buchanan, Alex; Wiley, Michelle W.; Glasser, Sarah T.; Wong, Carmen P.; Johnson, Gavin S.; Chang, Jeff H.; Löhr, Christiane V.; Williams, David E.; Dashwood, Roderick H.; Hendrix, David A.; Ho, Emily

    2017-01-01

    Long non-coding RNAs (lncRNAs) have emerged as important in cancer development and progression. The impact of diet on lncRNA expression is largely unknown. Sulforaphane (SFN), obtained from vegetables like broccoli, can prevent and suppress cancer formation. Here we tested the hypothesis that SFN attenuates the expression of cancer-associated lncRNAs. We analyzed whole genome RNA-sequencing data of normal human prostate epithelial cells and prostate cancer cells treated with 15 μM SFN or DMSO. SFN significantly altered expression of ~100 lncRNAs in each cell type, and normalized the expression of some lncRNAs that were differentially expressed in cancer cells. SFN-mediated alterations in lncRNA expression correlated with genes that regulate cell cycle, signal transduction, and metabolism. LINC01116 was functionally investigated because it was overexpressed in several cancers, and was transcriptionally repressed after SFN treatment. Knockdown of LINC01116 with siRNA decreased proliferation of prostate cancer cells, and significantly upregulated several genes including GAPDH (regulates glycolysis), MAP1LC3B2 (autophagy) and H2AFY (chromatin structure). A 4-fold decrease in the ability of the cancer cells to form colonies was found when the LINC01116 gene was disrupted through a CRISPR/CAS9 method, further supporting an oncogenic function for LINC01116 in PC-3 cells.. We identified a novel isoform of LINC01116 and bioinformatically investigated the possibility that LINC01116 could interact with target genes via ssRNA:dsDNA triplexes. Our data reveal that chemicals from the diet can influence the expression of functionally important lncRNAs, and suggest a novel mechanism by which SFN may prevent and suppress prostate cancer. PMID:28131897

  6. Lnc2Meth: a manually curated database of regulatory relationships between long non-coding RNAs and DNA methylation associated with human disease

    PubMed Central

    Zhi, Hui; Li, Xin; Wang, Peng; Gao, Yue; Gao, Baoqing; Zhou, Dianshuang; Zhang, Yan; Guo, Maoni; Yue, Ming; Shen, Weitao

    2018-01-01

    Abstract Lnc2Meth (http://www.bio-bigdata.com/Lnc2Meth/), an interactive resource to identify regulatory relationships between human long non-coding RNAs (lncRNAs) and DNA methylation, is not only a manually curated collection and annotation of experimentally supported lncRNAs-DNA methylation associations but also a platform that effectively integrates tools for calculating and identifying the differentially methylated lncRNAs and protein-coding genes (PCGs) in diverse human diseases. The resource provides: (i) advanced search possibilities, e.g. retrieval of the database by searching the lncRNA symbol of interest, DNA methylation patterns, regulatory mechanisms and disease types; (ii) abundant computationally calculated DNA methylation array profiles for the lncRNAs and PCGs; (iii) the prognostic values for each hit transcript calculated from the patients clinical data; (iv) a genome browser to display the DNA methylation landscape of the lncRNA transcripts for a specific type of disease; (v) tools to re-annotate probes to lncRNA loci and identify the differential methylation patterns for lncRNAs and PCGs with user-supplied external datasets; (vi) an R package (LncDM) to complete the differentially methylated lncRNAs identification and visualization with local computers. Lnc2Meth provides a timely and valuable resource that can be applied to significantly expand our understanding of the regulatory relationships between lncRNAs and DNA methylation in various human diseases. PMID:29069510

  7. The development of non-coding RNA ontology.

    PubMed

    Huang, Jingshan; Eilbeck, Karen; Smith, Barry; Blake, Judith A; Dou, Dejing; Huang, Weili; Natale, Darren A; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J; de Silva, Nisansa; Kasukurthi, Mohan Vamsi; Jha, Vikash Kumar; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming

    2016-01-01

    Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data.

  8. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates

    PubMed Central

    Grijalvo, Santiago; Alagia, Adele

    2018-01-01

    Oligonucleotide-based therapy has become an alternative to classical approaches in the search of novel therapeutics involving gene-related diseases. Several mechanisms have been described in which demonstrate the pivotal role of oligonucleotide for modulating gene expression. Antisense oligonucleotides (ASOs) and more recently siRNAs and miRNAs have made important contributions either in reducing aberrant protein levels by sequence-specific targeting messenger RNAs (mRNAs) or restoring the anomalous levels of non-coding RNAs (ncRNAs) that are involved in a good number of diseases including cancer. In addition to formulation approaches which have contributed to accelerate the presence of ASOs, siRNAs and miRNAs in clinical trials; the covalent linkage between non-viral vectors and nucleic acids has also added value and opened new perspectives to the development of promising nucleic acid-based therapeutics. This review article is mainly focused on the strategies carried out for covalently modifying siRNA and miRNA molecules. Examples involving cell-penetrating peptides (CPPs), carbohydrates, polymers, lipids and aptamers are discussed for the synthesis of siRNA conjugates whereas in the case of miRNA-based drugs, this review article makes special emphasis in using antagomiRs, locked nucleic acids (LNAs), peptide nucleic acids (PNAs) as well as nanoparticles. The biomedical applications of siRNA and miRNA conjugates are also discussed. PMID:29415514

  9. Genome-wide analysis of long non-coding RNAs at the mature stage of sea buckthorn (Hippophae rhamnoides Linn) fruit.

    PubMed

    Zhang, Guoyun; Duan, Aiguo; Zhang, Jianguo; He, Caiyun

    2017-01-05

    Long non-coding RNAs (lncRNAs), which are >200nt longer transcripts, potentially play important roles in almost all biological processes in plants and mammals. However, the functions and profiles of lncRNAs in fruit is less understood. Therefore, it is urgent and necessary to identify and analyze the functions of lncRNAs in sea buckthorns. Using RNA-sequencing, we synthetically identified lncRNAs in mature fruit from the red and yellow sea buckthorn. We obtained 567,778,938 clean reads from six samples and identified 3428 lncRNAs in mature fruit, including 2498 intergenic lncRNAs, 593 anti-sense lncRNAs, and 337 intronic lncRNAs. We also identified 3819 and 2295 circular RNAs in red and yellow sea buckthorn Fruit. In the aspects of gene architecture and expression, our results showed significant differences among the three lncRNA subtypes. We also investigated the effect of lncRNAs on its cis and trans target genes. Based on target genes analysis, we obtained 61 different expression lncRNAs (DE-lncRNAs) between these two sea buckthorns, including 23 special expression lncRNAs in red fruit and 22 special expression lncRNAs in yellow fruit. Importantly, we found a few DE-lncRNAs play cis and trans roles for genes in the Carotenoid biosynthesis, ascorbate and aldarate metabolism and fatty acid metabolism pathways. Our study provides a resource for lncRNA studies in mature fruit. It probably encourages researchers to deeply study fruit-coloring. It expands our knowledge about lncRNA biology and the annotation of the sea buckthorn genome. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Progressive changes in non-coding RNA profile in leucocytes with age

    PubMed Central

    Muñoz-Culla, Maider; Irizar, Haritz; Gorostidi, Ana; Alberro, Ainhoa; Osorio-Querejeta, Iñaki; Ruiz-Martínez, Javier; Olascoaga, Javier; de Munain, Adolfo López; Otaegui, David

    2017-01-01

    It has been observed that immune cell deterioration occurs in the elderly, as well as a chronic low-grade inflammation called inflammaging. These cellular changes must be driven by numerous changes in gene expression and in fact, both protein-coding and non-coding RNA expression alterations have been observed in peripheral blood mononuclear cells from elder people. In the present work we have studied the expression of small non-coding RNA (microRNA and small nucleolar RNA -snoRNA-) from healthy individuals from 24 to 79 years old. We have observed that the expression of 69 non-coding RNAs (56 microRNAs and 13 snoRNAs) changes progressively with chronological age. According to our results, the age range from 47 to 54 is critical given that it is the period when the expression trend (increasing or decreasing) of age-related small non-coding RNAs is more pronounced. Furthermore, age-related miRNAs regulate genes that are involved in immune, cell cycle and cancer-related processes, which had already been associated to human aging. Therefore, human aging could be studied as a result of progressive molecular changes, and different age ranges should be analysed to cover the whole aging process. PMID:28448962

  11. The origins and evolutionary history of human non-coding RNA regulatory networks.

    PubMed

    Sherafatian, Masih; Mowla, Seyed Javad

    2017-04-01

    The evolutionary history and origin of the regulatory function of animal non-coding RNAs are not well understood. Lack of conservation of long non-coding RNAs and small sizes of microRNAs has been major obstacles in their phylogenetic analysis. In this study, we tried to shed more light on the evolution of ncRNA regulatory networks by changing our phylogenetic strategy to focus on the evolutionary pattern of their protein coding targets. We used available target databases of miRNAs and lncRNAs to find their protein coding targets in human. We were able to recognize evolutionary hallmarks of ncRNA targets by phylostratigraphic analysis. We found the conventional 3'-UTR and lesser known 5'-UTR targets of miRNAs to be enriched at three consecutive phylostrata. Firstly, in eukaryata phylostratum corresponding to the emergence of miRNAs, our study revealed that miRNA targets function primarily in cell cycle processes. Moreover, the same overrepresentation of the targets observed in the next two consecutive phylostrata, opisthokonta and eumetazoa, corresponded to the expansion periods of miRNAs in animals evolution. Coding sequence targets of miRNAs showed a delayed rise at opisthokonta phylostratum, compared to the 3' and 5' UTR targets of miRNAs. LncRNA regulatory network was the latest to evolve at eumetazoa.

  12. Lnc2Meth: a manually curated database of regulatory relationships between long non-coding RNAs and DNA methylation associated with human disease.

    PubMed

    Zhi, Hui; Li, Xin; Wang, Peng; Gao, Yue; Gao, Baoqing; Zhou, Dianshuang; Zhang, Yan; Guo, Maoni; Yue, Ming; Shen, Weitao; Ning, Shangwei; Jin, Lianhong; Li, Xia

    2018-01-04

    Lnc2Meth (http://www.bio-bigdata.com/Lnc2Meth/), an interactive resource to identify regulatory relationships between human long non-coding RNAs (lncRNAs) and DNA methylation, is not only a manually curated collection and annotation of experimentally supported lncRNAs-DNA methylation associations but also a platform that effectively integrates tools for calculating and identifying the differentially methylated lncRNAs and protein-coding genes (PCGs) in diverse human diseases. The resource provides: (i) advanced search possibilities, e.g. retrieval of the database by searching the lncRNA symbol of interest, DNA methylation patterns, regulatory mechanisms and disease types; (ii) abundant computationally calculated DNA methylation array profiles for the lncRNAs and PCGs; (iii) the prognostic values for each hit transcript calculated from the patients clinical data; (iv) a genome browser to display the DNA methylation landscape of the lncRNA transcripts for a specific type of disease; (v) tools to re-annotate probes to lncRNA loci and identify the differential methylation patterns for lncRNAs and PCGs with user-supplied external datasets; (vi) an R package (LncDM) to complete the differentially methylated lncRNAs identification and visualization with local computers. Lnc2Meth provides a timely and valuable resource that can be applied to significantly expand our understanding of the regulatory relationships between lncRNAs and DNA methylation in various human diseases. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. The Landscape of long non-coding RNA classification

    PubMed Central

    St Laurent, Georges; Wahlestedt, Claes; Kapranov, Philipp

    2015-01-01

    Advances in the depth and quality of transcriptome sequencing have revealed many new classes of long non-coding RNAs (lncRNAs). lncRNA classification has mushroomed to accommodate these new findings, even though the real dimensions and complexity of the non-coding transcriptome remain unknown. Although evidence of functionality of specific lncRNAs continues to accumulate, conflicting, confusing, and overlapping terminology has fostered ambiguity and lack of clarity in the field in general. The lack of fundamental conceptual un-ambiguous classification framework results in a number of challenges in the annotation and interpretation of non-coding transcriptome data. It also might undermine integration of the new genomic methods and datasets in an effort to unravel function of lncRNA. Here, we review existing lncRNA classifications, nomenclature, and terminology. Then we describe the conceptual guidelines that have emerged for their classification and functional annotation based on expanding and more comprehensive use of large systems biology-based datasets. PMID:25869999

  14. An expanding universe of the non-coding genome in cancer biology.

    PubMed

    Xue, Bin; He, Lin

    2014-06-01

    Neoplastic transformation is caused by accumulation of genetic and epigenetic alterations that ultimately convert normal cells into tumor cells with uncontrolled proliferation and survival, unlimited replicative potential and invasive growth [Hanahan,D. et al. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646-674]. Although the majority of the cancer studies have focused on the functions of protein-coding genes, emerging evidence has started to reveal the importance of the vast non-coding genome, which constitutes more than 98% of the human genome. A number of non-coding RNAs (ncRNAs) derived from the 'dark matter' of the human genome exhibit cancer-specific differential expression and/or genomic alterations, and it is increasingly clear that ncRNAs, including small ncRNAs and long ncRNAs (lncRNAs), play an important role in cancer development by regulating protein-coding gene expression through diverse mechanisms. In addition to ncRNAs, nearly half of the mammalian genomes consist of transposable elements, particularly retrotransposons. Once depicted as selfish genomic parasites that propagate at the expense of host fitness, retrotransposon elements could also confer regulatory complexity to the host genomes during development and disease. Reactivation of retrotransposons in cancer, while capable of causing insertional mutagenesis and genome rearrangements to promote oncogenesis, could also alter host gene expression networks to favor tumor development. Taken together, the functional significance of non-coding genome in tumorigenesis has been previously underestimated, and diverse transcripts derived from the non-coding genome could act as integral functional components of the oncogene and tumor suppressor network. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Annotating Diseases Using Human Phenotype Ontology Improves Prediction of Disease-Associated Long Non-coding RNAs.

    PubMed

    Le, Duc-Hau; Dao, Lan T M

    2018-05-23

    Recently, many long non-coding RNAs (lncRNAs) have been identified and their biological function has been characterized; however, our understanding of their underlying molecular mechanisms related to disease is still limited. To overcome the limitation in experimentally identifying disease-lncRNA associations, computational methods have been proposed as a powerful tool to predict such associations. These methods are usually based on the similarities between diseases or lncRNAs since it was reported that similar diseases are associated with functionally similar lncRNAs. Therefore, prediction performance is highly dependent on how well the similarities can be captured. Previous studies have calculated the similarity between two diseases by mapping exactly each disease to a single Disease Ontology (DO) term, and then use a semantic similarity measure to calculate the similarity between them. However, the problem of this approach is that a disease can be described by more than one DO terms. Until now, there is no annotation database of DO terms for diseases except for genes. In contrast, Human Phenotype Ontology (HPO) is designed to fully annotate human disease phenotypes. Therefore, in this study, we constructed disease similarity networks/matrices using HPO instead of DO. Then, we used these networks/matrices as inputs of two representative machine learning-based and network-based ranking algorithms, that is, regularized least square and heterogeneous graph-based inference, respectively. The results showed that the prediction performance of the two algorithms on HPO-based is better than that on DO-based networks/matrices. In addition, our method can predict 11 novel cancer-associated lncRNAs, which are supported by literature evidence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Organization of cytokeratin cytoskeleton and germ plasm in the vegetal cortex of Xenopus laevis oocytes depends on coding and non-coding RNAs: Three-dimensional and ultrastructural analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kloc, Malgorzata; Bilinski, Szczepan; Dougherty, Matthew T.

    2007-05-01

    Recent studies discovered a novel structural role of RNA in maintaining the integrity of the mitotic spindle and cellular cytoskeleton. In Xenopus laevis, non-coding Xlsirts and coding VegT RNAs play a structural role in anchoring localized RNAs, maintaining the organization of the cytokeratin cytoskeleton and germinal granules in the oocyte vegetal cortex and in subsequent development of the germline in the embryo. We studied the ultrastructural effects of antisense oligonucleotide driven ablation of Xlsirts and VegT RNAs on the organization of the cytokeratin, germ plasm and other components of the vegetal cortex. We developed a novel method to immunolabel andmore » visualize cytokeratin at the electron microscopy level, which allowed us to reconstruct the ultrastructural organization of the cytokeratin network relative to the components of the vegetal cortex in Xenopus oocytes. The removal of Xlsirts and VegT RNAs not only disrupts the cytokeratin cytoskeleton but also has a profound transcript-specific effect on the anchoring and distribution of germ plasm islands and their germinal granules and the arrangement of yolk platelets within the vegetal cortex. We suggest that the cytokeratin cytoskeleton plays a role in anchoring of germ plasm islands within the vegetal cortex and germinal granules within the germ plasm islands.« less

  17. Comprehensive Identification of Long Non-coding RNAs in Purified Cell Types from the Brain Reveals Functional LncRNA in OPC Fate Determination

    PubMed Central

    Dong, Xiaomin; Chen, Kenian; Cuevas-Diaz Duran, Raquel; You, Yanan; Sloan, Steven A.; Zhang, Ye; Zong, Shan; Cao, Qilin; Barres, Ben A.; Wu, Jia Qian

    2015-01-01

    Long non-coding RNAs (lncRNAs) (> 200 bp) play crucial roles in transcriptional regulation during numerous biological processes. However, it is challenging to comprehensively identify lncRNAs, because they are often expressed at low levels and with more cell-type specificity than are protein-coding genes. In the present study, we performed ab initio transcriptome reconstruction using eight purified cell populations from mouse cortex and detected more than 5000 lncRNAs. Predicting the functions of lncRNAs using cell-type specific data revealed their potential functional roles in Central Nervous System (CNS) development. We performed motif searches in ENCODE DNase I digital footprint data and Mouse ENCODE promoters to infer transcription factor (TF) occupancy. By integrating TF binding and cell-type specific transcriptomic data, we constructed a novel framework that is useful for systematically identifying lncRNAs that are potentially essential for brain cell fate determination. Based on this integrative analysis, we identified lncRNAs that are regulated during Oligodendrocyte Precursor Cell (OPC) differentiation from Neural Stem Cells (NSCs) and that are likely to be involved in oligodendrogenesis. The top candidate, lnc-OPC, shows highly specific expression in OPCs and remarkable sequence conservation among placental mammals. Interestingly, lnc-OPC is significantly up-regulated in glial progenitors from experimental autoimmune encephalomyelitis (EAE) mouse models compared to wild-type mice. OLIG2-binding sites in the upstream regulatory region of lnc-OPC were identified by ChIP (chromatin immunoprecipitation)-Sequencing and validated by luciferase assays. Loss-of-function experiments confirmed that lnc-OPC plays a functional role in OPC genesis. Overall, our results substantiated the role of lncRNA in OPC fate determination and provided an unprecedented data source for future functional investigations in CNS cell types. We present our datasets and analysis results

  18. Comprehensive Identification of Long Non-coding RNAs in Purified Cell Types from the Brain Reveals Functional LncRNA in OPC Fate Determination.

    PubMed

    Dong, Xiaomin; Chen, Kenian; Cuevas-Diaz Duran, Raquel; You, Yanan; Sloan, Steven A; Zhang, Ye; Zong, Shan; Cao, Qilin; Barres, Ben A; Wu, Jia Qian

    2015-12-01

    Long non-coding RNAs (lncRNAs) (> 200 bp) play crucial roles in transcriptional regulation during numerous biological processes. However, it is challenging to comprehensively identify lncRNAs, because they are often expressed at low levels and with more cell-type specificity than are protein-coding genes. In the present study, we performed ab initio transcriptome reconstruction using eight purified cell populations from mouse cortex and detected more than 5000 lncRNAs. Predicting the functions of lncRNAs using cell-type specific data revealed their potential functional roles in Central Nervous System (CNS) development. We performed motif searches in ENCODE DNase I digital footprint data and Mouse ENCODE promoters to infer transcription factor (TF) occupancy. By integrating TF binding and cell-type specific transcriptomic data, we constructed a novel framework that is useful for systematically identifying lncRNAs that are potentially essential for brain cell fate determination. Based on this integrative analysis, we identified lncRNAs that are regulated during Oligodendrocyte Precursor Cell (OPC) differentiation from Neural Stem Cells (NSCs) and that are likely to be involved in oligodendrogenesis. The top candidate, lnc-OPC, shows highly specific expression in OPCs and remarkable sequence conservation among placental mammals. Interestingly, lnc-OPC is significantly up-regulated in glial progenitors from experimental autoimmune encephalomyelitis (EAE) mouse models compared to wild-type mice. OLIG2-binding sites in the upstream regulatory region of lnc-OPC were identified by ChIP (chromatin immunoprecipitation)-Sequencing and validated by luciferase assays. Loss-of-function experiments confirmed that lnc-OPC plays a functional role in OPC genesis. Overall, our results substantiated the role of lncRNA in OPC fate determination and provided an unprecedented data source for future functional investigations in CNS cell types. We present our datasets and analysis results

  19. Conserved expression of transposon-derived non-coding transcripts in primate stem cells.

    PubMed

    Ramsay, LeeAnn; Marchetto, Maria C; Caron, Maxime; Chen, Shu-Huang; Busche, Stephan; Kwan, Tony; Pastinen, Tomi; Gage, Fred H; Bourque, Guillaume

    2017-02-28

    A significant portion of expressed non-coding RNAs in human cells is derived from transposable elements (TEs). Moreover, it has been shown that various long non-coding RNAs (lncRNAs), which come from the human endogenous retrovirus subfamily H (HERVH), are not only expressed but required for pluripotency in human embryonic stem cells (hESCs). To identify additional TE-derived functional non-coding transcripts, we generated RNA-seq data from induced pluripotent stem cells (iPSCs) of four primate species (human, chimpanzee, gorilla, and rhesus) and searched for transcripts whose expression was conserved. We observed that about 30% of TE instances expressed in human iPSCs had orthologous TE instances that were also expressed in chimpanzee and gorilla. Notably, our analysis revealed a number of repeat families with highly conserved expression profiles including HERVH but also MER53, which is known to be the source of a placental-specific family of microRNAs (miRNAs). We also identified a number of repeat families from all classes of TEs, including MLT1-type and Tigger families, that contributed a significant amount of sequence to primate lncRNAs whose expression was conserved. Together, these results describe TE families and TE-derived lncRNAs whose conserved expression patterns can be used to identify what are likely functional TE-derived non-coding transcripts in primate iPSCs.

  20. Engineering Translation in Mammalian Cell Factories to Increase Protein Yield: The Unexpected Use of Long Non-Coding SINEUP RNAs.

    PubMed

    Zucchelli, Silvia; Patrucco, Laura; Persichetti, Francesca; Gustincich, Stefano; Cotella, Diego

    2016-01-01

    Mammalian cells are an indispensable tool for the production of recombinant proteins in contexts where function depends on post-translational modifications. Among them, Chinese Hamster Ovary (CHO) cells are the primary factories for the production of therapeutic proteins, including monoclonal antibodies (MAbs). To improve expression and stability, several methodologies have been adopted, including methods based on media formulation, selective pressure and cell- or vector engineering. This review presents current approaches aimed at improving mammalian cell factories that are based on the enhancement of translation. Among well-established techniques (codon optimization and improvement of mRNA secondary structure), we describe SINEUPs, a family of antisense long non-coding RNAs that are able to increase translation of partially overlapping protein-coding mRNAs. By exploiting their modular structure, SINEUP molecules can be designed to target virtually any mRNA of interest, and thus to increase the production of secreted proteins. Thus, synthetic SINEUPs represent a new versatile tool to improve the production of secreted proteins in biomanufacturing processes.

  1. Screening and identification of lncRNAs as potential biomarkers for pulmonary tuberculosis.

    PubMed

    Chen, Zhong-Liang; Wei, Li-Liang; Shi, Li-Ying; Li, Meng; Jiang, Ting-Ting; Chen, Jing; Liu, Chang-Ming; Yang, Su; Tu, Hui-Hui; Hu, Yu-Ting; Gan, Lin; Mao, Lian-Gen; Wang, Chong; Li, Ji-Cheng

    2017-12-01

    Pulmonary tuberculosis (TB) is among the diseases with the highest morbidity and mortality worldwide. Effective diagnostic methods for TB are lacking. In this study, we investigated long non-coding RNAs (lncRNAs) in plasma using microarray and the potential diagnostic value of lncRNAs for TB. We found a total of 163 up-regulated lncRNAs and 348 down-regulated lncRNAs. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and coding-noncoding co-expression (CNC) analyses showed that functions of differentially expressed lncRNAs were mainly enriched in the regulation of alpha-beta T cell activation and the T cell receptor signalling pathway. Four differentially expressed lncRNAs, NR_038221 (fold change = 3.79, P < 0.01), NR_003142 (fold change = 1.69, P < 0.05), ENST00000570366 (fold change = 3.04, P < 0.05), and ENST00000422183 (fold change = 2.11, P < 0.001), were verified using RT-qPCR. Among those, NR_038221, NR_003142, and ENST00000570366 were found to be up-regulated, while ENST00000422183 was down-regulated. The value of the area under the curve (AUC) for the diagnostic model consisting of the four lncRNAs was 0.845 (sensitivity = 79.2%, specificity = 75%). We further predicted 85 mRNAs and 404 miRNAs that potentially interact with these lncRNAs. Our study revealed the potential value of lncRNAs as biomarkers for early diagnosis of TB and the underlying mechanisms of these abnormally expressed lncRNAs in the pathogenesis of TB.

  2. Diversity of Antisense and Other Non-Coding RNAs in Archaea Revealed by Comparative Small RNA Sequencing in Four Pyrobaculum Species

    PubMed Central

    Bernick, David L.; Dennis, Patrick P.; Lui, Lauren M.; Lowe, Todd M.

    2012-01-01

    A great diversity of small, non-coding RNA (ncRNA) molecules with roles in gene regulation and RNA processing have been intensely studied in eukaryotic and bacterial model organisms, yet our knowledge of possible parallel roles for small RNAs (sRNA) in archaea is limited. We employed RNA-seq to identify novel sRNA across multiple species of the hyperthermophilic genus Pyrobaculum, known for unusual RNA gene characteristics. By comparing transcriptional data collected in parallel among four species, we were able to identify conserved RNA genes fitting into known and novel families. Among our findings, we highlight three novel cis-antisense sRNAs encoded opposite to key regulatory (ferric uptake regulator), metabolic (triose-phosphate isomerase), and core transcriptional apparatus genes (transcription factor B). We also found a large increase in the number of conserved C/D box sRNA genes over what had been previously recognized; many of these genes are encoded antisense to protein coding genes. The conserved opposition to orthologous genes across the Pyrobaculum genus suggests similarities to other cis-antisense regulatory systems. Furthermore, the genus-specific nature of these sRNAs indicates they are relatively recent, stable adaptations. PMID:22783241

  3. Integrative analysis of circRNAs acting as ceRNAs involved in ethylene pathway in tomato.

    PubMed

    Wang, Yunxiang; Wang, Qing; Gao, Lipu; Zhu, Benzhong; Luo, Yunbo; Deng, Zhiping; Zuo, Jinhua

    2017-11-01

    Circular RNAs (circRNAs) are a large class of non-coding endogenous RNAs that could act as competing endogenous RNAs (ceRNAs) to terminate the mRNA targets' suppression of miRNAs. To elucidate the intricate regulatory roles of circRNAs in the ethylene pathway in tomato fruit, deep sequencing and bioinformatics methods were performed. After strict screening, a total of 318 circRNAs were identified. Among these circRNAs, 282 were significantly differentially expressed among wild-type and sense-/antisense-LeERF1 transgenic tomato fruits. Besides, 1254 target genes were identified and a large amount of them were found to be involved in ethylene pathway. In addition, a sophisticated regulatory model consisting of circRNAs, target genes and ethylene was set up. Importantly, 61 circRNAs were found to be potential ceRNAs to combine with miRNAs and some of the miRNAs had been revealed to participate in the ethylene signaling pathway. This research further raised the possibility that the ethylene pathway in tomato fruit may be under the regulation of various circRNAs and provided a new perspective of the roles of circRNAs. © 2017 Scandinavian Plant Physiology Society.

  4. Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening.

    PubMed

    Zhang, Guoyun; Chen, Daoguo; Zhang, Tong; Duan, Aiguo; Zhang, Jianguo; He, Caiyun

    2018-06-04

    Fruit ripening is a developmental process regulated by a complex network of endogenous and exogenous cues. Sea buckthorn is an excellent material for fruit ripening studies due to its dramatic ripening process and high contents of nutritional and anti-oxidant compounds in berries. Here, the whole transcriptome of sea buckthorn fruit at three development stages were analysed using multiple high-throughput sequencings. We assembled and annotated 9,008 long non-coding RNAs (lncRNAs) in sea buckthorn fruits, and identified 118 differentially expressed lncRNAs (DE-lncRNAs) and 32 differentially expressed microRNAs in fruit developmental process. In addition, we predicted 1,061 cis-regulated and 782 trans-regulated targets of DE-lncRNAs, and these DE-lncRNAs are specifically enriched in the biosynthesis of ascorbic acid, carotenoids and flavonoids. Moreover, the silencing of two lncRNAs (LNC1 and LNC2) in vivo and expression analysis revealed that LNC1 and LNC2 can act as endogenous target mimics of miR156a and miR828a to reduce SPL9 and induce MYB114 expression, respectively, which lead to increased and decreased anthocyanin content as revealed by high-performance liquid chromatography analysis. Our results present the first global functional analysis of lncRNA in sea buckthorn and provide two essential regulators of anthocyanin biosynthesis, which provides new insights into the regulation of fruit quality.

  5. Long non-coding RNA and Polycomb: an intricate partnership in cancer biology.

    PubMed

    Achour, Cyrinne; Aguilo, Francesca

    2018-06-01

    High-throughput analyses have revealed that the vast majority of the transcriptome does not code for proteins. These non-translated transcripts, when larger than 200 nucleotides, are termed long non-coding RNAs (lncRNAs), and play fundamental roles in diverse cellular processes. LncRNAs are subject to dynamic chemical modification, adding another layer of complexity to our understanding of the potential roles that lncRNAs play in health and disease. Many lncRNAs regulate transcriptional programs by influencing the epigenetic state through direct interactions with chromatin-modifying proteins. Among these proteins, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) have been shown to be recruited by lncRNAs to silence target genes. Aberrant expression, deficiency or mutation of both lncRNA and Polycomb have been associated with numerous human diseases, including cancer. In this review, we have highlighted recent findings regarding the concerted mechanism of action of Polycomb group proteins (PcG), acting together with some classically defined lncRNAs including X-inactive specific transcript ( XIST ), antisense non-coding RNA in the INK4 locus ( ANRIL ), metastasis associated lung adenocarcinoma transcript 1 ( MALAT1 ), and HOX transcript antisense RNA ( HOTAIR ).

  6. Non-coding RNAs—Novel targets in neurotoxicity

    PubMed Central

    Tal, Tamara L.; Tanguay, Robert L.

    2012-01-01

    Over the past ten years non-coding RNAs (ncRNAs) have emerged as pivotal players in fundamental physiological and cellular processes and have been increasingly implicated in cancer, immune disorders, and cardiovascular, neurodegenerative, and metabolic diseases. MicroRNAs (miRNAs) represent a class of ncRNA molecules that function as negative regulators of post-transcriptional gene expression. miRNAs are predicted to regulate 60% of all human protein-coding genes and as such, play key roles in cellular and developmental processes, human health, and disease. Relative to counterparts that lack bindings sites for miRNAs, genes encoding proteins that are post-transcriptionally regulated by miRNAs are twice as likely to be sensitive to environmental chemical exposure. Not surprisingly, miRNAs have been recognized as targets or effectors of nervous system, developmental, hepatic, and carcinogenic toxicants, and have been identified as putative regulators of phase I xenobiotic-metabolizing enzymes. In this review, we give an overview of the types of ncRNAs and highlight their roles in neurodevelopment, neurological disease, activity-dependent signaling, and drug metabolism. We then delve into specific examples that illustrate their importance as mediators, effectors, or adaptive agents of neurotoxicants or neuroactive pharmaceutical compounds. Finally, we identify a number of outstanding questions regarding ncRNAs and neurotoxicity. PMID:22394481

  7. Identification and characterization of three Vibrio alginolyticus non-coding RNAs involved in adhesion, chemotaxis, and motility processes.

    PubMed

    Huang, Lixing; Hu, Jiao; Su, Yongquan; Qin, Yingxue; Kong, Wendi; Ma, Ying; Xu, Xiaojin; Lin, Mao; Yan, Qingpi

    2015-01-01

    The capability of Vibrio alginolyticus to adhere to fish mucus is a key virulence factor of the bacteria. Our previous research showed that stress conditions, such as Cu(2+), Pb(2+), Hg(2+), and low pH, can reduce this adhesion ability. Non-coding (nc) RNAs play a crucial role in regulating bacterial gene expression, affecting the bacteria's pathogenicity. To investigate the mechanism(s) underlying the decline in adhesion ability caused by stressors, we combined high-throughput sequencing with computational techniques to detect stressed ncRNA dynamics. These approaches yielded three commonly altered ncRNAs that are predicted to regulate the bacterial chemotaxis pathway, which plays a key role in the adhesion process of bacteria. We hypothesized they play a key role in the adhesion process of V. alginolyticus. In this study, we validated the effects of these three ncRNAs on their predicted target genes and their role in the V. alginolyticus adhesion process with RNA interference (i), quantitative real-time polymerase chain reaction (qPCR), northern blot, capillary assay, and in vitro adhesion assays. The expression of these ncRNAs and their predicted target genes were confirmed by qPCR and northern blot, which reinforced the reliability of the sequencing data and the target prediction. Overexpression of these ncRNAs was capable of reducing the chemotactic and adhesion ability of V. alginolyticus, and the expression levels of their target genes were also significantly reduced. Our results indicated that these three ncRNAs: (1) are able to regulate the bacterial chemotaxis pathway, and (2) play a key role in the adhesion process of V. alginolyticus.

  8. Non-coding RNA networks in cancer.

    PubMed

    Anastasiadou, Eleni; Jacob, Leni S; Slack, Frank J

    2018-01-01

    Thousands of unique non-coding RNA (ncRNA) sequences exist within cells. Work from the past decade has altered our perception of ncRNAs from 'junk' transcriptional products to functional regulatory molecules that mediate cellular processes including chromatin remodelling, transcription, post-transcriptional modifications and signal transduction. The networks in which ncRNAs engage can influence numerous molecular targets to drive specific cell biological responses and fates. Consequently, ncRNAs act as key regulators of physiological programmes in developmental and disease contexts. Particularly relevant in cancer, ncRNAs have been identified as oncogenic drivers and tumour suppressors in every major cancer type. Thus, a deeper understanding of the complex networks of interactions that ncRNAs coordinate would provide a unique opportunity to design better therapeutic interventions.

  9. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis.

    PubMed

    Pirola, Carlos J; Fernández Gianotti, Tomas; Castaño, Gustavo O; Mallardi, Pablo; San Martino, Julio; Mora Gonzalez Lopez Ledesma, María; Flichman, Diego; Mirshahi, Faridodin; Sanyal, Arun J; Sookoian, Silvia

    2015-05-01

    We used a screening strategy of global serum microRNA (miRNA) profiling, followed by a second stage of independent replication and exploration of liver expression of selected miRNAs to study: (1) the circulating miRNA signature associated with non-alcoholic fatty liver disease (NAFLD) progression and predictive power, (2) the role of miRNAs in disease biology and (3) the association between circulating miRNAs and features of the metabolic syndrome. The study used a case-control design and included patients with NAFLD proven through biopsy and healthy controls. Among 84 circulating miRNAs analysed, miR-122, miR-192, miR-19a and miR-19b, miR-125b, and miR-375 were upregulated >2-fold (p<0.05) either in simple steatosis (SS) or non-alcoholic steatohepatitis (NASH). The most dramatic and significant fold changes were observed in the serum levels of miR-122 (7.2-fold change in NASH vs controls and 3.1-fold change in NASH vs SS) and miR-192 (4.4-fold change in NASH vs controls); these results were replicated in the validation set. The majority of serum miR-122 circulate in argonaute2-free forms. Circulating miR-19a/b and miR-125b were correlated with biomarkers of atherosclerosis. Liver miR-122 expression was 10-fold (p<0.03) downregulated in NASH compared with SS and was preferentially expressed at the edge of lipid-laden hepatocytes. In vitro exploration showed that overexpression of miR-122 enhances alanine aminotransferase activity. miR-122 plays a role of physiological significance in the biology of NAFLD; circulating miRNAs mirror the histological and molecular events occurring in the liver. NAFLD has a distinguishing circulating miRNA profile associated with a global dysmetabolic disease state and cardiovascular risk. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Comprehensive Reconstruction and Visualization of Non-Coding Regulatory Networks in Human

    PubMed Central

    Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba

    2014-01-01

    Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape. PMID:25540777

  11. Comprehensive reconstruction and visualization of non-coding regulatory networks in human.

    PubMed

    Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba

    2014-01-01

    Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape.

  12. A Rapid Screen for Host-Encoded miRNAs with Inhibitory Effects against Ebola Virus Using a Transcription- and Replication-Competent Virus-Like Particle System.

    PubMed

    Wang, Zhongyi; Li, Jiaming; Fu, Yingying; Zhao, Zongzheng; Zhang, Chunmao; Li, Nan; Li, Jingjing; Cheng, Hongliang; Jin, Xiaojun; Lu, Bing; Guo, Zhendong; Qian, Jun; Liu, Linna

    2018-05-16

    MicroRNAs (miRNAs) may become efficient antiviral agents against the Ebola virus (EBOV) targeting viral genomic RNAs or transcripts. We previously conducted a genome-wide search for differentially expressed miRNAs during viral replication and transcription. In this study, we established a rapid screen for miRNAs with inhibitory effects against EBOV using a tetracistronic transcription- and replication-competent virus-like particle (trVLP) system. This system uses a minigenome comprising an EBOV leader region, luciferase reporter, VP40, GP, VP24, EBOV trailer region, and three noncoding regions from the EBOV genome and can be used to model the life cycle of EBOV under biosafety level (BSL) 2 conditions. Informatic analysis was performed to select up-regulated miRNAs targeting the coding regions of the minigenome with the highest binding energy to perform inhibitory effect screening. Among these miRNAs, miR-150-3p had the most significant inhibitory effect. Reverse transcription polymerase chain reaction (RT-PCR), Western blot, and double fluorescence reporter experiments demonstrated that miR-150-3p inhibited the reproduction of trVLPs via the regulation of GP and VP40 expression by directly targeting the coding regions of GP and VP40. This novel, rapid, and convenient screening method will efficiently facilitate the exploration of miRNAs against EBOV under BSL-2 conditions.

  13. The Long Non-Coding RNA Transcriptome Landscape in CHO Cells Under Batch and Fed-Batch Conditions.

    PubMed

    Vito, Davide; Smales, C Mark

    2018-05-21

    The role of non-coding RNAs in determining growth, productivity and recombinant product quality attributes in Chinese hamster ovary (CHO) cells has received much attention in recent years, exemplified by studies into microRNAs in particular. However, other classes of non-coding RNAs have received less attention. One such class are the non-coding RNAs known collectively as long non-coding RNAs (lncRNAs). We have undertaken the first landscape analysis of the lncRNA transcriptome in CHO using a mouse based microarray that also provided for the surveillance of the coding transcriptome. We report on those lncRNAs present in a model host CHO cell line under batch and fed-batch conditions on two different days and relate the expression of different lncRNAs to each other. We demonstrate that the mouse microarray was suitable for the detection and analysis of thousands of CHO lncRNAs and validated a number of these by qRT-PCR. We then further analysed the data to identify those lncRNAs whose expression changed the most between growth and stationary phases of culture or between batch and fed-batch culture to identify potential lncRNA targets for further functional studies with regard to their role in controlling growth of CHO cells. We discuss the implications for the publication of this rich dataset and how this may be used by the community. This article is protected by copyright. All rights reserved.

  14. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains

    PubMed Central

    Hutchinson, John N; Ensminger, Alexander W; Clemson, Christine M; Lynch, Christopher R; Lawrence, Jeanne B; Chess, Andrew

    2007-01-01

    Background Noncoding RNA species play a diverse set of roles in the eukaryotic cell. While much recent attention has focused on smaller RNA species, larger noncoding transcripts are also thought to be highly abundant in mammalian cells. To search for large noncoding RNAs that might control gene expression or mRNA metabolism, we used Affymetrix expression arrays to identify polyadenylated RNA transcripts displaying nuclear enrichment. Results This screen identified no more than three transcripts; XIST, and two unique noncoding nuclear enriched abundant transcripts (NEAT) RNAs strikingly located less than 70 kb apart on human chromosome 11: NEAT1, a noncoding RNA from the locus encoding for TncRNA, and NEAT2 (also known as MALAT-1). While the two NEAT transcripts share no significant homology with each other, each is conserved within the mammalian lineage, suggesting significant function for these noncoding RNAs. NEAT2 is extraordinarily well conserved for a noncoding RNA, more so than even XIST. Bioinformatic analyses of publicly available mouse transcriptome data support our findings from human cells as they confirm that the murine homologs of these noncoding RNAs are also nuclear enriched. RNA FISH analyses suggest that these noncoding RNAs function in mRNA metabolism as they demonstrate an intimate association of these RNA species with SC35 nuclear speckles in both human and mouse cells. These studies show that one of these transcripts, NEAT1 localizes to the periphery of such domains, whereas the neighboring transcript, NEAT2, is part of the long-sought polyadenylated component of nuclear speckles. Conclusion Our genome-wide screens in two mammalian species reveal no more than three abundant large non-coding polyadenylated RNAs in the nucleus; the canonical large noncoding RNA XIST and NEAT1 and NEAT2. The function of these noncoding RNAs in mRNA metabolism is suggested by their high levels of conservation and their intimate association with SC35 splicing

  15. The Non-Coding RNA Ontology (NCRO): a comprehensive resource for the unification of non-coding RNA biology.

    PubMed

    Huang, Jingshan; Eilbeck, Karen; Smith, Barry; Blake, Judith A; Dou, Dejing; Huang, Weili; Natale, Darren A; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming

    2016-01-01

    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the domain of ncRNAs, thereby facilitating the discovery, curation, analysis, exchange, and reasoning of data about structures of ncRNAs, their molecular and cellular functions, and their impacts upon phenotypes. The goal of NCRO is to serve as a common resource for annotations of diverse research in a way that will significantly enhance integrative and comparative analysis of the myriad resources currently housed in disparate sources. It is our belief that the NCRO ontology can perform an important role in the comprehensive unification of ncRNA biology and, indeed, fill a critical gap in both the Open Biological and Biomedical Ontologies (OBO) Library and the National Center for Biomedical Ontology (NCBO) BioPortal. Our initial focus is on the ontological representation of small regulatory ncRNAs, which we see as the first step in providing a resource for the annotation of data about all forms of ncRNAs. The NCRO ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/ncro.owl.

  16. Small non-coding RNAs in streptomycetes.

    PubMed

    Heueis, Nona; Vockenhuber, Michael-Paul; Suess, Beatrix

    2014-01-01

    Streptomycetes are Gram-positive, GC-rich, soil dwelling bacteria, occurring ubiquitary throughout nature. They undergo extensive morphological changes from spores to filamentous mycelia and produce a plethora of secondary metabolites. Owing to their complex life cycle, streptomycetes require efficient regulatory machinery for the control of gene expression. Therefore, they possess a large diversity of regulators. Within this review we summarize the current knowledge about the importance of small non-coding RNA for the control of gene expression in these organisms.

  17. Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs

    PubMed Central

    Łabno, Anna; Warkocki, Zbigniew; Kuliński, Tomasz; Krawczyk, Paweł Szczepan; Bijata, Krystian; Tomecki, Rafał; Dziembowski, Andrzej

    2016-01-01

    The exosome-independent exoribonuclease DIS3L2 is mutated in Perlman syndrome. Here, we used extensive global transcriptomic and targeted biochemical analyses to identify novel DIS3L2 substrates in human cells. We show that DIS3L2 regulates pol II transcripts, comprising selected canonical and histone-coding mRNAs, and a novel FTL_short RNA from the ferritin mRNA 5′ UTR. Importantly, DIS3L2 contributes to surveillance of maturing snRNAs during their cytoplasmic processing. Among pol III transcripts, DIS3L2 particularly targets vault and Y RNAs and an Alu-like element BC200 RNA, but not Alu repeats, which are removed by exosome-associated DIS3. Using 3′ RACE-Seq, we demonstrate that all novel DIS3L2 substrates are uridylated in vivo by TUT4/TUT7 poly(U) polymerases. Uridylation-dependent DIS3L2-mediated decay can be recapitulated in vitro, thus reinforcing the tight cooperation between DIS3L2 and TUTases. Together these results indicate that catalytically inactive DIS3L2, characteristic of Perlman syndrome, can lead to deregulation of its target RNAs to disturb transcriptome homeostasis. PMID:27431325

  18. From Discovery to Function: The Expanding Roles of Long NonCoding RNAs in Physiology and Disease

    PubMed Central

    Sun, Miao

    2015-01-01

    Long noncoding RNAs (lncRNAs) are a relatively poorly understood class of RNAs with little or no coding capacity transcribed from a set of incompletely annotated genes. They have received considerable attention in the past few years and are emerging as potentially important players in biological regulation. Here we discuss the evolving understanding of this new class of molecular regulators that has emerged from ongoing research, which continues to expand our databases of annotated lncRNAs and provide new insights into their physical properties, molecular mechanisms of action, and biological functions. We outline the current strategies and approaches that have been employed to identify and characterize lncRNAs, which have been instrumental in revealing their multifaceted roles ranging from cis- to trans-regulation of gene expression and from epigenetic modulation in the nucleus to posttranscriptional control in the cytoplasm. In addition, we highlight the molecular and biological functions of some of the best characterized lncRNAs in physiology and disease, especially those relevant to endocrinology, reproduction, metabolism, immunology, neurobiology, muscle biology, and cancer. Finally, we discuss the tremendous diagnostic and therapeutic potential of lncRNAs in cancer and other diseases. PMID:25426780

  19. Quantification of non-coding RNA target localization diversity and its application in cancers.

    PubMed

    Cheng, Lixin; Leung, Kwong-Sak

    2018-04-01

    Subcellular localization is pivotal for RNAs and proteins to implement biological functions. The localization diversity of protein interactions has been studied as a crucial feature of proteins, considering that the protein-protein interactions take place in various subcellular locations. Nevertheless, the localization diversity of non-coding RNA (ncRNA) target proteins has not been systematically studied, especially its characteristics in cancers. In this study, we provide a new algorithm, non-coding RNA target localization coefficient (ncTALENT), to quantify the target localization diversity of ncRNAs based on the ncRNA-protein interaction and protein subcellular localization data. ncTALENT can be used to calculate the target localization coefficient of ncRNAs and measure how diversely their targets are distributed among the subcellular locations in various scenarios. We focus our study on long non-coding RNAs (lncRNAs), and our observations reveal that the target localization diversity is a primary characteristic of lncRNAs in different biotypes. Moreover, we found that lncRNAs in multiple cancers, differentially expressed cancer lncRNAs, and lncRNAs with multiple cancer target proteins are prone to have high target localization diversity. Furthermore, the analysis of gastric cancer helps us to obtain a better understanding that the target localization diversity of lncRNAs is an important feature closely related to clinical prognosis. Overall, we systematically studied the target localization diversity of the lncRNAs and uncovered its association with cancer.

  20. Long non-coding RNAs regulate effects of β-crystallin B2 on mouse ovary development.

    PubMed

    Gao, Qian; Ren, Hanxiao; Chen, Mingkun; Niu, Ziguang; Tao, Haibo; Jia, Yin; Zhang, Jianrong; Li, Wenjie

    2016-11-01

    β-crystallin B2 (CRYBB2) knockout mice exhibit morphological and functional abnormalities in the ovary. Long non‑coding RNAs (lncRNAs) regulate gene transcription and translation, and epigenetic modification of genomic DNA. The present study investigated the role of lncRNAs in mediating the effects of CRYBB2 in the regulation of ovary development in mice. In the current study, ovary tissues from wild‑type (WT) and CRYBB2 knockout mice were subjected to lncRNA and mRNA microarray profiling. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to group the differentially expressed lncRNAs into regulated gene pathways and functions. The correlation matrix method was used to establish a network of lncRNA and mRNA co‑expression. Quantitative reverse transcription-polymerase chain reaction (RT‑qPCR) was used to verify expression of a number of these differentially expressed lncRNAs and mRNAs. There were 157 differentially expressed lncRNAs and 1,085 differentially expressed mRNAs between ovary tissues from WT and CRYBB2 knockout mice. The GO and KEGG analyses indicated that these differentially expressed lncRNAs and mRNAs were important in Ca2+ signaling and ligand and receptor interactions. The correlation matrix method established an lncRNA and mRNA co‑expression network, consisting of 53 lncRNAs and 45 mRNAs with 98 nodes and 75 connections. RT‑qPCR confirmed downregulation of lncRNA A‑30‑P01019163 expression, which further downregulated its downstream gene purinergic receptor P2X, ligand‑gated ion channel, 7 (P2rx7) expression in ovary tissues from CRYBB2 knockout mice. In conclusion, CRYBB2 regulates expression of different lncRNAs to influence ovary development. lncRNA A‑30‑P01019163 may affect ovarian cell cycle and proliferation by regulating P2rx7 expression in the ovary.

  1. Identification and functional analysis of long non-coding RNAs in human and mouse early embryos based on single-cell transcriptome data

    PubMed Central

    Qiu, Jia-jun; Ren, Zhao-rui; Yan, Jing-bin

    2016-01-01

    Epigenetics regulations have an important role in fertilization and proper embryonic development, and several human diseases are associated with epigenetic modification disorders, such as Rett syndrome, Beckwith-Wiedemann syndrome and Angelman syndrome. However, the dynamics and functions of long non-coding RNAs (lncRNAs), one type of epigenetic regulators, in human pre-implantation development have not yet been demonstrated. In this study, a comprehensive analysis of human and mouse early-stage embryonic lncRNAs was performed based on public single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs are expressed in a developmental stage–specific manner during human early-stage embryonic development, whereas a more temporal-specific expression pattern was identified in mouse embryos. Weighted gene co-expression network analysis suggested that lncRNAs involved in human early-stage embryonic development are associated with several important functions and processes, such as oocyte maturation, zygotic genome activation and mitochondrial functions. We also found that the network of lncRNAs involved in zygotic genome activation was highly preservative between human and mouse embryos, whereas in other stages no strong correlation between human and mouse embryo was observed. This study provides insight into the molecular mechanism underlying lncRNA involvement in human pre-implantation embryonic development. PMID:27542205

  2. NONCODE v2.0: decoding the non-coding.

    PubMed

    He, Shunmin; Liu, Changning; Skogerbø, Geir; Zhao, Haitao; Wang, Jie; Liu, Tao; Bai, Baoyan; Zhao, Yi; Chen, Runsheng

    2008-01-01

    The NONCODE database is an integrated knowledge database designed for the analysis of non-coding RNAs (ncRNAs). Since NONCODE was first released 3 years ago, the number of known ncRNAs has grown rapidly, and there is growing recognition that ncRNAs play important regulatory roles in most organisms. In the updated version of NONCODE (NONCODE v2.0), the number of collected ncRNAs has reached 206 226, including a wide range of microRNAs, Piwi-interacting RNAs and mRNA-like ncRNAs. The improvements brought to the database include not only new and updated ncRNA data sets, but also an incorporation of BLAST alignment search service and access through our custom UCSC Genome Browser. NONCODE can be found under http://www.noncode.org or http://noncode.bioinfo.org.cn.

  3. Identification of novel mRNAs and lncRNAs associated with mouse experimental colitis and human inflammatory bowel disease.

    PubMed

    Rankin, Carl Robert; Theodorou, Evangelos; Law, Ivy Ka Man; Rowe, Lorraine; Kokkotou, Efi; Pekow, Joel; Wang, Jiafang; Martin, Martin G; Pothoulakis, Charalabos; Padua, David Miguel

    2018-06-28

    Inflammatory bowel disease (IBD) is a complex disorder that is associated with significant morbidity. While many recent advances have been made with new diagnostic and therapeutic tools, a deeper understanding of its basic pathophysiology is needed to continue this trend towards improving treatments. By utilizing an unbiased, high-throughput transcriptomic analysis of two well-established mouse models of colitis, we set out to uncover novel coding and non-coding RNAs that are differentially expressed in the setting of colonic inflammation. RNA-seq analysis was performed using colonic tissue from two mouse models of colitis, a dextran sodium sulfate induced model and a genetic-induced model in mice lacking IL-10. We identified 81 coding RNAs that were commonly altered in both experimental models. Of these coding RNAs, 12 of the human orthologs were differentially expressed in a transcriptomic analysis of IBD patients. Interestingly, 5 of the 12 of human differentially expressed genes have not been previously identified as IBD-associated genes, including ubiquitin D. Our analysis also identified 15 non-coding RNAs that were differentially expressed in either mouse model. Surprisingly, only three non-coding RNAs were commonly dysregulated in both of these models. The discovery of these new coding and non-coding RNAs expands our transcriptional knowledge of mouse models of IBD and offers additional targets to deepen our understanding of the pathophysiology of IBD.

  4. Junk DNA and the long non-coding RNA twist in cancer genetics

    PubMed Central

    Ling, Hui; Vincent, Kimberly; Pichler, Martin; Fodde, Riccardo; Berindan-Neagoe, Ioana; Slack, Frank J.; Calin, George A

    2015-01-01

    The central dogma of molecular biology states that the flow of genetic information moves from DNA to RNA to protein. However, in the last decade this dogma has been challenged by new findings on non-coding RNAs (ncRNAs) such as microRNAs (miRNAs). More recently, long non-coding RNAs (lncRNAs) have attracted much attention due to their large number and biological significance. Many lncRNAs have been identified as mapping to regulatory elements including gene promoters and enhancers, ultraconserved regions, and intergenic regions of protein-coding genes. Yet, the biological function and molecular mechanisms of lncRNA in human diseases in general and cancer in particular remain largely unknown. Data from the literature suggest that lncRNA, often via interaction with proteins, functions in specific genomic loci or use their own transcription loci for regulatory activity. In this review, we summarize recent findings supporting the importance of DNA loci in lncRNA function, and the underlying molecular mechanisms via cis or trans regulation, and discuss their implications in cancer. In addition, we use the 8q24 genomic locus, a region containing interactive SNPs, DNA regulatory elements and lncRNAs, as an example to illustrate how single nucleotide polymorphism (SNP) located within lncRNAs may be functionally associated with the individual’s susceptibility to cancer. PMID:25619839

  5. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs

    PubMed Central

    Ranoa, Diana Rose E.; Parekh, Akash D.; Pitroda, Sean P.; Huang, Xiaona; Darga, Thomas; Wong, Anthony C.; Huang, Lei; Andrade, Jorge; Staley, Jonathan P.; Satoh, Takashi; Akira, Shizuo

    2016-01-01

    Emerging evidence indicates that ionizing radiation (IR) and chemotherapy activate Type I interferon (IFN) signaling in tumor and host cells. However, the mechanism of induction is poorly understood. We identified a novel radioprotective role for the DEXH box RNA helicase LGP2 (DHX58) through its suppression of IR-induced cytotoxic IFN-beta [1]. LGP2 inhibits activation of the RIG-I-like receptor (RLR) pathway upon binding of viral RNA to the cytoplasmic sensors RIG-I (DDX58) and MDA5 (IFIH1) and subsequent IFN signaling via the mitochondrial adaptor protein MAVS (IPS1). Here we show that MAVS is necessary for IFN-beta induction and interferon-stimulated gene expression in the response to IR. Suppression of MAVS conferred radioresistance in normal and cancer cells. Germline deletion of RIG-I, but not MDA5, protected mice from death following total body irradiation, while deletion of LGP2 accelerated the death of irradiated animals. In human tumors depletion of RIG-I conferred resistance to IR and different classes of chemotherapy drugs. Mechanistically, IR stimulated the binding of cytoplasmic RIG-I with small endogenous non-coding RNAs (sncRNAs), which triggered IFN-beta activity. We demonstrate that the small nuclear RNAs U1 and U2 translocate to the cytoplasm after IR treatment, thus stimulating the formation of RIG-I: RNA complexes and initiating downstream signaling events. Taken together, these findings suggest that the physiologic responses to radio-/chemo-therapy converge on an antiviral program in recruitment of the RLR pathway by a sncRNA-dependent activation of RIG-I which commences cytotoxic IFN signaling. Importantly, activation of interferon genes by radiation or chemotherapy is associated with a favorable outcome in patients undergoing treatment for cancer. To our knowledge, this is the first demonstration of a cell-intrinsic response to clinically relevant genotoxic treatments mediated by an RNA-dependent mechanism. PMID:27034163

  6. Regulatory consequences of neuronal ELAV-like protein binding to coding and non-coding RNAs in human brain

    PubMed Central

    Scheckel, Claudia; Drapeau, Elodie; Frias, Maria A; Park, Christopher Y; Fak, John; Zucker-Scharff, Ilana; Kou, Yan; Haroutunian, Vahram; Ma'ayan, Avi

    2016-01-01

    Neuronal ELAV-like (nELAVL) RNA binding proteins have been linked to numerous neurological disorders. We performed crosslinking-immunoprecipitation and RNAseq on human brain, and identified nELAVL binding sites on 8681 transcripts. Using knockout mice and RNAi in human neuroblastoma cells, we showed that nELAVL intronic and 3' UTR binding regulates human RNA splicing and abundance. We validated hundreds of nELAVL targets among which were important neuronal and disease-associated transcripts, including Alzheimer's disease (AD) transcripts. We therefore investigated RNA regulation in AD brain, and observed differential splicing of 150 transcripts, which in some cases correlated with differential nELAVL binding. Unexpectedly, the most significant change of nELAVL binding was evident on non-coding Y RNAs. nELAVL/Y RNA complexes were specifically remodeled in AD and after acute UV stress in neuroblastoma cells. We propose that the increased nELAVL/Y RNA association during stress may lead to nELAVL sequestration, redistribution of nELAVL target binding, and altered neuronal RNA splicing. DOI: http://dx.doi.org/10.7554/eLife.10421.001 PMID:26894958

  7. Non-coding, mRNA-like RNAs database Y2K.

    PubMed

    Erdmann, V A; Szymanski, M; Hochberg, A; Groot, N; Barciszewski, J

    2000-01-01

    In last few years much data has accumulated on various non-translatable RNA transcripts that are synthesised in different cells. They are lacking in protein coding capacity and it seems that they work mainly or exclusively at the RNA level. All known non-coding RNA transcripts are collected in the database: http://www. man.poznan.pl/5SData/ncRNA/index.html

  8. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements

    PubMed Central

    Maliszewska-Olejniczak, Kamila; Gruchota, Julita; Gromadka, Robert; Denby Wilkes, Cyril; Arnaiz, Olivier; Mathy, Nathalie; Duharcourt, Sandra; Bétermier, Mireille; Nowak, Jacek K.

    2015-01-01

    Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs). Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium, and establishes for

  9. In vivo screening of modified siRNAs for non-specific antiviral effect in a small fish model: number and localization in the strands are important

    PubMed Central

    Schyth, Brian Dall; Bramsen, Jesper Bertram; Pakula, Malgorzata Maria; Larashati, Sekar; Kjems, Jørgen; Wengel, Jesper; Lorenzen, Niels

    2012-01-01

    Small interfering RNAs (siRNAs) are promising new active compounds in gene medicine but the induction of non-specific immune responses following their delivery continues to be a serious problem. With the purpose of avoiding such effects chemically modified siRNAs are tested in screening assay but often only examining the expression of specific immunologically relevant genes in selected cell populations typically blood cells from treated animals or humans. Assays using a relevant physiological state in biological models as read-out are not common. Here we use a fish model where the innate antiviral effect of siRNAs is functionally monitored as reduced mortality in challenge studies involving an interferon sensitive virus. Modifications with locked nucleic acid (LNA), altritol nucleic acid (ANA) and hexitol nucleic acid (HNA) reduced the antiviral protection in this model indicative of altered immunogenicity. For LNA modified siRNAs, the number and localization of modifications in the single strands was found to be important and a correlation between antiviral protection and the thermal stability of siRNAs was found. The previously published sisiRNA will in some sequences, but not all, increase the antiviral effect of siRNAs. The applied fish model represents a potent tool for conducting fast but statistically and scientifically relevant evaluations of chemically optimized siRNAs with respect to non-specific antiviral effects in vivo. PMID:22287630

  10. Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs.

    PubMed

    Hutchins, Andrew Paul; Pei, Duanqing

    Transposable elements (TEs) are mobile genomic sequences of DNA capable of autonomous and non-autonomous duplication. TEs have been highly successful, and nearly half of the human genome now consists of various families of TEs. Originally thought to be non-functional, these elements have been co-opted by animal genomes to perform a variety of physiological functions ranging from TE-derived proteins acting directly in normal biological functions, to innovations in transcription factor logic and influence on epigenetic control of gene expression. During embryonic development, when the genome is epigenetically reprogrammed and DNA-demethylated, TEs are released from repression and show embryonic stage-specific expression, and in human and mouse embryos, intact TE-derived endogenous viral particles can even be detected. A similar process occurs during the reprogramming of somatic cells to pluripotent cells: When the somatic DNA is demethylated, TEs are released from repression. In embryonic stem cells (ESCs), where DNA is hypomethylated, an elaborate system of epigenetic control is employed to suppress TEs, a system that often overlaps with normal epigenetic control of ESC gene expression. Finally, many long non-coding RNAs (lncRNAs) involved in normal ESC function and those assisting or impairing reprogramming contain multiple TEs in their RNA. These TEs may act as regulatory units to recruit RNA-binding proteins and epigenetic modifiers. This review covers how TEs are interlinked with the epigenetic machinery and lncRNAs, and how these links influence each other to modulate aspects of ESCs, embryogenesis, and somatic cell reprogramming.

  11. Detection of non-coding RNA in bacteria and archaea using the DETR'PROK Galaxy pipeline.

    PubMed

    Toffano-Nioche, Claire; Luo, Yufei; Kuchly, Claire; Wallon, Claire; Steinbach, Delphine; Zytnicki, Matthias; Jacq, Annick; Gautheret, Daniel

    2013-09-01

    RNA-seq experiments are now routinely used for the large scale sequencing of transcripts. In bacteria or archaea, such deep sequencing experiments typically produce 10-50 million fragments that cover most of the genome, including intergenic regions. In this context, the precise delineation of the non-coding elements is challenging. Non-coding elements include untranslated regions (UTRs) of mRNAs, independent small RNA genes (sRNAs) and transcripts produced from the antisense strand of genes (asRNA). Here we present a computational pipeline (DETR'PROK: detection of ncRNAs in prokaryotes) based on the Galaxy framework that takes as input a mapping of deep sequencing reads and performs successive steps of clustering, comparison with existing annotation and identification of transcribed non-coding fragments classified into putative 5' UTRs, sRNAs and asRNAs. We provide a step-by-step description of the protocol using real-life example data sets from Vibrio splendidus and Escherichia coli. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Non-coding, mRNA-like RNAs database Y2K

    PubMed Central

    Erdmann, Volker A.; Szymanski, Maciej; Hochberg, Abraham; Groot, Nathan de; Barciszewski, Jan

    2000-01-01

    In last few years much data has accumulated on various non-translatable RNA transcripts that are synthesised in different cells. They are lacking in protein coding capacity and it seems that they work mainly or exclusively at the RNA level. All known non-coding RNA transcripts are collected in the database: http://www.man.poznan.pl/5SData/ncRNA/index.html PMID:10592224

  13. Novel insights into the response of Atlantic salmon (Salmo salar) to Piscirickettsia salmonis: Interplay of coding genes and lncRNAs during bacterial infection.

    PubMed

    Valenzuela-Miranda, Diego; Gallardo-Escárate, Cristian

    2016-12-01

    Despite the high prevalence and impact to Chilean salmon aquaculture of the intracellular bacterium Piscirickettsia salmonis, the molecular underpinnings of host-pathogen interactions remain unclear. Herein, the interplay of coding and non-coding transcripts has been proposed as a key mechanism involved in immune response. Therefore, the aim of this study was to evidence how coding and non-coding transcripts are modulated during the infection process of Atlantic salmon with P. salmonis. For this, RNA-seq was conducted in brain, spleen, and head kidney samples, revealing different transcriptional profiles according to bacterial load. Additionally, while most of the regulated genes annotated for diverse biological processes during infection, a common response associated with clathrin-mediated endocytosis and iron homeostasis was present in all tissues. Interestingly, while endocytosis-promoting factors and clathrin inductions were upregulated, endocytic receptors were mainly downregulated. Furthermore, the regulation of genes related to iron homeostasis suggested an intracellular accumulation of iron, a process in which heme biosynthesis/degradation pathways might play an important role. Regarding the non-coding response, 918 putative long non-coding RNAs were identified, where 425 were newly characterized for S. salar. Finally, co-localization and co-expression analyses revealed a strong correlation between the modulations of long non-coding RNAs and genes associated with endocytosis and iron homeostasis. These results represent the first comprehensive study of putative interplaying mechanisms of coding and non-coding RNAs during bacterial infection in salmonids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Comparative analysis of long non-coding RNAs in Atlantic and Coho salmon reveals divergent transcriptome responses associated with immunity and tissue repair during sea lice infestation.

    PubMed

    Valenzuela-Muñoz, Valentina; Valenzuela-Miranda, Diego; Gallardo-Escárate, Cristian

    2018-05-24

    The increasing capacity of transcriptomic analysis by high throughput sequencing has highlighted the presence of a large proportion of transcripts that do not encode proteins. In particular, long non-coding RNAs (lncRNAs) are sequences with low coding potential and conservation among species. Moreover, cumulative evidence has revealed important roles in post-transcriptional gene modulation in several taxa. In fish, the role of lncRNAs has been scarcely studied and even less so during the immune response against sea lice. In the present study we mined for lncRNAs in Atlantic salmon (Salmo salar) and Coho salmon (Oncorhynkus kisutch), which are affected by the sea louse Caligus rogercresseyi, evaluating the degree of sequence conservation between these two fish species and their putative roles during the infection process. Herein, Atlantic and Coho salmon were infected with 35 lice/fish and evaluated after 7 and 14 days post-infestation (dpi). For RNA sequencing, samples from skin and head kidney were collected. A total of 5658/4140 and 3678/2123 lncRNAs were identified in uninfected/infected Atlantic and Coho salmon transcriptomes, respectively. Species-specific transcription patterns were observed in exclusive lncRNAs according to the tissue analyzed. Furthermore, neighbor gene GO enrichment analysis of the top 100 highly regulated lncRNAs in Atlantic salmon showed that lncRNAs were localized near genes related to the immune response. On the other hand, in Coho salmon the highly regulated lncRNAs were localized near genes involved in tissue repair processes. This study revealed high regulation of lncRNAs closely localized to immune and tissue repair-related genes in Atlantic and Coho salmon, respectively, suggesting putative roles for lncRNAs in salmon against sea lice infestation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing

    PubMed Central

    2011-01-01

    Background Biotic and abiotic stresses, such as powdery mildew infection and high temperature, are important limiting factors for yield and grain quality in wheat production. Emerging evidences suggest that long non-protein coding RNAs (npcRNAs) are developmentally regulated and play roles in development and stress responses of plants. However, identification of long npcRNAs is limited to a few plant species, such as Arabidopsis, rice and maize, no systematic identification of long npcRNAs and their responses to abiotic and biotic stresses is reported in wheat. Results In this study, by using computational analysis and experimental approach we identified 125 putative wheat stress responsive long npcRNAs, which are not conserved among plant species. Among them, some were precursors of small RNAs such as microRNAs and siRNAs, two long npcRNAs were identified as signal recognition particle (SRP) 7S RNA variants, and three were characterized as U3 snoRNAs. We found that wheat long npcRNAs showed tissue dependent expression patterns and were responsive to powdery mildew infection and heat stress. Conclusion Our results indicated that diverse sets of wheat long npcRNAs were responsive to powdery mildew infection and heat stress, and could function in wheat responses to both biotic and abiotic stresses, which provided a starting point to understand their functions and regulatory mechanisms in the future. PMID:21473757

  16. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts

    PubMed Central

    Paraskevopoulou, Maria D.; Vlachos, Ioannis S.; Karagkouni, Dimitra; Georgakilas, Georgios; Kanellos, Ilias; Vergoulis, Thanasis; Zagganas, Konstantinos; Tsanakas, Panayiotis; Floros, Evangelos; Dalamagas, Theodore; Hatzigeorgiou, Artemis G.

    2016-01-01

    microRNAs (miRNAs) are short non-coding RNAs (ncRNAs) that act as post-transcriptional regulators of coding gene expression. Long non-coding RNAs (lncRNAs) have been recently reported to interact with miRNAs. The sponge-like function of lncRNAs introduces an extra layer of complexity in the miRNA interactome. DIANA-LncBase v1 provided a database of experimentally supported and in silico predicted miRNA Recognition Elements (MREs) on lncRNAs. The second version of LncBase (www.microrna.gr/LncBase) presents an extensive collection of miRNA:lncRNA interactions. The significantly enhanced database includes more than 70 000 low and high-throughput, (in)direct miRNA:lncRNA experimentally supported interactions, derived from manually curated publications and the analysis of 153 AGO CLIP-Seq libraries. The new experimental module presents a 14-fold increase compared to the previous release. LncBase v2 hosts in silico predicted miRNA targets on lncRNAs, identified with the DIANA-microT algorithm. The relevant module provides millions of predicted miRNA binding sites, accompanied with detailed metadata and MRE conservation metrics. LncBase v2 caters information regarding cell type specific miRNA:lncRNA regulation and enables users to easily identify interactions in 66 different cell types, spanning 36 tissues for human and mouse. Database entries are also supported by accurate lncRNA expression information, derived from the analysis of more than 6 billion RNA-Seq reads. PMID:26612864

  17. Expression profile analysis of long non-coding RNA in acute myeloid leukemia by microarray and bioinformatics.

    PubMed

    Feng, Yuandong; Shen, Ying; Chen, Hongli; Wang, Xiaman; Zhang, Ru; Peng, Yue; Lei, Xiaoru; Liu, Tian; Liu, Jing; Gu, Liufang; Wang, Fangxia; Yang, Yun; Bai, Ju; Wang, Jianli; Zhao, Wanhong; He, Aili

    2018-02-01

    Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt that are involved in tumorigenesis and play a key role in cancer progression. To determine whether lncRNAs are involved in acute myeloid leukemia (AML), we analyzed the expression profile of lncRNAs and mRNAs in AML. Five pairs of AML patients and iron deficiency anemia (IDA) controls were screened by microarray. Through coexpression analysis, differently expressed transcripts were divided into modules, and lncRNAs were functionally annotated. We further analyzed the clinical significance of crucial lncRNAs from modules in public data. Finally, the expression of three lncRNAs, RP11-222K16.2, AC092580.4, and RP11-305O.6, were validated in newly diagnosed AML, AML relapse, and IDA patient groups by quantitative RT-PCR, which may be associated with AML patients' overall survival. Further analysis showed that RP11-222K16.2 might affect the differentiation of natural killer cells, and promote the immunized evasion of AML by regulating Eomesodermin expression. Analysis of this study revealed that dysregulated lncRNAs and mRNAs in AML vs IDA controls could affect the immune system and hematopoietic cell differentiation. The biological functions of those lncRNAs need to be further validated. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  18. An Atlas of Soybean Small RNAs Identifies Phased siRNAs from Hundreds of Coding Genes[W

    PubMed Central

    Kakrana, Atul; Huang, Kun; Zhai, Jixian; Yan, Zhe; Valdés-López, Oswaldo; Prince, Silvas; Musket, Theresa A.; Stacey, Gary

    2014-01-01

    Small RNAs are ubiquitous, versatile repressors and include (1) microRNAs (miRNAs), processed from mRNA forming stem-loops; and (2) small interfering RNAs (siRNAs), the latter derived in plants by a process typically requiring an RNA-dependent RNA polymerase. We constructed and analyzed an expression atlas of soybean (Glycine max) small RNAs, identifying over 500 loci generating 21-nucleotide phased siRNAs (phasiRNAs; from PHAS loci), of which 483 overlapped annotated protein-coding genes. Via the integration of miRNAs with parallel analysis of RNA end (PARE) data, 20 miRNA triggers of 127 PHAS loci were detected. The primary class of PHAS loci (208 or 41% of the total) corresponded to NB-LRR genes; some of these small RNAs preferentially accumulate in nodules. Among the PHAS loci, novel representatives of TAS3 and noncanonical phasing patterns were also observed. A noncoding PHAS locus, triggered by miR4392, accumulated preferentially in anthers; the phasiRNAs are predicted to target transposable elements, with their peak abundance during soybean reproductive development. Thus, phasiRNAs show tremendous diversity in dicots. We identified novel miRNAs and assessed the veracity of soybean miRNAs registered in miRBase, substantially improving the soybean miRNA annotation, facilitating an improvement of miRBase annotations and identifying at high stringency novel miRNAs and their targets. PMID:25465409

  19. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts.

    PubMed

    Paraskevopoulou, Maria D; Vlachos, Ioannis S; Karagkouni, Dimitra; Georgakilas, Georgios; Kanellos, Ilias; Vergoulis, Thanasis; Zagganas, Konstantinos; Tsanakas, Panayiotis; Floros, Evangelos; Dalamagas, Theodore; Hatzigeorgiou, Artemis G

    2016-01-04

    microRNAs (miRNAs) are short non-coding RNAs (ncRNAs) that act as post-transcriptional regulators of coding gene expression. Long non-coding RNAs (lncRNAs) have been recently reported to interact with miRNAs. The sponge-like function of lncRNAs introduces an extra layer of complexity in the miRNA interactome. DIANA-LncBase v1 provided a database of experimentally supported and in silico predicted miRNA Recognition Elements (MREs) on lncRNAs. The second version of LncBase (www.microrna.gr/LncBase) presents an extensive collection of miRNA:lncRNA interactions. The significantly enhanced database includes more than 70 000 low and high-throughput, (in)direct miRNA:lncRNA experimentally supported interactions, derived from manually curated publications and the analysis of 153 AGO CLIP-Seq libraries. The new experimental module presents a 14-fold increase compared to the previous release. LncBase v2 hosts in silico predicted miRNA targets on lncRNAs, identified with the DIANA-microT algorithm. The relevant module provides millions of predicted miRNA binding sites, accompanied with detailed metadata and MRE conservation metrics. LncBase v2 caters information regarding cell type specific miRNA:lncRNA regulation and enables users to easily identify interactions in 66 different cell types, spanning 36 tissues for human and mouse. Database entries are also supported by accurate lncRNA expression information, derived from the analysis of more than 6 billion RNA-Seq reads. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. RsmV a small non-coding regulatory RNA in Pseudomonas aeruginosa that sequesters RsmA and RsmF from target mRNAs.

    PubMed

    Janssen, Kayley H; Diaz, Manisha R; Gode, Cindy J; Wolfgang, Matthew C; Yahr, Timothy L

    2018-06-04

    The Gram-negative opportunistic pathogen Pseudomonas aeruginosa has distinct genetic programs that favor either acute or chronic virulence gene expression. Acute virulence is associated with twitching and swimming motility, expression of a type III secretion system (T3SS), and the absence of alginate, Psl, or Pel polysaccharide production. Traits associated with chronic infection include growth as a biofilm, reduced motility, and expression of a type VI secretion system (T6SS). The Rsm post-transcriptional regulatory system plays important roles in the inverse control of phenotypes associated with acute and chronic virulence. RsmA and RsmF are RNA-binding proteins that interact with target mRNAs to control gene expression at the post-transcriptional level. Previous work found that RsmA activity is controlled by at least three small, non-coding regulatory RNAs (RsmW, RsmY, and RsmZ). In this study, we took an in-silico approach to identify additional sRNAs that might function in the sequestration of RsmA and/or RsmF and identified RsmV, a 192 nt transcript with four predicted RsmA/RsmF consensus binding sites. RsmV is capable of sequestering RsmA and RsmF in vivo to activate translation of tssA1 , a component of the T6SS, and to inhibit T3SS gene expression. Each of the predicted RsmA/RsmF consensus binding sites contribute to RsmV activity. Electrophoretic mobility shifts assays show that RsmF binds RsmV with >10-fold higher affinity than RsmY and RsmZ. Gene expression studies revealed that the temporal expression pattern of RsmV differs from RsmW, RsmY, and RsmZ. These findings suggest that each sRNA may play distinct roles in controlling RsmA and RsmF activity. IMPORTANCE The CsrA/RsmA family of RNA-binding proteins play important roles in post-transcriptional control of gene expression. The activity of CsrA/RsmA proteins is controlled by small non-coding RNAs that function as decoys to sequester CsrA/RsmA from target mRNAs. Pseudomonas aeruginosa has two Csr

  1. Genome-wide analysis of long non-coding RNAs and their role in postnatal porcine testis development.

    PubMed

    Weng, Bo; Ran, Maoliang; Chen, Bin; He, Changqing; Dong, Lianhua; Peng, Fuzhi

    2017-10-01

    A comprehensive and systematic understanding of the roles of lncRNAs in the postnatal development of the pig testis has still not been achieved. In the present study, we obtained more than one billion clean reads and identified 15,528 lncRNA transcripts; these transcripts included 5032 known and 10,496 novel porcine lncRNA transcripts and corresponded to 10,041 lncRNA genes. Pairwise comparisons identified 449 known and 324 novel lncRNAs that showed differential expression patterns. GO and KEGG pathway enrichment analyses revealed that the targeted genes were involved in metabolic pathways regulating testis development and spermatogenesis, such as the TGF-beta pathway, the PI3K-Akt pathway, the Wnt/β-catenin pathway, and the AMPK pathway. Using this information, we predicted some lncRNAs and coding gene pairs were predicted that may function in testis development and spermatogenesis; these are listed in detail. This study has provided the most comprehensive catalog to date of lncRNAs in the postnatal pig testis and will aid our understanding of their functional roles in testis development and spermatogenesis. Copyright © 2017. Published by Elsevier Inc.

  2. MicroRNAs: A novel potential biomarker for diagnosis and therapy in patients with non-small cell lung cancer.

    PubMed

    Zhou, Qun; Huang, Shao-Xin; Zhang, Feng; Li, Shu-Jun; Liu, Cong; Xi, Yong-Yong; Wang, Liang; Wang, Xin; He, Qi-Qiang; Sun, Cheng-Cao; Li, De-Jia

    2017-12-01

    Lung cancer is still one of the most serious causes of cancer-related deaths all over the world. MicroRNAs (miRNAs) are defined as small non-coding RNAs which could play a pivotal role in post-transcriptional regulation of gene expression. Increasing evidence demonstrated dysregulation of miRNA expression associates with the development and progression of NSCLC. To emphasize a variety of tissue-specific miRNAs, circulating miRNAs and miRNA-derived exosomes could be used as potential diagnostic and therapeutic biomarkers in NSCLC patients. In the current review, we paid attention to the significant discoveries of preclinical and clinical studies, which performed on tissue-specific miRNA, circulating miRNA and exosomal miRNA. The related studies were obtained through a systematic search of Pubmed, Web of Science, Embase. A variety of tissue-specific miRNAs and circulating miRNAs with high sensitivity and specificity which could be used as potential diagnostic and therapeutic biomarkers in NSCLC patients. In addition, we emphasize that the miRNA-derived exosomes become novel diagnostic biomarkers potentially in these patients with NSCLC. MiRNAs have emerged as non-coding RNAs, which have potential to be candidates for the diagnosis and therapy of NSCLC. © 2017 John Wiley & Sons Ltd.

  3. The emerging roles of long non-coding RNA in gallbladder cancer tumorigenesis.

    PubMed

    Chen, Bing; Li, Ya; He, Yuting; Xue, Chen; Xu, Feng

    2018-05-04

    Accumulating evidence suggests that long non-coding RNAs (lncRNAs) have important regulatory functions in gallbladder cancer (GBC) tumorigenesis and can serve as potential novel markers and/or targets for GBC. In this review, we critically discuss the emerging alteration of lncRNAs in GBC, the lncRNAs induced epigenetic regulation, the interaction of lncRNAs with microRNAs and lncRNAs effects on tumor-related signaling pathways. Additionally, contributions of lncRNAs in epithelial-mesenchymal transition process and energy metabolism reprogramming in GBC are also addressed. This may pave new ways towards the determination of GBC pathogenesis and lead to the development of new preventive and therapeutic strategies for GBC.

  4. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases.

    PubMed

    St Ecedil Pień, Ewa; Costa, Marina C; Kurc, Szczepan; Drożdż, Anna; Cortez-Dias, Nuno; Enguita, Francisco J

    2018-06-07

    Pervasive transcription of the human genome is responsible for the production of a myriad of non-coding RNA molecules (ncRNAs) some of them with regulatory functions. The pivotal role of ncRNAs in cardiovascular biology has been unveiled in the last decade, starting from the characterization of the involvement of micro-RNAs in cardiovascular development and function, and followed by the use of circulating ncRNAs as biomarkers of cardiovascular diseases. The human non-coding secretome is composed by several RNA species that circulate in body fluids and could be used as biomarkers for diagnosis and outcome prediction. In cardiovascular diseases, secreted ncRNAs have been described as biomarkers of several conditions including myocardial infarction, cardiac failure, and atrial fibrillation. Among circulating ncRNAs, micro-RNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have been proposed as biomarkers in different cardiovascular diseases. In comparison with standard biomarkers, the biochemical nature of ncRNAs offers better stability and flexible storage conditions of the samples, and increased sensitivity and specificity. In this review we describe the current trends and future prospects of the use of the ncRNA secretome components as biomarkers of cardiovascular diseases, including the opening questions related with their secretion mechanisms and regulatory actions.

  5. Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs.

    PubMed

    Ricaño-Ponce, Isis; Zhernakova, Daria V; Deelen, Patrick; Luo, Oscar; Li, Xingwang; Isaacs, Aaron; Karjalainen, Juha; Di Tommaso, Jennifer; Borek, Zuzanna Agnieszka; Zorro, Maria M; Gutierrez-Achury, Javier; Uitterlinden, Andre G; Hofman, Albert; van Meurs, Joyce; Netea, Mihai G; Jonkers, Iris H; Withoff, Sebo; van Duijn, Cornelia M; Li, Yang; Ruan, Yijun; Franke, Lude; Wijmenga, Cisca; Kumar, Vinod

    2016-04-01

    Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. A comprehensive catalogue of the coding and non-coding transcripts of the human inner ear

    PubMed Central

    Corneveaux, Jason J.; Ohmen, Jeffrey; White, Cory; Allen, April N.; Lusis, Aldons J.; Van Camp, Guy; Huentelman, Matthew J.; Friedman, Rick A.

    2015-01-01

    The mammalian inner ear consists of the cochlea and the vestibular labyrinth (utricle, saccule, and semicircular canals), which participate in both hearing and balance. Proper development and life-long function of these structures involves a highly complex coordinated system of spatial and temporal gene expression. The characterization of the inner ear transcriptome is likely important for the functional study of auditory and vestibular components, yet, primarily due to tissue unavailability, detailed expression catalogues of the human inner ear remain largely incomplete. We report here, for the first time, comprehensive transcriptome characterization of the adult human cochlea, ampulla, saccule and utricle of the vestibule obtained from patients without hearing abnormalities. Using RNA-Seq, we measured the expression of >50,000 predicted genes corresponding to approximately 200,000 transcripts, in the adult inner ear and compared it to 32 other human tissues. First, we identified genes preferentially expressed in the inner ear, and unique either to the vestibule or cochlea. Next, we examined expression levels of specific groups of potentially interesting RNAs, such as genes implicated in hearing loss, long non-coding RNAs, pseudogenes and transcripts subject to nonsense mediated decay (NMD). We uncover the spatial specificity of expression of these RNAs in the hearing/balance system, and reveal evidence of tissue specific NMD. Lastly, we investigated the non-syndromic deafness loci to which no gene has been mapped, and narrow the list of potential candidates for each locus. These data represent the first high-resolution transcriptome catalogue of the adult human inner ear. A comprehensive identification of coding and non-coding RNAs in the inner ear will enable pathways of auditory and vestibular function to be further defined in the study of hearing and balance. Expression data are freely accessible at https

  7. Analysis of Antisense Expression by Whole Genome Tiling Microarrays and siRNAs Suggests Mis-Annotation of Arabidopsis Orphan Protein-Coding Genes

    PubMed Central

    Richardson, Casey R.; Luo, Qing-Jun; Gontcharova, Viktoria; Jiang, Ying-Wen; Samanta, Manoj; Youn, Eunseog; Rock, Christopher D.

    2010-01-01

    Background MicroRNAs (miRNAs) and trans-acting small-interfering RNAs (tasi-RNAs) are small (20–22 nt long) RNAs (smRNAs) generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive processes (production of antisense smRNAs) are active in eukaryotes. We hypothesize that antisense transcription and associated smRNAs are biomarkers which can be computationally modeled for gene discovery. Principal Findings We explored rice (Oryza sativa) sense and antisense gene expression in publicly available whole genome tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans) and found evidence of transitivity of MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis ‘orphan’ hypothetical genes are non-coding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM) was applied using thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the “ancient” (deeply conserved) class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for “new” rapidly-evolving MIRNA genes. Conclusions Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and other non-coding

  8. LincSNP 2.0: an updated database for linking disease-associated SNPs to human long non-coding RNAs and their TFBSs.

    PubMed

    Ning, Shangwei; Yue, Ming; Wang, Peng; Liu, Yue; Zhi, Hui; Zhang, Yan; Zhang, Jizhou; Gao, Yue; Guo, Maoni; Zhou, Dianshuang; Li, Xin; Li, Xia

    2017-01-04

    We describe LincSNP 2.0 (http://bioinfo.hrbmu.edu.cn/LincSNP), an updated database that is used specifically to store and annotate disease-associated single nucleotide polymorphisms (SNPs) in human long non-coding RNAs (lncRNAs) and their transcription factor binding sites (TFBSs). In LincSNP 2.0, we have updated the database with more data and several new features, including (i) expanding disease-associated SNPs in human lncRNAs; (ii) identifying disease-associated SNPs in lncRNA TFBSs; (iii) updating LD-SNPs from the 1000 Genomes Project; and (iv) collecting more experimentally supported SNP-lncRNA-disease associations. Furthermore, we developed three flexible online tools to retrieve and analyze the data. Linc-Mart is a convenient way for users to customize their own data. Linc-Browse is a tool for all data visualization. Linc-Score predicts the associations between lncRNA and disease. In addition, we provided users a newly designed, user-friendly interface to search and download all the data in LincSNP 2.0 and we also provided an interface to submit novel data into the database. LincSNP 2.0 is a continually updated database and will serve as an important resource for investigating the functions and mechanisms of lncRNAs in human diseases. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Comprehensive analysis of coding-lncRNA gene co-expression network uncovers conserved functional lncRNAs in zebrafish.

    PubMed

    Chen, Wen; Zhang, Xuan; Li, Jing; Huang, Shulan; Xiang, Shuanglin; Hu, Xiang; Liu, Changning

    2018-05-09

    Zebrafish is a full-developed model system for studying development processes and human disease. Recent studies of deep sequencing had discovered a large number of long non-coding RNAs (lncRNAs) in zebrafish. However, only few of them had been functionally characterized. Therefore, how to take advantage of the mature zebrafish system to deeply investigate the lncRNAs' function and conservation is really intriguing. We systematically collected and analyzed a series of zebrafish RNA-seq data, then combined them with resources from known database and literatures. As a result, we obtained by far the most complete dataset of zebrafish lncRNAs, containing 13,604 lncRNA genes (21,128 transcripts) in total. Based on that, a co-expression network upon zebrafish coding and lncRNA genes was constructed and analyzed, and used to predict the Gene Ontology (GO) and the KEGG annotation of lncRNA. Meanwhile, we made a conservation analysis on zebrafish lncRNA, identifying 1828 conserved zebrafish lncRNA genes (1890 transcripts) that have their putative mammalian orthologs. We also found that zebrafish lncRNAs play important roles in regulation of the development and function of nervous system; these conserved lncRNAs present a significant sequential and functional conservation, with their mammalian counterparts. By integrative data analysis and construction of coding-lncRNA gene co-expression network, we gained the most comprehensive dataset of zebrafish lncRNAs up to present, as well as their systematic annotations and comprehensive analyses on function and conservation. Our study provides a reliable zebrafish-based platform to deeply explore lncRNA function and mechanism, as well as the lncRNA commonality between zebrafish and human.

  10. Towards a complete map of the human long non-coding RNA transcriptome.

    PubMed

    Uszczynska-Ratajczak, Barbara; Lagarde, Julien; Frankish, Adam; Guigó, Roderic; Johnson, Rory

    2018-05-23

    Gene maps, or annotations, enable us to navigate the functional landscape of our genome. They are a resource upon which virtually all studies depend, from single-gene to genome-wide scales and from basic molecular biology to medical genetics. Yet present-day annotations suffer from trade-offs between quality and size, with serious but often unappreciated consequences for downstream studies. This is particularly true for long non-coding RNAs (lncRNAs), which are poorly characterized compared to protein-coding genes. Long-read sequencing technologies promise to improve current annotations, paving the way towards a complete annotation of lncRNAs expressed throughout a human lifetime.

  11. Role of non-coding RNAs in maintaining primary airway smooth muscle cells

    PubMed Central

    2014-01-01

    Background The airway smooth muscle (ASM) cell maintains its own proliferative rate and contributes to the inflammatory response in the airways, effects that are inhibited by corticosteroids, used in the treatment of airways diseases. Objective We determined the differential expression of mRNAs, microRNAs (miRNAs) and long noncoding RNA species (lncRNAs) in primary ASM cells following treatment with a corticosteroid, dexamethasone, and fetal calf serum (FCS). Methods mRNA, miRNA and lncRNA expression was measured by microarray and quantitative real-time PCR. Results A small number of miRNAs (including miR-150, −371-5p, −718, −940, −1181, −1207-5p, −1915, and −3663-3p) were decreased following exposure to dexamethasone and FCS. The mRNA targets of these miRNAs were increased in expression. The changes in mRNA expression were associated with regulation of ASM actin cytoskeleton. We also observed changes in expression of lncRNAs, including natural antisense, pseudogenes, intronic lncRNAs, and intergenic lncRNAs following dexamethasone and FCS. We confirmed the change in expression of three of these, LINC00882, LINC00883, PVT1, and its transcriptional activator, c-MYC. We propose that four of these lincRNAs (RP11-46A10.4, LINC00883, BCYRN1, and LINC00882) act as miRNA ‘sponges’ for 4 miRNAs (miR-150, −371-5p, −940, −1207-5p). Conclusion This in-vitro model of primary ASM cell phenotype was associated with the regulation of several ncRNAs. Their identification allows for in-vitro functional experimentation to establish causality with the primary ASM phenotype, and in airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). PMID:24886442

  12. Functional screening identifies miRNAs inducing cardiac regeneration.

    PubMed

    Eulalio, Ana; Mano, Miguel; Dal Ferro, Matteo; Zentilin, Lorena; Sinagra, Gianfranco; Zacchigna, Serena; Giacca, Mauro

    2012-12-20

    In mammals, enlargement of the heart during embryonic development is primarily dependent on the increase in cardiomyocyte numbers. Shortly after birth, however, cardiomyocytes stop proliferating and further growth of the myocardium occurs through hypertrophic enlargement of the existing myocytes. As a consequence of the minimal renewal of cardiomyocytes during adult life, repair of cardiac damage through myocardial regeneration is very limited. Here we show that the exogenous administration of selected microRNAs (miRNAs) markedly stimulates cardiomyocyte proliferation and promotes cardiac repair. We performed a high-content microscopy, high-throughput functional screening for human miRNAs that promoted neonatal cardiomyocyte proliferation using a whole-genome miRNA library. Forty miRNAs strongly increased both DNA synthesis and cytokinesis in neonatal mouse and rat cardiomyocytes. Two of these miRNAs (hsa-miR-590 and hsa-miR-199a) were further selected for testing and were shown to promote cell cycle re-entry of adult cardiomyocytes ex vivo and to promote cardiomyocyte proliferation in both neonatal and adult animals. After myocardial infarction in mice, these miRNAs stimulated marked cardiac regeneration and almost complete recovery of cardiac functional parameters. The miRNAs identified hold great promise for the treatment of cardiac pathologies consequent to cardiomyocyte loss.

  13. Non-coding RNA networks underlying cognitive disorders across the lifespan

    PubMed Central

    Qureshi, Irfan A.; Mehler, Mark F.

    2011-01-01

    Non-coding RNAs (ncRNAs) and their associated regulatory networks are increasingly being implicated in mediating a complex repertoire of neurobiological functions. Cognitive and behavioral processes are proving to be no exception. Here, we discuss the emergence of many novel, diverse, and rapidly expanding classes and subclasses of short and long ncRNAs. We briefly review the life cycles and molecular functions of these ncRNAs. We also examine how ncRNA circuitry mediates brain development, plasticity, stress responses, and aging and highlight its potential roles in the pathophysiology of cognitive disorders, including neural developmental and age-associated neurodegenerative diseases as well as those that manifest throughout the lifespan. PMID:21411369

  14. Circulating MicroRNAs as Biomarkers in Biliary Tract Cancers

    PubMed Central

    Letelier, Pablo; Riquelme, Ismael; Hernández, Alfonso H.; Guzmán, Neftalí; Farías, Jorge G.; Roa, Juan Carlos

    2016-01-01

    Biliary tract cancers (BTCs) are a group of highly aggressive malignant tumors with a poor prognosis. The current diagnosis is based mainly on imaging and intraoperative exploration due to brush cytology havinga low sensitivity and the standard markers, such as carcinoembryonic antigen (CEA) and carbohydrate 19-9 (CA19-9), not having enough sensitivity nor specificity to be used in a differential diagnosis and early stage detection. Thus, better non-invasive methods that can distinguish between normal and pathological tissue are needed. MicroRNAs (miRNAs) are small, single-stranded non-coding RNA molecules of ~20–22 nucleotides that regulate relevant physiological mechanisms and can also be involved in carcinogenesis. Recent studies have demonstrated that miRNAs are detectable in multiple body fluids, showing great stability, either free or trapped in circulating microvesicles, such as exosomes. miRNAs are ideal biomarkers that may be used in screening and prognosis in biliary tract cancers, aiding also in the clinical decisions at different stages of cancer treatment. This review highlights the progress in the analysis of circulating miRNAs in serum, plasma and bile as potential diagnostic and prognostic markers of BTCs. PMID:27223281

  15. Crosstalk between Long Noncoding RNAs and MicroRNAs in Health and Disease.

    PubMed

    Bayoumi, Ahmed S; Sayed, Amer; Broskova, Zuzana; Teoh, Jian-Peng; Wilson, James; Su, Huabo; Tang, Yao-Liang; Kim, Il-Man

    2016-03-11

    Protein-coding genes account for only a small part of the human genome; in fact, the vast majority of transcripts are comprised of non-coding RNAs (ncRNAs) including long ncRNAs (lncRNAs) and small ncRNAs, microRNAs (miRs). Accumulating evidence indicates that ncRNAs could play critical roles in regulating many cellular processes which are often implicated in health and disease. For example, ncRNAs are aberrantly expressed in cancers, heart diseases, and many other diseases. LncRNAs and miRs are therefore novel and promising targets to be developed into biomarkers for diagnosis and prognosis as well as treatment options. The interaction between lncRNAs and miRs as well as its pathophysiological significance have recently been reported. Mechanistically, it is believed that lncRNAs exert "sponge-like" effects on various miRs, which subsequently inhibits miR-mediated functions. This crosstalk between two types of ncRNAs frequently contributes to the pathogenesis of the disease. In this review, we provide a summary of the recent studies highlighting the interaction between these ncRNAs and the effects of this interaction on disease pathogenesis and regulation.

  16. Crosstalk between Long Noncoding RNAs and MicroRNAs in Health and Disease

    PubMed Central

    Bayoumi, Ahmed S.; Sayed, Amer; Broskova, Zuzana; Teoh, Jian-Peng; Wilson, James; Su, Huabo; Tang, Yao-Liang; Kim, Il-man

    2016-01-01

    Protein-coding genes account for only a small part of the human genome; in fact, the vast majority of transcripts are comprised of non-coding RNAs (ncRNAs) including long ncRNAs (lncRNAs) and small ncRNAs, microRNAs (miRs). Accumulating evidence indicates that ncRNAs could play critical roles in regulating many cellular processes which are often implicated in health and disease. For example, ncRNAs are aberrantly expressed in cancers, heart diseases, and many other diseases. LncRNAs and miRs are therefore novel and promising targets to be developed into biomarkers for diagnosis and prognosis as well as treatment options. The interaction between lncRNAs and miRs as well as its pathophysiological significance have recently been reported. Mechanistically, it is believed that lncRNAs exert “sponge-like” effects on various miRs, which subsequently inhibits miR-mediated functions. This crosstalk between two types of ncRNAs frequently contributes to the pathogenesis of the disease. In this review, we provide a summary of the recent studies highlighting the interaction between these ncRNAs and the effects of this interaction on disease pathogenesis and regulation. PMID:26978351

  17. LncRNA-DANCR: A valuable cancer related long non-coding RNA for human cancers.

    PubMed

    Thin, Khaing Zar; Liu, Xuefang; Feng, Xiaobo; Raveendran, Sudheesh; Tu, Jian Cheng

    2018-06-01

    Long noncoding RNAs (lncRNA) are a type of noncoding RNA that comprise of longer than 200 nucleotides sequences. They can regulate chromosome structure, gene expression and play an essential role in the pathophysiology of human diseases, especially in tumorigenesis and progression. Nowadays, they are being targeted as potential biomarkers for various cancer types. And many research studies have proven that lncRNAs might bring a new era to cancer diagnosis and support treatment management. The purpose of this review was to inspect the molecular mechanism and clinical significance of long non-coding RNA- differentiation antagonizing nonprotein coding RNA(DANCR) in various types of human cancers. In this review, we summarize and figure out recent research studies concerning the expression and biological mechanisms of lncRNA-DANCR in tumour development. The related studies were obtained through a systematic search of PubMed, Embase and Cochrane Library. Long non-coding RNAs-DANCR is a valuable cancer-related lncRNA that its dysregulated expression was found in a variety of malignancies, including hepatocellular carcinoma, breast cancer, glioma, colorectal cancer, gastric cancer, and lung cancer. The aberrant expressions of DANCR have been shown to contribute to proliferation, migration and invasion of cancer cells. Long non-coding RNAs-DANCR likely serves as a useful disease biomarker or therapeutic cancer target. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Origin and evolution of the long non-coding genes in the X-inactivation center.

    PubMed

    Romito, Antonio; Rougeulle, Claire

    2011-11-01

    Random X chromosome inactivation (XCI), the eutherian mechanism of X-linked gene dosage compensation, is controlled by a cis-acting locus termed the X-inactivation center (Xic). One of the striking features that characterize the Xic landscape is the abundance of loci transcribing non-coding RNAs (ncRNAs), including Xist, the master regulator of the inactivation process. Recent comparative genomic analyses have depicted the evolutionary scenario behind the origin of the X-inactivation center, revealing that this locus evolved from a region harboring protein-coding genes. During mammalian radiation, this ancestral protein-coding region was disrupted in the marsupial group, whilst it provided in eutherian lineage the starting material for the non-translated RNAs of the X-inactivation center. The emergence of non-coding genes occurred by a dual mechanism involving loss of protein-coding function of the pre-existing genes and integration of different classes of mobile elements, some of which modeled the structure and sequence of the non-coding genes in a species-specific manner. The rising genes started to produce transcripts that acquired function in regulating the epigenetic status of the X chromosome, as shown for Xist, its antisense Tsix, Jpx, and recently suggested for Ftx. Thus, the appearance of the Xic, which occurred after the divergence between eutherians and marsupials, was the basis for the evolution of random X inactivation as a strategy to achieve dosage compensation. Copyright © 2011. Published by Elsevier Masson SAS.

  19. Specificity Protein (Sp) Transcription Factors and Metformin Regulate Expression of the Long Non-coding RNA HULC

    EPA Science Inventory

    There is evidence that specificity protein 1 (Sp1) transcription factor (TF) regulates expression of long non-coding RNAs (lncRNAs) in hepatocellular carcinoma (HCC) cells. RNA interference (RNAi) studies showed that among several lncRNAs expressed in HepG2, SNU-449 and SK-Hep-1...

  20. FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome.

    PubMed

    Wucher, Valentin; Legeai, Fabrice; Hédan, Benoît; Rizk, Guillaume; Lagoutte, Lætitia; Leeb, Tosso; Jagannathan, Vidhya; Cadieu, Edouard; David, Audrey; Lohi, Hannes; Cirera, Susanna; Fredholm, Merete; Botherel, Nadine; Leegwater, Peter A J; Le Béguec, Céline; Fieten, Hille; Johnson, Jeremy; Alföldi, Jessica; André, Catherine; Lindblad-Toh, Kerstin; Hitte, Christophe; Derrien, Thomas

    2017-05-05

    Whole transcriptome sequencing (RNA-seq) has become a standard for cataloguing and monitoring RNA populations. One of the main bottlenecks, however, is to correctly identify the different classes of RNAs among the plethora of reconstructed transcripts, particularly those that will be translated (mRNAs) from the class of long non-coding RNAs (lncRNAs). Here, we present FEELnc (FlExible Extraction of LncRNAs), an alignment-free program that accurately annotates lncRNAs based on a Random Forest model trained with general features such as multi k-mer frequencies and relaxed open reading frames. Benchmarking versus five state-of-the-art tools shows that FEELnc achieves similar or better classification performance on GENCODE and NONCODE data sets. The program also provides specific modules that enable the user to fine-tune classification accuracy, to formalize the annotation of lncRNA classes and to identify lncRNAs even in the absence of a training set of non-coding RNAs. We used FEELnc on a real data set comprising 20 canine RNA-seq samples produced by the European LUPA consortium to substantially expand the canine genome annotation to include 10 374 novel lncRNAs and 58 640 mRNA transcripts. FEELnc moves beyond conventional coding potential classifiers by providing a standardized and complete solution for annotating lncRNAs and is freely available at https://github.com/tderrien/FEELnc. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. The circulating transcriptome as a source of non-invasive cancer biomarkers: concepts and controversies of non-coding and coding RNA in body fluids

    PubMed Central

    Fernandez-Mercado, Marta; Manterola, Lorea; Larrea, Erika; Goicoechea, Ibai; Arestin, María; Armesto, María; Otaegui, David; Lawrie, Charles H

    2015-01-01

    The gold standard for cancer diagnosis remains the histological examination of affected tissue, obtained either by surgical excision, or radiologically guided biopsy. Such procedures however are expensive, not without risk to the patient, and require consistent evaluation by expert pathologists. Consequently, the search for non-invasive tools for the diagnosis and management of cancer has led to great interest in the field of circulating nucleic acids in plasma and serum. An additional benefit of blood-based testing is the ability to carry out screening and repeat sampling on patients undergoing therapy, or monitoring disease progression allowing for the development of a personalized approach to cancer patient management. Despite having been discovered over 60 years ago, the clear clinical potential of circulating nucleic acids, with the notable exception of prenatal diagnostic testing, has yet to translate into the clinic. The recent discovery of non-coding (nc) RNA (in particular micro(mi)RNAs) in the blood has provided fresh impetuous for the field. In this review, we discuss the potential of the circulating transcriptome (coding and ncRNA), as novel cancer biomarkers, the controversy surrounding their origin and biology, and most importantly the hurdles that remain to be overcome if they are really to become part of future clinical practice. PMID:26119132

  2. BRD4 assists elongation of both coding and enhancer RNAs guided by histone acetylation

    PubMed Central

    Kanno, Tomohiko; Kanno, Yuka; LeRoy, Gary; Campos, Eric; Sun, Hong-Wei; Brooks, Stephen R; Vahedi, Golnaz; Heightman, Tom D; Garcia, Benjamin A; Reinberg, Danny; Siebenlist, Ulrich; O’Shea, John J; Ozato, Keiko

    2016-01-01

    Small-molecule BET inhibitors interfere with the epigenetic interactions between acetylated histones and the bromodomains of the BET family proteins, including BRD4, and they potently inhibit growth of malignant cells by targeting cancer-promoting genes. BRD4 interacts with the pause-release factor P-TEFb, and has been proposed to release Pol II from promoter-proximal pausing. We show that BRD4 occupied widespread genomic regions in mouse cells, and directly stimulated elongation of both protein-coding transcripts and non-coding enhancer RNAs (eRNAs), dependent on the function of bromodomains. BRD4 interacted physically with elongating Pol II complexes, and assisted Pol II progression through hyper-acetylated nucleosomes by interacting with acetylated histones via bromodomains. On active enhancers, the BET inhibitor JQ1 antagonized BRD4-associated eRNA synthesis. Thus, BRD4 is involved in multiple steps of the transcription hierarchy, primarily by assisting transcript elongation both at enhancers and on gene bodies. PMID:25383670

  3. Dissecting non-coding RNA mechanisms in cellulo by single-molecule high-resolution localization and counting

    PubMed Central

    Pitchiaya, Sethuramasundaram; Krishnan, Vishalakshi; Custer, Thomas C.; Walter, Nils G.

    2013-01-01

    Non-coding RNAs (ncRNAs) recently were discovered to outnumber their protein-coding counterparts, yet their diverse functions are still poorly understood. Here we report on a method for the intracellular Single-molecule High Resolution Localization and Counting (iSHiRLoC) of microRNAs (miRNAs), a conserved, ubiquitous class of regulatory ncRNAs that controls the expression of over 60% of all mammalian protein coding genes post-transcriptionally, by a mechanism shrouded by seemingly contradictory observations. We present protocols to execute single particle tracking (SPT) and single-molecule counting of functional microinjected, fluorophore-labeled miRNAs and thereby extract diffusion coefficients and molecular stoichiometries of micro-ribonucleoprotein (miRNP) complexes from living and fixed cells, respectively. This probing of miRNAs at the single molecule level sheds new light on the intracellular assembly/disassembly of miRNPs, thus beginning to unravel the dynamic nature of this important gene regulatory pathway and facilitating the development of a parsimonious model for their obscured mechanism of action. PMID:23820309

  4. RNA‑sequencing analysis of aberrantly expressed long non‑coding RNAs and mRNAs in a mouse model of ventilator‑induced lung injury.

    PubMed

    Xu, Bo; Wang, Yizhou; Li, Xiujuan; Mao, Yanfei; Deng, Xiaoming

    2018-05-17

    Long non-coding RNAs (lncRNAs) are closely associated with the regulation of various biological processes and are involved in the pathogenesis of numerous diseases. However, to the best of our knowledge, the role of lncRNAs in ventilator‑induced lung injury (VILI) has yet to be evaluated. In the present study, high‑throughput sequencing was applied to investigate differentially expressed lncRNAs and mRNAs (fold change >2; false discovery rate <0.05). Bioinformatics analysis was employed to predict the functions of differentially expressed lncRNAs. A total of 104 lncRNAs (74 upregulated and 30 downregulated) and 809 mRNAs (521 upregulated and 288 downregulated) were differentially expressed in lung tissues from the VILI group. Gene ontology analysis demonstrated that the differentially expressed lncRNAs and mRNAs were mainly associated with biological functions, including apoptosis, angiogenesis, neutrophil chemotaxis and skeletal muscle cell differentiation. The top four enriched pathways were the tumor necrosis factor (TNF) signaling pathway, P53 signaling pathway, neuroactive ligand‑receptor interaction and the forkhead box O signaling pathway. Several lncRNAs were predicted to serve a vital role in VILI. Subsequently, three lncRNAs [mitogen‑activated protein kinase kinase 3, opposite strand (Map2k3os), dynamin 3, opposite strand and abhydrolase domain containing 11, opposite strand] and three mRNAs (growth arrest and DNA damage‑inducible α, claudin 4 and thromboxane A2 receptor) were measured by reverse transcription‑quantitative polymerase chain reaction, in order to confirm the veracity of RNA‑sequencing analysis. In addition, Map2k3os small interfering RNA transfection inhibited the expression of stretch‑induced cytokines [TNF‑α, interleukin (IL)‑1β and IL‑6] in MLE12 cells. In conclusion, the results of the present study provided a profile of differentially expressed lncRNAs in VILI. Several important lncRNAs may be involved

  5. HOTAIR: An Oncogenic Long Non-Coding RNA in Human Cancer.

    PubMed

    Tang, Qing; Hann, Swei Sunny

    2018-05-24

    Long non-coding RNAs (LncRNAs) represent a novel class of noncoding RNAs that are longer than 200 nucleotides without protein-coding potential and function as novel master regulators in various human diseases, including cancer. Accumulating evidence shows that lncRNAs are dysregulated and implicated in various aspects of cellular homeostasis, such as proliferation, apoptosis, mobility, invasion, metastasis, chromatin remodeling, gene transcription, and post-transcriptional processing. However, the mechanisms by which lncRNAs regulate various biological functions in human diseases have yet to be determined. HOX antisense intergenic RNA (HOTAIR) is a recently discovered lncRNA and plays a critical role in various areas of cancer, such as proliferation, survival, migration, drug resistance, and genomic stability. In this review, we briefly introduce the concept, identification, and biological functions of HOTAIR. We then describe the involvement of HOTAIR that has been associated with tumorigenesis, growth, invasion, cancer stem cell differentiation, metastasis, and drug resistance in cancer. We also discuss emerging insights into the role of HOTAIR as potential biomarkers and therapeutic targets for novel treatment paradigms in cancer. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. Genome-wide identification of miRNAs and lncRNAs in Cajanus cajan.

    PubMed

    Nithin, Chandran; Thomas, Amal; Basak, Jolly; Bahadur, Ranjit Prasad

    2017-11-15

    Non-coding RNAs (ncRNAs) are important players in the post transcriptional regulation of gene expression (PTGR). On one hand, microRNAs (miRNAs) are an abundant class of small ncRNAs (~22nt long) that negatively regulate gene expression at the levels of messenger RNAs stability and translation inhibition, on the other hand, long ncRNAs (lncRNAs) are a large and diverse class of transcribed non-protein coding RNA molecules (> 200nt) that play both up-regulatory as well as down-regulatory roles at the transcriptional level. Cajanus cajan, a leguminosae pulse crop grown in tropical and subtropical areas of the world, is a source of high value protein to vegetarians or very poor populations globally. Hence, genome-wide identification of miRNAs and lncRNAs in C. cajan is extremely important to understand their role in PTGR with a possible implication to generate improve variety of crops. We have identified 616 mature miRNAs in C. cajan belonging to 118 families, of which 578 are novel and not reported in MirBase21. A total of 1373 target sequences were identified for 180 miRNAs. Of these, 298 targets were characterized at the protein level. Besides, we have also predicted 3919 lncRNAs. Additionally, we have identified 87 of the predicted lncRNAs to be targeted by 66 miRNAs. miRNA and lncRNAs in plants are known to control a variety of traits including yield, quality and stress tolerance. Owing to its agricultural importance and medicinal value, the identified miRNA, lncRNA and their targets in C. cajan may be useful for genome editing to improve better quality crop. A thorough understanding of ncRNA-based cellular regulatory networks will aid in the improvement of C. cajan agricultural traits.

  7. The functional role of long non-coding RNA in digestive system carcinomas.

    PubMed

    Wang, Guang-Yu; Zhu, Yuan-Yuan; Zhang, Yan-Qiao

    2014-09-01

    In recent years, long non-coding RNAs (lncRNAs) are emerging as either oncogenes or tumor suppressor genes. Recent evidences suggest that lncRNAs play a very important role in digestive system carcinomas. However, the biological function of lncRNAs in the vast majority of digestive system carcinomas remains unclear. Recently, increasing studies has begun to explore their molecular mechanisms and regulatory networks that they are implicated in tumorigenesis. In this review, we highlight the emerging functional role of lncRNAs in digestive system carcinomas. It is becoming clear that lncRNAs will be exciting and potentially useful for diagnosis and treatment of digestive system carcinomas, some of these lncRNAs might function as both diagnostic markers and the treatment targets of digestive system carcinomas.

  8. MicroRNA-focused CRISPR-Cas9 Library Screen Reveals Fitness-Associated miRNAs.

    PubMed

    Kurata, Jessica S; Lin, Ren-Jang

    2018-05-02

    MicroRNAs (miRNAs) are posttranscriptional gene regulators that play important roles in the control of cell fitness, differentiation, and development. The CRISPR-Cas9 gene-editing system is composed of the Cas9 nuclease in complex with a single guide RNA (sgRNA) and directs DNA cleavage at a predetermined site. Several CRISPR-Cas9 libraries have been constructed for genome-scale knockout screens of protein function; however few libraries have included miRNA genes. Here we constructed a miRNA-focused CRISPR-Cas9 library that targets 1,594 (85%) annotated human miRNA stem-loops. The sgRNAs in our LX-miR library are designed to have high on-target and low off-target activity, and each miRNA is targeted by 4-5 sgRNAs. We used this sgRNA library to screen for miRNAs that affect cell fitness of HeLa or NCI-N87 cells by monitoring the change in frequency of each sgRNA over time. By considering the expression in the tested cells and the dysregulation of the miRNAs in cancer specimens, we identified five HeLa pro-fitness and cervical cancer up-regulated miRNAs (miR-31-5p, miR-92b-3p, miR-146b-5p, miR-151a-3p, and miR-194-5p). Similarly, we identified six NCI-N87 pro-fitness and gastric cancer up-regulated miRNAs (miR-95-3p, miR-181a-5p, miR-188-5p, miR-196b-5p, miR-584-5p, and miR-1304-3p), as well as three anti-fitness and down-regulated miRNAs (let-7a-3p, miR-100-5p, and miR-149-5p). Some of those miRNAs are known to be oncogenic or tumor-suppressive, but others are novel. Taken together, the LX-miR library is useful for genome-wide unbiased screening to identify miRNAs important for cellular fitness and likely to be useful for other functional screens. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. Long Noncoding RNAs: a New Regulatory Code in Metabolic Control

    PubMed Central

    Zhao, Xu-Yun; Lin, Jiandie D.

    2015-01-01

    Long noncoding RNAs (lncRNAs) are emerging as an integral part of the regulatory information encoded in the genome. LncRNAs possess the unique capability to interact with nucleic acids and proteins and exert discrete effects on numerous biological processes. Recent studies have delineated multiple lncRNA pathways that control metabolic tissue development and function. The expansion of the regulatory code that links nutrient and hormonal signals to tissue metabolism gives new insights into the genetic and pathogenic mechanisms underlying metabolic disease. This review discusses lncRNA biology with a focus on its role in the development, signaling, and function of key metabolic tissues. PMID:26410599

  10. The long non coding RNAs MHRT, FENDRR and CARMEN, their expression levels in peripheral blood mononuclear cells in patients with essential hypertension and their relation to heart hypertrophy.

    PubMed

    Kontaraki, Joanna E; Marketou, Maria E; Kochiadakis, George E; Maragkoudakis, Spyros; Konstantinou, John; Vardas, Panos E; Parthenakis, Fragiskos I

    2018-06-19

    Long non-coding RNAs (lncRNAs) participate in the modulation of cardiac hypertrophy and they represent potential therapeutic targets in cardiovascular disease. We investigated the expression profiles of selected lncRNAs in peripheral blood mononuclear cells of patients with essential hypertension in relation to left ventricular hypertrophy. We assessed the expression levels of the lncRNAs MHRT, FENDRR and CARMEN using real-time reverse transcription polymerase chain reaction. Hypertensive patients showed significantly higher MHRT, FENDRR and CARMEN expression levels compared with healthy controls. In addition, we observed significant negative correlations of MHRT (r=-0.323, p=0.003) and FENDRR (r=-0.380, p=0.001) and a positive correlation of CARMEN (r=0.458, p<0.001) expression levels with left ventricular mass index. Our data reveal that the lncRNAs MHRT, FENDRR and CARMEN show distinct expression profiles in hypertensive patients and they possibly represent candidate therapeutic targets in hypertensive heart disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Long non-coding RNA expression patterns in lung tissues of chronic cigarette smoke induced COPD mouse model.

    PubMed

    Zhang, Haiyun; Sun, Dejun; Li, Defu; Zheng, Zeguang; Xu, Jingyi; Liang, Xue; Zhang, Chenting; Wang, Sheng; Wang, Jian; Lu, Wenju

    2018-05-15

    Long non-coding RNAs (lncRNAs) have critical regulatory roles in protein-coding gene expression. Aberrant expression profiles of lncRNAs have been observed in various human diseases. In this study, we investigated transcriptome profiles in lung tissues of chronic cigarette smoke (CS)-induced COPD mouse model. We found that 109 lncRNAs and 260 mRNAs were significantly differential expressed in lungs of chronic CS-induced COPD mouse model compared with control animals. GO and KEGG analyses indicated that differentially expressed lncRNAs associated protein-coding genes were mainly involved in protein processing of endoplasmic reticulum pathway, and taurine and hypotaurine metabolism pathway. The combination of high throughput data analysis and the results of qRT-PCR validation in lungs of chronic CS-induced COPD mouse model, 16HBE cells with CSE treatment and PBMC from patients with COPD revealed that NR_102714 and its associated protein-coding gene UCHL1 might be involved in the development of COPD both in mouse and human. In conclusion, our study demonstrated that aberrant expression profiles of lncRNAs and mRNAs existed in lungs of chronic CS-induced COPD mouse model. From animal models perspective, these results might provide further clues to investigate biological functions of lncRNAs and their potential target protein-coding genes in the pathogenesis of COPD.

  12. Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis

    PubMed Central

    Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-hua; Xue, Dongbo

    2017-01-01

    Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including “immune response” as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma. PMID:28355233

  13. Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis.

    PubMed

    Gao, Bo; Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-Hua; Xue, Dongbo

    2017-01-01

    Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including "immune response" as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma.

  14. Long non-coding RNA CTA sensitizes osteosarcoma cells to doxorubicin through inhibition of autophagy

    PubMed Central

    Wang, Zhengguang; Liu, Zhendong; Wu, Song

    2017-01-01

    Recently, several long non-coding RNAs (lncRNAs) have been implicated in osteosarcoma (OS). However, the regulatory roles of lncRNAs in chemotherapy resistance of OS still remain unclear. This study aimed to screen a novel lncRNA that contributes to chemotherapeutic resistance of OS, and to explore the underlying mechanisms. Our data showed that lncRNA CTA was markedly downregulated in OS tissues compared to their matched non-tumor tissues, and low expression of lncRNA CTA was significantly associated with the advanced clinical stage and tumor size. In addition, OS patients with low lncRNA CTA levels showed a worse prognosis when compared with those with high expression of lncRNA CTA. Furthermore, we report that lncRNA CTA has an inverse relationship with miR-210 expression in OS tissues. LncRNA CTA could be activated by doxorubicin (DOX), and could promote OS cell apoptosis by competitively binding miR-210, while inhibit cell autophagy. On the other hand, lncRNA CTA was downregulated in DOX-resistant OS cells. Overexpression of lncRNA CTA reduced autophagy and subsequently overcame DOX resistance of OS in vitro and in vivo. Therefore, we demonstrate that lncRNA CTA is an essential regulator in DOX-induced OS cell apoptosis, and the lncRNA CTA-miR-210 axis plays an important role in reducing OS chemoresistance. PMID:28415557

  15. Transcription start site associated RNAs (TSSaRNAs) are ubiquitous in all domains of life.

    PubMed

    Zaramela, Livia S; Vêncio, Ricardo Z N; ten-Caten, Felipe; Baliga, Nitin S; Koide, Tie

    2014-01-01

    A plethora of non-coding RNAs has been discovered using high-resolution transcriptomics tools, indicating that transcriptional and post-transcriptional regulation is much more complex than previously appreciated. Small RNAs associated with transcription start sites of annotated coding regions (TSSaRNAs) are pervasive in both eukaryotes and bacteria. Here, we provide evidence for existence of TSSaRNAs in several archaeal transcriptomes including: Halobacterium salinarum, Pyrococcus furiosus, Methanococcus maripaludis, and Sulfolobus solfataricus. We validated TSSaRNAs from the model archaeon Halobacterium salinarum NRC-1 by deep sequencing two independent small-RNA enriched (RNA-seq) and a primary-transcript enriched (dRNA-seq) strand-specific libraries. We identified 652 transcripts, of which 179 were shown to be primary transcripts (∼7% of the annotated genome). Distinct growth-associated expression patterns between TSSaRNAs and their cognate genes were observed, indicating a possible role in environmental responses that may result from RNA polymerase with varying pausing rhythms. This work shows that TSSaRNAs are ubiquitous across all domains of life.

  16. Computational and transcriptional evidence for microRNAs in the honey bee genome

    PubMed Central

    Weaver, Daniel B; Anzola, Juan M; Evans, Jay D; Reid, Jeffrey G; Reese, Justin T; Childs, Kevin L; Zdobnov, Evgeny M; Samanta, Manoj P; Miller, Jonathan; Elsik, Christine G

    2007-01-01

    Background Non-coding microRNAs (miRNAs) are key regulators of gene expression in eukaryotes. Insect miRNAs help regulate the levels of proteins involved with development, metabolism, and other life history traits. The recently sequenced honey bee genome provides an opportunity to detect novel miRNAs in both this species and others, and to begin to infer the roles of miRNAs in honey bee development. Results Three independent computational surveys of the assembled honey bee genome identified a total of 65 non-redundant candidate miRNAs, several of which appear to have previously unrecognized orthologs in the Drosophila genome. A subset of these candidate miRNAs were screened for expression by quantitative RT-PCR and/or genome tiling arrays and most predicted miRNAs were confirmed as being expressed in at least one honey bee tissue. Interestingly, the transcript abundance for several known and novel miRNAs displayed caste or age-related differences in honey bees. Genes in proximity to miRNAs in the bee genome are disproportionately associated with the Gene Ontology terms 'physiological process', 'nucleus' and 'response to stress'. Conclusion Computational approaches successfully identified miRNAs in the honey bee and indicated previously unrecognized miRNAs in the well-studied Drosophila melanogaster genome despite the 280 million year distance between these insects. Differentially transcribed miRNAs are likely to be involved in regulating honey bee development, and arguably in the extreme developmental switch between sterile worker bees and highly fertile queens. PMID:17543122

  17. Androgen-responsive non-coding small RNAs extend the potential of HCG stimulation to act as a bioassay of androgen sufficiency.

    PubMed

    Rodie, M E; Mudaliar, M A V; Herzyk, P; McMillan, M; Boroujerdi, M; Chudleigh, S; Tobias, E S; Ahmed, S F

    2017-10-01

    It is unclear whether a short-term change in circulating androgens is associated with changes in the transcriptome of the peripheral blood mononuclear cells (PBMC). To explore the effect of hCG stimulation on the PBMC transcriptome, 12 boys with a median age (range) of 0.7 years (0.3, 11.2) who received intramuscular hCG 1500u on 3 consecutive days as part of their investigations underwent transcriptomic array analysis on RNA extracted from peripheral blood mononuclear cells before and after hCG stimulation. Median pre- and post-hCG testosterone for the overall group was 0.7 nmol/L (<0.5, 6) and 7.9 nmol/L (<0.5, 31.5), respectively. Of the 12 boys, 3 (25%) did not respond to hCG stimulation with a pre and post median serum testosterone of <0.5 nmol/L and <0.5 nmol/L, respectively. When corrected for gene expression changes in the non-responders to exclude hCG effects, all 9 of the hCG responders consistently demonstrated a 20% or greater increase in the expression of piR-37153 and piR-39248 , non-coding PIWI-interacting RNAs (piRNAs). In addition, of the 9 responders, 8, 6 and 4 demonstrated a 30, 40 and 50% rise, respectively, in a total of 2 further piRNAs. In addition, 3 of the responders showed a 50% or greater rise in the expression of another small RNA, SNORD5 . On comparing fold-change in serum testosterone with fold-change in the above transcripts, a positive correlation was detected for SNORD5 ( P  = 0.01). The identification of a dynamic and androgen-responsive PBMC transcriptome extends the potential value of the hCG test for the assessment of androgen sufficiency. © 2017 The authors.

  18. Long non-coding RNA-mediated regulation of signaling pathways in gastric cancer.

    PubMed

    Zong, Wei; Ju, Shaoqing; Jing, Rongrong; Cui, Ming

    2018-05-28

    Gastric cancer (GC) is one of the most common cancers globally. Because of the high frequency of tumor recurrence, or metastasis, after surgical resection, the prognosis of patients with GC is poor. Therefore, exploring the mechanisms underlying GC is of great importance. Recently, accumulating evidence has begun to show that dysregulated long non-coding RNAs (lncRNAs) participate in the progression of GC via several typical signaling pathways, such as the AKT and MAPK signaling pathways. Moreover, the interactions between lncRNAs and microRNAs appear to represent a novel mechanism in the pathogenesis of GC. This review provides a synopsis of the latest research relating to lncRNAs and associated signaling pathways in GC.

  19. miRNAs in brain development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petri, Rebecca; Malmevik, Josephine; Fasching, Liana

    2014-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs havemore » been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development. - Highlights: • miRNAs are essential for brain development and neuronal function. • KO of Dicer is embryonically lethal. • Conditional Dicer KO results in defective proliferation or increased apoptosis. • KO of individual miRNAs or miRNA families is necessary to determine function.« less

  20. Consensus Analysis of Whole Transcriptome Profiles from Two Breast Cancer Patient Cohorts Reveals Long Non-Coding RNAs Associated with Intrinsic Subtype and the Tumour Microenvironment.

    PubMed

    Bradford, James R; Cox, Angela; Bernard, Philip; Camp, Nicola J

    2016-01-01

    Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of cellular processes and diseases such as cancer; however, their functions remain poorly characterised. Several studies have demonstrated that lncRNAs are typically disease and tumour subtype specific, particularly in breast cancer where lncRNA expression alone is sufficient to discriminate samples based on hormone status and molecular intrinsic subtype. However, little attempt has been made to assess the reproducibility of lncRNA signatures across more than one dataset. In this work, we derive consensus lncRNA signatures indicative of breast cancer subtype based on two clinical RNA-Seq datasets: the Utah Breast Cancer Study and The Cancer Genome Atlas, through integration of differential expression and hypothesis-free clustering analyses. The most consistent signature is associated with breast cancers of the basal-like subtype, leading us to generate a putative set of six lncRNA basal-like breast cancer markers, at least two of which may have a role in cis-regulation of known poor prognosis markers. Through in silico functional characterization of individual signatures and integration of expression data from pre-clinical cancer models, we discover that discordance between signatures derived from different clinical cohorts can arise from the strong influence of non-cancerous cells in tumour samples. As a consequence, we identify nine lncRNAs putatively associated with breast cancer associated fibroblasts, or the immune response. Overall, our study establishes the confounding effects of tumour purity on lncRNA signature derivation, and generates several novel hypotheses on the role of lncRNAs in basal-like breast cancers and the tumour microenvironment.

  1. Allele-Selective Transcriptome Recruitment to Polysomes Primed for Translation: Protein-Coding and Noncoding RNAs, and RNA Isoforms.

    PubMed

    Mascarenhas, Roshan; Pietrzak, Maciej; Smith, Ryan M; Webb, Amy; Wang, Danxin; Papp, Audrey C; Pinsonneault, Julia K; Seweryn, Michal; Rempala, Grzegorz; Sadee, Wolfgang

    2015-01-01

    mRNA translation into proteins is highly regulated, but the role of mRNA isoforms, noncoding RNAs (ncRNAs), and genetic variants remains poorly understood. mRNA levels on polysomes have been shown to correlate well with expressed protein levels, pointing to polysomal loading as a critical factor. To study regulation and genetic factors of protein translation we measured levels and allelic ratios of mRNAs and ncRNAs (including microRNAs) in lymphoblast cell lines (LCL) and in polysomal fractions. We first used targeted assays to measure polysomal loading of mRNA alleles, confirming reported genetic effects on translation of OPRM1 and NAT1, and detecting no effect of rs1045642 (3435C>T) in ABCB1 (MDR1) on polysomal loading while supporting previous results showing increased mRNA turnover of the 3435T allele. Use of high-throughput sequencing of complete transcript profiles (RNA-Seq) in three LCLs revealed significant differences in polysomal loading of individual RNA classes and isoforms. Correlated polysomal distribution between protein-coding and non-coding RNAs suggests interactions between them. Allele-selective polysome recruitment revealed strong genetic influence for multiple RNAs, attributable either to differential expression of RNA isoforms or to differential loading onto polysomes, the latter defining a direct genetic effect on translation. Genes identified by different allelic RNA ratios between cytosol and polysomes were enriched with published expression quantitative trait loci (eQTLs) affecting RNA functions, and associations with clinical phenotypes. Polysomal RNA-Seq combined with allelic ratio analysis provides a powerful approach to study polysomal RNA recruitment and regulatory variants affecting protein translation.

  2. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans

    PubMed Central

    Holdt, Lesca M.; Stahringer, Anika; Sass, Kristina; Pichler, Garwin; Kulak, Nils A.; Wilfert, Wolfgang; Kohlmaier, Alexander; Herbst, Andreas; Northoff, Bernd H.; Nicolaou, Alexandros; Gäbel, Gabor; Beutner, Frank; Scholz, Markus; Thiery, Joachim; Musunuru, Kiran; Krohn, Knut; Mann, Matthias; Teupser, Daniel

    2016-01-01

    Circular RNAs (circRNAs) are broadly expressed in eukaryotic cells, but their molecular mechanism in human disease remains obscure. Here we show that circular antisense non-coding RNA in the INK4 locus (circANRIL), which is transcribed at a locus of atherosclerotic cardiovascular disease on chromosome 9p21, confers atheroprotection by controlling ribosomal RNA (rRNA) maturation and modulating pathways of atherogenesis. CircANRIL binds to pescadillo homologue 1 (PES1), an essential 60S-preribosomal assembly factor, thereby impairing exonuclease-mediated pre-rRNA processing and ribosome biogenesis in vascular smooth muscle cells and macrophages. As a consequence, circANRIL induces nucleolar stress and p53 activation, resulting in the induction of apoptosis and inhibition of proliferation, which are key cell functions in atherosclerosis. Collectively, these findings identify circANRIL as a prototype of a circRNA regulating ribosome biogenesis and conferring atheroprotection, thereby showing that circularization of long non-coding RNAs may alter RNA function and protect from human disease. PMID:27539542

  3. Do circulating long non-coding RNAs (lncRNAs) (LincRNA-p21, GAS 5, HOTAIR) predict the treatment response in patients with head and neck cancer treated with chemoradiotherapy?

    PubMed

    Fayda, Merdan; Isin, Mustafa; Tambas, Makbule; Guveli, Murat; Meral, Rasim; Altun, Musa; Sahin, Dilek; Ozkan, Gozde; Sanli, Yasemin; Isin, Husniye; Ozgur, Emre; Gezer, Ugur

    2016-03-01

    Long non-coding RNAs (lncRNAs) have been shown to be aberrantly expressed in head and neck cancer (HNC). The aim of the present study was to evaluate plasma levels of three lncRNA molecules (lincRNA-p21, GAS5, and HOTAIR) in the treatment response in HNC patients treated with radical chemoradiotherapy (CRT). Forty-one patients with HNC were enrolled in the study. Most of the patients had nasopharyngeal carcinoma (n = 27, 65.9 %) and locally advanced disease. Blood was drawn at baseline and treatment evaluation 4.5 months after therapy. lncRNAs in plasma were measured by semiquantitative PCR. Treatment response was evaluated according to clinical examination, RECIST and PERCIST criteria based on magnetic resonance imaging (MRI), and positron emission tomography with computed tomography (PET/CT) findings. Complete response (CR) rates were 73.2, 36.6, and 50 % for clinical investigation, PET/CT-, or MRI-based response evaluation, respectively. Predictive value of lncRNAs was investigated in patients with CR vs. those with partial response (PR)/progressive disease (PD). We found that post-treatment GAS5 levels in patients with PR/PD were significantly higher compared with patients with CR based on clinical investigation (p = 0.01). Receiver operator characteristic (ROC) analysis showed that at a cutoff value of 0.3 of GAS5, sensitivity and specificity for clinical tumor response were 82 and 77 %, respectively. Interestingly, pretreatment GAS5 levels were significantly increased in patients with PR/PD compared to those with CR upon MRI-based response evaluation (p = 0.042). In contrast to GAS5, pretreatment or post-treatment lincRNA-p21 and HOTAIR levels were not informative for treatment response. Our results suggest that circulating GAS5 could be a biomarker in predicting treatment response in HNC patients.

  4. Upregulation of long non-coding RNA M26317 correlates with tumor progression and poor prognosis in gastric cancer.

    PubMed

    Li, Li; Wang, Yuan-Yu; Mou, Xiao Zhou; Ye, Zai-Yuan; Zhao, Zhong-Sheng

    2018-04-23

    To investigate the expression and clinical significance of long non-coding RNA (lnc RNA) in gastric cancer, we applied microarray analysis to obtain expression profiles of protein coding genes and lncRNAs in tumor and paired adjacent non-tumor tissues. We found that 41 lncRNAs were upregulated and 31 lncRNAs were downregulated more than 2-fold in gastric cancer versus noncancerous tissues (ratio>2.0, P<.01). We established a co-expression network of the differentially expressed lncRNAs and targeted coding genes that included 17 lncRNAs and 16 coding genes. As the results of microarray analysis showed that lncRNA M26317 was upregulated in gastric cancer tissues we examined the expression level of M26317 in 103 gastric cancer tissues by RT-PCR and 436 gastric cancer tissues by in situ hybridization. Our data confirmed that M26317 was upregulated in gastric cancer tissues. Moreover, expression of M26317 correlated with patient age, size of tumor, Lauren's classification, depth of invasion, lymph node and distant metastasis, TNM stage and poor prognosis (P<.05), but was not associated with gender, location of tumor, and differentiation (P>.05). M26317 may have an important role in malignant transformation and metastasis of gastric cancer. Copyright © 2018. Published by Elsevier Inc.

  5. Analyzing the interactions of mRNAs, miRNAs, lncRNAs and circRNAs to predict competing endogenous RNA networks in glioblastoma.

    PubMed

    Yuan, Yang; Jiaoming, Li; Xiang, Wang; Yanhui, Liu; Shu, Jiang; Maling, Gou; Qing, Mao

    2018-05-01

    Cross-talk between competitive endogenous RNAs (ceRNAs) may play a critical role in revealing potential mechanisms of tumor development and physiology. Glioblastoma is the most common type of malignant primary brain tumor, and the mechanisms of tumor genesis and development in glioblastoma are unclear. Here, to investigate the role of non-coding RNAs and the ceRNA network in glioblastoma, we performed paired-end RNA sequencing and microarray analyses to obtain the expression profiles of mRNAs, lncRNAs, circRNAs and miRNAs. We identified that the expression of 501 lncRNAs, 1999 mRNAs, 2038 circRNAs and 143 miRNAs were often altered between glioblastoma and matched normal brain tissue. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed on these differentially expressed mRNAs and miRNA-mediated target genes of lncRNAs and circRNAs. Furthermore, we used a multi-step computational framework and several bioinformatics methods to construct a ceRNA network combining mRNAs, miRNAs, lncRNAs and circRNA, based on co-expression analysis between the differentially expressed RNAs. We identified that plenty of lncRNAs, CircRNAs and their downstream target genes in the ceRNA network are related to glutamatergic synapse, suggesting that glutamate metabolism is involved in glioma biological functions. Our results will accelerate the understanding of tumorigenesis, cancer progression and even therapeutic targeting in glioblastoma.

  6. Identification of small non-coding RNA classes expressed in swine whole blood during HP-PRRSV infection

    USDA-ARS?s Scientific Manuscript database

    It has been established that reduced susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) has a genetic component. This genetic component may take the form of small non-coding RNAs (sncRNA), which are molecules that function as regulators of gene expression. Various sncRNAs ...

  7. nRC: non-coding RNA Classifier based on structural features.

    PubMed

    Fiannaca, Antonino; La Rosa, Massimo; La Paglia, Laura; Rizzo, Riccardo; Urso, Alfonso

    2017-01-01

    Non-coding RNA (ncRNA) are small non-coding sequences involved in gene expression regulation of many biological processes and diseases. The recent discovery of a large set of different ncRNAs with biologically relevant roles has opened the way to develop methods able to discriminate between the different ncRNA classes. Moreover, the lack of knowledge about the complete mechanisms in regulative processes, together with the development of high-throughput technologies, has required the help of bioinformatics tools in addressing biologists and clinicians with a deeper comprehension of the functional roles of ncRNAs. In this work, we introduce a new ncRNA classification tool, nRC (non-coding RNA Classifier). Our approach is based on features extraction from the ncRNA secondary structure together with a supervised classification algorithm implementing a deep learning architecture based on convolutional neural networks. We tested our approach for the classification of 13 different ncRNA classes. We obtained classification scores, using the most common statistical measures. In particular, we reach an accuracy and sensitivity score of about 74%. The proposed method outperforms other similar classification methods based on secondary structure features and machine learning algorithms, including the RNAcon tool that, to date, is the reference classifier. nRC tool is freely available as a docker image at https://hub.docker.com/r/tblab/nrc/. The source code of nRC tool is also available at https://github.com/IcarPA-TBlab/nrc.

  8. ChIPBase: a database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data.

    PubMed

    Yang, Jian-Hua; Li, Jun-Hao; Jiang, Shan; Zhou, Hui; Qu, Liang-Hu

    2013-01-01

    Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) represent two classes of important non-coding RNAs in eukaryotes. Although these non-coding RNAs have been implicated in organismal development and in various human diseases, surprisingly little is known about their transcriptional regulation. Recent advances in chromatin immunoprecipitation with next-generation DNA sequencing (ChIP-Seq) have provided methods of detecting transcription factor binding sites (TFBSs) with unprecedented sensitivity. In this study, we describe ChIPBase (http://deepbase.sysu.edu.cn/chipbase/), a novel database that we have developed to facilitate the comprehensive annotation and discovery of transcription factor binding maps and transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. The current release of ChIPBase includes high-throughput sequencing data that were generated by 543 ChIP-Seq experiments in diverse tissues and cell lines from six organisms. By analysing millions of TFBSs, we identified tens of thousands of TF-lncRNA and TF-miRNA regulatory relationships. Furthermore, two web-based servers were developed to annotate and discover transcriptional regulatory relationships of lncRNAs and miRNAs from ChIP-Seq data. In addition, we developed two genome browsers, deepView and genomeView, to provide integrated views of multidimensional data. Moreover, our web implementation supports diverse query types and the exploration of TFs, lncRNAs, miRNAs, gene ontologies and pathways.

  9. The evolution and expression of the snaR family of small non-coding RNAs

    PubMed Central

    Parrott, Andrew M.; Tsai, Michael; Batchu, Priyanka; Ryan, Karen; Ozer, Harvey L.; Tian, Bin; Mathews, Michael B.

    2011-01-01

    We recently identified the snaR family of small non-coding RNAs that associate in vivo with the nuclear factor 90 (NF90/ILF3) protein. The major human species, snaR-A, is an RNA polymerase III transcript with restricted tissue distribution and orthologs in chimpanzee but not rhesus macaque or mouse. We report their expression in human tissues and their evolution in primates. snaR genes are exclusively in African Great Apes and some are unique to humans. Two novel families of snaR-related genetic elements were found in primates: CAS (catarrhine ancestor of snaR), limited to Old World Monkeys and apes; and ASR (Alu/snaR-related), present in all monkeys and apes. ASR and CAS appear to have spread by retrotransposition, whereas most snaR genes have spread by segmental duplication. snaR-A and snaR-G2 are differentially expressed in discrete regions of the human brain and other tissues, notably including testis. snaR-A is up-regulated in transformed and immortalized human cells, and is stably bound to ribosomes in HeLa cells. We infer that snaR evolved from the left monomer of the primate-specific Alu SINE family via ASR and CAS in conjunction with major primate speciation events, and suggest that snaRs participate in tissue- and species-specific regulation of cell growth and translation. PMID:20935053

  10. The presence, role and clinical use of spermatozoal RNAs

    PubMed Central

    Jodar, Meritxell; Selvaraju, Sellappan; Sendler, Edward; Diamond, Michael P.; Krawetz, Stephen A.

    2013-01-01

    BACKGROUND Spermatozoa are highly differentiated, transcriptionally inert cells characterized by a compact nucleus with minimal cytoplasm. Nevertheless they contain a suite of unique RNAs that are delivered to oocyte upon fertilization. They are likely integrated as part of many different processes including genome recognition, consolidation-confrontation, early embryonic development and epigenetic transgenerational inherence. Spermatozoal RNAs also provide a window into the developmental history of each sperm thereby providing biomarkers of fertility and pregnancy outcome which are being intensely studied. METHODS Literature searches were performed to review the majority of spermatozoal RNA studies that described potential functions and clinical applications with emphasis on Next-Generation Sequencing. Human, mouse, bovine and stallion were compared as their distribution and composition of spermatozoal RNAs, using these techniques, have been described. RESULTS Comparisons highlighted the complexity of the population of spermatozoal RNAs that comprises rRNA, mRNA and both large and small non-coding RNAs. RNA-seq analysis has revealed that only a fraction of the larger RNAs retain their structure. While rRNAs are the most abundant and are highly fragmented, ensuring a translationally quiescent state, other RNAs including some mRNAs retain their functional potential, thereby increasing the opportunity for regulatory interactions. Abundant small non-coding RNAs retained in spermatozoa include miRNAs and piRNAs. Some, like miR-34c are essential to the early embryo development required for the first cellular division. Others like the piRNAs are likely part of the genomic dance of confrontation and consolidation. Other non-coding spermatozoal RNAs include transposable elements, annotated lnc-RNAs, intronic retained elements, exonic elements, chromatin-associated RNAs, small-nuclear ILF3/NF30 associated RNAs, quiescent RNAs, mse-tRNAs and YRNAs. Some non-coding RNAs are

  11. Molecular Regulatory Pathways Link Sepsis With Metabolic Syndrome: Non-coding RNA Elements Underlying the Sepsis/Metabolic Cross-Talk.

    PubMed

    Meydan, Chanan; Bekenstein, Uriya; Soreq, Hermona

    2018-01-01

    Sepsis and metabolic syndrome (MetS) are both inflammation-related entities with high impact for human health and the consequences of concussions. Both represent imbalanced parasympathetic/cholinergic response to insulting triggers and variably uncontrolled inflammation that indicates shared upstream regulators, including short microRNAs (miRs) and long non-coding RNAs (lncRNAs). These may cross talk across multiple systems, leading to complex molecular and clinical outcomes. Notably, biomedical and RNA-sequencing based analyses both highlight new links between the acquired and inherited pathogenic, cardiac and inflammatory traits of sepsis/MetS. Those include the HOTAIR and MIAT lncRNAs and their targets, such as miR-122, -150, -155, -182, -197, -375, -608 and HLA-DRA. Implicating non-coding RNA regulators in sepsis and MetS may delineate novel high-value biomarkers and targets for intervention.

  12. Sequence-based heuristics for faster annotation of non-coding RNA families.

    PubMed

    Weinberg, Zasha; Ruzzo, Walter L

    2006-01-01

    Non-coding RNAs (ncRNAs) are functional RNA molecules that do not code for proteins. Covariance Models (CMs) are a useful statistical tool to find new members of an ncRNA gene family in a large genome database, using both sequence and, importantly, RNA secondary structure information. Unfortunately, CM searches are extremely slow. Previously, we created rigorous filters, which provably sacrifice none of a CM's accuracy, while making searches significantly faster for virtually all ncRNA families. However, these rigorous filters make searches slower than heuristics could be. In this paper we introduce profile HMM-based heuristic filters. We show that their accuracy is usually superior to heuristics based on BLAST. Moreover, we compared our heuristics with those used in tRNAscan-SE, whose heuristics incorporate a significant amount of work specific to tRNAs, where our heuristics are generic to any ncRNA. Performance was roughly comparable, so we expect that our heuristics provide a high-quality solution that--unlike family-specific solutions--can scale to hundreds of ncRNA families. The source code is available under GNU Public License at the supplementary web site.

  13. Long non-coding RNAs and complex diseases: from experimental results to computational models.

    PubMed

    Chen, Xing; Yan, Chenggang Clarence; Zhang, Xu; You, Zhu-Hong

    2017-07-01

    LncRNAs have attracted lots of attentions from researchers worldwide in recent decades. With the rapid advances in both experimental technology and computational prediction algorithm, thousands of lncRNA have been identified in eukaryotic organisms ranging from nematodes to humans in the past few years. More and more research evidences have indicated that lncRNAs are involved in almost the whole life cycle of cells through different mechanisms and play important roles in many critical biological processes. Therefore, it is not surprising that the mutations and dysregulations of lncRNAs would contribute to the development of various human complex diseases. In this review, we first made a brief introduction about the functions of lncRNAs, five important lncRNA-related diseases, five critical disease-related lncRNAs and some important publicly available lncRNA-related databases about sequence, expression, function, etc. Nowadays, only a limited number of lncRNAs have been experimentally reported to be related to human diseases. Therefore, analyzing available lncRNA-disease associations and predicting potential human lncRNA-disease associations have become important tasks of bioinformatics, which would benefit human complex diseases mechanism understanding at lncRNA level, disease biomarker detection and disease diagnosis, treatment, prognosis and prevention. Furthermore, we introduced some state-of-the-art computational models, which could be effectively used to identify disease-related lncRNAs on a large scale and select the most promising disease-related lncRNAs for experimental validation. We also analyzed the limitations of these models and discussed the future directions of developing computational models for lncRNA research. © The Author 2016. Published by Oxford University Press.

  14. On the Origin of lncRNAs: Missing Link Found.

    PubMed

    Espinosa, Joaquín M

    2017-10-01

    Non-coding (nc)RNAs known as enhancer-derived RNAs (eRNAs) and as long ncRNAs (lncRNAs) have received much attention, but their true functional specialization and evolutionary origins remain obscure. The recent characterization of Bloodlinc, an eRNA derived from a super-enhancer that also functions as a lncRNA, suggests that lncRNAs can evolve from eRNAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. MicroRNAs in large herpesvirus DNA genomes: recent advances.

    PubMed

    Sorel, Océane; Dewals, Benjamin G

    2016-08-01

    MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that regulate gene expression. They alter mRNA translation through base-pair complementarity, leading to regulation of genes during both physiological and pathological processes. Viruses have evolved mechanisms to take advantage of the host cells to multiply and/or persist over the lifetime of the host. Herpesviridae are a large family of double-stranded DNA viruses that are associated with a number of important diseases, including lymphoproliferative diseases. Herpesviruses establish lifelong latent infections through modulation of the interface between the virus and its host. A number of reports have identified miRNAs in a very large number of human and animal herpesviruses suggesting that these short non-coding transcripts could play essential roles in herpesvirus biology. This review will specifically focus on the recent advances on the functions of herpesvirus miRNAs in infection and pathogenesis.

  16. tRNA-Derived Small RNA: A Novel Regulatory Small Non-Coding RNA.

    PubMed

    Li, Siqi; Xu, Zhengping; Sheng, Jinghao

    2018-05-10

    Deep analysis of next-generation sequencing data unveils numerous small non-coding RNAs with distinct functions. Recently, fragments derived from tRNA, named as tRNA-derived small RNA (tsRNA), have attracted broad attention. There are mainly two types of tsRNAs, including tRNA-derived stress-induced RNA (tiRNA) and tRNA-derived fragment (tRF), which differ in the cleavage position of the precursor or mature tRNA transcript. Emerging evidence has shown that tsRNAs are not merely tRNA degradation debris but have been recognized to play regulatory roles in many specific physiological and pathological processes. In this review, we summarize the biogeneses of various tsRNAs, present the emerging concepts regarding functions and mechanisms of action of tsRNAs, highlight the potential application of tsRNAs in human diseases, and put forward the current problems and future research directions.

  17. Genomic Editing of Non-Coding RNA Genes with CRISPR/Cas9 Ushers in a Potential Novel Approach to Study and Treat Schizophrenia

    PubMed Central

    Zhuo, Chuanjun; Hou, Weihong; Hu, Lirong; Lin, Chongguang; Chen, Ce; Lin, Xiaodong

    2017-01-01

    Schizophrenia is a genetically related mental illness, in which the majority of genetic alterations occur in the non-coding regions of the human genome. In the past decade, a growing number of regulatory non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been identified to be strongly associated with schizophrenia. However, the studies of these ncRNAs in the pathophysiology of schizophrenia and the reverting of their genetic defects in restoration of the normal phenotype have been hampered by insufficient technology to manipulate these ncRNA genes effectively as well as a lack of appropriate animal models. Most recently, a revolutionary gene editing technology known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9; CRISPR/Cas9) has been developed that enable researchers to overcome these challenges. In this review article, we mainly focus on the schizophrenia-related ncRNAs and the use of CRISPR/Cas9-mediated editing on the non-coding regions of the genomic DNA in proving causal relationship between the genetic defects and the pathophysiology of schizophrenia. We subsequently discuss the potential of translating this advanced technology into a clinical therapy for schizophrenia, although the CRISPR/Cas9 technology is currently still in its infancy and immature to put into use in the treatment of diseases. Furthermore, we suggest strategies to accelerate the pace from the bench to the bedside. This review describes the application of the powerful and feasible CRISPR/Cas9 technology to manipulate schizophrenia-associated ncRNA genes. This technology could help researchers tackle this complex health problem and perhaps other genetically related mental disorders due to the overlapping genetic alterations of schizophrenia with other mental illnesses. PMID:28217082

  18. Circular RNAs: Unexpected outputs of many protein-coding genes

    PubMed Central

    Wilusz, Jeremy E.

    2017-01-01

    ABSTRACT Pre-mRNAs from thousands of eukaryotic genes can be non-canonically spliced to generate circular RNAs, some of which accumulate to higher levels than their associated linear mRNA. Recent work has revealed widespread mechanisms that dictate whether the spliceosome generates a linear or circular RNA. For most genes, circular RNA biogenesis via backsplicing is far less efficient than canonical splicing, but circular RNAs can accumulate due to their long half-lives. Backsplicing is often initiated when complementary sequences from different introns base pair and bring the intervening splice sites close together. This process is further regulated by the combinatorial action of RNA binding proteins, which allow circular RNAs to be expressed in unique patterns. Some genes do not require complementary sequences to generate RNA circles and instead take advantage of exon skipping events. It is still unclear what most mature circular RNAs do, but future investigations into their functions will be facilitated by recently described methods to modulate circular RNA levels. PMID:27571848

  19. Transcriptome-wide discovery of circular RNAs in Archaea

    PubMed Central

    Danan, Miri; Schwartz, Schraga; Edelheit, Sarit; Sorek, Rotem

    2012-01-01

    Circular RNA forms had been described in all domains of life. Such RNAs were shown to have diverse biological functions, including roles in the life cycle of viral and viroid genomes, and in maturation of permuted tRNA genes. Despite their potentially important biological roles, discovery of circular RNAs has so far been mostly serendipitous. We have developed circRNA-seq, a combined experimental/computational approach that enriches for circular RNAs and allows profiling their prevalence in a whole-genome, unbiased manner. Application of this approach to the archaeon Sulfolobus solfataricus P2 revealed multiple circular transcripts, a subset of which was further validated independently. The identified circular RNAs included expected forms, such as excised tRNA introns and rRNA processing intermediates, but were also enriched with non-coding RNAs, including C/D box RNAs and RNase P, as well as circular RNAs of unknown function. Many of the identified circles were conserved in Sulfolobus acidocaldarius, further supporting their functional significance. Our results suggest that circular RNAs, and particularly circular non-coding RNAs, are more prevalent in archaea than previously recognized, and might have yet unidentified biological roles. Our study establishes a specific and sensitive approach for identification of circular RNAs using RNA-seq, and can readily be applied to other organisms. PMID:22140119

  20. The long non-coding RNA LSINCT5 promotes malignancy in non-small cell lung cancer by stabilizing HMGA2.

    PubMed

    Tian, Yuheng; Zhang, Lina; Chen, Shuwen; Ma, Yuan; Liu, Yanyan

    2018-06-08

    Long non-coding RNAs (lncRNAs) can actively participate in tumorigenesis in various cancers. However, the involvement of lncRNA long stress induced non-coding transcripts 5 (LSINCT5) in non-small cell lung cancer (NSCLC) remains largely unknown. Here we showed a novel lncRNA signature in NSCLC through lncRNA profiling. Increased LSINCT5 expression positively correlates with malignant clinicopathological features and poor survival. LSINCT5 can promote migration and viability of various NSCLC cells in vitro and also enhance lung cancer progression in vivo. RNA immunoprecipitation followed by mass spectrometry has identified that LSINCT5 interacts with HMGA2. This physical interaction can increase the stability of HMGA2 by inhibiting proteasome-mediated degradation. Therefore, LSINCT5 may possibly contribute to NSCLC tumorigenesis by stabilizing the oncogenic factor of HMGA2. This novel LSINCT5/HMGA2 axis can modulate lung cancer progression and might be a promising target for pharmacological intervention.

  1. Decoding the ubiquitous role of microRNAs in neurogenesis.

    PubMed

    Nampoothiri, Sreekala S; Rajanikant, G K

    2017-04-01

    Neurogenesis generates fledgling neurons that mature to form an intricate neuronal circuitry. The delusion on adult neurogenesis was far resolved in the past decade and became one of the largely explored domains to identify multifaceted mechanisms bridging neurodevelopment and neuropathology. Neurogenesis encompasses multiple processes including neural stem cell proliferation, neuronal differentiation, and cell fate determination. Each neurogenic process is specifically governed by manifold signaling pathways, several growth factors, coding, and non-coding RNAs. A class of small non-coding RNAs, microRNAs (miRNAs), is ubiquitously expressed in the brain and has emerged to be potent regulators of neurogenesis. It functions by fine-tuning the expression of specific neurogenic gene targets at the post-transcriptional level and modulates the development of mature neurons from neural progenitor cells. Besides the commonly discussed intrinsic factors, the neuronal morphogenesis is also under the control of several extrinsic temporal cues, which in turn are regulated by miRNAs. This review enlightens on dicer controlled switch from neurogenesis to gliogenesis, miRNA regulation of neuronal maturation and the differential expression of miRNAs in response to various extrinsic cues affecting neurogenesis.

  2. Identification of phasiRNAs in wild rice (Oryza rufipogon).

    PubMed

    Liu, Yang; Wang, Yu; Zhu, Qian-Hao; Fan, Longjiang

    2013-08-01

    Plant miRNAs can trigger the production of phased, secondary siRNAs from either non-coding or protein-coding genes. In this study, at least 864 and 3,961 loci generating 21-nt and 24-nt phased siRNAs (phasiRNAs),respectively, were identified in three tissues from wild rice. Of these phasiRNA-producing loci, or PHAS genes, biogenesis of phasiRNAs in at least 160 of 21-nt and 254 of 24-nt loci could be triggered by interaction with miRNA(s). Developing seeds had more PHAS genes than leaves and roots. Genetic constrain on miRNA-triggered PHAS genes suggests that phasiRNAs might be one of the driving forces contributed to rice domestication.

  3. The CASC15 long intergenic non-coding RNA locus is involved in melanoma progression and phenotype-switching

    PubMed Central

    Lessard, Laurent; Liu, Michelle; Marzese, Diego M.; Wang, Hongwei; Chong, Kelly; Kawas, Neal; Donovan, Nicholas C; Kiyohara, Eiji; Hsu, Sandy; Nelson, Nellie; Izraely, Sivan; Sagi-Assif, Orit; Witz, Isaac P; Ma, Xiao-Jun; Luo, Yuling; Hoon, Dave SB

    2015-01-01

    In recent years, considerable advances have been made in the characterization of protein-coding alterations involved in the pathogenesis of melanoma. However, despite their growing implication in cancer, little is known about the role of long non-coding RNAs in melanoma progression. We hypothesized that copy number alterations of intergenic non-protein coding domains could help identify long intergenic non-coding RNAs (lincRNAs) associated with metastatic cutaneous melanoma. Among several candidates, our approach uncovered the chromosome 6p22.3 CASC15 lincRNA locus as a frequently gained genomic segment in metastatic melanoma tumors and cell lines. The locus was actively transcribed in metastatic melanoma cells, and up-regulation of CASC15 expression was associated with metastatic progression to brain metastasis in a mouse xenograft model. In clinical specimens, CASC15 levels increased during melanoma progression and were independent predictors of disease recurrence in a cohort of 141 patients with AJCC stage III lymph node metastasis. Moreover, siRNA knockdown experiments revealed that CASC15 regulates melanoma cell phenotype switching between proliferative and invasive states. Accordingly, CASC15 levels correlated with known gene signatures corresponding to melanoma proliferative and invasive phenotypes. These findings support a key role for CASC15 in metastatic melanoma. PMID:26016895

  4. Effects of GWAS-Associated Genetic Variants on lncRNAs within IBD and T1D Candidate Loci

    PubMed Central

    Brorsson, Caroline A.; Pociot, Flemming

    2014-01-01

    Long non-coding RNAs are a new class of non-coding RNAs that are at the crosshairs in many human diseases such as cancers, cardiovascular disorders, inflammatory and autoimmune disease like Inflammatory Bowel Disease (IBD) and Type 1 Diabetes (T1D). Nearly 90% of the phenotype-associated single-nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) lie outside of the protein coding regions, and map to the non-coding intervals. However, the relationship between phenotype-associated loci and the non-coding regions including the long non-coding RNAs (lncRNAs) is poorly understood. Here, we systemically identified all annotated IBD and T1D loci-associated lncRNAs, and mapped nominally significant GWAS/ImmunoChip SNPs for IBD and T1D within these lncRNAs. Additionally, we identified tissue-specific cis-eQTLs, and strong linkage disequilibrium (LD) signals associated with these SNPs. We explored sequence and structure based attributes of these lncRNAs, and also predicted the structural effects of mapped SNPs within them. We also identified lncRNAs in IBD and T1D that are under recent positive selection. Our analysis identified putative lncRNA secondary structure-disruptive SNPs within and in close proximity (+/−5 kb flanking regions) of IBD and T1D loci-associated candidate genes, suggesting that these RNA conformation-altering polymorphisms might be associated with diseased-phenotype. Disruption of lncRNA secondary structure due to presence of GWAS SNPs provides valuable information that could be potentially useful for future structure-function studies on lncRNAs. PMID:25144376

  5. Single nucleotide polymorphism-specific regulation of matrix metalloproteinase-9 by multiple miRNAs targeting the coding exon

    PubMed Central

    Duellman, Tyler; Warren, Christopher; Yang, Jay

    2014-01-01

    Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221

  6. microRNAs of parasites: current status and future perspectives

    USDA-ARS?s Scientific Manuscript database

    MicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs regulating gene expression in eukaryotes at the post-transcriptional level. The complex life cycles of parasites may require the ability to respond to environmental and developmental signals through miRNA-mediated gene expression. Ov...

  7. The Unexpected Tuners: Are LncRNAs Regulating Host Translation during Infections?

    PubMed Central

    Knap, Primoz; Tebaldi, Toma; Di Leva, Francesca; Biagioli, Marta; Dalla Serra, Mauro; Viero, Gabriella

    2017-01-01

    Pathogenic bacteria produce powerful virulent factors, such as pore-forming toxins, that promote their survival and cause serious damage to the host. Host cells reply to membrane stresses and ionic imbalance by modifying gene expression at the epigenetic, transcriptional and translational level, to recover from the toxin attack. The fact that the majority of the human transcriptome encodes for non-coding RNAs (ncRNAs) raises the question: do host cells deploy non-coding transcripts to rapidly control the most energy-consuming process in cells—i.e., host translation—to counteract the infection? Here, we discuss the intriguing possibility that membrane-damaging toxins induce, in the host, the expression of toxin-specific long non-coding RNAs (lncRNAs), which act as sponges for other molecules, encoding small peptides or binding target mRNAs to depress their translation efficiency. Unravelling the function of host-produced lncRNAs upon bacterial infection or membrane damage requires an improved understanding of host lncRNA expression patterns, their association with polysomes and their function during this stress. This field of investigation holds a unique opportunity to reveal unpredicted scenarios and novel approaches to counteract antibiotic-resistant infections. PMID:29469820

  8. The small non-coding RNA response to virus infection in the Leishmania vector Lutzomyia longipalpis.

    PubMed

    Ferreira, Flávia Viana; Aguiar, Eric Roberto Guimarães Rocha; Olmo, Roenick Proveti; de Oliveira, Karla Pollyanna Vieira; Silva, Emanuele Guimarães; Sant'Anna, Maurício Roberto Viana; Gontijo, Nelder de Figueiredo; Kroon, Erna Geessien; Imler, Jean Luc; Marques, João Trindade

    2018-06-01

    Sandflies are well known vectors for Leishmania but also transmit a number of arthropod-borne viruses (arboviruses). Few studies have addressed the interaction between sandflies and arboviruses. RNA interference (RNAi) mechanisms utilize small non-coding RNAs to regulate different aspects of host-pathogen interactions. The small interfering RNA (siRNA) pathway is a broad antiviral mechanism in insects. In addition, at least in mosquitoes, another RNAi mechanism mediated by PIWI interacting RNAs (piRNAs) is activated by viral infection. Finally, endogenous microRNAs (miRNA) may also regulate host immune responses. Here, we analyzed the small non-coding RNA response to Vesicular stomatitis virus (VSV) infection in the sandfly Lutzoymia longipalpis. We detected abundant production of virus-derived siRNAs after VSV infection in adult sandflies. However, there was no production of virus-derived piRNAs and only mild changes in the expression of vector miRNAs in response to infection. We also observed abundant production of virus-derived siRNAs against two other viruses in Lutzomyia Lulo cells. Together, our results suggest that the siRNA but not the piRNA pathway mediates an antiviral response in sandflies. In agreement with this hypothesis, pre-treatment of cells with dsRNA against VSV was able to inhibit viral replication while knock-down of the central siRNA component, Argonaute-2, led to increased virus levels. Our work begins to elucidate the role of RNAi mechanisms in the interaction between L. longipalpis and viruses and should also open the way for studies with other sandfly-borne pathogens.

  9. The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry

    PubMed Central

    Gaston, Kirk W; Limbach, Patrick A

    2014-01-01

    The analysis of ribonucleic acids (RNA) by mass spectrometry has been a valuable analytical approach for more than 25 years. In fact, mass spectrometry has become a method of choice for the analysis of modified nucleosides from RNA isolated out of biological samples. This review summarizes recent progress that has been made in both nucleoside and oligonucleotide mass spectral analysis. Applications of mass spectrometry in the identification, characterization and quantification of modified nucleosides are discussed. At the oligonucleotide level, advances in modern mass spectrometry approaches combined with the standard RNA modification mapping protocol enable the characterization of RNAs of varying lengths ranging from low molecular weight short interfering RNAs (siRNAs) to the extremely large 23 S rRNAs. New variations and improvements to this protocol are reviewed, including top-down strategies, as these developments now enable qualitative and quantitative measurements of RNA modification patterns in a variety of biological systems. PMID:25616408

  10. The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry.

    PubMed

    Gaston, Kirk W; Limbach, Patrick A

    2014-01-01

    The analysis of ribonucleic acids (RNA) by mass spectrometry has been a valuable analytical approach for more than 25 years. In fact, mass spectrometry has become a method of choice for the analysis of modified nucleosides from RNA isolated out of biological samples. This review summarizes recent progress that has been made in both nucleoside and oligonucleotide mass spectral analysis. Applications of mass spectrometry in the identification, characterization and quantification of modified nucleosides are discussed. At the oligonucleotide level, advances in modern mass spectrometry approaches combined with the standard RNA modification mapping protocol enable the characterization of RNAs of varying lengths ranging from low molecular weight short interfering RNAs (siRNAs) to the extremely large 23 S rRNAs. New variations and improvements to this protocol are reviewed, including top-down strategies, as these developments now enable qualitative and quantitative measurements of RNA modification patterns in a variety of biological systems.

  11. The RNA world in the 21st century-a systems approach to finding non-coding keys to clinical questions.

    PubMed

    Schmitz, Ulf; Naderi-Meshkin, Hojjat; Gupta, Shailendra K; Wolkenhauer, Olaf; Vera, Julio

    2016-05-01

    There was evidence that RNAs are a functionally rich class of molecules not only since the arrival of the next-generation sequencing technology. Non-coding RNAs (ncRNA) could be the key to accelerated diagnosis and enhanced prediction of disease and therapy outcomes as well as the design of advanced therapeutic strategies to overcome yet unsatisfactory approaches.In this review, we discuss the state of the art in RNA systems biology with focus on the application in the systems biomedicine field. We propose guidelines for analysing the role of microRNAs and long non-coding RNAs in human pathologies. We introduce RNA expression profiling and network approaches for the identification of stable and effective RNomics-based biomarkers, providing insights into the role of ncRNAs in disease regulation. Towards this, we discuss ways to model the dynamics of gene regulatory networks and signalling pathways that involve ncRNAs. We also describe data resources and computational methods for finding putative mechanisms of action of ncRNAs. Finally, we discuss avenues for the computer-aided design of novel RNA-based therapeutics. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Changes in the Coding and Non-coding Transcriptome and DNA Methylome that Define the Schwann Cell Repair Phenotype after Nerve Injury.

    PubMed

    Arthur-Farraj, Peter J; Morgan, Claire C; Adamowicz, Martyna; Gomez-Sanchez, Jose A; Fazal, Shaline V; Beucher, Anthony; Razzaghi, Bonnie; Mirsky, Rhona; Jessen, Kristjan R; Aitman, Timothy J

    2017-09-12

    Repair Schwann cells play a critical role in orchestrating nerve repair after injury, but the cellular and molecular processes that generate them are poorly understood. Here, we perform a combined whole-genome, coding and non-coding RNA and CpG methylation study following nerve injury. We show that genes involved in the epithelial-mesenchymal transition are enriched in repair cells, and we identify several long non-coding RNAs in Schwann cells. We demonstrate that the AP-1 transcription factor C-JUN regulates the expression of certain micro RNAs in repair Schwann cells, in particular miR-21 and miR-34. Surprisingly, unlike during development, changes in CpG methylation are limited in injury, restricted to specific locations, such as enhancer regions of Schwann cell-specific genes (e.g., Nedd4l), and close to local enrichment of AP-1 motifs. These genetic and epigenomic changes broaden our mechanistic understanding of the formation of repair Schwann cell during peripheral nervous system tissue repair. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Bioinformatics of prokaryotic RNAs

    PubMed Central

    Backofen, Rolf; Amman, Fabian; Costa, Fabrizio; Findeiß, Sven; Richter, Andreas S; Stadler, Peter F

    2014-01-01

    The genome of most prokaryotes gives rise to surprisingly complex transcriptomes, comprising not only protein-coding mRNAs, often organized as operons, but also harbors dozens or even hundreds of highly structured small regulatory RNAs and unexpectedly large levels of anti-sense transcripts. Comprehensive surveys of prokaryotic transcriptomes and the need to characterize also their non-coding components is heavily dependent on computational methods and workflows, many of which have been developed or at least adapted specifically for the use with bacterial and archaeal data. This review provides an overview on the state-of-the-art of RNA bioinformatics focusing on applications to prokaryotes. PMID:24755880

  14. Stallion sperm transcriptome comprises functionally coherent coding and regulatory RNAs as revealed by microarray analysis and RNA-seq.

    PubMed

    Das, Pranab J; McCarthy, Fiona; Vishnoi, Monika; Paria, Nandina; Gresham, Cathy; Li, Gang; Kachroo, Priyanka; Sudderth, A Kendrick; Teague, Sheila; Love, Charles C; Varner, Dickson D; Chowdhary, Bhanu P; Raudsepp, Terje

    2013-01-01

    Mature mammalian sperm contain a complex population of RNAs some of which might regulate spermatogenesis while others probably play a role in fertilization and early development. Due to this limited knowledge, the biological functions of sperm RNAs remain enigmatic. Here we report the first characterization of the global transcriptome of the sperm of fertile stallions. The findings improved understanding of the biological significance of sperm RNAs which in turn will allow the discovery of sperm-based biomarkers for stallion fertility. The stallion sperm transcriptome was interrogated by analyzing sperm and testes RNA on a 21,000-element equine whole-genome oligoarray and by RNA-seq. Microarray analysis revealed 6,761 transcripts in the sperm, of which 165 were sperm-enriched, and 155 were differentially expressed between the sperm and testes. Next, 70 million raw reads were generated by RNA-seq of which 50% could be aligned with the horse reference genome. A total of 19,257 sequence tags were mapped to all horse chromosomes and the mitochondrial genome. The highest density of mapped transcripts was in gene-rich ECA11, 12 and 13, and the lowest in gene-poor ECA9 and X; 7 gene transcripts originated from ECAY. Structural annotation aligned sperm transcripts with 4,504 known horse and/or human genes, rRNAs and 82 miRNAs, whereas 13,354 sequence tags remained anonymous. The data were aligned with selected equine gene models to identify additional exons and splice variants. Gene Ontology annotations showed that sperm transcripts were associated with molecular processes (chemoattractant-activated signal transduction, ion transport) and cellular components (membranes and vesicles) related to known sperm functions at fertilization, while some messenger and micro RNAs might be critical for early development. The findings suggest that the rich repertoire of coding and non-coding RNAs in stallion sperm is not a random remnant from spermatogenesis in testes but a selectively

  15. Stallion Sperm Transcriptome Comprises Functionally Coherent Coding and Regulatory RNAs as Revealed by Microarray Analysis and RNA-seq

    PubMed Central

    Das, Pranab J.; McCarthy, Fiona; Vishnoi, Monika; Paria, Nandina; Gresham, Cathy; Li, Gang; Kachroo, Priyanka; Sudderth, A. Kendrick; Teague, Sheila; Love, Charles C.; Varner, Dickson D.; Chowdhary, Bhanu P.; Raudsepp, Terje

    2013-01-01

    Mature mammalian sperm contain a complex population of RNAs some of which might regulate spermatogenesis while others probably play a role in fertilization and early development. Due to this limited knowledge, the biological functions of sperm RNAs remain enigmatic. Here we report the first characterization of the global transcriptome of the sperm of fertile stallions. The findings improved understanding of the biological significance of sperm RNAs which in turn will allow the discovery of sperm-based biomarkers for stallion fertility. The stallion sperm transcriptome was interrogated by analyzing sperm and testes RNA on a 21,000-element equine whole-genome oligoarray and by RNA-seq. Microarray analysis revealed 6,761 transcripts in the sperm, of which 165 were sperm-enriched, and 155 were differentially expressed between the sperm and testes. Next, 70 million raw reads were generated by RNA-seq of which 50% could be aligned with the horse reference genome. A total of 19,257 sequence tags were mapped to all horse chromosomes and the mitochondrial genome. The highest density of mapped transcripts was in gene-rich ECA11, 12 and 13, and the lowest in gene-poor ECA9 and X; 7 gene transcripts originated from ECAY. Structural annotation aligned sperm transcripts with 4,504 known horse and/or human genes, rRNAs and 82 miRNAs, whereas 13,354 sequence tags remained anonymous. The data were aligned with selected equine gene models to identify additional exons and splice variants. Gene Ontology annotations showed that sperm transcripts were associated with molecular processes (chemoattractant-activated signal transduction, ion transport) and cellular components (membranes and vesicles) related to known sperm functions at fertilization, while some messenger and micro RNAs might be critical for early development. The findings suggest that the rich repertoire of coding and non-coding RNAs in stallion sperm is not a random remnant from spermatogenesis in testes but a selectively

  16. Comparative analysis of human protein-coding and noncoding RNAs between brain and 10 mixed cell lines by RNA-Seq.

    PubMed

    Chen, Geng; Yin, Kangping; Shi, Leming; Fang, Yuanzhang; Qi, Ya; Li, Peng; Luo, Jian; He, Bing; Liu, Mingyao; Shi, Tieliu

    2011-01-01

    In their expression process, different genes can generate diverse functional products, including various protein-coding or noncoding RNAs. Here, we investigated the protein-coding capacities and the expression levels of their isoforms for human known genes, the conservation and disease association of long noncoding RNAs (ncRNAs) with two transcriptome sequencing datasets from human brain tissues and 10 mixed cell lines. Comparative analysis revealed that about two-thirds of the genes expressed between brain and cell lines are the same, but less than one-third of their isoforms are identical. Besides those genes specially expressed in brain and cell lines, about 66% of genes expressed in common encoded different isoforms. Moreover, most genes dominantly expressed one isoform and some genes only generated protein-coding (or noncoding) RNAs in one sample but not in another. We found 282 human genes could encode both protein-coding and noncoding RNAs through alternative splicing in the two samples. We also identified more than 1,000 long ncRNAs, and most of those long ncRNAs contain conserved elements across either 46 vertebrates or 33 placental mammals or 10 primates. Further analysis showed that some long ncRNAs differentially expressed in human breast cancer or lung cancer, several of those differentially expressed long ncRNAs were validated by RT-PCR. In addition, those validated differentially expressed long ncRNAs were found significantly correlated with certain breast cancer or lung cancer related genes, indicating the important biological relevance between long ncRNAs and human cancers. Our findings reveal that the differences of gene expression profile between samples mainly result from the expressed gene isoforms, and highlight the importance of studying genes at the isoform level for completely illustrating the intricate transcriptome.

  17. A permutation-based non-parametric analysis of CRISPR screen data.

    PubMed

    Jia, Gaoxiang; Wang, Xinlei; Xiao, Guanghua

    2017-07-19

    Clustered regularly-interspaced short palindromic repeats (CRISPR) screens are usually implemented in cultured cells to identify genes with critical functions. Although several methods have been developed or adapted to analyze CRISPR screening data, no single specific algorithm has gained popularity. Thus, rigorous procedures are needed to overcome the shortcomings of existing algorithms. We developed a Permutation-Based Non-Parametric Analysis (PBNPA) algorithm, which computes p-values at the gene level by permuting sgRNA labels, and thus it avoids restrictive distributional assumptions. Although PBNPA is designed to analyze CRISPR data, it can also be applied to analyze genetic screens implemented with siRNAs or shRNAs and drug screens. We compared the performance of PBNPA with competing methods on simulated data as well as on real data. PBNPA outperformed recent methods designed for CRISPR screen analysis, as well as methods used for analyzing other functional genomics screens, in terms of Receiver Operating Characteristics (ROC) curves and False Discovery Rate (FDR) control for simulated data under various settings. Remarkably, the PBNPA algorithm showed better consistency and FDR control on published real data as well. PBNPA yields more consistent and reliable results than its competitors, especially when the data quality is low. R package of PBNPA is available at: https://cran.r-project.org/web/packages/PBNPA/ .

  18. Long non-coding RNA repertoire and targeting by nuclear exosome, cytoplasmic exonuclease and RNAi in fission yeast.

    PubMed

    Atkinson, Sophie; Marguerat, Samuel; Bitton, Danny; Bachand, Francois; Rodriguez-Lopez, Maria; Rallis, Charalampos; Lemay, Jean-Francois; Cotobal, Cristina; Malecki, Michal; Smialowski, Pawel; Mata, Juan; Korber, Philipp; Bahler, Jurg

    2018-06-18

    Long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides but often unstable, contribute a substantial and diverse portion to pervasive non-coding transcriptomes. Most lncRNAs are poorly annotated and understood, although several play important roles in gene regulation and diseases. Here we systematically uncover and analyse lncRNAs in Schizosaccharomyces pombe. Based on RNA-seq data from twelve RNA-processing mutants and nine physiological conditions, we identify 5775 novel lncRNAs, nearly 4-times the previously annotated lncRNAs. The expression of most lncRNAs becomes strongly induced under the genetic and physiological perturbations, most notably during late meiosis. Most lncRNAs are cryptic and suppressed by three RNA-processing pathways: the nuclear exosome, cytoplasmic exonuclease, and RNAi. Double-mutant analyses reveal substantial coordination and redundancy among these pathways. We classify lncRNAs by their dominant pathway into cryptic unstable transcripts (CUTs), Xrn1-sensitive unstable transcripts (XUTs), and Dicer-sensitive unstable transcripts (DUTs). XUTs and DUTs are enriched for antisense lncRNAs, while CUTs are often bidirectional and actively translated. The cytoplasmic exonuclease, along with RNAi, dampens the expression of thousands of lncRNAs and mRNAs that become induced during meiosis. Antisense lncRNA expression mostly negatively correlates with sense mRNA expression in the physiological, but not the genetic conditions. Intergenic and bidirectional lncRNAs emerge from nucleosome-depleted regions, upstream of positioned nucleosomes. Our results highlight both similarities and differences to lncRNA regulation in budding yeast. This broad survey of the lncRNA repertoire and characteristics in S. pombe, and the interwoven regulatory pathways that target lncRNAs, provides a rich framework for their further functional analyses. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Molecular Pathways: microRNAs, Cancer Cells, and Microenvironment

    PubMed Central

    Berindan-Neagoe, Ioana; Calin, George A.

    2015-01-01

    One of the most unexpected discoveries in molecular oncology over the last decade is the interplay between abnormalities in protein-coding genes and short non-coding microRNAs (miRNAs) that are causally involved in cancer initiation, progression, and dissemination. This phenomenon was initially defined in malignant cells; however, in recent years, more data have accumulated describing the participation of miRNAs produced by microenvironment cells. As hormones, miRNAs are released by a donor cell in various forms of vesicles or as ‘free’ molecules secreted by active mechanisms. These miRNAs spread as signaling molecules that are uptaken either as exosomes or as ‘free’ RNAs by cells located in other parts of the organism. Here, we discuss the communication between cancer cells and the microenvironment through miRNAs. We further expand this in the context of translational consequences and present miRNAs as predictors of therapeutic response and as targeted therapeutics and therapeutic targets in either malignant cells or microenvironment cells. PMID:25512634

  20. LncRNAs expression in adjuvant-induced arthritis rats reveals the potential role of LncRNAs contributing to rheumatoid arthritis pathogenesis.

    PubMed

    Jiang, Hui; Qin, Xiu-Juan; Li, Wei-Ping; Ma, Rong; Wang, Ting; Li, Zhu-Qing

    2016-11-15

    Long non-coding RNAs (LncRNAs) are an important class of widespread molecules involved in diverse biological functions, which are exceptionally expressed in numerous types of diseases. Currently, limited study on LncRNA in rheumatoid arthritis (RA) is available. In this study, we aimed to identify the specifically expressed LncRNA that are relevant to adjuvant-induced arthritis (AA) in rats, and to explore the possible molecular mechanisms of RA pathogenesis. To identify LncRNAs specifically expressed in rheumatoid arthritis, the expression of LncRNAs in synoviums of rats from the model group (n=3) was compared with that in the control group (n=3) using Arraystar Rat LncRNA/mRNA microarray and real-time polymerase chain reaction (RT-PCR). Up to 260 LncRNAs were found to be differentially expressed (≥1.5-fold-change) in the synoviums between AA model and the normal rats (170 up-regulated and 90 down-regulated LncRNAs in AA rats compared with normal rats). Coding-non-coding gene co-expression networks (CNC network) were drawn based on the correlation analysis between the differentially expressed LncRNAs and mRNAs. Six LncRNAs, XR_008357, U75927, MRAK046251, XR_006457, DQ266363 and MRAK003448, were selected to analyze the relationship between LncRNAs and RA via the CNC network and GO analysis. Real-time PCR result confirmed that the six LncRNAs were specifically expressed in the AA rats. These results revealed that clusters of LncRNAs were uniquely expressed in AA rats compared with controls, which manifests that these differentially expressed LncRNAs in AA rats might play a vital role in RA development. Up-regulation or down-regulation of the six LncRNAs might contribute to the molecular mechanism underlying RA. To sum up, our study provides potential targets for treatment of RA and novel profound understanding of the pathogenesis of RA. Copyright © 2016. Published by Elsevier B.V.

  1. Small non-coding RNA profiling in human biofluids and surrogate tissues from healthy individuals: description of the diverse and most represented species.

    PubMed

    Ferrero, Giulio; Cordero, Francesca; Tarallo, Sonia; Arigoni, Maddalena; Riccardo, Federica; Gallo, Gaetano; Ronco, Guglielmo; Allasia, Marco; Kulkarni, Neha; Matullo, Giuseppe; Vineis, Paolo; Calogero, Raffaele A; Pardini, Barbara; Naccarati, Alessio

    2018-01-09

    The role of non-coding RNAs in different biological processes and diseases is continuously expanding. Next-generation sequencing together with the parallel improvement of bioinformatics analyses allows the accurate detection and quantification of an increasing number of RNA species. With the aim of exploring new potential biomarkers for disease classification, a clear overview of the expression levels of common/unique small RNA species among different biospecimens is necessary. However, except for miRNAs in plasma, there are no substantial indications about the pattern of expression of various small RNAs in multiple specimens among healthy humans. By analysing small RNA-sequencing data from 243 samples, we have identified and compared the most abundantly and uniformly expressed miRNAs and non-miRNA species of comparable size with the library preparation in four different specimens (plasma exosomes, stool, urine, and cervical scrapes). Eleven miRNAs were commonly detected among all different specimens while 231 miRNAs were globally unique across them. Classification analysis using these miRNAs provided an accuracy of 99.6% to recognize the sample types. piRNAs and tRNAs were the most represented non-miRNA small RNAs detected in all specimen types that were analysed, particularly in urine samples. With the present data, the most uniformly expressed small RNAs in each sample type were also identified. A signature of small RNAs for each specimen could represent a reference gene set in validation studies by RT-qPCR. Overall, the data reported hereby provide an insight of the constitution of the human miRNome and of other small non-coding RNAs in various specimens of healthy individuals.

  2. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor

    PubMed Central

    Enuka, Yehoshua; Lauriola, Mattia; Feldman, Morris E.; Sas-Chen, Aldema; Ulitsky, Igor; Yarden, Yosef

    2016-01-01

    Circular RNAs (circRNAs) are widespread circles of non-coding RNAs with largely unknown function. Because stimulation of mammary cells with the epidermal growth factor (EGF) leads to dynamic changes in the abundance of coding and non-coding RNA molecules, and culminates in the acquisition of a robust migratory phenotype, this cellular model might disclose functions of circRNAs. Here we show that circRNAs of EGF-stimulated mammary cells are stably expressed, while mRNAs and microRNAs change within minutes. In general, the circRNAs we detected are relatively long-lived and weakly expressed. Interestingly, they are almost ubiquitously co-expressed with the corresponding linear transcripts, and the respective, shared promoter regions are more active compared to genes producing linear isoforms with no detectable circRNAs. These findings imply that altered abundance of circRNAs, unlike changes in the levels of other RNAs, might not play critical roles in signaling cascades and downstream transcriptional networks that rapidly commit cells to specific outcomes. PMID:26657629

  3. The Emerging Roles of Long Non-coding RNA in Cancer.

    PubMed

    Sanchez Calle, Anna; Kawamura, Yumi; Yamamoto, Yusuke; Takeshita, Fumitaka; Ochiya, Takahiro

    2018-05-17

    Since comprehensive analysis of the mammalian genome has revealed that the vast majority of genomic products are transcribed in long non-coding RNAs (lncRNAs), increasing attention has been paid towards these transcripts. The applied next-generation sequencing technologies have provided accumulating evidence of dysregulated lncRNAs in cancer. The implication of this finding may be seen in many forms and at multiple levels. With impacts ranging from integrating chromatin remodeling complexes to regulating transcription and post-transcriptional processes, aberrant expression of lncRNAs may have repercussions in cell proliferation, tumor progression or metastasis. lncRNAs may act as enhancers, scaffolds or decoys by physically interacting with other RNA species or proteins, resulting in a direct impact on cell signaling cascades. Even though their functional classification is well-established in the context of cancer, clearer characterization in terms of their phenotypic outputs is needed to optimize and identify suitable candidates that enable the development of new therapeutic strategies and the design of novel diagnostic approaches. The present article aims to outline different cancer-associated lncRNAs according to their contribution to tumor suppression or tumor promotion based on their most current functional annotations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome.

    PubMed

    Yang, Jian-Hua; Zhang, Xiao-Chen; Huang, Zhan-Peng; Zhou, Hui; Huang, Mian-Bo; Zhang, Shu; Chen, Yue-Qin; Qu, Liang-Hu

    2006-01-01

    Small nucleolar RNAs (snoRNAs) represent an abundant group of non-coding RNAs in eukaryotes. They can be divided into guide and orphan snoRNAs according to the presence or absence of antisense sequence to rRNAs or snRNAs. Current snoRNA-searching programs, which are essentially based on sequence complementarity to rRNAs or snRNAs, exist only for the screening of guide snoRNAs. In this study, we have developed an advanced computational package, snoSeeker, which includes CDseeker and ACAseeker programs, for the highly efficient and specific screening of both guide and orphan snoRNA genes in mammalian genomes. By using these programs, we have systematically scanned four human-mammal whole-genome alignment (WGA) sequences and identified 54 novel candidates including 26 orphan candidates as well as 266 known snoRNA genes. Eighteen novel snoRNAs were further experimentally confirmed with four snoRNAs exhibiting a tissue-specific or restricted expression pattern. The results of this study provide the most comprehensive listing of two families of snoRNA genes in the human genome till date.

  5. A search for H/ACA snoRNAs in yeast using MFE secondary structure prediction.

    PubMed

    Edvardsson, Sverker; Gardner, Paul P; Poole, Anthony M; Hendy, Michael D; Penny, David; Moulton, Vincent

    2003-05-01

    Noncoding RNA genes produce functional RNA molecules rather than coding for proteins. One such family is the H/ACA snoRNAs. Unlike the related C/D snoRNAs these have resisted automated detection to date. We develop an algorithm to screen the yeast genome for novel H/ACA snoRNAs. To achieve this, we introduce some new methods for facilitating the search for noncoding RNAs in genomic sequences which are based on properties of predicted minimum free-energy (MFE) secondary structures. The algorithm has been implemented and can be generalized to enable screening of other eukaryote genomes. We find that use of primary sequence alone is insufficient for identifying novel H/ACA snoRNAs. Only the use of secondary structure filters reduces the number of candidates to a manageable size. From genomic context, we identify three strong H/ACA snoRNA candidates. These together with a further 47 candidates obtained by our analysis are being experimentally screened.

  6. Validation of Small RNAs In Xylella fastidiosa by qRT-PCR

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa causes many economically important crop diseases including almond leaf scorch disease and Pierce’ disease of grapevine. Although non-coding small RNAs (sRNAs) are regarded as ubiquitous regulatory elements in bacteria, research attention to sRNAs in X. fastidiosa has been limited...

  7. SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing.

    PubMed

    Tsuchiya, Mariko; Amano, Kojiro; Abe, Masaya; Seki, Misato; Hase, Sumitaka; Sato, Kengo; Sakakibara, Yasubumi

    2016-06-15

    Deep sequencing of the transcripts of regulatory non-coding RNA generates footprints of post-transcriptional processes. After obtaining sequence reads, the short reads are mapped to a reference genome, and specific mapping patterns can be detected called read mapping profiles, which are distinct from random non-functional degradation patterns. These patterns reflect the maturation processes that lead to the production of shorter RNA sequences. Recent next-generation sequencing studies have revealed not only the typical maturation process of miRNAs but also the various processing mechanisms of small RNAs derived from tRNAs and snoRNAs. We developed an algorithm termed SHARAKU to align two read mapping profiles of next-generation sequencing outputs for non-coding RNAs. In contrast with previous work, SHARAKU incorporates the primary and secondary sequence structures into an alignment of read mapping profiles to allow for the detection of common processing patterns. Using a benchmark simulated dataset, SHARAKU exhibited superior performance to previous methods for correctly clustering the read mapping profiles with respect to 5'-end processing and 3'-end processing from degradation patterns and in detecting similar processing patterns in deriving the shorter RNAs. Further, using experimental data of small RNA sequencing for the common marmoset brain, SHARAKU succeeded in identifying the significant clusters of read mapping profiles for similar processing patterns of small derived RNA families expressed in the brain. The source code of our program SHARAKU is available at http://www.dna.bio.keio.ac.jp/sharaku/, and the simulated dataset used in this work is available at the same link. Accession code: The sequence data from the whole RNA transcripts in the hippocampus of the left brain used in this work is available from the DNA DataBank of Japan (DDBJ) Sequence Read Archive (DRA) under the accession number DRA004502. yasu@bio.keio.ac.jp Supplementary data are available

  8. Death of a dogma: eukaryotic mRNAs can code for more than one protein

    PubMed Central

    Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier

    2016-01-01

    mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5′ UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3′ UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. PMID:26578573

  9. Long non-coding RNA discovery across the genus anopheles reveals conserved secondary structures within and beyond the Gambiae complex.

    PubMed

    Jenkins, Adam M; Waterhouse, Robert M; Muskavitch, Marc A T

    2015-04-23

    Long non-coding RNAs (lncRNAs) have been defined as mRNA-like transcripts longer than 200 nucleotides that lack significant protein-coding potential, and many of them constitute scaffolds for ribonucleoprotein complexes with critical roles in epigenetic regulation. Various lncRNAs have been implicated in the modulation of chromatin structure, transcriptional and post-transcriptional gene regulation, and regulation of genomic stability in mammals, Caenorhabditis elegans, and Drosophila melanogaster. The purpose of this study is to identify the lncRNA landscape in the malaria vector An. gambiae and assess the evolutionary conservation of lncRNAs and their secondary structures across the Anopheles genus. Using deep RNA sequencing of multiple Anopheles gambiae life stages, we have identified 2,949 lncRNAs and more than 300 previously unannotated putative protein-coding genes. The lncRNAs exhibit differential expression profiles across life stages and adult genders. We find that across the genus Anopheles, lncRNAs display much lower sequence conservation than protein-coding genes. Additionally, we find that lncRNA secondary structure is highly conserved within the Gambiae complex, but diverges rapidly across the rest of the genus Anopheles. This study offers one of the first lncRNA secondary structure analyses in vector insects. Our description of lncRNAs in An. gambiae offers the most comprehensive genome-wide insights to date into lncRNAs in this vector mosquito, and defines a set of potential targets for the development of vector-based interventions that may further curb the human malaria burden in disease-endemic countries.

  10. Identification of long non-coding RNA and mRNA expression in βΒ2-crystallin knockout mice.

    PubMed

    Jia, Yin; Xiong, Kang; Ren, Han-Xiao; Li, Wen-Jie

    2018-05-01

    βΒ2-crystallin (CRYBB2) is expressed at an increased level in the postnatal lens cortex and is associated with cataracts. Improved understanding of the underlying biology of cataracts is likely to be critical for the development of early detection strategies and new therapeutics. The present study aimed to identify long non-coding RNAs (lncRNAs) and mRNAs associated with CRYBB2 knockdown (KO)-induced cataracts. RNAs from 3 non-treated mice and 3 CRYBB2 KO mice were analyzed using the Affymetrix GeneChip Mouse Gene 2.0 ST array. A total of 149 lncRNAs and 803 mRNAs were identified to have upregulated expression, including Snora73b, Klk1b22 and Rnu3a, while the expression levels of 180 lncRNAs and 732 mRNAs were downregulated in CRYBB2 KO mice, including Snord82, Snhg9 and Foxn3. This lncRNA and mRNA expression profile of mice with CRYBB2 KO provides a basis for studying the genetic mechanisms of cataract progression.

  11. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator

    PubMed Central

    Novikova, Irina V.; Hennelly, Scott P.; Sanbonmatsu, Karissa Y.

    2012-01-01

    While functional roles of several long non-coding RNAs (lncRNAs) have been determined, the molecular mechanisms are not well understood. Here, we report the first experimentally derived secondary structure of a human lncRNA, the steroid receptor RNA activator (SRA), 0.87 kB in size. The SRA RNA is a non-coding RNA that coactivates several human sex hormone receptors and is strongly associated with breast cancer. Coding isoforms of SRA are also expressed to produce proteins, making the SRA gene a unique bifunctional system. Our experimental findings (SHAPE, in-line, DMS and RNase V1 probing) reveal that this lncRNA has a complex structural organization, consisting of four domains, with a variety of secondary structure elements. We examine the coevolution of the SRA gene at the RNA structure and protein structure levels using comparative sequence analysis across vertebrates. Rapid evolutionary stabilization of RNA structure, combined with frame-disrupting mutations in conserved regions, suggests that evolutionary pressure preserves the RNA structural core rather than its translational product. We perform similar experiments on alternatively spliced SRA isoforms to assess their structural features. PMID:22362738

  12. Non-coding functions of alternative pre-mRNA splicing in development

    PubMed Central

    Mockenhaupt, Stefan; Makeyev, Eugene V.

    2015-01-01

    A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. PMID:26493705

  13. Long Non-coding RNAs (LncRNA) Regulated by Transforming Growth Factor (TGF) β

    PubMed Central

    Richards, Edward J.; Zhang, Gu; Li, Zhu-Peng; Permuth-Wey, Jennifer; Challa, Sridevi; Li, Yajuan; Kong, William; Dan, Su; Bui, Marilyn M.; Coppola, Domenico; Mao, Wei-Min; Sellers, Thomas A.; Cheng, Jin Q.

    2015-01-01

    Long noncoding RNAs (lncRNAs) are emerging as key regulators in various biological processes. Epithelial-to-mesenchymal transition (EMT) is a developmental process hijacked by tumor cells to depart from the primary tumor site, invade surrounding tissue, and establish distant metastases. Transforming growth factor β (TGFβ) signaling has been shown to be a major inducer of EMT and to facilitate breast cancer metastasis. However, the role of lncRNAs in this process remains largely unknown. Here we report a genome-wide lncRNA profile in mouse mammary epithelial NMuMG cells upon TGFβ induction of EMT. Among 10,802 lncRNAs profiled, over 600 were up-regulated and down-regulated during the EMT, respectively. Furthermore, we identify that lncRNA-HIT (HOXA transcript induced by TGFβ) mediates TGFβ function, i.e. depletion of lncRNA-HIT inhibits TGFβ-induced migration, invasion, and EMT in NMuMG. LncRNA-HIT is also significantly elevated in the highly metastatic 4T1 cells. Knockdown of lncRNA-HIT in 4T1 results in decrease of cell migration, invasion, tumor growth, and metastasis. E-cadherin was identified as a major target of lncRNA-HIT. Moreover, lncRNA-HIT is conserved in humans and elevated expression associates with more invasive human primary breast carcinoma. Collectively, these data suggest that a subset of lncRNAs such as lncRNA-HIT play a significant role in regulation of EMT and breast cancer invasion and metastasis, and could be potential therapeutic targets in breast cancers. PMID:25605728

  14. Silencing by imprinted noncoding RNAs: is transcription the answer?

    PubMed Central

    Pauler, Florian M.; Koerner, Martha V.; Barlow, Denise P.

    2010-01-01

    Non-coding RNAs (ncRNAs) with gene regulatory functions are starting to be seen as a common feature of mammalian gene regulation with the discovery that most of the transcriptome is ncRNA. The prototype has long been the Xist ncRNA, which induces X-chromosome inactivation in female cells. However, a new paradigm is emerging – the silencing of imprinted gene clusters by long ncRNAs. Here, we review models by which imprinted ncRNAs could function. We argue that an Xist-like model is only one of many possible solutions and that imprinted ncRNAs could provide the better model for understanding the function of the new class of ncRNAs associated with non-imprinted mammalian genes. PMID:17445943

  15. Decoding Crucial LncRNAs Implicated in Neurogenesis and Neurological Disorders.

    PubMed

    Ayana, R; Singh, Shailja; Pati, Soumya

    2017-04-15

    Unraveling transcriptional heterogeneity and the labyrinthine nature of neurodevelopment can probe insights into neuropsychiatric disorders. It is noteworthy that adult neurogenesis is restricted to the subventricular and subgranular zones of the brain. Recent studies suggest long non-coding RNAs (lncRNAs) as an avant-garde class of regulators implicated in neurodevelopment. But, paucity exists in the knowledge regarding lncRNAs in neurogenesis and their associations with neurodevelopmental defects. To address this, we extensively reviewed the existing literature databases as well as performed relevant in-silico analysis. We utilized Allen Brain Atlas (ABA) differential search module and generated a catalogue of ∼30,000 transcripts specific to the neurogenic zones, including coding and non-coding transcripts. To explore the existing lncRNAs reported in neurogenesis, we performed extensive literature mining and identified 392 lncRNAs. These degenerate lncRNAs were mapped onto the ABA transcript list leading to detection of 20 lncRNAs specific to neurogenic zones (Dentate gyrus/Lateral ventricle), among which 10 showed associations to several neurodevelopmental disorders following in-silico mapping onto brain disease databases like Simons Foundation Autism Research Initiative, AutDB, and lncRNADisease. Notably, using ABA correlation module, we could establish lncRNA-to-mRNA coexpression networks for the above 10 candidate lncRNAs. Finally, pathway prediction revealed physical, biochemical, or regulatory interactions for nine lncRNAs. In addition, ABA differential search also revealed 54 novel significant lncRNAs from the null set (∼30,000). Conclusively, this review represents an updated catalogue of lncRNAs in neurogenesis and neurological diseases, and overviews the field of OMICs-based data analysis for understanding lncRNome-based regulation in neurodevelopment.

  16. Long non-coding RNA CASC2 regulates cell biological behaviour through the MAPK signalling pathway in hepatocellular carcinoma.

    PubMed

    Gan, Yuanyuan; Han, Nana; He, Xiaoqin; Yu, Jiajun; Zhang, Meixia; Zhou, Yujie; Liang, Huiling; Deng, Junjian; Zheng, Yongfa; Ge, Wei; Long, Zhixiong; Xu, Ximing

    2017-06-01

    Long non-coding RNAs have previously been demonstrated to play important roles in regulating human diseases, especially cancer. However, the biological functions and molecular mechanisms of long non-coding RNAs in hepatocellular carcinoma have not been extensively studied. The long non-coding RNA CASC2 (cancer susceptibility candidate 2) has been characterised as a tumour suppressor in endometrial cancer and gliomas. However, the role and function of CASC2 in hepatocellular carcinoma remain unknown. In this study, using quantitative real-time polymerase chain reaction, we confirmed that CASC2 expression was downregulated in 50 hepatocellular carcinoma cases (62%) and in hepatocellular carcinoma cell lines compared with the paired adjacent tissues and normal liver cells. In vitro experiments further demonstrated that overexpressed CASC2 decreased hepatocellular carcinoma cell proliferation, migration and invasion as well as promoted apoptosis via inactivating the mitogen-activated protein kinase signalling pathway. Our findings demonstrate that CASC2 could be a useful tumour suppressor factor and a promising therapeutic target for hepatocellular carcinoma.

  17. Comprehensive identification and profiling of host miRNAs in response to Singapore grouper iridovirus (SGIV) infection in grouper (Epinephelus coioides).

    PubMed

    Guo, Chuanyu; Cui, Huachun; Ni, Songwei; Yan, Yang; Qin, Qiwei

    2015-10-01

    microRNAs (miRNAs) are an evolutionarily conserved class of non-coding RNA molecules that participate in various biological processes. Employment of high-throughput screening strategies greatly prompts the investigation and profiling of miRNAs in diverse species. In recent years, grouper (Epinephelus spp.) aquaculture was severely affected by iridoviral diseases. However, knowledge regarding the host immune responses to viral infection, especially the miRNA-mediated immune regulatory roles, is rather limited. In this study, by employing Solexa deep sequencing approach, we identified 116 grouper miRNAs from grouper spleen-derived cells (GS). As expected, these miRNAs shared high sequence similarity with miRNAs identified in zebrafish (Danio rerio), pufferfish (Fugu rubripes), and other higher vertebrates. In the process of Singapore grouper iridovirus (SGIV) infection, 45 and 43 miRNAs with altered expression (>1.5-fold) were identified by miRNA microarray assays in grouper spleen tissues and GS cells, respectively. Furthermore, target prediction revealed 189 putative targets of these grouper miRNAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Death of a dogma: eukaryotic mRNAs can code for more than one protein.

    PubMed

    Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier

    2016-01-08

    mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5' UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3' UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    PubMed Central

    Khraiwesh, Basel; Zhu, Jian-Kang; Zhu, Jianhua

    2011-01-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. PMID:21605713

  20. Integrative analysis of long non-coding RNAs and messenger RNA expression profiles in systemic lupus erythematosus.

    PubMed

    Luo, Qing; Li, Xue; Xu, Chuxin; Zeng, Lulu; Ye, Jianqing; Guo, Yang; Huang, Zikun; Li, Junming

    2018-03-01

    Thousands of long noncoding RNAs (lncRNAs) have been reported and represent an important subset of pervasive genes associated with a broad range of biological functions. Abnormal expression levels of lncRNAs have been demonstrated in multiple types of human disease. However, the role of lncRNAs in systemic lupus erythematosus (SLE) remains poorly understood. In the present study, the expression patterns of lncRNAs and messenger RNAs (mRNAs) were investigated in peripheral blood mononuclear cells (PBMCs) in SLE using Human lncRNA Array v3.0 (8x60 K; Arraystar, Inc., Rockville, MD, USA). The microarray results indicated that 8,868 lncRNAs (3,657 upregulated and 5,211 downregulated) and 6,876 mRNAs (2,862 upregulated and 4,014 downregulated) were highly differentially expressed in SLE samples compared with the healthy group. Gene ontology (GO) analysis of lncRNA target prediction indicated the presence of 474 matched lncRNA‑mRNA pairs for 293 differentially expressed lncRNAs (fold change, ≥3.0) and 381 differentially expressed mRNAs (fold change, ≥3.0). The most enriched pathways were 'Transcriptional misregulation in cancer' and 'Valine, leucine and isoleucine degradation'. Furthermore, reverse transcription‑quantitative polymerase chain reaction data verified six abnormal lncRNAs and mRNAs in SLE. The results indicate that the lncRNA expression profile in SLE was significantly changed. In addition, a range of SLE‑associated lncRNAs were identified. Thus, the present results provide important insights regarding lncRNAs in the pathogenesis of SLE.

  1. A high-content morphological screen identifies novel microRNAs that regulate neuroblastoma cell differentiation

    PubMed Central

    Zhao, Zhenze; Ma, Xiuye; Hsiao, Tzu-Hung; Lin, Gregory; Kosti, Adam; Yu, Xiaojie; Suresh, Uthra; Chen, Yidong; Tomlinson, Gail E.; Pertsemlidis, Alexander; Du, Liqin

    2014-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, arises from neural crest cell precursors that fail to differentiate. Inducing cell differentiation is an important therapeutic strategy for neuroblastoma. We developed a direct functional high-content screen to identify differentiation-inducing microRNAs, in order to develop microRNA-based differentiation therapy for neuroblastoma. We discovered novel microRNAs, and more strikingly, three microRNA seed families that induce neuroblastoma cell differentiation. In addition, we showed that microRNA seed families were overrepresented in the identified group of fourteen differentiation-inducing microRNAs, suggesting that microRNA seed families are functionally more important in neuroblastoma differentiation than microRNAs with unique sequences. We further investigated the differentiation-inducing function of the microRNA-506-3p/microRNA-124-3p seed family, which was the most potent inducer of differentiation. We showed that the differentiation-inducing function of microRNA-506-3p/microRNA-124-3p is mediated, at least partially, by down-regulating expression of their targets CDK4 and STAT3. We further showed that expression of miR-506-3p, but not miR-124-3p, is dramatically upregulated in differentiated neuroblastoma cells, suggesting the important role of endogenous miR-506-3p in differentiation and tumorigenesis. Overall, our functional screen on microRNAs provided the first comprehensive analysis on the involvements of microRNA species in neuroblastoma cell differentiation and identified novel differentiation-inducing microRNAs. Further investigations are certainly warranted to fully characterize the function of the identified microRNAs in order to eventually benefit neuroblastoma therapy. PMID:24811707

  2. Overview of long non-coding RNA and mRNA expression in response to methamphetamine treatment in vitro.

    PubMed

    Xiong, Kun; Long, Lingling; Zhang, Xudong; Qu, Hongke; Deng, Haixiao; Ding, Yanjun; Cai, Jifeng; Wang, Shuchao; Wang, Mi; Liao, Lvshuang; Huang, Jufang; Yi, Chun-Xia; Yan, Jie

    2017-10-01

    Long non-coding RNAs (lncRNAs) display multiple functions including regulation of neuronal injury. However, their impact in methamphetamine (METH)-induced neurotoxicity has rarely been reported. Here, using microarray analysis, we investigated the expression profiling of lncRNAs and mRNAs in primary cultured prefrontal cortical neurons after METH treatment. We observed a difference in lncRNA and mRNA expression between the experimental and sham control groups. Using bioinformatics, we analyzed the highest enriched gene ontology (GO) terms of biological process, cellular component, and molecular function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and pathway network analysis. Furthermore, an lncRNA-mRNA co-expression sub-network for aberrantly expressed terms revealed possible interactions of lncRNA NR_110713 and NR_027943 with their related genes. Afterwards, three lncRNAs (NR_110713, NR_027943, GAS5) and two mRNAs (Ddit3, Casp12) were targeted to validate the microarray data by qRT-PCR. This presented an overview of lncRNA and mRNA expression profiling and indicated that lncRNA might participate in METH-induced neuronal apoptosis by regulating the coding genes of neurons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Long noncoding RNAs (lncRNAs) dynamics evidence immunomodulation during ISAV-Infected Atlantic salmon (Salmo salar)

    PubMed Central

    Boltaña, Sebastian; Valenzuela-Miranda, Diego; Aguilar, Andrea; Mackenzie, Simon; Gallardo-Escárate, Cristian

    2016-01-01

    Despite evidence for participation in the host response to infection, the roles of many long non-coding RNAs (lncRNAs) remain unknown. Therefore, the aims of this study were to identify lncRNAs in Atlantic salmon (Salmo salar) and evaluate their transcriptomic regulation during ISA virus (ISAV) infection, an Orthomyxoviridae virus associated with high mortalities in salmonid aquaculture. Using next-generation sequencing, whole-transcriptome analysis of the Salmo salar response to ISAV infection was performed, identifying 5,636 putative lncRNAs with a mean length of 695 base pairs. The transcriptional modulation evidenced a similar number of differentially expressed lncRNAs in the gills (3,294), head-kidney (3,275), and liver (3,325) over the course of the infection. Moreover, analysis of a subset of these lncRNAs showed the following: (i) Most were similarly regulated in response to ISA virus infection; (ii) The transcript subsets were uniquely modulated in each tissue (gills, liver, and head-kidney); and (iii) A subset of lncRNAs were upregulated for each tissue and time analysed, indicating potential markers for ISAV infection. These findings represent the first discovery of widespread differential expression of lncRNAs in response to virus infection in non-model species, suggesting that lncRNAs could be involved in regulating the host response during ISAV infection. PMID:26939752

  4. Long noncoding RNAs (lncRNAs) dynamics evidence immunomodulation during ISAV-Infected Atlantic salmon (Salmo salar).

    PubMed

    Boltaña, Sebastian; Valenzuela-Miranda, Diego; Aguilar, Andrea; Mackenzie, Simon; Gallardo-Escárate, Cristian

    2016-03-04

    Despite evidence for participation in the host response to infection, the roles of many long non-coding RNAs (lncRNAs) remain unknown. Therefore, the aims of this study were to identify lncRNAs in Atlantic salmon (Salmo salar) and evaluate their transcriptomic regulation during ISA virus (ISAV) infection, an Orthomyxoviridae virus associated with high mortalities in salmonid aquaculture. Using next-generation sequencing, whole-transcriptome analysis of the Salmo salar response to ISAV infection was performed, identifying 5,636 putative lncRNAs with a mean length of 695 base pairs. The transcriptional modulation evidenced a similar number of differentially expressed lncRNAs in the gills (3,294), head-kidney (3,275), and liver (3,325) over the course of the infection. Moreover, analysis of a subset of these lncRNAs showed the following: (i) Most were similarly regulated in response to ISA virus infection; (ii) The transcript subsets were uniquely modulated in each tissue (gills, liver, and head-kidney); and (iii) A subset of lncRNAs were upregulated for each tissue and time analysed, indicating potential markers for ISAV infection. These findings represent the first discovery of widespread differential expression of lncRNAs in response to virus infection in non-model species, suggesting that lncRNAs could be involved in regulating the host response during ISAV infection.

  5. Genome-wide identification of conserved intronic non-coding sequences using a Bayesian segmentation approach.

    PubMed

    Algama, Manjula; Tasker, Edward; Williams, Caitlin; Parslow, Adam C; Bryson-Richardson, Robert J; Keith, Jonathan M

    2017-03-27

    Computational identification of non-coding RNAs (ncRNAs) is a challenging problem. We describe a genome-wide analysis using Bayesian segmentation to identify intronic elements highly conserved between three evolutionarily distant vertebrate species: human, mouse and zebrafish. We investigate the extent to which these elements include ncRNAs (or conserved domains of ncRNAs) and regulatory sequences. We identified 655 deeply conserved intronic sequences in a genome-wide analysis. We also performed a pathway-focussed analysis on genes involved in muscle development, detecting 27 intronic elements, of which 22 were not detected in the genome-wide analysis. At least 87% of the genome-wide and 70% of the pathway-focussed elements have existing annotations indicative of conserved RNA secondary structure. The expression of 26 of the pathway-focused elements was examined using RT-PCR, providing confirmation that they include expressed ncRNAs. Consistent with previous studies, these elements are significantly over-represented in the introns of transcription factors. This study demonstrates a novel, highly effective, Bayesian approach to identifying conserved non-coding sequences. Our results complement previous findings that these sequences are enriched in transcription factors. However, in contrast to previous studies which suggest the majority of conserved sequences are regulatory factor binding sites, the majority of conserved sequences identified using our approach contain evidence of conserved RNA secondary structures, and our laboratory results suggest most are expressed. Functional roles at DNA and RNA levels are not mutually exclusive, and many of our elements possess evidence of both. Moreover, ncRNAs play roles in transcriptional and post-transcriptional regulation, and this may contribute to the over-representation of these elements in introns of transcription factors. We attribute the higher sensitivity of the pathway-focussed analysis compared to the genome

  6. Rpl13a small nucleolar RNAs regulate systemic glucose metabolism

    PubMed Central

    Lee, Jiyeon; Harris, Alexis N.; Holley, Christopher L.; Mahadevan, Jana; Pyles, Kelly D.; Lavagnino, Zeno; Scherrer, David E.; Fujiwara, Hideji; Sidhu, Rohini; Zhang, Jessie; Huang, Stanley Ching-Cheng; Piston, David W.; Remedi, Maria S.; Urano, Fumihiko; Ory, Daniel S.

    2016-01-01

    Small nucleolar RNAs (snoRNAs) are non-coding RNAs that form ribonucleoproteins to guide covalent modifications of ribosomal and small nuclear RNAs in the nucleus. Recent studies have also uncovered additional non-canonical roles for snoRNAs. However, the physiological contributions of these small RNAs are largely unknown. Here, we selectively deleted four snoRNAs encoded within the introns of the ribosomal protein L13a (Rpl13a) locus in a mouse model. Loss of Rpl13a snoRNAs altered mitochondrial metabolism and lowered reactive oxygen species tone, leading to increased glucose-stimulated insulin secretion from pancreatic islets and enhanced systemic glucose tolerance. Islets from mice lacking Rpl13a snoRNAs demonstrated blunted oxidative stress responses. Furthermore, these mice were protected against diabetogenic stimuli that cause oxidative stress damage to islets. Our study illuminates a previously unrecognized role for snoRNAs in metabolic regulation. PMID:27820699

  7. Changes in miRNAs Signal High-Risk HPV Infections | Center for Cancer Research

    Cancer.gov

    microRNAs (miRNAs) are approximately 21 nucleotide long, non-coding RNAs that regulate the expression of certain proteins. As part of the RNA-induced silencing complex or RISC, miRNAs bind to complementary sequences in the 3’ untranslated regions of target messenger RNAs, blocking protein synthesis and sometimes leading to the destruction of the target RNA. Numerous studies

  8. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes

    DOE PAGES

    Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui; ...

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less

  9. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less

  10. miRNAs as therapeutic targets in ischemic heart disease.

    PubMed

    Frost, Robert J A; van Rooij, Eva

    2010-06-01

    Ischemic heart disease is a form of congestive heart failure that is caused by insufficient blood supply to the heart, resulting in a loss of viable tissue. In response to the injury, the non-ischemic myocardium displays signs of secondary remodeling, like interstitial fibrosis and hypertrophy of cardiac myocytes. This remodeling process further deteriorates pump function and increases susceptibility to arrhythmias. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression in a sequence-dependent manner. Recently, several groups identified miRNAs as crucial gene regulators in response to myocardial infarction (MI) and during post-MI remodeling. In this review, we discuss how modulation of these miRNAs represents a promising new therapeutic strategy to improve the clinical outcome in ischemic heart disease.

  11. COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkes, Emily J.; Hennelly, Scott P.; Novikova, Irina V.

    There is considerable debate about the functionality of long non-coding RNAs (lncRNAs). Lack of sequence conservation has been used to argue against functional relevance. Here, we investigated antisense lncRNAs, called COOLAIR, at the A. thaliana FLC locus and experimentally determined their secondary structure. The major COOLAIR variants are highly structured, organized by exon. The distally polyadenylated transcript has a complex multi-domain structure, altered by a single non-coding SNP defining a functionally distinct A. thaliana FLC haplotype. The A. thaliana COOLAIR secondary structure was used to predict COOLAIR exons in evolutionarily divergent Brassicaceae species. These predictions were validated through chemical probingmore » and cloning. Despite the relatively low nucleotide sequence identity, the structures, including multi-helix junctions, show remarkable evolutionary conservation. In a number of places, the structure is conserved through covariation of a non-contiguous DNA sequence. This structural conservation supports a functional role for COOLAIR transcripts rather than, or in addition to, antisense transcription.« less

  12. COOLAIR Antisense RNAs Form Evolutionarily Conserved Elaborate Secondary Structures

    DOE PAGES

    Hawkes, Emily J.; Hennelly, Scott P.; Novikova, Irina V.; ...

    2016-09-20

    There is considerable debate about the functionality of long non-coding RNAs (lncRNAs). Lack of sequence conservation has been used to argue against functional relevance. Here, we investigated antisense lncRNAs, called COOLAIR, at the A. thaliana FLC locus and experimentally determined their secondary structure. The major COOLAIR variants are highly structured, organized by exon. The distally polyadenylated transcript has a complex multi-domain structure, altered by a single non-coding SNP defining a functionally distinct A. thaliana FLC haplotype. The A. thaliana COOLAIR secondary structure was used to predict COOLAIR exons in evolutionarily divergent Brassicaceae species. These predictions were validated through chemical probingmore » and cloning. Despite the relatively low nucleotide sequence identity, the structures, including multi-helix junctions, show remarkable evolutionary conservation. In a number of places, the structure is conserved through covariation of a non-contiguous DNA sequence. This structural conservation supports a functional role for COOLAIR transcripts rather than, or in addition to, antisense transcription.« less

  13. Non-coding functions of alternative pre-mRNA splicing in development.

    PubMed

    Mockenhaupt, Stefan; Makeyev, Eugene V

    2015-12-01

    A majority of messenger RNA precursors (pre-mRNAs) in the higher eukaryotes undergo alternative splicing to generate more than one mature product. By targeting the open reading frame region this process increases diversity of protein isoforms beyond the nominal coding capacity of the genome. However, alternative splicing also frequently controls output levels and spatiotemporal features of cellular and organismal gene expression programs. Here we discuss how these non-coding functions of alternative splicing contribute to development through regulation of mRNA stability, translational efficiency and cellular localization. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Experimental RNomics and genomic comparative analysis reveal a large group of species-specific small non-message RNAs in the silkworm Bombyx mori

    PubMed Central

    Li, Dandan; Wang, Yanhong; Zhang, Kun; Jiao, Zhujin; Zhu, Xiaopeng; Skogerboe, Geir; Guo, Xiangqian; Chinnusamy, Viswanathan; Bi, Lijun; Huang, Yongping; Dong, Shuanglin; Chen, Runsheng; Kan, Yunchao

    2011-01-01

    Accumulating evidences show that small non-protein coding RNAs (ncRNAs) play important roles in development, stress response and other cellular processes. The silkworm is an important model for studies on insect genetics and control of lepidopterous pests. Here, we have performed the first systematic identification and analysis of intermediate size ncRNAs (50–500 nt) in the silkworm. We identified 189 novel ncRNAs, including 141 snoRNAs, six snRNAs, three tRNAs, one SRP and 38 unclassified ncRNAs. Forty ncRNAs showed significantly altered expression during silkworm development or across specific stage transitions. Genomic comparisons revealed that 123 of these ncRNAs are potentially silkworm-specific. Analysis of the genomic organization of the ncRNA loci showed that 32.62% of the novel snoRNA loci are intergenic, and that all the intronic snoRNAs follow the pattern of one-snoRNA-per-intron. Target site analysis predicted a total of 95 2′-O-methylation and pseudouridylation modification sites of rRNAs, snRNAs and tRNAs. Together, these findings provide new clues for future functional study of ncRNA during insect development and evolution. PMID:21227919

  15. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin

    PubMed Central

    Böhmdorfer, Gudrun; Sethuraman, Shriya; Rowley, M Jordan; Krzyszton, Michal; Rothi, M Hafiz; Bouzit, Lilia; Wierzbicki, Andrzej T

    2016-01-01

    RNA-mediated transcriptional gene silencing is a conserved process where small RNAs target transposons and other sequences for repression by establishing chromatin modifications. A central element of this process are long non-coding RNAs (lncRNA), which in Arabidopsis thaliana are produced by a specialized RNA polymerase known as Pol V. Here we show that non-coding transcription by Pol V is controlled by preexisting chromatin modifications located within the transcribed regions. Most Pol V transcripts are associated with AGO4 but are not sliced by AGO4. Pol V-dependent DNA methylation is established on both strands of DNA and is tightly restricted to Pol V-transcribed regions. This indicates that chromatin modifications are established in close proximity to Pol V. Finally, Pol V transcription is preferentially enriched on edges of silenced transposable elements, where Pol V transcribes into TEs. We propose that Pol V may play an important role in the determination of heterochromatin boundaries. DOI: http://dx.doi.org/10.7554/eLife.19092.001 PMID:27779094

  16. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus

    PubMed Central

    Li, Chaoqun; Cao, Feifei; Li, Shengli; Huang, Shenglin; Li, Wei; Abumaria, Nashat

    2018-01-01

    Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA) has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice). Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to stress

  17. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus.

    PubMed

    Li, Chaoqun; Cao, Feifei; Li, Shengli; Huang, Shenglin; Li, Wei; Abumaria, Nashat

    2017-01-01

    Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA) has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice). Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to stress

  18. Screening of lymph nodes metastasis associated lncRNAs in colorectal cancer patients

    PubMed Central

    Han, Jun; Rong, Long-Fei; Shi, Chuan-Bin; Dong, Xiao-Gang; Wang, Jie; Wang, Bao-Lin; Wen, Hao; He, Zhen-Yu

    2014-01-01

    AIM: To screen lymph nodes metastasis associated long noncoding RNAs (lncRNAs) in colorectal cancer through microarray analysis. METHODS: Metastatic lymph node (MLN), normal lymph node (NLN) and tumor tissues of 3 colorectal cancer (CRC) patients were collected during the operation and validated by pathological examinations. RNAs were extracted from MLN, NLN, and cancer tissues separately. RNA quantity and quality were measured with a NanoDrop ND-1000 spectrophotometer and RNA integrity was assessed by standard denaturing agarose electrophoresis. Agilent Feature Extraction Software (Version 11.0.1.1) was used to analyze acquired array images. Four differently expressed lncRNAs were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) in 26 subsets of MLN, NLN, and tumor tissues. RESULTS: Of 33045 lncRNAs, 1133 were differentially expressed in MLN compared with NLN, of which 260 were up-regulated and 873 down-regulated (≥ 2 fold-change). Five hundred and forty-five lncRNAs were differentially expressed in MLN compared with tumor tissues, of which 460 were up-regulated and 85 down-regulated (≥ 2 fold-change). Compared with NLN and cancer tissues, 14 lncRNAs were specifically up-regulated and 5 specifically down-regulated in MLN. AK307796, ENST00000425785, and AK021444 were confirmed to be specifically up-regulated in MLN and ENST00000465846 specifically down-regulated in MLN by qRT-PCR in 26 CRC patients. CONCLUSION: The specifically expressed lncRNAs in MLN may exert a partial or key role in the progress of lymph nodes metastasis of CRC. PMID:25009386

  19. LINC00152: A pivotal oncogenic long non-coding RNA in human cancers.

    PubMed

    Yu, Yang; Yang, Jian; Li, Quanpeng; Xu, Boming; Lian, Yifan; Miao, Lin

    2017-08-01

    In recent years, increasing evidence has shown the potential role of long non-coding RNAs (lncRNAs) in multiple cancers. Deregulation of lncRNAs was detected being closely associated with many kinds of tumours where they can act as a tumour suppressor or accelerator. LINC00152 was identified as an oncogene involved in many kinds of cancers, such as gastric cancer, hepatocellular carcinoma, colon cancer, gallbladder cancer and renal cell carcinoma. Moreover, inhibition of LINC00152 can suppress proliferation, migration and invasion of the cancer cells. Increasing evidence has showed that LINC00152 may act as a diagnostic and prognostic biomarker for the above-mentioned cancers. In our review, we summarize the recent research progress of the expression and role of LINC00152 in various kinds of cancers. © 2017 The Authors. Cell Proliferation Published by John Wiley & Sons Ltd.

  20. Long non-coding RNA HOTAIR, a c-Myc activated driver of malignancy, negatively regulates miRNA-130a in gallbladder cancer

    PubMed Central

    2014-01-01

    Background Protein coding genes account for only about 2% of the human genome, whereas the vast majority of transcripts are non-coding RNAs including long non-coding RNAs. A growing volume of literature has proposed that lncRNAs are important players in cancer. HOTAIR was previously shown to be an oncogene and negative prognostic factor in a variety of cancers. However, the factors that contribute to its upregulation and the interaction between HOTAIR and miRNAs are largely unknown. Methods A computational screen of HOTAIR promoter was conducted to search for transcription-factor-binding sites. HOTAIR promoter activities were examined by luciferase reporter assay. The function of the c-Myc binding site in the HOTAIR promoter region was tested by a promoter assay with nucleotide substitutions in the putative E-box. The association of c-Myc with the HOTAIR promoter in vivo was confirmed by chromatin immunoprecipitation assay and Electrophoretic mobility shift assay. A search for miRNAs with complementary base paring with HOTAIR was performed utilizing online software program. Gain and loss of function approaches were employed to investigate the expression changes of HOTAIR or miRNA-130a. The expression levels of HOTAIR, c-Myc and miRNA-130a were examined in 65 matched pairs of gallbladder cancer tissues. The effects of HOTAIR and miRNA-130a on gallbladder cancer cell invasion and proliferation was tested using in vitro cell invasion and flow cytometric assays. Results We demonstrate that HOTAIR is a direct target of c-Myc through interaction with putative c-Myc target response element (RE) in the upstream region of HOTAIR in gallbladder cancer cells. A positive correlation between c-Myc and HOTAIR mRNA levels was observed in gallbladder cancer tissues. We predicted that HOTAIR harbors a miRNA-130a binding site. Our data showed that this binding site is vital for the regulation of miRNA-130a by HOTAIR. Moreover, a negative correlation between HOTAIR and miRNA-130a was

  1. High-throughput screening identifies microRNAs that target Nox2 and improve function after acute myocardial infarction.

    PubMed

    Yang, Junyu; Brown, Milton E; Zhang, Hanshuo; Martinez, Mario; Zhao, Zhihua; Bhutani, Srishti; Yin, Shenyi; Trac, David; Xi, Jianzhong Jeff; Davis, Michael E

    2017-05-01

    Myocardial infarction (MI) is the most common cause of heart failure. Excessive production of ROS plays a key role in the pathogenesis of cardiac remodeling after MI. NADPH with NADPH oxidase (Nox)2 as the catalytic subunit is a major source of superoxide production, and expression is significantly increased in the infarcted myocardium, especially by infiltrating macrophages. While microRNAs (miRNAs) are potent regulators of gene expression and play an important role in heart disease, there still lacks efficient ways to identify miRNAs that target important pathological genes for treating MI. Thus, the overall objective was to establish a miRNA screening and delivery system for improving heart function after MI using Nox2 as a critical target. With the use of the miRNA-target screening system composed of a self-assembled cell microarray (SAMcell), three miRNAs, miR-106b, miR-148b, and miR-204, were identified that could regulate Nox2 expression and its downstream products in both human and mouse macrophages. Each of these miRNAs were encapsulated into polyketal (PK3) nanoparticles that could effectively deliver miRNAs into macrophages. Both in vitro and in vivo studies in mice confirmed that PK3-miRNAs particles could inhibit Nox2 expression and activity and significantly improve infarct size and acute cardiac function after MI. In conclusion, our results show that miR-106b, miR-148b, and miR-204 were able to improve heart function after myocardial infarction in mice by targeting Nox2 and possibly altering inflammatory cytokine production. This screening system and delivery method could have broader implications for miRNA-mediated therapeutics for cardiovascular and other diseases. NEW & NOTEWORTHY NADPH oxidase (Nox)2 is a promising target for treating cardiovascular disease, but there are no specific inhibitors. Finding endogenous signals that can target Nox2 and other inflammatory molecules is of great interest. In this study, we used high-throughput screening

  2. Mining, Validation, and Clinical Significance of Colorectal Cancer (CRC)-Associated lncRNAs.

    PubMed

    Sun, Xiangwei; Hu, Yingying; Zhang, Liang; Hu, Changyuan; Guo, Gangqiang; Mao, Chenchen; Xu, Jianfeng; Ye, Sisi; Huang, Guanli; Xue, Xiangyang; Guo, Aizhen; Shen, Xian

    2016-01-01

    Colorectal cancer (CRC) is one of the deadliest tumours, but its pathogenesis remains unclear. The involvement of differentially expressed long non-coding RNAs (lncRNAs) in CRC tumorigenesis makes them suitable tumour biomarkers. Here, we screened 150 cases of CRC and 85 cases of paracancerous tissues in the GEO database for differentially expressed lncRNAs. The levels of lncRNA candidates in 84 CRC and paracancerous tissue samples were validated by qRT-PCR and their clinical significance was analyzed. We identified 15 lncRNAs with differential expression in CRC tumours; among them, AK098081 was significantly up-regulated, whereas AK025209, BC040303, BC037331, AK026659, and CR749831 were down-regulated in CRC. In a receiver operating characteristic curve analysis, the area under the curve for the six lncRNAs was 0.914. High expression of AK098081 and low expression of BC040303, CR749831, and BC037331 indicated poor CRC differentiation. CRC patients with lymph node metastasis had lower expression of BC037331. In addition, the group with high AK098081 expression presented significantly lower overall survival and disease-free survival rates than the low-expression group, confirming AK098081 as an independent risk factor for CRC patients. In conclusion, we have identified multiple CRC-associated lncRNAs from microarray expression profiles that can serve as novel biomarkers for the diagnosis and prognosis of CRC.

  3. Circulating RNAs as new biomarkers for detecting pancreatic cancer

    PubMed Central

    Kishikawa, Takahiro; Otsuka, Motoyuki; Ohno, Motoko; Yoshikawa, Takeshi; Takata, Akemi; Koike, Kazuhiko

    2015-01-01

    Pancreatic cancer remains difficult to treat and has a high mortality rate. It is difficult to diagnose early, mainly due to the lack of screening imaging modalities and specific biomarkers. Consequently, it is important to develop biomarkers that enable the detection of early stage tumors. Emerging evidence is accumulating that tumor cells release substantial amounts of RNA into the bloodstream that strongly resist RNases in the blood and are present at sufficient levels for quantitative analyses. These circulating RNAs are upregulated in the serum and plasma of cancer patients, including those with pancreatic cancer, compared with healthy controls. The majority of RNA biomarker studies have assessed circulating microRNAs (miRs), which are often tissue-specific. There are few reports of the tumor-specific upregulation of other types of small non-coding RNAs (ncRNAs), such as small nucleolar RNAs and Piwi-interacting RNAs. Long ncRNAs (lncRNAs), such as HOTAIR and MALAT1, in the serum/plasma of pancreatic cancer patients have also been reported as diagnostic and prognostic markers. Among tissue-derived RNAs, some miRs show increased expression even in pre-cancerous tissues, and their expression profiles may allow for the discrimination between a chronic inflammatory state and carcinoma. Additionally, some miRs and lncRNAs have been reported with significant alterations in expression according to disease progression, and they may thus represent potential candidate diagnostic or prognostic biomarkers that may be used to evaluate patients once detection methods in peripheral blood are well established. Furthermore, recent innovations in high-throughput sequencing techniques have enabled the discovery of unannotated tumor-associated ncRNAs and tumor-specific alternative splicing as novel and specific biomarkers of cancers. Although much work is required to clarify the release mechanism, origin of tumor-specific circulating RNAs, and selectivity of carrier complexes

  4. Micro-Economics of Apoptosis in Cancer: ncRNAs Modulation of BCL-2 Family Members

    PubMed Central

    Villanova, Lidia; Careccia, Silvia; De Maria, Ruggero

    2018-01-01

    In the last few years, non-coding RNAs (ncRNAs) have been a hot topic in cancer research. Many ncRNAs were found to regulate the apoptotic process and to play a role in tumor cell resistance to treatment. The apoptotic program is on the frontline as self-defense from cancer onset, and evasion of apoptosis has been classified as one of the hallmarks of cancer responsible for therapy failure. The B-cell lymphoma 2 (BCL-2) family members are key players in the regulation of apoptosis and mediate the activation of the mitochondrial death machinery in response to radiation, chemotherapeutic agents and many targeted therapeutics. The balance between the pro-survival and the pro-apoptotic BCL-2 proteins is strictly controlled by ncRNAs. Here, we highlight the most common mechanisms exerted by microRNAs, long non-coding RNAs and circular RNAs on the main mediators of the intrinsic apoptotic cascade with particular focus on their significance in cancer biology. PMID:29570632

  5. Micro-Economics of Apoptosis in Cancer: ncRNAs Modulation of BCL-2 Family Members.

    PubMed

    Villanova, Lidia; Careccia, Silvia; De Maria, Ruggero; Fiori, Micol E

    2018-03-23

    In the last few years, non-coding RNAs (ncRNAs) have been a hot topic in cancer research. Many ncRNAs were found to regulate the apoptotic process and to play a role in tumor cell resistance to treatment. The apoptotic program is on the frontline as self-defense from cancer onset, and evasion of apoptosis has been classified as one of the hallmarks of cancer responsible for therapy failure. The B-cell lymphoma 2 (BCL-2) family members are key players in the regulation of apoptosis and mediate the activation of the mitochondrial death machinery in response to radiation, chemotherapeutic agents and many targeted therapeutics. The balance between the pro-survival and the pro-apoptotic BCL-2 proteins is strictly controlled by ncRNAs. Here, we highlight the most common mechanisms exerted by microRNAs, long non-coding RNAs and circular RNAs on the main mediators of the intrinsic apoptotic cascade with particular focus on their significance in cancer biology.

  6. Genome-wide identification of microRNAs in pomegranate (Punica granatum L.) by high-throughput sequencing

    USDA-ARS?s Scientific Manuscript database

    Background: MicroRNAs (miRNAs), a class of small non-coding endogenous RNAs that regulate gene expression post-transcriptionally, play multiple key roles in plant growth and development and in biotic and abiotic stress response. Knowledge and roles of miRNAs in pomegranate fruit development have not...

  7. Epigenetic Therapy in Lung Cancer - Role of microRNAs.

    PubMed

    Rothschild, Sacha I

    2013-01-01

    Lung cancer is the leading cause of cancer deaths worldwide. microRNAs (miRNAs) are a class of small non-coding RNA species that have been implicated in the control of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis, and stem cell maintenance. Some miRNAs have been categorized as "oncomiRs" as opposed to "tumor suppressor miRs." This review focuses on the role of miRNAs in the lung cancer carcinogenesis and their potential as diagnostic, prognostic, or predictive markers.

  8. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia

    PubMed Central

    Marker, Simone; Carradec, Quentin; Tanty, Véronique; Arnaiz, Olivier; Meyer, Eric

    2014-01-01

    In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia. PMID:24860163

  9. Variations in the non-coding transcriptome as a driver of inter-strain divergence and physiological adaptation in bacteria.

    PubMed

    Kopf, Matthias; Klähn, Stephan; Scholz, Ingeborg; Hess, Wolfgang R; Voß, Björn

    2015-04-22

    In all studied organisms, a substantial portion of the transcriptome consists of non-coding RNAs that frequently execute regulatory functions. Here, we have compared the primary transcriptomes of the cyanobacteria Synechocystis sp. PCC 6714 and PCC 6803 under 10 different conditions. These strains share 2854 protein-coding genes and a 16S rRNA identity of 99.4%, indicating their close relatedness. Conserved major transcriptional start sites (TSSs) give rise to non-coding transcripts within the sigB gene, from the 5'UTRs of cmpA and isiA, and 168 loci in antisense orientation. Distinct differences include single nucleotide polymorphisms rendering promoters inactive in one of the strains, e.g., for cmpR and for the asRNA PsbA2R. Based on the genome-wide mapped location, regulation and classification of TSSs, non-coding transcripts were identified as the most dynamic component of the transcriptome. We identified a class of mRNAs that originate by read-through from an sRNA that accumulates as a discrete and abundant transcript while also serving as the 5'UTR. Such an sRNA/mRNA structure, which we name 'actuaton', represents another way for bacteria to remodel their transcriptional network. Our findings support the hypothesis that variations in the non-coding transcriptome constitute a major evolutionary element of inter-strain divergence and capability for physiological adaptation.

  10. Variations in the non-coding transcriptome as a driver of inter-strain divergence and physiological adaptation in bacteria

    PubMed Central

    Kopf, Matthias; Klähn, Stephan; Scholz, Ingeborg; Hess, Wolfgang R.; Voß, Björn

    2015-01-01

    In all studied organisms, a substantial portion of the transcriptome consists of non-coding RNAs that frequently execute regulatory functions. Here, we have compared the primary transcriptomes of the cyanobacteria Synechocystis sp. PCC 6714 and PCC 6803 under 10 different conditions. These strains share 2854 protein-coding genes and a 16S rRNA identity of 99.4%, indicating their close relatedness. Conserved major transcriptional start sites (TSSs) give rise to non-coding transcripts within the sigB gene, from the 5′UTRs of cmpA and isiA, and 168 loci in antisense orientation. Distinct differences include single nucleotide polymorphisms rendering promoters inactive in one of the strains, e.g., for cmpR and for the asRNA PsbA2R. Based on the genome-wide mapped location, regulation and classification of TSSs, non-coding transcripts were identified as the most dynamic component of the transcriptome. We identified a class of mRNAs that originate by read-through from an sRNA that accumulates as a discrete and abundant transcript while also serving as the 5′UTR. Such an sRNA/mRNA structure, which we name ‘actuaton’, represents another way for bacteria to remodel their transcriptional network. Our findings support the hypothesis that variations in the non-coding transcriptome constitute a major evolutionary element of inter-strain divergence and capability for physiological adaptation. PMID:25902393

  11. Long non-coding RNA regulation of epithelial–mesenchymal transition in cancer metastasis

    PubMed Central

    Xu, Q; Deng, F; Qin, Y; Zhao, Z; Wu, Z; Xing, Z; Ji, A; Wang, Q J

    2016-01-01

    Metastasis is a multistep process starting with the dissemination of tumor cells from a primary site and ending with secondary tumor development in an anatomically distant location. The epithelial–mesenchymal transition (EMT), a process that endows epithelial tumor cells with mesenchymal properties including reduced adhesion and increased motility, is considered a critical step driving the early phase of cancer metastasis. Although significant progress has been made in understanding the molecular characteristics of EMT, the intracellular mechanisms driving transition through the various stages of EMT remain unclear. In recent years, an increasing number of studies have demonstrated the involvement of long non-coding RNAs (lncRNAs) in tumor metastasis through modulating EMT. LncRNAs and their associated signaling networks have now emerged as new players in the induction and regulation of EMT during metastasis. Here we summarize the recent findings and characterizations of several known lncRNAs involved in the regulation of EMT. We will also discuss the potential use of these lncRNAs as diagnostic and prognostic biomarkers as well as therapeutic targets to slow down or prevent metastatic spread of malignant tumors. PMID:27277676

  12. microRNAs Databases: Developmental Methodologies, Structural and Functional Annotations.

    PubMed

    Singh, Nagendra Kumar

    2017-09-01

    microRNA (miRNA) is an endogenous and evolutionary conserved non-coding RNA, involved in post-transcriptional process as gene repressor and mRNA cleavage through RNA-induced silencing complex (RISC) formation. In RISC, miRNA binds in complementary base pair with targeted mRNA along with Argonaut proteins complex, causes gene repression or endonucleolytic cleavage of mRNAs and results in many diseases and syndromes. After the discovery of miRNA lin-4 and let-7, subsequently large numbers of miRNAs were discovered by low-throughput and high-throughput experimental techniques along with computational process in various biological and metabolic processes. The miRNAs are important non-coding RNA for understanding the complex biological phenomena of organism because it controls the gene regulation. This paper reviews miRNA databases with structural and functional annotations developed by various researchers. These databases contain structural and functional information of animal, plant and virus miRNAs including miRNAs-associated diseases, stress resistance in plant, miRNAs take part in various biological processes, effect of miRNAs interaction on drugs and environment, effect of variance on miRNAs, miRNAs gene expression analysis, sequence of miRNAs, structure of miRNAs. This review focuses on the developmental methodology of miRNA databases such as computational tools and methods used for extraction of miRNAs annotation from different resources or through experiment. This study also discusses the efficiency of user interface design of every database along with current entry and annotations of miRNA (pathways, gene ontology, disease ontology, etc.). Here, an integrated schematic diagram of construction process for databases is also drawn along with tabular and graphical comparison of various types of entries in different databases. Aim of this paper is to present the importance of miRNAs-related resources at a single place.

  13. MicroRNAs regulate osteogenesis and chondrogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Shiwu, E-mail: shiwudong@gmail.com; Yang, Bo; Guo, Hongfeng

    Highlights: Black-Right-Pointing-Pointer To focus on the role of miRNAs in chondrogenesis and osteogenesis. Black-Right-Pointing-Pointer Involved in the regulation of miRNAs in osteoarthritis. Black-Right-Pointing-Pointer To speculate some therapeutic targets for bone diseases. -- Abstract: MicroRNAs (miRNAs) are a class of small molecules and non-coding single strand RNAs that regulate gene expression at the post-transcriptional level by binding to specific sequences within target genes. miRNAs have been recognized as important regulatory factors in organism development and disease expression. Some miRNAs regulate the proliferation and differentiation of osteoblasts, osteoclasts and chondrocytes, eventually influencing metabolism and bone formation. miRNAs are expected to provide potentialmore » gene therapy targets for the clinical treatment of metabolic bone diseases and bone injuries. Here, we review the recent research progress on the regulation of miRNAs in bone biology, with a particular focus on the miRNA-mediated control mechanisms of bone and cartilage formation.« less

  14. Long non-coding RNA PVT1: Emerging biomarker in digestive system cancer.

    PubMed

    Zhou, Dan-Dan; Liu, Xiu-Fen; Lu, Cheng-Wei; Pant, Om Prakash; Liu, Xiao-Dong

    2017-12-01

    The digestive system cancers are leading cause of cancer-related death worldwide, and have high risks of morbidity and mortality. More and more long non-coding RNAs (lncRNAs) have been studied to be abnormally expressed in cancers and play a key role in the process of digestive system tumour progression. Plasmacytoma variant translocation 1 (PVT1) seems fairly novel. Since 1984, PVT1 was identified to be an activator of MYC in mice. Its role in human tumour initiation and progression has long been a subject of interest. The expression of PVT1 is elevated in digestive system cancers and correlates with poor prognosis. In this review, we illustrate the various functions of PVT1 during the different stages in the complex process of digestive system tumours (including oesophageal cancer, gastric cancer, colorectal cancer, hepatocellular carcinoma and pancreatic cancer). The growing evidence shows the involvement of PVT1 in both proliferation and differentiation process in addition to its involvement in epithelial to mesenchymal transition (EMT). These findings lead us to conclude that PVT1 promotes proliferation, survival, invasion, metastasis and drug resistance in digestive system cancer cells. We will also discuss PVT1's potential in diagnosis and treatment target of digestive system cancer. There was a great probability PVT1 could be a novel biomarker in screening tumours, prognosis biomarkers and future targeted therapy to improve the survival rate in cancer patients. © 2017 John Wiley & Sons Ltd.

  15. Virus-encoded microRNAs

    PubMed Central

    Grundhoff, Adam; Sullivan, Christopher S.

    2011-01-01

    microRNAs (miRNAs) are the subject of enormous interest. They are small non-coding RNAs that play a regulatory role in numerous and diverse cellular processes such as immune function, apoptosis and tumorigenesis. Several virus families have been shown to encode miRNAs, and an appreciation for their roles in the viral infectious cycle continues to grow. Despite the identification of numerous (>225) viral miRNAs, an in depth functional understanding of most virus-encoded miRNAs is lacking. Here we focus on a few viral miRNAs with well-defined functions. We use these examples to extrapolate general themes of viral miRNA activities including autoregulation of gene expression, avoidance of host defenses, and a likely important role in maintaining latent and persistent infections. We hypothesize that although the molecular mechanisms and machinery are similar, the majority of viral miRNAs may utilize a target strategy that differs from host miRNAs. That is, many viral miRNAs may have evolved to regulate viral-encoded transcripts or networks of host genes that are unique to viral miRNAs. Included in this latter category are a likely abundant class of viral miRNAs that may regulate only one or a few principal host genes. Key steps forward for the field are discussed, including the need for additional functional studies that utilize surgical viral miRNA mutants combined with relevant models of infection. PMID:21277611

  16. Circular RNAs and hereditary bone diseases.

    PubMed

    Zhai, Naixiang; Lu, Yanqin; Wang, Yanzhou; Ren, Xiuzhi; Han, Jinxiang

    2018-02-01

    Circular RNA (circRNA) is a non-linear form of RNA derived from exonic, intronic, and exon-intron gene regions. circRNAs are characterized by covalent closed loops, highly stable nuclease resistance, and specific expression in species and developmental stages. CircRNA molecules have been identified as playing roles in the regulation of cell transcription, transcriptional expression after translation, interactions with microRNAs, and protein coding. A high stability and tissue- and disease-specific expression allow circRNAs to serve as potential biomarkers both for diseases and prognosis. CircRNAs function in bone remodeling by directly participating in bone-related signaling pathways and by forming the circRNA-miRNA-mRNA axis. Studies have seldom reported on the low incidence of circRNAs in genetic bone disorders. The current study reviews the characteristics of circRNAs and recent research on their role in rare hereditary bone diseases.

  17. A benchmark study of scoring methods for non-coding mutations.

    PubMed

    Drubay, Damien; Gautheret, Daniel; Michiels, Stefan

    2018-05-15

    Detailed knowledge of coding sequences has led to different candidate models for pathogenic variant prioritization. Several deleteriousness scores have been proposed for the non-coding part of the genome, but no large-scale comparison has been realized to date to assess their performance. We compared the leading scoring tools (CADD, FATHMM-MKL, Funseq2 and GWAVA) and some recent competitors (DANN, SNP and SOM scores) for their ability to discriminate assumed pathogenic variants from assumed benign variants (using the ClinVar, COSMIC and 1000 genomes project databases). Using the ClinVar benchmark, CADD was the best tool for detecting the pathogenic variants that are mainly located in protein coding gene regions. Using the COSMIC benchmark, FATHMM-MKL, GWAVA and SOMliver outperformed the other tools for pathogenic variants that are typically located in lincRNAs, pseudogenes and other parts of the non-coding genome. However, all tools had low precision, which could potentially be improved by future non-coding genome feature discoveries. These results may have been influenced by the presence of potential benign variants in the COSMIC database. The development of a gold standard as consistent as ClinVar for these regions will be necessary to confirm our tool ranking. The Snakemake, C++ and R codes are freely available from https://github.com/Oncostat/BenchmarkNCVTools and supported on Linux. damien.drubay@gustaveroussy.fr or stefan.michiels@gustaveroussy.fr. Supplementary data are available at Bioinformatics online.

  18. In Silico Characterization of miRNA and Long Non-Coding RNA Interplay in Multiple Myeloma

    PubMed Central

    Ronchetti, Domenica; Manzoni, Martina; Todoerti, Katia; Neri, Antonino; Agnelli, Luca

    2016-01-01

    The identification of deregulated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In addition, the cross-regulation between lncRNAs and miRNAs has begun to emerge, and theoretical and experimental studies have demonstrated the competing endogenous RNA (ceRNA) activity of lncRNAs as natural miRNA decoys in pathophysiological conditions, including cancer. Currently, information concerning lncRNA and miRNA interplay in MM is virtually absent. Herein, we investigated in silico the lncRNA and miRNA relationship in a representative datasets encompassing 95 MM and 30 plasma cell leukemia patients at diagnosis and in four normal controls, whose expression profiles were generated by a custom annotation pipeline to detect specific lncRNAs. We applied target prediction analysis based on miRanda and RNA22 algorithms to 235 lncRNAs and 459 miRNAs selected with a potential pivotal role in the pathology of MM. Among pairs that showed a significant correlation between lncRNA and miRNA expression levels, we identified 11 lncRNA–miRNA relationships suggestive of a novel ceRNA network with relevance in MM. PMID:27916857

  19. MALDI-MS SCREENING FOR PSEUDOURIDINE IN MIXTURES OF SMALL RNAS BY CHEMICAL DERIVATIZATION, RNASE DIGESTION AND SIGNATURE PRODUCTS

    PubMed Central

    Durairaj, Anita; Limbach, Patrick A.

    2010-01-01

    We have developed a method to screen for pseudouridines in complex mixtures of small RNAs using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS). First, the unfractionated crude mixture of tRNAs is digested to completion with an endoribonuclease, such as RNase T1, and the digestion products are examined using MALDI-MS. Individual RNAs are identified by their signature digestion products, which arise through the detection of unique mass values after nuclease digestion. Next, the endonuclease digest is derivatized using N-cyclohexyl-N’-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate (CMCT), which selectively modifies all pseudouridine, thiouridine and 2-methylthio-6-isopentenyladenosine nucleosides. MALDI-MS determination of the CMCT-derivatized endonuclease digest reveals the presence of pseudouridine through a 252 Da mass increase over the underivatized digest. Proof-of-concept experiments were conducted using a mixture of Escherichia coli transfer RNAs and endoribonucleases T1 and A. More than 80% of the expected pseudouridines from this mixture were detected using this screening approach, even on a unfractionated sample of tRNAs. This approach should be particularly useful in the identification of putative pseudouridine synthases through detection of their target RNAs and can provide insight into specific small RNAs that may contain pseudouridine. PMID:18973194

  20. Long Non-Coding RNA Emergence During Renal Cell Carcinoma Tumorigenesis.

    PubMed

    Liu, Xiaobing; Hao, Yaxing; Yu, Wei; Yang, Xia; Luo, Xing; Zhao, Jiang; Li, Jia; Hu, Xiaoyan; Li, Longkun

    2018-05-22

    Renal cell carcinoma (RCC) is the most common kidney cancer diagnosed across the globe and has steadily increased in incidence in recent decades. Techniques for diagnosing or treating RCC are limited, and confined mostly to later stages of the disease. Almost all RCC pathological types are resistant to chemotherapeutics and radiation therapy. To this effect, new markers for diagnosis and target therapy are urgently needed. Advanced genome sequencing technologies have revealed long non-coding RNAs (lncRNAs) as a novel marker, transcribed throughout the human genome. The emergence of lncRNAs is an aberrant expression and is involved in the tumorigenesis of RCC. LncRNAs drive cancer phenotypes through their interaction with other cellular macromolecules including DNA, protein, and RNA. Recent research on lncRNA molecular mechanisms has revealed new markers to functionally annotate these cancers' associated transcripts, making them targets for effective diagnosis and therapeutic intervention in the fight against cancer. In this review, we first highlight the common mechanisms that underlie aberrant lncRNA expression in RCC. We go on to discuss the potential translational application of lncRNA research in the diagnosis, prognosis, and treatment of RCC. © 2018 The Author(s). Published by S. Karger AG, Basel.

  1. RNAi Screening with Self-Delivering, Synthetic siRNAs for Identification of Genes That Regulate Primary Human T Cell Migration.

    PubMed

    Freeley, Michael; Derrick, Emily; Dempsey, Eugene; Hoff, Antje; Davies, Anthony; Leake, Devin; Vermeulen, Annaleen; Kelleher, Dermot; Long, Aideen

    2015-09-01

    Screening of RNA interference (RNAi) libraries in primary T cells is labor-intensive and technically challenging because these cells are hard to transfect. Chemically modified, self-delivering small interfering RNAs (siRNAs) offer a solution to this problem, because they enter hard-to-transfect cell types without needing a delivery reagent and are available in library format for RNAi screening. In this study, we have screened a library of chemically modified, self-delivering siRNAs targeting the expression of 72 distinct genes in conjunction with an image-based high-content-analysis platform as a proof-of-principle strategy to identify genes involved in lymphocyte function-associated antigen-1 (LFA-1)-mediated migration in primary human T cells. Our library-screening strategy identified the small GTPase RhoA as being crucial for T cell polarization and migration in response to LFA-1 stimulation and other migratory ligands. We also demonstrate that multiple downstream assays can be performed within an individual RNAi screen and have used the remainder of the cells for additional assays, including cell viability and adhesion to ICAM-1 (the physiological ligand for LFA-1) in the absence or presence of the chemokine SDF-1α. This study therefore demonstrates the ease and benefits of conducting siRNA library screens in primary human T cells using self-delivering, chemically modified siRNAs, and it emphasizes the feasibility and potential of this approach for elucidating the signaling pathways that regulate T cell function. © 2015 Society for Laboratory Automation and Screening.

  2. Endogenous small RNAs and antibacterial immunity in plants.

    PubMed

    Jin, Hailing

    2008-08-06

    Small RNAs are non-coding regulatory RNA molecules that control gene expression by mediating mRNA degradation, translational inhibition, or chromatin modification. Virus-derived small RNAs induce silencing of viral RNAs and are essential for antiviral defense in both animal and plant systems. The role of host endogenous small RNAs on antibacterial immunity has only recently been recognized. Host disease resistance and defense responses are achieved by activation and repression of a large array of genes. Certain endogenous small RNAs in plants, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are induced or repressed in response to pathogen attack and subsequently regulate the expression of genes involved in disease resistance and defense responses by mediating transcriptional or post-transcriptional gene silencing. Thus, these small RNAs play an important role in gene expression reprogramming in plant disease resistance and defense responses. This review focuses on the recent findings of plant endogenous small RNAs in antibacterial immunity.

  3. SCCA, TSGF, and the Long Non-Coding RNA AC007271.3 are Effective Biomarkers for Diagnosing Oral Squamous Cell Carcinoma.

    PubMed

    Shao, Tingru; Huang, Jiaxin; Zheng, Zenan; Wu, Qingqing; Liu, Tiancai; Lv, Xiaozhi

    2018-05-09

    Oral squamous cell carcinoma (OSCC) is one of the most lethal malignancies worldwide and the most common type of oral cancer, characterized by invasive growth, frequent regional metastases, high recurrence, and poor prognosis. In the current study, we investigated the use of long non-coding RNAs (lncRNAs), tumor-specific growth factor (TSGF), and squamous cell carcinoma antigen (SCCA) as potential biomarkers for OSCC screening. LncRNA expression was measured by microarray analysis in three sets of OSCC and paired normal mucosal tissues. The potential lncRNAs involved in OSCC development were investigated by bioinformatics and verification experiments. We also determined the expression of these potential biomarkers in tissue and serum samples in a case-control study of 80 OSCC cases and 70 controls. Receiver operating characteristics, decision curve analysis, and the combined detection of lncRNA AC007271.3, TSGF, and SCCA were carried out to screen for OSCC biomarkers. A total of 691 lncRNAs (433 upregulated and 258 downregulated) were differentially expressed in OSCC tissues compared with normal controls (p< 0.05). Based on Gene Ontology and pathway analysis, we selected four differentially expressed lncRNAs (AC007271.3, AC007182.6, LOC283481, and RP11-893F2.9), and showed that aberrant AC007271.3 levels in OSCC patients were significantly associated with clinical stage, especially in early-stage disease, in an expanded case-control study. The combination of AC007271.3 and SCCA (AUC=0.902, p< 0.001) showed significantly better ability to discriminate between OSCC and controls compared with SCCA or AC007271.3 alone. Serum AC007271.3, SCCA, and TSGF levels could also discriminate between OSCC and normal controls with sensitivities of 77.6%, 55.0%, and 63.3%, and specificities of 84.5%, 93.3%, and 66.7%, respectively. These results suggest that AC007271.3, SCCA, and TSGF could be novel circulating biomarkers for the determination of OSCC. However, further validation

  4. Small and Smaller-sRNAs and MicroRNAs in the Regulation of Toxin Gene Expression in Prokaryotic Cells: A Mini-Review.

    PubMed

    Bloch, Sylwia; Węgrzyn, Alicja; Węgrzyn, Grzegorz; Nejman-Faleńczyk, Bożena

    2017-05-30

    Non-coding small RNAs (sRNAs) have been identified in the wide range of bacteria (also pathogenic species) and found to play an important role in the regulation of many processes, including toxin gene expression. The best characterized prokaryotic sRNAs regulate gene expression by base pairing with mRNA targets and fall into two broad classes: cis -encoded sRNAs (also called antisense RNA) and trans -acting sRNAs. Molecules from the second class are frequently considered as the most related to eukaryotic microRNAs. Interestingly, typical microRNA-size RNA molecules have also been reported in prokaryotic cells, although they have received little attention up to now. In this work we have collected information about all three types of small prokaryotic RNAs in the context of the regulation of toxin gene expression.

  5. Whole transcriptome analysis reveals dysregulated oncogenic lncRNAs in natural killer/T-cell lymphoma and establishes MIR155HG as a target of PRDM1.

    PubMed

    Baytak, Esra; Gong, Qiang; Akman, Burcu; Yuan, Hongling; Chan, Wing C; Küçük, Can

    2017-05-01

    Natural killer/T-cell lymphoma is a rare but aggressive neoplasm with poor prognosis. Despite previous reports that showed potential tumor suppressors, such as PRDM1 or oncogenes associated with the etiology of this malignancy, the role of long non-coding RNAs in natural killer/T-cell lymphoma pathobiology has not been addressed to date. Here, we aim to identify cancer-associated dysregulated long non-coding RNAs and signaling pathways or biological processes associated with these long non-coding RNAs in natural killer/T-cell lymphoma cases and to identify the long non-coding RNAs transcriptionally regulated by PRDM1. RNA-Seq analysis revealed 166 and 66 long non-coding RNAs to be significantly overexpressed or underexpressed, respectively, in natural killer/T-cell lymphoma cases compared with resting or activated normal natural killer cells. Novel long non-coding RNAs as well as the cancer-associated ones such as SNHG5, ZFAS1, or MIR155HG were dysregulated. Interestingly, antisense transcripts of many growth-regulating genes appeared to be transcriptionally deregulated. Expression of ZFAS1, which is upregulated in natural killer/T-cell lymphoma cases, showed association with growth-regulating pathways such as stabilization of P53, regulation of apoptosis, cell cycle, or nuclear factor-kappa B signaling in normal and neoplastic natural killer cell samples. Consistent with the tumor suppressive role of PRDM1, we identified MIR155HG and TERC to be transcriptionally downregulated by PRDM1 in two PRDM1-null NK-cell lines when it is ectopically expressed. In conclusion, this is the first study that identified long non-coding RNAs whose expression is dysregulated in natural killer/T-cell lymphoma cases. These findings suggest that ZFAS1 and other dysregulated long non-coding RNAs may be involved in natural killer/T-cell lymphoma pathobiology through regulation of cancer-related genes, and loss-of-PRDM1 expression in natural killer/T-cell lymphomas may contribute to

  6. Evolutionary conserved microRNAs are ubiquitously expressed compared to tick-specific miRNAs in the cattle tick Rhipicephalus (Boophilus) microplus

    PubMed Central

    2011-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs that act as regulators of gene expression in eukaryotes modulating a large diversity of biological processes. The discovery of miRNAs has provided new opportunities to understand the biology of a number of species. The cattle tick, Rhipicephalus (Boophilus) microplus, causes significant economic losses in cattle production worldwide and this drives us to further understand their biology so that effective control measures can be developed. To be able to provide new insights into the biology of cattle ticks and to expand the repertoire of tick miRNAs we utilized Illumina technology to sequence the small RNA transcriptomes derived from various life stages and selected organs of R. microplus. Results To discover and profile cattle tick miRNAs we employed two complementary approaches, one aiming to find evolutionary conserved miRNAs and another focused on the discovery of novel cattle-tick specific miRNAs. We found 51 evolutionary conserved R. microplus miRNA loci, with 36 of these previously found in the tick Ixodes scapularis. The majority of the R. microplus miRNAs are perfectly conserved throughout evolution with 11, 5 and 15 of these conserved since the Nephrozoan (640 MYA), Protostomian (620MYA) and Arthropoda (540 MYA) ancestor, respectively. We then employed a de novo computational screening for novel tick miRNAs using the draft genome of I. scapularis and genomic contigs of R. microplus as templates. This identified 36 novel R. microplus miRNA loci of which 12 were conserved in I. scapularis. Overall we found 87 R. microplus miRNA loci, of these 15 showed the expression of both miRNA and miRNA* sequences. R. microplus miRNAs showed a variety of expression profiles, with the evolutionary-conserved miRNAs mainly expressed in all life stages at various levels, while the expression of novel tick-specific miRNAs was mostly limited to particular life stages and/or tick organs. Conclusions Anciently acquired miRNAs

  7. MicroRNAs in Palatogenesis and Cleft Palate

    PubMed Central

    Schoen, Christian; Aschrafi, Armaz; Thonissen, Michelle; Poelmans, Geert; Von den Hoff, Johannes W.; Carels, Carine E. L.

    2017-01-01

    Palatogenesis requires a precise spatiotemporal regulation of gene expression, which is controlled by an intricate network of transcription factors and their corresponding DNA motifs. Even minor perturbations of this network may cause cleft palate, the most common congenital craniofacial defect in humans. MicroRNAs (miRNAs), a class of small regulatory non-coding RNAs, have elicited strong interest as key regulators of embryological development, and as etiological factors in disease. MiRNAs function as post-transcriptional repressors of gene expression and are therefore able to fine-tune gene regulatory networks. Several miRNAs are already identified to be involved in congenital diseases. Recent evidence from research in zebrafish and mice indicates that miRNAs are key factors in both normal palatogenesis and cleft palate formation. Here, we provide an overview of recently identified molecular mechanisms underlying palatogenesis involving specific miRNAs, and discuss how dysregulation of these miRNAs may result in cleft palate. PMID:28420997

  8. Identifying Disease Associated miRNAs Based on Protein Domains.

    PubMed

    Qin, Gui-Min; Li, Rui-Yi; Zhao, Xing-Ming

    2016-01-01

    MicroRNAs (miRNAs) are a class of small endogenous non-coding genes, acting as regulators in the post-transcriptional processes. Recently, the miRNAs are found to be widely involved in different types of diseases. Therefore, the identification of disease associated miRNAs can help understand the mechanisms that underlie the disease and identify new biomarkers. However, it is not easy to identify the miRNAs related to diseases due to its extensive involvements in various biological processes. In this work, we present a new approach to identify disease associated miRNAs based on domains, the functional and structural blocks of proteins. The results on real datasets demonstrate that our method can effectively identify disease related miRNAs with high precision.

  9. Detecting and characterizing circular RNAs

    PubMed Central

    Jeck, William R.; Sharpless, Norman E.

    2014-01-01

    Circular RNA transcripts were first identified in the early 1990s but knowledge of these species has remained limited, as their study has been difficult through traditional methods of RNA analysis. Now, novel bioinformatic approaches coupled with biochemical enrichment strategies and deep sequencing have allowed comprehensive studies of circular RNA species. Recent studies have revealed thousands of endogenous circular RNAs (circRNAs) in mammalian cells, some of which are highly abundant and evolutionarily conserved. Evidence is emerging that some circRNAs might regulate microRNA (miRNA) function, and roles in transcriptional control have also been suggested. Therefore, study of this class of non-coding RNAs has potential implications for therapeutic and research applications. We believe the key future challenge to the field will be to understand the regulation and function of these unusual molecules. PMID:24811520

  10. Identification of small non-coding RNA classes expressed in swine whole blood during HP-PRRSV infection.

    PubMed

    Fleming, Damarius S; Miller, Laura C

    2018-04-01

    It has been established that reduced susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) has a genetic component. This genetic component may take the form of small non-coding RNAs (sncRNA), which are molecules that function as regulators of gene expression. Various sncRNAs have emerged as having an important role in the immune system in humans. The study uses transcriptomic read counts to profile the type and quantity of both well and lesser characterized sncRNAs, such as microRNAs and small nucleolar RNAs to identify and quantify the classes of sncRNA expressed in whole blood between healthy and highly pathogenic PRRSV-infected pigs. Our results returned evidence on nine classes of sncRNA, four of which were consistently statistically significantly different based on Fisher's Exact Test, that can be detected and possibly interrogated for their effect on host dysregulation during PRRSV infections. Published by Elsevier Inc.

  11. Coding and small non-coding transcriptional landscape of tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment.

    PubMed

    Mills, James D; Iyer, Anand M; van Scheppingen, Jackelien; Bongaarts, Anika; Anink, Jasper J; Janssen, Bart; Zimmer, Till S; Spliet, Wim G; van Rijen, Peter C; Jansen, Floor E; Feucht, Martha; Hainfellner, Johannes A; Krsek, Pavel; Zamecnik, Josef; Kotulska, Katarzyna; Jozwiak, Sergiusz; Jansen, Anna; Lagae, Lieven; Curatolo, Paolo; Kwiatkowski, David J; Pasterkamp, R Jeroen; Senthilkumar, Ketharini; von Oerthel, Lars; Hoekman, Marco F; Gorter, Jan A; Crino, Peter B; Mühlebner, Angelika; Scicluna, Brendon P; Aronica, Eleonora

    2017-08-14

    Tuberous Sclerosis Complex (TSC) is a rare genetic disorder that results from a mutation in the TSC1 or TSC2 genes leading to constitutive activation of the mechanistic target of rapamycin complex 1 (mTORC1). TSC is associated with autism, intellectual disability and severe epilepsy. Cortical tubers are believed to represent the neuropathological substrates of these disabling manifestations in TSC. In the presented study we used high-throughput RNA sequencing in combination with systems-based computational approaches to investigate the complexity of the TSC molecular network. Overall we detected 438 differentially expressed genes and 991 differentially expressed small non-coding RNAs in cortical tubers compared to autopsy control brain tissue. We observed increased expression of genes associated with inflammatory, innate and adaptive immune responses. In contrast, we observed a down-regulation of genes associated with neurogenesis and glutamate receptor signaling. MicroRNAs represented the largest class of over-expressed small non-coding RNA species in tubers. In particular, our analysis revealed that the miR-34 family (including miR-34a, miR-34b and miR-34c) was significantly over-expressed. Functional studies demonstrated the ability of miR-34b to modulate neurite outgrowth in mouse primary hippocampal neuronal cultures. This study provides new insights into the TSC transcriptomic network along with the identification of potential new treatment targets.

  12. The role of microRNAs in skeletal muscle health and disease

    PubMed Central

    Kirby, Tyler J.; Chaillou, Thomas; McCarthy, John J.

    2016-01-01

    Over the last decade non-coding RNAs have emerged as importance regulators of gene expression. In particular, microRNAs are a class of small RNAs of ~ 22 nucleotides that repress gene expression through a post-transcriptional mechanism. MicroRNAs have been shown to be involved in a broader range of biological processes, both physiological and pathological, including myogenesis, adaptation to exercise and various myopathies. The purpose of this review is to provide a comprehensive summary of what is currently known about the role of microRNAs in skeletal muscle health and disease. PMID:25553440

  13. Deregulation of cancer-related miRNAs is a common event in both benign and malignant human breast tumors.

    PubMed

    Tahiri, Andliena; Leivonen, Suvi-Katri; Lüders, Torben; Steinfeld, Israel; Ragle Aure, Miriam; Geisler, Jürgen; Mäkelä, Rami; Nord, Silje; Riis, Margit L H; Yakhini, Zohar; Kleivi Sahlberg, Kristine; Børresen-Dale, Anne-Lise; Perälä, Merja; Bukholm, Ida R K; Kristensen, Vessela N

    2014-01-01

    MicroRNAs (miRNAs) are endogenous non-coding RNAs, which play an essential role in the regulation of gene expression during carcinogenesis. The role of miRNAs in breast cancer has been thoroughly investigated, and although many miRNAs are identified as cancer related, little is known about their involvement in benign tumors. In this study, we investigated miRNA expression profiles in the two most common types of human benign tumors (fibroadenoma/fibroadenomatosis) and in malignant breast tumors and explored their role as oncomirs and tumor suppressor miRNAs. Here, we identified 33 miRNAs with similar deregulated expression in both benign and malignant tumors compared with the expression levels of those in normal tissue, including breast cancer-related miRNAs such as let-7, miR-21 and miR-155. Additionally, messenger RNA (mRNA) expression profiles were obtained for some of the same samples. Using integrated mRNA/miRNA expression analysis, we observed that overexpression of certain miRNAs co-occurred with a significant downregulation of their candidate target mRNAs in both benign and malignant tumors. In support of these findings, in vitro functional screening of the downregulated miRNAs in non-malignant and breast cancer cell lines identified several possible tumor suppressor miRNAs, including miR-193b, miR-193a-3p, miR-126, miR-134, miR-132, miR-486-5p, miR-886-3p, miR-195 and miR-497, showing reduced growth when re-expressed in cancer cells. The finding of deregulated expression of oncomirs and tumor suppressor miRNAs in benign breast tumors is intriguing, indicating that they may play a role in proliferation. A role of cancer-related miRNAs in the early phases of carcinogenesis and malignant transformation can, therefore, not be ruled out.

  14. RNA sequencing uncovers antisense RNAs and novel small RNAs in Streptococcus pyogenes

    PubMed Central

    Le Rhun, Anaïs; Beer, Yan Yan; Reimegård, Johan; Chylinski, Krzysztof; Charpentier, Emmanuelle

    2016-01-01

    ABSTRACT Streptococcus pyogenes is a human pathogen responsible for a wide spectrum of diseases ranging from mild to life-threatening infections. During the infectious process, the temporal and spatial expression of pathogenicity factors is tightly controlled by a complex network of protein and RNA regulators acting in response to various environmental signals. Here, we focus on the class of small RNA regulators (sRNAs) and present the first complete analysis of sRNA sequencing data in S. pyogenes. In the SF370 clinical isolate (M1 serotype), we identified 197 and 428 putative regulatory RNAs by visual inspection and bioinformatics screening of the sequencing data, respectively. Only 35 from the 197 candidates identified by visual screening were assigned a predicted function (T-boxes, ribosomal protein leaders, characterized riboswitches or sRNAs), indicating how little is known about sRNA regulation in S. pyogenes. By comparing our list of predicted sRNAs with previous S. pyogenes sRNA screens using bioinformatics or microarrays, 92 novel sRNAs were revealed, including antisense RNAs that are for the first time shown to be expressed in this pathogen. We experimentally validated the expression of 30 novel sRNAs and antisense RNAs. We show that the expression profile of 9 sRNAs including 2 predicted regulatory elements is affected by the endoribonucleases RNase III and/or RNase Y, highlighting the critical role of these enzymes in sRNA regulation. PMID:26580233

  15. RNA sequencing uncovers antisense RNAs and novel small RNAs in Streptococcus pyogenes.

    PubMed

    Le Rhun, Anaïs; Beer, Yan Yan; Reimegård, Johan; Chylinski, Krzysztof; Charpentier, Emmanuelle

    2016-01-01

    Streptococcus pyogenes is a human pathogen responsible for a wide spectrum of diseases ranging from mild to life-threatening infections. During the infectious process, the temporal and spatial expression of pathogenicity factors is tightly controlled by a complex network of protein and RNA regulators acting in response to various environmental signals. Here, we focus on the class of small RNA regulators (sRNAs) and present the first complete analysis of sRNA sequencing data in S. pyogenes. In the SF370 clinical isolate (M1 serotype), we identified 197 and 428 putative regulatory RNAs by visual inspection and bioinformatics screening of the sequencing data, respectively. Only 35 from the 197 candidates identified by visual screening were assigned a predicted function (T-boxes, ribosomal protein leaders, characterized riboswitches or sRNAs), indicating how little is known about sRNA regulation in S. pyogenes. By comparing our list of predicted sRNAs with previous S. pyogenes sRNA screens using bioinformatics or microarrays, 92 novel sRNAs were revealed, including antisense RNAs that are for the first time shown to be expressed in this pathogen. We experimentally validated the expression of 30 novel sRNAs and antisense RNAs. We show that the expression profile of 9 sRNAs including 2 predicted regulatory elements is affected by the endoribonucleases RNase III and/or RNase Y, highlighting the critical role of these enzymes in sRNA regulation.

  16. Identification and allelic dissection uncover roles of lncRNAs in secondary growth of Populus tomentosa.

    PubMed

    Zhou, Daling; Du, Qingzhang; Chen, Jinhui; Wang, Qingshi; Zhang, Deqiang

    2017-10-01

    Long non-coding RNAs (lncRNAs) function in various biological processes. However, their roles in secondary growth of plants remain poorly understood. Here, 15,691 lncRNAs were identified from vascular cambium, developing xylem, and mature xylem of Populus tomentosa with high and low biomass using RNA-seq, including 1,994 lncRNAs that were differentially expressed (DE) among the six libraries. 3,569 cis-regulated and 3,297 trans-regulated protein-coding genes were predicted as potential target genes (PTGs) of the DE lncRNAs to participate in biological regulation. Then, 476 and 28 lncRNAs were identified as putative targets and endogenous target mimics (eTMs) of Populus known microRNAs (miRNAs), respectively. Genome re-sequencing of 435 individuals from a natural population of P. tomentosa found 34,015 single nucleotide polymorphisms (SNPs) within 178 lncRNA loci and 522 PTGs. Single-SNP associations analysis detected 2,993 associations with 10 growth and wood-property traits under additive and dominance model. Epistasis analysis identified 17,656 epistatic SNP pairs, providing evidence for potential regulatory interactions between lncRNAs and their PTGs. Furthermore, a reconstructed epistatic network, representing interactions of 8 lncRNAs and 15 PTGs, might enrich regulation roles of genes in the phenylpropanoid pathway. These findings may enhance our understanding of non-coding genes in plants. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  17. The Role of microRNAs in Bovine Infection and Immunity

    PubMed Central

    Lawless, Nathan; Vegh, Peter; O’Farrelly, Cliona; Lynn, David J.

    2014-01-01

    MicroRNAs (miRNAs) are a class of small, non-coding RNAs that are recognized as critical regulators of immune gene expression during infection. Many immunologically significant human miRNAs have been found to be conserved in agriculturally important species, including cattle. Discovering how bovine miRNAs mediate the immune defense during infection is critical to understanding the etiology of the most prevalent bovine diseases. Here, we review current knowledge of miRNAs in the bovine genome, and discuss the advances in understanding of miRNAs as regulators of immune cell function, and bovine immune response activation, regulation, and resolution. Finally, we consider the future perspectives on miRNAs in bovine viral disease, their role as potential biomarkers and in therapy. PMID:25505900

  18. Epigenetic Therapy in Lung Cancer – Role of microRNAs

    PubMed Central

    Rothschild, Sacha I.

    2013-01-01

    Lung cancer is the leading cause of cancer deaths worldwide. microRNAs (miRNAs) are a class of small non-coding RNA species that have been implicated in the control of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis, and stem cell maintenance. Some miRNAs have been categorized as “oncomiRs” as opposed to “tumor suppressor miRs.” This review focuses on the role of miRNAs in the lung cancer carcinogenesis and their potential as diagnostic, prognostic, or predictive markers. PMID:23802096

  19. Molecular Evolution of the Non-Coding Eosinophil Granule Ontogeny Transcript

    PubMed Central

    Rose, Dominic; Stadler, Peter F.

    2011-01-01

    Eukaryotic genomes are pervasively transcribed. A large fraction of the transcriptional output consists of long, mRNA-like, non-protein-coding transcripts (mlncRNAs). The evolutionary history of mlncRNAs is still largely uncharted territory. In this contribution, we explore in detail the evolutionary traces of the eosinophil granule ontogeny transcript (EGOT), an experimentally confirmed representative of an abundant class of totally intronic non-coding transcripts (TINs). EGOT is located antisense to an intron of the ITPR1 gene. We computationally identify putative EGOT orthologs in the genomes of 32 different amniotes, including orthologs from primates, rodents, ungulates, carnivores, afrotherians, and xenarthrans, as well as putative candidates from basal amniotes, such as opossum or platypus. We investigate the EGOT gene phylogeny, analyze patterns of sequence conservation, and the evolutionary conservation of the EGOT gene structure. We show that EGO-B, the spliced isoform, may be present throughout the placental mammals, but most likely dates back even further. We demonstrate here for the first time that the whole EGOT locus is highly structured, containing several evolutionary conserved, and thermodynamic stable secondary structures. Our analyses allow us to postulate novel functional roles of a hitherto poorly understood region at the intron of EGO-B which is highly conserved at the sequence level. The region contains a novel ITPR1 exon and also conserved RNA secondary structures together with a conserved TATA-like element, which putatively acts as a promoter of an independent regulatory element. PMID:22303364

  20. Small and Smaller—sRNAs and MicroRNAs in the Regulation of Toxin Gene Expression in Prokaryotic Cells: A Mini-Review

    PubMed Central

    Bloch, Sylwia; Węgrzyn, Alicja; Węgrzyn, Grzegorz; Nejman-Faleńczyk, Bożena

    2017-01-01

    Non-coding small RNAs (sRNAs) have been identified in the wide range of bacteria (also pathogenic species) and found to play an important role in the regulation of many processes, including toxin gene expression. The best characterized prokaryotic sRNAs regulate gene expression by base pairing with mRNA targets and fall into two broad classes: cis-encoded sRNAs (also called antisense RNA) and trans-acting sRNAs. Molecules from the second class are frequently considered as the most related to eukaryotic microRNAs. Interestingly, typical microRNA-size RNA molecules have also been reported in prokaryotic cells, although they have received little attention up to now. In this work we have collected information about all three types of small prokaryotic RNAs in the context of the regulation of toxin gene expression. PMID:28556797

  1. Phytoalexins, miRNAs and breast cancer: a review of phytochemical mediated miRNA regulation in breast cancer

    USDA-ARS?s Scientific Manuscript database

    A specific class of endogenous, non-coding RNAs, classified as microRNAs (miRNAs), has been identified. It has been found that miRNAs are associated with many biological processes and disease states, including all stages of cancer from initiation to tumor promotion and progression. These studies d...

  2. Changes in miRNAs Signal High-Risk HPV Infections | Center for Cancer Research

    Cancer.gov

    microRNAs (miRNAs) are approximately 21 nucleotide long, non-coding RNAs that regulate the expression of certain proteins. As part of the RNA-induced silencing complex or RISC, miRNAs bind to complementary sequences in the 3’ untranslated regions of target messenger RNAs, blocking protein synthesis and sometimes leading to the destruction of the target RNA. Numerous studies have shown that the levels of cellular miRNAs can be altered in diseased tissues, and these changes potentially could be used for diagnosis or disease monitoring.

  3. Identification and characterization of long noncoding RNAs and mRNAs expression profiles related to postnatal liver maturation of breeder roosters using Ribo-zero RNA sequencing.

    PubMed

    Wu, Shengru; Liu, Yanli; Guo, Wei; Cheng, Xi; Ren, Xiaochun; Chen, Si; Li, Xueyuan; Duan, Yongle; Sun, Qingzhu; Yang, Xiaojun

    2018-06-27

    The liver is mainly hematopoietic in the embryo, and converts into a major metabolic organ in the adult. Therefore, it is intensively remodeled after birth to adapt and perform adult functions. Long non-coding RNAs (lncRNAs) are involved in organ development and cell differentiation, likely they have potential roles in regulating postnatal liver development. Herein, in order to understand the roles of lncRNAs in postnatal liver maturation, we analyzed the lncRNAs and mRNAs expression profiles in immature and mature livers from one-day-old and adult (40 weeks of age) breeder roosters by Ribo-Zero RNA-Sequencing. Around 21,939 protein-coding genes and 2220 predicted lncRNAs were expressed in livers of breeder roosters. Compared to protein-coding genes, the identified chicken lncRNAs shared fewer exons, shorter transcript length, and significantly lower expression levels. Notably, in comparison between the livers of newborn and adult breeder roosters, a total of 1570 mRNAs and 214 lncRNAs were differentially expressed with the criteria of log 2 fold change > 1 or < - 1 and P values < 0.05, which were validated by qPCR using randomly selected five mRNAs and five lncRNAs. Further GO and KEGG analyses have revealed that the differentially expressed mRNAs were involved in the hepatic metabolic and immune functional changes, as well as some biological processes and pathways including cell proliferation, apoptotic and cell cycle that are implicated in the development of liver. We also investigated the cis- and trans- regulatory effects of differentially expressed lncRNAs on its target genes. GO and KEGG analyses indicated that these lncRNAs had their neighbor protein coding genes and trans-regulated genes associated with adapting of adult hepatic functions, as well as some pathways involved in liver development, such as cell cycle pathway, Notch signaling pathway, Hedgehog signaling pathway, and Wnt signaling pathway. This study provides a catalog of mRNAs and

  4. Low-dose exposure to bisphenols A, F and S of human primary adipocyte impacts coding and non-coding RNA profiles

    PubMed Central

    Leloire, Audrey; Dhennin, Véronique; Coumoul, Xavier; Yengo, Loïc; Froguel, Philippe

    2017-01-01

    Bisphenol A (BPA) exposure has been suspected to be associated with deleterious effects on health including obesity and metabolically-linked diseases. Although bisphenols F (BPF) and S (BPS) are BPA structural analogs commonly used in many marketed products as a replacement for BPA, only sparse toxicological data are available yet. Our objective was to comprehensively characterize bisphenols gene targets in a human primary adipocyte model, in order to determine whether they may induce cellular dysfunction, using chronic exposure at two concentrations: a “low-dose” similar to the dose usually encountered in human biological fluids and a higher dose. Therefore, BPA, BPF and BPS have been added at 10 nM or 10 μM during the differentiation of human primary adipocytes from subcutaneous fat of three non-diabetic Caucasian female patients. Gene expression (mRNA/lncRNA) arrays and microRNA arrays, have been used to assess coding and non-coding RNA changes. We detected significantly deregulated mRNA/lncRNA and miRNA at low and high doses. Enrichment in “cancer” and “organismal injury and abnormalities” related pathways was found in response to the three products. Some long intergenic non-coding RNAs and small nucleolar RNAs were differentially expressed suggesting that bisphenols may also activate multiple cellular processes and epigenetic modifications. The analysis of upstream regulators of deregulated genes highlighted hormones or hormone-like chemicals suggesting that BPS and BPF can be suspected to interfere, just like BPA, with hormonal regulation and have to be considered as endocrine disruptors. All these results suggest that as BPA, its substitutes BPS and BPF should be used with the same restrictions. PMID:28628672

  5. Intersecting transcriptomic profiling technologies and long non-coding RNA function in lung adenocarcinoma: discovery, mechanisms, and therapeutic applications

    PubMed Central

    Castillo, Jonathan; Stueve, Theresa R.; Marconett, Crystal N.

    2017-01-01

    Previously thought of as junk transcripts and pseudogene remnants, long non-coding RNAs (lncRNAs) have come into their own over the last decade as an essential component of cellular activity, regulating a plethora of functions within multicellular organisms. lncRNAs are now known to participate in development, cellular homeostasis, immunological processes, and the development of disease. With the advent of next generation sequencing technology, hundreds of thousands of lncRNAs have been identified. However, movement beyond mere discovery to the understanding of molecular processes has been stymied by the complicated genomic structure, tissue-restricted expression, and diverse regulatory roles lncRNAs play. In this review, we will focus on lncRNAs involved in lung cancer, the most common cause of cancer-related death in the United States and worldwide. We will summarize their various methods of discovery, provide consensus rankings of deregulated lncRNAs in lung cancer, and describe in detail the limited functional analysis that has been undertaken so far. PMID:29113413

  6. A Review of Computational Methods for Finding Non-Coding RNA Genes

    PubMed Central

    Abbas, Qaisar; Raza, Syed Mansoor; Biyabani, Azizuddin Ahmed; Jaffar, Muhammad Arfan

    2016-01-01

    Finding non-coding RNA (ncRNA) genes has emerged over the past few years as a cutting-edge trend in bioinformatics. There are numerous computational intelligence (CI) challenges in the annotation and interpretation of ncRNAs because it requires a domain-related expert knowledge in CI techniques. Moreover, there are many classes predicted yet not experimentally verified by researchers. Recently, researchers have applied many CI methods to predict the classes of ncRNAs. However, the diverse CI approaches lack a definitive classification framework to take advantage of past studies. A few review papers have attempted to summarize CI approaches, but focused on the particular methodological viewpoints. Accordingly, in this article, we summarize in greater detail than previously available, the CI techniques for finding ncRNAs genes. We differentiate from the existing bodies of research and discuss concisely the technical merits of various techniques. Lastly, we review the limitations of ncRNA gene-finding CI methods with a point-of-view towards the development of new computational tools. PMID:27918472

  7. Identification of MicroRNAs in the Coral Stylophora pistillata

    PubMed Central

    Liew, Yi Jin; Aranda, Manuel; Carr, Adrian; Baumgarten, Sebastian; Zoccola, Didier; Tambutté, Sylvie; Allemand, Denis; Micklem, Gos; Voolstra, Christian R.

    2014-01-01

    Coral reefs are major contributors to marine biodiversity. However, they are in rapid decline due to global environmental changes such as rising sea surface temperatures, ocean acidification, and pollution. Genomic and transcriptomic analyses have broadened our understanding of coral biology, but a study of the microRNA (miRNA) repertoire of corals is missing. miRNAs constitute a class of small non-coding RNAs of ∼22 nt in size that play crucial roles in development, metabolism, and stress response in plants and animals alike. In this study, we examined the coral Stylophora pistillata for the presence of miRNAs and the corresponding core protein machinery required for their processing and function. Based on small RNA sequencing, we present evidence for 31 bona fide microRNAs, 5 of which (miR-100, miR-2022, miR-2023, miR-2030, and miR-2036) are conserved in other metazoans. Homologues of Argonaute, Piwi, Dicer, Drosha, Pasha, and HEN1 were identified in the transcriptome of S. pistillata based on strong sequence conservation with known RNAi proteins, with additional support derived from phylogenetic trees. Examination of putative miRNA gene targets indicates potential roles in development, metabolism, immunity, and biomineralisation for several of the microRNAs. Here, we present first evidence of a functional RNAi machinery and five conserved miRNAs in S. pistillata, implying that miRNAs play a role in organismal biology of scleractinian corals. Analysis of predicted miRNA target genes in S. pistillata suggests potential roles of miRNAs in symbiosis and coral calcification. Given the importance of miRNAs in regulating gene expression in other metazoans, further expression analyses of small non-coding RNAs in transcriptional studies of corals should be informative about miRNA-affected processes and pathways. PMID:24658574

  8. Genome-wide identification of long non-coding RNA genes and their association with insecticide resistance and metamorphosis in diamondback moth, Plutella xylostella.

    PubMed

    Liu, Feiling; Guo, Dianhao; Yuan, Zhuting; Chen, Chen; Xiao, Huamei

    2017-11-20

    Long non-coding RNA (lncRNA) is a class of noncoding RNA >200 bp in length that has essential roles in regulating a variety of biological processes. Here, we constructed a computational pipeline to identify lncRNA genes in the diamondback moth (Plutella xylostella), a major insect pest of cruciferous vegetables. In total, 3,324 lncRNAs corresponding to 2,475 loci were identified from 13 RNA-Seq datasets, including samples from parasitized, insecticide-resistant strains and different developmental stages. The identified P. xylostella lncRNAs had shorter transcripts and fewer exons than protein-coding genes. Seven out of nine randomly selected lncRNAs were validated by strand-specific RT-PCR. In total, 54-172 lncRNAs were specifically expressed in the insecticide resistant strains, among which one lncRNA was located adjacent to the sodium channel gene. In addition, 63-135 lncRNAs were specifically expressed in different developmental stages, among which three lncRNAs overlapped or were located adjacent to the metamorphosis-associated genes. These lncRNAs were either strongly or weakly co-expressed with their overlapping or neighboring mRNA genes. In summary, we identified thousands of lncRNAs and presented evidence that lncRNAs might have key roles in conferring insecticide resistance and regulating the metamorphosis development in P. xylostella.

  9. Analysis of microRNAs expressions in chondrosarcoma.

    PubMed

    Yoshitaka, Teruhito; Kawai, Akira; Miyaki, Shigeru; Numoto, Kunihiko; Kikuta, Kazutaka; Ozaki, Toshifumi; Lotz, Martin; Asahara, Hiroshi

    2013-12-01

    MicroRNAs (miRNAs) are small non-coding RNAs capable of inhibiting gene expression post-transcriptionally and expression profiling can provide therapeutic targets and tools for cancer diagnosis. Chondrosarcoma is a mesenchymal tumor with unknown cause and differentiation status. Here, we profiled miRNA expression of chondrosarcoma, namely clinical samples from human conventional chondrosarcoma tissue, established chondrosarcoma cell lines, and primary non-tumorous adult articular chondrocytes, by miRNA array and quantitative real-time PCR. A wide variety of miRNAs were differently downregulated in chondrosarcoma compared to non-tumorous articular chondrocytes; 27 miRNAs: miR-10b, 23b, 24-1*, 27b, 100, 134, 136, 136*, 138, 181d, 186, 193b, 221*, 222, 335, 337-5p, 376a, 376a*, 376b, 376c, 377, 454, 495, 497, 505, 574-3p, and 660, were significantly downregulated in chondrosarcoma and only 2: miR-96 and 183, were upregulated. We further validated the expression levels of miRNAs by quantitative real-time PCR for miR-181a, let-7a, 100, 222, 136, 376a, and 335 in extended number of chondrosarcoma clinical samples. Among them, all except miR-181a were found to be significantly downregulated in chondrosarcoma derived samples. The findings provide potential diagnostic value and new molecular understanding of chondrosarcoma. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. A robust screening method for dietary agents that activate tumour-suppressor microRNAs

    PubMed Central

    Hagiwara, Keitaro; Gailhouste, Luc; Yasukawa, Ken; Kosaka, Nobuyoshi; Ochiya, Takahiro

    2015-01-01

    Certain dietary agents, such as natural products, have been reported to show anti-cancer effects. However, the underlying mechanisms of these substances in human cancer remain unclear. We recently found that resveratrol exerts an anti-cancer effect by upregulating tumour-suppressor microRNAs (miRNAs). In the current study, we aimed to identify new dietary products that have the ability to activate tumour-suppressor miRNAs and that therefore may serve as novel tools for the prevention and treatment of human cancers. We describe the generation and use of an original screening system based on a luciferase-based reporter vector for monitoring miR-200c tumour-suppressor activity. By screening a library containing 139 natural substances, three natural compounds — enoxolone, magnolol and palmatine chloride — were identified as being capable of inducing miR-200c expression in breast cancer cells at 10 μM. Moreover, these molecules suppressed the invasiveness of breast cancer cells in vitro. Next, we identified a molecular pathway by which the increased expression of miR-200c induced by natural substances led to ZEB1 inhibition and E-cadherin induction. These results indicate that our method is a valuable tool for a fast identification of natural molecules that exhibit tumour-suppressor activity in human cancer through miRNA activation. PMID:26423775

  11. Circular RNAs and exosomes in cancer: a mysterious connection.

    PubMed

    Hou, J; Jiang, W; Zhu, L; Zhong, S; Zhang, H; Li, J; Zhou, S; Yang, S; He, Y; Wang, D; Chen, X; Deng, F; Zhang, Q; Wang, J; Hu, J; Zhang, W; Ding, L; Zhao, J; Tang, J

    2018-03-13

    Circular RNAs (CircRNAs) are a type of non-coding RNAs (NcRNAs) with a closed annular structure. Until next-generation sequencing (NGS) is developed, the misunderstanding of circRNAs 'splicing error' has changed, and the mysterious veil of circRNAs has been revealed. NGS provides an approach to investigate circRNAs. Many scholars point out that circRNAs may play an important role in many diseases, especially cancer. At the same time, exosomes, as a kind of extracellular vesicles loaded with many contents, are a hotspot in recent years. They can act as 'messengers' between cells, especially in cancer. Lately, it is interesting circRNAs are enriched and stable in exosomes, also called exo-circRNAs, and there have been several articles on circRNAs associated with exosomes. In this review, we summarize the characteristics of circRNAs, especially its main functions. Then, we briefly introduce exosomes and their function in cancer. Finally, the known relation between circRNAs and exosomes is discussed. With further researches, exo-circRNAs may be a novel pathway for cancer diagnosis and targeted therapy.

  12. HTP Nutraceutical Screening for Histone Deacetylase Inhibitors and Effects of HDACis on Tumor-suppressing miRNAs by Trichostatin A and Grapeseed (Vitis vinifera) in HeLa cells.

    PubMed

    Mazzio, Elizabeth A; Soliman, Karam F A

    2017-01-02

    Aggressive tumor malignancies are a consequence of delayed diagnosis, epigenetic/phenotype changes and chemo-radiation resistance. Histone deacetylases (HDACs) are a major epigenetic regulator of transcriptional repression, which are highly overexpressed in advanced malignancy. While original chemotherapy drugs were modeled after phytochemicals elucidated by botanical screenings, HDAC inhibitors (HDACi) such as apicidin, trichostatin A (TSA) and butyrate were discovered as products of fungus and microbes, in particular, gut microbiota. Therefore, a persistent question remains as to the inherent existence of HDACis in raw undigested dietary plant material. In this study, we conduct a high-throughput (HTP) screening of ~1,600 non-fermented commonly used nutraceuticals (spices, herbs, teas, vegetables, fruits, seeds, rinds etc.) at (<600 μg/ml) and food-based polyphenolics (<240 μg/ml) for evidence of HDAC activity inhibition in nuclear HeLa cell lysates. Human HDAC kinetic validation was performed using a standard fluorometric activity assay, followed by an enzymatic-linked immuno-captured ELISA. Both methods were verified using HDACi panel drugs: TSA, apicidin, suberohydroxamic acid, M344, CL-994, valproic acid and sodium phenylbutyrate. The HTP screening was then conducted, followed by a study comparing biological effects of HDACis in HeLa cells, including analysis of whole-transcriptome non-coding RNAs using Affymetrix miRNA 4.1-panel arrays. The HTP screening results confirmed 44/1600 as potential HDACis to which 31 were further eliminated as false-positives. Methodological challenges/concerns are addressed regarding plant product false-positives that arise from the signal reduction of commercial lysine development reagents. Only 13 HDACis were found having an IC 50 under <200 μg/ml: Grapeseed extract (Vitis vinifera), Great burnet root (Sanguisorba Officinalis), Babul (Acacia arabica), Chinese gallnut (Melaphis chinensis), Konaberry extract (Coffea arabica

  13. Long Non-Coding RNA: Potential Diagnostic and Therapeutic Biomarker for Major Depressive Disorder.

    PubMed

    Cui, Xuelian; Sun, Xinyang; Niu, Wei; Kong, Lingming; He, Mingjun; Zhong, Aifang; Chen, Shengdong; Jiang, Kunhong; Zhang, Liyi; Cheng, Zaohuo

    2016-12-31

    BACKGROUND The criteria for diagnosing depression are based on behavioral observation and self-reporting of symptoms by the patients or guardians without any biological validation of the disease. This study aimed to identify long non-coding RNAs (lncRNAs) in peripheral blood mononuclear cells (PBMCs) as robust and predictive biomarkers for diagnosis and therapy response in major depressive disorder (MDD). MATERIAL AND METHODS We used human lncRNA 3.0 microarray profiling (which covers 30,586 human lncRNAs), using PBMCs from five MDD patients and five controls. Differentially expressed lncRNAs in the PBMCs of MDD patients were identified, of which 10 candidate lncRNAs were selected for real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis in a larger cohort of 138 MDD patients and 63 healthy controls. Then among the 138 MDD patients who received standard antidepressant treatment, 30 were randomly selected for lncRNAs expression retesting and symptomatology assessments after three-weeks and six-weeks of antidepressant treatment. RESULTS Six lncRNAs (TCONS_00019174, ENST00000566208, NONHSAG045500, ENST00000517573, NONHSAT034045, and NONHSAT142707) were significantly downregulated in MDD patients compared to control patients, and the area under the receiver operator curve (ROC) of these six lncRNAs cases, combined, was 0.719 (95% confidence interval (CI): 0.617-0.821). There was no difference in the expression of these six lncRNAs based on gender (p>0.05) or age (p>0.05). CONCLUSIONS These results suggest that the combined expression of six lncRNAs in PBMCs may serve as a potential biomarker for diagnosis and therapy response of MDD in the clinical setting.

  14. C. elegans microRNAs.

    PubMed

    Vella, Monica C; Slack, Frank J

    2005-09-21

    MicroRNAs (miRNAs) are small, non-coding regulatory RNAs found in many phyla that control such diverse events as development, metabolism, cell fate and cell death. They have also been implicated in human cancers. The C. elegans genome encodes hundreds of miRNAs, including the founding members of the miRNA family lin-4 and let-7. Despite the abundance of C. elegans miRNAs, few miRNA targets are known and little is known about the mechanism by which they function. However, C. elegans research continues to push the boundaries of discovery in this area. lin-4 and let-7 are the best understood miRNAs. They control the timing of adult cell fate determination in hypodermal cells by binding to partially complementary sites in the mRNA of key developmental regulators to repress protein expression. For example, lin-4 is predicted to bind to seven sites in the lin-14 3' untranslated region (UTR) to repress LIN-14, while let-7 is predicted to bind two let-7 complementary sites in the lin-41 3' UTR to down-regulate LIN-41. Two other miRNAs, lsy-6 and mir-273, control left-right asymmetry in neural development, and also target key developmental regulators for repression. Approximately one third of the C. elegans miRNAs are differentially expressed during development indicating a major role for miRNAs in C. elegans development. Given the remarkable conservation of developmental mechanism across phylogeny, many of the principles of miRNAs discovered in C. elegans are likely to be applicable to higher animals.

  15. A Network Based Method for Analysis of lncRNA-Disease Associations and Prediction of lncRNAs Implicated in Diseases

    PubMed Central

    Yang, Xiaofei; Gao, Lin; Guo, Xingli; Shi, Xinghua; Wu, Hao; Song, Fei; Wang, Bingbo

    2014-01-01

    Increasing evidence has indicated that long non-coding RNAs (lncRNAs) are implicated in and associated with many complex human diseases. Despite of the accumulation of lncRNA-disease associations, only a few studies had studied the roles of these associations in pathogenesis. In this paper, we investigated lncRNA-disease associations from a network view to understand the contribution of these lncRNAs to complex diseases. Specifically, we studied both the properties of the diseases in which the lncRNAs were implicated, and that of the lncRNAs associated with complex diseases. Regarding the fact that protein coding genes and lncRNAs are involved in human diseases, we constructed a coding-non-coding gene-disease bipartite network based on known associations between diseases and disease-causing genes. We then applied a propagation algorithm to uncover the hidden lncRNA-disease associations in this network. The algorithm was evaluated by leave-one-out cross validation on 103 diseases in which at least two genes were known to be involved, and achieved an AUC of 0.7881. Our algorithm successfully predicted 768 potential lncRNA-disease associations between 66 lncRNAs and 193 diseases. Furthermore, our results for Alzheimer's disease, pancreatic cancer, and gastric cancer were verified by other independent studies. PMID:24498199

  16. Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins

    PubMed Central

    2009-01-01

    Background MicroRNAs (miRNAs) are endogenous single-stranded small RNAs that regulate the expression of specific mRNAs involved in diverse biological processes. In plants, miRNAs are generally encoded as a single species in independent transcriptional units, referred to as MIRNA genes, in contrast to animal miRNAs, which are frequently clustered. Results We performed a comparative genomic analysis in three model plants (rice, poplar and Arabidopsis) and characterized miRNA clusters containing two to eight miRNA species. These clusters usually encode miRNAs of the same family and certain share a common evolutionary origin across monocot and dicot lineages. In addition, we identified miRNA clusters harboring miRNAs with unrelated sequences that are usually not evolutionarily conserved. Strikingly, non-homologous miRNAs from the same cluster were predicted to target transcripts encoding related proteins. At least four Arabidopsis non-homologous clusters were expressed as single transcriptional units. Overexpression of one of these polycistronic precursors, producing Ath-miR859 and Ath-miR774, led to the DCL1-dependent accumulation of both miRNAs and down-regulation of their different mRNA targets encoding F-box proteins. Conclusions In addition to polycistronic precursors carrying related miRNAs, plants also contain precursors allowing coordinated expression of non-homologous miRNAs to co-regulate functionally related target transcripts. This mechanism paves the way for using polycistronic MIRNA precursors as a new molecular tool for plant biologists to simultaneously control the expression of different genes. PMID:19951405

  17. Cryptic tRNAs in chaetognath mitochondrial genomes.

    PubMed

    Barthélémy, Roxane-Marie; Seligmann, Hervé

    2016-06-01

    The chaetognaths constitute a small and enigmatic phylum of little marine invertebrates. Both nuclear and mitochondrial genomes have numerous originalities, some phylum-specific. Until recently, their mitogenomes seemed containing only one tRNA gene (trnMet), but a recent study found in two chaetognath mitogenomes two and four tRNA genes. Moreover, apparently two conspecific mitogenomes have different tRNA gene numbers (one and two). Reanalyses by tRNAscan-SE and ARWEN softwares of the five available complete chaetognath mitogenomes suggest numerous additional tRNA genes from different types. Their total number never reaches the 22 found in most other invertebrates using that genetic code. Predicted error compensation between codon-anticodon mismatch and tRNA misacylation suggests translational activity by tRNAs predicted solely according to secondary structure for tRNAs predicted by tRNAscan-SE, not ARWEN. Numbers of predicted stop-suppressor (antitermination) tRNAs coevolve with predicted overlapping, frameshifted protein coding genes including stop codons. Sequence alignments in secondary structure prediction with non-chaetognath tRNAs suggest that the most likely functional tRNAs are in intergenic regions, as regular mt-tRNAs. Due to usually short intergenic regions, generally tRNA sequences partially overlap with flanking genes. Some tRNA pairs seem templated by sense-antisense strands. Moreover, 16S rRNA genes, but not 12S rRNAs, appear as tRNA nurseries, as previously suggested for multifunctional ribosomal-like protogenomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Heterochromatin-Encoded Satellite RNAs Induce Breast Cancer.

    PubMed

    Zhu, Quan; Hoong, Nien; Aslanian, Aaron; Hara, Toshiro; Benner, Christopher; Heinz, Sven; Miga, Karen H; Ke, Eugene; Verma, Sachin; Soroczynski, Jan; Yates, John R; Hunter, Tony; Verma, Inder M

    2018-06-07

    Heterochromatic repetitive satellite RNAs are extensively transcribed in a variety of human cancers, including BRCA1 mutant breast cancer. Aberrant expression of satellite RNAs in cultured cells induces the DNA damage response, activates cell cycle checkpoints, and causes defects in chromosome segregation. However, the mechanism by which satellite RNA expression leads to genomic instability is not well understood. Here we provide evidence that increased levels of satellite RNAs in mammary glands induce tumor formation in mice. Using mass spectrometry, we further show that genomic instability induced by satellite RNAs occurs through interactions with BRCA1-associated protein networks required for the stabilization of DNA replication forks. Additionally, de-stabilized replication forks likely promote the formation of RNA-DNA hybrids in cells expressing satellite RNAs. These studies lay the foundation for developing novel therapeutic strategies that block the effects of non-coding satellite RNAs in cancer cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. A prototypical non-malignant epithelial model to study genome dynamics and concurrently monitor micro-RNAs and proteins in situ during oncogene-induced senescence.

    PubMed

    Komseli, Eirini-Stavroula; Pateras, Ioannis S; Krejsgaard, Thorbjørn; Stawiski, Konrad; Rizou, Sophia V; Polyzos, Alexander; Roumelioti, Fani-Marlen; Chiourea, Maria; Mourkioti, Ioanna; Paparouna, Eleni; Zampetidis, Christos P; Gumeni, Sentiljana; Trougakos, Ioannis P; Pefani, Dafni-Eleftheria; O'Neill, Eric; Gagos, Sarantis; Eliopoulos, Aristides G; Fendler, Wojciech; Chowdhury, Dipanjan; Bartek, Jiri; Gorgoulis, Vassilis G

    2018-01-10

    Senescence is a fundamental biological process implicated in various pathologies, including cancer. Regarding carcinogenesis, senescence signifies, at least in its initial phases, an anti-tumor response that needs to be circumvented for cancer to progress. Micro-RNAs, a subclass of regulatory, non-coding RNAs, participate in senescence regulation. At the subcellular level micro-RNAs, similar to proteins, have been shown to traffic between organelles influencing cellular behavior. The differential function of micro-RNAs relative to their subcellular localization and their role in senescence biology raises concurrent in situ analysis of coding and non-coding gene products in senescent cells as a necessity. However, technical challenges have rendered in situ co-detection unfeasible until now. In the present report we describe a methodology that bypasses these technical limitations achieving for the first time simultaneous detection of both a micro-RNA and a protein in the biological context of cellular senescence, utilizing the new commercially available SenTraGor TM compound. The method was applied in a prototypical human non-malignant epithelial model of oncogene-induced senescence that we generated for the purposes of the study. For the characterization of this novel system, we applied a wide range of cellular and molecular techniques, as well as high-throughput analysis of the transcriptome and micro-RNAs. This experimental setting has three advantages that are presented and discussed: i) it covers a "gap" in the molecular carcinogenesis field, as almost all corresponding in vitro models are fibroblast-based, even though the majority of neoplasms have epithelial origin, ii) it recapitulates the precancerous and cancerous phases of epithelial tumorigenesis within a short time frame under the light of natural selection and iii) it uses as an oncogenic signal, the replication licensing factor CDC6, implicated in both DNA replication and transcription when over

  20. mRNAs coding for neurotransmitter receptors and voltage-gated sodium channels in the adult rabbit visual cortex after monocular deafferentiation

    PubMed Central

    Nguyen, Quoc-Thang; Matute, Carlos; Miledi, Ricardo

    1998-01-01

    It has been postulated that, in the adult visual cortex, visual inputs modulate levels of mRNAs coding for neurotransmitter receptors in an activity-dependent manner. To investigate this possibility, we performed a monocular enucleation in adult rabbits and, 15 days later, collected their left and right visual cortices. Levels of mRNAs coding for voltage-activated sodium channels, and for receptors for kainate/α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), N-methyl-d-aspartate (NMDA), γ-aminobutyric acid (GABA), and glycine were semiquantitatively estimated in the visual cortices ipsilateral and contralateral to the lesion by the Xenopus oocyte/voltage-clamp expression system. This technique also allowed us to study some of the pharmacological and physiological properties of the channels and receptors expressed in the oocytes. In cells injected with mRNA from left or right cortices of monocularly enucleated and control animals, the amplitudes of currents elicited by kainate or AMPA, which reflect the abundance of mRNAs coding for kainate and AMPA receptors, were similar. There was no difference in the sensitivity to kainate and in the voltage dependence of the kainate response. Responses mediated by NMDA, GABA, and glycine were unaffected by monocular enucleation. Sodium channel peak currents, activation, steady-state inactivation, and sensitivity to tetrodotoxin also remained unchanged after the enucleation. Our data show that mRNAs for major neurotransmitter receptors and ion channels in the adult rabbit visual cortex are not obviously modified by monocular deafferentiation. Thus, our results do not support the idea of a widespread dynamic modulation of mRNAs coding for receptors and ion channels by visual activity in the rabbit visual system. PMID:9501250

  1. MicroRNAs in genetic disease: rethinking the dosage.

    PubMed

    Henrion-Caude, Alexandra; Girard, Muriel; Amiel, Jeanne

    2012-08-01

    To date, the general assumption was that most mutations interested protein-coding genes only. Thus, only few illustrations have mentioned here that mutations may occur in non-protein coding genes such as microRNAs (miRNAs). We thus report progress in delineating their contribution as phenotypic modulators, genetic switches and fine-tuners of gene expression. We reasoned that browsing their contribution to genetic disease may provide a framework for understanding the proper requirements to devise miRNA-based therapy strategies, in particular the relief of an appropriate dosage. Gain and loss of function of miRNA enforce the need to respectively antagonize or supply the miRNAs. We further categorized human disease according to the different ways in which the miRNA was altered arising either de novo, or inherited whether as a mendelian or as an epistatic trait, uncovering its role in epigenetics. We discuss how improving our knowledge on the contribution of miRNAs to genetic disease may be beneficial to devise appropriate gene therapy strategies.

  2. Plant and Animal microRNAs (miRNAs) and Their Potential for Inter-kingdom Communication.

    PubMed

    Zhao, Yuhai; Cong, Lin; Lukiw, Walter J

    2018-01-01

    microRNAs (miRNAs) comprise a class of ~18-25 nucleotide (nt) single-stranded non-coding RNAs (sncRNAs) that are the smallest known carriers of gene-encoded, post-transcriptional regulatory information in both plants and animals. There are many fundamental similarities between plant and animal miRNAs-the miRNAs of both kingdoms play essential roles in development, aging and disease, and the shaping of the transcriptome of many cell types. Both plant and animal miRNAs appear to predominantly exert their genetic and transcriptomic influences by regulating gene expression at the level of messenger RNA (mRNA) stability and/or translational inhibition. Certain miRNA species, such as miRNA-155, miRNA-168, and members of the miRNA-854 family may be expressed in both plants and animals, suggesting a common origin and functional selection of specific miRNAs over vast periods of evolution (for example, Arabidopsis thaliana-Homo sapiens divergence ~1.5 billion years). Although there is emerging evidence for cross-kingdom miRNA communication-that plant-enriched miRNAs may enter the diet and play physiological and/or pathophysiological roles in human health and disease-some research reports repudiate this possibility. This research paper highlights some recent, controversial, and remarkable findings in plant- and animal-based miRNA signaling research with emphasis on the intriguing possibility that dietary miRNAs and/or sncRNAs may have potential to contribute to both intra- and inter-kingdom signaling, and in doing so modulate molecular-genetic mechanisms associated with human health and disease.

  3. Diverse microRNAs with convergent functions regulate tumorigenesis.

    PubMed

    Zhu, Min-Yan; Zhang, Wei; Yang, Tao

    2016-02-01

    MicroRNAs (miRNAs) regulate several biological processes, including tumorigenesis. In order to comprehend the roles of miRNAs in cancer, various screens were performed to investigate the changes in the expression levels of miRNAs that occur in different types of cancer. The present review focuses on the results of five recent screens, whereby a number of overlapping miRNAs were identified to be downregulated or differentially regulated, whereas no miRNAs were observed to be frequently upregulated. Furthermore, the majority of the miRNAs that were common to >1 screen were involved in signaling networks, including wingless-related integration site, receptor tyrosine kinase and transforming growth factor-β, or in cell cycle checkpoint control. The present review will discuss the aforementioned miRNAs implicated in cell cycle checkpoint control and signaling networks.

  4. The conservation and signatures of lincRNAs in Marek’s disease of chicken

    USDA-ARS?s Scientific Manuscript database

    Long intergenic non-coding RNAs (lincRNAs) associated with a number of cancers and other diseases have been identified in mammals, but they are still formidable to be comprehensively identified and characterized. Marek’s disease (MD) is a T cell lymphoma of chickens induced by Marek’s disease virus ...

  5. Regulatory RNA at the root of animals: dynamic expression of developmental lincRNAs in the calcisponge Sycon ciliatum.

    PubMed

    Bråte, Jon; Adamski, Marcin; Neumann, Ralf S; Shalchian-Tabrizi, Kamran; Adamska, Maja

    2015-12-22

    Long non-coding RNAs (lncRNAs) play important regulatory roles during animal development, and it has been hypothesized that an RNA-based gene regulation was important for the evolution of developmental complexity in animals. However, most studies of lncRNA gene regulation have been performed using model animal species, and very little is known about this type of gene regulation in non-bilaterians. We have therefore analysed RNA-Seq data derived from a comprehensive set of embryogenesis stages in the calcareous sponge Sycon ciliatum and identified hundreds of developmentally expressed intergenic lncRNAs (lincRNAs) in this species. In situ hybridization of selected lincRNAs revealed dynamic spatial and temporal expression during embryonic development. More than 600 lincRNAs constitute integral parts of differentially expressed gene modules, which also contain known developmental regulatory genes, e.g. transcription factors and signalling molecules. This study provides insights into the non-coding gene repertoire of one of the earliest evolved animal lineages, and suggests that RNA-based gene regulation was probably present in the last common ancestor of animals. © 2015 The Authors.

  6. MicroRNAs and their roles in aging

    PubMed Central

    Smith-Vikos, Thalyana; Slack, Frank J.

    2012-01-01

    MicroRNAs (miRNAs) are a class of short non-coding RNAs that bind mRNAs through partial base-pair complementarity with their target genes, resulting in post-transcriptional repression of gene expression. The role of miRNAs in controlling aging processes has been uncovered recently with the discovery of miRNAs that regulate lifespan in the nematode Caenorhabditis elegans through insulin and insulin-like growth factor-1 signaling and DNA damage checkpoint factors. Furthermore, numerous miRNAs are differentially expressed during aging in C. elegans, but the specific functions of many of these miRNAs are still unknown. Recently, various miRNAs have been identified that are up- or down-regulated during mammalian aging by comparing their tissue-specific expression in younger and older mice. In addition, many miRNAs have been implicated in governing senescence in a variety of human cell lines, and the precise functions of some of these miRNAs in regulating cellular senescence have helped to elucidate mechanisms underlying aging. In this Commentary, we review the various regulatory roles of miRNAs during aging processes. We highlight how certain miRNAs can regulate aging on the level of organism lifespan, tissue aging or cellular senescence. Finally, we discuss future approaches that might be used to investigate the mechanisms by which miRNAs govern aging processes. PMID:22294612

  7. Long Non-Coding RNA as Potential Biomarker for Prostate Cancer: Is It Making a Difference?

    PubMed

    Deng, Junli; Tang, Jie; Wang, Guo; Zhu, Yuan-Shan

    2017-03-07

    Whole genome transcriptomic analyses have identified numerous long non-coding RNA (lncRNA) transcripts that are increasingly implicated in cancer biology. LncRNAs are found to promote essential cancer cell functions such as proliferation, invasion, and metastasis, with the potential to serve as novel biomarkers of various cancers and to further reveal uncharacterized aspects of tumor biology. However, the biological and molecular mechanisms as well as the clinical applications of lncRNAs in diverse diseases are not completely understood, and remain to be fully explored. LncRNAs may be critical players and regulators in prostate cancer carcinogenesis and progression, and could serve as potential biomarkers for prostate cancer. This review focuses on lncRNA biomarkers that are already available for clinical use and provides an overview of lncRNA biomarkers that are under investigation for clinical development in prostate cancer.

  8. Comprehensive analysis of aberrantly expressed lncRNAs and construction of ceRNA network in gastric cancer

    PubMed Central

    Bennet, Duraisamy; Chandramohan, Servarayan Murugesan; Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan

    2018-01-01

    Gastric cancer remains fifth most common cancer often diagnosed at an advanced stage and is the second leading cause of cancer-related death worldwide. Long non-coding RNAs (lncRNAs) involved in various cellular pathways are essential for tumor occurrence and progression and they have high potential to promote or suppress the expression of many genes. In this study, we profiled 19 selected cancer-associated lncRNAs in thirty gastric adenocarcinomas and matching normal tissues by qRT-PCR. Our results showed that most of the lncRNAs were significantly upregulated (12/19). Further, we performed bioinformatic screening of miRNAs that share common miRNA response elements (MREs) with lncRNAs and their downstream mRNA targets. The prediction identified three microRNAs (miR-21, miR-145 and miR-148a) and five gastric cancer-specific target genes (EGFR, KLF4, DNMT1 and AGO4) which also showed strong correlation with lncRNAs in regression analysis. Finally, we constructed an integrated lncRNA-miRNA-mRNA interaction network of the candidate genes to understand the post-transcriptional gene regulation. The ceRNA network analysis revealed that the differentially regulated miR-21 and miR-148a were playing as central candidates coordinating sponging activity of the lncRNAs analyzed (H19, TUG1 and MALAT1) in this study and the overexpression of H19 and miR-21 could be a signature event of gastric tumorigenesis that could serve as prognostic indicators and therapeutic targets. PMID:29719612

  9. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis.

    PubMed

    Yang, W; Du, W W; Li, X; Yee, A J; Yang, B B

    2016-07-28

    It has recently been shown that the upregulation of a pseudogene specific to a protein-coding gene could function as a sponge to bind multiple potential targeting microRNAs (miRNAs), resulting in increased gene expression. Similarly, it was recently demonstrated that circular RNAs can function as sponges for miRNAs, and could upregulate expression of mRNAs containing an identical sequence. Furthermore, some mRNAs are now known to not only translate protein, but also function to sponge miRNA binding, facilitating gene expression. Collectively, these appear to be effective mechanisms to ensure gene expression and protein activity. Here we show that expression of a member of the forkhead family of transcription factors, Foxo3, is regulated by the Foxo3 pseudogene (Foxo3P), and Foxo3 circular RNA, both of which bind to eight miRNAs. We found that the ectopic expression of the Foxo3P, Foxo3 circular RNA and Foxo3 mRNA could all suppress tumor growth and cancer cell proliferation and survival. Our results showed that at least three mechanisms are used to ensure protein translation of Foxo3, which reflects an essential role of Foxo3 and its corresponding non-coding RNAs.

  10. The conservation and signatures of lincRNAs in Marek’s disease of chicken

    USDA-ARS?s Scientific Manuscript database

    Long intergenic non-coding RNAs (lincRNAs) associated with a number of cancers and other diseases have been identified in mammals, but they are still formidable to be comprehensively identified and characterized in chicken. Marek’s disease (MD) is a T cell lymphoma of chickens induced by Marek’s dis...

  11. MicroRNAs as New Characters in the Plot between Epigenetics and Prostate Cancer.

    PubMed

    Paone, Alessio; Galli, Roberta; Fabbri, Muller

    2011-01-01

    Prostate cancer (PCA) still represents a leading cause of death. An increasing number of studies have documented that microRNAs (miRNAs), a subgroup of non-coding RNAs with gene regulatory functions, are differentially expressed in PCA respect to the normal tissue counterpart, suggesting their involvement in prostate carcinogenesis and dissemination. Interestingly, it has been shown that miRNAs undergo the same regulatory mechanisms than any other protein coding gene, including epigenetic regulation. In turn, miRNAs can also affect the expression of oncogenes and tumor suppressor genes by targeting effectors of the epigenetic machinery, therefore indirectly affecting the epigenetic controls on these genes. Among the genes that undergo this complex regulation, there is the androgen receptor (AR), a key therapeutic target for PCA. This review will focus on the role of epigenetically regulated and epigenetically regulating miRNAs in PCA and on the fine regulation of AR expression, as mediated by this miRNA-epigenetics interaction.

  12. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis.

    PubMed

    Iparraguirre, Leire; Muñoz-Culla, Maider; Prada-Luengo, Iñigo; Castillo-Triviño, Tamara; Olascoaga, Javier; Otaegui, David

    2017-09-15

    Multiple sclerosis is an autoimmune disease, with higher prevalence in women, in whom the immune system is dysregulated. This dysregulation has been shown to correlate with changes in transcriptome expression as well as in gene-expression regulators, such as non-coding RNAs (e.g. microRNAs). Indeed, some of these have been suggested as biomarkers for multiple sclerosis even though few biomarkers have reached the clinical practice. Recently, a novel family of non-coding RNAs, circular RNAs, has emerged as a new player in the complex network of gene-expression regulation. MicroRNA regulation function through a 'sponge system' and a RNA splicing regulation function have been proposed for the circular RNAs. This regulating role together with their high stability in biofluids makes them seemingly good candidates as biomarkers. Given the dysregulation of both protein-coding and non-coding transcriptome that have been reported in multiple sclerosis patients, we hypothesised that circular RNA expression may also be altered. Therefore, we carried out expression profiling of 13.617 circular RNAs in peripheral blood leucocytes from multiple sclerosis patients and healthy controls finding 406 differentially expressed (P-value < 0.05, Fold change > 1.5) and demonstrate after validation that, circ_0005402 and circ_0035560 are underexpressed in multiple sclerosis patients and could be used as biomarkers of the disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. MicroRNAs and cancer: a meeting summary of the eponymous Keystone Conference.

    PubMed

    Godshalk, Sirie E; Melnik-Martinez, Katya V; Pasquinelli, Amy E; Slack, Frank J

    2010-02-16

    This report summarizes the information presented at the 2009 Keystone Conference on MicroRNAs and Cancer, held in Keystone, Colorado, USA, June 10th to 15th 2009. Soon after microRNAs (miRNAs) emerged as an abundant new class of non-coding RNAs (ncRNAs), evidence started to mount supporting important roles for these regulatory RNAs in human health and disease. Mis-regulation of specific miRNA pathways has been linked to diverse cancers. The recent Keystone meeting highlighted progress in understanding the role of miRNAs in normal development and oncogenesis. Recurring themes included the complexities associated with miRNA biogenesis, target recognition, elucidation of genetic networks where miRNAs play pivotal roles often within feedback loops, and the promise of small RNAs as diagnostics and therapeutics in combating cancer.

  14. The fast non-LTE code DEDALE

    NASA Astrophysics Data System (ADS)

    Gilleron, Franck; Piron, Robin

    2015-12-01

    We present Dédale, a fast code implementing a simplified non-local-thermodynamic-equilibrium (NLTE) plasma model. In this approach, the stationary collisional-radiative rates equations are solved for a set of well-chosen Layzer complexes in order to determine the ion state populations. The electronic structure is approximated using the screened hydrogenic model (SHM) of More with relativistic corrections. The radiative and collisional cross-sections are based on Kramers and Van Regemorter formula, respectively, which are extrapolated to derive analytical expressions for all the rates. The latter are improved thereafter using Gaunt factors or more accurate tabulated data. Special care is taken for dielectronic rates which are compared and rescaled with quantum calculations from the Averroès code. The emissivity and opacity spectra are calculated under the same assumptions as for the radiative rates, either in a detailed manner by summing the transitions between each pair of complexes, or in a coarser statistical way by summing the one-electron transitions averaged over the complexes. Optionally, nℓ-splitting can be accounted for using a WKB approach in an approximate potential reconstructed analytically from the screened charges. It is also possible to improve the spectra by replacing some transition arrays with more accurate data tabulated using the SCO-RCG or FAC codes. This latter option is particularly useful for K-shell emission spectroscopy. The Dédale code was used to submit neon and tungsten cases in the last NLTE-8 workshop (Santa Fe, November 4-8, 2013). Some of these results are presented, as well as comparisons with Averroès calculations.

  15. Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa)

    PubMed Central

    Ding, Yanfei; Chen, Zhen; Zhu, Cheng

    2011-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate specific target mRNAs at the post-transcriptional level. Plant miRNAs have been implicated in developmental processes and adaptations to environmental stresses. Cadmium (Cd) is a non-essential heavy metal that is highly toxic to plants. To investigate the responsive functions of miRNAs under Cd stress, miRNA expression in Cd-stressed rice (Oryza sativa) was profiled using a microarray assay. A total of 19 Cd-responsive miRNAs were identified, of which six were further validated experimentally. Target genes were also predicted for these Cd-responsive miRNAs, which encoded transcription factors, and proteins associated with metabolic processes or stress responses. In addition, the mRNA levels of several targets were negatively correlated with the corresponding miRNAs under Cd stress. Promoter analysis showed that metal stress-responsive cis-elements tended to occur more frequently in the promoter regions of Cd-responsive miRNAs. These findings suggested that miRNAs played an important role in Cd tolerance in rice, and highlighted a novel molecular mechanism of heavy metal tolerance in plants. PMID:21362738

  16. MicroRNAs in the pathobiology of atherosclerosis

    PubMed Central

    Laffont, Benoit; Rayner, Katey J

    2017-01-01

    MicroRNAs are short non-coding RNAs, expressed in humans and involved in sequence-specific post-transcriptional regulation of gene expression. They have emerged as key players in a wide array of biological processes, and changes in their expression and/or function have been associated with plethora of human diseases. Atherosclerosis and its related clinical complications, such as myocardial infarction or stroke, represent the leading cause of death in the western world. Accumulating experimental evidence has revealed a key role for microRNAs in regulating cellular and molecular processes related to atherosclerosis development, ranging from risk factors, to plaque initiation and progression, up to atherosclerotic plaque rupture. In this review, we will focus on how microRNAs can influence atherosclerosis biology, as well as the potential clinical applications of microRNAs which are being developed as both targets and therapeutics for a growing industry hoping to harness the power of RNA-guided gene regulation to fight disease and infection. PMID:28232017

  17. Experimental RNomics in Aquifex aeolicus: identification of small non-coding RNAs and the putative 6S RNA homolog

    PubMed Central

    Willkomm, Dagmar K.; Minnerup, Jens; Hüttenhofer, Alexander; Hartmann, Roland K.

    2005-01-01

    By an experimental RNomics approach, we have generated a cDNA library from small RNAs expressed from the genome of the hyperthermophilic bacterium Aquifex aeolicus. The library included RNAs that were antisense to mRNAs and tRNAs as well as RNAs encoded in intergenic regions. Substantial steady-state levels in A.aeolicus cells were confirmed for several of the cloned RNAs by northern blot analysis. The most abundant intergenic RNA of the library was identified as the 6S RNA homolog of A.aeolicus. Although shorter in size (150 nt) than its γ-proteobacterial homologs (∼185 nt), it is predicted to have the most stable structure among known 6S RNAs. As in the γ-proteobacteria, the A.aeolicus 6S RNA gene (ssrS) is located immediately upstream of the ygfA gene encoding a widely conserved 5-formyltetrahydrofolate cyclo-ligase. We identifed novel 6S RNA candidates within the γ-proteobacteria but were unable to identify reasonable 6S RNA candidates in other bacterial branches, utilizing mfold analyses of the region immediately upstream of ygfA combined with 6S RNA blastn searches. By RACE experiments, we mapped the major transcription initiation site of A.aeolicus 6S RNA primary transcripts, located within the pheT gene preceding ygfA, as well as three processing sites. PMID:15814812

  18. SOX11 identified by target gene evaluation of miRNAs differentially expressed in focal and non-focal brain tissue of therapy-resistant epilepsy patients.

    PubMed

    Haenisch, Sierk; Zhao, Yi; Chhibber, Aparna; Kaiboriboon, Kitti; Do, Lynn V; Vogelgesang, Silke; Barbaro, Nicholas M; Alldredge, Brian K; Lowenstein, Daniel H; Cascorbi, Ingolf; Kroetz, Deanna L

    2015-05-01

    MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally control the expression of their target genes via RNA interference. There is increasing evidence that expression of miRNAs is dysregulated in neuronal disorders, including epilepsy, a chronic neurological disorder characterized by spontaneous recurrent seizures. Mesial temporal lobe epilepsy (MTLE) is a common type of focal epilepsy in which disease-induced abnormalities of hippocampal neurogenesis in the subgranular zone as well as gliosis and neuronal cell loss in the cornu ammonis area are reported. We hypothesized that in MTLE altered miRNA-mediated regulation of target genes could be involved in hippocampal cell remodeling. A miRNA screen was performed in hippocampal focal and non-focal brain tissue samples obtained from the temporal neocortex (both n=8) of MTLE patients. Out of 215 detected miRNAs, two were differentially expressed (hsa-miR-34c-5p: mean increase of 5.7 fold (p=0.014), hsa-miR-212-3p: mean decrease of 76.9% (p=0.0014)). After in-silico target gene analysis and filtering, reporter gene assays confirmed RNA interference for hsa-miR-34c-5p with 3'-UTR sequences of GABRA3, GRM7 and GABBR2 and for hsa-miR-212-3p with 3'-UTR sequences of SOX11, MECP2, ADCY1 and ABCG2. Reporter gene assays with mutated 3'-UTR sequences of the transcription factor SOX11 identified two different binding sites for hsa-miR-212-3p and its primary transcript partner hsa-miR-132-3p. Additionally, there was an inverse time-dependent expression of Sox11 and miR-212-3p as well as miR-132-3p in rat neonatal cortical neurons. Transfection of neurons with anti-miRs for miR-212-3p and miR-132-3p suggest that both miRNAs work synergistically to control Sox11 expression. Taken together, these results suggest that differential miRNA expression in neurons could contribute to an altered function of the transcription factor SOX11 and other genes in the setting of epilepsy, resulting not only in impaired neural

  19. Silencing of X-Linked MicroRNAs by Meiotic Sex Chromosome Inactivation

    PubMed Central

    Royo, Hélène; Seitz, Hervé; ElInati, Elias; Peters, Antoine H. F. M.; Stadler, Michael B.; Turner, James M. A.

    2015-01-01

    During the pachytene stage of meiosis in male mammals, the X and Y chromosomes are transcriptionally silenced by Meiotic Sex Chromosome Inactivation (MSCI). MSCI is conserved in therian mammals and is essential for normal male fertility. Transcriptomics approaches have demonstrated that in mice, most or all protein-coding genes on the X chromosome are subject to MSCI. However, it is unclear whether X-linked non-coding RNAs behave in a similar manner. The X chromosome is enriched in microRNA (miRNA) genes, with many exhibiting testis-biased expression. Importantly, high expression levels of X-linked miRNAs (X-miRNAs) have been reported in pachytene spermatocytes, indicating that these genes may escape MSCI, and perhaps play a role in the XY-silencing process. Here we use RNA FISH to examine X-miRNA expression in the male germ line. We find that, like protein-coding X-genes, X-miRNAs are expressed prior to prophase I and are thereafter silenced during pachynema. X-miRNA silencing does not occur in mouse models with defective MSCI. Furthermore, X-miRNAs are expressed at pachynema when present as autosomally integrated transgenes. Thus, we conclude that silencing of X-miRNAs during pachynema in wild type males is MSCI-dependent. Importantly, misexpression of X-miRNAs during pachynema causes spermatogenic defects. We propose that MSCI represents a chromosomal mechanism by which X-miRNAs, and other potential X-encoded repressors, can be silenced, thereby regulating genes with critical late spermatogenic functions. PMID:26509798

  20. Roles of small RNAs in the immune defense mechanisms of crustaceans.

    PubMed

    He, Yaodong; Ju, Chenyu; Zhang, Xiaobo

    2015-12-01

    Small RNAs, 21-24 nucleotides in length, are non-coding RNAs found in most multicellular organisms, as well as in some viruses. There are three main types of small RNAs including microRNA (miRNA), small-interfering RNA (siRNA), and piwi-interacting RNA (piRNA). Small RNAs play key roles in the genetic regulation of eukaryotes; at least 50% of all eukaryote genes are the targets of small RNAs. In recent years, studies have shown that some unique small RNAs are involved in the immune response of crustaceans, leading to lower or higher immune responses to infections and diseases. SiRNAs could be used as therapy for virus infection. In this review, we provide an overview of the diverse roles of small RNAs in the immune defense mechanisms of crustaceans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Genome-wide identification and characterization of putative lncRNAs in the diamondback moth, Plutella xylostella (L.).

    PubMed

    Wang, Yue; Xu, Tingting; He, Weiyi; Shen, Xiujing; Zhao, Qian; Bai, Jianlin; You, Minsheng

    2018-01-01

    Long non-coding RNAs (lncRNAs) are of particular interest because of their contributions to many biological processes. Here, we present the genome-wide identification and characterization of putative lncRNAs in a global insect pest, Plutella xylostella. A total of 8096 lncRNAs were identified and classified into three groups. The average length of exons in lncRNAs was longer than that in coding genes and the GC content was lower than that in mRNAs. Most lncRNAs were flanked by canonical splice sites, similar to mRNAs. Expression profiling identified 114 differentially expressed lncRNAs during the DBM development and found that majority were temporally specific. While the biological functions of lncRNAs remain uncharacterized, many are microRNA precursors or competing endogenous RNAs involved in micro-RNA regulatory pathways. This work provides a valuable resource for further studies on molecular bases for development of DBM and lay the foundation for discovery of lncRNA functions in P. xylostella. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Genome-wide Discovery of Circular RNAs in the Leaf and Seedling Tissues of Arabidopsis Thaliana

    PubMed Central

    Dou, Yongchao; Li, Shengjun; Yang, Weilong; Liu, Kan; Du, Qian; Ren, Guodong; Yu, Bin; Zhang, Chi

    2017-01-01

    Background: Recently, identification and functional studies of circular RNAs, a type of non-coding RNAs arising from a ligation of 3’ and 5’ ends of a linear RNA molecule, were conducted in mammalian cells with the development of RNA-seq technology. Method: Since compared with animals, studies on circular RNAs in plants are less thorough, a genome-wide identification of circular RNA candidates in Arabidopsis was conducted with our own developed bioinformatics tool to several existing RNA-seq datasets specifically for non-coding RNAs. Results: A total of 164 circular RNA candidates were identified from RNA-seq data, and 4 circular RNA transcripts, including both exonic and intronic circular RNAs, were experimentally validated. Interestingly, our results show that circular RNA transcripts are enriched in the photosynthesis system for the leaf tissue and correlated to the higher expression levels of their parent genes. Sixteen out of all 40 genes that have circular RNA candidates are related to the photosynthesis system, and out of the total 146 exonic circular RNA candidates, 63 are found in chloroplast. PMID:29081691

  3. Differential circular RNAs expression in ovary during oviposition in honey bees.

    PubMed

    Chen, Xiao; Shi, Wei; Chen, Chao

    2018-04-27

    Circular RNAs (circRNAs) are non-coding RNAs newly identified and play important roles in RNA regulation. The mechanism and function of circRNAs have been reported in some species. However, little is known regarding circRNAs in honey bees. In this study, we analyzed circRNAs through bioinformatics, and predicted 12,211 circRNAs in the ovary of honey bee queens. 1340, 175 and 100 circRNAs were differentially expressed in comparisons of egg-laying queens vs virgin queens, egg-laying inhibited queens vs egg-laying queens and egg-laying recovery queens vs egg-laying inhibited queens. Further, functional annotation of differentially expressed circRNAs revealed several pathways that are closely related to ovary activation and oviposition, including insulin secretion and calcium signaling pathways. Moreover, the potential interactions among circRNAs, miRNAs, lncRNAs and mRNAs were investigated. Ame_circ_0005197 and ame_circ_0016640 were observed to sponge several reproductive related miRNAs. These findings demonstrate that circRNAs have potential effects in ovary activation and oviposition of honey bees. Copyright © 2018. Published by Elsevier Inc.

  4. VlincRNAs controlled by retroviral elements are a hallmark of pluripotency and cancer.

    PubMed

    St Laurent, Georges; Shtokalo, Dmitry; Dong, Biao; Tackett, Michael R; Fan, Xiaoxuan; Lazorthes, Sandra; Nicolas, Estelle; Sang, Nianli; Triche, Timothy J; McCaffrey, Timothy A; Xiao, Weidong; Kapranov, Philipp

    2013-07-22

    The function of the non-coding portion of the human genome remains one of the most important questions of our time. Its vast complexity is exemplified by the recent identification of an unusual and notable component of the transcriptome - very long intergenic non-coding RNAs, termed vlincRNAs. Here we identify 2,147 vlincRNAs covering 10 percent of our genome. We show they are present not only in cancerous cells, but also in primary cells and normal human tissues, and are controlled by canonical promoters. Furthermore, vlincRNA promoters frequently originate from within endogenous retroviral sequences. Strikingly, the number of vlincRNAs expressed from endogenous retroviral promoters strongly correlates with pluripotency or the degree of malignant transformation. These results suggest a previously unknown connection between the pluripotent state and cancer via retroviral repeat-driven expression of vlincRNAs. Finally, we show that vlincRNAs can be syntenically conserved in humans and mouse and their depletion using RNAi can cause apoptosis in cancerous cells. These intriguing observations suggest that vlincRNAs could create a framework that combines many existing short ESTs and lincRNAs into a landscape of very long transcripts functioning in the regulation of gene expression in the nucleus. Certain types of vlincRNAs participate at specific stages of normal development and, based on analysis of a limited set of cancerous and primary cell lines, they appear to be co-opted by cancer-associated transcriptional programs. This provides additional understanding of transcriptome regulation during the malignant state, and could lead to additional targets and options for its reversal.

  5. Role of genomic architecture in the expression dynamics of long noncoding RNAs during differentiation of human neuroblastoma cells.

    PubMed

    Batagov, Arsen O; Yarmishyn, Aliaksandr A; Jenjaroenpun, Piroon; Tan, Jovina Z; Nishida, Yuichiro; Kurochkin, Igor V

    2013-10-16

    Mammalian genomes are extensively transcribed producing thousands of long non-protein-coding RNAs (lncRNAs). The biological significance and function of the vast majority of lncRNAs remain unclear. Recent studies have implicated several lncRNAs as playing important roles in embryonic development and cancer progression. LncRNAs are characterized with different genomic architectures in relationship with their associated protein-coding genes. Our study aimed at bridging lncRNA architecture with dynamical patterns of their expression using differentiating human neuroblastoma cells model. LncRNA expression was studied in a 120-hours timecourse of differentiation of human neuroblastoma SH-SY5Y cells into neurons upon treatment with retinoic acid (RA), the compound used for the treatment of neuroblastoma. A custom microarray chip was utilized to interrogate expression levels of 9,267 lncRNAs in the course of differentiation. We categorized lncRNAs into 19 architecture classes according to their position relatively to protein-coding genes. For each architecture class, dynamics of expression of lncRNAs was studied in association with their protein-coding partners. It allowed us to demonstrate positive correlation of lncRNAs with their associated protein-coding genes at bidirectional promoters and for sense-antisense transcript pairs. In contrast, lncRNAs located in the introns and downstream of the protein-coding genes were characterized with negative correlation modes. We further classified the lncRNAs by the temporal patterns of their expression dynamics. We found that intronic and bidirectional promoter architectures are associated with rapid RA-dependent induction or repression of the corresponding lncRNAs, followed by their constant expression. At the same time, lncRNAs expressed downstream of protein-coding genes are characterized by rapid induction, followed by transcriptional repression. Quantitative RT-PCR analysis confirmed the discovered functional modes for

  6. Genetic variants in long non-coding RNA MIAT contribute to risk of paranoid schizophrenia in a Chinese Han population.

    PubMed

    Rao, Shu-Quan; Hu, Hui-Ling; Ye, Ning; Shen, Yan; Xu, Qi

    2015-08-01

    The heritability of schizophrenia has been reported to be as high as ~80%, but the contribution of genetic variants identified to this heritability remains to be estimated. Long non-coding RNAs (LncRNAs) are involved in multiple processes critical to normal cellular function and dysfunction of lncRNA MIAT may contribute to the pathophysiology of schizophrenia. However, the genetic evidence of lncRNAs involved in schizophrenia has not been documented. Here, we conducted a two-stage association analysis on 8 tag SNPs that cover the whole MIAT locus in two independent Han Chinese schizophrenia case-control cohorts (discovery sample from Shanxi Province: 1093 patients with paranoid schizophrenia and 1180 control subjects; replication cohort from Jilin Province: 1255 cases and 1209 healthy controls). In discovery stage, significant genetic association with paranoid schizophrenia was observed for rs1894720 (χ(2)=74.20, P=7.1E-18), of which minor allele (T) had an OR of 1.70 (95% CI=1.50-1.91). This association was confirmed in the replication cohort (χ(2)=22.66, P=1.9E-06, OR=1.32, 95%CI 1.18-1.49). Besides, a weak genotypic association was detected for rs4274 (χ(2)=4.96, df=2, P=0.03); the AA carriers showed increased disease risk (OR=1.30, 95%CI=1.03-1.64). No significant association was found between any haplotype and paranoid schizophrenia. The present studies showed that lncRNA MIAT was a novel susceptibility gene for paranoid schizophrenia in the Chinese Han population. Considering that most lncRNAs locate in non-coding regions, our result may explain why most susceptibility loci for schizophrenia identified by genome wide association studies were out of coding regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Plasmodium falciparum spliceosomal RNAs: 3' and 5' end processing.

    PubMed

    Eliana, Calvo; Javier, Escobar; Moisés, Wasserman

    2011-02-01

    The major spliceosomal small nuclear ribonucleoproteins (snRNPs) consist of snRNA (U1, U2, U4 or U5) and several proteins which can be unique or common to each snRNP particle. The common proteins are known as Sm proteins; they are crucial for RNP assembly and nuclear import of spliceosomal RNPs. This paper reports detecting the interaction between Plasmodium falciparum snRNAs and Sm proteins, and the usual 5' trimethylated caps on the snRNAs, by immunoprecipitation with specific antibodies. Furthermore, an unusual poly(A) tail was detected on these non-coding RNAs. 2010 Elsevier B.V. All rights reserved.

  8. Circular RNAs: An emerging type of RNA in cancer.

    PubMed

    Hou, Li-Dan; Zhang, Jing

    2017-03-01

    Circular RNAs (circRNAs), a novel type of widespread and diverse endogenous non-coding RNAs (ncRNAs), which are different from the linear RNAs, form a covalently closed continuous loop without 5' or 3' polarities. The majority of circRNAs are abundant, conserved and stable across different species, and exhibit tissue/developmental-stage-specific characteristics. They are generated primarily through a type of alternative RNA splicing called "back-splicing," in which a downstream splice donor is joined to an upstream splice acceptor through splice skipping or direct splice. Recent studies have discovered circRNAs function as microRNA sponges, binding with RNA-associated proteins to form RNA-protein complexes and then regulating gene transcription and translation into polypeptides. Emerging evidence indicates that circRNAs play important roles in the regulation of the development and progression of multiple cancers by serving as potential diagnostic and predictive biomarkers involved in tumor growth and invasion and providing new strategies for cancer diagnosis and targeted therapy. In this review, we briefly delineate the diversity and characteristics of circRNAs and discuss the highlights of the biogenesis of circRNAs and their potential functions in tumor.

  9. Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles

    PubMed Central

    Caswell, Clayton C.; Oglesby-Sherrouse, Amanda G.; Murphy, Erin R.

    2014-01-01

    Small RNA molecules (sRNAs) are now recognized as key regulators controlling bacterial gene expression, as sRNAs provide a quick and efficient means of positively or negatively altering the expression of specific genes. To date, numerous sRNAs have been identified and characterized in a myriad of bacterial species, but more recently, a theme in bacterial sRNAs has emerged: the presence of more than one highly related sRNAs produced by a given bacterium, here termed sibling sRNAs. Sibling sRNAs are those that are highly similar at the nucleotide level, and while it might be expected that sibling sRNAs exert identical regulatory functions on the expression of target genes based on their high degree of relatedness, emerging evidence is demonstrating that this is not always the case. Indeed, there are several examples of bacterial sibling sRNAs with non-redundant regulatory functions, but there are also instances of apparent regulatory redundancy between sibling sRNAs. This review provides a comprehensive overview of the current knowledge of bacterial sibling sRNAs, and also discusses important questions about the significance and evolutionary implications of this emerging class of regulators. PMID:25389522

  10. Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles.

    PubMed

    Caswell, Clayton C; Oglesby-Sherrouse, Amanda G; Murphy, Erin R

    2014-01-01

    Small RNA molecules (sRNAs) are now recognized as key regulators controlling bacterial gene expression, as sRNAs provide a quick and efficient means of positively or negatively altering the expression of specific genes. To date, numerous sRNAs have been identified and characterized in a myriad of bacterial species, but more recently, a theme in bacterial sRNAs has emerged: the presence of more than one highly related sRNAs produced by a given bacterium, here termed sibling sRNAs. Sibling sRNAs are those that are highly similar at the nucleotide level, and while it might be expected that sibling sRNAs exert identical regulatory functions on the expression of target genes based on their high degree of relatedness, emerging evidence is demonstrating that this is not always the case. Indeed, there are several examples of bacterial sibling sRNAs with non-redundant regulatory functions, but there are also instances of apparent regulatory redundancy between sibling sRNAs. This review provides a comprehensive overview of the current knowledge of bacterial sibling sRNAs, and also discusses important questions about the significance and evolutionary implications of this emerging class of regulators.

  11. Functional Association between Regulatory RNAs and the Annexins

    PubMed Central

    Monastyrskaya, Katia

    2018-01-01

    Cells respond to pathophysiological states by activation of stress-induced signalling. Regulatory non-coding microRNAs (miRNAs) often form stable feed-forward loops which ensure prolongation of the signal, contributing to sustained activation. Members of the annexin protein family act as sensors for Ca2+, pH, and lipid second messengers, and regulate various signalling pathways. Recently, annexins were reported to participate in feedback loops, suppressing miRNA synthesis and attenuating stress-induced dysregulation of gene expression. They can directly or indirectly associate with RNAs, and are transferred between the cells in exosomes and shed microvesicles. The ability of annexins to recruit other proteins and miRNAs into exosomes implicates them in control of cell–cell interactions, affecting the adaptive responses and remodelling processes during disease. The studies summarized in this Review point to an emerging role of annexins in influencing the synthesis, localisation, and transfer of regulatory RNAs. PMID:29462943

  12. Downregulation of BRAF-activated non-protein coding RNA in patients with hepatitis B virus-associated hepatocellular carcinoma.

    PubMed

    Zhao, Na-Na; Wang, Cheng; Lai, Cheng-Cai; Cheng, Si-Jie; Yan, Jin; Hong, Zhi-Xian; Yu, Lin-Xiang; Zhu, Zhen-Yu; Zhang, Pei-Rui; Wang, Zhao-Hai; Wang, Xi-Liang; Zhang, Shao-Geng; Yang, Peng-Hui

    2018-05-01

    Long non-coding RNAs (lncRNAs) have been investigated as a novel class of regulators of cellular processes, including cell growth, apoptosis and carcinogenesis. lncRNA BRAF-activated non-protein coding RNA (BANCR) has recently been revealed to be involved in tumorigenesis of numerous types of cancer, including papillary thyroid carcinoma, melanoma, non-small cell lung cancer and colorectal cancer. However, the expression profiles and biological relevance of lncRNA BANCR in hepatocellular carcinoma (HCC) has not yet been reported. In the present study, the expression level of BANCR in tumor tissues and para-cancerous tissues was determined by reverse transcription-quantitative polymerase chain reaction in patients with hepatitis B virus (HBV)-associated HCC, and its association with clinicopathological characteristics of patients was analyzed. The results demonstrated that the expression level of BANCR was significantly reduced in tumor tissues in comparison with in para-cancerous tissues (P<0.001). Furthermore, the present study demonstrated that BANCR expression level was closely associated with serum α-fetoprotein levels (P<0.01) and HCC tumor number (P<0.05). To the best of our knowledge, these results revealed for the first time that BANCR downregulated in patients with HBV-associated HCC and BANCR expression level may be a potential valuable diagnosis and therapeutic biomarker in HCC.

  13. A unique set of 6 circulating microRNAs for early detection of non-small cell lung cancer.

    PubMed

    Halvorsen, Ann Rita; Bjaanæs, Maria; LeBlanc, Marissa; Holm, Are M; Bolstad, Nils; Rubio, Luis; Peñalver, Juan Carlos; Cervera, José; Mojarrieta, Julia Cruz; López-Guerrero, Jose Antonio; Brustugun, Odd Terje; Helland, Åslaug

    2016-06-14

    Circulating microRNAs are promising biomarkers for diagnosis, predication and prognostication of diseases. Lung cancer is the cancer disease accountable for most cancer deaths, largely due to being diagnosed at late stages. Therefore, diagnosing lung cancer patients at an early stage is crucial for improving the outcome. The purpose of this study was to identify circulating microRNAs for detection of early stage lung cancer, capable of discriminating lung cancer patients from those with chronic obstructive pulmonary disease (COPD) and healthy volunteers. We identified 7 microRNAs separating lung cancer patients from controls. By using RT-qPCR, we validated 6 microRNAs (miR-429, miR-205, miR-200b, miR-203, miR-125b and miR-34b) with a significantly higher abundance in serum from NSCLC patients. Furthermore, the 6 miRNAs were validated in a different dataset, revealing an area under the receiver operating characteristic curve of 0.89 for stage I-IV and 0.88 for stage I/II. We profiled the expression of 754 unique microRNAs by TaqMan Low Density Arrays, and analyzed serum from 38 patients with NSCLC, 16 patients suffering from COPD and 16 healthy volunteers from Norway, to explore their potential as diagnostic biomarkers. For validation, we analyzed serum collected from high-risk individuals enrolled in the Valencia branch of the International Early Lung Cancer Action Program screening trial (n=107) in addition to 51 lung cancer patients. Considering the accessibility and stability of circulating miRNAs, these 6 microRNAs are promising biomarkers as a supplement in future screening studies.

  14. Integrative analyses of transcriptome sequencing identify novel functional lncRNAs in esophageal squamous cell carcinoma.

    PubMed

    Li, C-Q; Huang, G-W; Wu, Z-Y; Xu, Y-J; Li, X-C; Xue, Y-J; Zhu, Y; Zhao, J-M; Li, M; Zhang, J; Wu, J-Y; Lei, F; Wang, Q-Y; Li, S; Zheng, C-P; Ai, B; Tang, Z-D; Feng, C-C; Liao, L-D; Wang, S-H; Shen, J-H; Liu, Y-J; Bai, X-F; He, J-Z; Cao, H-H; Wu, B-L; Wang, M-R; Lin, D-C; Koeffler, H P; Wang, L-D; Li, X; Li, E-M; Xu, L-Y

    2017-02-13

    Long non-coding RNAs (lncRNAs) have a critical role in cancer initiation and progression, and thus may mediate oncogenic or tumor suppressing effects, as well as be a new class of cancer therapeutic targets. We performed high-throughput sequencing of RNA (RNA-seq) to investigate the expression level of lncRNAs and protein-coding genes in 30 esophageal samples, comprised of 15 esophageal squamous cell carcinoma (ESCC) samples and their 15 paired non-tumor tissues. We further developed an integrative bioinformatics method, denoted URW-LPE, to identify key functional lncRNAs that regulate expression of downstream protein-coding genes in ESCC. A number of known onco-lncRNA and many putative novel ones were effectively identified by URW-LPE. Importantly, we identified lncRNA625 as a novel regulator of ESCC cell proliferation, invasion and migration. ESCC patients with high lncRNA625 expression had significantly shorter survival time than those with low expression. LncRNA625 also showed specific prognostic value for patients with metastatic ESCC. Finally, we identified E1A-binding protein p300 (EP300) as a downstream executor of lncRNA625-induced transcriptional responses. These findings establish a catalog of novel cancer-associated functional lncRNAs, which will promote our understanding of lncRNA-mediated regulation in this malignancy.

  15. sRNAdb: A small non-coding RNA database for gram-positive bacteria

    PubMed Central

    2012-01-01

    Background The class of small non-coding RNA molecules (sRNA) regulates gene expression by different mechanisms and enables bacteria to mount a physiological response due to adaptation to the environment or infection. Over the last decades the number of sRNAs has been increasing rapidly. Several databases like Rfam or fRNAdb were extended to include sRNAs as a class of its own. Furthermore new specialized databases like sRNAMap (gram-negative bacteria only) and sRNATarBase (target prediction) were established. To the best of the authors’ knowledge no database focusing on sRNAs from gram-positive bacteria is publicly available so far. Description In order to understand sRNA’s functional and phylogenetic relationships we have developed sRNAdb and provide tools for data analysis and visualization. The data compiled in our database is assembled from experiments as well as from bioinformatics analyses. The software enables comparison and visualization of gene loci surrounding the sRNAs of interest. To accomplish this, we use a client–server based approach. Offline versions of the database including analyses and visualization tools can easily be installed locally on the user’s computer. This feature facilitates customized local addition of unpublished sRNA candidates and related information such as promoters or terminators using tab-delimited files. Conclusion sRNAdb allows a user-friendly and comprehensive comparative analysis of sRNAs from available sequenced gram-positive prokaryotic replicons. Offline versions including analysis and visualization tools facilitate complex user specific bioinformatics analyses. PMID:22883983

  16. Downregulated long non-coding RNA MEG3 in breast cancer regulates proliferation, migration and invasion by depending on p53’s transcriptional activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Lin; Li, Yu; Yang, Bangxiang, E-mail: b19933009@qq.coom

    Long non-coding RNAs (lncRNAs) was found to play critical roles in tumorigenesis, hence, screen of tumor-related lncRNAs, identification of their biological roles is important for understanding the processes of tumorigenesis. In this study, we identified the expressing difference of several tumor-related lncRNAs in breast cancer samples and found that, MEG3, which is downregulated in non-small cell lung cancer (NSCLC) tumor tissues, is also downregulated in breast cancer samples compared with adjacent tissues. For figuring out the effect of MEG3 in breast cancer cells MCF7 and MB231, we overexpressed MEG3 in these cells, and found that it resulted the inhibition ofmore » proliferation, colony formation, migration and invasion capacities by enhancing p53’s transcriptional activity on its target genes, including p21, Maspin and KAI1. MEG3 presented similar effects in MB157, which is a p53-null breast cancer cell line, when functional p53 but not p53R273H mutant, which lacks transcriptional activity, was introduced. Surprisingly, overexpression of MEG3 activates p53’s transcriptional activity by decreasing MDM2’s transcription level, and thus stabilizes and accumulates P53. Taken together, our findings indicate that MEG3 is downregulated in breast cancer tissues and affects breast cancer cells’ malignant behaviors, which indicate MEG3 a potential therapeutic target for breast cancer. - Highlights: • MEG3 RNA is widely downregulated in breast tumor tissue. • MEG3 regulates P53 indirectly through transcriptional regulation of MDM2. • Under unstressed condition, MEG3-related P53 accumulation transcriptionally activates p53’s target genes. • MEG3 expression level tightly regulates proliferation, colony formation, migration and invasion in breast tumor cells.« less

  17. MicroRNAs and intellectual disability (ID) in Down syndrome, X-linked ID, and Fragile X syndrome

    PubMed Central

    Siew, Wei-Hong; Tan, Kai-Leng; Babaei, Maryam Abbaspour; Cheah, Pike-See; Ling, King-Hwa

    2013-01-01

    Intellectual disability (ID) is one of the many features manifested in various genetic syndromes leading to deficits in cognitive function among affected individuals. ID is a feature affected by polygenes and multiple environmental factors. It leads to a broad spectrum of affected clinical and behavioral characteristics among patients. Until now, the causative mechanism of ID is unknown and the progression of the condition is poorly understood. Advancement in technology and research had identified various genetic abnormalities and defects as the potential cause of ID. However, the link between these abnormalities with ID is remained inconclusive and the roles of many newly discovered genetic components such as non-coding RNAs have not been thoroughly investigated. In this review, we aim to consolidate and assimilate the latest development and findings on a class of small non-coding RNAs known as microRNAs (miRNAs) involvement in ID development and progression with special focus on Down syndrome (DS) and X-linked ID (XLID) [including Fragile X syndrome (FXS)]. PMID:23596395

  18. MicroRNAs Related to Polycystic Ovary Syndrome (PCOS)

    PubMed Central

    Sørensen, Anja Elaine; Wissing, Marie Louise; Salö, Sofia; Englund, Anne Lis Mikkelsen; Dalgaard, Louise Torp

    2014-01-01

    Polycystic ovary syndrome (PCOS) is the most common, though heterogeneous, endocrine aberration in women of reproductive age, with high prevalence and socioeconomic costs. The syndrome is characterized by polycystic ovaries, chronic anovulation and hyperandrogenism, as well as being associated with infertility, insulin resistance, chronic low-grade inflammation and an increased life time risk of type 2 diabetes. MicroRNAs (miRNAs) are small, non-coding RNAs that are able to regulate gene expression at the post-transcriptional level. Altered miRNA levels have been associated with diabetes, insulin resistance, inflammation and various cancers. Studies have shown that circulating miRNAs are present in whole blood, serum, plasma and the follicular fluid of PCOS patients and that they might serve as potential biomarkers and a new approach for the diagnosis of PCOS. In this review, recent work on miRNAs with respect to PCOS will be summarized. Our understanding of miRNAs, particularly in relation to PCOS, is currently at a very early stage, and additional studies will yield important insight into the molecular mechanisms behind this complex and heterogenic syndrome. PMID:25158044

  19. Microbiota Small RNAs in Inflammatory Bowel Disease.

    PubMed

    Filip, Anca T; Balacescu, Ovidiu; Marian, Catalin; Anghel, Andrei

    2016-12-01

    MiRNAs are a class of potential gene regulators of critical importance in Inflammatory Bowel Disease (IBD). This review aims to present the connection between gut microbiota, probiotics administration and microRNA (miRNA) expression in IBD. It also brings into question cross-kingdom RNAi (RNA interference). Not only that gut host cells garden the intestinal microbiome via miRNA, but also strong evidence supports the idea that different species of bacteria have an impact on the intestinal immune response by modulating miRNA expression. Cross-kingdom RNAi refers to RNA silencing signals that travel between two unrelated, interacting organisms. RNAs communication between prokaryotes and eukaryotes (bacteria and nematodes) via RNAs transfer has been proved. Some authors also support the idea that non-coding RNAs are being transferred by bacterial pathogens to the host cells as part of the intracellular infection process. Further studies are required in order to clarify whether the mechanism by which bacteria modulate miRNA expression concerns RNAs transfer. These findings may lead to a different approach to IBD therapy in the future.

  20. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-β signalling pathway

    PubMed Central

    Zhang, Yan; Fan, Kai-Ji; Sun, Qiang; Chen, Ai-Zhong; Shen, Wen-Long; Zhao, Zhi-Hu; Zheng, Xiao-Fei; Yang, Xiao

    2012-01-01

    The transforming growth factor-β (TGF-β) signalling pathway participates in various biological processes. Dysregulation of Smad4, a central cellular transducer of TGF-β signalling, is implicated in a wide range of human diseases and developmental disorders. However, the mechanisms underlying Smad4 dysregulation are not fully understood. Using a functional screening approach based on luciferase reporter assays, we identified 39 microRNAs (miRNAs) as potential regulators of Smad4 from an expression library of 388 human miRNAs. The screening was supported by bioinformatic analysis, as 24 of 39 identified miRNAs were also predicted to target Smad4. MiR-199a, one of the identified miRNAs, was inversely correlated with Smad4 expression in various human cancer cell lines and gastric cancer tissues, and repressed Smad4 expression and blocked canonical TGF-β transcriptional responses in cell lines. These effects were dependent on the presence of a conserved, but not perfect seed paired, miR-199a-binding site in the Smad4 3′-untranslated region (UTR). Overexpression of miR-199a significantly inhibited the ability of TGF-β to induce gastric cancer cell growth arrest and apoptosis in vitro, and promoted anchorage-independent growth in soft agar, suggesting that miR-199a plays an oncogenic role in human gastric tumourigenesis. In conclusion, our functional screening uncovers multiple miRNAs that regulate the cellular responsiveness to TGF-β signalling and reveals important roles of miR-199a in gastric cancer by directly targeting Smad4. PMID:22821565

  1. Molecular mechanisms of long noncoding RNAs on gastric cancer

    PubMed Central

    Li, Tianwen; Mo, Xiaoyan; Fu, Liyun; Xiao, Bingxiu; Guo, Junming

    2016-01-01

    Long noncoding RNAs (lncRNAs) are non-protein coding transcripts longer than 200 nucleotides. Aberrant expression of lncRNAs has been found associated with gastric cancer, one of the most malignant tumors. By complementary base pairing with mRNAs or forming complexes with RNA binding proteins (RBPs), some lncRNAs including GHET1, MALAT1, and TINCR may mediate mRNA stability and splicing. Other lncRNAs, such as BC032469, GAPLINC, and HOTAIR, participate in the competing endogenous RNA (ceRNA) network. Under certain circumstances, ANRIL, GACAT3, H19, MEG3, and TUSC7 exhibit their biological roles by associating with microRNAs (miRNAs). By recruiting histone-modifying complexes, ANRIL, FENDRR, H19, HOTAIR, MALAT1, and PVT1 may inhibit the transcription of target genes in cis or trans. Through these mechanisms, lncRNAs form RNA-dsDNA triplex. CCAT1, GAPLINC, GAS5, H19, MEG3, and TUSC7 play oncogenic or tumor suppressor roles by correlated with tumor suppressor P53 or onco-protein c-Myc, respectively. In conclusion, interaction with DNA, RNA and proteins is involved in lncRNAs’ participation in gastric tumorigenesis and development. PMID:26788991

  2. Disease-Causing 7.4 kb Cis-Regulatory Deletion Disrupting Conserved Non-Coding Sequences and Their Interaction with the FOXL2 Promotor: Implications for Mutation Screening

    PubMed Central

    Dostie, Josée; Lemire, Edmond; Bouchard, Philippe; Field, Michael; Jones, Kristie; Lorenz, Birgit; Menten, Björn; Buysse, Karen; Pattyn, Filip; Friedli, Marc; Ucla, Catherine; Rossier, Colette; Wyss, Carine; Speleman, Frank; De Paepe, Anne; Dekker, Job; Antonarakis, Stylianos E.; De Baere, Elfride

    2009-01-01

    To date, the contribution of disrupted potentially cis-regulatory conserved non-coding sequences (CNCs) to human disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As a model for monogenic disease we studied the involvement of genetic changes of CNCs in the cis-regulatory domain of FOXL2 in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution copy number screening and targeted sequencing of CNCs. Apart from three larger distant deletions, a de novo deletion as small as 7.4 kb was found at 283 kb 5′ to FOXL2. The deletion appeared to be triggered by an H-DNA-induced double-stranded break (DSB). In addition, it disrupts a novel long non-coding RNA (ncRNA) PISRT1 and 8 CNCs. The regulatory potential of the deleted CNCs was substantiated by in vitro luciferase assays. Interestingly, Chromosome Conformation Capture (3C) of a 625 kb region surrounding FOXL2 in expressing cellular systems revealed physical interactions of three upstream fragments and the FOXL2 core promoter. Importantly, one of these contains the 7.4 kb deleted fragment. Overall, this study revealed the smallest distant deletion causing monogenic disease and impacts upon the concept of mutation screening in human disease and developmental disorders in particular. PMID:19543368

  3. MicroRNAs as mediators of insect host-pathogen interactions and immunity.

    PubMed

    Hussain, Mazhar; Asgari, Sassan

    2014-11-01

    Insects are the most successful group of animals on earth, owing this partly to their very effective immune responses to microbial invasion. These responses mainly include cellular and humoral responses as well as RNA interference (RNAi). Small non-coding RNAs (snRNAs) produced through RNAi are important molecules in the regulation of gene expression in almost all living organisms; contributing to important processes such as development, differentiation, immunity as well as host-microorganism interactions. The main snRNAs produced by the RNAi response include short interfering RNAs, microRNAs and piwi-interacting RNAs. In addition to the host snRNAs, some microorganisms encode snRNAs that affect the dynamics of host-pathogen interactions. In this review, we will discuss the latest developments in regards to the role of microRNA in insect host-pathogen interactions and provide some insights into this rapidly developing area of research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A survey of small RNAs in human sperm

    PubMed Central

    Krawetz, Stephen A.; Kruger, Adele; Lalancette, Claudia; Tagett, Rebecca; Anton, Ester; Draghici, Sorin; Diamond, Michael P.

    2011-01-01

    BACKGROUND There has been substantial interest in assessing whether RNAs (mRNAs and sncRNAs, i.e. small non-coding) delivered from mammalian spermatozoa play a functional role in early embryo development. While the cadre of spermatozoal mRNAs has been characterized, comparatively little is known about the distribution or function of the estimated 24 000 sncRNAs within each normal human spermatozoon. METHODS RNAs of <200 bases in length were isolated from the ejaculates from three donors of proved fertility. RNAs of 18–30 nucleotides in length were then used to construct small RNA Digital Gene Expression libraries for Next Generation Sequencing. Known sncRNAs that uniquely mapped to a single location in the human genome were identified. RESULTS Bioinformatic analysis revealed the presence of multiple classes of small RNAs in human spermatozoa. The primary classes resolved included microRNA (miRNAs) (≈7%), Piwi-interacting piRNAs (≈17%), repeat-associated small RNAs (≈65%). A minor subset of short RNAs within the transcription start site/promoter fraction (≈11%) frames the histone promoter-associated regions enriched in genes of early embryonic development. These have been termed quiescent RNAs. CONCLUSIONS A complex population of male derived sncRNAs that are available for delivery upon fertilization was revealed. Sperm miRNA-targeted enrichment in the human oocyte is consistent with their role as modifiers of early post-fertilization. The relative abundance of piRNAs and repeat-associated RNAs suggests that they may assume a role in confrontation and consolidation. This may ensure the compatibility of the genomes at fertilization. PMID:21989093

  5. Global alteration of microRNAs and transposon-derived small RNAs in cotton (Gossypium hirsutum) during Cotton leafroll dwarf polerovirus (CLRDV) infection.

    PubMed

    Romanel, Elisson; Silva, Tatiane F; Corrêa, Régis L; Farinelli, Laurent; Hawkins, Jennifer S; Schrago, Carlos E G; Vaslin, Maite F S

    2012-11-01

    Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.

  6. Identification of Circular RNAs from the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    PubMed Central

    Darbani, Behrooz; Noeparvar, Shahin; Borg, Søren

    2016-01-01

    RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts. PMID:27375638

  7. Metastasis-associated long noncoding RNAs in gastrointestinal cancer: Implications for novel biomarkers and therapeutic targets

    PubMed Central

    Zhang, Fei-Fei; Luo, Yu-Hao; Wang, Hui; Zhao, Liang

    2016-01-01

    Long non-coding RNAs (lncRNAs), a newly discovered class of ncRNA molecules, have been widely accepted as crucial regulators of various diseases including cancer. Increasing numbers of studies have demonstrated that lncRNAs are involved in diverse physiological and pathophysiological processes, such as cell cycle progression, chromatin remodeling, gene transcription, and posttranscriptional processing. Aberrant expression of lncRNAs frequently occurs in gastrointestinal cancer and plays emerging roles in cancer metastasis. In this review, we focus on and outline the regulatory functions of recently identified metastasis-associated lncRNAs, and evaluate the potential roles of lncRNAs as novel diagnostic biomarkers and therapeutic targets in gastrointestinal cancer. PMID:27818589

  8. MicroRNAs in cancer therapeutics: "from the bench to the bedside".

    PubMed

    Monroig-Bosque, Paloma del C; Rivera, Carlos A; Calin, George A

    2015-01-01

    MicroRNAs (miRNAs) are non-coding RNA transcripts that regulate physiological processes by targeting proteins directly. Their involvement in research has been robust, and evidence of their regulative functions has granted them the title: master regulators of the human genome. In cancer, they are considered important therapeutic agents, due to the fact that their aberrant expression contributes to disease development, progression, metastasis, therapeutic response and patient overall survival. This has endeavored fields of biomedical sciences to invest in developing and exploiting miRNA-based therapeutics thoroughly. Herein we highlight relevant ongoing/open clinical trials involving miRNAs and cancer.

  9. The effects of potato virus Y-derived virus small interfering RNAs of three biologically distinct strains on potato (Solanum tuberosum) transcriptome.

    PubMed

    Moyo, Lindani; Ramesh, Shunmugiah V; Kappagantu, Madhu; Mitter, Neena; Sathuvalli, Vidyasagar; Pappu, Hanu R

    2017-07-17

    Potato virus Y (PVY) is one of the most economically important pathogen of potato that is present as biologically distinct strains. The virus-derived small interfering RNAs (vsiRNAs) from potato cv. Russet Burbank individually infected with PVY-N, PVY-NTN and PVY-O strains were recently characterized. Plant defense RNA-silencing mechanisms deployed against viruses produce vsiRNAs to degrade homologous viral transcripts. Based on sequence complementarity, the vsiRNAs can potentially degrade host RNA transcripts raising the prospect of vsiRNAs as pathogenicity determinants in virus-host interactions. This study investigated the global effects of PVY vsiRNAs on the host potato transcriptome. The strain-specific vsiRNAs of PVY, expressed in high copy number, were analyzed in silico for their proclivity to target potato coding and non-coding RNAs using psRobot and psRNATarget algorithms. Functional annotation of target coding transcripts was carried out to predict physiological effects of the vsiRNAs on the potato cv. Russet Burbank. The downregulation of selected target coding transcripts was further validated using qRT-PCR. The vsiRNAs derived from biologically distinct strains of PVY displayed diversity in terms of absolute number, copy number and hotspots for siRNAs on their respective genomes. The vsiRNAs populations were derived with a high frequency from 6 K1, P1 and Hc-Pro for PVY-N, P1, Hc-Pro and P3 for PVY-NTN, and P1, 3' UTR and NIa for PVY-O genomic regions. The number of vsiRNAs that displayed interaction with potato coding transcripts and number of putative coding target transcripts were comparable between PVY-N and PVY-O, and were relatively higher for PVY-NTN. The most abundant target non-coding RNA transcripts for the strain specific PVY-derived vsiRNAs were found to be MIR821, 28S rRNA,18S rRNA, snoR71, tRNA-Met and U5. Functional annotation and qRT-PCR validation suggested that the vsiRNAs target genes involved in plant hormone signaling, genetic

  10. Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides

    PubMed Central

    Nicolas, Francisco Esteban; Moxon, Simon; de Haro, Juan P.; Calo, Silvia; Grigoriev, Igor V.; Torres-Martínez, Santiago; Moulton, Vincent; Ruiz-Vázquez, Rosa M.; Dalmay, Tamas

    2010-01-01

    Endogenous short RNAs (esRNAs) play diverse roles in eukaryotes and usually are produced from double-stranded RNA (dsRNA) by Dicer. esRNAs are grouped into different classes based on biogenesis and function but not all classes are present in all three eukaryotic kingdoms. The esRNA register of fungi is poorly described compared to other eukaryotes and it is not clear what esRNA classes are present in this kingdom and whether they regulate the expression of protein coding genes. However, evidence that some dicer mutant fungi display altered phenotypes suggests that esRNAs play an important role in fungi. Here, we show that the basal fungus Mucor circinelloides produces new classes of esRNAs that map to exons and regulate the expression of many protein coding genes. The largest class of these exonic-siRNAs (ex-siRNAs) are generated by RNA-dependent RNA Polymerase 1 (RdRP1) and dicer-like 2 (DCL2) and target the mRNAs of protein coding genes from which they were produced. Our results expand the range of esRNAs in eukaryotes and reveal a new role for esRNAs in fungi. PMID:20427422

  11. Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term.

    PubMed

    Romero, Roberto; Tarca, Adi L; Chaemsaithong, Piya; Miranda, Jezid; Chaiworapongsa, Tinnakorn; Jia, Hui; Hassan, Sonia S; Kalita, Cynthia A; Cai, Juan; Yeo, Lami; Lipovich, Leonard

    2014-09-01

    To identify differentially expressed long non-coding RNA (lncRNA) genes in human myometrium in women with spontaneous labor at term. Myometrium was obtained from women undergoing cesarean deliveries who were not in labor (n = 19) and women in spontaneous labor at term (n = 20). RNA was extracted and profiled using an Illumina® microarray platform. We have used computational approaches to bound the extent of long non-coding RNA representation on this platform, and to identify co-differentially expressed and correlated pairs of long non-coding RNA genes and protein-coding genes sharing the same genomic loci. We identified co-differential expression and correlation at two genomic loci that contain coding-lncRNA gene pairs: SOCS2-AK054607 and LMCD1-NR_024065 in women in spontaneous labor at term. This co-differential expression and correlation was validated by qRT-PCR, an experimental method completely independent of the microarray analysis. Intriguingly, one of the two lncRNA genes differentially expressed in term labor had a key genomic structure element, a splice site, that lacked evolutionary conservation beyond primates. We provide, for the first time, evidence for coordinated differential expression and correlation of cis-encoded antisense lncRNAs and protein-coding genes with known as well as novel roles in pregnancy in the myometrium of women in spontaneous labor at term.

  12. Can microRNAs act as biomarkers of aging?

    PubMed Central

    Kashyap, Luv

    2011-01-01

    Aging can be defined as a progressive decline in physiological efficiency regulated by an extremely complex multifactorial process. The genetic makeup of an individual appears to dictate this rate of aging in a species specific manner. For decades now, scientists have tried to look for tiny signatures or signs which might help us predict this rate of aging. MicroRNAs (miRNAs) are a unique class of short, non-coding RNAs that mediate the post-transcriptional regulation of gene expression ranging from developmental processes to disease induction or amelioration. Recently, they have also been implicated to have a role in aging in C.elegans. Based on the fact that there is a considerable similarity between aging in C.elegans and humans, these recent findings might suggest a possible role of miRNAs as bio-markers of aging. This mini-review brushes through the possibilities towards this direction. PMID:21383908

  13. Can microRNAs act as biomarkers of aging?

    PubMed

    Kashyap, Luv

    2011-02-07

    Aging can be defined as a progressive decline in physiological efficiency regulated by an extremely complex multifactorial process. The genetic makeup of an individual appears to dictate this rate of aging in a species specific manner. For decades now, scientists have tried to look for tiny signatures or signs which might help us predict this rate of aging. MicroRNAs (miRNAs) are a unique class of short, non-coding RNAs that mediate the post-transcriptional regulation of gene expression ranging from developmental processes to disease induction or amelioration. Recently, they have also been implicated to have a role in aging in C.elegans. Based on the fact that there is a considerable similarity between aging in C.elegans and humans, these recent findings might suggest a possible role of miRNAs as bio-markers of aging. This mini-review brushes through the possibilities towards this direction.

  14. Small RNAs, big impact: small RNA pathways in transposon control and their effect on the host stress response.

    PubMed

    Wheeler, Bayly S

    2013-12-01

    Transposons are mobile genetic elements that are a major constituent of most genomes. Organisms regulate transposable element expression, transposition, and insertion site preference, mitigating the genome instability caused by uncontrolled transposition. A recent burst of research has demonstrated the critical role of small non-coding RNAs in regulating transposition in fungi, plants, and animals. While mechanistically distinct, these pathways work through a conserved paradigm. The presence of a transposon is communicated by the presence of its RNA or by its integration into specific genomic loci. These signals are then translated into small non-coding RNAs that guide epigenetic modifications and gene silencing back to the transposon. In addition to being regulated by the host, transposable elements are themselves capable of influencing host gene expression. Transposon expression is responsive to environmental signals, and many transposons are activated by various cellular stresses. TEs can confer local gene regulation by acting as enhancers and can also confer global gene regulation through their non-coding RNAs. Thus, transposable elements can act as stress-responsive regulators that control host gene expression in cis and trans.

  15. Genome defense against exogenous nucleic acids in eukaryotes by non-coding DNA occurs through CRISPR-like mechanisms in the cytosol and the bodyguard protection in the nucleus.

    PubMed

    Qiu, Guo-Hua

    2016-01-01

    In this review, the protective function of the abundant non-coding DNA in the eukaryotic genome is discussed from the perspective of genome defense against exogenous nucleic acids. Peripheral non-coding DNA has been proposed to act as a bodyguard that protects the genome and the central protein-coding sequences from ionizing radiation-induced DNA damage. In the proposed mechanism of protection, the radicals generated by water radiolysis in the cytosol and IR energy are absorbed, blocked and/or reduced by peripheral heterochromatin; then, the DNA damage sites in the heterochromatin are removed and expelled from the nucleus to the cytoplasm through nuclear pore complexes, most likely through the formation of extrachromosomal circular DNA. To strengthen this hypothesis, this review summarizes the experimental evidence supporting the protective function of non-coding DNA against exogenous nucleic acids. Based on these data, I hypothesize herein about the presence of an additional line of defense formed by small RNAs in the cytosol in addition to their bodyguard protection mechanism in the nucleus. Therefore, exogenous nucleic acids may be initially inactivated in the cytosol by small RNAs generated from non-coding DNA via mechanisms similar to the prokaryotic CRISPR-Cas system. Exogenous nucleic acids may enter the nucleus, where some are absorbed and/or blocked by heterochromatin and others integrate into chromosomes. The integrated fragments and the sites of DNA damage are removed by repetitive non-coding DNA elements in the heterochromatin and excluded from the nucleus. Therefore, the normal eukaryotic genome and the central protein-coding sequences are triply protected by non-coding DNA against invasion by exogenous nucleic acids. This review provides evidence supporting the protective role of non-coding DNA in genome defense. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Cell Cycle Regulation of Stem Cells by MicroRNAs.

    PubMed

    Mens, Michelle M J; Ghanbari, Mohsen

    2018-06-01

    MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.

  17. The expanding roles of microRNAs in kidney pathophysiology.

    PubMed

    Metzinger-Le Meuth, Valérie; Fourdinier, Ophélie; Charnaux, Nathalie; Massy, Ziad A; Metzinger, Laurent

    2018-05-25

    MicroRNAs (miRNAs) are short single-stranded RNAs that control gene expression through base pairing with regions within the 3'-untranslated region of target mRNAs. These small non-coding RNAs are now increasingly known to be involved in kidney physiopathology. In this review we will describe how miRNAs were in recent years implicated in cellular and animal models of kidney disease but also in chronic kidney disease, haemodialysed and grafted patients, acute kidney injury patients and so on. At the moment miRNAs are considered as potential biomarkers in nephrology, but larger cohorts as well as the standardization of methods of measurement will be needed to confirm their usefulness. It will further be of the utmost importance to select specific tissues and biofluids to make miRNAs appropriate in day-to-day clinical practice. In addition, up- or down-regulating miRNAs that were described as deregulated in kidney diseases may represent innovative therapeutic methods to cure these disorders. We will enumerate in this review the most recent methods that can be used to deliver miRNAs in a specific and suitable way in kidney and other organs damaged by kidney failure, such as the cardiovascular system.

  18. MicroRNAs as Biomarkers for Diagnosis, Prognosis and Theranostics in Prostate Cancer

    PubMed Central

    Bertoli, Gloria; Cava, Claudia; Castiglioni, Isabella

    2016-01-01

    Prostate cancer (PC) includes several phenotypes, from indolent to highly aggressive cancer. Actual diagnostic and prognostic tools have several limitations, and there is a need for new biomarkers to stratify patients and assign them optimal therapies by taking into account potential genetic and epigenetic differences. MicroRNAs (miRNAs) are small sequences of non-coding RNA regulating specific genes involved in the onset and development of PC. Stable miRNAs have been found in biofluids, such as serum and plasma; thus, the measurement of PC-associated miRNAs is emerging as a non-invasive tool for PC detection and monitoring. In this study, we conduct an in-depth literature review focusing on miRNAs that may contribute to the diagnosis and prognosis of PC. The role of miRNAs as a potential theranostic tool in PC is discussed. Using a meta-analysis approach, we found a group of 29 miRNAs with diagnostic properties and a group of seven miRNAs with prognostic properties, which were found already expressed in both biofluids and PC tissues. We tested the two miRNA groups on The Cancer Genome Atlas dataset of PC tissue samples with a machine-learning approach. Our results suggest that these 29 miRNAs should be considered as potential panel of biomarkers for the diagnosis of PC, both as in vivo non-invasive test and ex vivo confirmation test. PMID:27011184

  19. LncRNAs: key players and novel insights into diabetes mellitus

    PubMed Central

    He, Xiaoyun; Ou, Chunlin; Xiao, Yanhua; Han, Qing; Li, Hao; Zhou, Suxian

    2017-01-01

    Long non-coding RNAs (LncRNAs) are a class of endogenous RNA molecules, which have a transcribing length of over 200 nt, lack a complete functional open reading frame (ORF), and rarely encode a functional short peptide. Recent studies have revealed that disruption of LncRNAs levels correlates with several human diseases, including diabetes mellitus (DM), a complex multifactorial metabolic disorder affecting more than 400 million people worldwide. LncRNAs are emerging as pivotal regulators in various biological processes, in the progression of DM and its associated complications, involving pancreatic β-cell disorder, insulin resistance, and epigenetic regulation, etc. Further investigation into the mechanisms of action of LncRNAs in DM will be of great value in the thorough understanding of pathogenesis. However, prior to successful application of LncRNAs, further search for molecular biomarkers and drug targets to provide a new strategy for DM prevention, early diagnosis, and therapy is warranted. PMID:29050364

  20. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs.

    PubMed

    Khan, Aly A; Betel, Doron; Miller, Martin L; Sander, Chris; Leslie, Christina S; Marks, Debora S

    2009-06-01

    Transfection of small RNAs (such as small interfering RNAs (siRNAs) and microRNAs (miRNAs)) into cells typically lowers expression of many genes. Unexpectedly, increased expression of genes also occurs. We investigated whether this upregulation results from a saturation effect--that is, competition among the transfected small RNAs and the endogenous pool of miRNAs for the intracellular machinery that processes small RNAs. To test this hypothesis, we analyzed genome-wide transcript responses from 151 published transfection experiments in seven different human cell types. We show that targets of endogenous miRNAs are expressed at significantly higher levels after transfection, consistent with impaired effectiveness of endogenous miRNA repression. This effect exhibited concentration and temporal dependence. Notably, the profile of endogenous miRNAs can be largely inferred by correlating miRNA sites with gene expression changes after transfections. The competition and saturation effects have practical implications for miRNA target prediction, the design of siRNA and short hairpin RNA (shRNA) genomic screens and siRNA therapeutics.