Sample records for screening process simulator

  1. Modelling, simulation and verification of the screening process of a swing-bar sieve based on the DEM

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Yu, Jianqun; Yu, Yajun

    2018-05-01

    To solve the problems in the DEM simulations of the screening process of a swing-bar sieve, in this paper we propose the real-virtual boundary method to build the geometrical model of the screen deck on a swing-bar sieve. The motion of the swing-bar sieve is modelled by the planer multi-body kinematics. A coupled model of the discrete element method (DEM) with multi-body kinematics (MBK) is presented to simulate the flowing and passing processes of soybean particles on the screen deck. By the comparison of the simulated results with the experimental results of the screening process of the LA-LK laboratory scale swing-bar sieve, the feasibility and validity of the real-virtual boundary method and the coupled DEM-MBK model we proposed in this paper can be verified. This work provides the basis for the optimization design of the swing-bar sieve with circular apertures and complex motion.

  2. Real-Time Monitoring of Scada Based Control System for Filling Process

    NASA Astrophysics Data System (ADS)

    Soe, Aung Kyaw; Myint, Aung Naing; Latt, Maung Maung; Theingi

    2008-10-01

    This paper is a design of real-time monitoring for filling system using Supervisory Control and Data Acquisition (SCADA). The monitoring of production process is described in real-time using Visual Basic.Net programming under Visual Studio 2005 software without SCADA software. The software integrators are programmed to get the required information for the configuration screens. Simulation of components is expressed on the computer screen using parallel port between computers and filling devices. The programs of real-time simulation for the filling process from the pure drinking water industry are provided.

  3. Simulation Learning: PC-Screen Based (PCSB) versus High Fidelity Simulation (HFS)

    DTIC Science & Technology

    2012-08-01

    methods for the use of simulation for teaching clinical skills to military and civilian clinicians . High fidelity simulation is an expensive method of...without the knowledge and approval of the IRB. Changes include, but not limited to, modifications in study design, recruitment process and number of...Person C-Collar simulation algorithm Pathway A Scenario A - Spinal stabilization: Sub processes Legend: Pathway Points Complex task to be performed by

  4. Budget impact analysis of switching to digital mammography in a population-based breast cancer screening program: a discrete event simulation model.

    PubMed

    Comas, Mercè; Arrospide, Arantzazu; Mar, Javier; Sala, Maria; Vilaprinyó, Ester; Hernández, Cristina; Cots, Francesc; Martínez, Juan; Castells, Xavier

    2014-01-01

    To assess the budgetary impact of switching from screen-film mammography to full-field digital mammography in a population-based breast cancer screening program. A discrete-event simulation model was built to reproduce the breast cancer screening process (biennial mammographic screening of women aged 50 to 69 years) combined with the natural history of breast cancer. The simulation started with 100,000 women and, during a 20-year simulation horizon, new women were dynamically entered according to the aging of the Spanish population. Data on screening were obtained from Spanish breast cancer screening programs. Data on the natural history of breast cancer were based on US data adapted to our population. A budget impact analysis comparing digital with screen-film screening mammography was performed in a sample of 2,000 simulation runs. A sensitivity analysis was performed for crucial screening-related parameters. Distinct scenarios for recall and detection rates were compared. Statistically significant savings were found for overall costs, treatment costs and the costs of additional tests in the long term. The overall cost saving was 1,115,857€ (95%CI from 932,147 to 1,299,567) in the 10th year and 2,866,124€ (95%CI from 2,492,610 to 3,239,638) in the 20th year, representing 4.5% and 8.1% of the overall cost associated with screen-film mammography. The sensitivity analysis showed net savings in the long term. Switching to digital mammography in a population-based breast cancer screening program saves long-term budget expense, in addition to providing technical advantages. Our results were consistent across distinct scenarios representing the different results obtained in European breast cancer screening programs.

  5. Budget Impact Analysis of Switching to Digital Mammography in a Population-Based Breast Cancer Screening Program: A Discrete Event Simulation Model

    PubMed Central

    Comas, Mercè; Arrospide, Arantzazu; Mar, Javier; Sala, Maria; Vilaprinyó, Ester; Hernández, Cristina; Cots, Francesc; Martínez, Juan; Castells, Xavier

    2014-01-01

    Objective To assess the budgetary impact of switching from screen-film mammography to full-field digital mammography in a population-based breast cancer screening program. Methods A discrete-event simulation model was built to reproduce the breast cancer screening process (biennial mammographic screening of women aged 50 to 69 years) combined with the natural history of breast cancer. The simulation started with 100,000 women and, during a 20-year simulation horizon, new women were dynamically entered according to the aging of the Spanish population. Data on screening were obtained from Spanish breast cancer screening programs. Data on the natural history of breast cancer were based on US data adapted to our population. A budget impact analysis comparing digital with screen-film screening mammography was performed in a sample of 2,000 simulation runs. A sensitivity analysis was performed for crucial screening-related parameters. Distinct scenarios for recall and detection rates were compared. Results Statistically significant savings were found for overall costs, treatment costs and the costs of additional tests in the long term. The overall cost saving was 1,115,857€ (95%CI from 932,147 to 1,299,567) in the 10th year and 2,866,124€ (95%CI from 2,492,610 to 3,239,638) in the 20th year, representing 4.5% and 8.1% of the overall cost associated with screen-film mammography. The sensitivity analysis showed net savings in the long term. Conclusions Switching to digital mammography in a population-based breast cancer screening program saves long-term budget expense, in addition to providing technical advantages. Our results were consistent across distinct scenarios representing the different results obtained in European breast cancer screening programs. PMID:24832200

  6. Automatic Screening for Perturbations in Boolean Networks.

    PubMed

    Schwab, Julian D; Kestler, Hans A

    2018-01-01

    A common approach to address biological questions in systems biology is to simulate regulatory mechanisms using dynamic models. Among others, Boolean networks can be used to model the dynamics of regulatory processes in biology. Boolean network models allow simulating the qualitative behavior of the modeled processes. A central objective in the simulation of Boolean networks is the computation of their long-term behavior-so-called attractors. These attractors are of special interest as they can often be linked to biologically relevant behaviors. Changing internal and external conditions can influence the long-term behavior of the Boolean network model. Perturbation of a Boolean network by stripping a component of the system or simulating a surplus of another element can lead to different attractors. Apparently, the number of possible perturbations and combinations of perturbations increases exponentially with the size of the network. Manually screening a set of possible components for combinations that have a desired effect on the long-term behavior can be very time consuming if not impossible. We developed a method to automatically screen for perturbations that lead to a user-specified change in the network's functioning. This method is implemented in the visual simulation framework ViSiBool utilizing satisfiability (SAT) solvers for fast exhaustive attractor search.

  7. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2005-07-01

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectivesmore » of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.« less

  8. A Framework to Design and Optimize Chemical Flooding Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2006-08-31

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectivesmore » of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.« less

  9. A FRAMEWORK TO DESIGN AND OPTIMIZE CHEMICAL FLOODING PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2004-11-01

    The goal of this proposed research is to provide an efficient and user friendly simulation framework for screening and optimizing chemical/microbial enhanced oil recovery processes. The framework will include (1) a user friendly interface to identify the variables that have the most impact on oil recovery using the concept of experimental design and response surface maps, (2) UTCHEM reservoir simulator to perform the numerical simulations, and (3) an economic model that automatically imports the simulation production data to evaluate the profitability of a particular design. Such a reservoir simulation framework is not currently available to the oil industry. The objectivesmore » of Task 1 are to develop three primary modules representing reservoir, chemical, and well data. The modules will be interfaced with an already available experimental design model. The objective of the Task 2 is to incorporate UTCHEM reservoir simulator and the modules with the strategic variables and developing the response surface maps to identify the significant variables from each module. The objective of the Task 3 is to develop the economic model designed specifically for the chemical processes targeted in this proposal and interface the economic model with UTCHEM production output. Task 4 is on the validation of the framework and performing simulations of oil reservoirs to screen, design and optimize the chemical processes.« less

  10. Simulated Holograms: A Simple Introduction to Holography.

    ERIC Educational Resources Information Center

    Dittmann, H.; Schneider, W. B.

    1992-01-01

    Describes a project that uses a computer and a dot matrix printer to simulate the holographic recording process of simple object structures. The process' four steps are (1) superposition of waves; (2) representing the superposition of a plane reference wave on the monitor screen; (3) photographic reduction of the images; and (4) reconstruction of…

  11. A New Screening Methodology for Improved Oil Recovery Processes Using Soft-Computing Techniques

    NASA Astrophysics Data System (ADS)

    Parada, Claudia; Ertekin, Turgay

    2010-05-01

    The first stage of production of any oil reservoir involves oil displacement by natural drive mechanisms such as solution gas drive, gas cap drive and gravity drainage. Typically, improved oil recovery (IOR) methods are applied to oil reservoirs that have been depleted naturally. In more recent years, IOR techniques are applied to reservoirs even before their natural energy drive is exhausted by primary depletion. Descriptive screening criteria for IOR methods are used to select the appropriate recovery technique according to the fluid and rock properties. This methodology helps in assessing the most suitable recovery process for field deployment of a candidate reservoir. However, the already published screening guidelines neither provide information about the expected reservoir performance nor suggest a set of project design parameters, which can be used towards the optimization of the process. In this study, artificial neural networks (ANN) are used to build a high-performance neuro-simulation tool for screening different improved oil recovery techniques: miscible injection (CO2 and N2), waterflooding and steam injection processes. The simulation tool consists of proxy models that implement a multilayer cascade feedforward back propagation network algorithm. The tool is intended to narrow the ranges of possible scenarios to be modeled using conventional simulation, reducing the extensive time and energy spent in dynamic reservoir modeling. A commercial reservoir simulator is used to generate the data to train and validate the artificial neural networks. The proxy models are built considering four different well patterns with different well operating conditions as the field design parameters. Different expert systems are developed for each well pattern. The screening networks predict oil production rate and cumulative oil production profiles for a given set of rock and fluid properties, and design parameters. The results of this study show that the networks are able to recognize the strong correlation between the displacement mechanism and the reservoir characteristics as they effectively forecast hydrocarbon production for different types of reservoir undergoing diverse recovery processes. The artificial neuron networks are able to capture the similarities between different displacement mechanisms as same network architecture is successfully applied in both CO2 and N2 injection. The neuro-simulation application tool is built within a graphical user interface to facilitate the display of the results. The developed soft-computing tool offers an innovative approach to design a variety of efficient and feasible IOR processes by using artificial intelligence. The tool provides appropriate guidelines to the reservoir engineer, it facilitates the appraisal of diverse field development strategies for oil reservoirs, and it helps to reduce the number of scenarios evaluated with conventional reservoir simulation.

  12. Discovery of Novel Human Epidermal Growth Factor Receptor-2 Inhibitors by Structure-based Virtual Screening.

    PubMed

    Shi, Zheng; Yu, Tian; Sun, Rong; Wang, Shan; Chen, Xiao-Qian; Cheng, Li-Jia; Liu, Rong

    2016-01-01

    Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. Since virtual screening has become an integral part of the drug discovery process, it is of great significant to identify novel HER2 inhibitors by structure-based virtual screening. In this study, we carried out a series of elegant bioinformatics approaches, such as virtual screening and molecular dynamics (MD) simulations to identify HER2 inhibitors from Food and Drug Administration-approved small molecule drug as potential "new use" drugs. Molecular docking identified top 10 potential drugs which showed spectrum affinity to HER2. Moreover, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) might exert potential inhibitory effects against HER2-targeted anti-breast cancer therapeutics. Together, our findings may provide successful application of virtual screening studies in the lead discovery process, and suggest that our discovered small molecules could be effective HER2 inhibitor candidates for further study. A series of elegant bioinformatics approaches, including virtual screening and molecular dynamics (MD) simulations were took advantage to identify human epidermal growth factor receptor-2 (HER2) inhibitors. Molecular docking recognized top 10 candidate compounds, which showed spectrum affinity to HER2. Further, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) in candidate compounds were identified as potential "new use" drugs against HER2-targeted anti-breast cancer therapeutics. Abbreviations used: HER2: Human epidermal growth factor receptor-2, FDA: Food and Drug Administration, PDB: Protein Database Bank, RMSDs: Root mean square deviations, SPC: Single point charge, PME: Particle mesh Ewald, NVT: Constant volume, NPT: Constant pressure, RMSF: Root-mean-square fluctuation.

  13. Medical students, clinical preventive services, and shared decision-making.

    PubMed

    Keefe, Carole W; Thompson, Margaret E; Noel, Mary Margaret

    2002-11-01

    Improving access to preventive care requires addressing patient, provider, and systems barriers. Patients often lack knowledge or are skeptical about the importance of prevention. Physicians feel that they have too little time, are not trained to deliver preventive services, and are concerned about the effectiveness of prevention. We have implemented an educational module in the required family practice clerkship (1) to enhance medical student learning about common clinical preventive services and (2) to teach students how to inform and involve patients in shared decision making about those services. Students are asked to examine available evidence-based information for preventive screening services. They are encouraged to look at the recommendations of various organizations and use such resources as reports from the U.S. Preventive Services Task Force to determine recommendations they want to be knowledgeable about in talking with their patients. For learning shared decision making, students are trained to use a model adapted from Braddock and colleagues(1) to discuss specific screening services and to engage patients in the process of making informed decisions about what is best for their own health. The shared decision making is presented and modeled by faculty, discussed in small groups, and students practice using Web-based cases and simulations. The students are evaluated using formative and summative performance-based assessments as they interact with simulated patients about (1) screening for high blood cholesterol and other lipid abnormalities, (2) screening for colorectal cancer, (3) screening for prostate cancer, and (4) screening for breast cancer. The final student evaluation is a ten-minute, videotaped discussion with a simulated patient about screening for colorectal cancer that is graded against a checklist that focuses primarily on the elements of shared decision making. Our medical students appear quite willing to accept shared decision making as a skill that they should have in working with patients, and this was the primary focus of the newly implemented module. However, we have learned that students need to deepen their understanding of screening services in order to help patients understand the associated benefits and risks. The final videotaped interaction with a simulated patient about colorectal cancer screening has been very helpful in making it more obvious to faculty what students believe and know about screening for colorectal cancer. As the students are asked to discuss clinical issues with patients and discuss the pros and cons of screening tests as part of the shared decision-making process, their thinking becomes transparent and it is evident where curricular changes and enhancements are required. We have found that an explicit model that allows students to demonstrate a process for shared decision making is a good introductory tool. We think it would be helpful to provide students with more formative feedback. We would like to develop faculty development programs around shared decision making so that more of our clinical faculty would model such a process with patients. Performance-based assessments are resource-intensive, but they appear to be worth the added effort in terms of enhanced skills development and a more comprehensive appraisal of student learning.

  14. Estimation of the Cost-Effectiveness of Breast Cancer Screening Using Mammography in Mexico Through a Simulation.

    PubMed

    Ulloa-Pérez, Ernesto; Mohar-Betancourt, Alejandro; Reynoso-Noverón, Nancy

    2016-01-01

    Currently, breast cancer is the most prevalent tumor among Mexican women. Screening methods such as mammography could potentially reduce the health and economic burden of breast cancer; however, its risk-benefit balance is still unclear. To estimate the cost-effectiveness of different breast cancer screening programs using mammography in Mexico and to contribute to the decision-making process on this preventive measure. A simulation study was performed using population data and incidence rates. Several screening programs were assessed using the cost-effectiveness methodology recommended by the World Health Organization. The feasible recommended screening program has an examination schedule periodicity of every three years, with a population coverage of 0, 15, 18, 20, 25, 20, 18, and 0% for the age groups of 25-40, 40-45, 45-50, 50-55, 55-60, 60-65, 65-70, and 70-75 years, respectively. Given the present coverage in Mexico, it is necessary to optimize our resource allocation to improve the country's breast cancer prevention policy.

  15. A Preliminary Investigation of the Reinforcement Function of Signal Detections in Simulated Baggage Screening: Further Support for the Vigilance Reinforcement Hypothesis

    ERIC Educational Resources Information Center

    Hogan, Lindsey C.; Bell, Matthew; Olson, Ryan

    2009-01-01

    The vigilance reinforcement hypothesis (VRH) asserts that errors in signal detection tasks are partially explained by operant reinforcement and extinction processes. VRH predictions were tested with a computerized baggage screening task. Our experiment evaluated the effects of signal schedule (extinction vs. variable interval 6 min) and visual…

  16. Simulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cells.

    PubMed

    Tokunaga, Masahiro; Kokubu, Chikara; Maeda, Yusuke; Sese, Jun; Horie, Kyoji; Sugimoto, Nakaba; Kinoshita, Taroh; Yusa, Kosuke; Takeda, Junji

    2014-11-24

    Genome-wide saturation mutagenesis and subsequent phenotype-driven screening has been central to a comprehensive understanding of complex biological processes in classical model organisms such as flies, nematodes, and plants. The degree of "saturation" (i.e., the fraction of possible target genes identified) has been shown to be a critical parameter in determining all relevant genes involved in a biological function, without prior knowledge of their products. In mammalian model systems, however, the relatively large scale and labor intensity of experiments have hampered the achievement of actual saturation mutagenesis, especially for recessive traits that require biallelic mutations to manifest detectable phenotypes. By exploiting the recently established haploid mouse embryonic stem cells (ESCs), we present an implementation of almost complete saturation mutagenesis in a mammalian system. The haploid ESCs were mutagenized with the chemical mutagen N-ethyl-N-nitrosourea (ENU) and processed for the screening of mutants defective in various steps of the glycosylphosphatidylinositol-anchor biosynthetic pathway. The resulting 114 independent mutant clones were characterized by a functional complementation assay, and were shown to be defective in any of 20 genes among all 22 known genes essential for this well-characterized pathway. Ten mutants were further validated by whole-exome sequencing. The predominant generation of single-nucleotide substitutions by ENU resulted in a gene mutation rate proportional to the length of the coding sequence, which facilitated the experimental design of saturation mutagenesis screening with the aid of computational simulation. Our study enables mammalian saturation mutagenesis to become a realistic proposition. Computational simulation, combined with a pilot mutagenesis experiment, could serve as a tool for the estimation of the number of genes essential for biological processes such as drug target pathways when a positive selection of mutants is available.

  17. Screening of groundwater remedial alternatives for brownfield sites: a comprehensive method integrated MCDA with numerical simulation.

    PubMed

    Li, Wei; Zhang, Min; Wang, Mingyu; Han, Zhantao; Liu, Jiankai; Chen, Zhezhou; Liu, Bo; Yan, Yan; Liu, Zhu

    2018-06-01

    Brownfield sites pollution and remediation is an urgent environmental issue worldwide. The screening and assessment of remedial alternatives is especially complex owing to its multiple criteria that involves technique, economy, and policy. To help the decision-makers selecting the remedial alternatives efficiently, the criteria framework conducted by the U.S. EPA is improved and a comprehensive method that integrates multiple criteria decision analysis (MCDA) with numerical simulation is conducted in this paper. The criteria framework is modified and classified into three categories: qualitative, semi-quantitative, and quantitative criteria, MCDA method, AHP-PROMETHEE (analytical hierarchy process-preference ranking organization method for enrichment evaluation) is used to determine the priority ranking of the remedial alternatives and the solute transport simulation is conducted to assess the remedial efficiency. A case study was present to demonstrate the screening method in a brownfield site in Cangzhou, northern China. The results show that the systematic method provides a reliable way to quantify the priority of the remedial alternatives.

  18. Estimating the Effect of Targeted Screening Strategies: An Application to Colonoscopy and Colorectal Cancer.

    PubMed

    Thomas, Duncan C

    2017-07-01

    Screening behavior depends on previous screening history and family members' behaviors, which can act as both confounders and intermediate variables on a causal pathway from screening to disease risk. Conventional analyses that adjust for these variables can lead to incorrect inferences about the causal effect of screening if high-risk individuals are more likely to be screened. Analyzing the data in a manner that treats screening as randomized conditional on covariates allows causal parameters to be estimated; inverse probability weighting based on propensity of exposure scores is one such method considered here. I simulated family data under plausible models for the underlying disease process and for screening behavior to assess the performance of alternative methods of analysis and whether a targeted screening approach based on individuals' risk factors would lead to a greater reduction in cancer incidence in the population than a uniform screening policy. Simulation results indicate that there can be a substantial underestimation of the effect of screening on subsequent cancer risk when using conventional analysis approaches, which is avoided by using inverse probability weighting. A large case-control study of colonoscopy and colorectal cancer from Germany shows a strong protective effect of screening, but inverse probability weighting makes this effect even stronger. Targeted screening approaches based on either fixed risk factors or family history yield somewhat greater reductions in cancer incidence with fewer screens needed to prevent one cancer than population-wide approaches, but the differences may not be large enough to justify the additional effort required. See video abstract at, http://links.lww.com/EDE/B207.

  19. Modeling Amorphous Microporous Polymers for CO2 Capture and Separations.

    PubMed

    Kupgan, Grit; Abbott, Lauren J; Hart, Kyle E; Colina, Coray M

    2018-06-13

    This review concentrates on the advances of atomistic molecular simulations to design and evaluate amorphous microporous polymeric materials for CO 2 capture and separations. A description of atomistic molecular simulations is provided, including simulation techniques, structural generation approaches, relaxation and equilibration methodologies, and considerations needed for validation of simulated samples. The review provides general guidelines and a comprehensive update of the recent literature (since 2007) to promote the acceleration of the discovery and screening of amorphous microporous polymers for CO 2 capture and separation processes.

  20. Robust integration schemes for junction-based modulators in a 200mm CMOS compatible silicon photonic platform (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Szelag, Bertrand; Abraham, Alexis; Brision, Stéphane; Gindre, Paul; Blampey, Benjamin; Myko, André; Olivier, Segolene; Kopp, Christophe

    2017-05-01

    Silicon photonic is becoming a reality for next generation communication system addressing the increasing needs of HPC (High Performance Computing) systems and datacenters. CMOS compatible photonic platforms are developed in many foundries integrating passive and active devices. The use of existing and qualified microelectronics process guarantees cost efficient and mature photonic technologies. Meanwhile, photonic devices have their own fabrication constraints, not similar to those of cmos devices, which can affect their performances. In this paper, we are addressing the integration of PN junction Mach Zehnder modulator in a 200mm CMOS compatible photonic platform. Implantation based device characteristics are impacted by many process variations among which screening layer thickness, dopant diffusion, implantation mask overlay. CMOS devices are generally quite robust with respect to these processes thanks to dedicated design rules. For photonic devices, the situation is different since, most of the time, doped areas must be carefully located within waveguides and CMOS solutions like self-alignment to the gate cannot be applied. In this work, we present different robust integration solutions for junction-based modulators. A simulation setup has been built in order to optimize of the process conditions. It consist in a Mathlab interface coupling process and device electro-optic simulators in order to run many iterations. Illustrations of modulator characteristic variations with process parameters are done using this simulation setup. Parameters under study are, for instance, X and Y direction lithography shifts, screening oxide and slab thicknesses. A robust process and design approach leading to a pn junction Mach Zehnder modulator insensitive to lithography misalignment is then proposed. Simulation results are compared with experimental datas. Indeed, various modulators have been fabricated with different process conditions and integration schemes. Extensive electro-optic characterization of these components will be presented.

  1. Benefits of computer screen-based simulation in learning cardiac arrest procedures.

    PubMed

    Bonnetain, Elodie; Boucheix, Jean-Michel; Hamet, Maël; Freysz, Marc

    2010-07-01

    What is the best way to train medical students early so that they acquire basic skills in cardiopulmonary resuscitation as effectively as possible? Studies have shown the benefits of high-fidelity patient simulators, but have also demonstrated their limits. New computer screen-based multimedia simulators have fewer constraints than high-fidelity patient simulators. In this area, as yet, there has been no research on the effectiveness of transfer of learning from a computer screen-based simulator to more realistic situations such as those encountered with high-fidelity patient simulators. We tested the benefits of learning cardiac arrest procedures using a multimedia computer screen-based simulator in 28 Year 2 medical students. Just before the end of the traditional resuscitation course, we compared two groups. An experiment group (EG) was first asked to learn to perform the appropriate procedures in a cardiac arrest scenario (CA1) in the computer screen-based learning environment and was then tested on a high-fidelity patient simulator in another cardiac arrest simulation (CA2). While the EG was learning to perform CA1 procedures in the computer screen-based learning environment, a control group (CG) actively continued to learn cardiac arrest procedures using practical exercises in a traditional class environment. Both groups were given the same amount of practice, exercises and trials. The CG was then also tested on the high-fidelity patient simulator for CA2, after which it was asked to perform CA1 using the computer screen-based simulator. Performances with both simulators were scored on a precise 23-point scale. On the test on a high-fidelity patient simulator, the EG trained with a multimedia computer screen-based simulator performed significantly better than the CG trained with traditional exercises and practice (16.21 versus 11.13 of 23 possible points, respectively; p<0.001). Computer screen-based simulation appears to be effective in preparing learners to use high-fidelity patient simulators, which present simulations that are closer to real-life situations.

  2. Screen-Space Normal Distribution Function Caching for Consistent Multi-Resolution Rendering of Large Particle Data.

    PubMed

    Ibrahim, Mohamed; Wickenhauser, Patrick; Rautek, Peter; Reina, Guido; Hadwiger, Markus

    2018-01-01

    Molecular dynamics (MD) simulations are crucial to investigating important processes in physics and thermodynamics. The simulated atoms are usually visualized as hard spheres with Phong shading, where individual particles and their local density can be perceived well in close-up views. However, for large-scale simulations with 10 million particles or more, the visualization of large fields-of-view usually suffers from strong aliasing artifacts, because the mismatch between data size and output resolution leads to severe under-sampling of the geometry. Excessive super-sampling can alleviate this problem, but is prohibitively expensive. This paper presents a novel visualization method for large-scale particle data that addresses aliasing while enabling interactive high-quality rendering. We introduce the novel concept of screen-space normal distribution functions (S-NDFs) for particle data. S-NDFs represent the distribution of surface normals that map to a given pixel in screen space, which enables high-quality re-lighting without re-rendering particles. In order to facilitate interactive zooming, we cache S-NDFs in a screen-space mipmap (S-MIP). Together, these two concepts enable interactive, scale-consistent re-lighting and shading changes, as well as zooming, without having to re-sample the particle data. We show how our method facilitates the interactive exploration of real-world large-scale MD simulation data in different scenarios.

  3. Simulation and design of ECT differential bobbin probes for the inspection of cracks in bolts

    NASA Astrophysics Data System (ADS)

    Ra, S. W.; Im, K. H.; Lee, S. G.; Kim, H. J.; Song, S. J.; Kim, S. K.; Cho, Y. T.; Woo, Y. D.; Jung, J. A.

    2015-12-01

    All Various defects could be generated in bolts for a use of oil filters for the manufacturing process and then may affect to the safety and quality in bolts. Also, fine defects may be imbedded in oil filter system during multiple forging manufacturing processes. So it is very important that such defects be investigated and screened during the multiple manufacturing processes. Therefore, in order effectively to evaluate the fine defects, the design parameters for bobbin-types were selected under a finite element method (FEM) simulations and Eddy current testing (ECT). Especially the FEM simulations were performed to make characterization in the crack detection of the bolts and the parameters such as number of turns of the coil, the coil size and applied frequency were calculated based on the simulation results.

  4. Molecular dynamics simulations and novel drug discovery.

    PubMed

    Liu, Xuewei; Shi, Danfeng; Zhou, Shuangyan; Liu, Hongli; Liu, Huanxiang; Yao, Xiaojun

    2018-01-01

    Molecular dynamics (MD) simulations can provide not only plentiful dynamical structural information on biomacromolecules but also a wealth of energetic information about protein and ligand interactions. Such information is very important to understanding the structure-function relationship of the target and the essence of protein-ligand interactions and to guiding the drug discovery and design process. Thus, MD simulations have been applied widely and successfully in each step of modern drug discovery. Areas covered: In this review, the authors review the applications of MD simulations in novel drug discovery, including the pathogenic mechanisms of amyloidosis diseases, virtual screening and the interaction mechanisms between drugs and targets. Expert opinion: MD simulations have been used widely in investigating the pathogenic mechanisms of diseases caused by protein misfolding, in virtual screening, and in investigating drug resistance mechanisms caused by mutations of the target. These issues are very difficult to solve by experimental methods alone. Thus, in the future, MD simulations will have wider application with the further improvement of computational capacity and the development of better sampling methods and more accurate force fields together with more efficient analysis methods.

  5. Validation of columnar CsI x-ray detector responses obtained with hybridMANTIS, a CPU-GPU Monte Carlo code for coupled x-ray, electron, and optical transport.

    PubMed

    Sharma, Diksha; Badano, Aldo

    2013-03-01

    hybridMANTIS is a Monte Carlo package for modeling indirect x-ray imagers using columnar geometry based on a hybrid concept that maximizes the utilization of available CPU and graphics processing unit processors in a workstation. The authors compare hybridMANTIS x-ray response simulations to previously published MANTIS and experimental data for four cesium iodide scintillator screens. These screens have a variety of reflective and absorptive surfaces with different thicknesses. The authors analyze hybridMANTIS results in terms of modulation transfer function and calculate the root mean square difference and Swank factors from simulated and experimental results. The comparison suggests that hybridMANTIS better matches the experimental data as compared to MANTIS, especially at high spatial frequencies and for the thicker screens. hybridMANTIS simulations are much faster than MANTIS with speed-ups up to 5260. hybridMANTIS is a useful tool for improved description and optimization of image acquisition stages in medical imaging systems and for modeling the forward problem in iterative reconstruction algorithms.

  6. Sensitivity of diabetic retinopathy associated vision loss to screening interval in an agent-based/discrete event simulation model.

    PubMed

    Day, T Eugene; Ravi, Nathan; Xian, Hong; Brugh, Ann

    2014-04-01

    To examine the effect of changes to screening interval on the incidence of vision loss in a simulated cohort of Veterans with diabetic retinopathy (DR). This simulation allows us to examine potential interventions without putting patients at risk. Simulated randomized controlled trial. We develop a hybrid agent-based/discrete event simulation which incorporates a population of simulated Veterans--using abstracted data from a retrospective cohort of real-world diabetic Veterans--with a discrete event simulation (DES) eye clinic at which it seeks treatment for DR. We compare vision loss under varying screening policies, in a simulated population of 5000 Veterans over 50 independent ten-year simulation runs for each group. Diabetic Retinopathy associated vision loss increased as the screening interval was extended from one to five years (p<0.0001). This increase was concentrated in the third year of the screening interval (p<0.01). There was no increase in vision loss associated with increasing the screening interval from one year to two years (p=0.98). Increasing the screening interval for diabetic patients who have not yet developed diabetic retinopathy from 1 to 2 years appears safe, while increasing the interval to 3 years heightens risk for vision loss. Published by Elsevier Ltd.

  7. A prototype software methodology for the rapid evaluation of biomanufacturing process options.

    PubMed

    Chhatre, Sunil; Francis, Richard; O'Donovan, Kieran; Titchener-Hooker, Nigel J; Newcombe, Anthony R; Keshavarz-Moore, Eli

    2007-10-01

    A three-layered simulation methodology is described that rapidly evaluates biomanufacturing process options. In each layer, inferior options are screened out, while more promising candidates are evaluated further in the subsequent, more refined layer, which uses more rigorous models that require more data from time-consuming experimentation. Screening ensures laboratory studies are focused only on options showing the greatest potential. To simplify the screening, outputs of production level, cost and time are combined into a single value using multi-attribute-decision-making techniques. The methodology was illustrated by evaluating alternatives to an FDA (U.S. Food and Drug Administration)-approved process manufacturing rattlesnake antivenom. Currently, antivenom antibodies are recovered from ovine serum by precipitation/centrifugation and proteolyzed before chromatographic purification. Alternatives included increasing the feed volume, replacing centrifugation with microfiltration and replacing precipitation/centrifugation with a Protein G column. The best alternative used a higher feed volume and a Protein G step. By rapidly evaluating the attractiveness of options, the methodology facilitates efficient and cost-effective process development.

  8. [Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model].

    PubMed

    He, Li-hong; Wang, Hai-yan; Lei, Xiang-dong

    2016-02-01

    Model based on vegetation ecophysiological process contains many parameters, and reasonable parameter values will greatly improve simulation ability. Sensitivity analysis, as an important method to screen out the sensitive parameters, can comprehensively analyze how model parameters affect the simulation results. In this paper, we conducted parameter sensitivity analysis of BIOME-BGC model with a case study of simulating net primary productivity (NPP) of Larix olgensis forest in Wangqing, Jilin Province. First, with the contrastive analysis between field measurement data and the simulation results, we tested the BIOME-BGC model' s capability of simulating the NPP of L. olgensis forest. Then, Morris and EFAST sensitivity methods were used to screen the sensitive parameters that had strong influence on NPP. On this basis, we also quantitatively estimated the sensitivity of the screened parameters, and calculated the global, the first-order and the second-order sensitivity indices. The results showed that the BIOME-BGC model could well simulate the NPP of L. olgensis forest in the sample plot. The Morris sensitivity method provided a reliable parameter sensitivity analysis result under the condition of a relatively small sample size. The EFAST sensitivity method could quantitatively measure the impact of simulation result of a single parameter as well as the interaction between the parameters in BIOME-BGC model. The influential sensitive parameters for L. olgensis forest NPP were new stem carbon to new leaf carbon allocation and leaf carbon to nitrogen ratio, the effect of their interaction was significantly greater than the other parameter' teraction effect.

  9. Cervical screening programmes: can automation help? Evidence from systematic reviews, an economic analysis and a simulation modelling exercise applied to the UK.

    PubMed

    Willis, B H; Barton, P; Pearmain, P; Bryan, S; Hyde, C

    2005-03-01

    To assess the effectiveness and cost-effectiveness of adding automated image analysis to cervical screening programmes. Searching of all major electronic databases to the end of 2000 was supplemented by a detailed survey for unpublished UK literature. Four systematic reviews were conducted according to recognised guidance. The review of 'clinical effectiveness' included studies assessing reproducibility and impact on health outcomes and processes in addition to evaluations of test accuracy. A discrete event simulation model was developed, although the economic evaluation ultimately relied on a cost-minimisation analysis. The predominant finding from the systematic reviews was the very limited amount of rigorous primary research. None of the included studies refers to the only commercially available automated image analysis device in 2002, the AutoPap Guided Screening (GS) System. The results of the included studies were debatably most compatible with automated image analysis being equivalent in test performance to manual screening. Concerning process, there was evidence that automation does lead to reductions in average slide processing times. In the PRISMATIC trial this was reduced from 10.4 to 3.9 minutes, a statistically significant and practically important difference. The economic evaluation tentatively suggested that the AutoPap GS System may be efficient. The key proviso is that credible data become available to support that the AutoPap GS System has test performance and processing times equivalent to those obtained for PAPNET. The available evidence is still insufficient to recommend implementation of automated image analysis systems. The priority for action remains further research, particularly the 'clinical effectiveness' of the AutoPap GS System. Assessing the cost-effectiveness of introducing automation alongside other approaches is also a priority.

  10. RENEW v3.2 user's manual, maintenance estimation simulation for Space Station Freedom Program

    NASA Technical Reports Server (NTRS)

    Bream, Bruce L.

    1993-01-01

    RENEW is a maintenance event estimation simulation program developed in support of the Space Station Freedom Program (SSFP). This simulation uses reliability and maintainability (R&M) and logistics data to estimate both average and time dependent maintenance demands. The simulation uses Monte Carlo techniques to generate failure and repair times as a function of the R&M and logistics parameters. The estimates are generated for a single type of orbital replacement unit (ORU). The simulation has been in use by the SSFP Work Package 4 prime contractor, Rocketdyne, since January 1991. The RENEW simulation gives closer estimates of performance since it uses a time dependent approach and depicts more factors affecting ORU failure and repair than steady state average calculations. RENEW gives both average and time dependent demand values. Graphs of failures over the mission period and yearly failure occurrences are generated. The averages demand rate for the ORU over the mission period is also calculated. While RENEW displays the results in graphs, the results are also available in a data file for further use by spreadsheets or other programs. The process of using RENEW starts with keyboard entry of the R&M and operational data. Once entered, the data may be saved in a data file for later retrieval. The parameters may be viewed and changed after entry using RENEW. The simulation program runs the number of Monte Carlo simulations requested by the operator. Plots and tables of the results can be viewed on the screen or sent to a printer. The results of the simulation are saved along with the input data. Help screens are provided with each menu and data entry screen.

  11. Performance Studies on Distributed Virtual Screening

    PubMed Central

    Krüger, Jens; de la Garza, Luis; Kohlbacher, Oliver; Nagel, Wolfgang E.

    2014-01-01

    Virtual high-throughput screening (vHTS) is an invaluable method in modern drug discovery. It permits screening large datasets or databases of chemical structures for those structures binding possibly to a drug target. Virtual screening is typically performed by docking code, which often runs sequentially. Processing of huge vHTS datasets can be parallelized by chunking the data because individual docking runs are independent of each other. The goal of this work is to find an optimal splitting maximizing the speedup while considering overhead and available cores on Distributed Computing Infrastructures (DCIs). We have conducted thorough performance studies accounting not only for the runtime of the docking itself, but also for structure preparation. Performance studies were conducted via the workflow-enabled science gateway MoSGrid (Molecular Simulation Grid). As input we used benchmark datasets for protein kinases. Our performance studies show that docking workflows can be made to scale almost linearly up to 500 concurrent processes distributed even over large DCIs, thus accelerating vHTS campaigns significantly. PMID:25032219

  12. Dynamic screening in a two-species asymmetric exclusion process

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Hyuk; den Nijs, Marcel

    2007-08-01

    The dynamic scaling properties of the one-dimensional Burgers equation are expected to change with the inclusion of additional conserved degrees of freedom. We study this by means of one-dimensional (1D) driven lattice gas models that conserve both mass and momentum. The most elementary version of this is the Arndt-Heinzel-Rittenberg (AHR) process, which is usually presented as a two-species diffusion process, with particles of opposite charge hopping in opposite directions and with a variable passing probability. From the hydrodynamics perspective this can be viewed as two coupled Burgers equations, with the number of positive and negative momentum quanta individually conserved. We determine the dynamic scaling dimension of the AHR process from the time evolution of the two-point correlation functions, and find numerically that the dynamic critical exponent is consistent with simple Kardar-Parisi-Zhang- (KPZ) type scaling. We establish that this is the result of perfect screening of fluctuations in the stationary state. The two-point correlations decay exponentially in our simulations and in such a manner that in terms of quasiparticles, fluctuations fully screen each other at coarse grained length scales. We prove this screening rigorously using the analytic matrix product structure of the stationary state. The proof suggests the existence of a topological invariant. The process remains in the KPZ universality class but only in the sense of a factorization, as (KPZ)2 . The two Burgers equations decouple at large length scales due to the perfect screening.

  13. Robotic Attention Processing And Its Application To Visual Guidance

    NASA Astrophysics Data System (ADS)

    Barth, Matthew; Inoue, Hirochika

    1988-03-01

    This paper describes a method of real-time visual attention processing for robots performing visual guidance. This robot attention processing is based on a novel vision processor, the multi-window vision system that was developed at the University of Tokyo. The multi-window vision system is unique in that it only processes visual information inside local area windows. These local area windows are quite flexible in their ability to move anywhere on the visual screen, change their size and shape, and alter their pixel sampling rate. By using these windows for specific attention tasks, it is possible to perform high speed attention processing. The primary attention skills of detecting motion, tracking an object, and interpreting an image are all performed at high speed on the multi-window vision system. A basic robotic attention scheme using the attention skills was developed. The attention skills involved detection and tracking of salient visual features. The tracking and motion information thus obtained was utilized in producing the response to the visual stimulus. The response of the attention scheme was quick enough to be applicable to the real-time vision processing tasks of playing a video 'pong' game, and later using an automobile driving simulator. By detecting the motion of a 'ball' on a video screen and then tracking the movement, the attention scheme was able to control a 'paddle' in order to keep the ball in play. The response was faster than that of a human's, allowing the attention scheme to play the video game at higher speeds. Further, in the application to the driving simulator, the attention scheme was able to control both direction and velocity of a simulated vehicle following a lead car. These two applications show the potential of local visual processing in its use for robotic attention processing.

  14. Validation of columnar CsI x-ray detector responses obtained with hybridMANTIS, a CPU-GPU Monte Carlo code for coupled x-ray, electron, and optical transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Diksha; Badano, Aldo

    2013-03-15

    Purpose: hybridMANTIS is a Monte Carlo package for modeling indirect x-ray imagers using columnar geometry based on a hybrid concept that maximizes the utilization of available CPU and graphics processing unit processors in a workstation. Methods: The authors compare hybridMANTIS x-ray response simulations to previously published MANTIS and experimental data for four cesium iodide scintillator screens. These screens have a variety of reflective and absorptive surfaces with different thicknesses. The authors analyze hybridMANTIS results in terms of modulation transfer function and calculate the root mean square difference and Swank factors from simulated and experimental results. Results: The comparison suggests thatmore » hybridMANTIS better matches the experimental data as compared to MANTIS, especially at high spatial frequencies and for the thicker screens. hybridMANTIS simulations are much faster than MANTIS with speed-ups up to 5260. Conclusions: hybridMANTIS is a useful tool for improved description and optimization of image acquisition stages in medical imaging systems and for modeling the forward problem in iterative reconstruction algorithms.« less

  15. Miscellaneous Topics in Computer-Aided Drug Design: Synthetic Accessibility and GPU Computing, and Other Topics.

    PubMed

    Fukunishi, Yoshifumi; Mashimo, Tadaaki; Misoo, Kiyotaka; Wakabayashi, Yoshinori; Miyaki, Toshiaki; Ohta, Seiji; Nakamura, Mayu; Ikeda, Kazuyoshi

    2016-01-01

    Computer-aided drug design is still a state-of-the-art process in medicinal chemistry, and the main topics in this field have been extensively studied and well reviewed. These topics include compound databases, ligand-binding pocket prediction, protein-compound docking, virtual screening, target/off-target prediction, physical property prediction, molecular simulation and pharmacokinetics/pharmacodynamics (PK/PD) prediction. Message and Conclusion: However, there are also a number of secondary or miscellaneous topics that have been less well covered. For example, methods for synthesizing and predicting the synthetic accessibility (SA) of designed compounds are important in practical drug development, and hardware/software resources for performing the computations in computer-aided drug design are crucial. Cloud computing and general purpose graphics processing unit (GPGPU) computing have been used in virtual screening and molecular dynamics simulations. Not surprisingly, there is a growing demand for computer systems which combine these resources. In the present review, we summarize and discuss these various topics of drug design.

  16. Miscellaneous Topics in Computer-Aided Drug Design: Synthetic Accessibility and GPU Computing, and Other Topics

    PubMed Central

    Fukunishi, Yoshifumi; Mashimo, Tadaaki; Misoo, Kiyotaka; Wakabayashi, Yoshinori; Miyaki, Toshiaki; Ohta, Seiji; Nakamura, Mayu; Ikeda, Kazuyoshi

    2016-01-01

    Abstract: Background Computer-aided drug design is still a state-of-the-art process in medicinal chemistry, and the main topics in this field have been extensively studied and well reviewed. These topics include compound databases, ligand-binding pocket prediction, protein-compound docking, virtual screening, target/off-target prediction, physical property prediction, molecular simulation and pharmacokinetics/pharmacodynamics (PK/PD) prediction. Message and Conclusion: However, there are also a number of secondary or miscellaneous topics that have been less well covered. For example, methods for synthesizing and predicting the synthetic accessibility (SA) of designed compounds are important in practical drug development, and hardware/software resources for performing the computations in computer-aided drug design are crucial. Cloud computing and general purpose graphics processing unit (GPGPU) computing have been used in virtual screening and molecular dynamics simulations. Not surprisingly, there is a growing demand for computer systems which combine these resources. In the present review, we summarize and discuss these various topics of drug design. PMID:27075578

  17. Space lab system analysis

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Rives, T. B.

    1987-01-01

    An analytical analysis of the HOSC Generic Peripheral processing system was conducted. The results are summarized and they indicate that the maximum delay in performing screen change requests should be less than 2.5 sec., occurring for a slow VAX host to video screen I/O rate of 50 KBps. This delay is due to the average I/O rate from the video terminals to their host computer. Software structure of the main computers and the host computers will have greater impact on screen change or refresh response times. The HOSC data system model was updated by a newly coded PASCAL based simulation program which was installed on the HOSC VAX system. This model is described and documented. Suggestions are offered to fine tune the performance of the ETERNET interconnection network. Suggestions for using the Nutcracker by Excelan to trace itinerate packets which appear on the network from time to time were offered in discussions with the HOSC personnel. Several visits to the HOSC facility were to install and demonstrate the simulation model.

  18. Development of process control capability through the Browns Ferry Integrated Computer System using Reactor Water Clanup System as an example. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.; Mowrey, J.

    1995-12-01

    This report describes the design, development and testing of process controls for selected system operations in the Browns Ferry Nuclear Plant (BFNP) Reactor Water Cleanup System (RWCU) using a Computer Simulation Platform which simulates the RWCU System and the BFNP Integrated Computer System (ICS). This system was designed to demonstrate the feasibility of the soft control (video touch screen) of nuclear plant systems through an operator console. The BFNP Integrated Computer System, which has recently. been installed at BFNP Unit 2, was simulated to allow for operator control functions of the modeled RWCU system. The BFNP Unit 2 RWCU systemmore » was simulated using the RELAP5 Thermal/Hydraulic Simulation Model, which provided the steady-state and transient RWCU process variables and simulated the response of the system to control system inputs. Descriptions of the hardware and software developed are also included in this report. The testing and acceptance program and results are also detailed in this report. A discussion of potential installation of an actual RWCU process control system in BFNP Unit 2 is included. Finally, this report contains a section on industry issues associated with installation of process control systems in nuclear power plants.« less

  19. Can Simulator Immersion Change Cognitive Style? Results from a Cross-Sectional Study of Field-Dependence--Independence in Air Traffic Control Students

    ERIC Educational Resources Information Center

    Van Eck, Richard N.; Fu, Hongxia; Drechsel, Paul V. J.

    2015-01-01

    Air traffic control (ATC) operations are critical to the U.S. aviation infrastructure, making ATC training a critical area of study. Because ATC performance is heavily dependent on visual processing, it is important to understand how to screen for or promote relevant visual processing abilities. While conventional wisdom has maintained that such…

  20. Cost-effectiveness and budget impact analysis of a population-based screening program for colorectal cancer.

    PubMed

    Pil, L; Fobelets, M; Putman, K; Trybou, J; Annemans, L

    2016-07-01

    Colorectal cancer (CRC) is one of the leading causes of cancer mortality in Belgium. In Flanders (Belgium), a population-based screening program with a biennial immunochemical faecal occult blood test (iFOBT) in women and men aged 56-74 has been organised since 2013. This study assessed the cost-effectiveness and budget impact of the colorectal population-based screening program in Flanders (Belgium). A health economic model was conducted, consisting of a decision tree simulating the screening process and a Markov model, with a time horizon of 20years, simulating natural progression. Predicted mortality and incidence, total costs, and quality-adjusted life-years (QALYs) with and without the screening program were calculated in order to determine the incremental cost-effectiveness ratio of CRC screening. Deterministic and probabilistic sensitivity analyses were conducted, taking into account uncertainty of the model parameters. Mortality and incidence were predicted to decrease over 20years. The colorectal screening program in Flanders is found to be cost-effective with an ICER of 1681/QALY (95% CI -1317 to 6601) in males and €4,484/QALY (95% CI -3254 to 18,163). The probability of being cost-effective given a threshold of €35,000/QALY was 100% and 97.3%, respectively. The budget impact analysis showed the extra cost for the health care payer to be limited. This health economic analysis has shown that despite the possible adverse effects of screening and the extra costs for the health care payer and the patient, the population-based screening program for CRC in Flanders is cost-effective and should therefore be maintained. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  1. A Population-Level Data Analytics Portal for Self-Administered Lifestyle and Mental Health Screening.

    PubMed

    Zhang, Xindi; Warren, Jim; Corter, Arden; Goodyear-Smith, Felicity

    2016-01-01

    This paper describes development of a prototype data analytics portal for analysis of accumulated screening results from eCHAT (electronic Case-finding and Help Assessment Tool). eCHAT allows individuals to conduct a self-administered lifestyle and mental health screening assessment, with usage to date chiefly in the context of primary care waiting rooms. The intention is for wide roll-out to primary care clinics, including secondary school based clinics, resulting in the accumulation of population-level data. Data from a field trial of eCHAT with sexual health questions tailored to youth were used to support design of a data analytics portal for population-level data. The design process included user personas and scenarios, screen prototyping and a simulator for generating large-scale data sets. The prototype demonstrates the promise of wide-scale self-administered screening data to support a range of users including practice managers, clinical directors and health policy analysts.

  2. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    NASA Technical Reports Server (NTRS)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  3. Using Computational Modeling to Assess the Impact of Clinical Decision Support on Cancer Screening within Community Health Centers

    PubMed Central

    Carney, Timothy Jay; Morgan, Geoffrey P.; Jones, Josette; McDaniel, Anna M.; Weaver, Michael; Weiner, Bryan; Haggstrom, David A.

    2014-01-01

    Our conceptual model demonstrates our goal to investigate the impact of clinical decision support (CDS) utilization on cancer screening improvement strategies in the community health care (CHC) setting. We employed a dual modeling technique using both statistical and computational modeling to evaluate impact. Our statistical model used the Spearman’s Rho test to evaluate the strength of relationship between our proximal outcome measures (CDS utilization) against our distal outcome measure (provider self-reported cancer screening improvement). Our computational model relied on network evolution theory and made use of a tool called Construct-TM to model the use of CDS measured by the rate of organizational learning. We employed the use of previously collected survey data from community health centers Cancer Health Disparities Collaborative (HDCC). Our intent is to demonstrate the added valued gained by using a computational modeling tool in conjunction with a statistical analysis when evaluating the impact a health information technology, in the form of CDS, on health care quality process outcomes such as facility-level screening improvement. Significant simulated disparities in organizational learning over time were observed between community health centers beginning the simulation with high and low clinical decision support capability. PMID:24953241

  4. Simulation to assess the efficacy of US airport entry scrreening of passengers for pandemic influenza

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcmahon, Benjamin

    2009-01-01

    We present our methodology and stochastic discrete-event simulation developed to model the screening of passengers for pandemic influenza at the US port-of-entry airports. Our model uniquely combines epidemiology modelling, evolving infected states and conditions of passengers over time, and operational considerations of screening in a single simulation. The simulation begins with international aircraft arrivals to the US. Passengers are then randomly assigned to one of three states -- not infected, infected with pandemic influenza and infected with other respiratory illness. Passengers then pass through various screening layers (i.e. pre-departure screening, en route screening, primary screening and secondary screening) and ultimatelymore » exit the system. We track the status of each passenger over time, with a special emphasis on false negatives (i.e. passengers infected with pandemic influenza, but are not identified as such) as these passengers pose a significant threat as they could unknowingly spread the pandemic influenza virus throughout our nation.« less

  5. Virtual Screening and Molecular Dynamics Simulations from a Bank of Molecules of the Amazon Region Against Functional NS3-4A Protease-Helicase Enzyme of Hepatitis C Virus.

    PubMed

    Pinheiro, Alan Sena; Duarte, Jaqueline Bianca Carvalho; Alves, Cláudio Nahum; de Molfetta, Fábio Alberto

    2015-07-01

    Hepatitis C virus (HCV) infection is a disease that affects approximately 3% of the global population and requires new therapeutic agents without the inconvenience associated with current anti-HCV treatment. This paper reports on a study of a virtual screening and a molecular dynamics simulation of compounds derived from natural products from the Amazon region that are potentially effective against the NS3-4A enzyme of HCV, which plays an important role in the replication process of this virus. According to the results of the molecular docking calculations and subsequent consensual analysis, the best scored compounds showed interactions between hydrogen and residues of the catalytic triad as well as interactions with residues that guide ligands to the active site of the enzyme. They also showed stability in the molecular dynamics simulation, as the structures preserved important interactions at the active site of the enzyme. The root mean square deviation (RMSD) values were stabilized at the end of the simulation time. Such compounds are considered promising as novel therapies against HCV.

  6. Simulation modelling as a tool for knowledge mobilisation in health policy settings: a case study protocol.

    PubMed

    Freebairn, L; Atkinson, J; Kelly, P; McDonnell, G; Rychetnik, L

    2016-09-21

    Evidence-informed decision-making is essential to ensure that health programs and services are effective and offer value for money; however, barriers to the use of evidence persist. Emerging systems science approaches and advances in technology are providing new methods and tools to facilitate evidence-based decision-making. Simulation modelling offers a unique tool for synthesising and leveraging existing evidence, data and expert local knowledge to examine, in a robust, low risk and low cost way, the likely impact of alternative policy and service provision scenarios. This case study will evaluate participatory simulation modelling to inform the prevention and management of gestational diabetes mellitus (GDM). The risks associated with GDM are well recognised; however, debate remains regarding diagnostic thresholds and whether screening and treatment to reduce maternal glucose levels reduce the associated risks. A diagnosis of GDM may provide a leverage point for multidisciplinary lifestyle modification interventions. This research will apply and evaluate a simulation modelling approach to understand the complex interrelation of factors that drive GDM rates, test options for screening and interventions, and optimise the use of evidence to inform policy and program decision-making. The study design will use mixed methods to achieve the objectives. Policy, clinical practice and research experts will work collaboratively to develop, test and validate a simulation model of GDM in the Australian Capital Territory (ACT). The model will be applied to support evidence-informed policy dialogues with diverse stakeholders for the management of GDM in the ACT. Qualitative methods will be used to evaluate simulation modelling as an evidence synthesis tool to support evidence-based decision-making. Interviews and analysis of workshop recordings will focus on the participants' engagement in the modelling process; perceived value of the participatory process, perceived commitment, influence and confidence of stakeholders in implementing policy and program decisions identified in the modelling process; and the impact of the process in terms of policy and program change. The study will generate empirical evidence on the feasibility and potential value of simulation modelling to support knowledge mobilisation and consensus building in health settings.

  7. Predictive Toxicology and Computer Simulation of Male Reproductive Development (Duke U KURe and PMRC research day)

    EPA Science Inventory

    The reproductive tract is a complex, integrated organ system with diverse embryology and unique sensitivity to prenatal environmental exposures that disrupt morphoregulatory processes and endocrine signaling. U.S. EPA’s in vitro high-throughput screening (HTS) database (ToxCastDB...

  8. Monte Carlo Simulation of a 12 MeV Cargo Container Inspection System

    NASA Astrophysics Data System (ADS)

    Ozcan, Ibrahim; Chandler, Katherine; Spaulding, Randy; Farfan, Eduardo

    2007-05-01

    After the terrorist events of 9/11, border security has become one of the most important issues in national security due to the large number of cargo containers entering the country. Screening of all cargo containers for nuclear materials should be performed during border inspections. The technical aspects of inspecting cargo containers using electron accelerators have been studied previously. However, the radiological protection aspects involved in these studies have not been fully considered. This screening process may accidentally harm operators, workers, and bystanders; as well as stowaways hiding inside the containers. In this research project, external doses were estimated at various locations near the inspection system. A 12-MeV linear accelerator (LINAC) was used in the experiment. The relationship between the various locations and doses were determined in this simulation. The simulation was performed using MCNPX. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.B2.8

  9. Use of mechanistic simulations as a quantitative risk-ranking tool within the quality by design framework.

    PubMed

    Stocker, Elena; Toschkoff, Gregor; Sacher, Stephan; Khinast, Johannes G

    2014-11-20

    The purpose of this study is to evaluate the use of computer simulations for generating quantitative knowledge as a basis for risk ranking and mechanistic process understanding, as required by ICH Q9 on quality risk management systems. In this specific publication, the main focus is the demonstration of a risk assessment workflow, including a computer simulation for the generation of mechanistic understanding of active tablet coating in a pan coater. Process parameter screening studies are statistically planned under consideration of impacts on a potentially critical quality attribute, i.e., coating mass uniformity. Based on computer simulation data the process failure mode and effects analysis of the risk factors is performed. This results in a quantitative criticality assessment of process parameters and the risk priority evaluation of failure modes. The factor for a quantitative reassessment of the criticality and risk priority is the coefficient of variation, which represents the coating mass uniformity. The major conclusion drawn from this work is a successful demonstration of the integration of computer simulation in the risk management workflow leading to an objective and quantitative risk assessment. Copyright © 2014. Published by Elsevier B.V.

  10. Micromotors to capture and destroy anthrax simulant spores.

    PubMed

    Orozco, Jahir; Pan, Guoqing; Sattayasamitsathit, Sirilak; Galarnyk, Michael; Wang, Joseph

    2015-03-07

    Towards addressing the need for detecting and eliminating biothreats, we describe a micromotor-based approach for screening, capturing, isolating and destroying anthrax simulant spores in a simple and rapid manner with minimal sample processing. The B. globilli antibody-functionalized micromotors can recognize, capture and transport B. globigii spores in environmental matrices, while showing non-interactions with excess of non-target bacteria. Efficient destruction of the anthrax simulant spores is demonstrated via the micromotor-induced mixing of a mild oxidizing solution. The new micromotor-based approach paves a way to dynamic multifunctional systems that rapidly recognize, isolate, capture and destroy biological threats.

  11. Virtual Colonoscopy Screening With Ultra Low-Dose CT and Less-Stressful Bowel Preparation: A Computer Simulation Study

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wang, Su; Li, Lihong; Fan, Yi; Lu, Hongbing; Liang, Zhengrong

    2008-10-01

    Computed tomography colonography (CTC) or CT-based virtual colonoscopy (VC) is an emerging tool for detection of colonic polyps. Compared to the conventional fiber-optic colonoscopy, VC has demonstrated the potential to become a mass screening modality in terms of safety, cost, and patient compliance. However, current CTC delivers excessive X-ray radiation to the patient during data acquisition. The radiation is a major concern for screening application of CTC. In this work, we performed a simulation study to demonstrate a possible ultra low-dose CT technique for VC. The ultra low-dose abdominal CT images were simulated by adding noise to the sinograms of the patient CTC images acquired with normal dose scans at 100 mA s levels. The simulated noisy sinogram or projection data were first processed by a Karhunen-Loeve domain penalized weighted least-squares (KL-PWLS) restoration method and then reconstructed by a filtered backprojection algorithm for the ultra low-dose CT images. The patient-specific virtual colon lumen was constructed and navigated by a VC system after electronic colon cleansing of the orally-tagged residue stool and fluid. By the KL-PWLS noise reduction, the colon lumen can successfully be constructed and the colonic polyp can be detected in an ultra low-dose level below 50 mA s. Polyp detection can be found more easily by the KL-PWLS noise reduction compared to the results using the conventional noise filters, such as Hanning filter. These promising results indicate the feasibility of an ultra low-dose CTC pipeline for colon screening with less-stressful bowel preparation by fecal tagging with oral contrast.

  12. Preflight screening techniques for centrifuge-simulated suborbital spaceflight.

    PubMed

    Pattarini, James M; Blue, Rebecca S; Castleberry, Tarah L; Vanderploeg, James M

    2014-12-01

    Historically, space has been the venue of the healthy individual. With the advent of commercial spaceflight, we face the novel prospect of routinely exposing spaceflight participants (SPFs) with multiple comorbidities to the space environment. Preflight screening procedures must be developed to identify those individuals at increased risk during flight. We examined the responses of volunteers to centrifuge accelerations mimicking commercial suborbital spaceflight profiles to evaluate how potential SFPs might tolerate such forces. We evaluated our screening process for medical approval of subjects for centrifuge participation for applicability to commercial spaceflight operations. All registered subjects completed a medical questionnaire, physical examination, and electrocardiogram. Subjects with identified concerns including cardiopulmonary disease, hypertension, and diabetes were required to provide documentation of their conditions. There were 335 subjects who registered for the study, 124 who completed all prescreening, and 86 subjects who participated in centrifuge trials. Due to prior medical history, five subjects were disqualified, most commonly for psychiatric reasons or uncontrolled medical conditions. Of the subjects approved, four individuals experienced abnormal physiological responses to centrifuge profiles, including one back strain and three with anxiety reactions. The screening methods used were judged to be sufficient to identify individuals physically capable of tolerating simulated suborbital flight. Improved methods will be needed to identify susceptibility to anxiety reactions. While severe or uncontrolled disease was excluded, many subjects successfully participated in centrifuge trials despite medical histories of disease that are disqualifying under historical spaceflight screening regimes. Such screening techniques are applicable for use in future commercial spaceflight operations.

  13. Simulation Learning PC Screen-Based vs. High Fidelity

    DTIC Science & Technology

    2011-08-01

    D., Burgess, L., Berg, B . and Connolly, K . (2009). Teaching mass casualty triage skills using iterative multimanikin simulations. Prehospital...SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b . ABSTRACT U...learning PC screen-based vs. high fidelity – progress chart Attachment B . Approved Protocol - Simulation Learning: PC-Screen Based (PCSB) versus High

  14. Can streamlined multi-criteria decision analysis be used to implement shared decision making for colorectal cancer screening?

    PubMed Central

    Dolan, James G.; Boohaker, Emily; Allison, Jeroan; Imperiale, Thomas F.

    2013-01-01

    Background Current US colorectal cancer screening guidelines that call for shared decision making regarding the choice among several recommended screening options are difficult to implement. Multi-criteria decision analysis (MCDA) is an established methodology well suited for supporting shared decision making. Our study goal was to determine if a streamlined form of MCDA using rank order based judgments can accurately assess patients’ colorectal cancer screening priorities. Methods We converted priorities for four decision criteria and three sub-criteria regarding colorectal cancer screening obtained from 484 average risk patients using the Analytic Hierarchy Process (AHP) in a prior study into rank order-based priorities using rank order centroids. We compared the two sets of priorities using Spearman rank correlation and non-parametric Bland-Altman limits of agreement analysis. We assessed the differential impact of using the rank order-based versus the AHP-based priorities on the results of a full MCDA comparing three currently recommended colorectal cancer screening strategies. Generalizability of the results was assessed using Monte Carlo simulation. Results Correlations between the two sets of priorities for the seven criteria ranged from 0.55 to 0.92. The proportions of absolute differences between rank order-based and AHP-based priorities that were more than ± 0.15 ranged from 1% to 16%. Differences in the full MCDA results were minimal and the relative rankings of the three screening options were identical more than 88% of the time. The Monte Carlo simulation results were similar. Conclusion Rank order-based MCDA could be a simple, practical way to guide individual decisions and assess population decision priorities regarding colorectal cancer screening strategies. Additional research is warranted to further explore the use of these methods for promoting shared decision making. PMID:24300851

  15. Inefficiencies and high-value improvements in U.S. cervical cancer screening practice: A cost-effectiveness analysis

    PubMed Central

    Kim, Jane J.; Campos, Nicole G.; Sy, Stephen; Burger, Emily A.; Cuzick, Jack; Castle, Philip E.; Hunt, William C.; Waxman, Alan; Wheeler, Cosette M.

    2016-01-01

    Background Studies suggest that cervical cancer screening practice in the United States is inefficient. The cost and health implications of non-compliance in the screening process compared to recommended guidelines are uncertain. Objective To estimate the benefits, costs, and cost-effectiveness of current cervical cancer screening practice and assess the value of screening improvements. Design Model-based cost-effectiveness analysis. Data Sources New Mexico HPV Pap Registry; medical literature. Target Population Cohort of women eligible for routine screening. Time Horizon Lifetime. Perspective Societal. Interventions Current cervical cancer screening practice; improved compliance to guidelines-based screening interval, triage testing, diagnostic referrals, and precancer treatment referrals. Outcome Measures Reductions in lifetime cervical cancer risk, quality-adjusted life-years (QALYs), lifetime costs, incremental cost-effectiveness ratios (ICERs), incremental net monetary benefits (INMBs Results of Base-Case Analysis Current screening practice was associated with lower health benefit and was not cost-effective relative to guidelines-based strategies. Improvements in the screening process were associated with higher QALYs and small changes in costs. Perfect c4mpliance to a 3-yearly screening interval and to colposcopy/biopsy referrals were associated with the highest INMBs ($759 and $741, respectively, at a willingness-to-pay threshold of $100,000 per QALY gained); together, the INMB increased to $1,645. Results of Sensitivity Analysis Current screening practice was inefficient in 100% of simulations. The rank ordering of screening improvements according to INMBs was stable over a range of screening inputs and willingness-to-pay thresholds. Limitations The impact of HPV vaccination was not considered. Conclusions The added health benefit of improving compliance to guidelines, especially the 3-yearly interval for cytology screening and diagnostic follow-up, may justify additional investments in interventions to improve U.S. cervical cancer screening practice. Funding Source U.S. National Cancer Institute. PMID:26414147

  16. Applying operations research to optimize a novel population management system for cancer screening.

    PubMed

    Zai, Adrian H; Kim, Seokjin; Kamis, Arnold; Hung, Ken; Ronquillo, Jeremiah G; Chueh, Henry C; Atlas, Steven J

    2014-02-01

    To optimize a new visit-independent, population-based cancer screening system (TopCare) by using operations research techniques to simulate changes in patient outreach staffing levels (delegates, navigators), modifications to user workflow within the information technology (IT) system, and changes in cancer screening recommendations. TopCare was modeled as a multiserver, multiphase queueing system. Simulation experiments implemented the queueing network model following a next-event time-advance mechanism, in which systematic adjustments were made to staffing levels, IT workflow settings, and cancer screening frequency in order to assess their impact on overdue screenings per patient. TopCare reduced the average number of overdue screenings per patient from 1.17 at inception to 0.86 during simulation to 0.23 at steady state. Increases in the workforce improved the effectiveness of TopCare. In particular, increasing the delegate or navigator staff level by one person improved screening completion rates by 1.3% or 12.2%, respectively. In contrast, changes in the amount of time a patient entry stays on delegate and navigator lists had little impact on overdue screenings. Finally, lengthening the screening interval increased efficiency within TopCare by decreasing overdue screenings at the patient level, resulting in a smaller number of overdue patients needing delegates for screening and a higher fraction of screenings completed by delegates. Simulating the impact of changes in staffing, system parameters, and clinical inputs on the effectiveness and efficiency of care can inform the allocation of limited resources in population management.

  17. Above-real-time training (ARTT) improves transfer to a simulated flight control task.

    PubMed

    Donderi, D C; Niall, Keith K; Fish, Karyn; Goldstein, Benjamin

    2012-06-01

    The aim of this study was to measure the effects of above-real-time-training (ARTT) speed and screen resolution on a simulated flight control task. ARTT has been shown to improve transfer to the criterion task in some military simulation experiments. We tested training speed and screen resolution in a project, sponsored by Defence Research and Development Canada, to develop components for prototype air mission simulators. For this study, 54 participants used a single-screen PC-based flight simulation program to learn to chase and catch an F-18A fighter jet with another F-18A while controlling the chase aircraft with a throttle and side-stick controller. Screen resolution was varied between participants, and training speed was varied factorially across two sessions within participants. Pretest and posttest trials were at high resolution and criterion (900 knots) speed. Posttest performance was best with high screen resolution training and when one ARTT training session was followed by a session of criterion speed training. ARTT followed by criterion training improves performance on a visual-motor coordination task. We think that ARTT influences known facilitators of transfer, including similarity to the criterion task and contextual interference. Use high-screen resolution, start with ARTT, and finish with criterion speed training when preparing a mission simulation.

  18. The Impact of Multimedia Effect on Science Learning: Evidence from Eye Movements

    ERIC Educational Resources Information Center

    She, Hsiao-Ching; Chen, Yi-Zen

    2009-01-01

    This study examined how middle school students constructed their understanding of the mitosis and meiosis processes at a molecular level through multimedia learning materials presented in different interaction and sensory modality modes. A two (interaction modes: animation/simulation) by two (sensory modality modes: narration/on-screen text)…

  19. The Role of Agent Age and Gender for Middle-Grade Girls

    ERIC Educational Resources Information Center

    Kim, Yanghee

    2016-01-01

    Compared to boys, many girls are more aware of a social context in the learning process and perform better when the environment supports frequent interactions and social relationships. For these girls, embodied agents (animated on-screen characters acting as tutors) could afford simulated social interactions in computer-based learning and thereby…

  20. W-026, Waste Receiving and Processing Facility data management system validation and verification report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, M.E.

    1997-12-05

    This V and V Report includes analysis of two revisions of the DMS [data management system] System Requirements Specification (SRS) and the Preliminary System Design Document (PSDD); the source code for the DMS Communication Module (DMSCOM) messages; the source code for selected DMS Screens, and the code for the BWAS Simulator. BDM Federal analysts used a series of matrices to: compare the requirements in the System Requirements Specification (SRS) to the specifications found in the System Design Document (SDD), to ensure the design supports the business functions, compare the discreet parts of the SDD with each other, to ensure thatmore » the design is consistent and cohesive, compare the source code of the DMS Communication Module with the specifications, to ensure that the resultant messages will support the design, compare the source code of selected screens to the specifications to ensure that resultant system screens will support the design, compare the source code of the BWAS simulator with the requirements to interface with DMS messages and data transfers relating to the BWAS operations.« less

  1. Optimizing Cognitive Load for Learning from Computer-Based Science Simulations

    ERIC Educational Resources Information Center

    Lee, Hyunjeong; Plass, Jan L.; Homer, Bruce D.

    2006-01-01

    How can cognitive load in visual displays of computer simulations be optimized? Middle-school chemistry students (N = 257) learned with a simulation of the ideal gas law. Visual complexity was manipulated by separating the display of the simulations in two screens (low complexity) or presenting all information on one screen (high complexity). The…

  2. Simulation optimization of PSA-threshold based prostate cancer screening policies

    PubMed Central

    Zhang, Jingyu; Denton, Brian T.; Shah, Nilay D.; Inman, Brant A.

    2013-01-01

    We describe a simulation optimization method to design PSA screening policies based on expected quality adjusted life years (QALYs). Our method integrates a simulation model in a genetic algorithm which uses a probabilistic method for selection of the best policy. We present computational results about the efficiency of our algorithm. The best policy generated by our algorithm is compared to previously recommended screening policies. Using the policies determined by our model, we present evidence that patients should be screened more aggressively but for a shorter length of time than previously published guidelines recommend. PMID:22302420

  3. Simulated Screens of DNA Encoded Libraries: The Potential Influence of Chemical Synthesis Fidelity on Interpretation of Structure-Activity Relationships.

    PubMed

    Satz, Alexander L

    2016-07-11

    Simulated screening of DNA encoded libraries indicates that the presence of truncated byproducts complicates the relationship between library member enrichment and equilibrium association constant (these truncates result from incomplete chemical reactions during library synthesis). Further, simulations indicate that some patterns observed in reported experimental data may result from the presence of truncated byproducts in the library mixture and not structure-activity relationships. Potential experimental methods of minimizing the presence of truncates are assessed via simulation; the relationship between enrichment and equilibrium association constant for libraries of differing purities is investigated. Data aggregation techniques are demonstrated that allow for more accurate analysis of screening results, in particular when the screened library contains significant quantities of truncates.

  4. Applying operations research to optimize a novel population management system for cancer screening

    PubMed Central

    Zai, Adrian H; Kim, Seokjin; Kamis, Arnold; Hung, Ken; Ronquillo, Jeremiah G; Chueh, Henry C; Atlas, Steven J

    2014-01-01

    Objective To optimize a new visit-independent, population-based cancer screening system (TopCare) by using operations research techniques to simulate changes in patient outreach staffing levels (delegates, navigators), modifications to user workflow within the information technology (IT) system, and changes in cancer screening recommendations. Materials and methods TopCare was modeled as a multiserver, multiphase queueing system. Simulation experiments implemented the queueing network model following a next-event time-advance mechanism, in which systematic adjustments were made to staffing levels, IT workflow settings, and cancer screening frequency in order to assess their impact on overdue screenings per patient. Results TopCare reduced the average number of overdue screenings per patient from 1.17 at inception to 0.86 during simulation to 0.23 at steady state. Increases in the workforce improved the effectiveness of TopCare. In particular, increasing the delegate or navigator staff level by one person improved screening completion rates by 1.3% or 12.2%, respectively. In contrast, changes in the amount of time a patient entry stays on delegate and navigator lists had little impact on overdue screenings. Finally, lengthening the screening interval increased efficiency within TopCare by decreasing overdue screenings at the patient level, resulting in a smaller number of overdue patients needing delegates for screening and a higher fraction of screenings completed by delegates. Conclusions Simulating the impact of changes in staffing, system parameters, and clinical inputs on the effectiveness and efficiency of care can inform the allocation of limited resources in population management. PMID:24043318

  5. A Monte Carlo analysis of breast screening randomized trials.

    PubMed

    Zamora, Luis I; Forastero, Cristina; Guirado, Damián; Lallena, Antonio M

    2016-12-01

    To analyze breast screening randomized trials with a Monte Carlo simulation tool. A simulation tool previously developed to simulate breast screening programmes was adapted for that purpose. The history of women participating in the trials was simulated, including a model for survival after local treatment of invasive cancers. Distributions of time gained due to screening detection against symptomatic detection and the overall screening sensitivity were used as inputs. Several randomized controlled trials were simulated. Except for the age range of women involved, all simulations used the same population characteristics and this permitted to analyze their external validity. The relative risks obtained were compared to those quoted for the trials, whose internal validity was addressed by further investigating the reasons of the disagreements observed. The Monte Carlo simulations produce results that are in good agreement with most of the randomized trials analyzed, thus indicating their methodological quality and external validity. A reduction of the breast cancer mortality around 20% appears to be a reasonable value according to the results of the trials that are methodologically correct. Discrepancies observed with Canada I and II trials may be attributed to a low mammography quality and some methodological problems. Kopparberg trial appears to show a low methodological quality. Monte Carlo simulations are a powerful tool to investigate breast screening controlled randomized trials, helping to establish those whose results are reliable enough to be extrapolated to other populations and to design the trial strategies and, eventually, adapting them during their development. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrey, P.J.; Dickens, T.G.

    1995-12-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specificmore » gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.« less

  7. Capillary flow of amorphous metal for high performance electrode

    PubMed Central

    Kim, Se Yun; Kim, Suk Jun; Jee, Sang Soo; Park, Jin Man; Park, Keum Hwan; Park, Sung Chan; Cho, Eun Ae; Lee, Jun Ho; Song, In Yong; Lee, Sang Mock; Han, In Taek; Lim, Ka Ram; Kim, Won Tae; Park, Ju Cheol; Eckert, Jürgen; Kim, Do Hyang; Lee, Eun-Sung

    2013-01-01

    Metallic glass (MG) assists electrical contact of screen-printed silver electrodes and leads to comparable electrode performance to that of electroplated electrodes. For high electrode performance, MG needs to be infiltrated into nanometer-scale cavities between Ag particles and reacts with them. Here, we show that the MG in the supercooled state can fill the gap between Ag particles within a remarkably short time due to capillary effect. The flow behavior of the MG is revealed by computational fluid dynamics and density funtional theory simulation. Also, we suggest the formation mechanism of the Ag electrodes, and demonstrate the criteria of MG for higher electrode performance. Consequently, when Al85Ni5Y8Co2 MG is added in the Ag electrodes, cell efficiency is enhanced up to 20.30% which is the highest efficiency reported so far for screen-printed interdigitated back contact solar cells. These results show the possibility for the replacement of electroplating process to screen-printing process. PMID:23851671

  8. Recalibration of indium foil for personnel screening in criticality accidents.

    PubMed

    Takada, C; Tsujimura, N; Mikami, S

    2011-03-01

    At the Nuclear Fuel Cycle Engineering Laboratories of the Japan Atomic Energy Agency (JAEA), small pieces of indium foil incorporated into personal dosemeters have been used for personnel screening in criticality accidents. Irradiation tests of the badges were performed using the SILENE reactor to verify the calibration of the indium activation that had been made in the 1980s and to recalibrate them for simulated criticalities that would be the most likely to occur in the solution process line. In addition, Monte Carlo calculations of the indium activation using the badge model were also made to complement the spectral dependence. The results lead to a screening level of 15 kcpm being determined that corresponds to a total dose of 0.25 Gy, which is also applicable in posterior-anterior exposure. The recalibration based on the latest study will provide a sounder basis for the screening procedure in the event of a criticality accident.

  9. Simulation of anisoplanatic imaging through optical turbulence using numerical wave propagation with new validation analysis

    NASA Astrophysics Data System (ADS)

    Hardie, Russell C.; Power, Jonathan D.; LeMaster, Daniel A.; Droege, Douglas R.; Gladysz, Szymon; Bose-Pillai, Santasri

    2017-07-01

    We present a numerical wave propagation method for simulating imaging of an extended scene under anisoplanatic conditions. While isoplanatic simulation is relatively common, few tools are specifically designed for simulating the imaging of extended scenes under anisoplanatic conditions. We provide a complete description of the proposed simulation tool, including the wave propagation method used. Our approach computes an array of point spread functions (PSFs) for a two-dimensional grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. The degradation includes spatially varying warping and blurring. To produce the PSF array, we generate a series of extended phase screens. Simulated point sources are numerically propagated from an array of positions on the object plane, through the phase screens, and ultimately to the focal plane of the simulated camera. Note that the optical path for each PSF will be different, and thus, pass through a different portion of the extended phase screens. These different paths give rise to a spatially varying PSF to produce anisoplanatic effects. We use a method for defining the individual phase screen statistics that we have not seen used in previous anisoplanatic simulations. We also present a validation analysis. In particular, we compare simulated outputs with the theoretical anisoplanatic tilt correlation and a derived differential tilt variance statistic. This is in addition to comparing the long- and short-exposure PSFs and isoplanatic angle. We believe this analysis represents the most thorough validation of an anisoplanatic simulation to date. The current work is also unique that we simulate and validate both constant and varying Cn2(z) profiles. Furthermore, we simulate sequences with both temporally independent and temporally correlated turbulence effects. Temporal correlation is introduced by generating even larger extended phase screens and translating this block of screens in front of the propagation area. Our validation analysis shows an excellent match between the simulation statistics and the theoretical predictions. Thus, we think this tool can be used effectively to study optical anisoplanatic turbulence and to aid in the development of image restoration methods.

  10. The use of a photoionization detector to detect harmful volatile chemicals by emergency personnel

    PubMed Central

    Patel, Neil D; Fales, William D; Farrell, Robert N

    2009-01-01

    Objective The objective of this investigation was to determine if a photoionization detector (PID) could be used to detect the presence of a simulated harmful chemical on simulated casualties of a chemical release. Methods A screening protocol, based on existing radiation screening protocols, was developed for the purposes of the investigation. Three simulated casualties were contaminated with a simulated chemical agent and two groups of emergency responders were involved in the trials. The success–failure ratio of the participants was used to judge the performance of the PID in this application. Results A high success rate was observed when the screening protocol was properly adhered to (97.67%). Conversely, the success rate suffered when participants deviated from the protocol (86.31%). With one exception, all failures were noted to have been the result of a failure to correctly observe the established screening protocol. Conclusions The results of this investigation indicate that the PID may be an effective screening tool for emergency responders. However, additional study is necessary to both confirm the effectiveness of the PID and refine the screening protocol if necessary. PMID:27147829

  11. A Java-Enabled Interactive Graphical Gas Turbine Propulsion System Simulator

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Afjeh, Abdollah A.

    1997-01-01

    This paper describes a gas turbine simulation system which utilizes the newly developed Java language environment software system. The system provides an interactive graphical environment which allows the quick and efficient construction and analysis of arbitrary gas turbine propulsion systems. The simulation system couples a graphical user interface, developed using the Java Abstract Window Toolkit, and a transient, space- averaged, aero-thermodynamic gas turbine analysis method, both entirely coded in the Java language. The combined package provides analytical, graphical and data management tools which allow the user to construct and control engine simulations by manipulating graphical objects on the computer display screen. Distributed simulations, including parallel processing and distributed database access across the Internet and World-Wide Web (WWW), are made possible through services provided by the Java environment.

  12. Projective simulation for artificial intelligence

    NASA Astrophysics Data System (ADS)

    Briegel, Hans J.; de Las Cuevas, Gemma

    2012-05-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.

  13. Projective simulation for artificial intelligence

    PubMed Central

    Briegel, Hans J.; De las Cuevas, Gemma

    2012-01-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation. PMID:22590690

  14. Reading "Sky" and Seeing a Cloud: On the Relevance of Events for Perceptual Simulation

    ERIC Educational Resources Information Center

    Ostarek, Markus; Vigliocco, Gabriella

    2017-01-01

    Previous research has shown that processing words with an up/down association (e.g., bird, foot) can influence the subsequent identification of visual targets in congruent location (at the top/bottom of the screen). However, as facilitation and interference were found under similar conditions, the nature of the underlying mechanisms remained…

  15. Cost-effectiveness of breast cancer screening policies using simulation.

    PubMed

    Gocgun, Y; Banjevic, D; Taghipour, S; Montgomery, N; Harvey, B J; Jardine, A K S; Miller, A B

    2015-08-01

    In this paper, we study breast cancer screening policies using computer simulation. We developed a multi-state Markov model for breast cancer progression, considering both the screening and treatment stages of breast cancer. The parameters of our model were estimated through data from the Canadian National Breast Cancer Screening Study as well as data in the relevant literature. Using computer simulation, we evaluated various screening policies to study the impact of mammography screening for age-based subpopulations in Canada. We also performed sensitivity analysis to examine the impact of certain parameters on number of deaths and total costs. The analysis comparing screening policies reveals that a policy in which women belonging to the 40-49 age group are not screened, whereas those belonging to the 50-59 and 60-69 age groups are screened once every 5 years, outperforms others with respect to cost per life saved. Our analysis also indicates that increasing the screening frequencies for the 50-59 and 60-69 age groups decrease mortality, and that the average number of deaths generally decreases with an increase in screening frequency. We found that screening annually for all age groups is associated with the highest costs per life saved. Our analysis thus reveals that cost per life saved increases with an increase in screening frequency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A distribution-free multi-factorial profiler for harvesting information from high-density screenings.

    PubMed

    Besseris, George J

    2013-01-01

    Data screening is an indispensable phase in initiating the scientific discovery process. Fractional factorial designs offer quick and economical options for engineering highly-dense structured datasets. Maximum information content is harvested when a selected fractional factorial scheme is driven to saturation while data gathering is suppressed to no replication. A novel multi-factorial profiler is presented that allows screening of saturated-unreplicated designs by decomposing the examined response to its constituent contributions. Partial effects are sliced off systematically from the investigated response to form individual contrasts using simple robust measures. By isolating each time the disturbance attributed solely to a single controlling factor, the Wilcoxon-Mann-Whitney rank stochastics are employed to assign significance. We demonstrate that the proposed profiler possesses its own self-checking mechanism for detecting a potential influence due to fluctuations attributed to the remaining unexplainable error. Main benefits of the method are: 1) easy to grasp, 2) well-explained test-power properties, 3) distribution-free, 4) sparsity-free, 5) calibration-free, 6) simulation-free, 7) easy to implement, and 8) expanded usability to any type and size of multi-factorial screening designs. The method is elucidated with a benchmarked profiling effort for a water filtration process.

  17. A Distribution-Free Multi-Factorial Profiler for Harvesting Information from High-Density Screenings

    PubMed Central

    Besseris, George J.

    2013-01-01

    Data screening is an indispensable phase in initiating the scientific discovery process. Fractional factorial designs offer quick and economical options for engineering highly-dense structured datasets. Maximum information content is harvested when a selected fractional factorial scheme is driven to saturation while data gathering is suppressed to no replication. A novel multi-factorial profiler is presented that allows screening of saturated-unreplicated designs by decomposing the examined response to its constituent contributions. Partial effects are sliced off systematically from the investigated response to form individual contrasts using simple robust measures. By isolating each time the disturbance attributed solely to a single controlling factor, the Wilcoxon-Mann-Whitney rank stochastics are employed to assign significance. We demonstrate that the proposed profiler possesses its own self-checking mechanism for detecting a potential influence due to fluctuations attributed to the remaining unexplainable error. Main benefits of the method are: 1) easy to grasp, 2) well-explained test-power properties, 3) distribution-free, 4) sparsity-free, 5) calibration-free, 6) simulation-free, 7) easy to implement, and 8) expanded usability to any type and size of multi-factorial screening designs. The method is elucidated with a benchmarked profiling effort for a water filtration process. PMID:24009744

  18. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach.

    PubMed

    Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D; Duvenaud, David; Maclaurin, Dougal; Blood-Forsythe, Martin A; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P; Aspuru-Guzik, Alán

    2016-10-01

    Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.

  19. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach

    NASA Astrophysics Data System (ADS)

    Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Duvenaud, David; MacLaurin, Dougal; Blood-Forsythe, Martin A.; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P.; Aspuru-Guzik, Alán

    2016-10-01

    Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.

  20. Modeling and Deorphanization of Orphan GPCRs.

    PubMed

    Diaz, Constantino; Angelloz-Nicoud, Patricia; Pihan, Emilie

    2018-01-01

    Despite tremendous efforts, approximately 120 GPCRs remain orphan. Their physiological functions and their potential roles in diseases are poorly understood. Orphan GPCRs are extremely important because they may provide novel therapeutic targets for unmet medical needs. As a complement to experimental approaches, molecular modeling and virtual screening are efficient techniques to discover synthetic surrogate ligands which can help to elucidate the role of oGPCRs. Constitutively activated mutants and recently published active structures of GPCRs provide stimulating opportunities for building active molecular models for oGPCRs and identifying activators using virtual screening of compound libraries. We describe the molecular modeling and virtual screening process we have applied in the discovery of surrogate ligands, and provide examples for CCKA, a simulated oGPCR, and for two oGPCRs, GPR52 and GPR34.

  1. Monte-Carlo simulation of spatial resolution of an image intensifier in a saturation mode

    NASA Astrophysics Data System (ADS)

    Xie, Yuntao; Wang, Xi; Zhang, Yujun; Sun, Xiaoquan

    2018-04-01

    In order to investigate the spatial resolution of an image intensifier which is irradiated by high-energy pulsed laser, a three-dimensional electron avalanche model was built and the cascade process of the electrons was numerically simulated. The influence of positive wall charges, due to the failure of replenishing charges extracted from the channel during the avalanche, was considered by calculating its static electric field through particle-in-cell (PIC) method. By tracing the trajectory of electrons throughout the image intensifier, the energy of the electrons at the output of the micro channel plate and the electron distribution at the phosphor screen are numerically calculated. The simulated energy distribution of output electrons are in good agreement with experimental data of previous studies. In addition, the FWHM extensions of the electron spot at phosphor screen as a function of the number of incident electrons are calculated. The results demonstrate that the spot size increases significantly with the increase in the number of incident electrons. Furthermore, we got the MTFs of the image intensifier by Fourier transform of a point spread function at phosphor screen. Comparison between the MTFs in our model and the MTFs by analytic method shows that spatial resolution of the image intensifier decreases significantly as the number of incident electrons increases, and it is particularly obvious when incident electron number greater than 100.

  2. Using Virtual Patient Simulations to Prepare Primary Health Care Professionals to Conduct Substance Use and Mental Health Screening and Brief Intervention.

    PubMed

    Albright, Glenn; Bryan, Craig; Adam, Cyrille; McMillan, Jeremiah; Shockley, Kristen

    Primary health care professionals are in an excellent position to identify, screen, and conduct brief interventions for patients with mental health and substance use disorders. However, discomfort in initiating conversations about behavioral health, time concerns, lack of knowledge about screening tools, and treatment resources are barriers. This study examines the impact of an online simulation where users practice role-playing with emotionally responsive virtual patients to learn motivational interviewing strategies to better manage screening, brief interventions, and referral conversations. Baseline data were collected from 227 participants who were then randomly assigned into the treatment or wait-list control groups. Treatment group participants then completed the simulation, postsimulation survey, and 3-month follow-up survey. Results showed significant increases in knowledge/skill to identify and engage in collaborative decision making with patients. Results strongly suggest that role-play simulation experiences can be an effective means of teaching screening and brief intervention.

  3. Limitations of malaria reactive case detection in an area of low and unstable transmission on the Myanmar-Thailand border.

    PubMed

    Parker, Daniel M; Landier, Jordi; von Seidlein, Lorenz; Dondorp, Arjen; White, Lisa; Hanboonkunupakarn, Borimas; Maude, Richard J; Nosten, François H

    2016-11-25

    Reactive case detection is an approach that has been proposed as a tool for malaria elimination in low-transmission settings. It is an intuitively justified approach based on the concept of space-time clustering of malaria cases. When an index malaria clinical case is detected, it triggers reactive screening and treatment in the index house and neighbouring houses. However, the efficacy of this approach at varying screening radii and malaria prevalence remains ill defined. Data were obtained from a detailed demographic and geographic surveillance study in four villages on the Myanmar-Thailand border. Clinical cases were recorded at village malaria clinics and were linked back to patients' residencies. These data were used to simulate the efficacy of reactive case detection for clinical cases using rapid diagnostic tests (RDT). Simulations took clinical cases in a given month and tabulated the number of cases that would have been detected in the following month at varying screening radii around the index houses. Simulations were run independently for both falciparum and vivax malaria. Each simulation of a reactive case detection effort was run in comparison with a strategy using random selection of houses for screening. In approximately half of the screenings for falciparum and 10% for vivax it would have been impossible to detect any malaria cases regardless of the screening strategy because the screening would have occurred during times when there were no cases. When geographically linked cases were present in the simulation, reactive case detection would have only been successful at detecting most malaria cases using larger screening radii (150-m radius and above). At this screening radius and above, reactive case detection does not perform better than random screening of an equal number of houses in the village. Screening within very small radii detects only a very small proportion of cases, but despite this low performance is better than random screening with the same sample size. The results of these simulations indicate that reactive case detection for clinical cases using RDTs has limited ability in halting transmission in regions of low and unstable transmission. This is linked to high spatial heterogeneity of cases, acquisition of malaria infections outside the village, as well missing asymptomatic infections. When cases are few and sporadic, reactive case detection would result in major time and budgetary losses.

  4. A Novel Multiplayer Screen-Based Simulation Experience for African Learners Improved Confidence in Management of Postpartum Hemorrhage.

    PubMed

    Taekman, Jeffrey M; Foureman, Megan F; Bulamba, Fred; Steele, Michael; Comstock, Emily; Kintu, Andrew; Mauritz, Amy; Olufolabi, Adeyemi

    2017-01-01

    Postpartum hemorrhage (PPH) remains a global challenge, affecting thirteen million women each year. In addition, PPH is a leading cause of maternal mortality in Asia and Africa. In the U.S.A., care of critically ill patients is often practiced using mannequin-based simulation. Mannequin-based simulation presents challenges in global health, particularly in low- or middle-income countries. We developed a novel multiplayer screen-based simulation in a virtual world enabling the practice of team coordination with PPH. We used this simulation with learners in Mulago, Uganda. We hypothesized that a multiplayer screen-based simulation experience would increase learner confidence in their ability to manage PPH. The study design was a simple pre- and a post-intervention survey. Forty-eight interprofessional subjects participated in one of nine 1-h simulation sessions using the PPH software. A fifteen-question self-assessment administered before and after the intervention was designed to probe the areas of learning as defined by Bloom and Krathwohl: affective, cognitive, and psychomotor. Combined confidence scores increased significantly overall following the simulation experience and individually in each of the three categories of Bloom's Taxonomy: affective, cognitive, and psychomotor. We provide preliminary evidence that multiplayer screen-based simulation represents a scalable, distributable form of learning that may be used effectively in global health education and training. Interestingly, despite our intervention being screen-based, our subjects showed improved confidence in their ability to perform psychomotor tasks. Although there is precedent for mental rehearsal improving performance, further research is needed to understand this finding.

  5. Integrated economic and experimental framework for screening of primary recovery technologies for high cell density CHO cultures

    PubMed Central

    Popova, Daria; Stonier, Adam; Pain, David; Titchener‐Hooker, Nigel J.

    2016-01-01

    Abstract Increases in mammalian cell culture titres and densities have placed significant demands on primary recovery operation performance. This article presents a methodology which aims to screen rapidly and evaluate primary recovery technologies for their scope for technically feasible and cost‐effective operation in the context of high cell density mammalian cell cultures. It was applied to assess the performance of current (centrifugation and depth filtration options) and alternative (tangential flow filtration (TFF)) primary recovery strategies. Cell culture test materials (CCTM) were generated to simulate the most demanding cell culture conditions selected as a screening challenge for the technologies. The performance of these technology options was assessed using lab scale and ultra scale‐down (USD) mimics requiring 25–110mL volumes for centrifugation and depth filtration and TFF screening experiments respectively. A centrifugation and depth filtration combination as well as both of the alternative technologies met the performance selection criteria. A detailed process economics evaluation was carried out at three scales of manufacturing (2,000L, 10,000L, 20,000L), where alternative primary recovery options were shown to potentially provide a more cost‐effective primary recovery process in the future. This assessment process and the study results can aid technology selection to identify the most effective option for a specific scenario. PMID:27067803

  6. An Evaluation of Student Perceptions of Screen Presentations in Computer-based Laboratory Simulations.

    ERIC Educational Resources Information Center

    Edward, Norrie S.

    1997-01-01

    Evaluates the importance of realism in the screen presentation of the plant in computer-based laboratory simulations for part-time engineering students. Concludes that simulations are less effective than actual laboratories but that realism minimizes the disadvantages. The schematic approach was preferred for ease of use. (AIM)

  7. Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions.

    PubMed

    Roggemann, M C; Welsh, B M; Montera, D; Rhoadarmer, T A

    1995-07-10

    Simulating the effects of atmospheric turbulence on optical imaging systems is an important aspect of understanding the performance of these systems. Simulations are particularly important for understanding the statistics of some adaptive-optics system performance measures, such as the mean and variance of the compensated optical transfer function, and for understanding the statistics of estimators used to reconstruct intensity distributions from turbulence-corrupted image measurements. Current methods of simulating the performance of these systems typically make use of random phase screens placed in the system pupil. Methods exist for making random draws of phase screens that have the correct spatial statistics. However, simulating temporal effects and anisoplanatism requires one or more phase screens at different distances from the aperture, possibly moving with different velocities. We describe and demonstrate a method for creating random draws of phase screens with the correct space-time statistics for a bitrary turbulence and wind-velocity profiles, which can be placed in the telescope pupil in simulations. Results are provided for both the von Kármán and the Kolmogorov turbulence spectra. We also show how to simulate anisoplanatic effects with this technique.

  8. State of the evidence on simulation-based training for laparoscopic surgery: a systematic review.

    PubMed

    Zendejas, Benjamin; Brydges, Ryan; Hamstra, Stanley J; Cook, David A

    2013-04-01

    Summarize the outcomes and best practices of simulation training for laparoscopic surgery. Simulation-based training for laparoscopic surgery has become a mainstay of surgical training. Much new evidence has accrued since previous reviews were published. We systematically searched the literature through May 2011 for studies evaluating simulation, in comparison with no intervention or an alternate training activity, for training health professionals in laparoscopic surgery. Outcomes were classified as satisfaction, skills (in a test setting) of time (to perform the task), process (eg, performance rating), product (eg, knot strength), and behaviors when caring for patients. We used random effects to pool effect sizes. From 10,903 articles screened, we identified 219 eligible studies enrolling 7138 trainees, including 91 (42%) randomized trials. For comparisons with no intervention (n = 151 studies), pooled effect size (ES) favored simulation for outcomes of knowledge (1.18; N = 9 studies), skills time (1.13; N = 89), skills process (1.23; N = 114), skills product (1.09; N = 7), behavior time (1.15; N = 7), behavior process (1.22; N = 15), and patient effects (1.28; N = 1), all P < 0.05. When compared with nonsimulation instruction (n = 3 studies), results significantly favored simulation for outcomes of skills time (ES, 0.75) and skills process (ES, 0.54). Comparisons between different simulation interventions (n = 79 studies) clarified best practices. For example, in comparison with virtual reality, box trainers have similar effects for process skills outcomes and seem to be superior for outcomes of satisfaction and skills time. Simulation-based laparoscopic surgery training of health professionals has large benefits when compared with no intervention and is moderately more effective than nonsimulation instruction.

  9. Docking-based Screening of Ficus religiosa Phytochemicals as Inhibitors of Human Histamine H2 Receptor.

    PubMed

    Chaudhary, Amit; Yadav, Birendra Singh; Singh, Swati; Maurya, Pramod Kumar; Mishra, Alok; Srivastva, Shweta; Varadwaj, Pritish Kumar; Singh, Nand Kumar; Mani, Ashutosh

    2017-10-01

    Ficus religiosa L. is generally known as Peepal and belongs to family Moraceae . The tree is a source of many compounds having high medicinal value. In gastrointestinal tract, histamine H2 receptors have key role in histamine-stimulated gastric acid secretion. Their over stimulation causes its excessive production which is responsible for gastric ulcer. This study aims to screen the range of phytochemicals present in F. religiosa for binding with human histamine H2 and identify therapeutics for a gastric ulcer from the plant. In this work, a 3D-structure of human histamine H2 receptor was modeled by using homology modeling and the predicted model was validated using PROCHECK. Docking studies were also performed to assess binding affinities between modeled receptor and 34 compounds. Molecular dynamics simulations were done to identify most stable receptor-ligand complexes. Absorption, distribution, metabolism, excretion, and screening was done to evaluate pharmacokinetic properties of compounds. The results suggest that seven ligands, namely, germacrene, bergaptol, lanosterol, Ergost-5-en-3beta-ol, α-amyrin acetate, bergapten, and γ-cadinene showed better binding affinities. Among seven phytochemicals, lanosterol and α-amyrin acetate were found to have greater stability during simulation studies. These two compounds may be a suitable therapeutic agent against histamine H2 receptor. This study was performed to screen antiulcer compounds from F. religiosa . Molecular modeling, molecular docking and MD simulation studies were performed with selected phytochemicals from F. religiosa . The analysis suggests that Lanosterol and α-amyrin may be a suitable therapeutic agent against histamine H2 receptor. This study facilitates initiation of the herbal drug discovery process for the antiulcer activity. Abbreviations used: ADMET: Absorption, distribution, metabolism, excretion and toxicity, DOPE: Discrete Optimized Potential Energy, OPLS: Optimized potential for liquid simulations, RMSD: Root-mean-square deviation, HOA: Human oral absorption, MW: Molecular weight, SP: Standard-precision, XP: Extra-precision, GPCRs: G protein-coupled receptors, SASA: Solvent accessible surface area, Rg: Radius of gyration, NHB: Number of hydrogen bond.

  10. Hormone Purification by Isoelectric Focusing

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1985-01-01

    Various ground-based research approaches are being applied to a more definitive evaluation of the natures and degrees of electroosmosis effects on the separation capabilities of the Isoelectric Focusing (IEF) process. A primary instrumental system for this work involves rotationally stabilized, horizontal electrophoretic columns specially adapted for the IEF process. Representative adaptations include segmentation, baffles/screens, and surface coatings. Comparative performance and development testing are pursued against the type of column or cell established as an engineering model. Previously developed computer simulation capabilities are used to predict low-gravity behavior patterns and performance for IEF apparatus geometries of direct project interest. Three existing mathematical models plus potential new routines for particular aspects of simulating instrument fluid patterns with varied wall electroosmosis influences are being exercised.

  11. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    PubMed

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  12. Combinatorially Screened Peptide as Targeted Covalent Binder: Alteration of Bait-Conjugated Peptide to Reactive Modifier.

    PubMed

    Uematsu, Shuta; Tabuchi, Yudai; Ito, Yuji; Taki, Masumi

    2018-06-01

    A peptide-type covalent binder for a target protein was obtained by combinatorial screening of fluoroprobe-conjugated peptide libraries on bacteriophage T7. The solvatochromic fluoroprobe works as a bait during the affinity selection process of phage display. To obtain the targeted covalent binder, the bait in the selected consensus peptide was altered into a reactive warhead possessing a sulfonyl fluoride. The reaction efficiency and site/position specificity of the covalent conjugation between the binder and the target protein were evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and rationalized by a protein-ligand docking simulation.

  13. Development of An Advanced JP-8 Fuel

    DTIC Science & Technology

    1993-12-01

    included the Microthermal Precipitation Test (MTP), Fuel Reactor Test, Hot Liquid Process Simulator (HLPS), and Isothermal Corrosion Oxidation Test (ICOT... Microthermal Precipitation Test The impetus for this development effort was the need for a screening test that could discriminate between fuels of...varying propensity to produce thermally induced insoluble particulate material in the bulk fuel. The Microthermal Precipitation (MTP) test thermally

  14. Chemical compatibility screening test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrey, P.J.; Dickens, T.G.

    1997-12-01

    A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) amore » mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60{degrees}C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m{sup 2} for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals.« less

  15. A testing program to evaluate the effects of simulant mixed wastes on plastic transportation packaging components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrey, P.J.; Dickens, T.G.; Dickman, P.T.

    1997-08-01

    Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of linermore » materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress.« less

  16. A phase screen model for simulating numerically the propagation of a laser beam in rain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukin, I P; Rychkov, D S; Falits, A V

    2009-09-30

    The method based on the generalisation of the phase screen method for a continuous random medium is proposed for simulating numerically the propagation of laser radiation in a turbulent atmosphere with precipitation. In the phase screen model for a discrete component of a heterogeneous 'air-rain droplet' medium, the amplitude screen describing the scattering of an optical field by discrete particles of the medium is replaced by an equivalent phase screen with a spectrum of the correlation function of the effective dielectric constant fluctuations that is similar to the spectrum of a discrete scattering component - water droplets in air. Themore » 'turbulent' phase screen is constructed on the basis of the Kolmogorov model, while the 'rain' screen model utiises the exponential distribution of the number of rain drops with respect to their radii as a function of the rain intensity. Theresults of the numerical simulation are compared with the known theoretical estimates for a large-scale discrete scattering medium. (propagation of laser radiation in matter)« less

  17. In silico investigation of potential mTOR inhibitors from traditional Chinese medicine for treatment of Leigh syndrome.

    PubMed

    Chen, Kuan-Chung; Lee, Wen-Yuan; Chen, Hsin-Yi; Chen, Calvin Yu-Chian

    2014-01-01

    A recent research demonstrates that the inhibition of mammalian target of rapamycin (mTOR) improves survival and health for patients with Leigh syndrome. mTOR proteins can be treated as drug target proteins against Leigh syndrome and other mitochondrial disorders. In this study, we aim to identify potent TCM compounds from the TCM Database@Taiwan as lead compounds of mTOR inhibitors. PONDR-Fit protocol was employed to predict the disordered disposition in mTOR protein before virtual screening. After virtual screening, the MD simulation was employed to validate the stability of interactions between each ligand and mTOR protein in the docking poses from docking simulation. The top TCM compounds, picrasidine M and acerosin, have higher binding affinities with target protein in docking simulation than control. There have H-bonds with residues Val2240 and π interactions with common residue Trp2239. After MD simulation, the top TCM compounds maintain similar docking poses under dynamic conditions. The top two TCM compounds, picrasidine M and acerosin, were extracted from Picrasma quassioides (D. Don) Benn. and Vitex negundo L. Hence, we propose the TCM compounds, picrasidine M and acerosin, as potential candidates as lead compounds for further study in drug development process with the mTOR protein against Leigh syndrome and other mitochondrial disorders.

  18. Characteristics of white LED transmission through a smoke screen

    NASA Astrophysics Data System (ADS)

    Zheng, Yunfei; Yang, Aiying; Feng, Lihui; Guo, Peng

    2018-01-01

    The characteristics of white LED transmission through a smoke screen is critical for visible light communication through a smoke screen. Based on the Mie scattering theory, the Monte Carlo transmission model is established. Based on the probability density function, the white LED sampling model is established according to the measured spectrum of a white LED and the distribution angle of the lambert model. The sampling model of smoke screen particle diameter is also established according to its distribution. We simulate numerically the influence the smoke thickness, the smoke concentration and the angle of irradiance of white LED on transmittance of the white LED. We construct a white LED smoke transmission experiment system. The measured result on the light transmittance and the smoke concentration agreed with the simulated result, and demonstrated the validity of simulation model for visible light transmission channel through a smoke screen.

  19. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography.

    PubMed

    Treiber, O; Wanninger, F; Führ, H; Panzer, W; Regulla, D; Winkler, G

    2003-02-21

    This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing. a dose reduction by 25% has no serious influence on the detection results. whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography.

  20. An adaptive algorithm for the detection of microcalcifications in simulated low-dose mammography

    NASA Astrophysics Data System (ADS)

    Treiber, O.; Wanninger, F.; Führ, H.; Panzer, W.; Regulla, D.; Winkler, G.

    2003-02-01

    This paper uses the task of microcalcification detection as a benchmark problem to assess the potential for dose reduction in x-ray mammography. We present the results of a newly developed algorithm for detection of microcalcifications as a case study for a typical commercial film-screen system (Kodak Min-R 2000/2190). The first part of the paper deals with the simulation of dose reduction for film-screen mammography based on a physical model of the imaging process. Use of a more sensitive film-screen system is expected to result in additional smoothing of the image. We introduce two different models of that behaviour, called moderate and strong smoothing. We then present an adaptive, model-based microcalcification detection algorithm. Comparing detection results with ground-truth images obtained under the supervision of an expert radiologist allows us to establish the soundness of the detection algorithm. We measure the performance on the dose-reduced images in order to assess the loss of information due to dose reduction. It turns out that the smoothing behaviour has a strong influence on detection rates. For moderate smoothing, a dose reduction by 25% has no serious influence on the detection results, whereas a dose reduction by 50% already entails a marked deterioration of the performance. Strong smoothing generally leads to an unacceptable loss of image quality. The test results emphasize the impact of the more sensitive film-screen system and its characteristics on the problem of assessing the potential for dose reduction in film-screen mammography. The general approach presented in the paper can be adapted to fully digital mammography.

  1. Efficient Modeling and Active Learning Discovery of Biological Responses

    PubMed Central

    Naik, Armaghan W.; Kangas, Joshua D.; Langmead, Christopher J.; Murphy, Robert F.

    2013-01-01

    High throughput and high content screening involve determination of the effect of many compounds on a given target. As currently practiced, screening for each new target typically makes little use of information from screens of prior targets. Further, choices of compounds to advance to drug development are made without significant screening against off-target effects. The overall drug development process could be made more effective, as well as less expensive and time consuming, if potential effects of all compounds on all possible targets could be considered, yet the cost of such full experimentation would be prohibitive. In this paper, we describe a potential solution: probabilistic models that can be used to predict results for unmeasured combinations, and active learning algorithms for efficiently selecting which experiments to perform in order to build those models and determining when to stop. Using simulated and experimental data, we show that our approaches can produce powerful predictive models without exhaustive experimentation and can learn them much faster than by selecting experiments at random. PMID:24358322

  2. Analysis of the diffraction effects for a multi-view autostereoscopic three-dimensional display system based on shutter parallax barriers with full resolution

    NASA Astrophysics Data System (ADS)

    Meng, Yang; Yu, Zhongyuan; Jia, Fangda; Zhang, Chunyu; Wang, Ye; Liu, Yumin; Ye, Han; Chen, Laurence Lujun

    2017-10-01

    A multi-view autostereoscopic three-dimensional (3D) system is built by using a 2D display screen and a customized parallax-barrier shutter (PBS) screen. The shutter screen is controlled dynamically by address driving matrix circuit and it is placed in front of the display screen at a certain location. The system could achieve densest viewpoints due to its specially optical and geometric design which is based on concept of "eye space". The resolution of 3D imaging is not reduced compared to 2D mode by using limited time division multiplexing technology. The diffraction effects may play an important role in 3D display imaging quality, especially when applied to small screen, such as iPhone screen etc. For small screen, diffraction effects may contribute crosstalk between binocular views, image brightness uniformity etc. Therefore, diffraction effects are analyzed and considered in a one-dimensional shutter screen model of the 3D display, in which the numerical simulation of light from display pixels on display screen through parallax barrier slits to each viewing zone in eye space, is performed. The simulation results provide guidance for criteria screen size over which the impact of diffraction effects are ignorable, and below which diffraction effects must be taken into account. Finally, the simulation results are compared to the corresponding experimental measurements and observation with discussion.

  3. Simulation of perturbation produced by an absorbing spherical body in collisionless plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasovsky, V. L., E-mail: vkrasov@iki.rssi.ru; Kiselyov, A. A., E-mail: alexander.kiselyov@stonehenge-3.net.ru; Dolgonosov, M. S.

    2017-01-15

    A steady plasma state reached in the course of charging of an absorbing spherical body is found using computational methods. Numerical simulations provide complete information on this process, thereby allowing one to find the spatiotemporal dependences of the physical quantities and observe the kinetic phenomena accompanying the formation of stable electron and ion distributions in phase space. The distribution function of trapped ions is obtained, and their contribution to the screening of the charged sphere is determined. The sphere charge and the charge of the trapped-ion cloud are determined as functions of the unperturbed plasma parameters.

  4. Glance strategies for using an in-vehicle touch-screen monitor.

    DOT National Transportation Integrated Search

    2009-04-01

    In this study, subjects in a driving simulator followed a lead vehicle that continuously changed speed : while they also performed a secondary task on a touch-screen monitor that could be located at various : positions within the simulator. Subjects ...

  5. Feasibility of utilizing a commercial eye tracker to assess electronic health record use during patient simulation.

    PubMed

    Gold, Jeffrey Allen; Stephenson, Laurel E; Gorsuch, Adriel; Parthasarathy, Keshav; Mohan, Vishnu

    2016-09-01

    Numerous reports describe unintended consequences of electronic health record implementation. Having previously described physicians' failures to recognize patient safety issues within our electronic health record simulation environment, we now report on our use of eye and screen-tracking technology to understand factors associated with poor error recognition during an intensive care unit-based electronic health record simulation. We linked performance on the simulation to standard eye and screen-tracking readouts including number of fixations, saccades, mouse clicks and screens visited. In addition, we developed an overall Composite Eye Tracking score which measured when, where and how often each safety item was viewed. For 39 participants, the Composite Eye Tracking score correlated with performance on the simulation (p = 0.004). Overall, the improved performance was associated with a pattern of rapid scanning of data manifested by increased number of screens visited (p = 0.001), mouse clicks (p = 0.03) and saccades (p = 0.004). Eye tracking can be successfully integrated into electronic health record-based simulation and provides a surrogate measure of cognitive decision making and electronic health record usability. © The Author(s) 2015.

  6. Effects of Secondary Task Modality and Processing Code on Automation Trust and Utilization During Simulated Airline Luggage Screening

    NASA Technical Reports Server (NTRS)

    Phillips, Rachel; Madhavan, Poornima

    2010-01-01

    The purpose of this research was to examine the impact of environmental distractions on human trust and utilization of automation during the process of visual search. Participants performed a computer-simulated airline luggage screening task with the assistance of a 70% reliable automated decision aid (called DETECTOR) both with and without environmental distractions. The distraction was implemented as a secondary task in either a competing modality (visual) or non-competing modality (auditory). The secondary task processing code either competed with the luggage screening task (spatial code) or with the automation's textual directives (verbal code). We measured participants' system trust, perceived reliability of the system (when a target weapon was present and absent), compliance, reliance, and confidence when agreeing and disagreeing with the system under both distracted and undistracted conditions. Results revealed that system trust was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Perceived reliability of the system (when the target was present) was significantly higher when the secondary task was visual rather than auditory. Compliance with the aid increased in all conditions except for the auditory-verbal condition, where it decreased. Similar to the pattern for trust, reliance on the automation was lower in the visual-spatial and auditory-verbal conditions than in the visual-verbal and auditory-spatial conditions. Confidence when agreeing with the system decreased with the addition of any kind of distraction; however, confidence when disagreeing increased with the addition of an auditory secondary task but decreased with the addition of a visual task. A model was developed to represent the research findings and demonstrate the relationship between secondary task modality, processing code, and automation use. Results suggest that the nature of environmental distractions influence interaction with automation via significant effects on trust and system utilization. These findings have implications for both automation design and operator training.

  7. Using screen-based simulation of inhaled anaesthetic delivery to improve patient care.

    PubMed

    Philip, J H

    2015-12-01

    Screen-based simulation can improve patient care by giving novices and experienced clinicians insight into drug behaviour. Gas Man(®) is a screen-based simulation program that depicts pictorially and graphically the anaesthetic gas and vapour tension from the vaporizer to the site of action, namely the brain and spinal cord. The gases and vapours depicted are desflurane, enflurane, ether, halothane, isoflurane, nitrogen, nitrous oxide, sevoflurane, and xenon. Multiple agents can be administered simultaneously or individually and the results shown on an overlay graph. Practice exercises provide in-depth knowledge of the subject matter. Experienced clinicians can simulate anaesthesia occurrences and practices for application to their clinical practice, and publish the results to benefit others to improve patient care. Published studies using this screen-based simulation have led to a number of findings, as follows: changing from isoflurane to desflurane toward the end of anaesthesia does not accelerate recovery in humans; vital capacity induction can produce loss of consciousness in 45 s; simulated context-sensitive decrement times explain recovery profiles; hyperventilation does not dramatically speed emergence; high fresh gas flow is wasteful; fresh gas flow and not the vaporizer setting should be reduced during intubation; re-anaesthetization can occur with severe hypoventilation after extubation; and in re-anaesthetization, the anaesthetic redistributes from skeletal muscle. Researchers using screen-based simulations can study fewer subjects to reach valid conclusions that impact clinical care. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Rational development of solid dispersions via hot-melt extrusion using screening, material characterization, and numeric simulation tools.

    PubMed

    Zecevic, Damir E; Wagner, Karl G

    2013-07-01

    Effective and predictive small-scale selection tools are inevitable during the development of a solubility enhanced drug product. For hot-melt extrusion, this selection process can start with a microscale performance evaluation on a hot-stage microscope (HSM). A batch size of 400 mg can provide sufficient materials to assess the drug product attributes such as solid-state properties, solubility enhancement, and physical stability as well as process related attributes such as processing temperature in a twin-screw extruder (TSE). Prototype formulations will then be fed into a 5 mm TSE (~1-2 g) to confirm performance from the HSM under additional shear stress. Small stress stability testing might be performed with these samples or a larger batch (20-40 g) made by 9 or 12 mm TSE. Simultaneously, numeric process simulations are performed using process data as well as rheological and thermal properties of the formulations. Further scale up work to 16 and 18 mm TSE confirmed and refined the simulation model. Thus, at the end of the laboratory-scale development, not only the clinical trial supply could be manufactured, but also one can form a sound risk assessment to support further scale up even without decades of process experience. Copyright © 2013 Wiley Periodicals, Inc.

  9. A mathematical model of case-ascertainment bias: Applied to case-control studies nested within a randomized screening trial.

    PubMed

    Jansen, Rick J; Alexander, Bruce H; Hayes, Richard B; Miller, Anthony B; Wacholder, Sholom; Church, Timothy R

    2018-01-01

    When some individuals are screen-detected before the beginning of the study, but otherwise would have been diagnosed symptomatically during the study, this results in different case-ascertainment probabilities among screened and unscreened participants, referred to here as lead-time-biased case-ascertainment (LTBCA). In fact, this issue can arise even in risk-factor studies nested within a randomized screening trial; even though the screening intervention is randomly allocated to trial arms, there is no randomization to potential risk-factors and uptake of screening can differ by risk-factor strata. Under the assumptions that neither screening nor the risk factor affects underlying incidence and no other forms of bias operate, we simulate and compare the underlying cumulative incidence and that observed in the study due to LTBCA. The example used will be constructed from the randomized Prostate, Lung, Colorectal, and Ovarian cancer screening trial. The derived mathematical model is applied to simulating two nested studies to evaluate the potential for screening bias in observational lung cancer studies. Because of differential screening under plausible assumptions about preclinical incidence and duration, the simulations presented here show that LTBCA due to chest x-ray screening can significantly increase the estimated risk of lung cancer due to smoking by 1% and 50%. Traditional adjustment methods cannot account for this bias, as the influence screening has on observational study estimates involves events outside of the study observation window (enrollment and follow-up) that change eligibility for potential participants, thus biasing case ascertainment.

  10. Satellite Data Transmission (SDT) requirement

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; White, M.; Lindsey, W. C.

    1984-01-01

    An 85 Mb/s modem/codec to operate in a 34 MHz C-band domestic satellite transponder at a system carrier to noise power ratio of 19.5 dB is discussed. Characteristics of a satellite channel and the approach adopted for the satellite data transmission modem/codec selection are discussed. Measured data and simulation results of the existing 50 Mbps link are compared and used to verify the simulation techniques. Various modulation schemes that were screened for the SDT are discussed and the simulated performance of two prime candidates, the 8 PSK and the SMSK/2 are given. The selection process that leads to the candidate codec techniques are documented and the technology of the modem/codec candidates is assessed. Costs of the modems and codecs are estimated.

  11. Proposal for a screening test to evaluate the fate of organic micropollutants in activated sludge.

    PubMed

    Salvetti, Roberta; Vismara, Renato; Dal Ben, Ilaria; Gorla, Elena; Romele, Laura

    2011-04-01

    The concentrations of organic micropollutants are usually low in wastewaters (order of magnitude of mg L(-1)). However, their emission standards, especially in the case of carcinogenic and bioaccumulating substances, are often much lower (order of magnitude of microg L(-1)). Since these substances, in some cases, can be adsorbable or volatile, their removal via volatilization, biodegradation or sludge adsorption in a wastewater treatment plant (WWTP) becomes a significant feature to include in the usual design process, in order to verify the emission standards in gas and sludge too. In this study a simple screening batch test for the evaluation of the fate of organic micropollutants in water, air and sludge is presented. The test is set up by means of simple laboratory instruments and simulates an activated sludge tank process. In this study the results obtained for four substances with different chemical properties (i.e. toluene, benz(a)anthracene, phenol and benzene) are presented. The screening test proposed can be a useful tool to assess in about one month the fate of organic micropollutants in an activated sludge tank of a WWTP. Moreover, the test can constitute a useful support in the use of mathematical models, since it allows the verification of model results and the calibration of the reactions involved in the removal process.

  12. Turbocharged molecular discovery of OLED emitters: from high-throughput quantum simulation to highly efficient TADF devices

    NASA Astrophysics Data System (ADS)

    Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Ha, Dong-Gwang; Einzinger, Markus; Wu, Tony; Baldo, Marc A.; Aspuru-Guzik, Alán.

    2016-09-01

    Discovering new OLED emitters requires many experiments to synthesize candidates and test performance in devices. Large scale computer simulation can greatly speed this search process but the problem remains challenging enough that brute force application of massive computing power is not enough to successfully identify novel structures. We report a successful High Throughput Virtual Screening study that leveraged a range of methods to optimize the search process. The generation of candidate structures was constrained to contain combinatorial explosion. Simulations were tuned to the specific problem and calibrated with experimental results. Experimentalists and theorists actively collaborated such that experimental feedback was regularly utilized to update and shape the computational search. Supervised machine learning methods prioritized candidate structures prior to quantum chemistry simulation to prevent wasting compute on likely poor performers. With this combination of techniques, each multiplying the strength of the search, this effort managed to navigate an area of molecular space and identify hundreds of promising OLED candidate structures. An experimentally validated selection of this set shows emitters with external quantum efficiencies as high as 22%.

  13. Atomistic minimal model for estimating profile of electrodeposited nanopatterns

    NASA Astrophysics Data System (ADS)

    Asgharpour Hassankiadeh, Somayeh; Sadeghi, Ali

    2018-06-01

    We develop a computationally efficient and methodologically simple approach to realize molecular dynamics simulations of electrodeposition. Our minimal model takes into account the nontrivial electric field due a sharp electrode tip to perform simulations of the controllable coating of a thin layer on a surface with an atomic precision. On the atomic scale a highly site-selective electrodeposition of ions and charged particles by means of the sharp tip of a scanning probe microscope is possible. A better understanding of the microscopic process, obtained mainly from atomistic simulations, helps us to enhance the quality of this nanopatterning technique and to make it applicable in fabrication of nanowires and nanocontacts. In the limit of screened inter-particle interactions, it is feasible to run very fast simulations of the electrodeposition process within the framework of the proposed model and thus to investigate how the shape of the overlayer depends on the tip-sample geometry and dielectric properties, electrolyte viscosity, etc. Our calculation results reveal that the sharpness of the profile of a nano-scale deposited overlayer is dictated by the normal-to-sample surface component of the electric field underneath the tip.

  14. Open-loop simulations of atmospheric turbulence using the AdAPS interface

    NASA Astrophysics Data System (ADS)

    Widiker, Jeffrey J.; Magee, Eric P.

    2005-08-01

    We present and analyze experimental results of lab-based open-loop turbulence simulation utilizing the Adaptive Aberrating Phase Screen Interface developed by ATK Mission Research, which incorporates a 2-D spatial light modulator manufactured by Boulder Nonlinear Systems. These simulations demonstrate the effectiveness of a SLM to simulate various atmospheric turbulence scenarios in a laboratory setting without altering the optical setup. This effectiveness is shown using several figures of merit including: long-term Strehl ratio, time-dependant mean-tilt analysis, and beam break-up geometry. The scenarios examined here range from relatively weak (D/ro = 0.167) to quite strong (D/ro = 10) turbulence effects modeled using a single phase-screen placed at the pupil of a Fourier Transforming lens. While very strong turbulence scenarios result long-term Strehl ratios higher than expected, the SLM provided an accurate simulation of atmospheric effects for conventional phase-screen strengths.

  15. Evaluating the impacts of screening and smoking cessation programmes on lung cancer in a high-burden region of the USA: a simulation modelling study

    PubMed Central

    Tramontano, Angela C; Sheehan, Deirdre F; McMahon, Pamela M; Dowling, Emily C; Holford, Theodore R; Ryczak, Karen; Lesko, Samuel M; Levy, David T; Kong, Chung Yin

    2016-01-01

    Objective While the US Preventive Services Task Force has issued recommendations for lung cancer screening, its effectiveness at reducing lung cancer burden may vary at local levels due to regional variations in smoking behaviour. Our objective was to use an existing model to determine the impacts of lung cancer screening alone or in addition to increased smoking cessation in a US region with a relatively high smoking prevalence and lung cancer incidence. Setting Computer-based simulation model. Participants Simulated population of individuals 55 and older based on smoking prevalence and census data from Northeast Pennsylvania. Interventions Hypothetical lung cancer control from 2014 to 2050 through (1) screening with CT, (2) intensified smoking cessation or (3) a combination strategy. Primary and secondary outcome measures Primary outcomes were lung cancer mortality rates. Secondary outcomes included number of people eligible for screening and number of radiation-induced lung cancers. Results Combining lung cancer screening with increased smoking cessation would yield an estimated 8.1% reduction in cumulative lung cancer mortality by 2050. Our model estimated that the number of screening-eligible individuals would progressively decrease over time, indicating declining benefit of a screening-only programme. Lung cancer screening achieved a greater mortality reduction in earlier years, but was later surpassed by smoking cessation. Conclusions Combining smoking cessation programmes with lung cancer screening would provide the most benefit to a population, especially considering the growing proportion of patients ineligible for screening based on current recommendations. PMID:26928026

  16. Simulation modeling for stratified breast cancer screening - a systematic review of cost and quality of life assumptions.

    PubMed

    Arnold, Matthias

    2017-12-02

    The economic evaluation of stratified breast cancer screening gains momentum, but produces also very diverse results. Systematic reviews so far focused on modeling techniques and epidemiologic assumptions. However, cost and utility parameters received only little attention. This systematic review assesses simulation models for stratified breast cancer screening based on their cost and utility parameters in each phase of breast cancer screening and care. A literature review was conducted to compare economic evaluations with simulation models of personalized breast cancer screening. Study quality was assessed using reporting guidelines. Cost and utility inputs were extracted, standardized and structured using a care delivery framework. Studies were then clustered according to their study aim and parameters were compared within the clusters. Eighteen studies were identified within three study clusters. Reporting quality was very diverse in all three clusters. Only two studies in cluster 1, four studies in cluster 2 and one study in cluster 3 scored high in the quality appraisal. In addition to the quality appraisal, this review assessed if the simulation models were consistent in integrating all relevant phases of care, if utility parameters were consistent and methodological sound and if cost were compatible and consistent in the actual parameters used for screening, diagnostic work up and treatment. Of 18 studies, only three studies did not show signs of potential bias. This systematic review shows that a closer look into the cost and utility parameter can help to identify potential bias. Future simulation models should focus on integrating all relevant phases of care, using methodologically sound utility parameters and avoiding inconsistent cost parameters.

  17. Simulation studies of nucleation of ferroelectric polarization reversal.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennecka, Geoffrey L.; Winchester, Benjamin Michael

    2014-08-01

    Electric field-induced reversal of spontaneous polarization is the defining characteristic of a ferroelectric material, but the process(es) and mechanism(s) associated with the initial nucleation of reverse-polarity domains are poorly understood. This report describes studies carried out using phase field modeling of LiTaO 3, a relatively simple prototype ferroelectric material, in order to explore the effects of either mechanical deformation or optically-induced free charges on nucleation and resulting domain configuration during field-induced polarization reversal. Conditions were selected to approximate as closely as feasible those of accompanying experimental work in order to provide not only support for the experimental work but alsomore » ensure that additional experimental validation of the simulations could be carried out in the future. Phase field simulations strongly support surface mechanical damage/deformation as effective for dramatically reducing the overall coercive field (Ec) via local field enhancements. Further, optically-nucleated polarization reversal appears to occur via stabilization of latent nuclei via the charge screening effects of free charges.« less

  18. Performance Evaluation Test of the Orbit Screen Model 68A and the Komplet Model 48-25 Rock Crusher

    DTIC Science & Technology

    2008-08-01

    two representatives from the Government of Ecuador, Ms . Viviana Anabela Meza Cevallos, from the Demining Center of Ecuador, and Lieutenant Jose Luis...Mines ( MRMs ) Antipersonnel Simulants............................ 8 4 Orbit Screen Model 68 Testing...Mock Mine .............................................................................................................. 7 Figure 8: MRM Simulant, Type

  19. Quantum probability ranking principle for ligand-based virtual screening.

    PubMed

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  20. Quantum probability ranking principle for ligand-based virtual screening

    NASA Astrophysics Data System (ADS)

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2017-04-01

    Chemical libraries contain thousands of compounds that need screening, which increases the need for computational methods that can rank or prioritize compounds. The tools of virtual screening are widely exploited to enhance the cost effectiveness of lead drug discovery programs by ranking chemical compounds databases in decreasing probability of biological activity based upon probability ranking principle (PRP). In this paper, we developed a novel ranking approach for molecular compounds inspired by quantum mechanics, called quantum probability ranking principle (QPRP). The QPRP ranking criteria would make an attempt to draw an analogy between the physical experiment and molecular structure ranking process for 2D fingerprints in ligand based virtual screening (LBVS). The development of QPRP criteria in LBVS has employed the concepts of quantum at three different levels, firstly at representation level, this model makes an effort to develop a new framework of molecular representation by connecting the molecular compounds with mathematical quantum space. Secondly, estimate the similarity between chemical libraries and references based on quantum-based similarity searching method. Finally, rank the molecules using QPRP approach. Simulated virtual screening experiments with MDL drug data report (MDDR) data sets showed that QPRP outperformed the classical ranking principle (PRP) for molecular chemical compounds.

  1. Virtual reality skills training for health care professionals in alcohol screening and brief intervention.

    PubMed

    Fleming, Michael; Olsen, Dale; Stathes, Hilary; Boteler, Laura; Grossberg, Paul; Pfeifer, Judie; Schiro, Stephanie; Banning, Jane; Skochelak, Susan

    2009-01-01

    Educating physicians and other health care professionals about the identification and treatment of patients who drink more than recommended limits is an ongoing challenge. An educational randomized controlled trial was conducted to test the ability of a stand-alone training simulation to improve the clinical skills of health care professionals in alcohol screening and intervention. The "virtual reality simulation" combined video, voice recognition, and nonbranching logic to create an interactive environment that allowed trainees to encounter complex social cues and realistic interpersonal exchanges. The simulation included 707 questions and statements and 1207 simulated patient responses. A sample of 102 health care professionals (10 physicians; 30 physician assistants or nurse practitioners; 36 medical students; 26 pharmacy, physican assistant, or nurse practitioner students) were randomly assigned to a no training group (n = 51) or a computer-based virtual reality intervention (n = 51). Professionals in both groups had similar pretest standardized patient alcohol screening skill scores: 53.2 (experimental) vs 54.4 (controls), 52.2 vs 53.7 alcohol brief intervention skills, and 42.9 vs 43.5 alcohol referral skills. After repeated practice with the simulation there were significant increases in the scores of the experimental group at 6 months after randomization compared with the control group for the screening (67.7 vs 58.1; P < .001) and brief intervention (58.3 vs 51.6; P < .04) scenarios. The technology tested in this trial is the first virtual reality simulation to demonstrate an increase in the alcohol screening and brief intervention skills of health care professionals.

  2. A systematic review of validated sinus surgery simulators.

    PubMed

    Stew, B; Kao, S S-T; Dharmawardana, N; Ooi, E H

    2018-06-01

    Simulation provides a safe and effective opportunity to develop surgical skills. A variety of endoscopic sinus surgery (ESS) simulators has been described in the literature. Validation of these simulators allows for effective utilisation in training. To conduct a systematic review of the published literature to analyse the evidence for validated ESS simulation. Pubmed, Embase, Cochrane and Cinahl were searched from inception of the databases to 11 January 2017. Twelve thousand five hundred and sixteen articles were retrieved of which 10 112 were screened following the removal of duplicates. Thirty-eight full-text articles were reviewed after meeting search criteria. Evidence of face, content, construct, discriminant and predictive validity was extracted. Twenty articles were included in the analysis describing 12 ESS simulators. Eleven of these simulators had undergone validation: 3 virtual reality, 7 physical bench models and 1 cadaveric simulator. Seven of the simulators were shown to have face validity, 7 had construct validity and 1 had predictive validity. None of the simulators demonstrated discriminate validity. This systematic review demonstrates that a number of ESS simulators have been comprehensively validated. Many of the validation processes, however, lack standardisation in outcome reporting, thus limiting a meta-analysis comparison between simulators. © 2017 John Wiley & Sons Ltd.

  3. 3D multiplayer virtual pets game using Google Card Board

    NASA Astrophysics Data System (ADS)

    Herumurti, Darlis; Riskahadi, Dimas; Kuswardayan, Imam

    2017-08-01

    Virtual Reality (VR) is a technology which allows user to interact with the virtual environment. This virtual environment is generated and simulated by computer. This technology can make user feel the sensation when they are in the virtual environment. The VR technology provides real virtual environment view for user and it is not viewed from screen. But it needs another additional device to show the view of virtual environment. This device is known as Head Mounted Device (HMD). Oculust Rift and Microsoft Hololens are the most famous HMD devices used in VR. And in 2014, Google Card Board was introduced at Google I/O developers conference. Google Card Board is VR platform which allows user to enjoy the VR with simple and cheap way. In this research, we explore Google Card Board to develop simulation game of raising pet. The Google Card Board is used to create view for the VR environment. The view and control in VR environment is built using Unity game engine. And the simulation process is designed using Finite State Machine (FSM). This FSM can help to design the process clearly. So the simulation process can describe the simulation of raising pet well. Raising pet is fun activity. But sometimes, there are many conditions which cause raising pet become difficult to do, i.e. environment condition, disease, high cost, etc. this research aims to explore and implement Google Card Board in simulation of raising pet.

  4. Current levels of gonorrhoea screening in MSM in Belgium may have little effect on prevalence: a modelling study.

    PubMed

    Buyze, J; Vanden Berghe, W; Hens, N; Kenyon, C

    2018-02-01

    There is considerable uncertainty as to the effectiveness of Neisseria gonorrhoeae (NG) screening in men who have sex with men. It is important to ensure that screening has benefits that outweigh the risks of increased antibiotics resistance. We develop a mathematical model to estimate the effectiveness of screening on prevalence. Separable Temporal Exponential family Random Graph Models are used to model the sexual relationships network, both with main and casual partners. Next, the transmission of Gonorrhoea is simulated on this network. The models are implemented using the R package 'statnet', which we adapted among other things to incorporate infection status at the pharynx, urethra and rectum separately and to distinguish between anal sex, oral sex and rimming. The different screening programmes compared are no screening, 3.5% of the population screened, 32% screened and 50% screened. The model simulates day-by-day evolution for 10 years of a population of 10 000. If half of the population would be screened, the prevalence in the pharynx decreases from 11.9% to 10.2%. We conclude that the limited impact of screening on NG prevalence may not outweigh the increased risk of antibiotic resistance.

  5. Comparison of different strategies in prenatal screening for Down's syndrome: cost effectiveness analysis of computer simulation.

    PubMed

    Gekas, Jean; Gagné, Geneviève; Bujold, Emmanuel; Douillard, Daniel; Forest, Jean-Claude; Reinharz, Daniel; Rousseau, François

    2009-02-13

    To assess and compare the cost effectiveness of three different strategies for prenatal screening for Down's syndrome (integrated test, sequential screening, and contingent screenings) and to determine the most useful cut-off values for risk. Computer simulations to study integrated, sequential, and contingent screening strategies with various cut-offs leading to 19 potential screening algorithms. The computer simulation was populated with data from the Serum Urine and Ultrasound Screening Study (SURUSS), real unit costs for healthcare interventions, and a population of 110 948 pregnancies from the province of Québec for the year 2001. Cost effectiveness ratios, incremental cost effectiveness ratios, and screening options' outcomes. The contingent screening strategy dominated all other screening options: it had the best cost effectiveness ratio ($C26,833 per case of Down's syndrome) with fewer procedure related euploid miscarriages and unnecessary terminations (respectively, 6 and 16 per 100,000 pregnancies). It also outperformed serum screening at the second trimester. In terms of the incremental cost effectiveness ratio, contingent screening was still dominant: compared with screening based on maternal age alone, the savings were $C30,963 per additional birth with Down's syndrome averted. Contingent screening was the only screening strategy that offered early reassurance to the majority of women (77.81%) in first trimester and minimised costs by limiting retesting during the second trimester (21.05%). For the contingent and sequential screening strategies, the choice of cut-off value for risk in the first trimester test significantly affected the cost effectiveness ratios (respectively, from $C26,833 to $C37,260 and from $C35,215 to $C45,314 per case of Down's syndrome), the number of procedure related euploid miscarriages (from 6 to 46 and from 6 to 45 per 100,000 pregnancies), and the number of unnecessary terminations (from 16 to 26 and from 16 to 25 per 100,000 pregnancies). Contingent screening, with a first trimester cut-off value for high risk of 1 in 9, is the preferred option for prenatal screening of women for pregnancies affected by Down's syndrome.

  6. The efficacy and cost of alternative strategies for systematic screening for type 2 diabetes in the U.S. population 45-74 years of age.

    PubMed

    Johnson, Susan L; Tabaei, Bahman P; Herman, William H

    2005-02-01

    To simulate the outcomes of alternative strategies for screening the U.S. population 45-74 years of age for type 2 diabetes. We simulated screening with random plasma glucose (RPG) and cut points of 100, 130, and 160 mg/dl and a multivariate equation including RPG and other variables. Over 15 years, we simulated screening at intervals of 1, 3, and 5 years. All positive screening tests were followed by a diagnostic fasting plasma glucose or an oral glucose tolerance test. Outcomes include the numbers of false-negative, true-positive, and false-positive screening tests and the direct and indirect costs. At year 15, screening every 3 years with an RPG cut point of 100 mg/dl left 0.2 million false negatives, an RPG of 130 mg/dl or the equation left 1.3 million false negatives, and an RPG of 160 mg/dl left 2.8 million false negatives. Over 15 years, the absolute difference between the most sensitive and most specific screening strategy was 4.5 million true positives and 476 million false-positives. Strategies using RPG cut points of 130 mg/dl or the multivariate equation every 3 years identified 17.3 million true positives; however, the equation identified fewer false-positives. The total cost of the most sensitive screening strategy was $42.7 billion and that of the most specific strategy was $6.9 billion. Screening for type 2 diabetes every 3 years with an RPG cut point of 130 mg/dl or the multivariate equation provides good yield and minimizes false-positive screening tests and costs.

  7. Evaluating the impacts of screening and smoking cessation programmes on lung cancer in a high-burden region of the USA: a simulation modelling study.

    PubMed

    Tramontano, Angela C; Sheehan, Deirdre F; McMahon, Pamela M; Dowling, Emily C; Holford, Theodore R; Ryczak, Karen; Lesko, Samuel M; Levy, David T; Kong, Chung Yin

    2016-02-29

    While the US Preventive Services Task Force has issued recommendations for lung cancer screening, its effectiveness at reducing lung cancer burden may vary at local levels due to regional variations in smoking behaviour. Our objective was to use an existing model to determine the impacts of lung cancer screening alone or in addition to increased smoking cessation in a US region with a relatively high smoking prevalence and lung cancer incidence. Computer-based simulation model. Simulated population of individuals 55 and older based on smoking prevalence and census data from Northeast Pennsylvania. Hypothetical lung cancer control from 2014 to 2050 through (1) screening with CT, (2) intensified smoking cessation or (3) a combination strategy. Primary outcomes were lung cancer mortality rates. Secondary outcomes included number of people eligible for screening and number of radiation-induced lung cancers. Combining lung cancer screening with increased smoking cessation would yield an estimated 8.1% reduction in cumulative lung cancer mortality by 2050. Our model estimated that the number of screening-eligible individuals would progressively decrease over time, indicating declining benefit of a screening-only programme. Lung cancer screening achieved a greater mortality reduction in earlier years, but was later surpassed by smoking cessation. Combining smoking cessation programmes with lung cancer screening would provide the most benefit to a population, especially considering the growing proportion of patients ineligible for screening based on current recommendations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Using Simulation to Model and Validate Invasive Breast Cancer Progression in Women in the Study and Control Groups of the Canadian National Breast Screening Studies I and II.

    PubMed

    Taghipour, Sharareh; Caudrelier, Laurent N; Miller, Anthony B; Harvey, Bart

    2017-02-01

    Modeling breast cancer progression and the effect of various risk is helpful in deciding when a woman should start and end screening, and how often the screening should be undertaken. We modeled the natural progression of breast cancer using a hidden Markov process, and incorporated the effects of covariates. Patients are women aged 50-59 (older) and 40-49 (younger) years from the Canadian National Breast Screening Studies. We included prevalent cancers, estimated the screening sensitivities and rates of over-diagnosis, and validated the models using simulation. We found that older women have a higher rate of transition from a healthy to preclinical state and other causes of death but a lower rate of transition from preclinical to clinical state. Reciprocally, younger women have a lower rate of transition from a healthy to preclinical state and other causes of death but a higher rate of transition from a preclinical to clinical state. Different risk factors were significant for the age groups. The mean sojourn times for older and younger women were 2.53 and 2.96 years, respectively. In the study group, the sensitivities of the initial physical examination and mammography for older and younger women were 0.87 and 0.81, respectively, and the sensitivity of the subsequent screens were 0.78 and 0.53, respectively. In the control groups, the sensitivities of the initial physical examination for older and younger women were 0.769 and 0.671, respectively, and the sensitivity of the subsequent physical examinations for the control group aged 50-59 years was 0.37. The upper-bounds for over-diagnosis in older and younger women were 25% and 27%, respectively. The present work offers a basis for the better modeling of cancer incidence for a population with the inclusion of prevalent cancers.

  9. Reading sky and seeing a cloud: On the relevance of events for perceptual simulation.

    PubMed

    Ostarek, Markus; Vigliocco, Gabriella

    2017-04-01

    Previous research has shown that processing words with an up/down association (e.g., bird, foot) can influence the subsequent identification of visual targets in congruent location (at the top/bottom of the screen). However, as facilitation and interference were found under similar conditions, the nature of the underlying mechanisms remained unclear. We propose that word comprehension relies on the perceptual simulation of a prototypical event involving the entity denoted by a word in order to provide a general account of the different findings. In 3 experiments, participants had to discriminate between 2 target pictures appearing at the top or the bottom of the screen by pressing the left versus right button. Immediately before the targets appeared, they saw an up/down word belonging to the target's event, an up/down word unrelated to the target, or a spatially neutral control word. Prime words belonging to target event facilitated identification of targets at a stimulus onset asynchrony (SOA) of 250 ms (Experiment 1), but only when presented in the vertical location where they are typically seen, indicating that targets were integrated in the simulations activated by the prime words. Moreover, at the same SOA, there was a robust facilitation effect for targets appearing in their typical location regardless of the prime type. However, when words were presented for 100 ms (Experiment 2) or 800 ms (Experiment 3), only a location nonspecific priming effect was found, suggesting that the visual system was not activated. Implications for theories of semantic processing are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Computed tomographic colonography to screen for colorectal cancer, extracolonic cancer, and aortic aneurysm: model simulation with cost-effectiveness analysis.

    PubMed

    Hassan, Cesare; Pickhardt, Perry J; Pickhardt, Perry; Laghi, Andrea; Kim, Daniel H; Kim, Daniel; Zullo, Angelo; Iafrate, Franco; Di Giulio, Lorenzo; Morini, Sergio

    2008-04-14

    In addition to detecting colorectal neoplasia, abdominal computed tomography (CT) with colonography technique (CTC) can also detect unsuspected extracolonic cancers and abdominal aortic aneurysms (AAA).The efficacy and cost-effectiveness of this combined abdominal CT screening strategy are unknown. A computerized Markov model was constructed to simulate the occurrence of colorectal neoplasia, extracolonic malignant neoplasm, and AAA in a hypothetical cohort of 100,000 subjects from the United States who were 50 years of age. Simulated screening with CTC, using a 6-mm polyp size threshold for reporting, was compared with a competing model of optical colonoscopy (OC), both without and with abdominal ultrasonography for AAA detection (OC-US strategy). In the simulated population, CTC was the dominant screening strategy, gaining an additional 1458 and 462 life-years compared with the OC and OC-US strategies and being less costly, with a savings of $266 and $449 per person, respectively. The additional gains for CTC were largely due to a decrease in AAA-related deaths, whereas the modeled benefit from extracolonic cancer downstaging was a relatively minor factor. At sensitivity analysis, OC-US became more cost-effective only when the CTC sensitivity for large polyps dropped to 61% or when broad variations of costs were simulated, such as an increase in CTC cost from $814 to $1300 or a decrease in OC cost from $1100 to $500. With the OC-US approach, suboptimal compliance had a strong negative influence on efficacy and cost-effectiveness. The estimated mortality from CT-induced cancer was less than estimated colonoscopy-related mortality (8 vs 22 deaths), both of which were minor compared with the positive benefit from screening. When detection of extracolonic findings such as AAA and extracolonic cancer are considered in addition to colorectal neoplasia in our model simulation, CT colonography is a dominant screening strategy (ie, more clinically effective and more cost-effective) over both colonoscopy and colonoscopy with 1-time ultrasonography.

  11. A partial exponential lumped parameter model to evaluate groundwater age distributions and nitrate trends in long-screened wells

    USGS Publications Warehouse

    Jurgens, Bryant; Böhlke, John Karl; Kauffman, Leon J.; Belitz, Kenneth; Esser, Bradley K.

    2016-01-01

    A partial exponential lumped parameter model (PEM) was derived to determine age distributions and nitrate trends in long-screened production wells. The PEM can simulate age distributions for wells screened over any finite interval of an aquifer that has an exponential distribution of age with depth. The PEM has 3 parameters – the ratio of saturated thickness to the top and bottom of the screen and mean age, but these can be reduced to 1 parameter (mean age) by using well construction information and estimates of the saturated thickness. The PEM was tested with data from 30 production wells in a heterogeneous alluvial fan aquifer in California, USA. Well construction data were used to guide parameterization of a PEM for each well and mean age was calibrated to measured environmental tracer data (3H, 3He, CFC-113, and 14C). Results were compared to age distributions generated for individual wells using advective particle tracking models (PTMs). Age distributions from PTMs were more complex than PEM distributions, but PEMs provided better fits to tracer data, partly because the PTMs did not simulate 14C accurately in wells that captured varying amounts of old groundwater recharged at lower rates prior to groundwater development and irrigation. Nitrate trends were simulated independently of the calibration process and the PEM provided good fits for at least 11 of 24 wells. This work shows that the PEM, and lumped parameter models (LPMs) in general, can often identify critical features of the age distributions in wells that are needed to explain observed tracer data and nonpoint source contaminant trends, even in systems where aquifer heterogeneity and water-use complicate distributions of age. While accurate PTMs are preferable for understanding and predicting aquifer-scale responses to water use and contaminant transport, LPMs can be sensitive to local conditions near individual wells that may be inaccurately represented or missing in an aquifer-scale flow model.

  12. Vortex shaking study of REBCO tape with consideration of anisotropic characteristics

    NASA Astrophysics Data System (ADS)

    Liang, Fei; Qu, Timing; Zhang, Zhenyu; Sheng, Jie; Yuan, Weijia; Iwasa, Yukikazu; Zhang, Min

    2017-09-01

    The second generation high temperature superconductor, specifically REBCO, has become a new research focus in the development of a new generation of high-field (>25 T) magnets. One of the main challenges in the application of the magnets is the current screening problem. Previous research shows that for magnetized superconducting stacks and bulks the application of an AC field in plane with the circulating current will lead to demagnetization due to vortex shaking, which provides a possible solution to remove the shielding current. This paper provides an in-depth study, both experimentally and numerically, to unveil the vortex shaking mechanism of REBCO stacks. A new experiment was carried out to measure the demagnetization rate of REBCO stacks exposed to an in-plane AC magnetic field. Meanwhile, 2D finite element models, based on the E-J power law, are developed for simulating the vortex shaking effect of the AC magnetic field. Qualitative agreement was obtained between the experimental and the simulation results. Our results show that the applied in-plane magnetic field leads to a sudden decay of trapped magnetic field in the first half shaking cycle, which is caused by the magnetic field dependence of critical current. Furthermore, the decline of demagnetization rate with the increase of tape number is mainly due to the cross-magnetic field being screened by the top and bottom stacks during the shaking process, which leads to lower demagnetization rate of inner layers. We also demonstrate that the frequency of the applied AC magnetic field has little impact on the demagnetization process. Our modeling tool and findings perfect the vortex shaking theory and provide helpful guidance for eliminating screening current in the new generation REBCO magnets.

  13. Simulator comparison of thumball, thumb switch, and touch screen input concepts for interaction with a large screen cockpit display format

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Parrish, Russell V.

    1990-01-01

    A piloted simulation study was conducted comparing three different input methods for interfacing to a large screen, multiwindow, whole flight deck display for management of transport aircraft systems. The thumball concept utilized a miniature trackball embedded in a conventional side arm controller. The multifunction control throttle and stick (MCTAS) concept employed a thumb switch located in the throttle handle. The touch screen concept provided data entry through a capacitive touch screen installed on the display surface. The objective and subjective results obtained indicate that, with present implementations, the thumball concept was the most appropriate for interfacing with aircraft systems/subsystems presented on a large screen display. Not unexpectedly, the completion time differences between the three concepts varied with the task being performed, although the thumball implementation consistently outperformed the other two concepts. However, pilot suggestions for improved implementations of the MCTAS and touch screen concepts could reduce some of these differences.

  14. A review of the curriculum development process of simulation-based educational intervention studies in Korea.

    PubMed

    Lee, Ju-Young; Lee, Soon Hee; Kim, Jung-Hee

    2018-05-01

    Despite the increase in simulators at nursing schools and the high expectations regarding simulation for nursing education, the unique features of integrating simulation-based education into the curriculum are unclear. The purpose of this study was to assess the curriculum development process of simulation-based educational interventions in nursing in Korea. Integrative review of literature used. Korean Studies Information Services System (KISS), Korean Medical Database (KMbase), KoreaMed, Research Information Sharing Service (RISS), and National Digital Library (NDL). Comprehensive databases were searched for records without a time limit (until December 2016), using terms such as "nursing," "simulation," and "education." A total of 1006 studies were screened. According to the model for simulation-based curriculum development (Khamis et al., 2016), the quality of reporting on the curriculum development was reviewed. A total of 125 papers were included in this review. In three studies, simulation scenarios were made from easy to difficulty levels, and none of the studies presented the level of learners' proficiency. Only 17.6% of the studies reported faculty development or preparation. The inter-rater reliability was presented in performance test by 24 studies and two studies evaluated the long-term effects of simulation education although there was no statistically significant change in terms of publication years. These findings suggest that educators and researchers should pay more attention to the educational strategies to integrate simulation into nursing education. It could contribute to guiding educators and researchers to develop a simulation-based curriculum and improve the quality of nursing education research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Relationship of CogScreen-AE to flight simulator performance and pilot age.

    PubMed

    Taylor, J L; O'Hara, R; Mumenthaler, M S; Yesavage, J A

    2000-04-01

    We report on the relationship between CogScreen-Aeromedical Edition (AE) factor scores and flight simulator performance in aircraft pilots aged 50-69. Some 100 licensed, civilian aviators (average age 58+/-5.3 yr) performed aviation tasks in a Frasca model 141 flight simulator and the CogScreen-AE battery. The aviation performance indices were: a) staying on course; b) dialing in communication frequencies; c) avoiding conflicting traffic; d) monitoring cockpit instruments; e) executing the approach; and f) a summary score, which was the mean of these scores. The CogScreen predictors were based on a factor structure reported by Kay (11), which comprised 28 CogScreen scores. Through principal components analysis of Kay's nine factors, we reduced the number of predictors to five composite CogScreen scores: Speed/Working Memory (WM), Visual Associative Memory, Motor Coordination, Tracking, and Attribute Identification. Speed/WM scores had the highest correlation with the flight summary score, Spearman r(rho) = 0.57. A stepwise-forward multiple regression analysis indicated that four CogScreen variables could explain 45% of the variance in flight summary scores. Significant predictors, in order of entry, were: Speed/WM, Visual Associative Memory, Motor Coordination, and Tracking (p<0.05). Pilot age was found to significantly improve prediction beyond that which could be predicted by the four cognitive variables. In addition, there was some evidence for specific ability relationships between certain flight component scores and CogScreen scores, such as approach performance and tracking errors. These data support the validity of CogScreen-AE as a cognitive battery that taps skills relevant to piloting.

  16. Comparison of 2 resident learning tools-interactive screen-based simulated case scenarios versus problem-based learning discussions: a prospective quasi-crossover cohort study.

    PubMed

    Rajan, Shobana; Khanna, Ashish; Argalious, Maged; Kimatian, Stephen J; Mascha, Edward J; Makarova, Natalya; Nada, Eman M; Elsharkawy, Hesham; Firoozbakhsh, Farhad; Avitsian, Rafi

    2016-02-01

    Simulation-based learning is emerging as an alternative educational tool in this era of a relative shortfall of teaching anesthesiologists. The objective of the study is to assess whether screen-based (interactive computer simulated) case scenarios are more effective than problem-based learning discussions (PBLDs) in improving test scores 4 and 8 weeks after these interventions in anesthesia residents during their first neuroanesthesia rotation. Prospective, nonblinded quasi-crossover study. Cleveland Clinic. Anesthesiology residents. Two case scenarios were delivered from the Anesoft software as screen-based sessions, and parallel scripts were developed for 2 PBLDs. Each resident underwent both types of training sessions, starting with the PBLD session, and the 2 cases were alternated each month (ie, in 1 month, the screen-based intervention used case 1 and the PBLD used case 2, and vice versa for the next month). Test scores before the rotation (baseline), immediately after the rotation (4 weeks after the start of the rotation), and 8 weeks after the start of rotation were collected on each topic from each resident. The effect of training method on improvement in test scores was assessed using a linear mixed-effects model. Compared to the departmental standard of PBLD, the simulation method did not improve either the 4- or 8-week mean test scores (P = .41 and P = .40 for training method effect on 4- and 8-week scores, respectively). Resident satisfaction with the simulation module on a 5-point Likert scale showed subjective evidence of a positive impact on resident education. Screen-based simulators were not more effective than PBLD for education during the neuroanesthesia rotation in anesthesia residency. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Search for β2 Adrenergic Receptor Ligands by Virtual Screening via Grid Computing and Investigation of Binding Modes by Docking and Molecular Dynamics Simulations

    PubMed Central

    Bai, Qifeng; Shao, Yonghua; Pan, Dabo; Zhang, Yang; Liu, Huanxiang; Yao, Xiaojun

    2014-01-01

    We designed a program called MolGridCal that can be used to screen small molecule database in grid computing on basis of JPPF grid environment. Based on MolGridCal program, we proposed an integrated strategy for virtual screening and binding mode investigation by combining molecular docking, molecular dynamics (MD) simulations and free energy calculations. To test the effectiveness of MolGridCal, we screened potential ligands for β2 adrenergic receptor (β2AR) from a database containing 50,000 small molecules. MolGridCal can not only send tasks to the grid server automatically, but also can distribute tasks using the screensaver function. As for the results of virtual screening, the known agonist BI-167107 of β2AR is ranked among the top 2% of the screened candidates, indicating MolGridCal program can give reasonable results. To further study the binding mode and refine the results of MolGridCal, more accurate docking and scoring methods are used to estimate the binding affinity for the top three molecules (agonist BI-167107, neutral antagonist alprenolol and inverse agonist ICI 118,551). The results indicate agonist BI-167107 has the best binding affinity. MD simulation and free energy calculation are employed to investigate the dynamic interaction mechanism between the ligands and β2AR. The results show that the agonist BI-167107 also has the lowest binding free energy. This study can provide a new way to perform virtual screening effectively through integrating molecular docking based on grid computing, MD simulations and free energy calculations. The source codes of MolGridCal are freely available at http://molgridcal.codeplex.com. PMID:25229694

  18. Tools for Material Design and Selection

    NASA Astrophysics Data System (ADS)

    Wehage, Kristopher

    The present thesis focuses on applications of numerical methods to create tools for material characterization, design and selection. The tools generated in this work incorporate a variety of programming concepts, from digital image analysis, geometry, optimization, and parallel programming to data-mining, databases and web design. The first portion of the thesis focuses on methods for characterizing clustering in bimodal 5083 Aluminum alloys created by cryomilling and powder metallurgy. The bimodal samples analyzed in the present work contain a mixture of a coarse grain phase, with a grain size on the order of several microns, and an ultra-fine grain phase, with a grain size on the order of 200 nm. The mixing of the two phases is not homogeneous and clustering is observed. To investigate clustering in these bimodal materials, various microstructures were created experimentally by conventional cryomilling, Hot Isostatic Pressing (HIP), Extrusion, Dual-Mode Dynamic Forging (DMDF) and a new 'Gradient' cryomilling process. Two techniques for quantitative clustering analysis are presented, formulated and implemented. The first technique, the Area Disorder function, provides a metric of the quality of coarse grain dispersion in an ultra-fine grain matrix and the second technique, the Two-Point Correlation function, provides a metric of long and short range spatial arrangements of the two phases, as well as an indication of the mean feature size in any direction. The two techniques are implemented on digital images created by Scanning Electron Microscopy (SEM) and Electron Backscatter Detection (EBSD) of the microstructures. To investigate structure--property relationships through modeling and simulation, strategies for generating synthetic microstructures are discussed and a computer program that generates randomized microstructures with desired configurations of clustering described by the Area Disorder Function is formulated and presented. In the computer program, two-dimensional microstructures are generated by Random Sequential Adsorption (RSA) of voxelized ellipses representing the coarse grain phase. A simulated annealing algorithm is used to geometrically optimize the placement of the ellipses in the model to achieve varying user-defined configurations of spatial arrangement of the coarse grains. During the simulated annealing process, the ellipses are allowed to overlap up to a specified threshold, allowing triple junctions to form in the model. Once the simulated annealing process is complete, the remaining space is populated by smaller ellipses representing the ultra-fine grain phase. Uniform random orientations are assigned to the grains. The program generates text files that can be imported in to Crystal Plasticity Finite Element Analysis Software for stress analysis. Finally, numerical methods and programming are applied to current issues in green engineering and hazard assessment. To understand hazards associated with materials and select safer alternatives, engineers and designers need access to up-to-date hazard information. However, hazard information comes from many disparate sources and aggregating, interpreting and taking action on the wealth of data is not trivial. In light of these challenges, a Framework for Automated Hazard Assessment based on the GreenScreen list translator is presented. The framework consists of a computer program that automatically extracts data from the GHS-Japan hazard database, loads the data into a machine-readable JSON format, transforms the JSON document in to a GreenScreen JSON document using the GreenScreen List Translator v1.2 and performs GreenScreen Benchmark scoring on the material. The GreenScreen JSON documents are then uploaded to a document storage system to allow human operators to search for, modify or add additional hazard information via a web interface.

  19. Merging tree ring chronologies and climate system model simulated temperature by optimal interpolation algorithm in North America

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Xing, Pei; Luo, Yong; Zhao, Zongci; Nie, Suping; Huang, Jianbin; Wang, Shaowu; Tian, Qinhua

    2015-04-01

    A new dataset of annual mean surface temperature has been constructed over North America in recent 500 years by performing optimal interpolation (OI) algorithm. Totally, 149 series totally were screened out including 69 tree ring width (MXD) and 80 tree ring width (TRW) chronologies are screened from International Tree Ring Data Bank (ITRDB). The simulated annual mean surface temperature derives from the past1000 experiment results of Community Climate System Model version 4 (CCSM4). Different from existing research that applying data assimilation approach to (General Circulation Models) GCMs simulation, the errors of both the climate model simulation and tree ring reconstruction were considered, with a view to combining the two parts in an optimal way. Variance matching (VM) was employed to calibrate tree ring chronologies on CRUTEM4v, and corresponding errors were estimated through leave-one-out process. Background error covariance matrix was estimated from samples of simulation results in a running 30-year window in a statistical way. Actually, the background error covariance matrix was calculated locally within the scanning range (2000km in this research). Thus, the merging process continued with a time-varying local gain matrix. The merging method (MM) was tested by two kinds of experiments, and the results indicated standard deviation of errors can be reduced by about 0.3 degree centigrade lower than tree ring reconstructions and 0.5 degree centigrade lower than model simulation. During the recent Obvious decadal variability can be identified in MM results including the evident cooling (0.10 degree per decade) in 1940-60s, wherein the model simulation exhibit a weak increasing trend (0.05 degree per decade) instead. MM results revealed a compromised spatial pattern of the linear trend of surface temperature during a typical period (1601-1800 AD) in Little Ice Age, which basically accorded with the phase transitions of the Pacific decadal oscillation (PDO) and Atlantic multi-decadal oscillation (AMO). Through the empirical orthogonal functions and power spectrum analysis, it was demonstrated that, compared with the pure simulations of CCSM4, MM made significant improvement of decadal variability for the gridded temperature in North America by merging the temperature-sensitive tree ring records.

  20. Experimental and modeling approaches for food waste composting: a review.

    PubMed

    Li, Zhentong; Lu, Hongwei; Ren, Lixia; He, Li

    2013-10-01

    Composting has been used as a method to dispose food waste (FW) and recycle organic matter to improve soil structure and fertility. Considering the significance of composting in FW treatment, many researchers have paid their attention on how to improve FW composting efficiency, reduce operating cost, and mitigate the associated environmental damage. This review focuses on the overall studies of FW composting, not only various parameters significantly affecting the processes and final results, but also a number of simulation approaches that are greatly instrumental in well understanding the process mechanism and/or results prediction. Implications of many key ingredients on FW composting performance are also discussed. Perspects of effective laboratory experiments and computer-based simulation are finally investigated, demonstrating many demanding areas for enhanced research efforts, which include the screening of multi-functional additives, volatile organiccompound emission control, necessity of modeling and post-modeling analysis, and usefulness of developing more conjunctive AI-based process control techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Transitioning NWChem to the Next Generation of Manycore Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bylaska, Eric J.; Apra, E; Kowalski, Karol

    The NorthWest chemistry (NWChem) modeling software is a popular molecular chemistry simulation software that was designed from the start to work on massively parallel processing supercomputers [1-3]. It contains an umbrella of modules that today includes self-consistent eld (SCF), second order Møller-Plesset perturbation theory (MP2), coupled cluster (CC), multiconguration self-consistent eld (MCSCF), selected conguration interaction (CI), tensor contraction engine (TCE) many body methods, density functional theory (DFT), time-dependent density functional theory (TDDFT), real-time time-dependent density functional theory, pseudopotential plane-wave density functional theory (PSPW), band structure (BAND), ab initio molecular dynamics (AIMD), Car-Parrinello molecular dynamics (MD), classical MD, hybrid quantum mechanicsmore » molecular mechanics (QM/MM), hybrid ab initio molecular dynamics molecular mechanics (AIMD/MM), gauge independent atomic orbital nuclear magnetic resonance (GIAO NMR), conductor like screening solvation model (COSMO), conductor-like screening solvation model based on density (COSMO-SMD), and reference interaction site model (RISM) solvation models, free energy simulations, reaction path optimization, parallel in time, among other capabilities [4]. Moreover, new capabilities continue to be added with each new release.« less

  2. Liquid-Crystal Display (LCD) Screen Thermal Testing to Simulate Solar Gain

    DTIC Science & Technology

    2015-12-01

    Display (LCD) Screen Thermal Testing to Simulate Solar Gain 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) Steven...Sunlight, Monitor Screen Covered 9 2.6 Test 6 – Bench Test with a 250 W Heat Lamp and Hot Mirror Glass 9 2.7 Test 7 – Bench Test with a 250 W Heat...that was used. The use of a black background with white text was important in creating the worst-case scenario for the absorption of solar radiation

  3. Evaluation of health benefits and harms of the breast cancer screening programme in the Basque Country using discrete event simulation.

    PubMed

    Arrospide, Arantzazu; Rue, Montserrat; van Ravesteyn, Nicolien T; Comas, Merce; Larrañaga, Nerea; Sarriugarte, Garbiñe; Mar, Javier

    2015-10-12

    Since the breast cancer screening programme in the Basque Country (BCSPBC) was started in 1996, more than 400,000 women aged 50 to 69 years have been invited to participate. Based on epidemiological observations and simulation techniques it is possible to extend observed short term data into anticipated long term results. The aim of this study was to assess the effectiveness of the programme through 2011 by quantifying the outcomes in breast cancer mortality, life-years gained, false positive results, and overdiagnosis. A discrete event simulation model was constructed to reproduce the natural history of breast cancer (disease-free, pre-clinical, symptomatic, and disease-specific death) and the actual observed characteristics of the screening programme during the evaluated period in the Basque women population. Goodness-of-fit statistics were applied for model validation. The screening effects were measured as differences in benefits and harms between the screened and unscreened populations. Breast cancer mortality reduction and life-years gained were considered as screening benefits, whereas, overdiagnosis and false positive results were assessed as harms. Results for a single cohort were also obtained. The screening programme yielded a 16 % reduction in breast cancer mortality and a 10 % increase in the incidence of breast cancer through 2011. Almost 2 % of all the women in the programme had a false positive result during the evaluation period. When a single cohort was analysed, the number of deaths decreased by 13 %, and 4 % of screen-detected cancers were overdiagnosed. Each woman with BC detected by the screening programme gained 2.5 life years due to early detection corrected by lead time. Fifteen years after the screening programme started, this study supports an important decrease in breast cancer mortality due to the screening programme, with reasonable risk of overdiagnosis and false positive results, and sustains the continuation of the breast cancer screening programme in the Basque population.

  4. Rational approach to identify newer caspase-1 inhibitors using pharmacophore based virtual screening, docking and molecular dynamic simulation studies.

    PubMed

    Patel, Shivani; Modi, Palmi; Chhabria, Mahesh

    2018-05-01

    Caspase-1 is a key endoprotease responsible for the post-translational processing of pro-inflammatory cytokines IL-1β, 18 & 33. Excessive secretion of IL-1β leads to numerous inflammatory and autoimmune diseases. Thus caspase-1 inhibition would be considered as an important therapeutic strategy for development of newer anti-inflammatory agents. Here we have employed an integrated virtual screening by combining pharmacophore mapping and docking to identify small molecules as caspase-1 inhibitors. The ligand based 3D pharmacophore model was generated having the essential structural features of (HBA, HY & RA) using a data set of 27 compounds. A validated pharmacophore hypothesis (Hypo 1) was used to screen ZINC and Minimaybridge chemical databases. The retrieved virtual hits were filtered by ADMET properties and molecular docking analysis. Subsequently, the cross-docking study was also carried out using crystal structure of caspase-1, 3, 7 and 8 to identify the key residual interaction for specific caspase-1 inhibition. Finally, the best mapped and top scored (ZINC00885612, ZINC72003647, BTB04175 and BTB04410) molecules were subjected to molecular dynamics simulation for accessing the dynamic structure of protein after ligand binding. This study identifies the most promising hits, which can be leads for the development of novel caspase-1 inhibitors as anti-inflammatory agents. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Mobile ultra-clean unidirectional airflow screen reduces air contamination in a simulated setting for intra-vitreal injection.

    PubMed

    Lapid-Gortzak, Ruth; Traversari, Roberto; van der Linden, Jan Willem; Lesnik Oberstein, Sarit Y; Lapid, Oren; Schlingemann, Reinier O

    2017-02-01

    The aim of this study is to determine whether the use of a mobile ultra-clean laminar airflow screen reduces the air-borne particle counts in the setting of a simulated procedure of an intra-vitreal injection. A mobile ultra-clean unidirectional airflow (UDF) screen was tested in a simulated procedure for intra-vitreal injections in a treatment room without mechanical ventilation. One UDF was passed over the instrument tray and the surgical area. The concentration of particles was measured in the background, over the instrument table, and next to the ocular area. The degree of protection was calculated at the instrument table and at the surgical site. Use of the UDF mobile screen reduced the mean particle concentration (particles > 0.3 microns) on the instrument table by a factor of at least 100.000 (p < 0.05), and over the patient's eye by at least a factor of 436 (p < 0.05), which in clinical practice translates into significantly reduced air contamination. Mobile UDF screen reduces the mean particle concentration substantially. The mobile UDF screen may therefore allow for a safer procedural environment for ambulatory care procedures such as intra-vitreal injections in treatment rooms.

  6. Simulations of Ground-Water Flow, Transport, Age, and Particle Tracking near York, Nebraska, for a Study of Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells

    USGS Publications Warehouse

    Clark, Brian R.; Landon, Matthew K.; Kauffman, Leon J.; Hornberger, George Z.

    2008-01-01

    Contamination of public-supply wells has resulted in public-health threats and negative economic effects for communities that must treat contaminated water or find alternative water supplies. To investigate factors controlling vulnerability of public-supply wells to anthropogenic and natural contaminants using consistent and systematic data collected in a variety of principal aquifer settings in the United States, a study of Transport of Anthropogenic and Natural Contaminants to public-supply wells was begun in 2001 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The area simulated by the ground-water flow model described in this report was selected for a study of processes influencing contaminant distribution and transport along the direction of ground-water flow towards a public-supply well in southeastern York, Nebraska. Ground-water flow is simulated for a 60-year period from September 1, 1944, to August 31, 2004. Steady-state conditions are simulated prior to September 1, 1944, and represent conditions prior to use of ground water for irrigation. Irrigation, municipal, and industrial wells were simulated using the Multi-Node Well package of the modular three-dimensional ground-water flow model code, MODFLOW-2000, which allows simulation of flow and solutes through wells that are simulated in multiple nodes or layers. Ground-water flow, age, and transport of selected tracers were simulated using the Ground-Water Transport process of MODFLOW-2000. Simulated ground-water age was compared to interpreted ground-water age in six monitoring wells in the unconfined aquifer. The tracer chlorofluorocarbon-11 was simulated directly using Ground-Water Transport for comparison with concentrations measured in six monitoring wells and one public supply well screened in the upper confined aquifer. Three alternative model simulations indicate that simulation results are highly sensitive to the distribution of multilayer well bores where leakage can occur and that the calibrated model resulted in smaller differences than the alternative models between simulated and interpreted ages and measured tracer concentrations in most, but not all, wells. Results of the first alternative model indicate that the distribution of young water in the upper confined aquifer is substantially different when well-bore leakage at known abandoned wells and test holes is removed from the model. In the second alternative model, simulated age near the bottom of the unconfined aquifer was younger than interpreted ages and simulated chlorofluorocarbon-11 concentrations in the upper confined aquifer were zero in five out of six wells because the conventional Well Package fails to account for flow between model layers though well bores. The third alternative model produced differences between simulated and interpreted ground-water ages and measured chlorofluorocarbon-11 concentrations that were comparable to the calibrated model. However, simulated hydraulic heads deviated from measured hydraulic heads by a greater amount than for the calibrated model. Even so, because the third alternative model simulates steady-state flow, additional analysis was possible using steady-state particle tracking to assess the contributing recharge area to a public supply well selected for analysis of factors contributing to well vulnerability. Results from particle-tracking software (MODPATH) using the third alternative model indicates that the contributing recharge area of the study public-supply well is a composite of elongated, seemingly isolated areas associated with wells that are screened in multiple aquifers. The simulated age distribution of particles at the study public-supply well indicates that all water younger than 58 years travels through well bores of wells screened in multiple aquifers. The age distribution from the steady-state model using MODPATH estimates the youngest 7 percent of the water to have a flow-weighted mean age

  7. Emerging Concern from Short-Term Textile Leaching: A Preliminary Ecotoxicological Survey.

    PubMed

    Lofrano, G; Libralato, G; Carotenuto, M; Guida, M; Inglese, M; Siciliano, A; Meriç, S

    2016-11-01

    Textile dyes and their residues gained growing attention worldwide. Textile industry is a strong water consumer potentially releasing xenobiotics from washing and rinsing procedures during finishing processes. On a decentralised basis, also final consumers generate textile waste streams. Thus, a procedure simulating home washing with tap water screened cotton textiles leachates (n = 28) considering physico-chemical (COD, BOD 5 , and UV absorbance) and ecotoxicological data (Daphnia magna, Pseudokirchneriella subcapitata and Lepidium sativum). Results evidenced that: (i) leachates presented low biodegradability levels; (ii) toxicity in more than half leachates presented slight acute or acute effects; (iii) the remaining leachates presented "no effect" suggesting the use of green dyes/additives, and/or well established finishing processes; (iv) no specific correlations were found between traditional physico-chemical and ecotoxicological data. Further investigations will be necessary to identify textile residues, and their potential interactions with simulated human sweat in order to evidence potential adverse effects on human health.

  8. Virtual Reality Skills Training for Health Care Professionals in Alcohol Screening and Brief Intervention

    PubMed Central

    Fleming, Michael; Olsen, Dale; Stathes, Hilary; Boteler, Laura; Grossberg, Paul; Pfeifer, Judie; Schiro, Stephanie; Banning, Jane; Skochelak, Susan

    2009-01-01

    Background Educating physicians and other health care professionals to identify and treat patients who drink above recommended limits is an ongoing challenge. Methods An educational Randomized Control Trial (RCT) was conducted to test the ability of a stand alone training simulation to improve the clinical skills of health care professionals in alcohol screening and intervention. The “virtual reality simulation” combines video, voice recognition and non branching logic to create an interactive environment that allows trainees to encounter complex social cues and realistic interpersonal exchanges. The simulation includes 707 questions and statements and 1207 simulated patient responses. Results A sample of 102 health care professionals (10 physicians; 30 physician assistants [PAs] or nurse practitioners [NPs]; 36 medical students; 26 pharmacy, PA or NP students) were randomly assigned to no training (n=51) or a computer based virtual reality intervention (n=51). Subjects in both groups had similar pre-test standardized patient alcohol screening skill scores – 53.2 (experimental) vs. 54.4 (controls), 52.2 vs. 53.7 alcohol brief intervention skills, and 42.9 vs. 43.5 alcohol referral skills. Following repeated practice with the simulation there were significant increases in the scores of the experimental group at 6 months post-randomization compared to the control group for the screening (67.7 vs. 58.1, p<.001) and brief intervention (58.3 vs. 51.6, p<.04) scenarios. Conclusions The technology tested in this trial is the first virtual reality simulation to demonstrate an increase in the alcohol screening and brief intervention skills of health care professionals. PMID:19587253

  9. GPCRs from fusarium graminearum detection, modeling and virtual screening - the search for new routes to control head blight disease.

    PubMed

    Bresso, Emmanuel; Togawa, Roberto; Hammond-Kosack, Kim; Urban, Martin; Maigret, Bernard; Martins, Natalia Florencio

    2016-12-15

    Fusarium graminearum (FG) is one of the major cereal infecting pathogens causing high economic losses worldwide and resulting in adverse effects on human and animal health. Therefore, the development of new fungicides against FG is an important issue to reduce cereal infection and economic impact. In the strategy for developing new fungicides, a critical step is the identification of new targets against which innovative chemicals weapons can be designed. As several G-protein coupled receptors (GPCRs) are implicated in signaling pathways critical for the fungi development and survival, such proteins could be valuable efficient targets to reduce Fusarium growth and therefore to prevent food contamination. In this study, GPCRs were predicted in the FG proteome using a manually curated pipeline dedicated to the identification of GPCRs. Based on several successive filters, the most appropriate GPCR candidate target for developing new fungicides was selected. Searching for new compounds blocking this particular target requires the knowledge of its 3D-structure. As no experimental X-Ray structure of the selected protein was available, a 3D model was built by homology modeling. The model quality and stability was checked by 100 ns of molecular dynamics simulations. Two stable conformations representative of the conformational families of the protein were extracted from the 100 ns simulation and were used for an ensemble docking campaign. The model quality and stability was checked by 100 ns of molecular dynamics simulations previously to the virtual screening step. The virtual screening step comprised the exploration of a chemical library with 11,000 compounds that were docked to the GPCR model. Among these compounds, we selected the ten top-ranked nontoxic molecules proposed to be experimentally tested to validate the in silico simulation. This study provides an integrated process merging genomics, structural bioinformatics and drug design for proposing innovative solutions to a world wide threat to grain producers and consumers.

  10. Real-time interactive projection system based on infrared structured-light method

    NASA Astrophysics Data System (ADS)

    Qiao, Xiaorui; Zhou, Qian; Ni, Kai; He, Liang; Wu, Guanhao; Mao, Leshan; Cheng, Xuemin; Ma, Jianshe

    2012-11-01

    Interactive technologies have been greatly developed in recent years, especially in projection field. However, at present, most interactive projection systems are based on special designed interactive pens or whiteboards, which is inconvenient and limits the improvement of user experience. In this paper, we introduced our recent progress on theoretically modeling a real-time interactive projection system. The system permits the user to easily operate or draw on the projection screen directly by fingers without any other auxiliary equipment. The projector projects infrared striping patterns onto the screen and the CCD captures the deformational image. We resolve the finger's position and track its movement by processing the deformational image in real-time. A new way to determine whether the finger touches the screen is proposed. The first deformational fringe on the fingertip and the first fringe at the finger shadow are the same one. The correspondence is obtained, so the location parameters can be decided by triangulation. The simulation results are given, and errors are analyzed.

  11. Laboratory simulation of atmospheric turbulence induced optical wavefront distortion

    NASA Astrophysics Data System (ADS)

    Taylor, Travis Shane

    1999-11-01

    Many creative approaches have been taken in the past for simulating the effect that atmospheric turbulence has on optical beams. Most of the experimental architectures have been complicated and consisted of many optical elements as well as moving components. These techniques have shown a modicum of success; however, they are not completely controllable or predictable. A benchtop technique for experimentally producing one important effect that atmospheric turbulence has on optical beams (phase distortion) is presented here. The system is completely controllable and predictable while accurately representing the statistical nature of the problem. Previous experimentation in optical processing through turbulent media has demonstrated that optical wavefront distortions can be produced via spatial light modulating (SLM) devices, and most turbulence models and experimental results indicate that turbulence can be represented as a phase fluctuation. The amplitude distributions in the resulting far field are primarily due to propagation of the phase. Operating a liquid crystal television (LCTV) in the ``phase- mostly'' mode, a phase fluctuation type model for turbulence is utilized in the present investigation, and a real-time experiment for demonstrating the effects was constructed. For an optical system to simulate optical wavefront distortions due to atmospheric turbulence, the following are required: (1)An optical element that modulates the phasefront of an optical beam (2)A model and a technique for generating spatially correlated turbulence simulating distributions (3)Hardware and software for displaying and manipulating the information addressing the optical phase modulation device The LCTV is ideal for this application. When operated in the ``phase-mostly'' mode some LCTVs can modulate the phasefront of an optical beam by as much as 2π and an algorithm for generating spatially correlated phase screens can be constructed via mathematical modeling software such as Mathcad[2]. The phase screens can then be manipulated and displayed on the LCTV using a computer with an appropriate framegrabber and software. The present system consists of an Epson liquid crystal television (which was optimized to modulate up to 2π of phase), a Macintosh IIci with a framegrabber card, a QuickTime movie consisting of multiple video frames of two dimensional arrays of spatially correlated grayscale images, and two polarizers. The movie is displayed on the television via the framegrabber, and the polarizers are used to operate the television in a mode that mostly modulates the spatial phase distribution of the optical wavefront. The frames of the movie are created using an accepted turbulence model for spatially correlated variations in index of refraction, and each subsequent frame of the movie is calculated following an accepted model for temporally varying turbulence. The model used for generating spatial functions or ``phase screens'' which simulate turbulence is the well known Kolmogorov model. These ``phase screens'' are then used, employing a Taylor's frozen flow model, to simulate temporally varying turbulence. A single ``phase screen'' is given a random velocity vector between 0 and.55 meters per second to simulate temporally varying turbulence. The system is used to distort optical beams as if the beams had propagated through a long pathlength of wavefront distorting medium, such as the atmosphere.

  12. Modeling the Cost Effectiveness of Malaria Control Interventions in the Highlands of Western Kenya

    PubMed Central

    Stuckey, Erin M.; Stevenson, Jennifer; Galactionova, Katya; Baidjoe, Amrish Y.; Bousema, Teun; Odongo, Wycliffe; Kariuki, Simon; Drakeley, Chris; Smith, Thomas A.; Cox, Jonathan; Chitnis, Nakul

    2014-01-01

    Introduction Tools that allow for in silico optimization of available malaria control strategies can assist the decision-making process for prioritizing interventions. The OpenMalaria stochastic simulation modeling platform can be applied to simulate the impact of interventions singly and in combination as implemented in Rachuonyo South District, western Kenya, to support this goal. Methods Combinations of malaria interventions were simulated using a previously-published, validated model of malaria epidemiology and control in the study area. An economic model of the costs of case management and malaria control interventions in Kenya was applied to simulation results and cost-effectiveness of each intervention combination compared to the corresponding simulated outputs of a scenario without interventions. Uncertainty was evaluated by varying health system and intervention delivery parameters. Results The intervention strategy with the greatest simulated health impact employed long lasting insecticide treated net (LLIN) use by 80% of the population, 90% of households covered by indoor residual spraying (IRS) with deployment starting in April, and intermittent screen and treat (IST) of school children using Artemether lumefantrine (AL) with 80% coverage twice per term. However, the current malaria control strategy in the study area including LLIN use of 56% and IRS coverage of 70% was the most cost effective at reducing disability-adjusted life years (DALYs) over a five year period. Conclusions All the simulated intervention combinations can be considered cost effective in the context of available resources for health in Kenya. Increasing coverage of vector control interventions has a larger simulated impact compared to adding IST to the current implementation strategy, suggesting that transmission in the study area is not at a level to warrant replacing vector control to a school-based screen and treat program. These results have the potential to assist malaria control program managers in the study area in adding new or changing implementation of current interventions. PMID:25290939

  13. Modeling the cost effectiveness of malaria control interventions in the highlands of western Kenya.

    PubMed

    Stuckey, Erin M; Stevenson, Jennifer; Galactionova, Katya; Baidjoe, Amrish Y; Bousema, Teun; Odongo, Wycliffe; Kariuki, Simon; Drakeley, Chris; Smith, Thomas A; Cox, Jonathan; Chitnis, Nakul

    2014-01-01

    Tools that allow for in silico optimization of available malaria control strategies can assist the decision-making process for prioritizing interventions. The OpenMalaria stochastic simulation modeling platform can be applied to simulate the impact of interventions singly and in combination as implemented in Rachuonyo South District, western Kenya, to support this goal. Combinations of malaria interventions were simulated using a previously-published, validated model of malaria epidemiology and control in the study area. An economic model of the costs of case management and malaria control interventions in Kenya was applied to simulation results and cost-effectiveness of each intervention combination compared to the corresponding simulated outputs of a scenario without interventions. Uncertainty was evaluated by varying health system and intervention delivery parameters. The intervention strategy with the greatest simulated health impact employed long lasting insecticide treated net (LLIN) use by 80% of the population, 90% of households covered by indoor residual spraying (IRS) with deployment starting in April, and intermittent screen and treat (IST) of school children using Artemether lumefantrine (AL) with 80% coverage twice per term. However, the current malaria control strategy in the study area including LLIN use of 56% and IRS coverage of 70% was the most cost effective at reducing disability-adjusted life years (DALYs) over a five year period. All the simulated intervention combinations can be considered cost effective in the context of available resources for health in Kenya. Increasing coverage of vector control interventions has a larger simulated impact compared to adding IST to the current implementation strategy, suggesting that transmission in the study area is not at a level to warrant replacing vector control to a school-based screen and treat program. These results have the potential to assist malaria control program managers in the study area in adding new or changing implementation of current interventions.

  14. GPU-based simulation of optical propagation through turbulence for active and passive imaging

    NASA Astrophysics Data System (ADS)

    Monnier, Goulven; Duval, François-Régis; Amram, Solène

    2014-10-01

    IMOTEP is a GPU-based (Graphical Processing Units) software relying on a fast parallel implementation of Fresnel diffraction through successive phase screens. Its applications include active imaging, laser telemetry and passive imaging through turbulence with anisoplanatic spatial and temporal fluctuations. Thanks to parallel implementation on GPU, speedups ranging from 40X to 70X are achieved. The present paper gives a brief overview of IMOTEP models, algorithms, implementation and user interface. It then focuses on major improvements recently brought to the anisoplanatic imaging simulation method. Previously, we took advantage of the computational power offered by the GPU to develop a simulation method based on large series of deterministic realisations of the PSF distorted by turbulence. The phase screen propagation algorithm, by reproducing higher moments of the incident wavefront distortion, provides realistic PSFs. However, we first used a coarse gaussian model to fit the numerical PSFs and characterise there spatial statistics through only 3 parameters (two-dimensional displacements of centroid and width). Meanwhile, this approach was unable to reproduce the effects related to the details of the PSF structure, especially the "speckles" leading to prominent high-frequency content in short-exposure images. To overcome this limitation, we recently implemented a new empirical model of the PSF, based on Principal Components Analysis (PCA), ought to catch most of the PSF complexity. The GPU implementation allows estimating and handling efficiently the numerous (up to several hundreds) principal components typically required under the strong turbulence regime. A first demanding computational step involves PCA, phase screen propagation and covariance estimates. In a second step, realistic instantaneous images, fully accounting for anisoplanatic effects, are quickly generated. Preliminary results are presented.

  15. [Studies of marker screening efficiency and corresponding influencing factors in QTL composite interval mapping].

    PubMed

    Gao, Yong-Ming; Wan, Ping

    2002-06-01

    Screening markers efficiently is the foundation of mapping QTLs by composite interval mapping. Main and interaction markers distinguished, besides using background control for genetic variation, could also be used to construct intervals of two-way searching for mapping QTLs with epistasis, which can save a lot of calculation time. Therefore, the efficiency of marker screening would affect power and precision of QTL mapping. A doubled haploid population with 200 individuals and 5 chromosomes was constructed, with 50 markers evenly distributed at 10 cM space. Among a total of 6 QTLs, one was placed on chromosome I, two linked on chromosome II, and the other three linked on chromosome IV. QTL setting included additive effects and epistatic effects of additive x additive, the corresponding QTL interaction effects were set if data were collected under multiple environments. The heritability was assumed to be 0.5 if no special declaration. The power of marker screening by stepwise regression, forward regression, and three methods for random effect prediction, e.g. best linear unbiased prediction (BLUP), linear unbiased prediction (LUP) and adjusted unbiased prediction (AUP), was studied and compared through 100 Monte Carlo simulations. The results indicated that the marker screening power by stepwise regression at 0.1, 0.05 and 0.01 significant level changed from 2% to 68%, the power changed from 2% to 72% by forward regression. The larger the QTL effects, the higher the marker screening power. While the power of marker screening by three random effect prediction was very low, the maximum was only 13%. That suggested that regression methods were much better than those by using the approaches of random effect prediction to identify efficient markers flanking QTLs, and forward selection method was more simple and efficient. The results of simulation study on heritability showed that heightening of both general heritability and interaction heritability of genotype x environments could enhance marker screening power, the former had a greater influence on QTLs with larger main and/or epistatic effects, while the later on QTLs with small main and/or epistatic effects. The simulation of 100 times was also conducted to study the influence of different marker number and density on marker screening power. It is indicated that the marker screening power would decrease if there were too many markers, especially with high density in a mapping population, which suggested that a mapping population with definite individuals could only hold limited markers. According to the simulation study, the reasonable number of markers should not be more than individuals. The simulation study of marker screening under multiple environments showed high total power of marker screening. In order to relieve the problem that marker screening power restricted the efficiency of QTL mapping, markers identified in multiple environments could be used to construct two search intervals.

  16. The cost-effectiveness of Welcome to Medicare visual acuity screening and a possible alternative welcome to medicare eye evaluation among persons without diagnosed diabetes mellitus.

    PubMed

    Rein, David B; Wittenborn, John S; Zhang, Xinzhi; Hoerger, Thomas J; Zhang, Ping; Klein, Barbara Eden Kobrin; Lee, Kris E; Klein, Ronald; Saaddine, Jinan B

    2012-05-01

    To estimate the cost-effectiveness of visual acuity screening performed in primary care settings and of dilated eye evaluations performed by an eye care professional among new Medicare enrollees with no diagnosed eye disorders. Medicare currently reimburses visual acuity screening for new enrollees during their initial preventive primary care health check, but dilated eye evaluations may be a more cost-effective policy. Monte Carlo cost-effectiveness simulation model with a total of 50 000 simulated patients with demographic characteristics matched to persons 65 years of age in the US population. Compared with no screening policy, dilated eye evaluations increased quality-adjusted life-years(QALYs) by 0.008 (95% credible interval [CrI], 0.005-0.011) and increased costs by $94 (95% CrI, −$35 to$222). A visual acuity screening increased QALYs in less than 95% of the simulations (0.001 [95% CrI, −0.002 to 0.004) and increased total costs by $32 (95% CrI, −$97 to $159) per person. The incremental cost-effectiveness ratio of a visual acuity screening and an eye examination compared with no screening were $29 000 and$12 000 per QALY gained, respectively. At a willingness-to-pay value of $15 000 or more per QALY gained, a dilated eye evaluation was the policy option most likely to be cost-effective. The currently recommended visual acuity screening showed limited efficacy and cost-effectiveness compared with no screening. In contrast, anew policy of reimbursement for Welcome to Medicare dilated eye evaluations was highly cost-effective.

  17. The Cost-effectiveness of Welcome to Medicare Visual Acuity Screening and a Possible Alternative Welcome to Medicare Eye Evaluation Among Persons Without Diagnosed Diabetes Mellitus

    PubMed Central

    Rein, David B.; Wittenborn, John S.; Zhang, Xinzhi; Hoerger, Thomas J.; Zhang, Ping; Klein, Barbara Eden Kobrin; Lee, Kris E.; Klein, Ronald; Saaddine, Jinan B.

    2013-01-01

    Objective To estimate the cost-effectiveness of visual acuity screening performed in primary care settings and of dilated eye evaluations performed by an eye care professional among new Medicare enrollees with no diagnosed eye disorders. Medicare currently reimburses visual acuity screening for new enrollees during their initial preventive primary care health check, but dilated eye evaluations may be a more cost-effective policy. Design Monte Carlo cost-effectiveness simulation model with a total of 50 000 simulated patients with demographic characteristics matched to persons 65 years of age in the US population. Results Compared with no screening policy, dilated eye evaluations increased quality-adjusted life-years (QALYs) by 0.008 (95% credible interval [CrI], 0.005–0.011) and increased costs by $94 (95% CrI, −$35 to $222). A visual acuity screening increased QALYs in less than 95% of the simulations (0.001 [95% CrI, −0.002 to 0.004) and increased total costs by $32 (95% CrI, −$97 to $159) per person. The incremental cost-effectiveness ratio of a visual acuity screening and an eye examination compared with no screening were $29 000 and $12 000 per QALY gained, respectively. At a willingness-to-pay value of $15 000 or more per QALY gained, a dilated eye evaluation was the policy option most likely to be cost-effective. Conclusions The currently recommended visual acuity screening showed limited efficacy and cost-effectiveness compared with no screening. In contrast, a new policy of reimbursement for Welcome to Medicare dilated eye evaluations was highly cost-effective. PMID:22232367

  18. Cost-effectiveness of the screening of blood donations for hepatitis E virus in the Netherlands.

    PubMed

    de Vos, Anneke S; Janssen, Mart P; Zaaijer, Hans L; Hogema, Boris M

    2017-02-01

    The incidence of hepatitis E virus (HEV) has increased substantially in Europe recently, thereby threatening blood safety. A cost-effectiveness analysis for HEV screening of blood donations in the Netherlands was performed. A simulation model was developed to mimic the process of donation, infections in the donor population, donation testing, and transmission to transfusion recipients. The variability of viral loads among donors was modeled using observed loads. The number of (incurable) chronic HEV infections among organ and stem cell transplant patients and the costs avoided by implementing blood screening were estimated. HEV screening of whole blood donations in pools of 24 would prevent 4.52 of the 4.94 transfusion-associated chronic HEV infections expected annually, at approximately €310,000 per prevented chronic case. Per case not curable by ribavirin prevention, costs are approximately 10 times higher. Selective screening, if logistically feasible, could reduce screening costs by 85%. Sensitivity analyses show that uncertainty in the HEV transmissibility and the frequency of HEV clearing greatly impact the estimated cost-effectiveness. Of all HEV infections nationwide one in 700 is estimated to be due to blood transfusion, while for chronic infections this is one in 3.5. Despite uncertainties in our estimates, preventing HEV transmission by screening of blood donations appears not excessively expensive compared to other blood-screening measures in the Netherlands. However, the impact on HEV disease burden may be relatively small as only a minority of all HEV cases is transmitted by blood transfusion. © 2017 AABB.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, M.D.

    The purpose of this research program is to identify and evaluate a variety of additives capable of increasing particle cohesion which could be used for improving collection efficiency in an ESP. A three-phase screening process will be used to provide the, evaluation of many additives in a logical and cost-effective manner. The three step approach involves the following experimental setups: 1. Provide a preliminary screening in the laboratory by measuring the effects of various conditioning agents on reentrainment of flyash particles in an electric field operating at simulated flue gas conditions. 2. Evaluate the successful additives using a 100 acfmmore » bench-scale ESP operating on actual flue gas. 3. Obtain the data required for scaling up the technology by testing the two or three most promising conditioning agents at the pilot scale.« less

  20. An Integrated In Silico Method to Discover Novel Rock1 Inhibitors: Multi- Complex-Based Pharmacophore, Molecular Dynamics Simulation and Hybrid Protocol Virtual Screening.

    PubMed

    Chen, Haining; Li, Sijia; Hu, Yajiao; Chen, Guo; Jiang, Qinglin; Tong, Rongsheng; Zang, Zhihe; Cai, Lulu

    2016-01-01

    Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) is an important regulator of focal adhesion, actomyosin contraction and cell motility. In this manuscript, a combination of the multi-complex-based pharmacophore (MCBP), molecular dynamics simulation and a hybrid protocol of a virtual screening method, comprised of multipharmacophore- based virtual screening (PBVS) and ensemble docking-based virtual screening (DBVS) methods were used for retrieving novel ROCK1 inhibitors from the natural products database embedded in the ZINC database. Ten hit compounds were selected from the hit compounds, and five compounds were tested experimentally. Thus, these results may provide valuable information for further discovery of more novel ROCK1 inhibitors.

  1. Using quality improvement methods to optimize resources and maximize productivity in an anesthesia screening and consultation clinic.

    PubMed

    Varughese, Anna M; Hagerman, Nancy; Townsend, Mari E

    2013-07-01

    The anesthesia preoperative screening and evaluation of a patient prior to surgery is a critical element in the safe and effective delivery of anesthesia care. In this era of increased focus on cost containment, many anesthesia practices are looking for ways to maximize productivity while maintaining the quality of the preoperative evaluation process by harnessing and optimizing all available resources. We sought to develop a Nurse Practitioner-assisted Preoperative Anesthesia Screening process using quality improvement methods with the goal of maintaining the quality of the screening process, while at the same time redirecting anesthesiologists time for the provision of nonoperating room (OR) anesthesia. The Nurse practitioner (NP) time (approximately 10 h per week) directed to this project was gained as a result of an earlier resource utilization improvement project within the Department of Anesthesia. The goal of this improvement project was to increase the proportion of patient anesthesia screens conducted by NPs to 50% within 6 months. After discussion with key stakeholders of the process, a multidisciplinary improvement team identified a set of operational factors (key drivers) believed to be important to the success of the preoperative anesthesia screening process. These included the development of dedicated NP time for daily screening, NP competency and confidence with the screening process, effective mentoring by anesthesiologists, standardization of screening process, and communication with stakeholders of the process, that is, surgeons. These key drivers focused on the development of several interventions such as (i) NP education in the preoperative anesthesia screening for consultation process by a series of didactic lectures conducted by anesthesiologists, and NP's shadowing an anesthesiologist during the screening process, (ii) Anesthesiologist mentoring and assessment of NP screenings using the dual screening process whereby both anesthesiologists and NP conducted the screening process independently and results were compared and discussed, (iii) Examination and re-adjustment of NP schedules to provide time for daily screening while preserving other responsibilities, and (iv) Standardization through the development of guidelines for the preoperative screening process. Measures recorded included the percentage of patient anesthesia screens conducted by NP, the percentage of dual screens with MD and NP agreement regarding the screening decision, and the average times taken for the anesthesiologist and NP screening process. After implementation of these interventions, the percentage of successful NP-assisted anesthesia consultation screenings increased from 0% to 65% over a period of 6 months. The Anesthesiologists' time redirected to non-OR anesthesia averaged at least 8 h a week. The percentage of dual screens with agreement on the screening decision was 96% (goal >95%). The overall average time taken for a NP screen was 8.2 min vs 4.5 min for an anesthesiologist screen. The overall average operating room delays and cancelations for cases on the day of surgery remained the same. By applying quality improvement methods, we identified key drivers for the institution of an NP-assisted preoperative screening process and successfully implemented this process while redirecting anesthesiologists' time for the provision of non-OR anesthesia. This project was instrumental in improving the matching of provider skills with clinical need while maintaining superior outcomes at the lowest possible cost. © 2013 John Wiley & Sons Ltd.

  2. Nonbleeding adenomas: Evidence of systematic false-negative fecal immunochemical test results and their implications for screening effectiveness-A modeling study.

    PubMed

    van der Meulen, Miriam P; Lansdorp-Vogelaar, Iris; van Heijningen, Else-Mariëtte B; Kuipers, Ernst J; van Ballegooijen, Marjolein

    2016-06-01

    If some adenomas do not bleed over several years, they will cause systematic false-negative fecal immunochemical test (FIT) results. The long-term effectiveness of FIT screening has been estimated without accounting for such systematic false-negativity. There are now data with which to evaluate this issue. The authors developed one microsimulation model (MISCAN [MIcrosimulation SCreening ANalysis]-Colon) without systematic false-negative FIT results and one model that allowed a percentage of adenomas to be systematically missed in successive FIT screening rounds. Both variants were adjusted to reproduce the first-round findings of the Dutch CORERO FIT screening trial. The authors then compared simulated detection rates in the second screening round with those observed, and adjusted the simulated percentage of systematically missed adenomas to those data. Finally, the authors calculated the impact of systematic false-negative FIT results on the effectiveness of repeated FIT screening. The model without systematic false-negativity simulated higher detection rates in the second screening round than observed. These observed rates could be reproduced when assuming that FIT systematically missed 26% of advanced and 73% of nonadvanced adenomas. To reduce the false-positive rate in the second round to the observed level, the authors also had to assume that 30% of false-positive findings were systematically false-positive. Systematic false-negative FIT testing limits the long-term reduction of biennial FIT screening in the incidence of colorectal cancer (35.6% vs 40.9%) and its mortality (55.2% vs 59.0%) in participants. The results of the current study provide convincing evidence based on the combination of real-life and modeling data that a percentage of adenomas are systematically missed by repeat FIT screening. This impairs the efficacy of FIT screening. Cancer 2016;122:1680-8. © 2016 American Cancer Society. © 2016 American Cancer Society.

  3. Novel shortcut estimation method for regeneration energy of amine solvents in an absorption-based carbon capture process.

    PubMed

    Kim, Huiyong; Hwang, Sung June; Lee, Kwang Soon

    2015-02-03

    Among various CO2 capture processes, the aqueous amine-based absorption process is considered the most promising for near-term deployment. However, the performance evaluation of newly developed solvents still requires complex and time-consuming procedures, such as pilot plant tests or the development of a rigorous simulator. Absence of accurate and simple calculation methods for the energy performance at an early stage of process development has lengthened and increased expense of the development of economically feasible CO2 capture processes. In this paper, a novel but simple method to reliably calculate the regeneration energy in a standard amine-based carbon capture process is proposed. Careful examination of stripper behaviors and exploitation of energy balance equations around the stripper allowed for calculation of the regeneration energy using only vapor-liquid equilibrium and caloric data. Reliability of the proposed method was confirmed by comparing to rigorous simulations for two well-known solvents, monoethanolamine (MEA) and piperazine (PZ). The proposed method can predict the regeneration energy at various operating conditions with greater simplicity, greater speed, and higher accuracy than those proposed in previous studies. This enables faster and more precise screening of various solvents and faster optimization of process variables and can eventually accelerate the development of economically deployable CO2 capture processes.

  4. A Decision-Tree Approach to Cost Comparison of Newborn Screening Strategies for Cystic Fibrosis

    PubMed Central

    Wells, Janelle; Rosenberg, Marjorie; Hoffman, Gary; Anstead, Michael

    2012-01-01

    OBJECTIVE: Because cystic fibrosis can be difficult to diagnose and treat early, newborn screening programs have rapidly developed nationwide but methods vary widely. We therefore investigated the costs and consequences or specific outcomes of the 2 most commonly used methods. METHODS: With available data on screening and follow-up, we used a simulation approach with decision trees to compare immunoreactive trypsinogen (IRT) screening followed by a second IRT test against an IRT/DNA analysis. By using a Monte Carlo simulation program, variation in the model parameters for counts at various nodes of the decision trees, as well as for costs, are included and applied to fictional cohorts of 100 000 newborns. The outcome measures included the numbers of newborns given a diagnosis of cystic fibrosis and costs of screening strategy at each branch and cost per newborn. RESULTS: Simulations revealed a substantial number of potential missed diagnoses for the IRT/IRT system versus IRT/DNA. Although the IRT/IRT strategy with commonly used cutoff values offers an average overall cost savings of $2.30 per newborn, a breakdown of costs by societal segments demonstrated higher out-of-pocket costs for families. Two potential system failures causing delayed diagnoses were identified relating to the screening protocols and the follow-up system. CONCLUSIONS: The IRT/IRT screening algorithm reduces the costs to laboratories and insurance companies but has more system failures. IRT/DNA offers other advantages, including fewer delayed diagnoses and lower out-of-pocket costs to families. PMID:22291119

  5. Experimental validation of Monte Carlo (MANTIS) simulated x-ray response of columnar CsI scintillator screens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freed, Melanie; Miller, Stuart; Tang, Katherine

    Purpose: MANTIS is a Monte Carlo code developed for the detailed simulation of columnar CsI scintillator screens in x-ray imaging systems. Validation of this code is needed to provide a reliable and valuable tool for system optimization and accurate reconstructions for a variety of x-ray applications. Whereas previous validation efforts have focused on matching of summary statistics, in this work the authors examine the complete point response function (PRF) of the detector system in addition to relative light output values. Methods: Relative light output values and high-resolution PRFs have been experimentally measured with a custom setup. A corresponding set ofmore » simulated light output values and PRFs have also been produced, where detailed knowledge of the experimental setup and CsI:Tl screen structures are accounted for in the simulations. Four different screens were investigated with different thicknesses, column tilt angles, and substrate types. A quantitative comparison between the experimental and simulated PRFs was performed for four different incidence angles (0 deg., 15 deg., 30 deg., and 45 deg.) and two different x-ray spectra (40 and 70 kVp). The figure of merit (FOM) used measures the normalized differences between the simulated and experimental data averaged over a region of interest. Results: Experimental relative light output values ranged from 1.456 to 1.650 and were in approximate agreement for aluminum substrates, but poor agreement for graphite substrates. The FOMs for all screen types, incidence angles, and energies ranged from 0.1929 to 0.4775. To put these FOMs in context, the same FOM was computed for 2D symmetric Gaussians fit to the same experimental data. These FOMs ranged from 0.2068 to 0.8029. Our analysis demonstrates that MANTIS reproduces experimental PRFs with higher accuracy than a symmetric 2D Gaussian fit to the experimental data in the majority of cases. Examination of the spatial distribution of differences between the PRFs shows that the main reason for errors between MANTIS and the experimental data is that MANTIS-generated PRFs are sharper than the experimental PRFs. Conclusions: The experimental validation of MANTIS performed in this study demonstrates that MANTIS is able to reliably predict experimental PRFs, especially for thinner screens, and can reproduce the highly asymmetric shape seen in the experimental data. As a result, optimizations and reconstructions carried out using MANTIS should yield results indicative of actual detector performance. Better characterization of screen properties is necessary to reconcile the simulated light output values with experimental data.« less

  6. Simulation of Powder Layer Deposition in Additive Manufacturing Processes Using the Discrete Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbold, E. B.; Walton, O.; Homel, M. A.

    2015-10-26

    This document serves as a final report to a small effort where several improvements were added to a LLNL code GEODYN-­L to develop Discrete Element Method (DEM) algorithms coupled to Lagrangian Finite Element (FE) solvers to investigate powder-­bed formation problems for additive manufacturing. The results from these simulations will be assessed for inclusion as the initial conditions for Direct Metal Laser Sintering (DMLS) simulations performed with ALE3D. The algorithms were written and performed on parallel computing platforms at LLNL. The total funding level was 3-­4 weeks of an FTE split amongst two staff scientists and one post-­doc. The DEM simulationsmore » emulated, as much as was feasible, the physical process of depositing a new layer of powder over a bed of existing powder. The DEM simulations utilized truncated size distributions spanning realistic size ranges with a size distribution profile consistent with realistic sample set. A minimum simulation sample size on the order of 40-­particles square by 10-­particles deep was utilized in these scoping studies in order to evaluate the potential effects of size segregation variation with distance displaced in front of a screed blade. A reasonable method for evaluating the problem was developed and validated. Several simulations were performed to show the viability of the approach. Future investigations will focus on running various simulations investigating powder particle sizing and screen geometries.« less

  7. Brownian dynamics simulations of polyelectrolyte adsorption in shear flow with hydrodynamic interaction

    NASA Astrophysics Data System (ADS)

    Hoda, Nazish; Kumar, Satish

    2007-12-01

    The adsorption of single polyelectrolyte molecules in shear flow is studied using Brownian dynamics simulations with hydrodynamic interaction (HI). Simulations are performed with bead-rod and bead-spring chains, and electrostatic interactions are incorporated through a screened Coulombic potential with excluded volume accounted for by the repulsive part of a Lennard-Jones potential. A correction to the Rotne-Prager-Yamakawa tensor is derived that accounts for the presence of a planar wall. The simulations show that migration away from an uncharged wall, which is due to bead-wall HI, is enhanced by increases in the strength of flow and intrachain electrostatic repulsion, consistent with kinetic theory predictions. When the wall and polyelectrolyte are oppositely charged, chain behavior depends on the strength of electrostatic screening. For strong screening, chains get depleted from a region close to the wall and the thickness of this depletion layer scales as N1/3Wi2/3 at high Wi, where N is the chain length and Wi is the Weissenberg number. At intermediate screening, bead-wall electrostatic attraction competes with bead-wall HI, and it is found that there is a critical Weissenberg number for desorption which scales as N-1/2κ-3(lB∣σq∣)3/2, where κ is the inverse screening length, lB is the Bjerrum length, σ is the surface charge density, and q is the bead charge. When the screening is weak, adsorbed chains are observed to align in the vorticity direction at low shear rates due to the effects of repulsive intramolecular interactions. At higher shear rates, the chains align in the flow direction. The simulation method and results of this work are expected to be useful for a number of applications in biophysics and materials science in which polyelectrolyte adsorption plays a key role.

  8. Use of probability analysis to establish routine bioassay screening levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, E.H.; Sula, M.J.; McFadden, K.M.

    1990-09-01

    Probability analysis was used by the Hanford Internal Dosimetry Program to establish bioassay screening levels for tritium and uranium in urine. Background environmental levels of these two radionuclides are generally detectable by the highly sensitive urine analysis procedures routinely used at Hanford. Establishing screening levels requires balancing the impact of false detection with the consequence of potentially undetectable occupation dose. To establish the screening levels, tritium and uranium analyses were performed on urine samples collected from workers exposed only to environmental sources. All samples were collected at home using a simulated 12-hour protocol for tritium and a simulated 24-hour collectionmore » protocol for uranium. Results of the analyses of these samples were ranked according to tritium concentration or total sample uranium. The cumulative percentile was calculated and plotted using log-probability coordinates. Geometric means and screening levels corresponding to various percentiles were estimated by graphical interpolation and standard calculations. The potentially annual internal dose associated with a screening level was calculated. Screening levels were selected corresponding to the 99.9 percentile, implying that, on the average, 1 out of 1000 samples collected from an unexposed worker population would be expected to exceed the screening level. 4 refs., 2 figs.« less

  9. Analysis of the scattering and absorption properties of ellipsoidal nanoparticle arrays for the design of full-color transparent screens

    NASA Astrophysics Data System (ADS)

    Monti, Alessio; Toscano, Alessandro; Bilotti, Filiberto

    2017-06-01

    The introduction of nanoparticles-based screens [C. W. Hsu, Nat. Commun. 5, 3152 (2014)] has paved the way to the realization of low-cost transparent displays with a wide viewing angle and scalability to large size. Despite the huge potentialities of this approach, the design of a nanoparticles array exhibiting a sharp scattering response in the optical spectrum is still a challenging task. In this manuscript, we investigate the suitability of ellipsoidal plasmonic nanoparticles for this purpose. First, we show that some trade-offs between the sharpness of the scattering response of the array and its absorption level apply. Starting from these considerations, we prove that prolate nanoparticles may be a plausible candidate for achieving the peculiar features required in transparent screen applications. An example of a full-color and almost-isotropic transparent screen is finally proposed and its robustness towards the geometrical inaccuracies that may arise during the fabrication process is assessed. All the analytical considerations, carried out through an analytical model taking into account the surface dispersion effect affecting the nanoparticles, are supported by a proper set of full-wave simulations.

  10. Experimental validation and model development for thermal transmittances of porous window screens and horizontal louvred blind systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Robert; Goudey, Howdy; Curcija, D. Charlie

    Virtually every home in the US has some form of shades, blinds, drapes, or other window attachment, but few have been designed for energy savings. In order to provide a common basis of comparison for thermal performance it is important to have validated simulation tools. This study outlines a review and validation of the ISO 15099 centre-of-glass thermal transmittance correlations for naturally ventilated cavities through measurement and detailed simulations. The focus is on the impacts of room-side ventilated cavities, such as those found with solar screens and horizontal louvred blinds. The thermal transmittance of these systems is measured experimentally, simulatedmore » using computational fluid dynamics analysis, and simulated utilizing simplified correlations from ISO 15099. Finally, correlation coefficients are proposed for the ISO 15099 algorithm that reduces the mean error between measured and simulated heat flux for typical solar screens from 16% to 3.5% and from 13% to 1% for horizontal blinds.« less

  11. Spatial and Temporal Variations of a Screening Current Induced Magnetic Field in a Double-Pancake HTS Insert of an LTS/HTS NMR Magnet

    PubMed Central

    Ahn, Min Cheol; Yagai, Tsuyoshi; Hahn, Seungyong; Ando, Ryuya; Bascuñán, Juan; Iwasa, Yukikazu

    2010-01-01

    This paper presents experimental and simulation results of a screening current induced magnetic field (SCF) in a high temperature superconductor (HTS) insert that constitutes a low-/high-temperature superconductor (LTS/HTS) NMR magnet. In this experiment, the HTS insert, a stack of 50 double-pancake coils, each wound with Bi2223 tape, was operated at 77 K. A screening current was induced in the HTS insert by three magnetic field sources: 1) a self field from the HTS insert; 2) an external field from a 5-T background magnet; and 3) combinations of 1) and 2). For each field excitation, which induced an SCF, its axial field distribution and temporal variations were measured and compared with simulation results based on the critical state model. Agreement on field profile between experiment and simulation is satisfactory but more work is needed to make the simulation useful for designing shim coils that will cancel the SCF. PMID:20401187

  12. Experimental validation and model development for thermal transmittances of porous window screens and horizontal louvred blind systems

    DOE PAGES

    Hart, Robert; Goudey, Howdy; Curcija, D. Charlie

    2017-05-16

    Virtually every home in the US has some form of shades, blinds, drapes, or other window attachment, but few have been designed for energy savings. In order to provide a common basis of comparison for thermal performance it is important to have validated simulation tools. This study outlines a review and validation of the ISO 15099 centre-of-glass thermal transmittance correlations for naturally ventilated cavities through measurement and detailed simulations. The focus is on the impacts of room-side ventilated cavities, such as those found with solar screens and horizontal louvred blinds. The thermal transmittance of these systems is measured experimentally, simulatedmore » using computational fluid dynamics analysis, and simulated utilizing simplified correlations from ISO 15099. Finally, correlation coefficients are proposed for the ISO 15099 algorithm that reduces the mean error between measured and simulated heat flux for typical solar screens from 16% to 3.5% and from 13% to 1% for horizontal blinds.« less

  13. Brownian Dynamics Simulations of Polyelectrolyte Adsorption in Shear Flow

    NASA Astrophysics Data System (ADS)

    Panwar, Ajay

    2005-03-01

    The adsorption of polyelectrolytes onto charged surfaces often occurs in microfludic devices and can influence their operation. We employ Brownian dynamics simulations to investigate the effect of a simple shear flow on the adsorption of an isolated polyelectrolyte molecule onto an oppositely charged surface. The polyelectrolyte is modeled as a freely-jointed bead-rod chain where the total charge is distributed uniformly among all the beads, and the beads are allowed to interact with one another and the charged surface through screened Coulombic interactions. The simulations are performed by placing the chain some distance above the surface, and the adsorption behavior is studied as a function of the screening length. Specifically, we look at the components of the radius of gyration, normal and parallel to the adsorbing surface, as functions of the screening length, both in the absence and presence of the flow. We find that in the absence of flow, the chain lies flat and stretched on the adsorbing surface in the limit of weak screening, but attains free solution behavior in the limit of strong screening. In the presence of a shear flow, the chain orientation in the direction of the flow increases with increasing Weissenberg number over the entire range of screening lengths studied. We also find that increasing the strength of the shear flow leads to an increased contact of the chain with the surface compared to the case when no flow is present.

  14. Use of Baby Isao Simulator and Standardized Parents in Hearing Screening and Parent Counseling Education.

    PubMed

    Alanazi, Ahmad A; Nicholson, Nannette; Atcherson, Samuel R; Franklin, Clifford; Anders, Michael; Nagaraj, Naveen; Franklin, Jennifer; Highley, Patricia

    2016-09-01

    The primary purpose of this study was to test the effect of the combined use of trained standardized parents and a baby simulator on students' hearing screening and parental counseling knowledge and skills. A one-group pretest-posttest quasi-experimental study design was used to assess self-ratings of confidence in knowledge and skills and satisfaction of the educational experience with standardized parents and a baby simulator. The mean age of the 14 audiology students participating in this study was 24.79 years (SD = 1.58). Participants completed a pre- and postevent questionnaire in which they rated their level of confidence for specific knowledge and skills. Six students (2 students in each scenario) volunteered to participate in the infant hearing screening and counseling scenarios, whereas others participated as observers. All participants participated in the briefing and debriefing sessions immediately before and after each of 3 scenarios. After the last scenario, participants were asked to complete a satisfaction survey of their learning experience using simulation and standardized parents. Overall, the pre- and post-simulation event questionnaire revealed a significant improvement in the participants' self-rated confidence levels regarding knowledge and skills. The mean difference between pre- and postevent scores was 0.52 (p < .01). The mean satisfaction level was 4.71 (range = 3.91-5.00; SD = 0.30) based on a Likert scale, where 1 = not satisfied and 5 = very satisfied. The results of this novel educational activity demonstrate the value of using infant hearing screening and parental counseling simulation sessions to enhance student learning. In addition, this study demonstrates the use of simulation and standardized parents as an important pedagogical tool for audiology students. Students experienced a high level of satisfaction with the learning experience.

  15. Computer Simulation of Human Performance in Electronic Processed Imagery Systems.

    DTIC Science & Technology

    1981-01-01

    Applied Psycnological Services, Stanley Tayler assisted in the definition o" visuai variables Waiter Lapinsky defined some of the user interface programming...tild fixin is ,imiteit L t he disptt:’ ireA -TWO vY TS tiNL’ : ond wvidth (bordeni ailf dimensions are in inches 𔃻 he ret’tangie is divided into six d...SCREEN IS DIVIDED INTO 6 SCAN EMPHASIS AREAS OF EQUAL. SPACE. SE- EMPHASIS LECT NEXT POINT TO BE IN ACCORDANCE WITH THE FOLLOWING SCHEME WHICH REPEATS

  16. Annual Report on Electronics Research at the University of Texas at Austin. Appendix-JSEP Sponsored Publications

    DTIC Science & Technology

    1993-02-14

    screening and significantly larger than that of majority electrons. plasmon-phonon coupling in the two-band hole sys - C! Later, Monte-Carlo simulations of...potential application to other laser sys - versus drive current for three cases; a nonlasing device tems as well. with no gain saturation, gain saturation...SAKU1, K,, HASEGAWA, T., FUSE, T., SMITA. T., ARITOME, S., WATA- were identically processed as the type A devices except for a NABE , $., 0HUCHI. K

  17. Wave optics simulation of atmospheric turbulence and reflective speckle effects in carbon dioxide lidar

    NASA Astrophysics Data System (ADS)

    Nelson, Douglas Harold

    Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. This investigation develops a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. The simulation, previously utilized to simulate the effects of atmospheric optical turbulence alone, is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, is used to simulate the effect of atmospheric optical turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. These investigations compare the output of the numerical model with separate CO2 lidar measurements of atmospheric turbulence and reflective speckle. This work also compares the output of the model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement is found between the model and the experimental data. Good agreement is also found with analytical predictions. Additionally, results of simulation of the combined effects on a finite aperture lidar system show agreement with experimental observations of increasing RMS noise with increasing turbulence level and the behavior of the experimental integrated intensity probability distribution. Simulation studies are included that demonstrate the usefulness of the model, examine its limitations and provide greater insight into the process of combined atmospheric optical turbulence and reflective speckle. One highlight of these studies is examination of the limitations of the simulation that shows, in general, precision increases with increasing grid size. The study of the backscatter intensity enhancement predicted by analytical theory show it to behave as a multi-path effect, like scintillation, with the highest contributions from atmospheric optical turbulence weighted at the middle of the propagation path. Aperture geometry also affects the signal-to-noise ratio with thin annular apertures exhibiting lower RMS noise than circular apertures of the same active area. The simulation is capable of studying a variety of lidar schemes including varying atmospheric optical turbulence along the propagation path as well as diverse transmitter and receiver geometries.

  18. Atomistic study of mixing at high Z / low Z interfaces at Warm Dense Matter Conditions

    NASA Astrophysics Data System (ADS)

    Haxhimali, Tomorr; Glosli, James; Rudd, Robert; Lawrence Livermore National Laboratory Team

    2016-10-01

    We use atomistic simulations to study different aspects of mixing occurring at an initially sharp interface of high Z and low Z plasmas in the Warm/Hot Dense Matter regime. We consider a system of Diamond (the low Z component) in contact with Ag (the high Z component), which undergoes rapid isochoric heating from room temperature up to 10 eV, rapidly changing the solids into warm dense matter at solid density. We simulate the motion of ions via the screened Coulomb potential. The electric field, the electron density and ionizations level are computed on the fly by solving Poisson equation. The spatially varying screening lengths computed from the electron cloud are included in this effective interaction; the electrons are not simulated explicitly. We compute the electric field generated at the Ag-C interface as well as the dynamics of the ions during the mixing process occurring at the plasma interface. Preliminary results indicate an anomalous transport of high Z ions (Ag) into the low Z component (C); a phenomenon that is partially related to the enhanced transport of ions due to the generated electric field. These results are in agreement with recent experimental observation on Au-diamond plasma interface. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  19. Identification of novel Ebola virus (EBOV) VP24 inhibitor from Indonesian natural products through in silico drug design approach

    NASA Astrophysics Data System (ADS)

    Tambunan, U. S. F.; Nasution, M. A. F.

    2017-07-01

    Ebola remains as one of the deadliest diseases in the world, with almost 29,000 cases were reported and kill 11,000 of them, and yet neither treatment nor vaccine that can combat this disease effectively. This disease is caused by ebolavirus (EBOV), a primary member of Filoviridae family. The life cycle of this virus has been operated by several key proteins, one of them is VP24 protein, which has been known for its crucial role in the transcription and replication of EBOV. Therefore, targeting VP24 protein can be a solution for treating this pathogenic disease. In this study, virtual screening of Indonesian natural products as EBOV VP24 inhibitor was performed. About 2,020 ligands from many sources, including HerbalDB database, were obtained and screened by using DataWarrior software to measure its molecular and pharmacological properties, resulting 301 ligands in the process. Then, the molecular docking simulation was performed to check the ligand's binding interaction and affinity with EBOV VP24 protein; this simulation was done by using MOE 2014.09 software. This study resulted that cycloartocarpin was the best ligand to inhibit the EBOV VP24 protein. Therefore, this ligand should be checked its stability through molecular dynamics simulation and performed in vitro test to verify its bioactivity against the EBOV VP24 protein.

  20. A method to identify differential expression profiles of time-course gene data with Fourier transformation.

    PubMed

    Kim, Jaehee; Ogden, Robert Todd; Kim, Haseong

    2013-10-18

    Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization.The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics.

  1. Simulation in a dynamic prototyping environment: Petri nets or rules?

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Price, Shannon W.; Hale, Joseph P.

    1994-01-01

    An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are normally delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development.

  2. Environmental fog/rain visual display system for aircraft simulators

    NASA Technical Reports Server (NTRS)

    Chase, W. D. (Inventor)

    1982-01-01

    An environmental fog/rain visual display system for aircraft simulators is described. The electronic elements of the system include a real time digital computer, a caligraphic color display which simulates landing lights of selective intensity, and a color television camera for producing a moving color display of the airport runway as depicted on a model terrain board. The mechanical simulation elements of the system include an environmental chamber which can produce natural fog, nonhomogeneous fog, rain and fog combined, or rain only. A pilot looking through the aircraft wind screen will look through the fog and/or rain generated in the environmental chamber onto a viewing screen with the simulated color image of the airport runway thereon, and observe a very real simulation of actual conditions of a runway as it would appear through actual fog and/or rain.

  3. Simulation in a dynamic prototyping environment: Petri nets or rules?

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Price, Shannon; Hale, Joseph P.

    1994-01-01

    An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development.

  4. Driver steering dynamics measured in car simulator under a range of visibility and roadmaking conditions

    NASA Technical Reports Server (NTRS)

    Allen, R. W.; Mcruer, D. T.

    1977-01-01

    A simulation experiment was conducted to determine the effect of reduced visibility on driver lateral (steering) control. The simulator included a real car cab and a single lane road image projected on a screen six feet in front of the driver. Simulated equations of motion controlled apparent car lane position in response to driver steering actions, wind gusts, and road curvature. Six drivers experienced a range of visibility conditions at various speeds with assorted roadmaking configurations (mark and gap lengths). Driver describing functions were measured and detailed parametric model fits were determined. A pursuit model employing a road curvature feedforward was very effective in explaining driver behavior in following randomly curving roads. Sampled-data concepts were also effective in explaining the combined effects of reduced visibility and intermittent road markings on the driver's dynamic time delay. The results indicate the relative importance of various perceptual variables as the visual input to the driver's steering control process is changed.

  5. Using Collaborative Simulation Modeling to Develop a Web-Based Tool to Support Policy-Level Decision Making About Breast Cancer Screening Initiation Age

    PubMed Central

    Burnside, Elizabeth S.; Lee, Sandra J.; Bennette, Carrie; Near, Aimee M.; Alagoz, Oguzhan; Huang, Hui; van den Broek, Jeroen J.; Kim, Joo Yeon; Ergun, Mehmet A.; van Ravesteyn, Nicolien T.; Stout, Natasha K.; de Koning, Harry J.; Mandelblatt, Jeanne S.

    2017-01-01

    Background There are no publicly available tools designed specifically to assist policy makers to make informed decisions about the optimal ages of breast cancer screening initiation for different populations of US women. Objective To use three established simulation models to develop a web-based tool called Mammo OUTPuT. Methods The simulation models use the 1970 US birth cohort and common parameters for incidence, digital screening performance, and treatment effects. Outcomes include breast cancers diagnosed, breast cancer deaths averted, breast cancer mortality reduction, false-positive mammograms, benign biopsies, and overdiagnosis. The Mammo OUTPuT tool displays these outcomes for combinations of age at screening initiation (every year from 40 to 49), annual versus biennial interval, lifetime versus 10-year horizon, and breast density, compared to waiting to start biennial screening at age 50 and continuing to 74. The tool was piloted by decision makers (n = 16) who completed surveys. Results The tool demonstrates that benefits in the 40s increase linearly with earlier initiation age, without a specific threshold age. Likewise, the harms of screening increase monotonically with earlier ages of initiation in the 40s. The tool also shows users how the balance of benefits and harms varies with breast density. Surveys revealed that 100% of users (16/16) liked the appearance of the site; 94% (15/16) found the tool helpful; and 94% (15/16) would recommend the tool to a colleague. Conclusions This tool synthesizes a representative subset of the most current CISNET (Cancer Intervention and Surveillance Modeling Network) simulation model outcomes to provide policy makers with quantitative data on the benefits and harms of screening women in the 40s. Ultimate decisions will depend on program goals, the population served, and informed judgments about the weight of benefits and harms. PMID:29376135

  6. Prediction of drug-packaging interactions via molecular dynamics (MD) simulations.

    PubMed

    Feenstra, Peter; Brunsteiner, Michael; Khinast, Johannes

    2012-07-15

    The interaction between packaging materials and drug products is an important issue for the pharmaceutical industry, since during manufacturing, processing and storage a drug product is continuously exposed to various packaging materials. The experimental investigation of a great variety of different packaging material-drug product combinations in terms of efficacy and safety can be a costly and time-consuming task. In our work we used molecular dynamics (MD) simulations in order to evaluate the applicability of such methods to pre-screening of the packaging material-solute compatibility. The solvation free energy and the free energy of adsorption of diverse solute/solvent/solid systems were estimated. The results of our simulations agree with experimental values previously published in the literature, which indicates that the methods in question can be used to semi-quantitatively reproduce the solid-liquid interactions of the investigated systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Osteoblastic lesion screening with an advanced post-processing package enabling in-plane rib reading in CT-images.

    PubMed

    Seuss, Hannes; Dankerl, Peter; Cavallaro, Alexander; Uder, Michael; Hammon, Matthias

    2016-05-20

    To evaluate screening and diagnostic accuracy for the detection of osteoblastic rib lesions using an advanced post-processing package enabling in-plane rib reading in CT-images. We retrospectively assessed the CT-data of 60 consecutive prostate cancer patients by applying dedicated software enabling in-plane rib reading. Reading the conventional multiplanar reconstructions was considered to be the reference standard. To simulate clinical practice, the reader was given 10 s to screen for sclerotic rib lesions in each patient applying both approaches. Afterwards, every rib was evaluated individually with both approaches without a time limit. Sensitivities, specificities, positive/negative predictive values and the time needed for detection were calculated depending on the lesion's size (largest diameter < 5 mm, 5-10 mm, > 10 mm). In 53 of 60 patients, all ribs were properly displayed in plane, in five patients ribs were partially displayed correctly, and in two patients none of the ribs were displayed correctly. During the 10-s screening approach all patients with sclerotic rib lesions were correctly identified reading the in-plane images (including the patients without a correct rib segmentation), whereas 14 of 23 patients were correctly identified reading conventional multiplanar images. Overall screening sensitivity, specificity, and positive/negative predictive values were 100/27.0/46.0/100 %, respectively, for in-plane reading and 60.9/100/100/80.4 %, respectively, for multiplanar reading. Overall diagnostic (no time limit) sensitivity, specificity, and positive/negative predictive values of in-plane reading were 97.8/92.8/74.6/99.5 %, respectively. False positive results predominantly occurred for lesions <5 mm in size. In-plane reading of the ribs allows reliable detection of osteoblastic lesions for screening purposes. The limited specificity results from false positives predominantly occurring for small lesions.

  8. A system for simulating aerial or orbital TV observations of geographic patterns

    NASA Technical Reports Server (NTRS)

    Latham, J. P.

    1972-01-01

    A system which simulates observation of the earth surface by aerial or orbiting television devices has been developed. By projecting color slides of photographs taken by aircraft and orbiting sensors upon a rear screen system, and altering scale of projected image, screen position, or TV camera position, it is possible to simulate alternatives of altitude, or optical systems. By altering scan line patterns in COHU 3200 series camera from 525 to 945 scan lines, it is possible to study implications of scan line resolution upon the detection and analysis of geographic patterns observed by orbiting TV systems.

  9. Balancing Fairness and Efficiency: The Impact of Identity-Blind and Identity-Conscious Accountability on Applicant Screening

    PubMed Central

    Self, William T.; Mitchell, Gregory; Mellers, Barbara A.; Tetlock, Philip E.; Hildreth, J. Angus D.

    2015-01-01

    This study compared two forms of accountability that can be used to promote diversity and fairness in personnel selections: identity-conscious accountability (holding decision makers accountable for which groups are selected) versus identity-blind accountability (holding decision makers accountable for making fair selections). In a simulated application screening process, undergraduate participants (majority female) sorted applicants under conditions of identity-conscious accountability, identity-blind accountability, or no accountability for an applicant pool in which white males either did or did not have a human capital advantage. Under identity-conscious accountability, participants exhibited pro-female and pro-minority bias, particularly in the white-male-advantage applicant pool. Under identity-blind accountability, participants exhibited no biases and candidate qualifications dominated interview recommendations. Participants exhibited greater resentment toward management under identity-conscious accountability. PMID:26660723

  10. Experimental design and statistical methods for improved hit detection in high-throughput screening.

    PubMed

    Malo, Nathalie; Hanley, James A; Carlile, Graeme; Liu, Jing; Pelletier, Jerry; Thomas, David; Nadon, Robert

    2010-09-01

    Identification of active compounds in high-throughput screening (HTS) contexts can be substantially improved by applying classical experimental design and statistical inference principles to all phases of HTS studies. The authors present both experimental and simulated data to illustrate how true-positive rates can be maximized without increasing false-positive rates by the following analytical process. First, the use of robust data preprocessing methods reduces unwanted variation by removing row, column, and plate biases. Second, replicate measurements allow estimation of the magnitude of the remaining random error and the use of formal statistical models to benchmark putative hits relative to what is expected by chance. Receiver Operating Characteristic (ROC) analyses revealed superior power for data preprocessed by a trimmed-mean polish method combined with the RVM t-test, particularly for small- to moderate-sized biological hits.

  11. Flue gas conditioning for improved particle collection in electrostatic precipitators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, M.D.

    1992-04-27

    The purpose of this research program is to identify and evaluate a variety of additives capable of increasing particle cohesion which could be used for improving collection efficiency in an ESP. A three-phase screening process will be used to provide the, evaluation of many additives in a logical and cost-effective manner. The three step approach involves the following experimental setups: 1. Provide a preliminary screening in the laboratory by measuring the effects of various conditioning agents on reentrainment of flyash particles in an electric field operating at simulated flue gas conditions. 2. Evaluate the successful additives using a 100 acfmmore » bench-scale ESP operating on actual flue gas. 3. Obtain the data required for scaling up the technology by testing the two or three most promising conditioning agents at the pilot scale.« less

  12. Establishment of a fully automated microtiter plate-based system for suspension cell culture and its application for enhanced process optimization.

    PubMed

    Markert, Sven; Joeris, Klaus

    2017-01-01

    We developed an automated microtiter plate (MTP)-based system for suspension cell culture to meet the increased demands for miniaturized high throughput applications in biopharmaceutical process development. The generic system is based on off-the-shelf commercial laboratory automation equipment and is able to utilize MTPs of different configurations (6-24 wells per plate) in orbital shaken mode. The shaking conditions were optimized by Computational Fluid Dynamics simulations. The fully automated system handles plate transport, seeding and feeding of cells, daily sampling, and preparation of analytical assays. The integration of all required analytical instrumentation into the system enables a hands-off operation which prevents bottlenecks in sample processing. The modular set-up makes the system flexible and adaptable for a continuous extension of analytical parameters and add-on components. The system proved suitable as screening tool for process development by verifying the comparability of results for the MTP-based system and bioreactors regarding profiles of viable cell density, lactate, and product concentration of CHO cell lines. These studies confirmed that 6 well MTPs as well as 24 deepwell MTPs were predictive for a scale up to a 1000 L stirred tank reactor (scale factor 1:200,000). Applying the established cell culture system for automated media blend screening in late stage development, a 22% increase in product yield was achieved in comparison to the reference process. The predicted product increase was subsequently confirmed in 2 L bioreactors. Thus, we demonstrated the feasibility of the automated MTP-based cell culture system for enhanced screening and optimization applications in process development and identified further application areas such as process robustness. The system offers a great potential to accelerate time-to-market for new biopharmaceuticals. Biotechnol. Bioeng. 2017;114: 113-121. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Understanding bulk behavior of particulate materials from particle scale simulations

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoliang

    Particulate materials play an increasingly significant role in various industries, such as pharmaceutical manufacturing, food, mining, and civil engineering. The objective of this research is to better understand bulk behaviors of particulate materials from particle scale simulations. Packing properties of assembly of particles are investigated first, focusing on the effects of particle size, surface energy, and aspect ratio on the coordination number, porosity, and packing structures. The simulation results show that particle sizes, surface energy, and aspect ratio all influence the porosity of packing to various degrees. The heterogeneous force networks within particle assembly under external compressive loading are investigated as well. The results show that coarse-coarse contacts dominate the strong network and coarse-fine contacts dominate the total network. Next, DEM models are developed to simulate the particle dynamics inside a conical screen mill (comil) and magnetically assisted impaction mixer (MAIM), both are important particle processing devices. For comil, the mean residence time (MRT), spatial distribution of particles, along with the collision dynamics between particles as well as particle and vessel geometries are examined as a function of the various operating parameters such as impeller speed, screen hole size, open area, and feed rate. The simulation results can help better understand dry coating experimental results using comil. For MAIM system, the magnetic force is incorporated into the contact model, allowing to describe the interactions between magnets. The simulation results reveal the connections between homogeneity of mixture and particle scale variables such as size of magnets and surface energy of non-magnets. In particular, at the fixed mass ratio of magnets to non-magnets and surface energy the smaller magnets lead to better homogeneity of mixing, which is in good agreement with previously published experimental results. Last but not least, numerical simulations, along with theoretical analysis, are performed to investigate the interparticle force of dry coated particles. A model is derived and can be used to predict the probabilities of hose-host (HH), host-guest (HG), and guest-guest (GG) contacts. The results indicate that there are three different regions dominated by HH, HG, and GG contacts, respectively. Moreover, the critical SAC for the transition of HG to GG contacts is lower than previously estimated value. In summary, particle packing, particle dynamics associated with various particle processing devices, and interparticle force of dry coated particles are investigated in this thesis. The results show that particle scale information such as coordination number, collision dynamics, and contact force between particles from simulation results can help better understand bulk properties of assembly of individual particles.

  14. Design and fabrication of semi-transparent screen based on micro-patterns for direct-view type head-up display in automobiles

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Yong; Kim, Hyo-Jun; Kim, Young-Joo

    2016-02-01

    A semi-transparent screen with hemisphere micro-patterns was proposed and designed to enhance the brightness uniformity of the display image toward the driver for a direct-view type head-up display. The hemisphere micro-patterns were designed to consider the inclined angle of the windshield for efficient reflection and scattering toward to the driver. The density and radius of the hemisphere micro-patterns were adjusted as a function of position on the screen based on the geometrical calculation and analyzed by the commercial optical simulation tool based on a ray-tracing method. The designed hemisphere micro-patterns was fabricated by the thermal reflow method and evaluated to confirm the uniform illumination. From the results, the semi-transparent screen with variable micro-patterns shows the 91.9 % of brightness uniformity with the enhanced luminance compare to a screen without micro-patterns. A luminance of fabricated screen also shows good agreement with the simulation result to reflect the clear and bright driving information to the driver.

  15. Newborn screening by tandem mass spectrometry for glutaric aciduria type 1: a cost-effectiveness analysis.

    PubMed

    Pfeil, Johannes; Listl, Stefan; Hoffmann, Georg F; Kölker, Stefan; Lindner, Martin; Burgard, Peter

    2013-10-17

    Glutaric aciduria type I (GA-I) is a rare metabolic disorder caused by inherited deficiency of glutaryl-CoA dehydrogenase. Despite high prognostic relevance of early diagnosis and start of metabolic treatment as well as an additional cost saving potential later in life, only a limited number of countries recommend newborn screening for GA-I. So far only limited data is available enabling health care decision makers to evaluate whether investing into GA-I screening represents value for money. The aim of our study was therefore to assess the cost-effectiveness of newborn screening for GA-I by tandem mass spectrometry (MS/MS) compared to a scenario where GA-I is not included in the MS/MS screening panel. We assessed the cost-effectiveness of newborn screening for GA-I against the alternative of not including GA-I in MS/MS screening. A Markov model was developed simulating the clinical course of screened and unscreened newborns within different time horizons of 20 and 70 years. Monte Carlo simulation based probabilistic sensitivity analysis was used to determine the probability of GA-I screening representing a cost-effective therapeutic strategy. Within a 20 year time horizon, GA-I screening averts approximately 3.7 DALYs (95% CI 2.9 - 4.5) and about one life year is gained (95% CI 0.7 - 1.4) per 100,000 neonates screened initially . Moreover, the screening programme saves a total of around 30,682 Euro (95% CI 14,343 to 49,176 Euro) per 100,000 screened neonates over a 20 year time horizon. Within the limitations of the present study, extending pre-existing MS/MS newborn screening programmes by GA-I represents a highly cost-effective diagnostic strategy when assessed under conditions comparable to the German health care system.

  16. COUPLED FREE AND DISSOLVED PHASE TRANSPORT: NEW SIMULATION CAPABILITIES AND PARAMETER INVERSION

    EPA Science Inventory

    The vadose zone free-phase simulation capabilities of the US EPA Hydrocarbon Spill Screening Model (HSSM)have been linked with the 3-D multi-species dissolved-phase contaminant transport simulator MT3DMS.

  17. Procedures for central auditory processing screening in schoolchildren.

    PubMed

    Carvalho, Nádia Giulian de; Ubiali, Thalita; Amaral, Maria Isabel Ramos do; Santos, Maria Francisca Colella

    2018-03-22

    Central auditory processing screening in schoolchildren has led to debates in literature, both regarding the protocol to be used and the importance of actions aimed at prevention and promotion of auditory health. Defining effective screening procedures for central auditory processing is a challenge in Audiology. This study aimed to analyze the scientific research on central auditory processing screening and discuss the effectiveness of the procedures utilized. A search was performed in the SciELO and PUBMed databases by two researchers. The descriptors used in Portuguese and English were: auditory processing, screening, hearing, auditory perception, children, auditory tests and their respective terms in Portuguese. original articles involving schoolchildren, auditory screening of central auditory skills and articles in Portuguese or English. studies with adult and/or neonatal populations, peripheral auditory screening only, and duplicate articles. After applying the described criteria, 11 articles were included. At the international level, central auditory processing screening methods used were: screening test for auditory processing disorder and its revised version, screening test for auditory processing, scale of auditory behaviors, children's auditory performance scale and Feather Squadron. In the Brazilian scenario, the procedures used were the simplified auditory processing assessment and Zaidan's battery of tests. At the international level, the screening test for auditory processing and Feather Squadron batteries stand out as the most comprehensive evaluation of hearing skills. At the national level, there is a paucity of studies that use methods evaluating more than four skills, and are normalized by age group. The use of simplified auditory processing assessment and questionnaires can be complementary in the search for an easy access and low-cost alternative in the auditory screening of Brazilian schoolchildren. Interactive tools should be proposed, that allow the selection of as many hearing skills as possible, validated by comparison with the battery of tests used in the diagnosis. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  18. Parameter screening: the use of a dummy parameter to identify non-influential parameters in a global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Khorashadi Zadeh, Farkhondeh; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy

    2017-04-01

    Parameter estimation is a major concern in hydrological modeling, which may limit the use of complex simulators with a large number of parameters. To support the selection of parameters to include in or exclude from the calibration process, Global Sensitivity Analysis (GSA) is widely applied in modeling practices. Based on the results of GSA, the influential and the non-influential parameters are identified (i.e. parameters screening). Nevertheless, the choice of the screening threshold below which parameters are considered non-influential is a critical issue, which has recently received more attention in GSA literature. In theory, the sensitivity index of a non-influential parameter has a value of zero. However, since numerical approximations, rather than analytical solutions, are utilized in GSA methods to calculate the sensitivity indices, small but non-zero indices may be obtained for the indices of non-influential parameters. In order to assess the threshold that identifies non-influential parameters in GSA methods, we propose to calculate the sensitivity index of a "dummy parameter". This dummy parameter has no influence on the model output, but will have a non-zero sensitivity index, representing the error due to the numerical approximation. Hence, the parameters whose indices are above the sensitivity index of the dummy parameter can be classified as influential, whereas the parameters whose indices are below this index are within the range of the numerical error and should be considered as non-influential. To demonstrated the effectiveness of the proposed "dummy parameter approach", 26 parameters of a Soil and Water Assessment Tool (SWAT) model are selected to be analyzed and screened, using the variance-based Sobol' and moment-independent PAWN methods. The sensitivity index of the dummy parameter is calculated from sampled data, without changing the model equations. Moreover, the calculation does not even require additional model evaluations for the Sobol' method. A formal statistical test validates these parameter screening results. Based on the dummy parameter screening, 11 model parameters are identified as influential. Therefore, it can be denoted that the "dummy parameter approach" can facilitate the parameter screening process and provide guidance for GSA users to define a screening-threshold, with only limited additional resources. Key words: Parameter screening, Global sensitivity analysis, Dummy parameter, Variance-based method, Moment-independent method

  19. Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).

    PubMed

    Lifton, Victor A

    2016-05-21

    Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.

  20. Simulation models in population breast cancer screening: A systematic review.

    PubMed

    Koleva-Kolarova, Rositsa G; Zhan, Zhuozhao; Greuter, Marcel J W; Feenstra, Talitha L; De Bock, Geertruida H

    2015-08-01

    The aim of this review was to critically evaluate published simulation models for breast cancer screening of the general population and provide a direction for future modeling. A systematic literature search was performed to identify simulation models with more than one application. A framework for qualitative assessment which incorporated model type; input parameters; modeling approach, transparency of input data sources/assumptions, sensitivity analyses and risk of bias; validation, and outcomes was developed. Predicted mortality reduction (MR) and cost-effectiveness (CE) were compared to estimates from meta-analyses of randomized control trials (RCTs) and acceptability thresholds. Seven original simulation models were distinguished, all sharing common input parameters. The modeling approach was based on tumor progression (except one model) with internal and cross validation of the resulting models, but without any external validation. Differences in lead times for invasive or non-invasive tumors, and the option for cancers not to progress were not explicitly modeled. The models tended to overestimate the MR (11-24%) due to screening as compared to optimal RCTs 10% (95% CI - 2-21%) MR. Only recently, potential harms due to regular breast cancer screening were reported. Most scenarios resulted in acceptable cost-effectiveness estimates given current thresholds. The selected models have been repeatedly applied in various settings to inform decision making and the critical analysis revealed high risk of bias in their outcomes. Given the importance of the models, there is a need for externally validated models which use systematical evidence for input data to allow for more critical evaluation of breast cancer screening. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Large-screen display technology assessment for military applications

    NASA Astrophysics Data System (ADS)

    Blaha, Richard J.

    1990-08-01

    Full-color, large screen display systems can enhance military applications that require group presentation, coordinated decisions, or interaction between decision makers. The technology already plays an important role in operations centers, simulation facilities, conference rooms, and training centers. Some applications display situational, status, or briefing information, while others portray instructional material for procedural training or depict realistic panoramic scenes that are used in simulators. While each specific application requires unique values of luminance, resolution, response time, reliability, and the video interface, suitable performance can be achieved with available commercial large screen displays. Advances in the technology of large screen displays are driven by the commercial applications because the military applications do not provide the significant market share enjoyed by high definition television (HDTV), entertainment, advertisement, training, and industrial applications. This paper reviews the status of full-color, large screen display technologies and includes the performance and cost metrics of available systems. For this discussion, performance data is based upon either measurements made by our personnel or extractions from vendors' data sheets.

  2. Identification of promising DNA GyrB inhibitors for Tuberculosis using pharmacophore-based virtual screening, molecular docking and molecular dynamics studies.

    PubMed

    Islam, Md Ataul; Pillay, Tahir S

    2017-08-01

    In this study, we searched for potential DNA GyrB inhibitors using pharmacophore-based virtual screening followed by molecular docking and molecular dynamics simulation approaches. For this purpose, a set of 248 DNA GyrB inhibitors was collected from the literature and a well-validated pharmacophore model was generated. The best pharmacophore model explained that two each of hydrogen bond acceptors and hydrophobicity regions were critical for inhibition of DNA GyrB. Good statistical results of the pharmacophore model indicated that the model was robust in nature. Virtual screening of molecular databases revealed three molecules as potential antimycobacterial agents. The final screened promising compounds were evaluated in molecular docking and molecular dynamics simulation studies. In the molecular dynamics studies, RMSD and RMSF values undoubtedly explained that the screened compounds formed stable complexes with DNA GyrB. Therefore, it can be concluded that the compounds identified may have potential for the treatment of TB. © 2017 John Wiley & Sons A/S.

  3. Process control charts in infection prevention: Make it simple to make it happen.

    PubMed

    Wiemken, Timothy L; Furmanek, Stephen P; Carrico, Ruth M; Mattingly, William A; Persaud, Annuradha K; Guinn, Brian E; Kelley, Robert R; Ramirez, Julio A

    2017-03-01

    Quality improvement is central to Infection Prevention and Control (IPC) programs. Challenges may occur when applying quality improvement methodologies like process control charts, often due to the limited exposure of typical IPs. Because of this, our team created an open-source database with a process control chart generator for IPC programs. The objectives of this report are to outline the development of the application and demonstrate application using simulated data. We used Research Electronic Data Capture (REDCap Consortium, Vanderbilt University, Nashville, TN), R (R Foundation for Statistical Computing, Vienna, Austria), and R Studio Shiny (R Foundation for Statistical Computing) to create an open source data collection system with automated process control chart generation. We used simulated data to test and visualize both in-control and out-of-control processes for commonly used metrics in IPC programs. The R code for implementing the control charts and Shiny application can be found on our Web site (https://github.com/ul-research-support/spcapp). Screen captures of the workflow and simulated data indicating both common cause and special cause variation are provided. Process control charts can be easily developed based on individual facility needs using freely available software. Through providing our work free to all interested parties, we hope that others will be able to harness the power and ease of use of the application for improving the quality of care and patient safety in their facilities. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Screening for latent and active tuberculosis infection in the elderly at admission to residential care homes: A cost-effectiveness analysis in an intermediate disease burden area.

    PubMed

    Li, Jun; Yip, Benjamin H K; Leung, Chichiu; Chung, Wankyo; Kwok, Kin On; Chan, Emily Y Y; Yeoh, Engkiong; Chung, Puihong

    2018-01-01

    Tuberculosis (TB) in the elderly remains a challenge in intermediate disease burden areas like Hong Kong. Given a higher TB burden in the elderly and limited impact of current case-finding strategy by patient-initiated pathway, proactive screening approaches for the high-risk group could be optimal and increasingly need targeted economic evaluations. In this study, we examined whether and under what circumstance the screening strategies are cost-effective compared with no screening strategy for the elderly at admission to residential care homes. A decision analytic process based on Markov model was adopted to evaluate the cost-effectiveness of four strategies: (i) no screening, (ii) TB screening (CXR) and (iii) TB screening (Xpert) represent screening for TB in symptomatic elderly by chest X-ray and Xpert® MTB/RIF respectively, and (iv) LTBI/TB screening represents screening for latent and active TB infection by QuantiFERON®-TB Gold In-Tube and chest X-ray. The target population was a hypothetical cohort of 65-year-old people, using a health service provider perspective and a time horizon of 20 years. The outcomes were direct medical costs, life-years and quality-adjusted life-years (QALYs) measured by incremental cost-effectiveness ratio (ICER). In the base-case analysis, no screening was the most cost-saving; TB screening (CXR) was dominated by TB screening (Xpert); LTBI/TB screening resulted in more life-years and QALYs accrued. The ICERs of LTBI/TB screening were US$19,712 and US$29,951 per QALY gained compared with no screening and TB screening (Xpert), respectively. At the willingness-to-pay threshold of US$50,000 per QALY gained, LTBI/TB screening was the most cost-effective when the probability of annual LTBI reactivation was greater than 0.155% and acceptability of LTBI/TB screening was greater than 38%. In 1,000 iterations of Monte Carlo simulation, the probabilities of no screening, TB screening (CXR), TB screening (Xpert), and LTBI/TB screening to be cost-effective were 0, 1.3%, 20.1%, and 78.6% respectively. Screening for latent and active TB infection in Hong Kong elderly people at admission to residential care homes appears to be highly effective and cost-effective. The key findings may be the next key factor to bring down TB endemic in the elderly population among intermediate TB burden areas.

  5. High-Throughput and Rapid Screening of Novel ACE Inhibitory Peptides from Sericin Source and Inhibition Mechanism by Using in Silico and in Vitro Prescriptions.

    PubMed

    Sun, Huaju; Chang, Qing; Liu, Long; Chai, Kungang; Lin, Guangyan; Huo, Qingling; Zhao, Zhenxia; Zhao, Zhongxing

    2017-11-22

    Several novel peptides with high ACE-I inhibitory activity were successfully screened from sericin hydrolysate (SH) by coupling in silico and in vitro approaches for the first time. Most screening processes for ACE-I inhibitory peptides were achieved through high-throughput in silico simulation followed by in vitro verification. QSAR model based predicted results indicated that the ACE-I inhibitory activity of these SH peptides and six chosen peptides exhibited moderate high ACE-I inhibitory activities (log IC 50 values: 1.63-2.34). Moreover, two tripeptides among the chosen six peptides were selected for ACE-I inhibition mechanism analysis which based on Lineweaver-Burk plots indicated that they behave as competitive ACE-I inhibitors. The C-terminal residues of short-chain peptides that contain more H-bond acceptor groups could easily form hydrogen bonds with ACE-I and have higher ACE-I inhibitory activity. Overall, sericin protein as a strong ACE-I inhibition source could be deemed a promising agent for antihypertension applications.

  6. Design of a high temperature subsurface thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Zheng, Qi

    Solar thermal energy is taking up increasing proportions of future power generation worldwide. Thermal energy storage technology is a key method for compensating for the inherent intermittency of solar resources and solving the time mismatch between solar energy supply and electricity demand. However, there is currently no cost-effective high-capacity compact storage technology available (Bakker et al., 2008). The goal of this work is to propose a high temperature subsurface thermal energy storage (HSTES) technology and demonstrate its potential energy storage capability by developing a solar-HSTES-electricity generation system. In this work, main elements of the proposed system and their related state-of-art technologies are reviewed. A conceptual model is built to illustrate the concept, design, operating procedure and application of such a system. A numerical base model is built within the TOUGH2-EOS1 multiphase flow simulator for the evaluation of system performance. Additional models are constructed and simulations are done to identify the effect of different operational and geological influential factors on the system performance. Our work shows that when the base model is run with ten years operation of alternate injection and production processes - each for a month - with a thermal power input of 10.85 MW, about 83% of the injected thermal energy could be recovered within each working cycle from a stabilized HSTES system. After the final conversion into electrical energy, a relative (compared with the direct use of hot water) electricity generation efficiency of 73% is obtained. In a typical daily storage scenario, the simulated thermal storage efficiency could exceed 78% and the relative electricity generation efficiency is over 66% in the long run. In a seasonal storage scenario, these two efficiencies reach 69% and 53% respectively by the end of the simulation period of 10 years. Additional simulations reveal a thinner storage aquifer with a higher horizontal-to-vertical permeability ratio is favored by the storage system. A basin-shape reservoir is more favored than a flat reservoir, while a flat reservoir is better than a dome-shape reservoir. The effect of aquifer stratification is variable: it depends on the relative position of the well screen and the impermeable lenses within the reservoir. From the operational aspect, the well screen position is crucial and properly shortening the screen length can help heat recovery. The proportion of the injection/storage/recovery processes within a cycle, rather than their exact lengths, affects the storage efficiency. Reservoir preheating helps improve the energy storage efficiency for the first several cycles. However, it does not contribute much to the system performance in the long run. Simulations also indicate that buoyancy effect is of significant importance in heat distribution and the plume migration. Reducing the gravity override effect of the heat plume could be an important consideration in efficiency optimization.

  7. Apparel Research Network (ARN) Apparel Order Processing Module (AOPM). Application Program for Management of Special Measurement Clothing Orders

    DTIC Science & Technology

    1997-09-30

    Screen, abandoning changes. APPAREL ORDER PROCESSING MODULE FIELD USER MANUAL Ordering Official Screens The Ordering Official Screens are provided for...currendy selected Ordering Official will appear on the Ordering Official Information Screen. APPAREL ORDER PROCESSING MODULE FIELD USER MANUAL Ordering Official

  8. The effect of image processing on the detection of cancers in digital mammography.

    PubMed

    Warren, Lucy M; Given-Wilson, Rosalind M; Wallis, Matthew G; Cooke, Julie; Halling-Brown, Mark D; Mackenzie, Alistair; Chakraborty, Dev P; Bosmans, Hilde; Dance, David R; Young, Kenneth C

    2014-08-01

    OBJECTIVE. The objective of our study was to investigate the effect of image processing on the detection of cancers in digital mammography images. MATERIALS AND METHODS. Two hundred seventy pairs of breast images (both breasts, one view) were collected from eight systems using Hologic amorphous selenium detectors: 80 image pairs showed breasts containing subtle malignant masses; 30 image pairs, biopsy-proven benign lesions; 80 image pairs, simulated calcification clusters; and 80 image pairs, no cancer (normal). The 270 image pairs were processed with three types of image processing: standard (full enhancement), low contrast (intermediate enhancement), and pseudo-film-screen (no enhancement). Seven experienced observers inspected the images, locating and rating regions they suspected to be cancer for likelihood of malignancy. The results were analyzed using a jackknife-alternative free-response receiver operating characteristic (JAFROC) analysis. RESULTS. The detection of calcification clusters was significantly affected by the type of image processing: The JAFROC figure of merit (FOM) decreased from 0.65 with standard image processing to 0.63 with low-contrast image processing (p = 0.04) and from 0.65 with standard image processing to 0.61 with film-screen image processing (p = 0.0005). The detection of noncalcification cancers was not significantly different among the image-processing types investigated (p > 0.40). CONCLUSION. These results suggest that image processing has a significant impact on the detection of calcification clusters in digital mammography. For the three image-processing versions and the system investigated, standard image processing was optimal for the detection of calcification clusters. The effect on cancer detection should be considered when selecting the type of image processing in the future.

  9. Computer Simulation of Breast Cancer Screening

    DTIC Science & Technology

    1999-07-01

    techniques for evaluating the screening efficacy of mammography. Breast cancer growth rates, incidence rates, multiracial population demographics, death ... rates , breast cancer prognosis factors, breast density considerations, detection versus diameter probabilities, and other pertinent data have been

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gragg, Evan James; Middleton, Richard Stephen

    This report describes the benefits of the BECCUS screening tools. The goals of this project are to utilize NATCARB database for site screening; enhance NATCARB database; run CO 2-EOR simulations and economic models using updated reservoir data sets (SCO 2T-EOR).

  11. Computational materials design of crystalline solids.

    PubMed

    Butler, Keith T; Frost, Jarvist M; Skelton, Jonathan M; Svane, Katrine L; Walsh, Aron

    2016-11-07

    The modelling of materials properties and processes from first principles is becoming sufficiently accurate as to facilitate the design and testing of new systems in silico. Computational materials science is both valuable and increasingly necessary for developing novel functional materials and composites that meet the requirements of next-generation technology. A range of simulation techniques are being developed and applied to problems related to materials for energy generation, storage and conversion including solar cells, nuclear reactors, batteries, fuel cells, and catalytic systems. Such techniques may combine crystal-structure prediction (global optimisation), data mining (materials informatics) and high-throughput screening with elements of machine learning. We explore the development process associated with computational materials design, from setting the requirements and descriptors to the development and testing of new materials. As a case study, we critically review progress in the fields of thermoelectrics and photovoltaics, including the simulation of lattice thermal conductivity and the search for Pb-free hybrid halide perovskites. Finally, a number of universal chemical-design principles are advanced.

  12. COLA with scale-dependent growth: applications to screened modified gravity models

    NASA Astrophysics Data System (ADS)

    Winther, Hans A.; Koyama, Kazuya; Manera, Marc; Wright, Bill S.; Zhao, Gong-Bo

    2017-08-01

    We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f(R) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to ΛCDM even when using a fairly small number of COLA time steps.

  13. Smart material screening machines using smart materials and controls

    NASA Astrophysics Data System (ADS)

    Allaei, Daryoush; Corradi, Gary; Waigand, Al

    2002-07-01

    The objective of this product is to address the specific need for improvements in the efficiency and effectiveness in physical separation technologies in the screening areas. Currently, the mining industry uses approximately 33 billion kW-hr per year, costing 1.65 billion dollars at 0.05 cents per kW-hr, of electrical energy for physical separations. Even though screening and size separations are not the single most energy intensive process in the mining industry, they are often the major bottleneck in the whole process. Improvements to this area offer tremendous potential in both energy savings and production improvements. Additionally, the vibrating screens used in the mining processing plants are the most costly areas from maintenance and worker health and safety point of views. The goal of this product is to reduce energy use in the screening and total processing areas. This goal is accomplished by developing an innovative screening machine based on smart materials and smart actuators, namely smart screen that uses advanced sensory system to continuously monitor the screening process and make appropriate adjustments to improve production. The theory behind the development of Smart Screen technology is based on two key technologies, namely smart actuators and smart Energy Flow ControlT (EFCT) strategies, developed initially for military applications. Smart Screen technology controls the flow of vibration energy and confines it to the screen rather than shaking much of the mass that makes up the conventional vibratory screening machine. Consequently, Smart Screens eliminates and downsizes many of the structural components associated with conventional vibratory screening machines. As a result, the surface area of the screen increases for a given envelope. This increase in usable screening surface area extends the life of the screens, reduces required maintenance by reducing the frequency of screen change-outs and improves throughput or productivity.

  14. Pre- and postprocessing for reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, W.L.; Ingalls, L.J.; Prasad, S.J.

    1991-05-01

    This paper describes the functionality and underlying programing paradigms of Shell's simulator-related reservoir-engineering graphics system. THis system includes the simulation postprocessing programs Reservoir Display System (RDS) and Fast Reservoir Engineering Displays (FRED), a hypertext-like on-line documentation system (DOC), and a simulator input preprocessor (SIMPLSIM). RDS creates displays of reservoir simulation results. These displays represent the areal or cross-section distribution of computer reservoir parameters, such as pressure, phase saturation, or temperature. Generation of these images at real-time animation rates is discussed. FRED facilitates the creation of plot files from reservoir simulation output. The use of dynamic memory allocation, asynchronous I/O, amore » table-driven screen manager, and mixed-language (FORTRAN and C) programming are detailed. DOC is used to create and access on-line documentation for the pre-and post-processing programs and the reservoir simulators. DOC can be run by itself or can be accessed from within any other graphics or nongraphics application program. DOC includes a text editor, which is that basis for a reservoir simulation tutorial and greatly simplifies the preparation of simulator input. The use of sharable images, graphics, and the documentation file network are described. Finally, SIMPLSIM is a suite of program that uses interactive graphics in the preparation of reservoir description data for input into reservoir simulators. The SIMPLSIM user-interface manager (UIM) and its graphic interface for reservoir description are discussed.« less

  15. Cost-effectiveness of screening for asymptomatic carotid atherosclerotic disease.

    PubMed

    Derdeyn, C P; Powers, W J

    1996-11-01

    The value of screening for asymptomatic carotid stenosis has become an important issue with the recently reported beneficial effect of endarterectomy. The purpose of this study is to evaluate the cost-effectiveness of using Doppler ultrasound as a screening tool to select subjects for arteriography and subsequent surgery. A computer model was developed to simulate the cost-effectiveness of screening a cohort of 1000 men during a 20-year period. The primary outcome measure was incremental present-value dollar expenditures for screening and treatment per incremental present-value quality-adjusted life-year (QALY) saved. Estimates of disease prevalence and arteriographic and surgical complication rates were obtained from the literature. Probabilities of stroke and death with surgical and medical treatment were obtained from published clinical trials. Doppler ultrasound sensitivity and specificity were obtained through review of local experience. Estimates of costs were obtained from local Medicare reimbursement data. A one-time screening program of a population with a high prevalence (20%) of > or = 60% stenosis cost $35130 per incremental QALY gained. Decreased surgical benefit or increased annual discount rate was detrimental, resulting in lost QALYs. Annual screening cost $457773 per incremental QALY gained. In a low-prevalence (4%) population, one-time screening cost $52588 per QALY gained, while annual screening was detrimental. The cost-effectiveness of a one-time screening program for an asymptomatic population with a high prevalence of carotid stenosis may be cost-effective. Annual screening is detrimental. The most sensitive variables in this simulation model were long-term stroke risk reduction after surgery and annual discount rate for accumulated costs and QALYs.

  16. Benefits and harms of lung cancer screening in HIV-infected individuals with CD4+ ≥ 500: a simulation study.

    PubMed

    Kong, Chung Yin; Sigel, Keith; Criss, Steven D; Sheehan, Deirdre F; Triplette, Matthew; Silverberg, Michael J; Henschke, Claudia I; Justice, Amy; Braithwaite, R Scott; Wisnivesky, Juan; Crothers, Kristina

    2018-04-19

    Lung cancer is the leading cause of non-AIDS-defining cancer deaths among HIV-infected individuals. Although lung cancer screening with low-dose computed tomography (LDCT) is endorsed by multiple national organizations, whether HIV-infected individuals would have similar benefit as uninfected individuals from lung cancer screening is unknown. Our objective was to determine the benefits and harms of lung cancer screening among HIV-infected individuals. We modified an existing simulation model, the Lung Cancer Policy Model, for HIV-infected patients. Veterans Aging Cohort Study, Kaiser Permanente Northern California HIV Cohort, and medical literature. Target population: HIV-infected current and former smokers. Lifetime. Population. Annual LDCT screening from ages 45, 50, or 55 until ages 72 or 77 years. Benefits assessed included lung cancer mortality reduction and life-years gained; harms assessed included numbers of LDCT examinations, false-positive results, and overdiagnosed cases. For HIV-infected patients with CD4 at least 500 and 100% antiretroviral therapy adherence, screening using the Centers for Medicare & Medicaid Services criteria (age 55-77, 30 pack-years of smoking, current smoker or quit within 15 years of screening) would reduce lung cancer mortality by 18.9%, similar to the mortality reduction of uninfected individuals. Alternative screening strategies utilizing lower screening age and/or pack-years criteria increase mortality reduction, but require more LDCT examinations. Strategies assumed 100% screening adherence. Lung cancer screening reduces mortality in HIV-infected patients with CD4 at least l500, with a number of efficient strategies for eligibility, including the current Centers for Medicare & Medicaid Services criteria.

  17. Organizational Factors and the Cancer Screening Process

    PubMed Central

    Zapka, Jane; Edwards, Heather; Taplin, Stephen H.

    2010-01-01

    Cancer screening is a process of care consisting of several steps and interfaces. This article reviews what is known about the association between organizational factors and cancer screening rates and examines how organizational strategies can address the steps and interfaces of cancer screening in the context of both intraorganizational and interorganizational processes. We reviewed 79 studies assessing the relationship between organizational factors and cancer screening. Screening rates are largely driven by strategies to 1) limit the number of interfaces across organizational boundaries; 2) recruit patients, promote referrals, and facilitate appointment scheduling; and 3) promote continuous patient care. Optimal screening rates can be achieved when health-care organizations tailor strategies to the steps and interfaces in the cancer screening process that are most critical for their organizations, the providers who work within them, and the patients they serve. PMID:20386053

  18. Organizational factors and the cancer screening process.

    PubMed

    Anhang Price, Rebecca; Zapka, Jane; Edwards, Heather; Taplin, Stephen H

    2010-01-01

    Cancer screening is a process of care consisting of several steps and interfaces. This article reviews what is known about the association between organizational factors and cancer screening rates and examines how organizational strategies can address the steps and interfaces of cancer screening in the context of both intraorganizational and interorganizational processes. We reviewed 79 studies assessing the relationship between organizational factors and cancer screening. Screening rates are largely driven by strategies to 1) limit the number of interfaces across organizational boundaries; 2) recruit patients, promote referrals, and facilitate appointment scheduling; and 3) promote continuous patient care. Optimal screening rates can be achieved when health-care organizations tailor strategies to the steps and interfaces in the cancer screening process that are most critical for their organizations, the providers who work within them, and the patients they serve.

  19. Magnetic Frequency Response of HL-LHC Beam Screens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrone, M.; Martino, M.; De Maria, R.

    Magnetic fields used to control particle beams in accelerators are usually controlled by regulating the electrical current of the power converters. In order to minimize lifetime degradation and ultimately luminosity loss in circular colliders, current-noise is a highly critical figure of merit of power converters, in particular for magnets located in areas with high beta-function, like the High Luminosity Large Hadron Collider (HL-LHC) insertions. However, what is directly acting upon the beam is the magnetic field and not the current of the power converter, which undergoes several frequency-dependent transformations until the desired magnetic field, seen by the beam, is obtained.more » Beam screens are very rarely considered when assessing or specifying the noise figure of merit, but their magnetic frequency response is such that they realize relatively effective low pass filtering of the magnetic field produced by the system magnet-power converter. This work aims at filling this gap by quantifying the expected impact of different beam screen layouts for the most relevant HL-LHC insertion magnets. A welldefined post-processing technique is used to derive the frequency response of the different multipoles from multi-physics Finite Element Method (FEM) simulation results. In addition, a well approximated analytical formula for the low-frequency range of multi-layered beam screens is presented.« less

  20. Impact of large beam-induced heat loads on the transient operation of the beam screens and the cryogenic plants of the Future Circular Collider (FCC)

    NASA Astrophysics Data System (ADS)

    Correia Rodrigues, H.; Tavian, L.

    2017-12-01

    The Future Circular Collider (FCC) under study at CERN will produce 50-TeV high-energy proton beams. The high-energy particle beams are bent by 16-T superconducting dipole magnets operating at 1.9 K and distributed over a circumference of 80 km. The circulating beams induce 5 MW of dynamic heat loads by several processes such as synchrotron radiation, resistive dissipation of beam image currents and electron clouds. These beam-induced heat loads will be intercepted by beam screens operating between 40 and 60 K and induce transients during beam injection. Energy ramp-up and beam dumping on the distributed beam-screen cooling loops, the sector cryogenic plants and the dedicated circulators. Based on the current baseline parameters, numerical simulations of the fluid flow in the cryogenic distribution system during a beam operation cycle were performed. The effects of the thermal inertia of the headers on the helium flow temperature at the cryogenic plant inlet as well as the temperature gradient experienced by the beam screen has been assessed. Additionally, this work enabled a thorough exergetic analysis of different cryogenic plant configurations and laid the building-block for establishing design specification of cold and warm circulators.

  1. Unifying Screening Processes Within the PROSPR Consortium: A Conceptual Model for Breast, Cervical, and Colorectal Cancer Screening

    PubMed Central

    Kim, Jane J.; Schapira, Marilyn M.; Tosteson, Anna N. A.; Zauber, Ann G.; Geiger, Ann M.; Kamineni, Aruna; Weaver, Donald L.; Tiro, Jasmin A.

    2015-01-01

    General frameworks of the cancer screening process are available, but none directly compare the process in detail across different organ sites. This limits the ability of medical and public health professionals to develop and evaluate coordinated screening programs that apply resources and population management strategies available for one cancer site to other sites. We present a trans-organ conceptual model that incorporates a single screening episode for breast, cervical, and colorectal cancers into a unified framework based on clinical guidelines and protocols; the model concepts could be expanded to other organ sites. The model covers four types of care in the screening process: risk assessment, detection, diagnosis, and treatment. Interfaces between different provider teams (eg, primary care and specialty care), including communication and transfer of responsibility, may occur when transitioning between types of care. Our model highlights across each organ site similarities and differences in steps, interfaces, and transitions in the screening process and documents the conclusion of a screening episode. This model was developed within the National Cancer Institute–funded consortium Population-based Research Optimizing Screening through Personalized Regimens (PROSPR). PROSPR aims to optimize the screening process for breast, cervical, and colorectal cancer and includes seven research centers and a statistical coordinating center. Given current health care reform initiatives in the United States, this conceptual model can facilitate the development of comprehensive quality metrics for cancer screening and promote trans-organ comparative cancer screening research. PROSPR findings will support the design of interventions that improve screening outcomes across multiple cancer sites. PMID:25957378

  2. 3 dimensional cell cultures: a comparison between manually and automatically produced alginate beads.

    PubMed

    Lehmann, R; Gallert, C; Roddelkopf, T; Junginger, S; Wree, A; Thurow, K

    2016-08-01

    Cancer diseases are a common problem of the population caused by age and increased harmful environmental influences. Herein, new therapeutic strategies and compound screenings are necessary. The regular 2D cultivation has to be replaced by three dimensional cell culturing (3D) for better simulation of in vivo conditions. The 3D cultivation with alginate matrix is an appropriate method for encapsulate cells to form cancer constructs. The automated manufacturing of alginate beads might be an ultimate method for large-scaled manufacturing constructs similar to cancer tissue. The aim of this study was the integration of full automated systems for the production, cultivation and screening of 3D cell cultures. We compared the automated methods with the regular manual processes. Furthermore, we investigated the influence of antibiotics on these 3D cell culture systems. The alginate beads were formed by automated and manual procedures. The automated steps were processes by the Biomek(®) Cell Workstation (celisca, Rostock, Germany). The proliferation and toxicity were manually and automatically evaluated at day 14 and 35 of cultivation. The results visualized an accumulation and expansion of cell aggregates over the period of incubation. However, the proliferation and toxicity were faintly and partly significantly decreased on day 35 compared to day 14. The comparison of the manual and automated methods displayed similar results. We conclude that the manual production process could be replaced by the automation. Using automation, 3D cell cultures can be produced in industrial scale and improve the drug development and screening to treat serious illnesses like cancer.

  3. Development of a Software Safety Process and a Case Study of Its Use

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1996-01-01

    Research in the year covered by this reporting period has been primarily directed toward: continued development of mock-ups of computer screens for operator of a digital reactor control system; development of a reactor simulation to permit testing of various elements of the control system; formal specification of user interfaces; fault-tree analysis including software; evaluation of formal verification techniques; and continued development of a software documentation system. Technical results relating to this grant and the remainder of the principal investigator's research program are contained in various reports and papers.

  4. Using screen-based simulation to improve performance during pediatric resuscitation.

    PubMed

    Biese, Kevin J; Moro-Sutherland, Donna; Furberg, Robert D; Downing, Brian; Glickman, Larry; Murphy, Alison; Jackson, Cheryl L; Snyder, Graham; Hobgood, Cherri

    2009-12-01

    To assess the ability of a screen-based simulation-training program to improve emergency medicine and pediatric resident performance in critical pediatric resuscitation knowledge, confidence, and skills. A pre-post, interventional design was used. Three measures of performance were created and assessed before and after intervention: a written pre-course knowledge examination, a self-efficacy confidence score, and a skills-based high-fidelity simulation code scenario. For the high-fidelity skills assessment, independent physician raters recorded and reviewed subject performance. The intervention consisted of eight screen-based pediatric resuscitation scenarios that subjects had 4 weeks to complete. Upon completion of the scenarios, all three measures were repeated. For the confidence assessment, summary pre- and post-test summary confidence scores were compared using a t-test, and for the skills assessment, pre-scores were compared with post-test measures for each individual using McNemar's chi-square test for paired samples. Twenty-six of 35 (71.3%) enrolled subjects completed the institutional review board-approved study. Increases were observed in written test scores, confidence, and some critical interventions in high-fidelity simulation. The mean improvement in cumulative confidence scores for all residents was 10.1 (SD +/-4.9; range 0-19; p < 0.001), with no resident feeling less confident after the intervention. Although overall performance in simulated codes did not change significantly, with average scores of 6.65 (+/-1.76) to 7.04 (+/-1.37) out of 9 possible points (p = 0.58), improvement was seen in the administering of appropriate amounts of IV fluids (59-89%, p = 0.03). In this study, improvements in resident knowledge, confidence, and performance of certain skills in simulated pediatric cardiac arrest scenarios suggest that screen-based simulations may be an effective way to enhance resuscitation skills of pediatric providers. These results should be confirmed using a randomized design with an appropriate control group. (c) 2009 by the Society for Academic Emergency Medicine.

  5. Molecular-Simulation-Driven Fragment Screening for the Discovery of New CXCL12 Inhibitors.

    PubMed

    Martinez-Rosell, Gerard; Harvey, Matt J; De Fabritiis, Gianni

    2018-03-26

    Fragment-based drug discovery (FBDD) has become a mainstream approach in drug design because it allows the reduction of the chemical space and screening libraries while identifying fragments with high protein-ligand efficiency interactions that can later be grown into drug-like leads. In this work, we leverage high-throughput molecular dynamics (MD) simulations to screen a library of 129 fragments for a total of 5.85 ms against the CXCL12 monomer, a chemokine involved in inflammation and diseases such as cancer. Our in silico binding assay was able to recover binding poses, affinities, and kinetics for the selected library and was able to predict 8 mM-affinity fragments with ligand efficiencies higher than 0.3. All of the fragment hits present a similar chemical structure, with a hydrophobic core and a positively charged group, and bind to either sY7 or H1S68 pockets, where they share pharmacophoric properties with experimentally resolved natural binders. This work presents a large-scale screening assay using an exclusive combination of thousands of short MD adaptive simulations analyzed with a Markov state model (MSM) framework.

  6. Identification of a Novel Class of BRD4 Inhibitors by Computational Screening and Binding Simulations

    PubMed Central

    2017-01-01

    Computational screening is a method to prioritize small-molecule compounds based on the structural and biochemical attributes built from ligand and target information. Previously, we have developed a scalable virtual screening workflow to identify novel multitarget kinase/bromodomain inhibitors. In the current study, we identified several novel N-[3-(2-oxo-pyrrolidinyl)phenyl]-benzenesulfonamide derivatives that scored highly in our ensemble docking protocol. We quantified the binding affinity of these compounds for BRD4(BD1) biochemically and generated cocrystal structures, which were deposited in the Protein Data Bank. As the docking poses obtained in the virtual screening pipeline did not align with the experimental cocrystal structures, we evaluated the predictions of their precise binding modes by performing molecular dynamics (MD) simulations. The MD simulations closely reproduced the experimentally observed protein–ligand cocrystal binding conformations and interactions for all compounds. These results suggest a computational workflow to generate experimental-quality protein–ligand binding models, overcoming limitations of docking results due to receptor flexibility and incomplete sampling, as a useful starting point for the structure-based lead optimization of novel BRD4(BD1) inhibitors. PMID:28884163

  7. Dynamic simulation of concentrated macromolecular solutions with screened long-range hydrodynamic interactions: Algorithm and limitations

    PubMed Central

    Ando, Tadashi; Chow, Edmond; Skolnick, Jeffrey

    2013-01-01

    Hydrodynamic interactions exert a critical effect on the dynamics of macromolecules. As the concentration of macromolecules increases, by analogy to the behavior of semidilute polymer solutions or the flow in porous media, one might expect hydrodynamic screening to occur. Hydrodynamic screening would have implications both for the understanding of macromolecular dynamics as well as practical implications for the simulation of concentrated macromolecular solutions, e.g., in cells. Stokesian dynamics (SD) is one of the most accurate methods for simulating the motions of N particles suspended in a viscous fluid at low Reynolds number, in that it considers both far-field and near-field hydrodynamic interactions. This algorithm traditionally involves an O(N3) operation to compute Brownian forces at each time step, although asymptotically faster but more complex SD methods are now available. Motivated by the idea of hydrodynamic screening, the far-field part of the hydrodynamic matrix in SD may be approximated by a diagonal matrix, which is equivalent to assuming that long range hydrodynamic interactions are completely screened. This approximation allows sparse matrix methods to be used, which can reduce the apparent computational scaling to O(N). Previously there were several simulation studies using this approximation for monodisperse suspensions. Here, we employ newly designed preconditioned iterative methods for both the computation of Brownian forces and the solution of linear systems, and consider the validity of this approximation in polydisperse suspensions. We evaluate the accuracy of the diagonal approximation method using an intracellular-like suspension. The diffusivities of particles obtained with this approximation are close to those with the original method. However, this approximation underestimates intermolecular correlated motions, which is a trade-off between accuracy and computing efficiency. The new method makes it possible to perform large-scale and long-time simulation with an approximate accounting of hydrodynamic interactions. PMID:24089734

  8. Radiologists' preferences for digital mammographic display. The International Digital Mammography Development Group.

    PubMed

    Pisano, E D; Cole, E B; Major, S; Zong, S; Hemminger, B M; Muller, K E; Johnston, R E; Walsh, R; Conant, E; Fajardo, L L; Feig, S A; Nishikawa, R M; Yaffe, M J; Williams, M B; Aylward, S R

    2000-09-01

    To determine the preferences of radiologists among eight different image processing algorithms applied to digital mammograms obtained for screening and diagnostic imaging tasks. Twenty-eight images representing histologically proved masses or calcifications were obtained by using three clinically available digital mammographic units. Images were processed and printed on film by using manual intensity windowing, histogram-based intensity windowing, mixture model intensity windowing, peripheral equalization, multiscale image contrast amplification (MUSICA), contrast-limited adaptive histogram equalization, Trex processing, and unsharp masking. Twelve radiologists compared the processed digital images with screen-film mammograms obtained in the same patient for breast cancer screening and breast lesion diagnosis. For the screening task, screen-film mammograms were preferred to all digital presentations, but the acceptability of images processed with Trex and MUSICA algorithms were not significantly different. All printed digital images were preferred to screen-film radiographs in the diagnosis of masses; mammograms processed with unsharp masking were significantly preferred. For the diagnosis of calcifications, no processed digital mammogram was preferred to screen-film mammograms. When digital mammograms were preferred to screen-film mammograms, radiologists selected different digital processing algorithms for each of three mammographic reading tasks and for different lesion types. Soft-copy display will eventually allow radiologists to select among these options more easily.

  9. A permutation-based non-parametric analysis of CRISPR screen data.

    PubMed

    Jia, Gaoxiang; Wang, Xinlei; Xiao, Guanghua

    2017-07-19

    Clustered regularly-interspaced short palindromic repeats (CRISPR) screens are usually implemented in cultured cells to identify genes with critical functions. Although several methods have been developed or adapted to analyze CRISPR screening data, no single specific algorithm has gained popularity. Thus, rigorous procedures are needed to overcome the shortcomings of existing algorithms. We developed a Permutation-Based Non-Parametric Analysis (PBNPA) algorithm, which computes p-values at the gene level by permuting sgRNA labels, and thus it avoids restrictive distributional assumptions. Although PBNPA is designed to analyze CRISPR data, it can also be applied to analyze genetic screens implemented with siRNAs or shRNAs and drug screens. We compared the performance of PBNPA with competing methods on simulated data as well as on real data. PBNPA outperformed recent methods designed for CRISPR screen analysis, as well as methods used for analyzing other functional genomics screens, in terms of Receiver Operating Characteristics (ROC) curves and False Discovery Rate (FDR) control for simulated data under various settings. Remarkably, the PBNPA algorithm showed better consistency and FDR control on published real data as well. PBNPA yields more consistent and reliable results than its competitors, especially when the data quality is low. R package of PBNPA is available at: https://cran.r-project.org/web/packages/PBNPA/ .

  10. Accurate high-throughput structure mapping and prediction with transition metal ion FRET

    PubMed Central

    Yu, Xiaozhen; Wu, Xiongwu; Bermejo, Guillermo A.; Brooks, Bernard R.; Taraska, Justin W.

    2013-01-01

    Mapping the landscape of a protein’s conformational space is essential to understanding its functions and regulation. The limitations of many structural methods have made this process challenging for most proteins. Here, we report that transition metal ion FRET (tmFRET) can be used in a rapid, highly parallel screen, to determine distances from multiple locations within a protein at extremely low concentrations. The distances generated through this screen for the protein Maltose Binding Protein (MBP) match distances from the crystal structure to within a few angstroms. Furthermore, energy transfer accurately detects structural changes during ligand binding. Finally, fluorescence-derived distances can be used to guide molecular simulations to find low energy states. Our results open the door to rapid, accurate mapping and prediction of protein structures at low concentrations, in large complex systems, and in living cells. PMID:23273426

  11. Numerical experiments on charging of a spherical body in a plasma with Maxwellian distributions of charged particles

    NASA Astrophysics Data System (ADS)

    Krasovsky, Victor L.; Kiselyov, Alexander A.

    2017-12-01

    New results of numerical simulation of collisionless plasma perturbation caused by a sphere absorbing electrons and ions are presented. Consideration is given to nonstationary phenomena accompanying the process of charging as well as to plasma steady state reached at long times. Corresponding asymptotic values of charges of the sphere and trapped-ion cloud around it have been found along with self-consistent electric field pattern depending on parameters of the unperturbed plasma. It is established that contribution of the trapped ions to screening of the charged sphere can be quite significant, so that the screening becomes essentially nonlinear in nature. A simple interconnection between the sphere radius, electron and ion Debye lengths has been revealed as the condition for maximum trapped-ion effect. Kinetic structure of the space charge induced in the plasma is discussed with relation to the specific form of the unperturbed charged particle distribution functions.

  12. Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project.

    PubMed

    Zucchella, Chiara; Sinforiani, Elena; Tassorelli, Cristina; Cavallini, Elena; Tost-Pardell, Daniela; Grau, Sergi; Pazzi, Stefania; Puricelli, Stefano; Bernini, Sara; Bottiroli, Sara; Vecchi, Tomaso; Sandrini, Giorgio; Nappi, Giuseppe

    2014-01-01

    Conventional cognitive assessment is based on a pencil-and-paper neuropsychological evaluation, which is time consuming, expensive and requires the involvement of several professionals. Information and communication technology could be exploited to allow the development of tools that are easy to use, reduce the amount of data processing, and provide controllable test conditions. Serious games (SGs) have the potential to be new and effective tools in the management and treatment of cognitive impairments Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project in the elderly. Moreover, by adopting SGs in 3D virtual reality settings, cognitive functions might be evaluated using tasks that simulate daily activities, increasing the "ecological validity" of the assessment. In this commentary we report our experience in the creation of the Smart Aging platform, a 3D SGand virtual environment-based platform for the early identification and characterization of mild cognitive impairment.

  13. Identification of novel Trypanosoma cruzi prolyl oligopeptidase inhibitors by structure-based virtual screening

    NASA Astrophysics Data System (ADS)

    de Almeida, Hugo; Leroux, Vincent; Motta, Flávia Nader; Grellier, Philippe; Maigret, Bernard; Santana, Jaime M.; Bastos, Izabela Marques Dourado

    2016-12-01

    We have previously demonstrated that the secreted prolyl oligopeptidase of Trypanosoma cruzi (POPTc80) is involved in the infection process by facilitating parasite migration through the extracellular matrix. We have built a 3D structural model where POPTc80 is formed by a catalytic α/β-hydrolase domain and a β-propeller domain, and in which the substrate docks at the inter-domain interface, suggesting a "jaw opening" gating access mechanism. This preliminary model was refined by molecular dynamics simulations and next used for a virtual screening campaign, whose predictions were tested by standard binding assays. This strategy was successful as all 13 tested molecules suggested from the in silico calculations were found out to be active POPTc80 inhibitors in the micromolar range (lowest K i at 667 nM). This work paves the way for future development of innovative drugs against Chagas disease.

  14. Assessment of wheelchair driving performance in a virtual reality-based simulator

    PubMed Central

    Mahajan, Harshal P.; Dicianno, Brad E.; Cooper, Rory A.; Ding, Dan

    2013-01-01

    Objective To develop a virtual reality (VR)-based simulator that can assist clinicians in performing standardized wheelchair driving assessments. Design A completely within-subjects repeated measures design. Methods Participants drove their wheelchairs along a virtual driving circuit modeled after the Power Mobility Road Test (PMRT) and in a hallway with decreasing width. The virtual simulator was displayed on computer screen and VR screens and participants interacted with it using a set of instrumented rollers and a wheelchair joystick. Driving performances of participants were estimated and compared using quantitative metrics from the simulator. Qualitative ratings from two experienced clinicians were used to estimate intra- and inter-rater reliability. Results Ten regular wheelchair users (seven men, three women; mean age ± SD, 39.5 ± 15.39 years) participated. The virtual PMRT scores from the two clinicians show high inter-rater reliability (78–90%) and high intra-rater reliability (71–90%) for all test conditions. More research is required to explore user preferences and effectiveness of the two control methods (rollers and mathematical model) and the display screens. Conclusions The virtual driving simulator seems to be a promising tool for wheelchair driving assessment that clinicians can use to supplement their real-world evaluations. PMID:23820148

  15. 41 CFR 102-36.270 - What if a federal agency requests personal property that is undergoing donation screening or in...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requests personal property that is undergoing donation screening or in the sales process? 102-36.270... agency requests personal property that is undergoing donation screening or in the sales process? Prior to... property undergoing donation screening or in the sales process. Federal transfers may be authorized prior...

  16. 41 CFR 102-36.270 - What if a federal agency requests personal property that is undergoing donation screening or in...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requests personal property that is undergoing donation screening or in the sales process? 102-36.270... agency requests personal property that is undergoing donation screening or in the sales process? Prior to... property undergoing donation screening or in the sales process. Federal transfers may be authorized prior...

  17. 41 CFR 102-36.270 - What if a federal agency requests personal property that is undergoing donation screening or in...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requests personal property that is undergoing donation screening or in the sales process? 102-36.270... agency requests personal property that is undergoing donation screening or in the sales process? Prior to... property undergoing donation screening or in the sales process. Federal transfers may be authorized prior...

  18. 41 CFR 102-36.270 - What if a federal agency requests personal property that is undergoing donation screening or in...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requests personal property that is undergoing donation screening or in the sales process? 102-36.270... agency requests personal property that is undergoing donation screening or in the sales process? Prior to... property undergoing donation screening or in the sales process. Federal transfers may be authorized prior...

  19. 41 CFR 102-36.270 - What if a federal agency requests personal property that is undergoing donation screening or in...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requests personal property that is undergoing donation screening or in the sales process? 102-36.270... agency requests personal property that is undergoing donation screening or in the sales process? Prior to... property undergoing donation screening or in the sales process. Federal transfers may be authorized prior...

  20. Polymorphic phase transitions: Macroscopic theory and molecular simulation.

    PubMed

    Anwar, Jamshed; Zahn, Dirk

    2017-08-01

    Transformations in the solid state are of considerable interest, both for fundamental reasons and because they underpin important technological applications. The interest spans a wide spectrum of disciplines and application domains. For pharmaceuticals, a common issue is unexpected polymorphic transformation of the drug or excipient during processing or on storage, which can result in product failure. A more ambitious goal is that of exploiting the advantages of metastable polymorphs (e.g. higher solubility and dissolution rate) while ensuring their stability with respect to solid state transformation. To address these issues and to advance technology, there is an urgent need for significant insights that can only come from a detailed molecular level understanding of the involved processes. Whilst experimental approaches at best yield time- and space-averaged structural information, molecular simulation offers unprecedented, time-resolved molecular-level resolution of the processes taking place. This review aims to provide a comprehensive and critical account of state-of-the-art methods for modelling polymorph stability and transitions between solid phases. This is flanked by revisiting the associated macroscopic theoretical framework for phase transitions, including their classification, proposed molecular mechanisms, and kinetics. The simulation methods are presented in tutorial form, focusing on their application to phase transition phenomena. We describe molecular simulation studies for crystal structure prediction and polymorph screening, phase coexistence and phase diagrams, simulations of crystal-crystal transitions of various types (displacive/martensitic, reconstructive and diffusive), effects of defects, and phase stability and transitions at the nanoscale. Our selection of literature is intended to illustrate significant insights, concepts and understanding, as well as the current scope of using molecular simulations for understanding polymorphic transitions in an accessible way, rather than claiming completeness. With exciting prospects in both simulation methods development and enhancements in computer hardware, we are on the verge of accessing an unprecedented capability for designing and developing dosage forms and drug delivery systems in silico, including tackling challenges in polymorph control on a rational basis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ensemble pharmacophore meets ensemble docking: a novel screening strategy for the identification of RIPK1 inhibitors

    NASA Astrophysics Data System (ADS)

    Fayaz, S. M.; Rajanikant, G. K.

    2014-07-01

    Programmed cell death has been a fascinating area of research since it throws new challenges and questions in spite of the tremendous ongoing research in this field. Recently, necroptosis, a programmed form of necrotic cell death, has been implicated in many diseases including neurological disorders. Receptor interacting serine/threonine protein kinase 1 (RIPK1) is an important regulatory protein involved in the necroptosis and inhibition of this protein is essential to stop necroptotic process and eventually cell death. Current structure-based virtual screening methods involve a wide range of strategies and recently, considering the multiple protein structures for pharmacophore extraction has been emphasized as a way to improve the outcome. However, using the pharmacophoric information completely during docking is very important. Further, in such methods, using the appropriate protein structures for docking is desirable. If not, potential compound hits, obtained through pharmacophore-based screening, may not have correct ranks and scores after docking. Therefore, a comprehensive integration of different ensemble methods is essential, which may provide better virtual screening results. In this study, dual ensemble screening, a novel computational strategy was used to identify diverse and potent inhibitors against RIPK1. All the pharmacophore features present in the binding site were captured using both the apo and holo protein structures and an ensemble pharmacophore was built by combining these features. This ensemble pharmacophore was employed in pharmacophore-based screening of ZINC database. The compound hits, thus obtained, were subjected to ensemble docking. The leads acquired through docking were further validated through feature evaluation and molecular dynamics simulation.

  2. Health IT-assisted population-based preventive cancer screening: a cost analysis.

    PubMed

    Levy, Douglas E; Munshi, Vidit N; Ashburner, Jeffrey M; Zai, Adrian H; Grant, Richard W; Atlas, Steven J

    2015-12-01

    Novel health information technology (IT)-based strategies harnessing patient registry data seek to improve care at a population level. We analyzed costs from a randomized trial of 2 health IT strategies to improve cancer screening compared with usual care from the perspective of a primary care network. Monte Carlo simulations were used to compare costs across management strategies. We assessed the cost of the software, materials, and personnel for baseline usual care (BUC) compared with augmented usual care (AUC [ie, automated patient outreach]) and augmented usual care with physician input (AUCPI [ie, outreach mediated by physicians' knowledge of their patient panels]) over 1 year. AUC and AUCPI each reduced the time physicians spent on cancer screening by 6.5 minutes per half-day clinical session compared with BUC without changing cancer screening rates. Assuming the value of this time accrues to the network, total costs of cancer screening efforts over the study year were $3.83 million for AUC, $3.88 million for AUCPI, and $4.10 million for BUC. AUC was cost-saving relative to BUC in 87.1% of simulations. AUCPI was cost-saving relative to BUC in 82.5% of simulations. Ongoing per patient costs were lower for both AUC ($35.63) and AUCPI ($35.58) relative to BUC ($39.51). Over the course of the study year, the value of reduced physician time devoted to preventive cancer screening outweighed the costs of the interventions. Primary care networks considering similar interventions will need to capture adequate physician time savings to offset the costs of expanding IT infrastructure.

  3. Design of a Screen Based Simulation for Training and Automated Assessment of Teamwork Skills

    DTIC Science & Technology

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0308 TITLE: Design of a Screen-Based Simulation for Training and Automated Assessment of Teamwork Skills PRINCIPAL...the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE August 2017 2. REPORT TYPE Annual 3. DATES

  4. Working alone or in the presence of others: exploring social facilitation in baggage X-ray security screening tasks.

    PubMed

    Yu, Rui-feng; Wu, Xin

    2015-01-01

    This study investigated whether the mere presence of a human audience would evoke a social facilitation effect in baggage X-ray security screening tasks. A 2 (target presence: present vs. absent) ×  2 (task complexity: simple vs. complex) ×  2 (social presence: alone vs. human audience) within-subject experiment simulating a real baggage screening task was conducted. This experiment included 20 male participants. The participants' search performance in this task was recorded. The results showed that the presence of a human audience speeded up responses in simple tasks and slowed down responses in complex tasks. However, the social facilitation effect produced by the presence of a human audience had no effect on response accuracy. These findings suggested that the complexity of screening tasks should be considered when designing work organisation modes for security screening tasks. Practitioner summary: This study investigated whether the presence of a human audience could evoke a social facilitation effect in baggage X-ray security screening tasks. An experimental simulation was conducted. The results showed that the presence of a human audience facilitated the search performance of simple tasks and inhibited the performance of complex tasks.

  5. Technique charts for Kodak EC-L film screen system for portal localization in a 6MV X-ray beam.

    PubMed

    Sandilos, P; Antypas, C; Paraskevopoulou, C; Kouvaris, J; Vlachos, L

    2006-01-01

    Port films are used in radiotherapy for visual evaluation of the radiation fields and subsequent quantitative analysis. Common port films suffer from poor image quality compared to the simulator-diagnostic films and is desirable to determine the appropriate exposure required for the best image contrast. The aim of this work is to generate technique charts for the Kodak EC-L film screen system for use in a 6MV x-ray beam. Three homogeneous water phantoms were used to simulate head-neck, thorax and abdomen dimensions of adult human, correspondingly. The film screen system was calibrated in a 6MV x-ray beam and under various irradiation conditions. The film screen system behavior was studied as a function of phantom thickness, field size and air gap between the phantom and the film screen system. In each case the optimum film exposure which produces the maximum image contrast was determined. The generated technique charts for the EC-L film screen system and for a 6 MV x-ray beam are used in our radiotherapy department for daily quality assurance of the radiotherapy procedure.

  6. Virtual School, Real Experience: Simulations Replicate the World of Practice for Aspiring Principals

    ERIC Educational Resources Information Center

    Mann, Dale; Shakeshaft, Charol

    2013-01-01

    A web-enabled computer simulation program presents real-world opportunities, problems, and challenges for aspiring principals. The simulation challenges areas that are not always covered in lectures, textbooks, or workshops. For example, using the simulation requires dealing--on-screen and in real time--with demanding parents, observing…

  7. The Clinical and Economic Benefits of Co-Testing Versus Primary HPV Testing for Cervical Cancer Screening: A Modeling Analysis.

    PubMed

    Felix, Juan C; Lacey, Michael J; Miller, Jeffrey D; Lenhart, Gregory M; Spitzer, Mark; Kulkarni, Rucha

    2016-06-01

    Consensus United States cervical cancer screening guidelines recommend use of combination Pap plus human papillomavirus (HPV) testing for women aged 30 to 65 years. An HPV test was approved by the Food and Drug Administration in 2014 for primary cervical cancer screening in women age 25 years and older. Here, we present the results of clinical-economic comparisons of Pap plus HPV mRNA testing including genotyping for HPV 16/18 (co-testing) versus DNA-based primary HPV testing with HPV 16/18 genotyping and reflex cytology (HPV primary) for cervical cancer screening. A health state transition (Markov) model with 1-year cycling was developed using epidemiologic, clinical, and economic data from healthcare databases and published literature. A hypothetical cohort of one million women receiving triennial cervical cancer screening was simulated from ages 30 to 70 years. Screening strategies compared HPV primary to co-testing. Outcomes included total and incremental differences in costs, invasive cervical cancer (ICC) cases, ICC deaths, number of colposcopies, and quality-adjusted life years for cost-effectiveness calculations. Comprehensive sensitivity analyses were performed. In a simulation cohort of one million 30-year-old women modeled up to age 70 years, the model predicted that screening with HPV primary testing instead of co-testing could lead to as many as 2,141 more ICC cases and 2,041 more ICC deaths. In the simulation, co-testing demonstrated a greater number of lifetime quality-adjusted life years (22,334) and yielded $39.0 million in savings compared with HPV primary, thereby conferring greater effectiveness at lower cost. Model results demonstrate that co-testing has the potential to provide improved clinical and economic outcomes when compared with HPV primary. While actual cost and outcome data are evaluated, these findings are relevant to U.S. healthcare payers and women's health policy advocates seeking cost-effective cervical cancer screening technologies.

  8. Unifying screening processes within the PROSPR consortium: a conceptual model for breast, cervical, and colorectal cancer screening.

    PubMed

    Beaber, Elisabeth F; Kim, Jane J; Schapira, Marilyn M; Tosteson, Anna N A; Zauber, Ann G; Geiger, Ann M; Kamineni, Aruna; Weaver, Donald L; Tiro, Jasmin A

    2015-06-01

    General frameworks of the cancer screening process are available, but none directly compare the process in detail across different organ sites. This limits the ability of medical and public health professionals to develop and evaluate coordinated screening programs that apply resources and population management strategies available for one cancer site to other sites. We present a trans-organ conceptual model that incorporates a single screening episode for breast, cervical, and colorectal cancers into a unified framework based on clinical guidelines and protocols; the model concepts could be expanded to other organ sites. The model covers four types of care in the screening process: risk assessment, detection, diagnosis, and treatment. Interfaces between different provider teams (eg, primary care and specialty care), including communication and transfer of responsibility, may occur when transitioning between types of care. Our model highlights across each organ site similarities and differences in steps, interfaces, and transitions in the screening process and documents the conclusion of a screening episode. This model was developed within the National Cancer Institute-funded consortium Population-based Research Optimizing Screening through Personalized Regimens (PROSPR). PROSPR aims to optimize the screening process for breast, cervical, and colorectal cancer and includes seven research centers and a statistical coordinating center. Given current health care reform initiatives in the United States, this conceptual model can facilitate the development of comprehensive quality metrics for cancer screening and promote trans-organ comparative cancer screening research. PROSPR findings will support the design of interventions that improve screening outcomes across multiple cancer sites. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. A parallel algorithm for the initial screening of space debris collisions prediction using the SGP4/SDP4 models and GPU acceleration

    NASA Astrophysics Data System (ADS)

    Lin, Mingpei; Xu, Ming; Fu, Xiaoyu

    2017-05-01

    Currently, a tremendous amount of space debris in Earth's orbit imperils operational spacecraft. It is essential to undertake risk assessments of collisions and predict dangerous encounters in space. However, collision predictions for an enormous amount of space debris give rise to large-scale computations. In this paper, a parallel algorithm is established on the Compute Unified Device Architecture (CUDA) platform of NVIDIA Corporation for collision prediction. According to the parallel structure of NVIDIA graphics processors, a block decomposition strategy is adopted in the algorithm. Space debris is divided into batches, and the computation and data transfer operations of adjacent batches overlap. As a consequence, the latency to access shared memory during the entire computing process is significantly reduced, and a higher computing speed is reached. Theoretically, a simulation of collision prediction for space debris of any amount and for any time span can be executed. To verify this algorithm, a simulation example including 1382 pieces of debris, whose operational time scales vary from 1 min to 3 days, is conducted on Tesla C2075 of NVIDIA. The simulation results demonstrate that with the same computational accuracy as that of a CPU, the computing speed of the parallel algorithm on a GPU is 30 times that on a CPU. Based on this algorithm, collision prediction of over 150 Chinese spacecraft for a time span of 3 days can be completed in less than 3 h on a single computer, which meets the timeliness requirement of the initial screening task. Furthermore, the algorithm can be adapted for multiple tasks, including particle filtration, constellation design, and Monte-Carlo simulation of an orbital computation.

  10. Study on Dynamic Development of Three-dimensional Weld Pool Surface in Stationary GTAW

    NASA Astrophysics Data System (ADS)

    Huang, Jiankang; He, Jing; He, Xiaoying; Shi, Yu; Fan, Ding

    2018-04-01

    The weld pool contains abundant information about the welding process. In particular, the type of the weld pool surface shape, i. e., convex or concave, is determined by the weld penetration. To detect it, an innovative laser-vision-based sensing method is employed to observe the weld pool surface of the gas tungsten arc welding (GTAW). A low-power laser dots pattern is projected onto the entire weld pool surface. Its reflection is intercepted by a screen and captured by a camera. Then the dynamic development process of the weld pool surface can be detected. By observing and analyzing, the change of the reflected laser dots reflection pattern, for shape of the weld pool surface shape, was found to closely correlate to the penetration of weld pool in the welding process. A mathematical model was proposed to correlate the incident ray, reflected ray, screen and surface of weld pool based on structured laser specular reflection. The dynamic variation of the weld pool surface and its corresponding dots laser pattern were simulated and analyzed. By combining the experimental data and the mathematical analysis, the results show that the pattern of the reflected laser dots pattern is closely correlated to the development of weld pool, such as the weld penetration. The concavity of the pool surface was found to increase rapidly after the surface shape was changed from convex to concave during the stationary GTAW process.

  11. A qualitative analysis of bus simulator training on transit incidents : a case study in Florida. [Summary].

    DOT National Transportation Integrated Search

    2013-01-01

    The simulator was once a very expensive, large-scale mechanical device for training military pilots or astronauts. Modern computers, linking sophisticated software and large-screen displays, have yielded simulators for the desktop or configured as sm...

  12. Impact of the National Breast and Cervical Cancer Early Detection Program on cervical cancer mortality among uninsured low-income women in the U.S., 1991-2007.

    PubMed

    Ekwueme, Donatus U; Uzunangelov, Vladislav J; Hoerger, Thomas J; Miller, Jacqueline W; Saraiya, Mona; Benard, Vicki B; Hall, Ingrid J; Royalty, Janet; Li, Chunyu; Myers, Evan R

    2014-09-01

    The benefits of the National Breast and Cervical Cancer Early Detection Program (NBCCEDP) on cervical cancer screening for participating uninsured low-income women have never been measured. To estimate the benefits in life-years (LYs) gained; quality-adjusted life-years (QALYs) gained; and deaths averted. A cervical cancer simulation model was constructed based on an existing cohort model. The model was applied to NBCCEDP participants aged 18-64 years. Screening habits for uninsured low-income women were estimated using National Health Interview Survey data from 1990 to 2005 and NBCCEDP data from 1991 to 2007. The study was conducted during 2011-2012 and covered all 68 NBCCEDP grantees in 50 states, the District of Columbia, five U.S. territories, and 12 tribal organizations. Separate simulations were performed for the following three scenarios: (1) women who received NBCCEDP (Program) screening; (2) women who received screening without the program (No Program); and (3) women who received no screening (No Screening). Among 1.8 million women screened in 1991-2007, the Program added 10,369 LYs gained compared to No Program, and 101,509 LYs gained compared to No Screening. The Program prevented 325 women from dying of cervical cancer relative to No Program, and 3,829 relative to No Screening. During this time period, the Program accounted for 15,589 QALYs gained when compared with No Program, and 121,529 QALYs gained when compared with No Screening. These estimates suggest that NBCCEDP cervical cancer screening has reduced mortality among medically underserved low-income women who participated in the program. Published by Elsevier Inc.

  13. A System Dynamics Model of Serum Prostate-Specific Antigen Screening for Prostate Cancer.

    PubMed

    Palma, Anton; Lounsbury, David W; Schlecht, Nicolas F; Agalliu, Ilir

    2016-02-01

    Since 2012, US guidelines have recommended against prostate-specific antigen (PSA) screening for prostate cancer. However, evidence of screening benefit from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening trial and the European Randomized Study of Screening for Prostate Cancer has been inconsistent, due partly to differences in noncompliance and contamination. Using system dynamics modeling, we replicated the PLCO trial and extrapolated follow-up to 20 years. We then simulated 3 scenarios correcting for contamination in the PLCO control arm using Surveillance, Epidemiology, and End Results (SEER) incidence and survival data collected prior to the PSA screening era (scenario 1), SEER data collected during the PLCO trial period (1993-2001) (scenario 2), and data from the European trial's control arm (1991-2005) (scenario 3). In all scenarios, noncompliance was corrected using incidence and survival rates for men with screen-detected cancer in the PLCO screening arm. Scenarios 1 and 3 showed a benefit of PSA screening, with relative risks of 0.62 (95% confidence interval: 0.53, 0.72) and 0.70 (95% confidence interval: 0.59, 0.83) for cancer-specific mortality after 20 years, respectively. In scenario 2, however, there was no benefit of screening. This simulation showed that after correcting for noncompliance and contamination, there is potential benefit of PSA screening in reducing prostate cancer mortality. It also demonstrates the utility of system dynamics modeling for synthesizing epidemiologic evidence to inform public policy. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. First-principles simulations of doping-dependent mesoscale screening of adatoms in graphene

    NASA Astrophysics Data System (ADS)

    Mostofi, Arash; Corsetti, Fabiano; Wong, Dillon; Crommie, Michael; Lischner, Johannes

    Adsorbed atoms and molecules play an important role in controlling and tuning the functional properties of 2D materials. Understanding and predicting this phenomenon from theory is challenging because of the need to capture both the local chemistry of the adsorbate-substrate interaction and its complex interplay with the long-range screening response of the substrate. To address this challenge, we have developed a first-principles multi-scale approach that combines linear-scaling density-functional theory, continuum screening theory and large-scale tight-binding simulations. Focussing on the case of a calcium adatom on graphene, we draw comparison between the effect of (i) non-linearity, (ii) intraband and interband transitions, and (iii) the exchange-correlation potential, thus providing insight into the relative importance of these different factors on the screening response. We also determine the charge transfer from the adatom to the graphene substrate (the key parameter used in continuum screening models), showing it to be significantly larger than previous estimates. AM and FC acknowledge support of the EPSRC under Grant EP/J015059/1, and JL under Grant EP/N005244/1.

  15. Low-cost, smartphone based frequency doubling technology visual field testing using virtual reality (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alawa, Karam A.; Sayed, Mohamed; Arboleda, Alejandro; Durkee, Heather A.; Aguilar, Mariela C.; Lee, Richard K.

    2017-02-01

    Glaucoma is the leading cause of irreversible blindness worldwide. Due to its wide prevalence, effective screening tools are necessary. The purpose of this project is to design and evaluate a system that enables portable, cost effective, smartphone based visual field screening based on frequency doubling technology. The system is comprised of an Android smartphone to display frequency doubling stimuli and handle processing, a Bluetooth remote for user input, and a virtual reality headset to simulate the exam. The LG Nexus 5 smartphone and BoboVR Z3 virtual reality headset were used for their screen size and lens configuration, respectively. The system is capable of running the C-20, N-30, 24-2, and 30-2 testing patterns. Unlike the existing system, the smartphone FDT tests both eyes concurrently by showing the same background to both eyes but only displaying the stimulus to one eye at a time. Both the Humphrey Zeiss FDT and the smartphone FDT were tested on five subjects without a history of ocular disease with the C-20 testing pattern. The smartphone FDT successfully produced frequency doubling stimuli at the correct spatial and temporal frequency. Subjects could not tell which eye was being tested. All five subjects preferred the smartphone FDT to the Humphrey Zeiss FDT due to comfort and ease of use. The smartphone FDT is a low-cost, portable visual field screening device that can be used as a screening tool for glaucoma.

  16. Molecular dynamics simulations through GPU video games technologies

    PubMed Central

    Loukatou, Styliani; Papageorgiou, Louis; Fakourelis, Paraskevas; Filntisi, Arianna; Polychronidou, Eleftheria; Bassis, Ioannis; Megalooikonomou, Vasileios; Makałowski, Wojciech; Vlachakis, Dimitrios; Kossida, Sophia

    2016-01-01

    Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements of atoms and molecules is molecular dynamics (MD). MD is an in silico method to simulate the physical motions of atoms and molecules under certain conditions. This has become a state strategic technique and now plays a key role in many areas of exact sciences, such as chemistry, biology, physics and medicine. Due to their complexity, MD calculations could require enormous amounts of computer memory and time and therefore their execution has been a big problem. Despite the huge computational cost, molecular dynamics have been implemented using traditional computers with a central memory unit (CPU). A graphics processing unit (GPU) computing technology was first designed with the goal to improve video games, by rapidly creating and displaying images in a frame buffer such as screens. The hybrid GPU-CPU implementation, combined with parallel computing is a novel technology to perform a wide range of calculations. GPUs have been proposed and used to accelerate many scientific computations including MD simulations. Herein, we describe the new methodologies developed initially as video games and how they are now applied in MD simulations. PMID:27525251

  17. A Proven Method for Meeting Export Control Objectives in Postal and Shipping Sectors

    DTIC Science & Technology

    2015-02-01

    Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center sponsored by the United...Export Control at USPS 5 3.3 Objectives for Improving Export Screening at USPS 6 4 Development of the New Screening Process 7 4.1 “Walking the Model...Export Screening Development Process 10 Figure 2: Induction and Processing of International Mail 10 Figure 3: The Export Screening Process 11

  18. Newborn screening by tandem mass spectrometry for glutaric aciduria type 1: a cost-effectiveness analysis

    PubMed Central

    2013-01-01

    Background Glutaric aciduria type I (GA-I) is a rare metabolic disorder caused by inherited deficiency of glutaryl-CoA dehydrogenase. Despite high prognostic relevance of early diagnosis and start of metabolic treatment as well as an additional cost saving potential later in life, only a limited number of countries recommend newborn screening for GA-I. So far only limited data is available enabling health care decision makers to evaluate whether investing into GA-I screening represents value for money. The aim of our study was therefore to assess the cost-effectiveness of newborn screening for GA-I by tandem mass spectrometry (MS/MS) compared to a scenario where GA-I is not included in the MS/MS screening panel. Methods We assessed the cost-effectiveness of newborn screening for GA-I against the alternative of not including GA-I in MS/MS screening. A Markov model was developed simulating the clinical course of screened and unscreened newborns within different time horizons of 20 and 70 years. Monte Carlo simulation based probabilistic sensitivity analysis was used to determine the probability of GA-I screening representing a cost-effective therapeutic strategy. Results Within a 20 year time horizon, GA-I screening averts approximately 3.7 DALYs (95% CI 2.9 – 4.5) and about one life year is gained (95% CI 0.7 – 1.4) per 100,000 neonates screened initially . Moreover, the screening programme saves a total of around 30,682 Euro (95% CI 14,343 to 49,176 Euro) per 100,000 screened neonates over a 20 year time horizon. Conclusion Within the limitations of the present study, extending pre-existing MS/MS newborn screening programmes by GA-I represents a highly cost-effective diagnostic strategy when assessed under conditions comparable to the German health care system. PMID:24135440

  19. Development of a Child Abuse Checklist to Evaluate Prehospital Provider Performance.

    PubMed

    Alphonso, Aimee; Auerbach, Marc; Bechtel, Kirsten; Bilodeau, Kyle; Gawel, Marcie; Koziel, Jeannette; Whitfill, Travis; Tiyyagura, Gunjan Kamdar

    2017-01-01

    To develop and provide validity evidence for a performance checklist to evaluate the child abuse screening behaviors of prehospital providers. Checklist Development: We developed the first iteration of the checklist after review of the relevant literature and on the basis of the authors' clinical experience. Next, a panel of six content experts participated in three rounds of Delphi review to reach consensus on the final checklist items. Checklist Validation: Twenty-eight emergency medical services (EMS) providers (16 EMT-Basics, 12 EMT-Paramedics) participated in a standardized simulated case of physical child abuse to an infant followed by one-on-one semi-structured qualitative interviews. Three reviewers scored the videotaped performance using the final checklist. Light's kappa and Cronbach's alpha were calculated to assess inter-rater reliability (IRR) and internal consistency, respectively. The correlation of successful child abuse screening with checklist task completion and with participant characteristics were compared using Pearson's chi squared test to gather evidence for construct validity. The Delphi review process resulted in a final checklist that included 24 items classified with trichotomous scoring (done, not done, or not applicable). The overall IRR of the three raters was 0.70 using Light's kappa, indicating substantial agreement. Internal consistency of the checklist was low, with an overall Cronbach's alpha of 0.61. Of 28 participants, only 14 (50%) successfully screened for child abuse in simulation. Participants who successfully screened for child abuse did not differ significantly from those who failed to screen in terms of training level, past experience with child abuse reporting, or self-reported confidence in detecting child abuse (all p > 0.30). Of all 24 tasks, only the task of exposing the infant significantly correlated with successful detection of child abuse (p < 0.05). We developed a child abuse checklist that demonstrated strong content validity and substantial inter-rater reliability, but successful item completion did not correlate with other markers of provider experience. The validated instrument has important potential for training, continuing education, and research for prehospital providers at all levels of training.

  20. Exploring the selectivity of auto-inducer complex with LuxR using molecular docking, mutational studies and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Rajamanikandan, Sundaraj; Srinivasan, Pappu

    2017-03-01

    Bacteria communicate with one another using extracellular signaling molecules called auto-inducers (AHLs), a process termed as quorum sensing. The quorum sensing process allows bacteria to regulate various physiological activities. In this regard, quorum sensing master regulator LuxR from Vibrio harveyi represents an attractive therapeutic target for the development of novel anti-quorum sensing agents. Eventhough the binding of AHL complex with LuxR is evidenced in earlier reports, but their mode of binding is not clearly determined. Therefore, in the present work, molecular docking, in silico mutational studies, molecular dynamics simulations and free energy calculations were performed to understand the selectivity of AHL into the binding site of LuxR. The results revealed that Asn133 and Gln137 residues play a crucial role in recognizing AHL more effectively into the binding site of LuxR with good binding free energy. In addition to that, the carbonyl group presents in the lactone ring and amide group of AHL plays a vital role in the formation of hydrogen bond interactions with the protein. Further, structure based virtual screening was performed using ChemBridge database to screen potent lead molecules against LuxR. 4-benzyl-2-pyrrolidinone and N-[2(1-cyclohexen-1-yl) enthyl]-N'(2-ethoxyphenyl) were selected based on dock score, binding affinity and mode of interactions with the receptor. Furthermore, binding free energy, density functional theory and ADME prediction were performed to rank the lead molecules. Thus, the identified lead molecules can be used for the development of anti-quorum sensing drugs.

  1. Response: Reading between the lines of cancer screening trials: using modeling to understand the evidence.

    PubMed

    Etzioni, Ruth; Gulati, Roman

    2013-04-01

    In our article about limitations of basing screening policy on screening trials, we offered several examples of ways in which modeling, using data from large screening trials and population trends, provided insights that differed somewhat from those based only on empirical trial results. In this editorial, we take a step back and consider the general question of whether randomized screening trials provide the strongest evidence for clinical guidelines concerning population screening programs. We argue that randomized trials provide a process that is designed to protect against certain biases but that this process does not guarantee that inferences based on empirical results from screening trials will be unbiased. Appropriate quantitative methods are key to obtaining unbiased inferences from screening trials. We highlight several studies in the statistical literature demonstrating that conventional survival analyses of screening trials can be misleading and list a number of key questions concerning screening harms and benefits that cannot be answered without modeling. Although we acknowledge the centrality of screening trials in the policy process, we maintain that modeling constitutes a powerful tool for screening trial interpretation and screening policy development.

  2. An adaptive modeling and simulation environment for combined-cycle data reconciliation and degradation estimation

    NASA Astrophysics Data System (ADS)

    Lin, Tsungpo

    Performance engineers face the major challenge in modeling and simulation for the after-market power system due to system degradation and measurement errors. Currently, the majority in power generation industries utilizes the deterministic data matching method to calibrate the model and cascade system degradation, which causes significant calibration uncertainty and also the risk of providing performance guarantees. In this research work, a maximum-likelihood based simultaneous data reconciliation and model calibration (SDRMC) is used for power system modeling and simulation. By replacing the current deterministic data matching with SDRMC one can reduce the calibration uncertainty and mitigate the error propagation to the performance simulation. A modeling and simulation environment for a complex power system with certain degradation has been developed. In this environment multiple data sets are imported when carrying out simultaneous data reconciliation and model calibration. Calibration uncertainties are estimated through error analyses and populated to performance simulation by using principle of error propagation. System degradation is then quantified by performance comparison between the calibrated model and its expected new & clean status. To mitigate smearing effects caused by gross errors, gross error detection (GED) is carried out in two stages. The first stage is a screening stage, in which serious gross errors are eliminated in advance. The GED techniques used in the screening stage are based on multivariate data analysis (MDA), including multivariate data visualization and principal component analysis (PCA). Subtle gross errors are treated at the second stage, in which the serial bias compensation or robust M-estimator is engaged. To achieve a better efficiency in the combined scheme of the least squares based data reconciliation and the GED technique based on hypotheses testing, the Levenberg-Marquardt (LM) algorithm is utilized as the optimizer. To reduce the computation time and stabilize the problem solving for a complex power system such as a combined cycle power plant, meta-modeling using the response surface equation (RSE) and system/process decomposition are incorporated with the simultaneous scheme of SDRMC. The goal of this research work is to reduce the calibration uncertainties and, thus, the risks of providing performance guarantees arisen from uncertainties in performance simulation.

  3. Using ontology-based semantic similarity to facilitate the article screening process for systematic reviews.

    PubMed

    Ji, Xiaonan; Ritter, Alan; Yen, Po-Yin

    2017-05-01

    Systematic Reviews (SRs) are utilized to summarize evidence from high quality studies and are considered the preferred source of evidence-based practice (EBP). However, conducting SRs can be time and labor intensive due to the high cost of article screening. In previous studies, we demonstrated utilizing established (lexical) article relationships to facilitate the identification of relevant articles in an efficient and effective manner. Here we propose to enhance article relationships with background semantic knowledge derived from Unified Medical Language System (UMLS) concepts and ontologies. We developed a pipelined semantic concepts representation process to represent articles from an SR into an optimized and enriched semantic space of UMLS concepts. Throughout the process, we leveraged concepts and concept relations encoded in biomedical ontologies (SNOMED-CT and MeSH) within the UMLS framework to prompt concept features of each article. Article relationships (similarities) were established and represented as a semantic article network, which was readily applied to assist with the article screening process. We incorporated the concept of active learning to simulate an interactive article recommendation process, and evaluated the performance on 15 completed SRs. We used work saved over sampling at 95% recall (WSS95) as the performance measure. We compared the WSS95 performance of our ontology-based semantic approach to existing lexical feature approaches and corpus-based semantic approaches, and found that we had better WSS95 in most SRs. We also had the highest average WSS95 of 43.81% and the highest total WSS95 of 657.18%. We demonstrated using ontology-based semantics to facilitate the identification of relevant articles for SRs. Effective concepts and concept relations derived from UMLS ontologies can be utilized to establish article semantic relationships. Our approach provided a promising performance and can easily apply to any SR topics in the biomedical domain with generalizability. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effects of Equilibrium Toroidal Flow on Locked Mode and Plasma Response in a Tokamak

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Huang, Wenlong; Yan, Xingting

    2016-10-01

    It is widely believed that plasma flow plays significant roles in regulating the processes of mode locking and plasma response in a tokamak in presence of external resonant magnetic perturbations (RMPs). Recently a common analytic relation for both locked mode and plasma response has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance. The analytic relation predicts the size of the magnetic island of a locked mode or a static nonlinear plasma response for a given RMP amplitude, and rigorously proves a screening effect of the equilibrium toroidal flow. To test the theory, we solve for the locked mode and the nonlinear plasma response in presence of RMP for a circular-shaped limiter tokamak equilibrium with constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. The comparison between the simulation results and the theory prediction, in terms of the quantitative screening effects of equilibrium toroidal flow, will be reported and discussed. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.

  5. In silico design of fragment-based drug targeting host processing α-glucosidase i for dengue fever

    NASA Astrophysics Data System (ADS)

    Toepak, E. P.; Tambunan, U. S. F.

    2017-02-01

    Dengue is a major health problem in the tropical and sub-tropical regions. The development of antiviral that targeting dengue’s host enzyme can be more effective and efficient treatment than the viral enzyme. Host enzyme processing α-glucosidase I has an important role in the maturation process of dengue virus envelope glycoprotein. The inhibition of processing α-glucosidase I can become a promising target for dengue fever treatment. The antiviral approach using in silico fragment-based drug design can generate drug candidates with high binding affinity. In this research, 198.621 compounds were obtained from ZINC15 Biogenic Database. These compounds were screened to find the favorable fragments according to Rules of Three and pharmacological properties. The screening fragments were docked into the active site of processing α-glucosidase I. The potential fragment candidates from the molecular docking simulation were linked with castanospermine (CAST) to generate ligands with a better binding affinity. The Analysis of ligand - enzyme interaction showed ligands with code LRS 22, 28, and 47 have the better binding free energy than the standard ligand. Ligand LRS 28 (N-2-4-methyl-5-((1S,3S,6S,7R,8R,8aR)-1,6,7,8-tetrahydroxyoctahydroindolizin-3-yl) pentyl) indolin-1-yl) propionamide) itself among the other ligands has the lowest binding free energy. Pharmacological properties prediction also showed the ligands LRS 22, 28, and 47 can be promising as the dengue fever drug candidates.

  6. A method to identify differential expression profiles of time-course gene data with Fourier transformation

    PubMed Central

    2013-01-01

    Background Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. Results This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization. The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Conclusions Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics. PMID:24134721

  7. How the Second Screens Change the Way People Interact and Learn: The Effects of Second Screen Use on Information Processing

    ERIC Educational Resources Information Center

    Shin, Dong-Hee; An, Hyeri; Kim, Jang Hyun

    2016-01-01

    The use of a second screen can enhance information processing and the execution of search tasks within a given period. In this study, we examined the learner's attentional shift (AS) between two screens and controlled secondary tasks (STs) in the media multitasking setting and its effect on the learning process. In particular, we analyzed how…

  8. Apparel Research Network (ARN); Apparel Order Processing Module (AOPM): Field User Manual, Version 1

    DTIC Science & Technology

    1997-09-30

    changes. Cancel Button Closes the Site Information Screen, abandoning changes. APPAREL ORDER PROCESSING MODULE FIELD USER MANUAL Ordering Official...on the Ordering Official Information Screen. APPAREL ORDER PROCESSING MODULE FIELD USER MANUAL Ordering Official Information Screen (Jjj

  9. [Discover potential inhibitors of 5-LOX and LTA4H from Rhei Radix et Rhizoma, Notopterygii Rhizoma et Radix and Genitana Macrophyllae Radix based on molecular simulation methods].

    PubMed

    Gu, Yu; Zhang, Xu; Chen, Yan-Kun; Zhao, Bo-Wen; Zhang, Yan-Ling

    2017-12-01

    5-lipoxygenase (5-LOX) and leukotriene A4 hydrolase (LTA4H), as the major targets of 5-LOX branch in the arachidonic acid (AA) metabolic pathway, play an important role in the treatment of inflammation. Rhei Radix et Rhizoma, Notopterygii Rhizoma et Radix and Genitana Macrophyllae Radix have clear anti-inflammation activities. In this paper, the targets of 5-LOX and LTA4H were used as the research carrier, and Hiphop module in DS4.0 (Discovery studio) was used to construct ingredients database for preliminary screening of three traditional Chinese medicines based on target inhibitor pharmacophore, so as to obtain 5-LOX and LTA4H potential active ingredients. The ingredients obtained in initial pharmacophore screening were further screened by using CDOCKER module, and the screening rules were established based on the score of initial compound and the key amino acids to obtain 12 potential 5-LOX inhibitors and 7 potential LTA4H inhibitors. To be more specific, the potential 5-LOX inhibitors included 6 ingredients in Rhei Radix et Rhizoma, such as procyanidins B2-3,3'-O-double gallate and revandchinone 2; four ingredients in notopterygium, such as dodecanoic acid and so on. On the other hand, potential LTA4H inhibitors included revandchinone 1, revandchinone 4 in Rhei Radix et Rhizoma, tridecanoic acid, tetracosanoic acid and methyl eicosanoate in Notopterygii Rhizoma et Radix, montanic acid methyl ester and N-docosanoyl-O-aminobenzoate in Genitana Macrophyllae Radix and so on. The molecular simulation methods were highly efficient and time-saving to obtain the potential inhibitors of 5-LOX and LTA4H, which could provide assistance for discovering the chemical quality indicators of anti-inflammatory efficacy of three Chinese herbs, and may be helpful to promote the whole-process quality control of three Chinese herbs. Copyright© by the Chinese Pharmaceutical Association.

  10. Quantitative 3-D Imaging, Segmentation and Feature Extraction of the Respiratory System in Small Mammals for Computational Biophysics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trease, Lynn L.; Trease, Harold E.; Fowler, John

    2007-03-15

    One of the critical steps toward performing computational biology simulations, using mesh based integration methods, is in using topologically faithful geometry derived from experimental digital image data as the basis for generating the computational meshes. Digital image data representations contain both the topology of the geometric features and experimental field data distributions. The geometric features that need to be captured from the digital image data are three-dimensional, therefore the process and tools we have developed work with volumetric image data represented as data-cubes. This allows us to take advantage of 2D curvature information during the segmentation and feature extraction process.more » The process is basically: 1) segmenting to isolate and enhance the contrast of the features that we wish to extract and reconstruct, 2) extracting the geometry of the features in an isosurfacing technique, and 3) building the computational mesh using the extracted feature geometry. “Quantitative” image reconstruction and feature extraction is done for the purpose of generating computational meshes, not just for producing graphics "screen" quality images. For example, the surface geometry that we extract must represent a closed water-tight surface.« less

  11. Chemical Transformation Simulator

    EPA Science Inventory

    The Chemical Transformation Simulator (CTS) is a web-based, high-throughput screening tool that automates the calculation and collection of physicochemical properties for an organic chemical of interest and its predicted products resulting from transformations in environmental sy...

  12. HYDROCARBON SPILL SCREENING MODEL (HSSM) VOLUME 1: USER'S GUIDE

    EPA Science Inventory

    This users guide describes the Hydrocarbon Spill Screening Model (HSSM). The model is intended for simulation of subsurface releases of light nonaqueous phase liquids (LNAPLs). The model consists of separate modules for LNAPL flow through the vadose zone, spreading in the capil...

  13. Environmental screening of dark matter haloes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Shi, Difu; Li, Baojiu; Han, Jiaxin

    2017-07-01

    In certain theories of modified gravity, Solar system constraints on deviations from general relativity (GR) are satisfied by virtue of a so-called screening mechanism, which enables the theory to revert to GR in regions where the matter density is high or the gravitational potential is deep. In the case of chameleon theories, the screening has two contributions - self-screening, which is due to the mass of an object itself, and environmental screening, which is caused by the surrounding matter - which are often entangled, with the second contribution being more crucial for less massive objects. A quantitative understanding of the effect of the environment on the screening can prove critical in observational tests of such theories using systems such as the Local Group and dwarf galaxies, for which the environment may be inferred in various ways. We use the high-resolution liminality simulation of Shi et al. to test the fidelity of different definitions of environment. We find that, although the different ways to define environment in practice do not agree with one another perfectly, they can provide useful guidance, and cross checks about how well a dark matter halo is screened. In addition, the screening of subhaloes in dark matter haloes is primarily determined by the environment, with the subhalo mass playing a minor role, which means that lower resolution simulations where subhaloes are not well resolved can still be useful for understanding the modification of gravity inside subhaloes.

  14. Discrete Event Simulation for Decision Modeling in Health Care: Lessons from Abdominal Aortic Aneurysm Screening

    PubMed Central

    Jones, Edmund; Masconi, Katya L.; Sweeting, Michael J.; Thompson, Simon G.; Powell, Janet T.

    2018-01-01

    Markov models are often used to evaluate the cost-effectiveness of new healthcare interventions but they are sometimes not flexible enough to allow accurate modeling or investigation of alternative scenarios and policies. A Markov model previously demonstrated that a one-off invitation to screening for abdominal aortic aneurysm (AAA) for men aged 65 y in the UK and subsequent follow-up of identified AAAs was likely to be highly cost-effective at thresholds commonly adopted in the UK (£20,000 to £30,000 per quality adjusted life-year). However, new evidence has emerged and the decision problem has evolved to include exploration of the circumstances under which AAA screening may be cost-effective, which the Markov model is not easily able to address. A new model to handle this more complex decision problem was needed, and the case of AAA screening thus provides an illustration of the relative merits of Markov models and discrete event simulation (DES) models. An individual-level DES model was built using the R programming language to reflect possible events and pathways of individuals invited to screening v. those not invited. The model was validated against key events and cost-effectiveness, as observed in a large, randomized trial. Different screening protocol scenarios were investigated to demonstrate the flexibility of the DES. The case of AAA screening highlights the benefits of DES, particularly in the context of screening studies.

  15. Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder

    NASA Astrophysics Data System (ADS)

    Zhuang, Jyun-Rong; Lee, Yee-Ting; Hsieh, Wen-Hsin; Yang, An-Shik

    2018-07-01

    Selective laser melting (SLM) shows a positive prospect as an additive manufacturing (AM) technique for fabrication of 3D parts with complicated structures. A transient thermal model was developed by the finite element method (FEM) to simulate the thermal behavior for predicting the time evolution of temperature field and melt pool dimensions of Ti6Al4V powder during SLM. The FEM predictions were then compared with published experimental measurements and calculation results for model validation. This study applied the design of experiment (DOE) scheme together with the response surface method (RSM) to conduct the regression analysis based on four processing parameters (exactly, the laser power, scanning speed, preheating temperature and hatch space) for predicting the dimensions of the melt pool in SLM. The preliminary RSM results were used to quantify the effects of those parameters on the melt pool size. The process window was further implemented via two criteria of the width and depth of the molten pool to screen impractical conditions of four parameters for including the practical ranges of processing parameters. The FEM simulations confirmed the good accuracy of the critical RSM models in the predictions of melt pool dimensions for three typical SLM working scenarios.

  16. COUPLED FREE AND DISSOLVED PHASE TRANSPORT: NEW SIMULATION CAPABILITIES AND PARAMETER INVERSION

    EPA Science Inventory

    The vadose zone free-phase simulation capabilities of the US EPA Hydrocarbon Spill Screening Model (HSSM) (Weaver et al., 1994) have been linked with the 3-D multi-species dissolved-phase contaminant transport simulator MT3DMS (Zheng and Wang, 1999; Zheng, 2005). The linkage pro...

  17. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...

  18. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...

  19. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...

  20. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...

  1. 7 CFR 361.8 - Cleaning of imported seed and processing of certain Canadian-origin screenings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Cleaning of imported seed and processing of certain... SCREENINGS UNDER THE FEDERAL SEED ACT § 361.8 Cleaning of imported seed and processing of certain Canadian... compliance agreement for the cleaning of imported seed or processing of otherwise prohibited screenings from...

  2. Off-equilibrium sphaleron transitions in the Glasma

    DOE PAGES

    Mace, Mark; Schlichting, Soren; Venugopalan, Raju

    2016-04-28

    We perform the first, to our knowledge, classical-statistical real time lattice simulations of topological transitions in the nonequilibrium glasma of weakly coupled but highly occupied gauge fields created immediately after the collision of ultrarelativistic nuclei. Simplifying our description by employing SU(2) gauge fields, and neglecting their longitudinal expansion, we find that the rate of topological transitions is initially strongly enhanced relative to the thermal sphaleron transition rate and decays with time during the thermalization process. Qualitative features of the time dependence of this nonequilibrium transition rate can be understood when expressed in terms of the magnetic screening length, which wemore » also extract nonperturbatively. Furthermore, a detailed investigation of auto-correlation functions of the Chern-Simons number (N CS) reveals non-Markovian features of the evolution distinct from previous simulations of non-Abelian plasmas in thermal equilibrium.« less

  3. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2013-01-01

    A key technology element in Nuclear Thermal Propulsion is the development of fuel materials and components which can withstand extremely high temperatures while being exposed to flowing hydrogen. NTREES provides a cost effective method for rapidly screening of candidate fuel components with regard to their viability for use in NTR systems. The NTREES is designed to mimic the conditions (minus the radiation) to which nuclear rocket fuel elements and other components would be subjected to during reactor operation. The NTREES consists of a water cooled ASME code stamped pressure vessel and its associated control hardware and instrumentation coupled with inductive heaters to simulate the heat provided by the fission process. The NTREES has been designed to safely allow hydrogen gas to be injected into internal flow passages of an inductively heated test article mounted in the chamber.

  4. Thermomechanical Response of Self-Assembled Nanoparticle Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifan; Chan, Henry; Narayanan, Badri

    2017-07-21

    Monolayers composed of colloidal nanoparticles, with a thickness of less than 10 nm, have remarkable mechanical moduli and can suspend over micrometer-sized holes to form free-standing membranes. In this paper, we discuss experiment's and coarse-grained molecular dynamics simulations characterizing the thermomechanical properties of these self-assembled nanoparticle membranes. These membranes remain strong and resilient up to temperatures much higher than previous simulation predictions and exhibit an unexpected hysteretic behavior during the first heating cooling cycle. We show this hysteretic behavior can be explained by an asymmetric ligand configuration from the self assembly process and can be controlled by changing the ligandmore » coverage or cross-linking the ligand molecules. Finally, we show the screening effect of water molecules on the ligand interactions can strongly affect the moduli and thermomechanical behavior.« less

  5. Proof test and fatigue crack growth modeling on 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Poe, C. C., Jr.; Dawicke, D. S.

    1990-01-01

    Pressure proof testing of aircraft fuselage structures has been suggested as a means of screening critical crack sizes and of extending their useful life. The objective of this paper is to study the proof-test concept and to model the crack-growth process on a ductile material. Simulated proof and operational fatigue life tests have been conducted on cracked panels made of 2024-T3 aluminum alloy sheet material. A fatigue crack-closure model was modified to simulate the proof test and operational fatigue cycling. Using crack-growth rate and resistance-curve data, the model was able to predict crack growth during and after the proof load. These tests and analyses indicate that the proof test increases fatigue life; but the beneficial life, after a 1.33 or 1.5 proof, was less than a few hundred cycles.

  6. Functional parameter screening for predicting durability of rolling sliding contacts with different surface finishes

    NASA Astrophysics Data System (ADS)

    Dimkovski, Z.; Lööf, P.-J.; Rosén, B.-G.; Nilsson, P. H.

    2018-06-01

    The reliability and lifetime of machine elements such as gears and rolling bearings depend on their wear and fatigue resistance. In order to screen the wear and surface damage, three finishing processes: (i) brushing, (ii) manganese phosphating and (iii) shot peening were applied on three disc pairs and long-term tested on a twin-disc tribometer. In this paper, the elastic contact of the disc surfaces (measured after only few revolutions) was simulated and a number of functional and roughness parameters were correlated. The functional parameters consisted of subsurface stresses at different depths and a new parameter called ‘pressure spikes’ factor’. The new parameter is derived from the pressure distribution and takes into account the proximity and magnitude of the pressure spikes. Strong correlations were found among the pressure spikes’ factor and surface peak/height parameters. The orthogonal shear stresses and Von Mises stresses at the shallowest depths under the surface have shown the highest correlations but no good correlations were found when the statistics of the whole stress fields was analyzed. The use of the new parameter offers a fast way to screen the durability of the contacting surfaces operating at similar conditions.

  7. Rapid Screening of Cancer Margins in Tissue with Multimodal Confocal Microscopy

    PubMed Central

    Gareau, Daniel S.; Jeon, Hana; Nehal, Kishwer S.; Rajadhyaksha, Milind

    2012-01-01

    Background Complete and accurate excision of cancer is guided by the examination of histopathology. However, preparation of histopathology is labor intensive and slow, leading to insufficient sampling of tissue and incomplete and/or inaccurate excision of margins. We demonstrate the potential utility of multimodal confocal mosaicing microscopy for rapid screening of cancer margins, directly in fresh surgical excisions, without the need for conventional embedding, sectioning or processing. Materials/Methods A multimodal confocal mosaicing microscope was developed to image basal cell carcinoma margins in surgical skin excisions, with resolution that shows nuclear detail. Multimodal contrast is with fluorescence for imaging nuclei and reflectance for cellular cytoplasm and dermal collagen. Thirtyfive excisions of basal cell carcinomas from Mohs surgery were imaged, and the mosaics analyzed by comparison to the corresponding frozen pathology. Results Confocal mosaics are produced in about 9 minutes, displaying tissue in fields-of-view of 12 mm with 2X magnification. A digital staining algorithm transforms black and white contrast to purple and pink, which simulates the appearance of standard histopathology. Mosaicing enables rapid digital screening, which mimics the examination of histopathology. Conclusions Multimodal confocal mosaicing microscopy offers a technology platform to potentially enable real-time pathology at the bedside. The imaging may serve as an adjunct to conventional histopathology, to expedite screening of margins and guide surgery toward more complete and accurate excision of cancer. PMID:22721570

  8. Cost analysis of colorectal cancer screening with CT colonography in Italy.

    PubMed

    Mantellini, Paola; Lippi, Giuseppe; Sali, Lapo; Grazzini, Grazia; Delsanto, Silvia; Mallardi, Beatrice; Falchini, Massimo; Castiglione, Guido; Carozzi, Francesca Maria; Mascalchi, Mario; Milani, Stefano; Ventura, Leonardo; Zappa, Marco

    2018-06-01

    Unit costs of screening CT colonography (CTC) can be useful for cost-effectiveness analyses and for health care decision-making. We evaluated the unit costs of CTC as a primary screening test for colorectal cancer in the setting of a randomized trial in Italy. Data were collected within the randomized SAVE trial. Subjects were invited to screening CTC by mail and requested to have a pre-examination consultation. CTCs were performed with 64- and 128-slice CT scanners after reduced or full bowel preparation. Activity-based costing was used to determine unit costs per-process, per-participant to screening CTC, and per-subject with advanced neoplasia. Among 5242 subjects invited to undergo screening CTC, 1312 had pre-examination consultation and 1286 ultimately underwent CTC. Among 129 subjects with a positive CTC, 126 underwent assessment colonoscopy and 67 were ultimately diagnosed with advanced neoplasia (i.e., cancer or advanced adenoma). Cost per-participant of the entire screening CTC pathway was €196.80. Average cost per-participant for the screening invitation process was €17.04 and €9.45 for the pre-examination consultation process. Average cost per-participant of the CTC execution and reading process was €146.08 and of the diagnostic assessment colonoscopy process was €24.23. Average cost per-subject with advanced neoplasia was €3777.30. Cost of screening CTC was €196.80 per-participant. Our data suggest that the more relevant cost of screening CTC, amenable of intervention, is related to CTC execution and reading process.

  9. An integrated approach for the knowledge discovery in computer simulation models with a multi-dimensional parameter space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khawli, Toufik Al; Eppelt, Urs; Hermanns, Torsten

    2016-06-08

    In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part ismore » to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.« less

  10. An integrated approach for the knowledge discovery in computer simulation models with a multi-dimensional parameter space

    NASA Astrophysics Data System (ADS)

    Khawli, Toufik Al; Gebhardt, Sascha; Eppelt, Urs; Hermanns, Torsten; Kuhlen, Torsten; Schulz, Wolfgang

    2016-06-01

    In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part is to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.

  11. Building black holes: supercomputer cinema.

    PubMed

    Shapiro, S L; Teukolsky, S A

    1988-07-22

    A new computer code can solve Einstein's equations of general relativity for the dynamical evolution of a relativistic star cluster. The cluster may contain a large number of stars that move in a strong gravitational field at speeds approaching the speed of light. Unstable star clusters undergo catastrophic collapse to black holes. The collapse of an unstable cluster to a supermassive black hole at the center of a galaxy may explain the origin of quasars and active galactic nuclei. By means of a supercomputer simulation and color graphics, the whole process can be viewed in real time on a movie screen.

  12. Hydrology of Malaria: A New Class of Models for Environmental Management and Studies of Climate Change

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A.

    2011-12-01

    A mechanistic and spatially-explicit model of hydrological and entomological processes that lead to malaria transmission is developed and tested against field observations. HYDREMATS (HYDRology, Entomology, and MAlaria Transmission Simulator) is described in (Bomblies and Eltahir, WRR, 44,2008). HYDREMATS is suitable for low cost screening of environmental management interventions, and for studying the impact of climate change on malaria transmission. Examples of specific applications will be presented from Niger in Africa. The potential for using HYDREMATS to study the impact of water reservoirs on malaria transmission will be discussed.

  13. Affective reactivity to cry sounds predicts young women's reactivity and behavior in a simulated caregiving task.

    PubMed

    Gustafson, Gwen E; Bisson, Jennifer B; MacDonald, Jillian M; Green, James A

    2017-09-13

    Different populations of adults (experienced vs. inexperienced caregivers, men vs. women, abusive vs. nonabusive parents, etc.) have been reported to differ in their affective reactions to the sounds of infant crying. These differences are thought to impact caregiving behavior and, in some instances, to affect long-term outcomes for infants. There can be great intra-group variation, however, even when group differences are significant; modeling developmental process will require a finer grained approach. We have undertaken a pair of studies intended to validate the Negative Affect Scale (NA) from the PANAS as a measure of individuals' affective reactivity to cry sounds. In Study 1, 306 young women who were not yet mothers listened either to infant crying or to birdsong. The results supported the NA as a measure of reactivity to crying. In Study 2, a new sample of 301 young women listened to crying in a screening task; a group of "high reactors" (n=21) and a group of "low reactors" (n=22) then participated in a simulated caregiving situation. Individuals' affective reactivity to the caregiving simulation mirrored their affective reactivity in the screening task, and rates and overall organization of caregiving behavior differed between the groups. Changes in negative affect, then, appear to be both a result of infant crying and a determinant of some aspects of caregiving behavior. Further studies will extend these laboratory results to real infants and their caregivers, and further validate the NA as a measure of individual differences in reactivity to cry sounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A Lyapunov Function Based Remedial Action Screening Tool Using Real-Time Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Joydeep; Ben-Idris, Mohammed; Faruque, Omar

    This report summarizes the outcome of a research project that comprised the development of a Lyapunov function based remedial action screening tool using real-time data (L-RAS). The L-RAS is an advanced computational tool that is intended to assist system operators in making real-time redispatch decisions to preserve power grid stability. The tool relies on screening contingencies using a homotopy method based on Lyapunov functions to avoid, to the extent possible, the use of time domain simulations. This enables transient stability evaluation at real-time speed without the use of massively parallel computational resources. The project combined the following components. 1. Developmentmore » of a methodology for contingency screening using a homotopy method based on Lyapunov functions and real-time data. 2. Development of a methodology for recommending remedial actions based on the screening results. 3. Development of a visualization and operator interaction interface. 4. Testing of screening tool, validation of control actions, and demonstration of project outcomes on a representative real system simulated on a Real-Time Digital Simulator (RTDS) cluster. The project was led by Michigan State University (MSU), where the theoretical models including homotopy-based screening, trajectory correction using real-time data, and remedial action were developed and implemented in the form of research-grade software. Los Alamos National Laboratory (LANL) contributed to the development of energy margin sensitivity dynamics, which constituted a part of the remedial action portfolio. Florida State University (FSU) and Southern California Edison (SCE) developed a model of the SCE system that was implemented on FSU's RTDS cluster to simulate real-time data that was streamed over the internet to MSU where the L-RAS tool was executed and remedial actions were communicated back to FSU to execute stabilizing controls on the simulated system. LCG Consulting developed the visualization and operator interaction interface, based on specifications provided by MSU. The project was performed from October 2012 to December 2016, at the end of which the L-RAS tool, as described above, was completed and demonstrated. The project resulted in the following innovations and contributions: (a) the L-RAS software prototype, tested on a simulated system, vetted by utility personnel, and potentially ready for wider testing and commercialization; (b) an RTDS-based test bed that can be used for future research in the field; (c) a suite of breakthrough theoretical contributions to the field of power system stability and control; and (d) a new tool for visualization of power system stability margins. While detailed descriptions of the development and implementation of the various project components have been provided in the quarterly reports, this final report provides an overview of the complete project, and is demonstrated using public domain test systems commonly used in the literature. The SCE system, and demonstrations thereon, are not included in this report due to Critical Energy Infrastructure Information (CEII) restrictions.« less

  15. General Aviation Cockpit Weather Information System Simulation Studies

    NASA Technical Reports Server (NTRS)

    McAdaragh, Ray; Novacek, Paul

    2003-01-01

    This viewgraph presentation provides information on two experiments on the effectiveness of a cockpit weather information system on a simulated general aviation flight. The presentation covers the simulation hardware configuration, the display device screen layout, a mission scenario, conclusions, and recommendations. The second experiment, with its own scenario and conclusions, is a follow-on experiment.

  16. Orbitals for classical arbitrary anisotropic colloidal potentials

    NASA Astrophysics Data System (ADS)

    Girard, Martin; Nguyen, Trung Dac; de la Cruz, Monica Olvera

    2017-11-01

    Coarse-grained potentials are ubiquitous in mesoscale simulations. While various methods to compute effective interactions for spherically symmetric particles exist, anisotropic interactions are seldom used, due to their complexity. Here we describe a general formulation, based on a spatial decomposition of the density fields around the particles, akin to atomic orbitals. We show that anisotropic potentials can be efficiently computed in numerical simulations using Fourier-based methods. We validate the field formulation and characterize its computational efficiency with a system of colloids that have Gaussian surface charge distributions. We also investigate the phase behavior of charged Janus colloids immersed in screened media, with screening lengths comparable to the colloid size. The system shows rich behaviors, exhibiting vapor, liquid, gel, and crystalline morphologies, depending on temperature and screening length. The crystalline phase only appears for symmetric Janus particles. For very short screening lengths, the system undergoes a direct transition from a vapor to a crystal on cooling; while, for longer screening lengths, a vapor-liquid-crystal transition is observed. The proposed formulation can be extended to model force fields that are time or orientation dependent, such as those in systems of polymer-grafted particles and magnetic colloids.

  17. Region-to-area screening methodology for the Crystalline Repository Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1985-04-01

    The purpose of this document is to describe the Crystalline Repository Project's (CRP) process for region-to-area screening of exposed and near-surface crystalline rock bodies in the three regions of the conterminous United States where crystalline rock is being evaluated as a potential host for the second nuclear waste repository (i.e., in the North Central, Northeastern, and Southeastern Regions). This document indicates how the US Department of Energy's (DOE) General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories (10 CFR 960) were used to select and apply factors and variables for the region-to-area screening, explains how these factors andmore » variable are to be applied in the region-to-area screening, and indicates how this methodology relates to the decision process leading to the selection of candidate areas. A brief general discussion of the screening process from the national survey through area screening and site recommendation is presented. This discussion sets the scene for detailed discussions which follow concerning the region-to-area screening process, the guidance provided by the DOE Siting Guidelines for establishing disqualifying factors and variables for screening, and application of the disqualifying factors and variables in the screening process. This document is complementary to the regional geologic and environmental characterization reports to be issued in the summer of 1985 as final documents. These reports will contain the geologic and environmental data base that will be used in conjunction with the methodology to conduct region-to-area screening.« less

  18. Scrutinizing screening: a critical interpretive review of primary care provider perspectives on mammography decision-making with average-risk women.

    PubMed

    Siedlikowski, Sophia; Ells, Carolyn; Bartlett, Gillian

    2018-01-01

    A decision to undertake screening for breast cancer often takes place within the primary care setting, but current controversies such as overdiagnosis and inconsistent screening recommendations based on evolving evidence render this a challenging process, particularly for average-risk women. Given the responsibility of primary care providers in counseling women in this decision-making process, it is important to understand their thoughts on these controversies and how they manage uncertainty in their practice. To review the perspectives and approaches of primary care providers regarding mammography decision-making with average-risk women. This study is a critical interpretive review of peer-review literature that reports primary care provider perspectives on mammography screening decision-making. Ovid MEDLINE®, Ovid PsycInfo, and Scopus databases were searched with dates from 2002 to 2017 using search terms related to mammography screening, uncertainty, counseling, decision-making, and primary health care providers. Nine articles were included following a review process involving the three authors. Using an inductive and iterative approach, data were grouped into four thematic categories: (1) perceptions on the effectiveness of screening, screening initiation age, and screening frequency; (2) factors guiding primary care providers in the screening decision-making process, including both provider and patient-related factors, (3) uncertainty faced by primary care providers regarding guidelines and screening discussions with their patients; and (4) informed decision-making with average-risk women, including factors that facilitate and hinder this process. The discussion of results addresses several factors about the diversity of perspectives and practices of physicians counseling average-risk women regarding breast cancer screening. This has implications for the challenge of understanding and explaining evidence, what should be shared with average-risk women considering screening, the forms of knowledge that physicians value to guide screening decision-making, and the consent process for population-based screening initiatives. Within the data, there was little attention placed on how physicians coped with uncertainty in practice. Given the dual responsibility of physicians in caring for both individuals and the larger population, further research should probe more deeply into how they balance their duties to individual patients with those to the larger population they serve.

  19. Conformation-dependent DNA attraction

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang

    2014-05-01

    Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03235c

  20. Effect of vibration on retention characteristics of screen acquisition systems. [for surface tension propellant acquisition

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.; Aydelott, J. C.

    1978-01-01

    The design of surface tension propellant acquisition systems using fine-mesh screen must take into account all factors that influence the liquid pressure differentials within the system. One of those factors is spacecraft vibration. Analytical models to predict the effects of vibration have been developed. A test program to verify the analytical models and to allow a comparative evaluation of the parameters influencing the response to vibration was performed. Screen specimens were tested under conditions simulating the operation of an acquisition system, considering the effects of such parameters as screen orientation and configuration, screen support method, screen mesh, liquid flow and liquid properties. An analytical model, based on empirical coefficients, was most successful in predicting the effects of vibration.

  1. Screening for chronic kidney disease in Canadian indigenous peoples is cost-effective.

    PubMed

    Ferguson, Thomas W; Tangri, Navdeep; Tan, Zhi; James, Matthew T; Lavallee, Barry D A; Chartrand, Caroline D; McLeod, Lorraine L; Dart, Allison B; Rigatto, Claudio; Komenda, Paul V J

    2017-07-01

    Canadian indigenous (First Nations) have rates of kidney failure that are 2- to 4-fold higher than the non-indigenous general Canadian population. As such, a strategy of targeted screening and treatment for CKD may be cost-effective in this population. Our objective was to assess the cost utility of screening and subsequent treatment for CKD in rural Canadian indigenous adults by both estimated glomerular filtration rate and the urine albumin-to-creatinine ratio. A decision analytic Markov model was constructed comparing the screening and treatment strategy to usual care. Primary outcomes were presented as incremental cost-effectiveness ratios (ICERs) presented as a cost per quality-adjusted life-year (QALY). Screening for CKD was associated with an ICER of $23,700/QALY in comparison to usual care. Restricting the model to screening in communities accessed only by air travel (CKD prevalence 34.4%), this ratio fell to $7,790/QALY. In road accessible communities (CKD prevalence 17.6%) the ICER was $52,480/QALY. The model was robust to changes in influential variables when tested in univariate sensitivity analyses. Probabilistic sensitivity analysis found 72% of simulations to be cost-effective at a $50,000/QALY threshold and 93% of simulations to be cost-effective at a $100,000/QALY threshold. Thus, targeted screening and treatment for CKD using point-of-care testing equipment in rural Canadian indigenous populations is cost-effective, particularly in remote air access-only communities with the highest risk of CKD and kidney failure. Evaluation of targeted screening initiatives with cluster randomized controlled trials and integration of screening into routine clinical visits in communities with the highest risk is recommended. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  2. On the Numerical Analysis of Decay Rate Enhancement in Metallic Environment

    NASA Astrophysics Data System (ADS)

    Mehedinteanu, S.

    2007-10-01

    Motivated on the very recent experiments to determine the acceleration of the alpha decay of meta-stable radionuclides in metallic environment some work has been done to strengthten the importance in the process of electrons screening in metals. Thus, by combining the Gamow decay theory with electrostatic screening in Debye-Hückel approximation (jellium model) a formula for ``the shift'' in screening energy which enters in the decay enhancement factor expression that copes well with these experiments has been derived. It was established that to simulate the poly-atoms system containing decaying isotopes in QM&MD codes calculations, and to include ``the screening energy shift'' of protons, decay alpha, beta+ particles due to all surrounding interacting effects, it is sufficiently only to substitute the code ruly pseudo-potential input for hydrogen-like atoms (including alpha) by a screened Coulomb potential as from the well-known Gamow alpha decay theory. For demonstration is used the QM&MD code package which usually performs density-functional theory (DFT) total-energy calculations for materials ranging from insulators to transition metals. This package employs first-principles pseudo-potentials and a plane-wave basis-set, and it was used to do a special calculus for some metal environments (Pd) where protons-deuterons are implanted or when it is alloyed with a radionuclide-like isotopes (174Hf72), the results compare well with the existing experiments on the decay enhancement. These works give further arguments for a cheap solution to remove the transuranic waste (involving all alpha-decay) of used-up rods of fission reactors in a time period of a few years.

  3. Comparison of a Virtual Older Driver Assessment with an On-Road Driving Test.

    PubMed

    Eramudugolla, Ranmalee; Price, Jasmine; Chopra, Sidhant; Li, Xiaolan; Anstey, Kaarin J

    2016-12-01

    To design a low-cost simulator-based driving assessment for older adults and to compare its validity with that of an on-road driving assessment and other measures of older driver risk. Cross-sectional observational study. Canberra, Australia. Older adult drivers (N = 47; aged 65-88, mean age 75.2). Error rate on a simulated drive with environment and scoring procedure matched to those of an on-road test. Other measures included participant age, simulator sickness severity, neuropsychological measures, and driver screening measures. Outcome variables included occupational therapist (OT)-rated on-road errors, on-road safety rating, and safety category. Participants' error rate on the simulated drive was significantly correlated with their OT-rated driving safety (correlation coefficient (r) = -0.398, P = .006), even after adjustment for age and simulator sickness (P = .009). The simulator error rate was a significant predictor of categorization as unsafe on the road (P = .02, sensitivity 69.2%, specificity 100%), with 13 (27%) drivers assessed as unsafe. Simulator error was also associated with other older driver safety screening measures such as useful field of view (r = 0.341, P = .02), DriveSafe (r = -0.455, P < .01), and visual motion sensitivity (r = 0.368, P = .01) but was not associated with memory (delayed word recall) or global cognition (Mini-Mental State Examination). Drivers made twice as many errors on the simulated assessment as during the on-road assessment (P < .001), with significant differences in the rate and type of errors between the two mediums. A low-cost simulator-based assessment is valid as a screening instrument for identifying at-risk older drivers but not as an alternative to on-road evaluation when accurate data on competence or pattern of impairment is required for licensing decisions and training programs. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  4. Students as Technicians: Screening Newborns for Cystic Fibrosis

    ERIC Educational Resources Information Center

    Gusky, Sharon

    2014-01-01

    In this activity, freshman college students learn biotechnology techniques while playing the role of a laboratory technician. They perform simulations of three diagnostic tests used to screen newborns for cystic fibrosis. By performing an ELISA, a PCR analysis, and a conductivity test, students learn how biotechnology techniques can be used to…

  5. Athletic Trainers' Attitudes Toward Drug Screening of Intercollegiate Athletes

    PubMed Central

    Starkey, Chad; Abdenour, Thomas E.; Finnane, David

    1994-01-01

    Since the inception of NCAA-mandated drug screening in 1986, college athletic trainers have found themselves involved at various levels in institutional drug-screening programs. Several legal, moral, and ethical questions have been raised regarding the drug screening of college athletes, and studies have been conducted to rate athletes' attitudes toward this practice. We examined the responses of certified athletic trainers employed in college settings to ascertain their attitudes toward the drug screening of athletes in general, and, specifically, how they view their role in this process. Surveys were distributed to 500 college athletic trainers randomly selected from the membership database maintained by the National Athletic Trainers' Association, Inc (Dallas, TX). The results of this survey indicate that the majority of athletic trainers feel that their association with the drug-screening process places them in the dual role of police and counselor, but that this relationship does not negatively affect their rapport with their athletes. Opinions regarding the drug-screening process and the importance of education in deterring drug use are somewhat dependent upon the athletic trainer's involvement in the drug-screening process. Athletic trainers possess a stronger desire to serve as resource persons who organize substance abuse education programs rather than serving as administrators of the sampling process. PMID:16558274

  6. Expected Backgrounds of the BetaCage, an Ultra-sensitive Screener for Surface Contamination

    NASA Astrophysics Data System (ADS)

    Wang, Boqian; Bunker, Raymond; Schnee, Richard; Bowles, Michael; Kos, Marek; Ahmed, Zeeshan; Golwala, Sunil; Nelson, Robert; Grant, Darren

    2013-04-01

    Material screening for low-energy betas and alphas is necessary for rare-event-search experiments, such as dark matter and neutrinoless double-beta decay searches where surface radiocontamination has become a significant background. The BetaCage, a gaseous neon time-projection chamber, has been proposed as a screener for emitters of low-energy betas and alphas to which existing screening facilities are insufficiently sensitive. The expected sensitivity is 0.1 betas / (keV m^2 day) and 0.1 alphas / (m^2 day). Expected backgrounds are dominated by Compton scattering of external photons in the sample to be screened; radioassays and simulations indicate backgrounds from detector materials and radon daughters should be subdominant. We will report on details of the background simulations and the detector design that allows discrimination to reach these sensitivity levels.

  7. Selective information seeking: can consumers' avoidance of evidence-based information on colorectal cancer screening be explained by the theory of cognitive dissonance?

    PubMed

    Steckelberg, Anke; Kasper, Jürgen; Mühlhauser, Ingrid

    2007-08-27

    Evidence-based patient information (EBPI) is a prerequisite for informed decision-making. However, presentation of EBPI may lead to irrational reactions causing avoidance, minimisation and devaluation of the information. To explore whether the theory of cognitive dissonance is applicable to medical decision-making and useful to explain these phenomena. 261 volunteers from Hamburg (157 women), >or=50 years old without diagnosis of colorectal cancer. DESIGN AND VARIABLES: Within an experiment we simulated information seeking on colorectal cancer screening. Consumers' attitudes towards screening were surveyed using a rating scale from -5 (participate in no way) to +5 (participate unconditionally) (independent variable). Using a cover story, participants were asked to sort 5 article headlines according to their reading preferences. The headlines simulated the pro to contra variety of contents to be found in print media about colorectal cancer screening. The dependent variable was the sequence of article headlines. Participants were very much in favour of screening with scores for faecal occult blood test of 4.0 (0.1) and for colonoscopy 3.3 (0.1). According to our hypothesis we found statistically significant positive correlations between the stimuli in favour of screening and attitudes and significant negative correlations between the stimuli against screening and attitudes. The theory of cognitive dissonance is applicable to medical decision-making. It may explain some phenomena of irrational reactions to evidence-based patient information.

  8. Selective information seeking: can consumers' avoidance of evidence-based information on colorectal cancer screening be explained by the theory of cognitive dissonance?

    PubMed Central

    Steckelberg, Anke; Kasper, Jürgen; Mühlhauser, Ingrid

    2007-01-01

    Background: Evidence-based patient information (EBPI) is a prerequisite for informed decision-making. However, presentation of EBPI may lead to irrational reactions causing avoidance, minimisation and devaluation of the information. Objective: To explore whether the theory of cognitive dissonance is applicable to medical decision-making and useful to explain these phenomena. Setting and participants: 261 volunteers from Hamburg (157 women), ≥50 years old without diagnosis of colorectal cancer. Design and variables: Within an experiment we simulated information seeking on colorectal cancer screening. Consumers’ attitudes towards screening were surveyed using a rating scale from -5 (participate in no way) to +5 (participate unconditionally) (independent variable). Using a cover story, participants were asked to sort 5 article headlines according to their reading preferences. The headlines simulated the pro to contra variety of contents to be found in print media about colorectal cancer screening. The dependent variable was the sequence of article headlines. Results: Participants were very much in favour of screening with scores for faecal occult blood test of 4.0 (0.1) and for colonoscopy 3.3 (0.1). According to our hypothesis we found statistically significant positive correlations between the stimuli in favour of screening and attitudes and significant negative correlations between the stimuli against screening and attitudes. Conclusion: The theory of cognitive dissonance is applicable to medical decision-making. It may explain some phenomena of irrational reactions to evidence-based patient information. PMID:19675713

  9. Cost-Effectiveness of Enhanced Syphilis Screening among HIV-Positive Men Who Have Sex with Men: A Microsimulation Model

    PubMed Central

    Tuite, Ashleigh R.; Burchell, Ann N.; Fisman, David N.

    2014-01-01

    Background Syphilis co-infection risk has increased substantially among HIV-infected men who have sex with men (MSM). Frequent screening for syphilis and treatment of men who test positive might be a practical means of controlling the risk of infection and disease sequelae in this population. Purpose We evaluated the cost-effectiveness of strategies that increased the frequency and population coverage of syphilis screening in HIV-infected MSM receiving HIV care, relative to current standard of care. Methods We developed a state-transition microsimulation model of syphilis natural history and medical care in HIV-infected MSM receiving care for HIV. We performed Monte Carlo simulations using input data derived from a large observational cohort in Ontario, Canada, and from published biomedical literature. Simulations compared usual care (57% of the population screened annually) to different combinations of more frequent (3- or 6-monthly) screening and higher coverage (100% screened). We estimated expected disease-specific outcomes, quality-adjusted survival, costs, and cost-effectiveness associated with each strategy from the perspective of a public health care payer. Results Usual care was more costly and less effective than strategies with more frequent or higher coverage screening. Higher coverage strategies (with screening frequency of 3 or 6 months) were expected to be cost-effective based on usually cited willingness-to-pay thresholds. These findings were robust in the face of probabilistic sensitivity analyses, alternate cost-effectiveness thresholds, and alternate assumptions about duration of risk, program characteristics, and management of underlying HIV. Conclusions We project that higher coverage and more frequent syphilis screening of HIV-infected MSM would be a highly cost-effective health intervention, with many potentially viable screening strategies projected to both save costs and improve health when compared to usual care. The baseline requirement for regular blood testing in this group (i.e., for viral load monitoring) makes intensification of syphilis screening appear readily practicable. PMID:24983455

  10. Molecular dynamics simulation studies of tailored nanostructured polymers

    NASA Astrophysics Data System (ADS)

    Liu, Lixin

    With recent advancements in the synthesis and characterization of polymeric materials, scientists are able to create multi-scale novel polymers with various cases of chemical functionalities, diversified topologies, as well as cross-linking networks. Due to those remarkable achievements, there are a broad range of possible applications of smart polymers in catalysis, in environmental remediation, and especially in drug-delivery. Because of rising interest in developing therapeutic drug binding to specific treating target, polymer chemists are in particular interests in design and engineering the drug delivery materials to be not only bio-compatible, but also to be capable of self-assembly at various in-vivo physiological stimulus. Both experimental and theoretical work indicate that the thermodynamic properties relating to the hydrophobic effect play an important role in determining self-assembly process. At the same time, computational simulation and modeling are powerful instruments to contribute to microscopic thermodynamics' understanding toward self-assembly phenomenon. Along with statistical approaches, constructing empirical model based on simulation results would also help predict for further development of tailored nano-structured materials. My Research mainly focused on investigating physical and chemical characteristics of polymer materials through molecular dynamics simulation and probing the fundamental thermodynamic driving force of self-assembly behavior. We tried to surmount technological obstacles in computational chemistry and build an efficient scheme to identify the physical and chemical Feature of molecules, to reproduce underlying properties, to understand the origin of thermodynamic signatures, and to speed up current trial and error process in screening new materials.

  11. A virtual reality patient simulation system for teaching emergency response skills to U.S. Navy medical providers.

    PubMed

    Freeman, K M; Thompson, S F; Allely, E B; Sobel, A L; Stansfield, S A; Pugh, W M

    2001-01-01

    Rapid and effective medical intervention in response to civil and military-related disasters is crucial for saving lives and limiting long-term disability. Inexperienced providers may suffer in performance when faced with limited supplies and the demands of stabilizing casualties not generally encountered in the comparatively resource-rich hospital setting. Head trauma and multiple injury cases are particularly complex to diagnose and treat, requiring the integration and processing of complex multimodal data. In this project, collaborators adapted and merged existing technologies to produce a flexible, modular patient simulation system with both three-dimensional virtual reality and two-dimensional flat screen user interfaces for teaching cognitive assessment and treatment skills. This experiential, problem-based training approach engages the user in a stress-filled, high fidelity world, providing multiple learning opportunities within a compressed period of time and without risk. The system simulates both the dynamic state of the patient and the results of user intervention, enabling trainees to watch the virtual patient deteriorate or stabilize as a result of their decision-making speed and accuracy. Systems can be deployed to the field enabling trainees to practice repeatedly until their skills are mastered and to maintain those skills once acquired. This paper describes the technologies and the process used to develop the trainers, the clinical algorithms, and the incorporation of teaching points. We also characterize aspects of the actual simulation exercise through the lens of the trainee.

  12. Depression screening optimization in an academic rural setting.

    PubMed

    Aleem, Sohaib; Torrey, William C; Duncan, Mathew S; Hort, Shoshana J; Mecchella, John N

    2015-01-01

    Primary care plays a critical role in screening and management of depression. The purpose of this paper is to focus on leveraging the electronic health record (EHR) as well as work flow redesign to improve the efficiency and reliability of the process of depression screening in two adult primary care clinics of a rural academic institution in USA. The authors utilized various process improvement tools from lean six sigma methodology including project charter, swim lane process maps, critical to quality tree, process control charts, fishbone diagrams, frequency impact matrix, mistake proofing and monitoring plan in Define-Measure-Analyze-Improve-Control format. Interventions included change in depression screening tool, optimization of data entry in EHR. EHR data entry optimization; follow up of positive screen, staff training and EHR redesign. Depression screening rate for office-based primary care visits improved from 17.0 percent at baseline to 75.9 percent in the post-intervention control phase (p<0.001). Follow up of positive depression screen with Patient History Questionnaire-9 data collection remained above 90 percent. Duplication of depression screening increased from 0.6 percent initially to 11.7 percent and then decreased to 4.7 percent after optimization of data entry by patients and flow staff. Impact of interventions on clinical outcomes could not be evaluated. Successful implementation, sustainability and revision of a process improvement initiative to facilitate screening, follow up and management of depression in primary care requires accounting for voice of the process (performance metrics), system limitations and voice of the customer (staff and patients) to overcome various system, customer and human resource constraints.

  13. Using Radiation Risk Models in Cancer Screening Simulations: Important Assumptions and Effects on Outcome Projections

    PubMed Central

    Lee, Janie M.; McMahon, Pamela M.; Lowry, Kathryn P.; Omer, Zehra B.; Eisenberg, Jonathan D.; Pandharipande, Pari V.; Gazelle, G. Scott

    2012-01-01

    Purpose: To evaluate the effect of incorporating radiation risk into microsimulation (first-order Monte Carlo) models for breast and lung cancer screening to illustrate effects of including radiation risk on patient outcome projections. Materials and Methods: All data used in this study were derived from publicly available or deidentified human subject data. Institutional review board approval was not required. The challenges of incorporating radiation risk into simulation models are illustrated with two cancer screening models (Breast Cancer Model and Lung Cancer Policy Model) adapted to include radiation exposure effects from mammography and chest computed tomography (CT), respectively. The primary outcome projected by the breast model was life expectancy (LE) for BRCA1 mutation carriers. Digital mammographic screening beginning at ages 25, 30, 35, and 40 years was evaluated in the context of screenings with false-positive results and radiation exposure effects. The primary outcome of the lung model was lung cancer–specific mortality reduction due to annual screening, comparing two diagnostic CT protocols for lung nodule evaluation. The Metropolis-Hastings algorithm was used to estimate the mean values of the results with 95% uncertainty intervals (UIs). Results: Without radiation exposure effects, the breast model indicated that annual digital mammography starting at age 25 years maximized LE (72.03 years; 95% UI: 72.01 years, 72.05 years) and had the highest number of screenings with false-positive results (2.0 per woman). When radiation effects were included, annual digital mammography beginning at age 30 years maximized LE (71.90 years; 95% UI: 71.87 years, 71.94 years) with a lower number of screenings with false-positive results (1.4 per woman). For annual chest CT screening of 50-year-old females with no follow-up for nodules smaller than 4 mm in diameter, the lung model predicted lung cancer–specific mortality reduction of 21.50% (95% UI: 20.90%, 22.10%) without radiation risk and 17.75% (95% UI: 16.97%, 18.41%) with radiation risk. Conclusion: Because including radiation exposure risk can influence long-term projections from simulation models, it is important to include these risks when conducting modeling-based assessments of diagnostic imaging. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11110352/-/DC1 PMID:22357897

  14. Pairing top-down and bottom-up approaches to analyze catchment scale management of water quality and quantity

    NASA Astrophysics Data System (ADS)

    Lovette, J. P.; Duncan, J. M.; Band, L. E.

    2016-12-01

    Watershed management requires information on the hydrologic impacts of local to regional land use, land cover and infrastructure conditions. Management of runoff volumes, storm flows, and water quality can benefit from large scale, "top-down" screening tools, using readily available information, as well as more detailed, "bottom-up" process-based models that explicitly track local runoff production and routing from sources to receiving water bodies. Regional scale data, available nationwide through the NHD+, and top-down models based on aggregated catchment information provide useful tools for estimating regional patterns of peak flows, volumes and nutrient loads at the catchment level. Management impacts can be estimated with these models, but have limited ability to resolve impacts beyond simple changes to land cover proportions. Alternatively, distributed process-based models provide more flexibility in modeling management impacts by resolving spatial patterns of nutrient source, runoff generation, and uptake. This bottom-up approach can incorporate explicit patterns of land cover, drainage connectivity, and vegetation extent, but are typically applied over smaller areas. Here, we first model peak flood flows and nitrogen loads across North Carolina's 70,000 NHD+ catchments using USGS regional streamflow regression equations and the SPARROW model. We also estimate management impact by altering aggregated sources in each of these models. To address the missing spatial implications of the top-down approach, we further explore the demand for riparian buffers as a management strategy, simulating the accumulation of nutrient sources along flow paths and the potential mitigation of these sources through forested buffers. We use the Regional Hydro-Ecological Simulation System (RHESSys) to model changes across several basins in North Carolina's Piedmont and Blue Ridge regions, ranging in size from 15 - 1,130 km2. The two approaches provide a complementary set of tools for large area screening, followed by smaller, more process based assessment and design tools.

  15. Medical Screening for Individuals Supporting Spacecraft Launch and Landing Activities in Remote Locations

    NASA Technical Reports Server (NTRS)

    Powers. W. Edward

    2010-01-01

    This viewgraph presentation reviews the medical screening process and spacecraft launch and landing mission activities for astronauts. The topics include: 1) Launch and Landing Mission Overview; 2) Available Resources; and 3) Medical Screening Process.

  16. Simulation assessment of the direct‐push permeameter for characterizing vertical variations in hydraulic conductivity

    USGS Publications Warehouse

    Liu, Gaisheng; Bohling, Geoffrey C.; Butler, James J.

    2008-01-01

    The direct‐push permeameter (DPP) is a tool for the in situ characterization of hydraulic conductivity (K) in shallow, unconsolidated formations. This device, which consists of a short screened section with a pair of pressure transducers near the screen, is advanced into the subsurface with direct‐push technology. K is determined through a series of injection tests conducted between advancements. Recent field work by Butler et al. (2007) has shown that the DPP holds great potential for describing vertical variations in K at an unprecedented level of detail, accuracy and speed. In this paper, the fundamental efficacy of the DPP is evaluated through a series of numerical simulations. These simulations demonstrate that the DPP can provide accurate K information under conditions commonly faced in the field. A single DPP test provides an effective K for the domain immediately surrounding the interval between the injection screen and the most distant pressure transducer. Features that are thinner than that interval can be quantified by reducing the vertical distance between successive tests and analyzing the data from all tests simultaneously. A particular advantage of the DPP is that, unlike most other single borehole techniques, a low‐K skin or a clogged screen has a minimal impact on the K estimate. In addition, the requirement that only steady‐shape conditions be attained allows for a dramatic reduction in the time required for each injection test.

  17. Resist Parameter Extraction from Line-and-Space Patterns of Chemically Amplified Resist for Extreme Ultraviolet Lithography

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Oizumi, Hiroaki; Itani, Toshiro; Tagawa, Seiichi

    2010-11-01

    The development of extreme ultraviolet (EUV) lithography has progressed owing to worldwide effort. As the development status of EUV lithography approaches the requirements for the high-volume production of semiconductor devices with a minimum line width of 22 nm, the extraction of resist parameters becomes increasingly important from the viewpoints of the accurate evaluation of resist materials for resist screening and the accurate process simulation for process and mask designs. In this study, we demonstrated that resist parameters (namely, quencher concentration, acid diffusion constant, proportionality constant of line edge roughness, and dissolution point) can be extracted from the scanning electron microscopy (SEM) images of patterned resists without the knowledge on the details of resist contents using two types of latest EUV resist.

  18. Application of computational methods to the design and characterisation of porous molecular materials.

    PubMed

    Evans, Jack D; Jelfs, Kim E; Day, Graeme M; Doonan, Christian J

    2017-06-06

    Composed from discrete units, porous molecular materials (PMMs) possess unique properties not observed for conventional, extended, solids, such as solution processibility and permanent porosity in the liquid phase. However, identifying the origin of porosity is not a trivial process, especially for amorphous or liquid phases. Furthermore, the assembly of molecular components is typically governed by a subtle balance of weak intermolecular forces that makes structure prediction challenging. Accordingly, in this review we canvass the crucial role of molecular simulations in the characterisation and design of PMMs. We will outline strategies for modelling porosity in crystalline, amorphous and liquid phases and also describe the state-of-the-art methods used for high-throughput screening of large datasets to identify materials that exhibit novel performance characteristics.

  19. Computational identification of potential multi-drug combinations for reduction of microglial inflammation in Alzheimer disease

    PubMed Central

    Anastasio, Thomas J.

    2015-01-01

    Like other neurodegenerative diseases, Alzheimer Disease (AD) has a prominent inflammatory component mediated by brain microglia. Reducing microglial inflammation could potentially halt or at least slow the neurodegenerative process. A major challenge in the development of treatments targeting brain inflammation is the sheer complexity of the molecular mechanisms that determine whether microglia become inflammatory or take on a more neuroprotective phenotype. The process is highly multifactorial, raising the possibility that a multi-target/multi-drug strategy could be more effective than conventional monotherapy. This study takes a computational approach in finding combinations of approved drugs that are potentially more effective than single drugs in reducing microglial inflammation in AD. This novel approach exploits the distinct advantages of two different computer programming languages, one imperative and the other declarative. Existing programs written in both languages implement the same model of microglial behavior, and the input/output relationships of both programs agree with each other and with data on microglia over an extensive test battery. Here the imperative program is used efficiently to screen the model for the most efficacious combinations of 10 drugs, while the declarative program is used to analyze in detail the mechanisms of action of the most efficacious combinations. Of the 1024 possible drug combinations, the simulated screen identifies only 7 that are able to move simulated microglia at least 50% of the way from a neurotoxic to a neuroprotective phenotype. Subsequent analysis shows that of the 7 most efficacious combinations, 2 stand out as superior both in strength and reliability. The model offers many experimentally testable and therapeutically relevant predictions concerning effective drug combinations and their mechanisms of action. PMID:26097457

  20. Structure, Function, and Applications of the Georgetown-Einstein (GE) Breast Cancer Simulation Model.

    PubMed

    Schechter, Clyde B; Near, Aimee M; Jayasekera, Jinani; Chandler, Young; Mandelblatt, Jeanne S

    2018-04-01

    The Georgetown University-Albert Einstein College of Medicine breast cancer simulation model (Model GE) has evolved over time in structure and function to reflect advances in knowledge about breast cancer, improvements in early detection and treatment technology, and progress in computing resources. This article describes the model and provides examples of model applications. The model is a discrete events microsimulation of single-life histories of women from multiple birth cohorts. Events are simulated in the absence of screening and treatment, and interventions are then applied to assess their impact on population breast cancer trends. The model accommodates differences in natural history associated with estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) biomarkers, as well as conventional breast cancer risk factors. The approach for simulating breast cancer natural history is phenomenological, relying on dates, stage, and age of clinical and screen detection for a tumor molecular subtype without explicitly modeling tumor growth. The inputs to the model are regularly updated to reflect current practice. Numerous technical modifications, including the use of object-oriented programming (C++), and more efficient algorithms, along with hardware advances, have increased program efficiency permitting simulations of large samples. The model results consistently match key temporal trends in US breast cancer incidence and mortality. The model has been used in collaboration with other CISNET models to assess cancer control policies and will be applied to evaluate clinical trial design, recurrence risk, and polygenic risk-based screening.

  1. Investigation of radio astronomy image processing techniques for use in the passive millimetre-wave security screening environment

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher T.; Hutchinson, Simon; Salmon, Neil A.; Wilkinson, Peter N.; Cameron, Colin D.

    2014-06-01

    Image processing techniques can be used to improve the cost-effectiveness of future interferometric Passive MilliMetre Wave (PMMW) imagers. The implementation of such techniques will allow for a reduction in the number of collecting elements whilst ensuring adequate image fidelity is maintained. Various techniques have been developed by the radio astronomy community to enhance the imaging capability of sparse interferometric arrays. The most prominent are Multi- Frequency Synthesis (MFS) and non-linear deconvolution algorithms, such as the Maximum Entropy Method (MEM) and variations of the CLEAN algorithm. This investigation focuses on the implementation of these methods in the defacto standard for radio astronomy image processing, the Common Astronomy Software Applications (CASA) package, building upon the discussion presented in Taylor et al., SPIE 8362-0F. We describe the image conversion process into a CASA suitable format, followed by a series of simulations that exploit the highlighted deconvolution and MFS algorithms assuming far-field imagery. The primary target application used for this investigation is an outdoor security scanner for soft-sided Heavy Goods Vehicles. A quantitative analysis of the effectiveness of the aforementioned image processing techniques is presented, with thoughts on the potential cost-savings such an approach could yield. Consideration is also given to how the implementation of these techniques in CASA might be adapted to operate in a near-field target environment. This may enable a much wider usability by the imaging community outside of radio astronomy and thus would be directly relevant to portal screening security systems in the microwave and millimetre wave bands.

  2. Design and testing of coring bits on drilling lunar rock simulant

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jiang, Shengyuan; Tang, Dewei; Xu, Bo; Ma, Chao; Zhang, Hui; Qin, Hongwei; Deng, Zongquan

    2017-02-01

    Coring bits are widely utilized in the sampling of celestial bodies, and their drilling behaviors directly affect the sampling results and drilling security. This paper introduces a lunar regolith coring bit (LRCB), which is a key component of sampling tools for lunar rock breaking during the lunar soil sampling process. We establish the interaction model between the drill bit and rock at a small cutting depth, and the two main influential parameters (forward and outward rake angles) of LRCB on drilling loads are determined. We perform the parameter screening task of LRCB with the aim to minimize the weight on bit (WOB). We verify the drilling load performances of LRCB after optimization, and the higher penetrations per revolution (PPR) are, the larger drilling loads we gained. Besides, we perform lunar soil drilling simulations to estimate the efficiency on chip conveying and sample coring of LRCB. The results of the simulation and test are basically consistent on coring efficiency, and the chip removal efficiency of LRCB is slightly lower than HIT-H bit from simulation. This work proposes a method for the design of coring bits in subsequent extraterrestrial explorations.

  3. Social-Cognitive Biases in Simulated Airline Luggage Screening

    NASA Technical Reports Server (NTRS)

    Brown, Jeremy R.; Madhavan, Poomima

    2011-01-01

    This study illustrated how social cognitive biases affect the decision making process of air1ine luggage screeners. Participants (n = 96) performed a computer simulated task to detect hidden weapons in 200 x-ray images of passenger luggage. Participants saw each image for two (high time pressure) or six seconds (low time pressure). Participants observed pictures of the "passenger" who owns the luggage . The "pre-anchor group" answered questions about the passenger before the luggage image appeared, the "post-snchor" group answered questions after the luggage appeared, and the "no-anchor group" answered no questions. Participants either stopped or did not stop the bag. and rated their confidence in their decision. Participants under high time pressure had lower hit rates and higher false alarms, Significant differences between the pre-, no-, and post-anchor groups were based on the gender and race of the passengers. Participants had higher false alarm rates in response to male than female passengers.

  4. [Virtual reality in neurosurgery].

    PubMed

    Tronnier, V M; Staubert, A; Bonsanto, M M; Wirtz, C R; Kunze, S

    2000-03-01

    Virtual reality enables users to immerse themselves in a virtual three-dimensional world and to interact in this world. The simulation is different from the kind in computer games, in which the viewer is active but acts in a nonrealistic world, or on the TV screen, where we are passively driven in an active world. In virtual reality elements look realistic, they change their characteristics and have almost real-world unpredictability. Virtual reality is not only implemented in gambling dens and the entertainment industry but also in manufacturing processes (cars, furniture etc.), military applications and medicine. Especially the last two areas are strongly correlated, because telemedicine or telesurgery was originated for military reasons to operate on war victims from a secure distance or to perform surgery on astronauts in an orbiting space station. In medicine and especially neurosurgery virtual-reality methods are used for education, surgical planning and simulation on a virtual patient.

  5. Simulating Stable Isotope Ratios in Plumes of Groundwater Pollutants with BIOSCREEN-AT-ISO.

    PubMed

    Höhener, Patrick; Li, Zhi M; Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gérald S

    2017-03-01

    BIOSCREEN is a well-known simple tool for evaluating the transport of dissolved contaminants in groundwater, ideal for rapid screening and teaching. This work extends the BIOSCREEN model for the calculation of stable isotope ratios in contaminants. A three-dimensional exact solution of the reactive transport from a patch source, accounting for fractionation by first-order decay and/or sorption, is used. The results match those from a previously published isotope model but are much simpler to obtain. Two different isotopes may be computed, and dual isotope plots can be viewed. The dual isotope assessment is a rapidly emerging new approach for identifying process mechanisms in aquifers. Furthermore, deviations of isotope ratios at specific reactive positions with respect to "bulk" ratios in the whole compound can be simulated. This model is named BIOSCREEN-AT-ISO and will be downloadable from the journal homepage. © 2016, National Ground Water Association.

  6. Statistical analysis and yield management in LED design through TCAD device simulation

    NASA Astrophysics Data System (ADS)

    Létay, Gergö; Ng, Wei-Choon; Schneider, Lutz; Bregy, Adrian; Pfeiffer, Michael

    2007-02-01

    This paper illustrates how technology computer-aided design (TCAD), which nowadays is an essential part of CMOS technology, can be applied to LED development and manufacturing. In the first part, the essential electrical and optical models inherent to LED modeling are reviewed. The second part of the work describes a methodology to improve the efficiency of the simulation procedure by using the concept of process compact models (PCMs). The last part demonstrates the capabilities of PCMs using an example of a blue InGaN LED. In particular, a parameter screening is performed to find the most important parameters, an optimization task incorporating the robustness of the design is carried out, and finally the impact of manufacturing tolerances on yield is investigated. It is indicated how the concept of PCMs can contribute to an efficient design for manufacturing DFM-aware development.

  7. Collaborative Learning with Screen-Based Simulation in Health Care Education: An Empirical Study of Collaborative Patterns and Proficiency Development

    ERIC Educational Resources Information Center

    Hall, L. O.; Soderstrom, T.; Ahlqvist, J.; Nilsson, T.

    2011-01-01

    This article is about collaborative learning with educational computer-assisted simulation (ECAS) in health care education. Previous research on training with a radiological virtual reality simulator has indicated positive effects on learning when compared to a more conventional alternative. Drawing upon the field of Computer-Supported…

  8. Simulated Laboratory in Digital Logic.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    Design of computer circuits used to be a pencil and paper task followed by laboratory tests, but logic circuit design can now be done in half the time as the engineer accesses a program which simulates the behavior of real digital circuits, and does all the wiring and testing on his computer screen. A simulated laboratory in digital logic has been…

  9. ecode - Electron Transport Algorithm Testing v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, Brian C.; Olson, Aaron J.; Bruss, Donald Eugene

    2016-10-05

    ecode is a Monte Carlo code used for testing algorithms related to electron transport. The code can read basic physics parameters, such as energy-dependent stopping powers and screening parameters. The code permits simple planar geometries of slabs or cubes. Parallelization consists of domain replication, with work distributed at the start of the calculation and statistical results gathered at the end of the calculation. Some basic routines (such as input parsing, random number generation, and statistics processing) are shared with the Integrated Tiger Series codes. A variety of algorithms for uncertainty propagation are incorporated based on the stochastic collocation and stochasticmore » Galerkin methods. These permit uncertainty only in the total and angular scattering cross sections. The code contains algorithms for simulating stochastic mixtures of two materials. The physics is approximate, ranging from mono-energetic and isotropic scattering to screened Rutherford angular scattering and Rutherford energy-loss scattering (simple electron transport models). No production of secondary particles is implemented, and no photon physics is implemented.« less

  10. Image processing system and method for recognizing and removing shadows from the image of a monitored scene

    DOEpatents

    Osbourn, Gordon C.

    1996-01-01

    The shadow contrast sensitivity of the human vision system is simulated by configuring information obtained from an image sensor so that the information may be evaluated with multiple pixel widths in order to produce a machine vision system able to distinguish between shadow edges and abrupt object edges. A second difference of the image intensity for each line of the image is developed and this second difference is used to screen out high frequency noise contributions from the final edge detection signals. These edge detection signals are constructed from first differences of the image intensity where the screening conditions are satisfied. The positional coincidence of oppositely signed maxima in the first difference signal taken from the right and the second difference signal taken from the left is used to detect the presence of an object edge. Alternatively, the effective number of responding operators (ENRO) may be utilized to determine the presence of object edges.

  11. Combined multi-pharmacophore, molecular docking and molecular dynamic study for discovery of promising MTH1 inhibitors

    NASA Astrophysics Data System (ADS)

    Dai, Duoqian; Zhou, Lu; Zhu, Xiaohong; You, Rong; Zhong, Liangliang

    2017-06-01

    MutT homolog 1 (MTH1), a nudix phosphohydrolase enzyme participates in the process of repairing of DNA damage by hydrolyzing oxidized deoxy-ribonucleoside triphosphate in cancer cells, is regarded as a potential target for anticancer therapy. In order to seek for promising inhibitor of MTH1, structured-based pharmacophore and 3D-QSAR pharmacophore hypotheses combine with the ADMET analysis and Lipinski's rule of five were used for screening the public molecules libraries (Asinex, Ibscreen and Natural). Then molecular docking studies were performed on screened hits via various docking programs (Glide SP, GOLD and Glide XP), five molecules with three scaffolds were picked out as potential inhibitors against MTH1. Eventually, 20 ns molecular dynamics simulation was implemented on the potential inhibitors. The RMSD (Root Mean Square Deviation) values were used to illustrate bind stability between potential molecules and MTH1. Therefore, the five hits may be considered as promising MTH1 inhibitors by all above studies.

  12. Modality dependence and intermodal transfer in the Corsi Spatial Sequence Task: Screen vs. Floor.

    PubMed

    Röser, Andrea; Hardiess, Gregor; Mallot, Hanspeter A

    2016-07-01

    Four versions of the Corsi Spatial Sequence Task (CSST) were tested in a complete within-subject design, investigating whether participants' performance depends on the modality of task presentation and reproduction that put different demands on spatial processing. Presentation of the sequence (encoding phase) and the reproduction (recall phase) were each carried out either on a computer screen or on the floor of a room, involving actual walking in the recall phase. Combinations of the two different encoding and recall procedures result in the modality conditions Screen-Screen, Screen-Floor, Floor-Screen, and Floor-Floor. Results show the expected decrease in performance with increasing sequence length, which is likely due to processing limitations of working memory. We also found differences in performance between the modality conditions indicating different involvements of spatial working memory processes. Participants performed best in the Screen-Screen modality condition. Floor-Screen and Floor-Floor modality conditions require additional working memory resources for reference frame transformation and spatial updating, respectively; the resulting impairment of the performance was about the same in these two conditions. Finally, the Screen-Floor modality condition requires both types of additional spatial demands and led to the poorest performance. Therefore, we suggest that besides the well-known spatial requirements of CSST, additional working memory resources are demanded in walking CSST supporting processes such as spatial updating, mental rotation, reference frame transformation, and the control of walking itself.

  13. Design and optimization of hot-filling pasteurization conditions: Cupuaçu (Theobroma grandiflorum) fruit pulp case study.

    PubMed

    Silva, Filipa V M; Martins, Rui C; Silva, Cristina L M

    2003-01-01

    Cupuaçu (Theobroma grandiflorum) is an Amazonian tropical fruit with a great economic potential. Pasteurization, by a hot-filling technique, was suggested for the preservation of this fruit pulp at room temperature. The process was implemented with local communities in Brazil. The process was modeled, and a computer program was written in Turbo Pascal. The relative importance among the pasteurization process variables (initial product temperature, heating rate, holding temperature and time, container volume and shape, cooling medium type and temperature) on the microbial target and quality was investigated, by performing simulations according to a screening factorial design. Afterward, simulations of the different processing conditions were carried out. The holding temperature (T(F)) and time (t(hold)) affected pasteurization value (P), and the container volume (V) influenced largely the quality parameters. The process was optimized for retail (1 L) and industrial (100 L) size containers, by maximizing volume average quality in terms of color lightness and sensory "fresh notes" and minimizing volume average total color difference and sensory "cooked notes". Equivalent processes were designed and simulated (P(91)( degrees )(C) = 4.6 min on Alicyclobacillus acidoterrestris spores) and final quality (color, flavor, and aroma attributes) was evaluated. Color was slightly affected by the pasteurization processes, and few differences were observed between the six equivalent treatments designed (T(F) between 80 and 97 degrees C). T(F) >/= 91 degrees C minimized "cooked notes" and maximized "fresh notes" of cupuaçu pulp aroma and flavor for 1 L container. Concerning the 100 L size, the "cooked notes" development can be minimized with T(F) >/= 91 degrees C, but overall the quality was greatly degraded as a result of the long cooling times. A more efficient method to speed up the cooling phase was recommended, especially for the industrial size of containers.

  14. Investigation of back surface fields effect on bifacial solar cells

    NASA Astrophysics Data System (ADS)

    Sepeai, Suhaila; Sulaiman, M. Y.; Sopian, Kamaruzzaman; Zaidi, Saleem H.

    2012-11-01

    A bifacial solar cell, in contrast with a conventional monofacial solar cell, produces photo-generated current from both front and back sides. Bifacial solar cell is an attractive candidate for enhancing photovoltaic (PV) market competitiveness as well as supporting the current efforts to increase efficiency and lower material costs. This paper reports on the fabrication of bifacial solar cells using phosphorus-oxytrichloride (POCl3) emitter formation on p-type, nanotextured silicon (Si) wafer. Backside surface field was formed through Al-diffusion using conventional screen-printing process. Bifacial solar cells with a structure of n+pp+ with and without back surface field (BSF) were fabricated in which silicon nitride (SiN) anti reflection and passivation films were coated on both sides, followed by screen printing of Argentum (Ag) and Argentum/Aluminum (Ag/Al) on front and back contacts, respectively. Bifacial solar cells without BSF exhibited open circuit voltage (VOC) of 535 mV for front and 480 mV for back surface. With Al-alloyed BSF bifacial solar cells, the VOC improved to 580 mV for the front surface and 560 mV for the back surface. Simulation of bifacial solar cells using PC1D and AFORS software demonstrated good agreement with experimental results. Simulations showed that best bifacial solar cells are achieved through a combination of high lifetime wafer, low recombination back surface field, reduced contact resistance, and superior surface passivation.

  15. The Internet Process Addiction Test: Screening for Addictions to Processes Facilitated by the Internet

    PubMed Central

    Northrup, Jason C.; Lapierre, Coady; Kirk, Jeffrey; Rae, Cosette

    2015-01-01

    The Internet Process Addiction Test (IPAT) was created to screen for potential addictive behaviors that could be facilitated by the internet. The IPAT was created with the mindset that the term “Internet addiction” is structurally problematic, as the Internet is simply the medium that one uses to access various addictive processes. The role of the internet in facilitating addictions, however, cannot be minimized. A new screening tool that effectively directed researchers and clinicians to the specific processes facilitated by the internet would therefore be useful. This study shows that the Internet Process Addiction Test (IPAT) demonstrates good validity and reliability. Four addictive processes were effectively screened for with the IPAT: Online video game playing, online social networking, online sexual activity, and web surfing. Implications for further research and limitations of the study are discussed. PMID:26226007

  16. The Internet Process Addiction Test: Screening for Addictions to Processes Facilitated by the Internet.

    PubMed

    Northrup, Jason C; Lapierre, Coady; Kirk, Jeffrey; Rae, Cosette

    2015-07-28

    The Internet Process Addiction Test (IPAT) was created to screen for potential addictive behaviors that could be facilitated by the internet. The IPAT was created with the mindset that the term "Internet addiction" is structurally problematic, as the Internet is simply the medium that one uses to access various addictive processes. The role of the internet in facilitating addictions, however, cannot be minimized. A new screening tool that effectively directed researchers and clinicians to the specific processes facilitated by the internet would therefore be useful. This study shows that the Internet Process Addiction Test (IPAT) demonstrates good validity and reliability. Four addictive processes were effectively screened for with the IPAT: Online video game playing, online social networking, online sexual activity, and web surfing. Implications for further research and limitations of the study are discussed.

  17. Breast Cancer Screening in an Era of Personalized Regimens

    PubMed Central

    Onega, Tracy; Beaber, Elisabeth F.; Sprague, Brian L.; Barlow, William E.; Haas, Jennifer S.; Tosteson, Anna N.A.; Schnall, Mitchell D.; Armstrong, Katrina; Schapira, Marilyn M.; Geller, Berta; Weaver, Donald L.; Conant, Emily F.

    2014-01-01

    Breast cancer screening holds a prominent place in public health, health care delivery, policy, and women’s health care decisions. Several factors are driving shifts in how population-based breast cancer screening is approached, including advanced imaging technologies, health system performance measures, health care reform, concern for “overdiagnosis,” and improved understanding of risk. Maximizing benefits while minimizing the harms of screening requires moving from a “1-size-fits-all” guideline paradigm to more personalized strategies. A refined conceptual model for breast cancer screening is needed to align women’s risks and preferences with screening regimens. A conceptual model of personalized breast cancer screening is presented herein that emphasizes key domains and transitions throughout the screening process, as well as multilevel perspectives. The key domains of screening awareness, detection, diagnosis, and treatment and survivorship are conceptualized to function at the level of the patient, provider, facility, health care system, and population/policy arena. Personalized breast cancer screening can be assessed across these domains with both process and outcome measures. Identifying, evaluating, and monitoring process measures in screening is a focus of a National Cancer Institute initiative entitled PROSPR (Population-based Research Optimizing Screening through Personalized Regimens), which will provide generalizable evidence for a risk-based model of breast cancer screening, The model presented builds on prior breast cancer screening models and may serve to identify new measures to optimize benefits-to-harms tradeoffs in population-based screening, which is a timely goal in the era of health care reform. PMID:24830599

  18. Modeling Test and Treatment Strategies for Presymptomatic Alzheimer Disease

    PubMed Central

    Burke, James F.; Langa, Kenneth M.; Hayward, Rodney A.; Albin, Roger L.

    2014-01-01

    Objectives In this study, we developed a model of presymptomatic treatment of Alzheimer disease (AD) after a screening diagnostic evaluation and explored the circumstances required for an AD prevention treatment to produce aggregate net population benefit. Methods Monte Carlo simulation methods were used to estimate outcomes in a simulated population derived from data on AD incidence and mortality. A wide variety of treatment parameters were explored. Net population benefit was estimated in aggregated QALYs. Sensitivity analyses were performed by individually varying the primary parameters. Findings In the base-case scenario, treatment effects were uniformly positive, and net benefits increased with increasing age at screening. A highly efficacious treatment (i.e. relative risk 0.6) modeled in the base-case is estimated to save 20 QALYs per 1000 patients screened and 221 QALYs per 1000 patients treated. Conclusions Highly efficacious presymptomatic screen and treat strategies for AD are likely to produce substantial aggregate population benefits that are likely greater than the benefits of aspirin in primary prevention of moderate risk cardiovascular disease (28 QALYS per 1000 patients treated), even in the context of an imperfect treatment delivery environment. PMID:25474698

  19. Portal verification using the KODAK ACR 2000 RT storage phosphor plate system and EC films. A semiquantitative comparison.

    PubMed

    Geyer, Peter; Blank, Hilbert; Alheit, Horst

    2006-03-01

    The suitability of the storage phosphor plate system ACR 2000 RT (Eastman Kodak Corp., Rochester, MN, USA), that is destined for portal verification as well as for portal simulation imaging in radiotherapy, had to be proven by the comparison with a highly sensitive verification film. The comparison included portal verification images of different regions (head and neck, thorax, abdomen, and pelvis) irradiated with 6- and 15-MV photons and electrons. Each portal verification image was done at the storage screen and the EC film as well, using the EC-L cassettes (both: Eastman Kodak Corp., Rochester, MN, USA) for both systems. The soft-tissue and bony contrast and the brightness were evaluated and compared in a ranking of the two compared images. Different phantoms were irradiated to investigate the high- and low-contrast resolution. To account for quality assurance application, the short-time exposure of the unpacked and irradiated storage screen by green and red room lasers was also investigated. In general, the quality of the processed ACR images was slightly higher than that of the films, mostly due to cases of an insufficient exposure to the film. The storage screen was able to verify electron portals even for low electron energies with only minor photon contamination. The laser lines were sharply and clearly visible on the ACR images. The ACR system may replace the film without any noticeable decrease in image quality thereby reducing processing time and saving the costs of films and avoiding incorrect exposures.

  20. Fitness for duty: A 3 minute version of the Psychomotor Vigilance Test predicts fatigue related declines in luggage screening performance

    PubMed Central

    Basner, Mathias; Rubinstein, Joshua

    2011-01-01

    Objective To evaluate the ability of a 3-min Psychomotor Vigilance Test (PVT) to predict fatigue related performance decrements on a simulated luggage screening task (SLST). Methods Thirty-six healthy non-professional subjects (mean age 30.8 years, 20 female) participated in a 4 day laboratory protocol including a 34 hour period of total sleep deprivation with PVT and SLST testing every 2 hours. Results Eleven and 20 lapses (355 ms threshold) on the PVT optimally divided SLST performance into high, medium, and low performance bouts with significantly decreasing threat detection performance A′. Assignment to the different SLST performance groups replicated homeostatic and circadian patterns during total sleep deprivation. Conclusions The 3 min PVT was able to predict performance on a simulated luggage screening task. Fitness-for-duty feasibility should now be tested in professional screeners and operational environments. PMID:21912278

  1. Packaging strategy for maximizing the performance of a screen printed piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zhu, D.; Tudor, M. J.; Beeby, S. P.

    2013-12-01

    This paper reports the extended design and simulation of a screen printed piezoelectric energy harvester. The proposed design was based on a previous credit card sized smart tag sensor node, and packages the power conditioning circuit in the free space above the tungsten proof mass layer. This approach enables electronic components to be mounted onto the cantilever beam, which provides additional weight at the tip of the cantilever structure. The design structure contains a T-shape cantilever beam with size of 47 mm × 30 mm × 0.85 mm which is fabricated using screen printing. ANSYS simulation results predict the revised architecture can generate 421.9 μW approximately twice of the RMS power produced by the original design along with a higher open-circuit RMS Voltage of 8.0 V while the resonant frequency is dropped to 53.4 Hz.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frerichs, H.; Reiter, D.; Schmitz, O.

    The impact of resonant magnetic perturbations (RMPs) on the plasma edge can be analyzed in detail by three dimensional computer simulations, which take the underlying magnetic field structure as input. Previously, the 'vacuum approximation' has been used to calculate the magnetic field structure although plasma response effects may result in a screening (or even an amplification) of the external perturbations. Simulation results for an ITER similar shape plasma at the DIII-D tokamak are presented for the full vacuum perturbation field and an ad hoc screening case in comparison to the unperturbed configuration. It is shown that the RMP induced helicalmore » patterns in the plasma edge and on the divertor target shrink once screening is taken into account. However, a flat temperature profile is still found in the 'open field line domain' inside the separatrix, while the 'density pump out effect' found in the vacuum RMP case is considerably weakened.« less

  3. Fitness for duty: a 3-minute version of the Psychomotor Vigilance Test predicts fatigue-related declines in luggage-screening performance.

    PubMed

    Basner, Mathias; Rubinstein, Joshua

    2011-10-01

    To evaluate the ability of a 3-minute Psychomotor Vigilance Test (PVT) to predict fatigue-related performance decrements on a simulated luggage-screening task (SLST). Thirty-six healthy nonprofessional subjects (mean age = 30.8 years, 20 women) participated in a 4-day laboratory protocol including a 34-hour period of total sleep deprivation with PVT and SLST testing every 2 hours. Eleven and 20 lapses (355-ms threshold) on the PVT optimally divided SLST performance into high-, medium-, and low-performance bouts with significantly decreasing threat detection performance A'. Assignment to the different SLST performance groups replicated homeostatic and circadian patterns during total sleep deprivation. The 3-minute PVT was able to predict performance on a simulated luggage-screening task. Fitness-for-duty feasibility should now be tested in professional screeners and operational environments.

  4. Accelerating the design of solar thermal fuel materials through high throughput simulations.

    PubMed

    Liu, Yun; Grossman, Jeffrey C

    2014-12-10

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.

  5. Effect of facility background gases on internal erosion of the 30-cm Hg ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Mantenieks, M. A.

    1978-01-01

    Sputtering erosion of the upstream side of the molybdenum screen grid by discharge chamber ions in mercury bombardment thrusters was considered. Data which revealed that the screen grid erosion was very sensitive to the partial pressure of certain background gases in the space simulation vacuum facility were presented along with results of tests conducted to evaluate this effect. It is shown from estimates of the screen grid erosion in space that adequate lifetime for proposed missions exists.

  6. Use of an Online Clinical Process Support System as an Aid to Identification and Management of Developmental and Mental Health Problems.

    PubMed

    Howard, Barbara J; Sturner, Raymond

    2017-12-01

    To describe benefits and problems with screening and addressing developmental and behavioral problems in primary care and using an online clinical process support system as a solution. Screening has been found to have various implementation barriers including time costs, accuracy, workflow and knowledge of tools. In addition, training of clinicians in dealing with identified issues is lacking. Patients disclose more to and prefer computerized screening. An online clinical process support system (CHADIS) shows promise in addressing these issues. Use of a comprehensive panel of online pre-visit screens; linked decision support to provide moment-of-care training; and post-visit activities and resources for patient-specific education, monitoring and care coordination is an efficient way to make the entire process of screening and follow up care feasible in primary care. CHADIS fulfills these requirements and provides Maintenance of Certification credit to physicians as well as added income for screening efforts.

  7. The effects of gray scale image processing on digital mammography interpretation performance.

    PubMed

    Cole, Elodia B; Pisano, Etta D; Zeng, Donglin; Muller, Keith; Aylward, Stephen R; Park, Sungwook; Kuzmiak, Cherie; Koomen, Marcia; Pavic, Dag; Walsh, Ruth; Baker, Jay; Gimenez, Edgardo I; Freimanis, Rita

    2005-05-01

    To determine the effects of three image-processing algorithms on diagnostic accuracy of digital mammography in comparison with conventional screen-film mammography. A total of 201 cases consisting of nonprocessed soft copy versions of the digital mammograms acquired from GE, Fischer, and Trex digital mammography systems (1997-1999) and conventional screen-film mammograms of the same patients were interpreted by nine radiologists. The raw digital data were processed with each of three different image-processing algorithms creating three presentations-manufacturer's default (applied and laser printed to film by each of the manufacturers), MUSICA, and PLAHE-were presented in soft copy display. There were three radiologists per presentation. Area under the receiver operating characteristic curve for GE digital mass cases was worse than screen-film for all digital presentations. The area under the receiver operating characteristic for Trex digital mass cases was better, but only with images processed with the manufacturer's default algorithm. Sensitivity for GE digital mass cases was worse than screen film for all digital presentations. Specificity for Fischer digital calcifications cases was worse than screen film for images processed in default and PLAHE algorithms. Specificity for Trex digital calcifications cases was worse than screen film for images processed with MUSICA. Specific image-processing algorithms may be necessary for optimal presentation for interpretation based on machine and lesion type.

  8. AnalyzeHOLE - An Integrated Wellbore Flow Analysis Tool

    USGS Publications Warehouse

    Halford, Keith

    2009-01-01

    Conventional interpretation of flow logs assumes that hydraulic conductivity is directly proportional to flow change with depth. However, well construction can significantly alter the expected relation between changes in fluid velocity and hydraulic conductivity. Strong hydraulic conductivity contrasts between lithologic intervals can be masked in continuously screened wells. Alternating intervals of screen and blank casing also can greatly complicate the relation between flow and hydraulic properties. More permeable units are not necessarily associated with rapid fluid-velocity increases. Thin, highly permeable units can be misinterpreted as thick and less permeable intervals or not identified at all. These conditions compromise standard flow-log interpretation because vertical flow fields are induced near the wellbore. AnalyzeHOLE, an integrated wellbore analysis tool for simulating flow and transport in wells and aquifer systems, provides a better alternative for simulating and evaluating complex well-aquifer system interaction. A pumping well and adjacent aquifer system are simulated with an axisymmetric, radial geometry in a two-dimensional MODFLOW model. Hydraulic conductivities are distributed by depth and estimated with PEST by minimizing squared differences between simulated and measured flows and drawdowns. Hydraulic conductivity can vary within a lithology but variance is limited with regularization. Transmissivity of the simulated system also can be constrained to estimates from single-well, pumping tests. Water-quality changes in the pumping well are simulated with simple mixing models between zones of differing water quality. These zones are differentiated by backtracking thousands of particles from the well screens with MODPATH. An Excel spreadsheet is used to interface the various components of AnalyzeHOLE by (1) creating model input files, (2) executing MODFLOW, MODPATH, PEST, and supporting FORTRAN routines, and (3) importing and graphically displaying pertinent results.

  9. Pediatric Eye Screening Instrumentation

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Ling; Lewis, J. W. L.

    2001-11-01

    Computational evaluations are presented for binocular eye screening using the off-axis digital retinascope. The retinascope, such as the iScreen digital screening system, has been employed to perform pediatric binocular screening using a flash lamp and single-shot camera recording. The digital images are transferred electronically to a reading center for analysis. The method has been shown to detect refractive error, amblyopia, anisocoria, and ptosis. This computational work improves the performance of the system and forms the basis for automated data analysis. For this purpose, variouis published eye models are evaluated with simulated retinascope images. Two to ten million rays are traced in each image calculation. The poster will present the simulation results for a range of eye conditions of refractive error of -20 to +20 diopters with 0.5- to-1 diopter resolution, pupil size of 3 to 8 mm diameter (1-mm increment), and staring angle of 2 to 12 degree (2-degree increment). The variation of the results with the system conditions such as the off-axis distance of light source and the shutter size of camera are also evaluated. The quantitative analysis for each eye’s and system’s condition is then performed to obtain parameters for automatic reading. The summary of the system performance is given and performance-enhancement design modifications are presented.

  10. Numerical and Experimental Investigation on Electromagnetic Attenuation by Semi-Ellipsoidal Shaped Plasma

    NASA Astrophysics Data System (ADS)

    He, Xiang; Chen, Jianping; Zhang, Yachun; Chen, Yudong; Zeng, Xiaojun; Tang, Chunmei

    2015-10-01

    Some reports presented that the radar cross section (RCS) from the radar antenna of military airplanes can be reduced by using a low-temperature plasma screen. This paper gives a numerical and experimental analysis of this RCS-reduction method. The shape of the plasma screen was designed as a semi-ellipsoid in order to make full use of the space in the radar dome. In simulations, we discussed the scattering of the electromagnetic (EM) wave by a perfect electric conductor (PEC) covered with this plasma screen using the finite-difference-time-domain (FDTD) method. The variations of their return loss as a function of wave frequency, plasma density profile, and collision frequency were presented. In the experiments, a semi-ellipsoidal shaped plasma screen was produced. Electromagnetic attenuation of 1.5 GHz EM wave was measured for a radio frequency (RF) power of 5 kW at an argon pressure of 200-1150 Pa. A good agreement is found between simulated and experimental results. It can be confirmed that the plasma screen is useful in applications for stealth of radar antenna. supported by National Natural Science Foundation of China (No. 51107033) and the Fundamental Research Funds for the Central Universities, China (No. 2013B33614)

  11. The view from the trenches: part 2-technical considerations for EPR screening.

    PubMed

    Nicolalde, Roberto J; Gougelet, Robert M; Rea, Michael; Williams, Benjamin B; Dong, Ruhong; Kmiec, Maciej M; Lesniewski, Piotr N; Swartz, Harold M

    2010-02-01

    There is growing awareness of the need for methodologies that can be used retrospectively to provide the biodosimetry needed to carry out screening and triage immediately after an event in which large numbers of people have potentially received clinically significant doses of ionizing radiation. The general approach to developing such methodologies has been a technology centric one, often ignoring the system integrations considerations that are key to their effective use. In this study an integrative approach for the evaluation and development of a physical biodosimetry technology was applied based on in vivo electron paramagnetic resonance (EPR) dosimetry. The EPR measurements are based on physical changes in tissues whose magnitudes are not affected by the factors that can confound biologically-based assessments. In this study the use of a pilot simulation exercise to evaluate an experimental EPR system and gather stakeholders' feedback early on in the development process is described. The exercise involved: ten non-irradiated participants, representatives from a local fire department; Department of Homeland Security certified exercise evaluators, EPR experts, physicians; and a human factors engineer. Stakeholders were in agreement that the EPR technology in its current state of development could be deployed for the screening of mass casualties. Furthermore, stakeholders' recommendations will be prioritized and incorporated in future developments of the EPR technique. While the results of this exercise were aimed specifically at providing feedback for the development of EPR dosimetry for screening mass casualties, the methods and lessons learned are likely to be applicable to other biodosimetric methods.

  12. The cost-effectiveness of using chronic kidney disease risk scores to screen for early-stage chronic kidney disease.

    PubMed

    Yarnoff, Benjamin O; Hoerger, Thomas J; Simpson, Siobhan K; Leib, Alyssa; Burrows, Nilka R; Shrestha, Sundar S; Pavkov, Meda E

    2017-03-13

    Better treatment during early stages of chronic kidney disease (CKD) may slow progression to end-stage renal disease and decrease associated complications and medical costs. Achieving early treatment of CKD is challenging, however, because a large fraction of persons with CKD are unaware of having this disease. Screening for CKD is one important method for increasing awareness. We examined the cost-effectiveness of identifying persons for early-stage CKD screening (i.e., screening for moderate albuminuria) using published CKD risk scores. We used the CKD Health Policy Model, a micro-simulation model, to simulate the cost-effectiveness of using CKD two published risk scores by Bang et al. and Kshirsagar et al. to identify persons in the US for CKD screening with testing for albuminuria. Alternative risk score thresholds were tested (0.20, 0.15, 0.10, 0.05, and 0.02) above which persons were assigned to receive screening at alternative intervals (1-, 2-, and 5-year) for follow-up screening if the first screening was negative. We examined incremental cost-effectiveness ratios (ICERs), incremental lifetime costs divided by incremental lifetime QALYs, relative to the next higher screening threshold to assess cost-effectiveness. Cost-effective scenarios were determined as those with ICERs less than $50,000 per QALY. Among the cost-effective scenarios, the optimal scenario was determined as the one that resulted in the highest lifetime QALYs. ICERs ranged from $8,823 per QALY to $124,626 per QALY for the Bang et al. risk score and $6,342 per QALY to $405,861 per QALY for the Kshirsagar et al. risk score. The Bang et al. risk score with a threshold of 0.02 and 2-year follow-up screening was found to be optimal because it had an ICER less than $50,000 per QALY and resulted in the highest lifetime QALYs. This study indicates that using these CKD risk scores may allow clinicians to cost-effectively identify a broader population for CKD screening with testing for albuminuria and potentially detect people with CKD at earlier stages of the disease than current approaches of screening only persons with diabetes or hypertension.

  13. The effect of degree of immersion upon learning performance in virtual reality simulations for medical education.

    PubMed

    Gutiérrez, Fátima; Pierce, Jennifer; Vergara, Víctor M; Coulter, Robert; Saland, Linda; Caudell, Thomas P; Goldsmith, Timothy E; Alverson, Dale C

    2007-01-01

    Simulations are being used in education and training to enhance understanding, improve performance, and assess competence. However, it is important to measure the performance of these simulations as learning and training tools. This study examined and compared knowledge acquisition using a knowledge structure design. The subjects were first-year medical students at The University of New Mexico School of Medicine. One group used a fully immersed virtual reality (VR) environment using a head mounted display (HMD) and another group used a partially immersed (computer screen) VR environment. The study aims were to determine whether there were significant differences between the two groups as measured by changes in knowledge structure before and after the VR simulation experience. The results showed that both groups benefited from the VR simulation training as measured by the significant increased similarity to the expert knowledge network after the training experience. However, the immersed group showed a significantly higher gain than the partially immersed group. This study demonstrated a positive effect of VR simulation on learning as reflected by improvements in knowledge structure but an enhanced effect of full-immersion using a HMD vs. a screen-based VR system.

  14. Technologies for Decreasing Mining Losses

    NASA Astrophysics Data System (ADS)

    Valgma, Ingo; Väizene, Vivika; Kolats, Margit; Saarnak, Martin

    2013-12-01

    In case of stratified deposits like oil shale deposit in Estonia, mining losses depend on mining technologies. Current research focuses on extraction and separation possibilities of mineral resources. Selective mining, selective crushing and separation tests have been performed, showing possibilities of decreasing mining losses. Rock crushing and screening process simulations were used for optimizing rock fractions. In addition mine backfilling, fine separation, and optimized drilling and blasting have been analyzed. All tested methods show potential and depend on mineral usage. Usage in addition depends on the utilization technology. The questions like stability of the material flow and influences of the quality fluctuations to the final yield are raised.

  15. Standard Isotherm Fit Information for Dry CO2 on Sorbents for 4-Bed Molecular Sieve

    NASA Technical Reports Server (NTRS)

    Cmarik, G. E.; Son, K. N.; Knox, J. C.

    2017-01-01

    Onboard the ISS, one of the systems tasked with removal of metabolic carbon dioxide (CO2) is a 4-bed molecular sieve (4BMS) system. In order to enable a 4-person mission to succeed, systems for removal of metabolic CO2 must reliably operate for several years while minimizing power, mass, and volume requirements. This minimization can be achieved through system redesign and/or changes to the separation material(s). A material screening process has identified the most reliable sorbent materials for the next 4BMS. Sorbent characterization will provide the information necessary to guide system design by providing inputs for computer simulations.

  16. Assessment and improvement of biotransfer models to cow's milk and beef used in exposure assessment tools for organic pollutants.

    PubMed

    Takaki, Koki; Wade, Andrew J; Collins, Chris D

    2015-11-01

    The aim of this study was to assess and improve the accuracy of biotransfer models for the organic pollutants (PCBs, PCDD/Fs, PBDEs, PFCAs, and pesticides) into cow's milk and beef used in human exposure assessment. Metabolic rate in cattle is known as a key parameter for this biotransfer, however few experimental data and no simulation methods are currently available. In this research, metabolic rate was estimated using existing QSAR biodegradation models of microorganisms (BioWIN) and fish (EPI-HL and IFS-HL). This simulated metabolic rate was then incorporated into the mechanistic cattle biotransfer models (RAIDAR, ACC-HUMAN, OMEGA, and CKow). The goodness of fit tests showed that RAIDAR, ACC-HUMAN, OMEGA model performances were significantly improved using either of the QSARs when comparing the new model outputs to observed data. The CKow model is the only one that separates the processes in the gut and liver. This model showed the lowest residual error of all the models tested when the BioWIN model was used to represent the ruminant metabolic process in the gut and the two fish QSARs were used to represent the metabolic process in the liver. Our testing included EUSES and CalTOX which are KOW-regression models that are widely used in regulatory assessment. New regressions based on the simulated rate of the two metabolic processes are also proposed as an alternative to KOW-regression models for a screening risk assessment. The modified CKow model is more physiologically realistic, but has equivalent usability to existing KOW-regression models for estimating cattle biotransfer of organic pollutants. Copyright © 2015. Published by Elsevier Ltd.

  17. Next generation smart window display using transparent organic display and light blocking screen.

    PubMed

    Kim, Gyeong Woo; Lampande, Raju; Choe, Dong Cheol; Ko, Ik Jang; Park, Jin Hwan; Pode, Ramchandra; Kwon, Jang Hyuk

    2018-04-02

    Transparent organic light emitting diodes (TOLED) have widespread applications in the next-generation display devices particularly in the large size transparent window and interactive displays. Herein, we report high performance and stable attractive smart window displays using facile process. Advanced smart window display is realized by integrating the high performance light blocking screen and highly transparent white OLED panel. The full smart window display reveals a maximum transmittance as high as 64.2% at the wavelength of 600 nm and extremely good along with tunable ambient contrast ratio (171.94:1) compared to that of normal TOLED (4.54:1). Furthermore, the performance decisive light blocking screen has demonstrated an excellent optical and electrical characteristics such as i) high transmittance (85.56% at 562nm) at light-penetrating state, ii) superior absorbance (2.30 at 562nm) in light interrupting mode, iii) high optical contrast (85.50 at 562 nm), iv) high optical stability for more than 25,000 cycle of driving, v) fast switching time of 1.9 sec, and vi) low driving voltage of 1.7 V. The experimental results of smart window display are also validated using optical simulation. The proposed smart window display technology allows us to adjust the intensity of daylight entering the system quickly and conveniently.

  18. Groundwater Visualisation System (GVS): A software framework for integrated display and interrogation of conceptual hydrogeological models, data and time-series animation

    NASA Astrophysics Data System (ADS)

    Cox, Malcolm E.; James, Allan; Hawke, Amy; Raiber, Matthias

    2013-05-01

    Management of groundwater systems requires realistic conceptual hydrogeological models as a framework for numerical simulation modelling, but also for system understanding and communicating this to stakeholders and the broader community. To help overcome these challenges we developed GVS (Groundwater Visualisation System), a stand-alone desktop software package that uses interactive 3D visualisation and animation techniques. The goal was a user-friendly groundwater management tool that could support a range of existing real-world and pre-processed data, both surface and subsurface, including geology and various types of temporal hydrological information. GVS allows these data to be integrated into a single conceptual hydrogeological model. In addition, 3D geological models produced externally using other software packages, can readily be imported into GVS models, as can outputs of simulations (e.g. piezometric surfaces) produced by software such as MODFLOW or FEFLOW. Boreholes can be integrated, showing any down-hole data and properties, including screen information, intersected geology, water level data and water chemistry. Animation is used to display spatial and temporal changes, with time-series data such as rainfall, standing water levels and electrical conductivity, displaying dynamic processes. Time and space variations can be presented using a range of contouring and colour mapping techniques, in addition to interactive plots of time-series parameters. Other types of data, for example, demographics and cultural information, can also be readily incorporated. The GVS software can execute on a standard Windows or Linux-based PC with a minimum of 2 GB RAM, and the model output is easy and inexpensive to distribute, by download or via USB/DVD/CD. Example models are described here for three groundwater systems in Queensland, northeastern Australia: two unconfined alluvial groundwater systems with intensive irrigation, the Lockyer Valley and the upper Condamine Valley, and the Surat Basin, a large sedimentary basin of confined artesian aquifers. This latter example required more detail in the hydrostratigraphy, correlation of formations with drillholes and visualisation of simulation piezometric surfaces. Both alluvial system GVS models were developed during drought conditions to support government strategies to implement groundwater management. The Surat Basin model was industry sponsored research, for coal seam gas groundwater management and community information and consultation. The "virtual" groundwater systems in these 3D GVS models can be interactively interrogated by standard functions, plus production of 2D cross-sections, data selection from the 3D scene, rear end database and plot displays. A unique feature is that GVS allows investigation of time-series data across different display modes, both 2D and 3D. GVS has been used successfully as a tool to enhance community/stakeholder understanding and knowledge of groundwater systems and is of value for training and educational purposes. Projects completed confirm that GVS provides a powerful support to management and decision making, and as a tool for interpretation of groundwater system hydrological processes. A highly effective visualisation output is the production of short videos (e.g. 2-5 min) based on sequences of camera 'fly-throughs' and screen images. Further work involves developing support for multi-screen displays and touch-screen technologies, distributed rendering, gestural interaction systems. To highlight the visualisation and animation capability of the GVS software, links to related multimedia hosted online sites are included in the references.

  19. Wear-screening and joint simulation studies vs. materials selection and prosthesis design.

    PubMed

    Clarke, I C

    1982-01-01

    Satisfactory friction and wear performance of orthomedic biomaterials is an essential criterion for both hemiarthroplasty and total joint replacements. This report will chart the clinical historical experience of candidate biomaterials with their wear resistance and compare/contrast these data to experimental test predictions. The latter review will encompass publications dealing with both joint simulators and the more basic friction and wear screening devices. Special consideration will be given to the adequacy of the test protocol, the design of the experimental machines, and the accuracy of the measurement techniques. The discussion will then center on clinical reality vs. experimental adequacy and summarize current developments.

  20. A Capsule-Type Electromagnetic Acoustic Transducer for Fast Screening of External Corrosion in Nonmagnetic Pipes.

    PubMed

    Li, Yong; Cai, Rui; Yan, Bei; Zainal Abidin, Ilham Mukriz; Jing, Haoqing; Wang, Yi

    2018-05-28

    For fuel transmission and structural strengthening, small-diameter pipes of nonmagnetic materials are extensively adopted in engineering fields including aerospace, energy, transportation, etc. However, the hostile and corrosive environment leaves them vulnerable to external corrosion which poses a severe threat to structural integrity of pipes. Therefore, it is imperative to nondestructively detect and evaluate the external corrosion in nonmagnetic pipes. In light of this, a capsule-type Electromagnetic Acoustic Transducer (EMAT) for in-situ nondestructive evaluation of nonmagnetic pipes and fast screening of external corrosion is proposed in this paper. A 3D hybrid model for efficient prediction of responses from the proposed transducer to external corrosion is established. Closed-form expressions of field quantities of electromagnetics and EMAT signals are formulated. Simulations based on the hybrid model indicate feasibility of the proposed transducer in detection and evaluation of external corrosion in nonmagnetic pipes. In parallel, experiments with the fabricated transducer have been carried out. Experimental results are supportive of the conclusion drawn from simulations. The investigation via simulations and experiments implies that the proposed capsule-type EMAT is capable of fast screening of external corrosion, which is beneficial to the in-situ nondestructive evaluation of small-diameter nonmagnetic pipes.

  1. Structure-based design of diverse inhibitors of Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase: combined molecular docking, dynamic simulation, and biological activity.

    PubMed

    Soni, Vijay; Suryadevara, Priyanka; Sriram, Dharmarajan; Kumar, Santhosh; Nandicoori, Vinay Kumar; Yogeeswari, Perumal

    2015-07-01

    Persistent nature of Mycobacterium tuberculosis is one of the major factors which make the drug development process monotonous against this organism. The highly lipophilic cell wall, which constituting outer mycolic acid and inner peptidoglycan layers, acts as a barrier for the drugs to enter the bacteria. The rigidity of the cell wall is imparted by the peptidoglycan layer, which is covalently linked to mycolic acid by arabinogalactan. Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) serves as the starting material in the biosynthesis of this peptidoglycan layers. This UDP-GlcNAc is synthesized by N-acetylglucosamine-1-phosphate uridyltransferase (GlmU(Mtb)), a bi-functional enzyme with two functional sites, acetyltransferase site and uridyltransferase site. Here, we report design and screening of nine inhibitors against UTP and NAcGlc-1-P of uridyltransferase active site of glmU(Mtb). Compound 4 was showing good inhibition and was selected for further analysis. The isothermal titration calorimetry (ITC) experiments showed the binding energy pattern of compound 4 to the uridyltransferase active site is similar to that of substrate UTP. In silico molecular dynamics (MD) simulation studies, for compound 4, carried out for 10 ns showed the protein-compound complex to be stable throughout the simulation with relative rmsd in acceptable range. Hence, these compounds can serve as a starting point in the drug discovery processes against Mycobacterium tuberculosis.

  2. Breast cancer screening in an era of personalized regimens: a conceptual model and National Cancer Institute initiative for risk-based and preference-based approaches at a population level.

    PubMed

    Onega, Tracy; Beaber, Elisabeth F; Sprague, Brian L; Barlow, William E; Haas, Jennifer S; Tosteson, Anna N A; D Schnall, Mitchell; Armstrong, Katrina; Schapira, Marilyn M; Geller, Berta; Weaver, Donald L; Conant, Emily F

    2014-10-01

    Breast cancer screening holds a prominent place in public health, health care delivery, policy, and women's health care decisions. Several factors are driving shifts in how population-based breast cancer screening is approached, including advanced imaging technologies, health system performance measures, health care reform, concern for "overdiagnosis," and improved understanding of risk. Maximizing benefits while minimizing the harms of screening requires moving from a "1-size-fits-all" guideline paradigm to more personalized strategies. A refined conceptual model for breast cancer screening is needed to align women's risks and preferences with screening regimens. A conceptual model of personalized breast cancer screening is presented herein that emphasizes key domains and transitions throughout the screening process, as well as multilevel perspectives. The key domains of screening awareness, detection, diagnosis, and treatment and survivorship are conceptualized to function at the level of the patient, provider, facility, health care system, and population/policy arena. Personalized breast cancer screening can be assessed across these domains with both process and outcome measures. Identifying, evaluating, and monitoring process measures in screening is a focus of a National Cancer Institute initiative entitled PROSPR (Population-based Research Optimizing Screening through Personalized Regimens), which will provide generalizable evidence for a risk-based model of breast cancer screening, The model presented builds on prior breast cancer screening models and may serve to identify new measures to optimize benefits-to-harms tradeoffs in population-based screening, which is a timely goal in the era of health care reform. © 2014 American Cancer Society.

  3. Screening for EIA in India: enhancing effectiveness through ecological carrying capacity approach.

    PubMed

    Rajaram, T; Das, Ashutosh

    2011-01-01

    Developing countries across the world have embraced the policy of high economic growth as a means to reduce poverty. This economic growth largely based on industrial output is fast degrading the ecosystems, jeopardizing their long term sustainability. Environmental Impact Assessment (EIA) has long been recognized as a tool which can help in protecting the ecosystems and aid sustainable development. The Screening guidelines for EIA reflect the level of commitment the nation displays towards tightening its environmental protection system. The paper analyses the screening process for EIA in India and dissects the rationale behind the exclusions and thresholds set in the screening process. The screening process in India is compared with that of the European Union with the aim of understanding the extent of deviations from a screening approach in the context of better economic development. It is found that the Indian system excludes many activities from the purview of screening itself when compared to the EU. The constraints responsible for these exclusions are discussed and the shortcomings of the current command and control system of environmental management in India are also explained. It is suggested that an ecosystem carrying capacity based management system can provide significant inputs to enhance the effectiveness of EIA process from screening to monitoring. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Biodegradation screening of chemicals in an artificial matrix simulating the water-sediment interface.

    PubMed

    Baginska, Ewelina; Haiß, Annette; Kümmerer, Klaus

    2015-01-01

    Biodegradation is the most important attenuation process for most of organic chemicals in the environment. This process decides whether the organic substance itself or its degradation products rests in the environment and should be considered for a further risk assessment. This work presents the development of a water sediment screening test, based on OECD guideline 308, with a high significance to environmental conditions and with a good reproducibility and consistency of results. The increased reproducibility was achieved by creating an artificial and standardized medium, based on the existing OECD guidelines OECD 302C, 301D and 218. Each test consisted of five different series: blank, quality control, test, toxicity control and abiotic control. Biodegradation was assessed by measurement of pressure difference in closed vessels using the OxiTop(®) system. Aniline, diethylene glycol and sodium acetate were used to optimize and validate test conditions. Additionally, two pharmaceuticals: Acetaminophen and ciprofloxacin (CIP) were tested as an example of possible test application. Acetaminophen was mainly removed from the system by biodegradation whereas CIP was removed from water phase by sorption onto sediment. Water sediment test proved to be a promising tool for the biodegradation investigation of chemicals in the water-sediment interface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Health economic evaluation of plasma oxysterol screening in the diagnosis of Niemann-Pick Type C disease among intellectually disabled using discrete event simulation.

    PubMed

    van Karnebeek, Clara D M; Mohammadi, Tima; Tsao, Nicole; Sinclair, Graham; Sirrs, Sandra; Stockler, Sylvia; Marra, Carlo

    2015-02-01

    Recently a less invasive method of screening and diagnosing Niemann-Pick C (NP-C) disease has emerged. This approach involves the use of a metabolic screening test (oxysterol assay) instead of the current practice of clinical assessment of patients suspected of NP-C (review of medical history, family history and clinical examination for the signs and symptoms). Our objective is to compare costs and outcomes of plasma oxysterol screening versus current practice in diagnosis of NP-C disease among intellectually disabled (ID) patients using decision-analytic methods. A discrete event simulation model was conducted to follow ID patients through the diagnosis and treatment of NP-C, forecast the costs and effectiveness for a cohort of ID patients and compare the outcomes and costs in two different arms of the model: plasma oxysterol screening and routine diagnosis procedure (anno 2013) over 5 years of follow up. Data from published sources and clinical trials were used in simulation model. Unit costs and quality-adjusted life-years (QALYs) were discounted at a 3% annual rate in the base case analysis. Deterministic and probabilistic sensitivity analyses were conducted. The outcomes of the base case model showed that using plasma oxysterol screening for diagnosis of NP-C disease among ID patients is a dominant strategy. It would result in lower total cost and would slightly improve patients' quality of life. The average amount of cost saving was $3642 CAD and the incremental QALYs per each individual ID patient in oxysterol screening arm versus current practice of diagnosis NP-C was 0.0022 QALYs. Results of sensitivity analysis demonstrated robustness of the outcomes over the wide range of changes in model inputs. Whilst acknowledging the limitations of this study, we conclude that screening ID children and adolescents with oxysterol tests compared to current practice for the diagnosis of NP-C is a dominant strategy with clinical and economic benefits. The less costly, more sensitive and specific oxysterol test has potential to save costs to the healthcare system while improving patients' quality of life and may be considered as a routine tool in the NP-C diagnosis armamentarium for ID. Further research is needed to elucidate its effectiveness in patients presenting characteristics other than ID in childhood and adolescence. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Feature Screening for Ultrahigh Dimensional Categorical Data with Applications.

    PubMed

    Huang, Danyang; Li, Runze; Wang, Hansheng

    2014-01-01

    Ultrahigh dimensional data with both categorical responses and categorical covariates are frequently encountered in the analysis of big data, for which feature screening has become an indispensable statistical tool. We propose a Pearson chi-square based feature screening procedure for categorical response with ultrahigh dimensional categorical covariates. The proposed procedure can be directly applied for detection of important interaction effects. We further show that the proposed procedure possesses screening consistency property in the terminology of Fan and Lv (2008). We investigate the finite sample performance of the proposed procedure by Monte Carlo simulation studies, and illustrate the proposed method by two empirical datasets.

  7. Response to an Abnormal Ovarian Cancer Screening Test Result: Test of the Social Cognitive Processing and Cognitive Social Health Information Processing Models

    PubMed Central

    Andrykowski, Michael A.; Pavlik, Edward J.

    2009-01-01

    All cancer screening tests produce a proportion of abnormal results requiring follow-up. Consequently, the cancer screening setting is a natural laboratory for examining psychological and behavioral response to a threatening health-related event. This study tested hypotheses derived from the Social Cognitive Processing and Cognitive-Social Health Information Processing models in trying to understand response to an abnormal ovarian cancer (OC) screening test result. Women (n=278) receiving an abnormal screening test result a mean of 7 weeks earlier were assessed prior to a repeat screening test intended to clarify their previous abnormal result. Measures of disposition (optimism, informational coping style), social environment (social support and constraint), emotional processing, distress, and benefit finding were obtained. Regression analyses indicated greater distress was associated with greater social constraint and emotional processing and a monitoring coping style in women with a family history of OC. Distress was unrelated to social support. Greater benefit finding was associated with both greater social constraint and support and greater distress. The primacy of social constraint in accounting for both benefit-finding and distress was noteworthy and warrants further research on the role of social constraint in adaptation to stressful events. PMID:20419561

  8. Robust high-throughput batch screening method in 384-well format with optical in-line resin quantification.

    PubMed

    Kittelmann, Jörg; Ottens, Marcel; Hubbuch, Jürgen

    2015-04-15

    High-throughput batch screening technologies have become an important tool in downstream process development. Although continuative miniaturization saves time and sample consumption, there is yet no screening process described in the 384-well microplate format. Several processes are established in the 96-well dimension to investigate protein-adsorbent interactions, utilizing between 6.8 and 50 μL resin per well. However, as sample consumption scales with resin volumes and throughput scales with experiments per microplate, they are limited in costs and saved time. In this work, a new method for in-well resin quantification by optical means, applicable in the 384-well format, and resin volumes as small as 0.1 μL is introduced. A HTS batch isotherm process is described, utilizing this new method in combination with optical sample volume quantification for screening of isotherm parameters in 384-well microplates. Results are qualified by confidence bounds determined by bootstrap analysis and a comprehensive Monte Carlo study of error propagation. This new approach opens the door to a variety of screening processes in the 384-well format on HTS stations, higher quality screening data and an increase in throughput. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Crocodile Technology. [CD-ROM].

    ERIC Educational Resources Information Center

    2000

    This high school physics computer software resource is a systems and control simulator that covers the topics of electricity, electronics, mechanics, and programming. Circuits can easily be simulated on the screen and electronic and mechanical components can be combined. In addition to those provided in Crocodile Technology, a student can create…

  10. Smart Screening System (S3) In Taconite Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daryoush Allaei; Angus Morison; David Tarnowski

    2005-09-01

    The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the process of FE model validation and correlation with experimental data in terms of dynamic performance and predicted stresses. It also detailed efforts into making the supporting structure less important to system performance. Finally, an introduction into the dry application concept was presented. Since then, the design refinement phase was completed. This has resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. Furthermore, this system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota.« less

  11. Evaluation of the Effectiveness of Simulation for M4 Marksmanship Training

    DTIC Science & Technology

    2014-02-01

    DEMOGRAPHIC QUESTIONNAIRE ................................................. 34 APPENDIX C: ANALYSIS OF MARKSMANSHIP PERFORMANCE DATA TO IDENTIFY POTENTIAL...machine guns and anti- armour weapons. In these simulators, firers aim a modified weapon at a target image on a screen. When the firer pulls the trigger...investigate predictors of live-fire LF6 qualification. Specifically, we examined the utility of LF6 simulator scores and trainee demographic data as

  12. Smart Screening System (S3) In Taconite Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daryoush Allaei; Ryan Wartman; David Tarnowski

    2006-03-01

    The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the completion of the design refinement phase. This phase resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. This system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota. Since then, the fabrication of the dry application prototype (incorporating an electromagnetic drive mechanism and a new deblinding concept) has been completed and successfully tested at QRDC's lab.« less

  13. WE-G-BRA-04: The Development of a Virtual Reality Dosimetry Training Platform for Physics Training.

    PubMed

    Beavis, A; Ward, J

    2012-06-01

    Recently there has been a great deal of interest in the application of Simulation methodologies for training. We have previously developed a Virtual Environment for Radiotherapy Training, VERT, which simulates a fully interactive and functional Linac. Patient and plan data can be accessed across a DICOM interface, allowing the treatment process to be simulated. Here we present a newly developed range of Physics equipment, which allows the user to undertake realistic QC processes. Five devices are available: 1) scanning water phantom, 2) 'solid water' QC block/ion chamber, 3) light/ radiation field coincidence phantom, 4) laser alignment phantom and 5) water based calibration phantom with reference class and 'departmental' ion chamber. The devices were created to operate realistically and function as expected, each has an associated control screen which provides control and feedback information. The dosimetric devices respond appropriately to the beam qualities available on the Linac. Geometrical characteristics of the Linac, e.g. isocentre integrity, laser calibration and jaw calibrations can have random errors introduced in order to enable the user learn and observe fault conditions. In the calibration module appropriate factors for temperature and pressure must be set to correct for ambient, simulated, room conditions. The dosimetric devices can be used to characterise the Linac beams. Depth doses with Dmax of 15mm/29mm and d10 of 67%/77% respectively for 10cm square 6/15MV beams were measured. The Quality Indices (TPR20/10 ratios) can be measured as 0.668 and 0.761 respectively. At a simple level the tools can be used to demonstrate beam divergence or the effect of the inverse square law; They are also designed to be used to simulate the calibration of a new ion chamber. We have developed a novel set of tools that allow education of Physics processes via simulation training in our virtual environment. Both Authors are Founders and Directors of Vertual Ltd, a spin-out company that exists to commericalise the results of the research work presented in this abstract. © 2012 American Association of Physicists in Medicine.

  14. Modeling removal of bacteriophages MS2 and PRD1 by dune recharge at Castricum, Netherlands

    NASA Astrophysics Data System (ADS)

    Schijven, Jack F.; Hoogenboezem, Wim; Hassanizadeh, S. Majid; Peters, Jos H.

    1999-04-01

    Removal of model viruses by dune recharge was studied at a field site in the dune area of Castricum, Netherlands. Recharge water was dosed with bacteriophages MS2 and PRD1 for 11 days at a constant concentration in a 10- by 15-m compartment that was isolated in a recharge basin. Breakthrough was monitored for 120 days at six wells with their screens along a flow line. Concentrations of both phages were reduced about 3 log10 within the first 2.4 m and another 5 log10 in a linear fashion within the following 27 m. A model accounting for one-site kinetic attachment as well as first-order inactivation was employed to simulate the bacteriophage breakthrough curves. The major removal process was found to be attachment of the bacteriophages. Detachment was very slow. After passage of the pulse of dosed bacteriophages, there was a long tail whose slope corresponds to the inactivation rate coefficient of 0.07-0.09 day-1 for attached bacteriophages. The end of the rising and the start of the declining limbs of the breakthrough curves could not be simulated completely, probably because of an as yet unknown process.

  15. Computer Simulation of Developmental Processes and ...

    EPA Pesticide Factsheets

    Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of

  16. An automated process for building reliable and optimal in vitro/in vivo correlation models based on Monte Carlo simulations.

    PubMed

    Sutton, Steven C; Hu, Mingxiu

    2006-05-05

    Many mathematical models have been proposed for establishing an in vitro/in vivo correlation (IVIVC). The traditional IVIVC model building process consists of 5 steps: deconvolution, model fitting, convolution, prediction error evaluation, and cross-validation. This is a time-consuming process and typically a few models at most are tested for any given data set. The objectives of this work were to (1) propose a statistical tool to screen models for further development of an IVIVC, (2) evaluate the performance of each model under different circumstances, and (3) investigate the effectiveness of common statistical model selection criteria for choosing IVIVC models. A computer program was developed to explore which model(s) would be most likely to work well with a random variation from the original formulation. The process used Monte Carlo simulation techniques to build IVIVC models. Data-based model selection criteria (Akaike Information Criteria [AIC], R2) and the probability of passing the Food and Drug Administration "prediction error" requirement was calculated. To illustrate this approach, several real data sets representing a broad range of release profiles are used to illustrate the process and to demonstrate the advantages of this automated process over the traditional approach. The Hixson-Crowell and Weibull models were often preferred over the linear. When evaluating whether a Level A IVIVC model was possible, the model selection criteria AIC generally selected the best model. We believe that the approach we proposed may be a rapid tool to determine which IVIVC model (if any) is the most applicable.

  17. Design and optimization of a chromatographic purification process for Streptococcus pneumoniae serotype 23F capsular polysaccharide by a Design of Experiments approach.

    PubMed

    Ji, Yu; Tian, Yang; Ahnfelt, Mattias; Sui, Lili

    2014-06-27

    Multivalent pneumococcal vaccines were used worldwide to protect human beings from pneumococcal diseases. In order to eliminate the toxic organic solutions used in the traditional vaccine purification process, an alternative chromatographic process for Streptococcus pneumoniae serotype 23F capsular polysaccharide (CPS) was proposed in this study. The strategy of Design of Experiments (DoE) was introduced into the process development to solve the complicated design procedure. An initial process analysis was given to review the whole flowchart, identify the critical factors of chromatography through FMEA and chose the flowthrough mode due to the property of the feed. A resin screening study was then followed to select candidate resins. DoE was utilized to generate a resolution IV fractional factorial design to further compare candidates and narrow down the design space. After Capto Adhere was selected, the Box-Behnken DoE was executed to model the process and characterize all effects of factors on the responses. Finally, Monte Carlo simulation was used to optimize the process, test the chosen optimal conditions and define the control limit. The results of three scale-up runs at set points verified the DoE and simulation predictions. The final results were well in accordance with the EU pharmacopeia requirements: Protein/CPS (w/w) 1.08%; DNA/CPS (w/w) 0.61%; the phosphorus content 3.1%; the nitrogen 0.315% and the Methyl-pentose percentage 47.9%. Other tests of final pure CPS also met the pharmacopeia specifications. This alternative chromatographic purification process for pneumococcal vaccine without toxic organic solvents was successfully developed by the DoE approach and proved scalability, robustness and suitability for large scale manufacturing. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Generalizing Screen Inferiority--Does the Medium, Screen versus Paper, Affect Performance Even with Brief Tasks?

    ERIC Educational Resources Information Center

    Sidi, Yael; Ophir, Yael; Ackerman, Rakefet

    2016-01-01

    Screen inferiority in performance and metacognitive processes has been repeatedly found with text learning. Common explanations for screen inferiority relate to technological and physiological disadvantages associated with extensive reading on screen. However, recent studies point to lesser recruitment of mental effort on screen than on paper.…

  19. Cargo identification algorithms facilitating unmanned/unattended inspection at high throughput portals

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2007-10-01

    A simple model is presented of a possible inspection regimen applied to each leg of a cargo containers' journey between its point of origin and destination. Several candidate modalities are proposed to be used at multiple remote locations to act as a pre-screen inspection as the target approaches a perimeter and as the primary inspection modality at the portal. Information from multiple data sets are fused to optimize the costs and performance of a network of such inspection systems. A series of image processing algorithms are presented that automatically process X-ray images of containerized cargo. The goal of this processing is to locate the container in a real time stream of traffic traversing a portal without impeding the flow of commerce. Such processing may facilitate the inclusion of unmanned/unattended inspection systems in such a network. Several samples of the processing applied to data collected from deployed systems are included. Simulated data from a notional cargo inspection system with multiple sensor modalities and advanced data fusion algorithms are also included to show the potential increased detection and throughput performance of such a configuration.

  20. Use of the Chemical Transformation Simulator as a Parameterization Tool for Modeling the Environmental Fate of Organic Chemicals and their Transformation Products

    EPA Science Inventory

    A Chemical Transformation Simulator is a web-based system for predicting transformation pathways and physicochemical properties of organic chemicals. Role in Environmental Modeling • Screening tool for identifying likely transformation products in the environment • Parameteri...

  1. Interactive Mathematica Simulations in Chemical Engineering Courses

    ERIC Educational Resources Information Center

    Falconer, John L.; Nicodemus, Garret D.

    2014-01-01

    Interactive Mathematica simulations with graphical displays of system behavior are an excellent addition to chemical engineering courses. The Manipulate command in Mathematica creates on-screen controls that allow users to change system variables and see the graphical output almost instantaneously. They can be used both in and outside class. More…

  2. Problems in depth perception : a method of simulating objects moving in depth.

    DOT National Transportation Integrated Search

    1965-12-01

    Equations were developed for the simulation on a screen of the movement of an object or surface toward or away from an observer by the movement of a positive photographic transparency of the object or surface away or toward a point source. The genera...

  3. Ultra-High-Throughput Structure-Based Virtual Screening for Small-Molecule Inhibitors of Protein-Protein Interactions

    PubMed Central

    Johnson, David K.; Karanicolas, John

    2016-01-01

    Protein-protein interactions play important roles in virtually all cellular processes, making them enticing targets for modulation by small-molecule therapeutics: specific examples have been well validated in diseases ranging from cancer and autoimmune disorders, to bacterial and viral infections. Despite several notable successes, however, overall these remain a very challenging target class. Protein interaction sites are especially challenging for computational approaches, because the target protein surface often undergoes a conformational change to enable ligand binding: this confounds traditional approaches for virtual screening. Through previous studies, we demonstrated that biased “pocket optimization” simulations could be used to build collections of low-energy pocket-containing conformations, starting from an unbound protein structure. Here, we demonstrate that these pockets can further be used to identify ligands that complement the protein surface. To do so, we first build from a given pocket its “exemplar”: a perfect, but non-physical, pseudo-ligand that would optimally match the shape and chemical features of the pocket. In our previous studies, we used these exemplars to quantitatively compare protein surface pockets to one another. Here, we now introduce this exemplar as a template for pharmacophore-based screening of chemical libraries. Through a series of benchmark experiments, we demonstrate that this approach exhibits comparable performance as traditional docking methods for identifying known inhibitors acting at protein interaction sites. However, because this approach is predicated on ligand/exemplar overlays, and thus does not require explicit calculation of protein-ligand interactions, exemplar screening provides a tremendous speed advantage over docking: 6 million compounds can be screened in about 15 minutes on a single 16-core, dual-GPU computer. The extreme speed at which large compound libraries can be traversed easily enables screening against a “pocket-optimized” ensemble of protein conformations, which in turn facilitates identification of more diverse classes of active compounds for a given protein target. PMID:26726827

  4. Evaluation of a Stratified National Breast Screening Program in the United Kingdom: An Early Model-Based Cost-Effectiveness Analysis.

    PubMed

    Gray, Ewan; Donten, Anna; Karssemeijer, Nico; van Gils, Carla; Evans, D Gareth; Astley, Sue; Payne, Katherine

    2017-09-01

    To identify the incremental costs and consequences of stratified national breast screening programs (stratified NBSPs) and drivers of relative cost-effectiveness. A decision-analytic model (discrete event simulation) was conceptualized to represent four stratified NBSPs (risk 1, risk 2, masking [supplemental screening for women with higher breast density], and masking and risk 1) compared with the current UK NBSP and no screening. The model assumed a lifetime horizon, the health service perspective to identify costs (£, 2015), and measured consequences in quality-adjusted life-years (QALYs). Multiple data sources were used: systematic reviews of effectiveness and utility, published studies reporting costs, and cohort studies embedded in existing NBSPs. Model parameter uncertainty was assessed using probabilistic sensitivity analysis and one-way sensitivity analysis. The base-case analysis, supported by probabilistic sensitivity analysis, suggested that the risk stratified NBSPs (risk 1 and risk-2) were relatively cost-effective when compared with the current UK NBSP, with incremental cost-effectiveness ratios of £16,689 per QALY and £23,924 per QALY, respectively. Stratified NBSP including masking approaches (supplemental screening for women with higher breast density) was not a cost-effective alternative, with incremental cost-effectiveness ratios of £212,947 per QALY (masking) and £75,254 per QALY (risk 1 and masking). When compared with no screening, all stratified NBSPs could be considered cost-effective. Key drivers of cost-effectiveness were discount rate, natural history model parameters, mammographic sensitivity, and biopsy rates for recalled cases. A key assumption was that the risk model used in the stratification process was perfectly calibrated to the population. This early model-based cost-effectiveness analysis provides indicative evidence for decision makers to understand the key drivers of costs and QALYs for exemplar stratified NBSP. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  5. Long-term effects of health factor modification in Milwaukee County.

    PubMed

    Shi, Lu; van Meijgaard, Jeroen; Fielding, Jonathan E

    2013-01-01

    We use the UCLA Health Forecasting Tool to forecast the 2011-2050 health trends in Milwaukee County. We first simulate a baseline scenario (S-1) that assumes no health behavior change, and compare this with three simulated intervention scenarios: expansion of Quitline reach to enhance smoking cessation (S-2), an increased penetration of diabetes screening (S-3) and construction of additional recreational facilities (S-4). We compared the disease-free life years (DFLY) gained from each intervention scenario by 2050 on a year-by-year and cumulative basis. Simulation results show that increasing access to recreational facilities achieves the greatest gain in DFLYs for every year from 2011 to 2050. By 2050, the cumulative DFLY gain is 22 393, 5956 and 41 396 for S-2, S-3, and S-4, respectively. The cost-effectiveness ratios for Quitline expansion, diabetes screening, and recreational facility construction are $1802, $1285, and $1322, per DFLY gained, respectively.

  6. Design and implementation of a combined influenza immunization and tuberculosis screening campaign with simulation modelling.

    PubMed

    Heim, Joseph A; Huang, Hao; Zabinsky, Zelda B; Dickerson, Jane; Wellner, Monica; Astion, Michael; Cruz, Doris; Vincent, Jeanne; Jack, Rhona

    2015-08-01

    Design and implement a concurrent campaign of influenza immunization and tuberculosis (TB) screening for health care workers (HCWs) that can reduce the number of clinic visits for each HCW. A discrete-event simulation model was developed to support issues of resource allocation decisions in planning and operations phases. The campaign was compressed to100 days in 2010 and further compressed to 75 days in 2012 and 2013. With more than 5000 HCW arrivals in 2011, 2012 and 2013, the 14-day goal of TB results was achieved for each year and reduced to about 4 days in 2012 and 2013. Implementing a concurrent campaign allows less number of visiting clinics and the compressing of campaign length allows earlier immunization. The support of simulation modelling can provide useful evaluations of different configurations. © 2015 John Wiley & Sons, Ltd.

  7. Molecular modeling, simulation and virtual screening of MurD ligase protein from Salmonella typhimurium LT2.

    PubMed

    Samal, Himanshu Bhusan; Das, Jugal Kishore; Mahapatra, Rajani Kanta; Suar, Mrutyunjay

    2015-01-01

    The Mur enzymes of the peptidoglycan biosynthesis pathway constitute ideal targets for the design of new classes of antimicrobial inhibitors in Gram-negative bacteria. We built a homology model of MurD of Salmonella typhimurium LT2 using MODELLER (9v12) software. 'The homology model was subjected to energy minimization by molecular dynamics (MD) simulation study with GROMACS software for a simulation time of 20 ns in water environment. The model was subjected for virtual screening study from the Zinc Database using Dockblaster software. Inhibition assay for the best inhibitor, 3-(amino methyl)-n-(4-methoxyphenyl) aniline, by flow cytometric analysis revealed the effective inhibition of peptidoglycan biosynthesis. Results from this study provide new insights for the molecular understanding and development of new antibacterial drugs against the pathogen. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Dynamic security contingency screening and ranking using neural networks.

    PubMed

    Mansour, Y; Vaahedi, E; El-Sharkawi, M A

    1997-01-01

    This paper summarizes BC Hydro's experience in applying neural networks to dynamic security contingency screening and ranking. The idea is to use the information on the prevailing operating condition and directly provide contingency screening and ranking using a trained neural network. To train the two neural networks for the large scale systems of BC Hydro and Hydro Quebec, in total 1691 detailed transient stability simulation were conducted, 1158 for BC Hydro system and 533 for the Hydro Quebec system. The simulation program was equipped with the energy margin calculation module (second kick) to measure the energy margin in each run. The first set of results showed poor performance for the neural networks in assessing the dynamic security. However a number of corrective measures improved the results significantly. These corrective measures included: 1) the effectiveness of output; 2) the number of outputs; 3) the type of features (static versus dynamic); 4) the number of features; 5) system partitioning; and 6) the ratio of training samples to features. The final results obtained using the large scale systems of BC Hydro and Hydro Quebec demonstrates a good potential for neural network in dynamic security assessment contingency screening and ranking.

  9. Fluorescent screens and image processing for the APS linac test stand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, W.; Ko, K.

    A fluorescent screen was used to monitor relative beam position and spot size of a 56-MeV electron beam in the linac test stand. A chromium doped alumina ceramic screen inserted into the beam was monitored by a video camera. The resulting image was captured using a frame grabber and stored into memory. Reconstruction and analysis of the stored image was performed using PV-WAVE. This paper will discuss the hardware and software implementation of the fluorescent screen and imaging system. Proposed improvements for the APS linac fluorescent screens and image processing will also be discussed.

  10. Data-Powered Participatory Decision Making: Leveraging Systems Thinking and Simulation to Guide Selection and Implementation of Evidence-Based Colorectal Cancer Screening Interventions.

    PubMed

    Wheeler, Stephanie B; Leeman, Jennifer; Hassmiller Lich, Kristen; Tangka, Florence K L; Davis, Melinda M; Richardson, Lisa C

    A robust evidence base supports the effectiveness of timely colorectal cancer (CRC) screening, follow-up of abnormal results, and referral to care in reducing CRC morbidity and mortality. However, only two-thirds of the US population is current with recommended screening, and rates are much lower for those who are vulnerable because of their race/ethnicity, insurance status, or rural location. Multiple, multilevel factors contribute to observed disparities, and these factors vary across different populations and contexts. As highlighted by the Cancer Moonshot Blue Ribbon Panel working groups focused on Prevention and Early Detection and Implementation Science inadequate CRC screening and follow-up represent an enormous missed opportunity in cancer prevention and control. To measurably reduce CRC morbidity and mortality, the evidence base must be strengthened to guide the identification of (1) multilevel factors that influence screening across different populations and contexts, (2) multilevel interventions and implementation strategies that will be most effective at targeting those factors, and (3) combinations of strategies that interact synergistically to improve outcomes. Systems thinking and simulation modeling (systems science) provide a set of approaches and techniques to aid decision makers in using the best available data and research evidence to guide implementation planning in the context of such complexity. This commentary summarizes current challenges in CRC prevention and control, discusses the status of the evidence base to guide the selection and implementation of multilevel CRC screening interventions, and describes a multi-institution project to showcase how systems science can be leveraged to optimize selection and implementation of CRC screening interventions in diverse populations and contexts.

  11. Polygenic susceptibility to testicular cancer: implications for personalised health care.

    PubMed

    Litchfield, Kevin; Mitchell, Jonathan S; Shipley, Janet; Huddart, Robert; Rajpert-De Meyts, Ewa; Skakkebæk, Niels E; Houlston, Richard S; Turnbull, Clare

    2015-11-17

    The increasing incidence of testicular germ cell tumour (TGCT) combined with its strong heritable basis suggests that stratified screening for the early detection of TGCT may be clinically useful. We modelled the efficiency of such a personalised screening approach, based on genetic risk profiling in combination with other diagnostic tools. We compared the number of cases potentially detectable in the population under a number of screening models. The polygenic risk scoring (PRS) model was assumed to have a log-normal relative risk distribution across the 19 currently known TGCT susceptibility variants. The diagnostic performance of testicular biopsy and non-invasive semen analysis was also assessed, within a simulated combined screening programme. The area under the curve for the TGCT PRS model was 0.72 with individuals in the top 1% of the PRS having a nine-fold increased TGCT risk compared with the population median. Results from population-screening simulations only achieved a maximal positive predictive value (PPV) of 60%, highlighting broader clinical factors that challenge such strategies, not least the rare nature of TGCT. In terms of future improvements, heritability estimates suggest that a significant number of additional genetic risk factors for TGCT remain to be discovered, identification of which would potentially yield improvement of the PPV to 80-90%. While personalised screening models may offer enhanced TGCT risk discrimination, presently the case for population-level testing is not compelling. However, future advances, such as more routine generation of whole genome data is likely to alter the landscape. More targeted screening programs may plausibly then offer clinical benefit, particularly given the significant survivorship issues associated with the successful treatment of TGCT.

  12. 10 CFR 960.3-2 - Siting process.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Siting process. 960.3-2 Section 960.3-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2 Siting process. The siting process begins with site screening...

  13. 10 CFR 960.3-2 - Siting process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Siting process. 960.3-2 Section 960.3-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2 Siting process. The siting process begins with site screening...

  14. 10 CFR 960.3-2 - Siting process.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Siting process. 960.3-2 Section 960.3-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2 Siting process. The siting process begins with site screening...

  15. 10 CFR 960.3-2 - Siting process.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Siting process. 960.3-2 Section 960.3-2 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-2 Siting process. The siting process begins with site screening...

  16. Configuration evaluation and criteria plan. Volume 2: Evaluation critera plan (preliminary). Space Transportation Main Engine (STME) configuration study

    NASA Technical Reports Server (NTRS)

    Bair, E. K.

    1986-01-01

    The unbiased selection of the Space Transportation Main Engine (STME) configuration requires that the candidate engines be evaluated against a predetermined set of criteria which must be properly weighted to emphasize critical requirements defined prior to the actual evaluation. The evaluation and selection process involves the following functions: (1) determining if a configuration can satisfy basic STME requirements (yes/no); (2) defining the evaluation criteria; (3) selecting the criteria relative importance or weighting; (4) determining the weighting sensitivities; and (5) establishing a baseline for engine evaluation. The criteria weighting and sensitivities are cost related and are based on mission models and vehicle requirements. The evaluation process is used as a coarse screen to determine the candidate engines for the parametric studies and as a fine screen to determine concept(s) for conceptual design. The criteria used for the coarse and fine screen evaluation process is shown. The coarse screen process involves verifying that the candidate engines can meet the yes/no screening requirements and a semi-subjective quantitative evaluation. The fine screen engines have to meet all of the yes/no screening gates and are then subjected to a detailed evaluation or assessment using the quantitative cost evaluation processes. The option exists for re-cycling a concept through the quantitative portion of the screening and allows for some degree of optimization. The basic vehicle is a two stage LOX/HC, LOX/LH2 parallel burn vehicle capable of placing 150,000 lbs in low Earth orbit (LEO).

  17. NETL CO 2 Storage prospeCtive Resource Estimation Excel aNalysis (CO 2-SCREEN) User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanguinito, Sean M.; Goodman, Angela; Levine, Jonathan

    This user’s manual guides the use of the National Energy Technology Laboratory’s (NETL) CO 2 Storage prospeCtive Resource Estimation Excel aNalysis (CO 2-SCREEN) tool, which was developed to aid users screening saline formations for prospective CO 2 storage resources. CO 2- SCREEN applies U.S. Department of Energy (DOE) methods and equations for estimating prospective CO 2 storage resources for saline formations. CO2-SCREEN was developed to be substantive and user-friendly. It also provides a consistent method for calculating prospective CO 2 storage resources that allows for consistent comparison of results between different research efforts, such as the Regional Carbon Sequestration Partnershipsmore » (RCSP). CO 2-SCREEN consists of an Excel spreadsheet containing geologic inputs and outputs, linked to a GoldSim Player model that calculates prospective CO 2 storage resources via Monte Carlo simulation.« less

  18. Case study: technology initiative led to advanced lead optimization screening processes at Bristol-Myers Squibb, 2004-2009.

    PubMed

    Zhang, Litao; Cvijic, Mary Ellen; Lippy, Jonathan; Myslik, James; Brenner, Stephen L; Binnie, Alastair; Houston, John G

    2012-07-01

    In this paper, we review the key solutions that enabled evolution of the lead optimization screening support process at Bristol-Myers Squibb (BMS) between 2004 and 2009. During this time, technology infrastructure investment and scientific expertise integration laid the foundations to build and tailor lead optimization screening support models across all therapeutic groups at BMS. Together, harnessing advanced screening technology platforms and expanding panel screening strategy led to a paradigm shift at BMS in supporting lead optimization screening capability. Parallel SAR and structure liability relationship (SLR) screening approaches were first and broadly introduced to empower more-rapid and -informed decisions about chemical synthesis strategy and to broaden options for identifying high-quality drug candidates during lead optimization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. An RF Sensor for Gauging Screen-Channel Liquid Acquisition Devices for Cryogenic Propellants

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Metzger, Scott; Asipauskas, Marius

    2014-01-01

    A key requirement of a low-gravity screen-channel liquid acquisition device (LAD) is the need to retain 100% liquid in the channel in response to propellant outflow and spacecraft maneuvers. The point at which a screen-channel LAD ingests vapor is known as breakdown, and can be measured several different ways such as: visual observation of bubbles in the LAD channel outflow; a sudden change in pressure drop between the propellant tank and LAD sump outlet; or, an indication by wet-dry sensors placed in the LAD channel or outflow stream. Here we describe a new type of sensor for gauging a screen-channel LAD, the Radio Frequency Mass Gauge (RFMG). The RFMG measures the natural electromagnetic modes of the screen-channel LAD, which is very similar to an RF waveguide, to determine the amount of propellant in the channel. By monitoring several of the RF modes, we show that the RFMG acts as a global sensor of the LAD channel propellant fill level, and enables detection of LAD breakdown even in the absence of outflow. This paper presents the theory behind the RFMG-LAD sensor, measurements and simulations of the RF modes of a LAD channel, and RFMG detection of LAD breakdown in a channel using a simulant fluid during inverted outflow and long-term stability tests.

  20. Effectiveness and cost-effectiveness of blood pressure screening in adolescents in the United States.

    PubMed

    Wang, Y Claire; Cheung, Angela M; Bibbins-Domingo, Kirsten; Prosser, Lisa A; Cook, Nancy R; Goldman, Lee; Gillman, Matthew W

    2011-02-01

    To compare the long-term effectiveness and cost-effectiveness of 3 approaches to managing elevated blood pressure (BP) in adolescents in the United States: no intervention, "screen-and-treat," and population-wide strategies to lower the entire BP distribution. We used a simulation model to combine several data sources to project the lifetime costs and cardiovascular outcomes for a cohort of 15-year-old U.S. adolescents under different BP approaches and conducted cost-effectiveness analysis. We obtained BP distributions from the National Health and Nutrition Examination Survey 1999-2004 and used childhood-to-adult longitudinal correlation analyses to simulate the tracking of BP. We then used the coronary heart disease policy model to estimate lifetime coronary heart disease events, costs, and quality-adjusted life years (QALY). Among screen-and-treat strategies, finding and treating the adolescents at highest risk (eg, left ventricular hypertrophy) was most cost-effective ($18000/QALY [boys] and $47000/QALY [girls]). However, all screen-and-treat strategies were dominated by population-wide strategies such as salt reduction (cost-saving [boys] and $650/QALY [girls]) and increasing physical education ($11000/QALY [boys] and $35000/QALY [girls]). Routine adolescents BP screening is moderately effective, but population-based BP interventions with broader reach could potentially be less costly and more effective for early cardiovascular disease prevention and should be implemented in parallel. Copyright © 2011 Mosby, Inc. All rights reserved.

  1. Poisson Statistics of Combinatorial Library Sampling Predict False Discovery Rates of Screening

    PubMed Central

    2017-01-01

    Microfluidic droplet-based screening of DNA-encoded one-bead-one-compound combinatorial libraries is a miniaturized, potentially widely distributable approach to small molecule discovery. In these screens, a microfluidic circuit distributes library beads into droplets of activity assay reagent, photochemically cleaves the compound from the bead, then incubates and sorts the droplets based on assay result for subsequent DNA sequencing-based hit compound structure elucidation. Pilot experimental studies revealed that Poisson statistics describe nearly all aspects of such screens, prompting the development of simulations to understand system behavior. Monte Carlo screening simulation data showed that increasing mean library sampling (ε), mean droplet occupancy, or library hit rate all increase the false discovery rate (FDR). Compounds identified as hits on k > 1 beads (the replicate k class) were much more likely to be authentic hits than singletons (k = 1), in agreement with previous findings. Here, we explain this observation by deriving an equation for authenticity, which reduces to the product of a library sampling bias term (exponential in k) and a sampling saturation term (exponential in ε) setting a threshold that the k-dependent bias must overcome. The equation thus quantitatively describes why each hit structure’s FDR is based on its k class, and further predicts the feasibility of intentionally populating droplets with multiple library beads, assaying the micromixtures for function, and identifying the active members by statistical deconvolution. PMID:28682059

  2. Investigation of the inhibitors of histone-lysine N-methyltransferase SETD2 for acute lymphoblastic leukaemia from traditional Chinese medicine.

    PubMed

    Chang, Y-L; Chen, H-Y; Chen, K-B; Chen, K-C; Chang, K-L; Chang, P-C; Chang, T-T; Chen, Y-C

    2016-07-01

    Leukaemia is the leading cause of childhood malignancies. Recent research indicates that the SETD2 gene is associated with acute lymphoblastic leukaemia. This study aims to identify potential lead compounds from traditional Chinese medicine (TCM) using virtual screening for SET domain containing 2 (SETD2) protein against acute lymphoblastic leukaemia. Docking simulation was performed to determine potential candidates which obtain suitable docking poses in the binding domain of the SETD2 protein. We also performed molecular dynamics (MD) simulation to investigate the stability of docking poses of SETD2 protein complexes with the top three TCM candidates and a control. According to the results of docking and MD simulation, coniselin and coniferyl ferulate have high binding affinity and stable interactions with the SETD2 protein. Coniselin is isolated from the alcoholic extract of Comiselinum vaginatum Thell. Coniferyl ferulate can be isolated from Angelica sinensis, Poria cocos (Schw.) Wolf, and Notopterygium forbesii. Although S-adenosyl-L-homocysteine has more stable interactions with key residues in the binding domain than coniselin and coniferyl ferulate during MD simulation, the TCM compounds coniselin and coniferyl ferulate are still potential candidates as lead compounds for further study in the drug development process with the SETD2 protein against acute lymphoblastic leukaemia.

  3. Molecular Dynamics based on a Generalized Born solvation model: application to protein folding

    NASA Astrophysics Data System (ADS)

    Onufriev, Alexey

    2004-03-01

    An accurate description of the aqueous environment is essential for realistic biomolecular simulations, but may become very expensive computationally. We have developed a version of the Generalized Born model suitable for describing large conformational changes in macromolecules. The model represents the solvent implicitly as continuum with the dielectric properties of water, and include charge screening effects of salt. The computational cost associated with the use of this model in Molecular Dynamics simulations is generally considerably smaller than the cost of representing water explicitly. Also, compared to traditional Molecular Dynamics simulations based on explicit water representation, conformational changes occur much faster in implicit solvation environment due to the absence of viscosity. The combined speed-up allow one to probe conformational changes that occur on much longer effective time-scales. We apply the model to folding of a 46-residue three helix bundle protein (residues 10-55 of protein A, PDB ID 1BDD). Starting from an unfolded structure at 450 K, the protein folds to the lowest energy state in 6 ns of simulation time, which takes about a day on a 16 processor SGI machine. The predicted structure differs from the native one by 2.4 A (backbone RMSD). Analysis of the structures seen on the folding pathway reveals details of the folding process unavailable form experiment.

  4. Classical and quantum simulations of warm dense carbon

    NASA Astrophysics Data System (ADS)

    Whitley, Heather; Sanchez, David; Hamel, Sebastien; Correa, Alfredo; Benedict, Lorin

    We have applied classical and DFT-based molecular dynamics (MD) simulations to study the equation of state of carbon in the warm dense matter regime (ρ = 3.7 g/cc, 0.86 eV

  5. Identification of small molecule inhibitors of cytokinesis and single cell wound repair

    PubMed Central

    Clark, Andrew G.; Sider, Jenny R.; Verbrugghe, Koen; Fenteany, Gabriel; von Dassow, George; Bement, William M.

    2013-01-01

    Screening of small molecule libraries offers the potential to identify compounds that inhibit specific biological processes and, ultimately, to identify macromolecules that are important players in such processes. To date, however, most screens of small molecule libraries have focused on identification of compounds that inhibit known proteins or particular steps in a given process, and have emphasized automated primary screens. Here we have used “low tech” in vivo primary screens to identify small molecules that inhibit both cytokinesis and single cell wound repair, two complex cellular processes that possess many common features. The “diversity set”, an ordered array of 1990 compounds available from the National Cancer Institute, was screened in parallel to identify compounds that inhibit cytokinesis in D. excentricus (sand dollar) embryos and single cell wound repair in X. laevis (frog) oocytes. Two small molecules were thus identified: Sph1 and Sph2. Sph1 reduces Rho activation in wound repair and suppresses formation of the spindle midzone during cytokinesis. Sph2 also reduces Rho activation in wound repair and may inhibit cytokinesis by blocking membrane fusion. The results identify two small molecules of interest for analysis of wound repair and cytokinesis, reveal that these processes are more similar than often realized and reveal the potential power of low tech screens of small molecule libraries for analysis of complex cellular processes. PMID:23125193

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winther, Hans A.; Koyama, Kazuya; Wright, Bill S.

    We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f ( R ) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative tomore » ΛCDM even when using a fairly small number of COLA time steps.« less

  7. What is the impact of multidisciplinary team simulation training on team performance and efficiency of patient care? An integrative review.

    PubMed

    Murphy, Margaret; Curtis, Kate; McCloughen, Andrea

    2016-02-01

    In hospital emergencies require a structured team approach to facilitate simultaneous input into immediate resuscitation, stabilisation and prioritisation of care. Efforts to improve teamwork in the health care context include multidisciplinary simulation-based resuscitation team training, yet there is limited evidence demonstrating the value of these programmes.(1) We aimed to determine the current state of knowledge about the key components and impacts of multidisciplinary simulation-based resuscitation team training by conducting an integrative review of the literature. A systematic search using electronic (three databases) and hand searching methods for primary research published between 1980 and 2014 was undertaken; followed by a rigorous screening and quality appraisal process. The included articles were assessed for similarities and differences; the content was grouped and synthesised to form three main categories of findings. Eleven primary research articles representing a variety of simulation-based resuscitation team training were included. Five studies involved trauma teams; two described resuscitation teams in the context of intensive care and operating theatres and one focused on the anaesthetic team. Simulation is an effective method to train resuscitation teams in the management of crisis scenarios and has the potential to improve team performance in the areas of communication, teamwork and leadership. Team training improves the performance of the resuscitation team in simulated emergency scenarios. However, the transferability of educational outcomes to the clinical setting needs to be more clearly demonstrated. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  8. Fatigue failure of regenerator screens in a high frequency Stirling engine

    NASA Technical Reports Server (NTRS)

    Hull, David R.; Alger, Donald L.; Moore, Thomas J.; Scheuermann, Coulson M.

    1988-01-01

    Failure of Stirling Space Power Demonstrator Engine (SPDE) regenerator screens was investigated. After several hours of operation the SPDE was shut down for inspection and on removing the regenator screens, debris of unknown origin was discovered along with considerable cracking of the screens in localized areas. Metallurgical analysis of the debris determined it to be cracked-off-deformed pieces of the 41 micron thickness Type 304 stainless steel wire screen. Scanning electron microscopy of the cracked screens revealed failures occurring at wire crossovers and fatigue striations on the fracture surface of the wires. Thus, the screen failure can be characterized as a fatigue failure of the wires. The crossovers were determined to contain 30 percent reduction in wire thickness and a highly worked microstructure occurring from the manufacturing process of the wire screens. Later it was found that reduction in wire thickness occurred because the screen fabricator had subjected it to a light cold-roll process after weaving. Installation of this screen left a clearance in the regenerator allowing the screens to move. The combined effects of the reduction in wire thickness, stress concentration (caused by screen movement), and highly worked microstructure at the wire crossovers led to the fatigue failure of the screens.

  9. Inclusive intake screening: shaping medical problems into specialist-appropriate cases.

    PubMed

    Jean, Yvette A

    2004-05-01

    This paper examines medical intake screening through the process of making appointments with medical specialists. By employing a multi-method, qualitative approach, it shows how decisions to schedule doctors' appointments are based on medical knowledge about physicians' specialties and specific organisational practices. It draws on insights from first-contact interactions between clients and institutional gatekeepers to enrich our understanding of intake screening. In relation to gatekeeping, rationing commonly gets framed as restrictive screening practices, with a preference for denying or limiting access to treatment. Restrictive screening practices are typically organised to elicit a narrow range of information ('facts') relevant to specific eligibility criteria; whereas inclusive intake screening tends to involve less scripted, more complex and open-ended interactional exchanges between workers and clients, wherein workers help clients frame their claims in ways that will increase their chances of getting accepted. Front-office workers hold a preference for inclusive intake screening, a preference that is undergirded by the referral-driven nature of this stage of patient processing, and by a work environment that favours inclusive screening. This finding builds on the literature within medical sociology, but also extends our understanding of frontline decision-making and the distribution of resources within a variety of people-processing institutions.

  10. Discovery of novel human acrosin inhibitors by virtual screening

    NASA Astrophysics Data System (ADS)

    Liu, Xuefei; Dong, Guoqiang; Zhang, Jue; Qi, Jingjing; Zheng, Canhui; Zhou, Youjun; Zhu, Ju; Sheng, Chunquan; Lü, Jiaguo

    2011-10-01

    Human acrosin is an attractive target for the discovery of male contraceptive drugs. For the first time, structure-based drug design was applied to discover structurally diverse human acrosin inhibitors. A parallel virtual screening strategy in combination with pharmacophore-based and docking-based techniques was used to screen the SPECS database. From 16 compounds selected by virtual screening, a total of 10 compounds were found to be human acrosin inhibitors. Compound 2 was found to be the most potent hit (IC50 = 14 μM) and its binding mode was investigated by molecular dynamics simulations. The hit interacted with human acrosin mainly through hydrophobic and hydrogen-bonding interactions, which provided a good starting structure for further optimization studies.

  11. International Communique. . . About Information, People, Places, Things. Printing Processes Issue P-8B.

    ERIC Educational Resources Information Center

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    Focusing on the production and utilization of printing processes in constructing effective visuals for teaching, this bulletin contains articles on the silk screening stencil process, use of a similar process with a portable mimeograph, and the hectograph process. The first article lists equipment needed to make a silk screen, steps in building…

  12. Accuracy of flowmeters measuring horizontal groundwater flow in an unconsolidated aquifer simulator.

    USGS Publications Warehouse

    Bayless, E.R.; Mandell, Wayne A.; Ursic, James R.

    2011-01-01

    Borehole flowmeters that measure horizontal flow velocity and direction of groundwater flow are being increasingly applied to a wide variety of environmental problems. This study was carried out to evaluate the measurement accuracy of several types of flowmeters in an unconsolidated aquifer simulator. Flowmeter response to hydraulic gradient, aquifer properties, and well-screen construction was measured during 2003 and 2005 at the U.S. Geological Survey Hydrologic Instrumentation Facility in Bay St. Louis, Mississippi. The flowmeters tested included a commercially available heat-pulse flowmeter, an acoustic Doppler flowmeter, a scanning colloidal borescope flowmeter, and a fluid-conductivity logging system. Results of the study indicated that at least one flowmeter was capable of measuring borehole flow velocity and direction in most simulated conditions. The mean error in direction measurements ranged from 15.1 degrees to 23.5 degrees and the directional accuracy of all tested flowmeters improved with increasing hydraulic gradient. The range of Darcy velocities examined in this study ranged 4.3 to 155 ft/d. For many plots comparing the simulated and measured Darcy velocity, the squared correlation coefficient (r2) exceeded 0.92. The accuracy of velocity measurements varied with well construction and velocity magnitude. The use of horizontal flowmeters in environmental studies appears promising but applications may require more than one type of flowmeter to span the range of conditions encountered in the field. Interpreting flowmeter data from field settings may be complicated by geologic heterogeneity, preferential flow, vertical flow, constricted screen openings, and nonoptimal screen orientation.

  13. Semiautomated Sample Preparation for Protein Stability and Formulation Screening via Buffer Exchange.

    PubMed

    Ying, William; Levons, Jaquan K; Carney, Andrea; Gandhi, Rajesh; Vydra, Vicky; Rubin, A Erik

    2016-06-01

    A novel semiautomated buffer exchange process workflow was developed to enable efficient early protein formulation screening. An antibody fragment protein, BMSdab, was used to demonstrate the workflow. The process afforded 60% to 80% cycle time and scientist time savings and significant material efficiencies. These efficiencies ultimately facilitated execution of this stability work earlier in the drug development process, allowing this tool to inform the developability of potential candidates for development from a formulation perspective. To overcome the key technical challenges, the protein solution was buffer-exchanged by centrifuge filtration into formulations for stability screening in a 96-well plate with an ultrafiltration membrane, leveraging automated liquid handling and acoustic volume measurements to allow several cycles of exchanges. The formulations were transferred into a vacuum manifold and sterile filtered into a rack holding 96 glass vials. The vials were sealed with a capmat of individual caps and placed in stability stations. Stability of the samples prepared by this process and by the standard process was demonstrated to be comparable. This process enabled screening a number of formulations of a protein at an early pharmaceutical development stage with a short sample preparation time. © 2015 Society for Laboratory Automation and Screening.

  14. N-Screen Aware Multicriteria Hybrid Recommender System Using Weight Based Subspace Clustering

    PubMed Central

    Ullah, Farman; Lee, Sungchang

    2014-01-01

    This paper presents a recommender system for N-screen services in which users have multiple devices with different capabilities. In N-screen services, a user can use various devices in different locations and time and can change a device while the service is running. N-screen aware recommendation seeks to improve the user experience with recommended content by considering the user N-screen device attributes such as screen resolution, media codec, remaining battery time, and access network and the user temporal usage pattern information that are not considered in existing recommender systems. For N-screen aware recommendation support, this work introduces a user device profile collaboration agent, manager, and N-screen control server to acquire and manage the user N-screen devices profile. Furthermore, a multicriteria hybrid framework is suggested that incorporates the N-screen devices information with user preferences and demographics. In addition, we propose an individual feature and subspace weight based clustering (IFSWC) to assign different weights to each subspace and each feature within a subspace in the hybrid framework. The proposed system improves the accuracy, precision, scalability, sparsity, and cold start issues. The simulation results demonstrate the effectiveness and prove the aforementioned statements. PMID:25152921

  15. Introducing Bayesian thinking to high-throughput screening for false-negative rate estimation.

    PubMed

    Wei, Xin; Gao, Lin; Zhang, Xiaolei; Qian, Hong; Rowan, Karen; Mark, David; Peng, Zhengwei; Huang, Kuo-Sen

    2013-10-01

    High-throughput screening (HTS) has been widely used to identify active compounds (hits) that bind to biological targets. Because of cost concerns, the comprehensive screening of millions of compounds is typically conducted without replication. Real hits that fail to exhibit measurable activity in the primary screen due to random experimental errors will be lost as false-negatives. Conceivably, the projected false-negative rate is a parameter that reflects screening quality. Furthermore, it can be used to guide the selection of optimal numbers of compounds for hit confirmation. Therefore, a method that predicts false-negative rates from the primary screening data is extremely valuable. In this article, we describe the implementation of a pilot screen on a representative fraction (1%) of the screening library in order to obtain information about assay variability as well as a preliminary hit activity distribution profile. Using this training data set, we then developed an algorithm based on Bayesian logic and Monte Carlo simulation to estimate the number of true active compounds and potential missed hits from the full library screen. We have applied this strategy to five screening projects. The results demonstrate that this method produces useful predictions on the numbers of false negatives.

  16. Optimization of groundwater sampling approach under various hydrogeological conditions using a numerical simulation model

    NASA Astrophysics Data System (ADS)

    Qi, Shengqi; Hou, Deyi; Luo, Jian

    2017-09-01

    This study presents a numerical model based on field data to simulate groundwater flow in both the aquifer and the well-bore for the low-flow sampling method and the well-volume sampling method. The numerical model was calibrated to match well with field drawdown, and calculated flow regime in the well was used to predict the variation of dissolved oxygen (DO) concentration during the purging period. The model was then used to analyze sampling representativeness and sampling time. Site characteristics, such as aquifer hydraulic conductivity, and sampling choices, such as purging rate and screen length, were found to be significant determinants of sampling representativeness and required sampling time. Results demonstrated that: (1) DO was the most useful water quality indicator in ensuring groundwater sampling representativeness in comparison with turbidity, pH, specific conductance, oxidation reduction potential (ORP) and temperature; (2) it is not necessary to maintain a drawdown of less than 0.1 m when conducting low flow purging. However, a high purging rate in a low permeability aquifer may result in a dramatic decrease in sampling representativeness after an initial peak; (3) the presence of a short screen length may result in greater drawdown and a longer sampling time for low-flow purging. Overall, the present study suggests that this new numerical model is suitable for describing groundwater flow during the sampling process, and can be used to optimize sampling strategies under various hydrogeological conditions.

  17. Effective screening length and quasiuniversality for the restricted primitive model of an electrolyte solution.

    PubMed

    Janecek, Jirí; Netz, Roland R

    2009-02-21

    Monte Carlo simulations for the restricted primitive model of an electrolyte solution above the critical temperature are performed at a wide range of concentrations and temperatures. Thermodynamic properties such as internal energy, osmotic coefficient, activity coefficient, as well as spatial correlation functions are determined. These observables are used to investigate whether quasiuniversality in terms of an effective screening length exists, similar to the role played by the effective electron mass in solid-state physics. To that end, an effective screening length is extracted from the asymptotic behavior of the Fourier-transformed charge-correlation function and plugged into the Debye-Huckel limiting expressions for various thermodynamic properties. Comparison with numerical results is favorable, suggesting that correlation and other effects not captured on the Debye-Huckel limiting level can be successfully incorporated by a single effective parameter while keeping the functional form of Debye-Huckel expressions. We also compare different methods to determine mean ionic activity coefficient in molecular simulations and check the internal consistency of the numerical data.

  18. Pharmacophore-based virtual screening, molecular docking, molecular dynamics simulation, and biological evaluation for the discovery of novel BRD4 inhibitors.

    PubMed

    Yan, Guoyi; Hou, Manzhou; Luo, Jiang; Pu, Chunlan; Hou, Xueyan; Lan, Suke; Li, Rui

    2018-02-01

    Bromodomain is a recognition module in the signal transduction of acetylated histone. BRD4, one of the bromodomain members, is emerging as an attractive therapeutic target for several types of cancer. Therefore, in this study, an attempt has been made to screen compounds from an integrated database containing 5.5 million compounds for BRD4 inhibitors using pharmacophore-based virtual screening, molecular docking, and molecular dynamics simulations. As a result, two molecules of twelve hits were found to be active in bioactivity tests. Among the molecules, compound 5 exhibited potent anticancer activity, and the IC 50 values against human cancer cell lines MV4-11, A375, and HeLa were 4.2, 7.1, and 11.6 μm, respectively. After that, colony formation assay, cell cycle, apoptosis analysis, wound-healing migration assay, and Western blotting were carried out to learn the bioactivity of compound 5. © 2017 John Wiley & Sons A/S.

  19. In silico screening of drug-membrane thermodynamics reveals linear relations between bulk partitioning and the potential of mean force

    NASA Astrophysics Data System (ADS)

    Menichetti, Roberto; Kanekal, Kiran H.; Kremer, Kurt; Bereau, Tristan

    2017-09-01

    The partitioning of small molecules in cell membranes—a key parameter for pharmaceutical applications—typically relies on experimentally available bulk partitioning coefficients. Computer simulations provide a structural resolution of the insertion thermodynamics via the potential of mean force but require significant sampling at the atomistic level. Here, we introduce high-throughput coarse-grained molecular dynamics simulations to screen thermodynamic properties. This application of physics-based models in a large-scale study of small molecules establishes linear relationships between partitioning coefficients and key features of the potential of mean force. This allows us to predict the structure of the insertion from bulk experimental measurements for more than 400 000 compounds. The potential of mean force hereby becomes an easily accessible quantity—already recognized for its high predictability of certain properties, e.g., passive permeation. Further, we demonstrate how coarse graining helps reduce the size of chemical space, enabling a hierarchical approach to screening small molecules.

  20. Screening of Probiotic Activities of Lactobacilli Strains Isolated from Traditional Tibetan Qula, A Raw Yak Milk Cheese

    PubMed Central

    Zhang, Bei; Wang, Yanping; Tan, Zhongfang; Li, Zongwei; Jiao, Zhen; Huang, Qunce

    2016-01-01

    In this study, 69 lactobacilli isolated from Tibetan Qula, a raw yak milk cheese, were screened for their potential use as probiotics. The isolates were tested in terms of: Their ability to survive at pH 2.0, pH 3.0, and in the presence of 0.3% bile salts; tolerance of simulated gastric and intestinal juices; antimicrobial activity; sensitivity against 11 specific antibiotics; and their cell surface hydrophobicity. The results show that out of the 69 strains, 29 strains (42%) had survival rates above 90% after 2 h of incubation at pH values of 2.0 or 3.0. Of these 29 strains, 21 strains showed a tolerance for 0.3% bile salt. Incubation of these 21 isolates in simulated gastrointestinal fluid for 3 h revealed survival rates above 90%; the survival rate for 20 of these isolates remained above 90% after 4 h of incubation in simulated intestinal fluid. The viable counts of bacteria after incubation in simulated gastric fluid for 3 h and simulated intestinal fluid for 4 h were both significantly different compared with the counts at 0 h (p<0.001). Further screening performed on the above 20 isolates indicated that all 20 lactobacilli strains exhibited inhibitory activity against Micrococcus luteus ATCC 4698, Bacillus subtilis ATCC 6633, Listeria monocytogenes ATCC 19115, and Salmonella enterica ATCC 43971. Moreover, all of the strains were resistant to vancomycin and streptomycin. Of the 20 strains, three were resistant to all 11 elected antibiotics (ciprofloxacin, erythromycin, tetracycline, penicillin G, ampicillin, streptomycin, polymyxin B, vancomycin, chloramphenicol, rifampicin, and gentamicin) in this study, and five were sensitive to more than half of the antibiotics. Additionally, the cell surface hydrophobicity of seven of the 20 lactobacilli strains was above 70%, including strains Lactobacillus casei 1,133 (92%), Lactobacillus plantarum 1086-1 (82%), Lactobacillus casei 1089 (81%), Lactobacillus casei 1138 (79%), Lactobacillus buchneri 1059 (78%), Lactobacillus plantarum1141 (75%), and Lactobacillus plantarum 1197 (71%). Together, these results suggest that these seven strains are good probiotic candidates, and that tolerance against bile acid, simulated gastric and intestinal juices, antimicrobial activity, antibiotic resistance, and cell surface hydrophobicity could be adopted for preliminary screening of potentially probiotic lactobacilli. PMID:26954218

  1. A model to assess the feasibility of shifting reaction equilibrium by acetone removal in the transamination of ketones using 2-propylamine.

    PubMed

    Tufvesson, Pär; Bach, Christian; Woodley, John M

    2014-02-01

    Acetone removal by evaporation has been proposed as a simple and cheap way to shift the equilibrium in the biocatalytic asymmetric synthesis of optically pure chiral amines, when 2-propylamine is used as the amine donor. However, dependent on the system properties, this may or may not be a suitable strategy. To avoid excessive laboratory work a model was used to assess the process feasibility. The results from the current study show that a simple model of the acetone removal dependence on temperature and sparging gas flowrate can be developed and fits the experimental data well. The model for acetone removal was then coupled to a simple model for biocatalyst kinetics and also for loss of substrate ketone by evaporation. The three models were used to simulate the effects of varying the critical process parameters and reaction equilibrium constants (K eq) as well as different substrate ketone volatilities (Henry's constant). The simulations were used to estimate the substrate losses and also the maximum yield that could be expected. The approach was seen to give a clear indication for which target amines the acetone evaporation strategy would be feasible and for which amines it would not. The study also shows the value of a modeling approach in conceptual process design prior to entering a biocatalyst screening or engineering program to assess the feasibility of a particular process strategy for a given target product. © 2013 Wiley Periodicals, Inc.

  2. Regional Evaluation of the Severity-Based Stroke Triage Algorithm for Emergency Medical Services Using Discrete Event Simulation.

    PubMed

    Bogle, Brittany M; Asimos, Andrew W; Rosamond, Wayne D

    2017-10-01

    The Severity-Based Stroke Triage Algorithm for Emergency Medical Services endorses routing patients with suspected large vessel occlusion acute ischemic strokes directly to endovascular stroke centers (ESCs). We sought to evaluate different specifications of this algorithm within a region. We developed a discrete event simulation environment to model patients with suspected stroke transported according to algorithm specifications, which varied by stroke severity screen and permissible additional transport time for routing patients to ESCs. We simulated King County, Washington, and Mecklenburg County, North Carolina, distributing patients geographically into census tracts. Transport time to the nearest hospital and ESC was estimated using traffic-based travel times. We assessed undertriage, overtriage, transport time, and the number-needed-to-route, defined as the number of patients enduring additional transport to route one large vessel occlusion patient to an ESC. Undertriage was higher and overtriage was lower in King County compared with Mecklenburg County for each specification. Overtriage variation was primarily driven by screen (eg, 13%-55% in Mecklenburg County and 10%-40% in King County). Transportation time specifications beyond 20 minutes increased overtriage and decreased undertriage in King County but not Mecklenburg County. A low- versus high-specificity screen routed 3.7× more patients to ESCs. Emergency medical services spent nearly twice the time routing patients to ESCs in King County compared with Mecklenburg County. Our results demonstrate how discrete event simulation can facilitate informed decision making to optimize emergency medical services stroke severity-based triage algorithms. This is the first step toward developing a mature simulation to predict patient outcomes. © 2017 American Heart Association, Inc.

  3. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic Conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    USGS Publications Warehouse

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-01-01

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative to volcanic-rock units is exemplified by the large difference in their estimated maximum hydraulic conductivity; 4,000 and 400 feet per day, respectively. Simulated minimum estimates of hydraulic conductivity are inexact and represent the lower detection limit of the method. Minimum thicknesses of lithologic intervals also were defined for comparing AnalyzeHOLE results to hydraulic properties in regional ground-water flow models.

  4. Adaptive Gaussian mixture models for pre-screening in GPR data

    NASA Astrophysics Data System (ADS)

    Torrione, Peter; Morton, Kenneth, Jr.; Besaw, Lance E.

    2011-06-01

    Due to the large amount of data generated by vehicle-mounted ground penetrating radar (GPR) antennae arrays, advanced feature extraction and classification can only be performed on a small subset of data during real-time operation. As a result, most GPR based landmine detection systems implement "pre-screening" algorithms to processes all of the data generated by the antennae array and identify locations with anomalous signatures for more advanced processing. These pre-screening algorithms must be computationally efficient and obtain high probability of detection, but can permit a false alarm rate which might be higher than the total system requirements. Many approaches to prescreening have previously been proposed, including linear prediction coefficients, the LMS algorithm, and CFAR-based approaches. Similar pre-screening techniques have also been developed in the field of video processing to identify anomalous behavior or anomalous objects. One such algorithm, an online k-means approximation to an adaptive Gaussian mixture model (GMM), is particularly well-suited to application for pre-screening in GPR data due to its computational efficiency, non-linear nature, and relevance of the logic underlying the algorithm to GPR processing. In this work we explore the application of an adaptive GMM-based approach for anomaly detection from the video processing literature to pre-screening in GPR data. Results with the ARA Nemesis landmine detection system demonstrate significant pre-screening performance improvements compared to alternative approaches, and indicate that the proposed algorithm is a complimentary technique to existing methods.

  5. THE VIEW FROM THE TRENCHES: PART 2–TECHNICAL CONSIDERATIONS FOR EPR SCREENING

    PubMed Central

    Nicolalde, Roberto J.; Gougelet, Robert M.; Rea, Michael; Williams, Benjamin B.; Dong, Ruhong; Kmiec, Maciej M.; Lesniewski, Piotr N.; Swartz, Harold M.

    2014-01-01

    There is growing awareness of the need for methodologies that can be used retrospectively to provide the biodosimetry needed to carry out screening and triage immediately after an event in which large numbers of people have potentially received clinically significant doses of ionizing radiation. The general approach to developing such methodologies has been a technology centric one, often ignoring the system integrations considerations that are key to their effective use. In this study an integrative approach for the evaluation and development of a physical biodosimetry technology was applied based on in vivo electron paramagnetic resonance (EPR) dosimetry. The EPR measurements are based on physical changes in tissues whose magnitudes are not affected by the factors that can confound biologically-based assessments. In this study the use of a pilot simulation exercise to evaluate an experimental EPR system and gather stakeholders’ feedback early on in the development process is described. The exercise involved: ten non-irradiated participants, representatives from a local fire department; Department of Homeland Security certified exercise evaluators, EPR experts, physicians; and a human factors engineer. Stakeholders were in agreement that the EPR technology in its current state of development could be deployed for the screening of mass casualties. Furthermore, stakeholders’ recommendations will be prioritized and incorporated in future developments of the EPR technique. While the results of this exercise were aimed specifically at providing feedback for the development of EPR dosimetry for screening mass casualties, the methods and lessons learned are likely to be applicable to other biodosimetric methods. PMID:20065674

  6. WarpEngine, a Flexible Platform for Distributed Computing Implemented in the VEGA Program and Specially Targeted for Virtual Screening Studies.

    PubMed

    Pedretti, Alessandro; Mazzolari, Angelica; Vistoli, Giulio

    2018-05-21

    The manuscript describes WarpEngine, a novel platform implemented within the VEGA ZZ suite of software for performing distributed simulations both in local and wide area networks. Despite being tailored for structure-based virtual screening campaigns, WarpEngine possesses the required flexibility to carry out distributed calculations utilizing various pieces of software, which can be easily encapsulated within this platform without changing their source codes. WarpEngine takes advantages of all cheminformatics features implemented in the VEGA ZZ program as well as of its largely customizable scripting architecture thus allowing an efficient distribution of various time-demanding simulations. To offer an example of the WarpEngine potentials, the manuscript includes a set of virtual screening campaigns based on the ACE data set of the DUD-E collections using PLANTS as the docking application. Benchmarking analyses revealed a satisfactory linearity of the WarpEngine performances, the speed-up values being roughly equal to the number of utilized cores. Again, the computed scalability values emphasized that a vast majority (i.e., >90%) of the performed simulations benefit from the distributed platform presented here. WarpEngine can be freely downloaded along with the VEGA ZZ program at www.vegazz.net .

  7. PERFORMANCE DEMONSTRATIONS OF ALTERNATIVE SCREEN RECLAMATION PRODUCTS FOR SCREEN PRINTING

    EPA Science Inventory

    This project evaluated environmentally-preferable products for the screen reclamation process In screen printing during month-long demonstrations at 23 printing facilities nationwide. hrough the Environmental Protection Agency (EPA) Design for the Environment Printing Project, pr...

  8. Determinants of parental satisfaction with ultrasound hip screening in child health care.

    PubMed

    Witting, Marjon; Boere-Boonekamp, Magda M; Fleuren, Margot A H; Sakkers, Ralph J B; Ijzerman, Maarten J

    2012-06-01

    Prior research has shown ultrasound (US) screening for developmental dysplasia of the hip (DDH) in preventive child health care to be more effective than the current screening method. In the present study, 3-month-old infants were screened for DDH with US. The objective of this study was to examine parental satisfaction with the screening and determinants that affect satisfaction. Parental satisfaction was measured using a questionnaire. Independent variables included socio-demographic determinants, structure, process and outcome-related determinants and the meeting of expectations. Satisfaction with the screening was high. Parents who perceived the screener as competent, had enough time to ask questions, perceived the proceeding as fluent, perceived a low burden on their infant and whose expectations were met, were more likely to be satisfied. Satisfaction was influenced by process-related factors and not by factors related to the structure and the outcome of the screening. Good information provision before the screening and communication during the screening are means by which parental satisfaction can be influenced positively.

  9. Modification of S-Adenosyl-l-Homocysteine as Inhibitor of Nonstructural Protein 5 Methyltransferase Dengue Virus Through Molecular Docking and Molecular Dynamics Simulation

    PubMed Central

    Tambunan, Usman Sumo Friend; Nasution, Mochammad Arfin Fardiansyah; Azhima, Fauziah; Parikesit, Arli Aditya; Toepak, Erwin Prasetya; Idrus, Syarifuddin; Kerami, Djati

    2017-01-01

    Dengue fever is still a major threat worldwide, approximately threatening two-fifths of the world’s population in tropical and subtropical countries. Nonstructural protein 5 (NS5) methyltransferase enzyme plays a vital role in the process of messenger RNA capping of dengue by transferring methyl groups from S-adenosyl-l-methionine to N7 atom of the guanine bases of RNA and the RNA ribose group of 2′OH, resulting in S-adenosyl-l-homocysteine (SAH). The modification of SAH compound was screened using molecular docking and molecular dynamics simulation, along with computational ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) test. The 2 simulations were performed using Molecular Operating Environment (MOE) 2008.10 software, whereas the ADME-Tox test was performed using various software. The modification of SAH compound was done using several functional groups that possess different polarities and properties, resulting in 3460 ligands to be docked. After conducting docking simulation, we earned 3 best ligands (SAH-M331, SAH-M2696, and SAH-M1356) based on ΔGbinding and molecular interactions, which show better results than the standard ligands. Moreover, the results of molecular dynamics simulation show that the best ligands are still able to maintain the active site residue interaction with the binding site until the end of the simulation. After a series of molecular docking and molecular dynamics simulation were performed, we concluded that SAH-M1356 ligand is the most potential SAH-based compound to inhibit NS5 methyltransferase enzyme for treating dengue fever. PMID:28469408

  10. Rheology of cellulose nanofibrils/silver nanowires suspension for the production of transparent and conductive electrodes by screen printing

    NASA Astrophysics Data System (ADS)

    Hoeng, Fanny; Denneulin, Aurore; Reverdy-Bruas, Nadège; Krosnicki, Guillaume; Bras, Julien

    2017-02-01

    With the aim of processing silver nanowires-based electrodes using screen printing process, this study proposes to evaluate the suitability of cellulose nanofibrils (CNF) as a thickening agent for providing a high viscosity silver nanowires screen printing ink. Rheology of CNF suspension has been specifically investigated according to screen printing process requirements using both rotational and oscillating rheology. It has been found that CNF indeed act as a thickener and stabilizer for the silver nanowires suspension. However, the solid dominant visco-elastic behavior of the CNF suspension was not suitable for screen printing and leads to defects within the printed film. CNF visco-elastic properties were modified by adding hydroxypropylmethyl cellulose (HPMC) to the suspension. Homogeneous transparent conductive layers have been obtained when using CNF-HPMC as a matrix for silver nanowires. The screen printed layers were characterized and performances of Rsh = 12 ± 5 Ω□-1 and T%500nm = 74,8% were achieved without any additional post-treatment to the film.

  11. Hanford Waste End Effector Phase I Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, Eric J.; Hatchell, Brian K.; Mount, Jason C.

    This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulantsmore » to determine pumping rate, dilution factors, and screen fouling rate.« less

  12. Child and teacher acceptability of school-based echocardiographic screening for rheumatic heart disease in Uganda.

    PubMed

    Ploutz, Michelle; Aliku, Twalib; Bradley-Hewitt, Tyler; Dantin, Andrea; Lemley, Bethan; Gillespie, Catherine W; Lwabi, Peter; Sable, Craig; Beaton, Andrea

    2017-01-01

    Introduction Rheumatic heart disease causes substantial morbidity in children in low-income countries. School-based echocardiographic screening has been suggested as a means to identify children with latent disease; however, little is known about the experience of children and teachers participating in screenings. The aim of our study was to assess students' and teachers' experience of school-based echocardiographic screening and identify areas for improvement. Materials and methods A school-based echocardiographic screening programme was conducted in five schools in Northern Uganda in 2013. After 8 months, an age- and gender-stratified population that included 5% of the participating students and teachers completed a questionnaire via an in-person interview. Responses were reviewed by question and coded to identify key themes. A total of 255 students (mean 10.7 years; 48% male) and 35 teachers participated in our study. In total, 95% of the students and 100% of the teachers were happy to have participated in the screening; however, students reported feeling scared (35%) and nervous (48%) during the screening process. Programmatic strengths included the following: knowing one's health status, opportunity to receive treatment, and staff interactions. Although 43% of the patients did not suggest a change with open-ended questioning, concerns regarding privacy, fear of the screening process, and a desire to include others in the community were noted. Discussion School-based echocardiographic rheumatic heart disease screening was well received by students and teachers. Future programmes would likely benefit from improved pre-screening education regarding the screening process and diagnosis of rheumatic heart disease. Furthermore, education of teachers and students could improve screening perception and establish realistic expectations regarding the scope of screening.

  13. Solubility and Diffusivity: Important Metrics in the Search for the Root Cause of Light- and Elevated Temperature-Induced Degradation

    DOE PAGES

    Jensen, Mallory A.; Morishige, Ashley E.; Chakraborty, Sagnik; ...

    2018-02-02

    Light- and elevated temperature-induced degradation (LeTID) is a detrimental effect observed under operating conditions in p-type multicrystalline silicon (mc-Si) solar cells. In this paper, we employ synchrotron-based techniques to study the dissolution of precipitates due to different firing processes at grain boundaries in LeTID-affected mc-Si. The synchrotron measurements show clear dissolution of collocated metal precipitates during firing. We compare our observations with degradation behavior in the same wafers. The experimental results are complemented with process simulations to provide insight into the change in bulk point defect concentration due to firing. Several studies have proposed that LeTID is caused by metal-richmore » precipitate dissolution during contact firing, and we find that the solubility and diffusivity are promising screening metrics to identify metals that are compatible with this hypothesis. While slower and less soluble elements (e.g., Fe and Cr) are not compatible according to our simulations, the point defect concentrations of faster and more soluble elements (e.g., Cu and Ni) increase after a high-temperature firing process, primarily due to emitter segregation rather than precipitate dissolution. Finally, these results are a useful complement to lifetime spectroscopy techniques, and can be used to evaluate additional candidates in the search for the root cause of LeTID.« less

  14. Solubility and Diffusivity: Important Metrics in the Search for the Root Cause of Light- and Elevated Temperature-Induced Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Mallory A.; Morishige, Ashley E.; Chakraborty, Sagnik

    Light- and elevated temperature-induced degradation (LeTID) is a detrimental effect observed under operating conditions in p-type multicrystalline silicon (mc-Si) solar cells. In this paper, we employ synchrotron-based techniques to study the dissolution of precipitates due to different firing processes at grain boundaries in LeTID-affected mc-Si. The synchrotron measurements show clear dissolution of collocated metal precipitates during firing. We compare our observations with degradation behavior in the same wafers. The experimental results are complemented with process simulations to provide insight into the change in bulk point defect concentration due to firing. Several studies have proposed that LeTID is caused by metal-richmore » precipitate dissolution during contact firing, and we find that the solubility and diffusivity are promising screening metrics to identify metals that are compatible with this hypothesis. While slower and less soluble elements (e.g., Fe and Cr) are not compatible according to our simulations, the point defect concentrations of faster and more soluble elements (e.g., Cu and Ni) increase after a high-temperature firing process, primarily due to emitter segregation rather than precipitate dissolution. Finally, these results are a useful complement to lifetime spectroscopy techniques, and can be used to evaluate additional candidates in the search for the root cause of LeTID.« less

  15. Improved system integration for integrated gasification combined cycle (IGCC) systems.

    PubMed

    Frey, H Christopher; Zhu, Yunhua

    2006-03-01

    Integrated gasification combined cycle (IGCC) systems are a promising technology for power generation. They include an air separation unit (ASU), a gasification system, and a gas turbine combined cycle power block, and feature competitive efficiency and lower emissions compared to conventional power generation technology. IGCC systems are not yet in widespread commercial use and opportunities remain to improve system feasibility via improved process integration. A process simulation model was developed for IGCC systems with alternative types of ASU and gas turbine integration. The model is applied to evaluate integration schemes involving nitrogen injection, air extraction, and combinations of both, as well as different ASU pressure levels. The optimal nitrogen injection only case in combination with an elevated pressure ASU had the highest efficiency and power output and approximately the lowest emissions per unit output of all cases considered, and thus is a recommended design option. The optimal combination of air extraction coupled with nitrogen injection had slightly worse efficiency, power output, and emissions than the optimal nitrogen injection only case. Air extraction alone typically produced lower efficiency, lower power output, and higher emissions than all other cases. The recommended nitrogen injection only case is estimated to provide annualized cost savings compared to a nonintegrated design. Process simulation modeling is shown to be a useful tool for evaluation and screening of technology options.

  16. Physicomechanical characterization of the extrusion-spheronization process. I. Instrumentation of the extruder.

    PubMed

    Shah, R D; Kabadi, M; Pope, D G; Augsburger, L L

    1994-03-01

    Extrusion-spheronization is a popular means of producing spheres which can be coated to form a controlled-release system. In the extrusion process, stress is necessary to force a wet mass through small orifices, and as a result, frictional heat builds up at the screen. Therefore, the quantitative measurement of the screen pressure and screen temperature is described and shown to provide objective measures of extrudability. A strain gauge load cell was mounted tangentially to the screen of a Luwa EXDS-60 extruder with a specifically fabricated holder. The load cell output was calibrated in terms of pressure inside the screen with a special rubber plug system. A fast-response thermocouple was used to measure the screen temperature. Experiments with 50/50 lactose/Avicel PH101 revealed that a linear relationship exists between the amount of water used in the granulation and the screen pressure, that the percentage open area of the screen determines the rank order of the screen pressure, and that the maximal yield of 18/25-mesh cut pellets was uniquely related to the screen pressure. Also, a high degree of correlation was observed between the screen pressure and the screen temperature.

  17. Experimental Measurements of the Dynamic Electric Field Topology Associated with Magnetized RF Sheaths

    NASA Astrophysics Data System (ADS)

    Martin, E. H.; Caughman, J. B. O.; Shannon, S. C.; Klepper, C. C.; Isler, R. C.

    2013-10-01

    A major challenge facing magnetic fusion devices and the success of ITER is the design and implementation of reliable ICRH systems. The primary issue facing ICRH is the parasitic near-field which leads to an increased heat flux, sputtering, and arcing of the antenna/faraday screen. In order to aid the theoretical development of near-field physics and thus propel the design process experimental measurements are highly desired. In this work we have developed a diagnostic based on passive emission spectroscopy capable of measuring time periodic electric fields utilizing a generalized dynamic Stark effect model and a novel spectral line profile fitting package. The diagnostic was implemented on a small scale laboratory experiment designed to simulate the edge environment associated with ICRF antenna/faraday screen. The spatially and temporally resolved electric field associated with magnetized RF sheaths will be presented for two field configurations: magnetic field parallel to electric field and magnetic field perpendicular to electric field, both hydrogen and helium discharges where investigated. ORNL is managed by UT-Battelle, LCC, for the US DOE under Contract No. DE-AC05-00OR22725.

  18. Model-Free Conditional Independence Feature Screening For Ultrahigh Dimensional Data.

    PubMed

    Wang, Luheng; Liu, Jingyuan; Li, Yong; Li, Runze

    2017-03-01

    Feature screening plays an important role in ultrahigh dimensional data analysis. This paper is concerned with conditional feature screening when one is interested in detecting the association between the response and ultrahigh dimensional predictors (e.g., genetic makers) given a low-dimensional exposure variable (such as clinical variables or environmental variables). To this end, we first propose a new index to measure conditional independence, and further develop a conditional screening procedure based on the newly proposed index. We systematically study the theoretical property of the proposed procedure and establish the sure screening and ranking consistency properties under some very mild conditions. The newly proposed screening procedure enjoys some appealing properties. (a) It is model-free in that its implementation does not require a specification on the model structure; (b) it is robust to heavy-tailed distributions or outliers in both directions of response and predictors; and (c) it can deal with both feature screening and the conditional screening in a unified way. We study the finite sample performance of the proposed procedure by Monte Carlo simulations and further illustrate the proposed method through two real data examples.

  19. Cost-effectiveness of organized versus opportunistic cervical cytology screening in Hong Kong.

    PubMed

    Kim, Jane J; Leung, Gabriel M; Woo, Pauline P S; Goldie, Sue J

    2004-06-01

    To assess the cost-effectiveness of alternative cervical cancer screening strategies to inform the design and implementation of a government-sponsored population-based screening programme in Hong Kong. Cost-effectiveness analysis using a computer-based model of cervical carcinogenesis was performed. Strategies included no screening, opportunistic screening (status quo), organized screening using either conventional or liquid-based cytology conducted at different frequencies. The main outcome measures were cancer incidence reduction, years of life saved (YLS), lifetime costs and incremental cost-effectiveness ratios. Data were from local hospitals and laboratories, clinical trials, prospective studies and other published literature. Compared with no screening, a simulation of the current situation of opportunistic screening using cervical cytology produced a nearly 40 per cent reduction in the lifetime risk of cervical cancer. However, with organized screening every 3, 4 and 5 years, corresponding reductions with conventional (and liquid-based) cytology were 90.4 (92.9), 86.8 (90.2) and 83.2 per cent (87.3 per cent) compared with no screening. For all cytology-based screening strategies, opportunistic screening was more costly and less effective than an organized programme of screening every 3, 4 and 5 years. Every 3-, 4- and 5-year screening cost $12,300, $7100 and $800 per YLS, each compared with the next best alternative. Compared with the status quo of opportunistic screening, adopting a policy of organized, mass cervical screening in Hong Kong can substantially increase benefits and reduce costs.

  20. Rapid screening and identification of chemical hazards in surface and drinking water using high resolution mass spectrometry and a case-control filter.

    PubMed

    Kaserzon, Sarit L; Heffernan, Amy L; Thompson, Kristie; Mueller, Jochen F; Gomez Ramos, Maria Jose

    2017-09-01

    Access to clean, safe drinking water poses a serious challenge to regulators, and requires analytical strategies capable of rapid screening and identification of potentially hazardous chemicals, specifically in situations when threats to water quality or security require rapid investigations and potential response. This study describes a fast and efficient chemical hazard screening strategy for characterising trace levels of polar organic contaminants in water matrices, based on liquid chromatography high resolution mass spectrometry with post-acquisition 'case-control' data processing. This method allowed for a rapid response time of less than 24 h for the screening of target, suspect and non-target unknown chemicals via direct injection analysis, and a second, more sensitive analysis option requiring sample pre-concentration. The method was validated by fortifying samples with a range of pesticides, pharmaceuticals and personal care products (n = 46); with >90% of target compounds positively screened in samples at 1 ng mL -1 , and 46% at 0.1 ng mL -1 when analysed via direct injection. To simulate a contamination event samples were fortified with compounds not present in the commercial library (designated 'non-target compounds'; fipronil and fenitrothion), tentatively identified at 0.2 and 1 ng mL -1 , respectively; and a compound not included in any known commercial library or public database (designated 'unknown' compounds; 8Cl - perfluorooctanesulfonic acid), at 0.8 ng mL -1 . The method was applied to two 'real-case' scenarios: (1) the assessment of drinking water safety during a high-profile event in Brisbane, Australia; and (2) to screen treated, re-circulated drinking water and pre-treated (raw) water. The validated workflow was effective for rapid prioritisation and screening of suspect and non-target potential hazards at trace levels, and could be applied to a wide range of matrices and investigations where comparison of organic contaminants between an affected and control site and or timeframe is warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The High-Throughput Stochastic Human Exposure and Dose Simulation Model (SHEDS-HT) & The Chemical and Products Database (CPDat)

    EPA Science Inventory

    The Stochastic Human Exposure and Dose Simulation Model – High-Throughput (SHEDS-HT) is a U.S. Environmental Protection Agency research tool for predicting screening-level (low-tier) exposures to chemicals in consumer products. This course will present an overview of this m...

  2. Processing hardwood bark residues by screening

    Treesearch

    David M. Emanuel

    1978-01-01

    Most of the hardwood bark residues removed by floating-cutterhead or rosserhead debarkers can be processed into acceptable bark products by screening alone. And by prescreening bark residues, operators of bark processing plants can use smaller hammermills than otherwise are required, thus lowering investment and energy costs.

  3. CMOST: an open-source framework for the microsimulation of colorectal cancer screening strategies.

    PubMed

    Prakash, Meher K; Lang, Brian; Heinrich, Henriette; Valli, Piero V; Bauerfeind, Peter; Sonnenberg, Amnon; Beerenwinkel, Niko; Misselwitz, Benjamin

    2017-06-05

    Colorectal cancer (CRC) is a leading cause of cancer-related mortality. CRC incidence and mortality can be reduced by several screening strategies, including colonoscopy, but randomized CRC prevention trials face significant obstacles such as the need for large study populations with long follow-up. Therefore, CRC screening strategies will likely be designed and optimized based on computer simulations. Several computational microsimulation tools have been reported for estimating efficiency and cost-effectiveness of CRC prevention. However, none of these tools is publicly available. There is a need for an open source framework to answer practical questions including testing of new screening interventions and adapting findings to local conditions. We developed and implemented a new microsimulation model, Colon Modeling Open Source Tool (CMOST), for modeling the natural history of CRC, simulating the effects of CRC screening interventions, and calculating the resulting costs. CMOST facilitates automated parameter calibration against epidemiological adenoma prevalence and CRC incidence data. Predictions of CMOST were highly similar compared to a large endoscopic CRC prevention study as well as predictions of existing microsimulation models. We applied CMOST to calculate the optimal timing of a screening colonoscopy. CRC incidence and mortality are reduced most efficiently by a colonoscopy between the ages of 56 and 59; while discounted life years gained (LYG) is maximal at 49-50 years. With a dwell time of 13 years, the most cost-effective screening is at 59 years, at $17,211 discounted USD per LYG. While cost-efficiency varied according to dwell time it did not influence the optimal time point of screening interventions within the tested range. Predictions of CMOST are highly similar compared to a randomized CRC prevention trial as well as those of other microsimulation tools. This open source tool will enable health-economics analyses in for various countries, health-care scenarios and CRC prevention strategies. CMOST is freely available under the GNU General Public License at https://gitlab.com/misselwb/CMOST.

  4. Real-Time Optical Image Processing Techniques

    DTIC Science & Technology

    1988-10-31

    pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-chan- nel spatial...required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness...pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the

  5. Decision-making process of prenatal screening described by pregnant women and their partners.

    PubMed

    Wätterbjörk, Inger; Blomberg, Karin; Nilsson, Kerstin; Sahlberg-Blom, Eva

    2015-10-01

    Pregnant women are often faced with having to decide about prenatal screening for Down's syndrome. However, the decision to participate in or refrain from prenatal screening can be seen as an important decision not only for the pregnant woman but also for both the partners. The aim of this study was to explore the couples' processes of decision making about prenatal screening. A total of 37 semi-structured interviews conducted at two time points were analysed using the interpretive description. The study was carried out in Maternal health-care centres, Örebro County Council, Sweden. Fifteen couples of different ages and with different experiences of pregnancy and childbirth were interviewed. Three different patterns of decision making were identified. For the couples in 'The open and communicative decision-making process', the process was straightforward and rational, and the couples discussed the decision with each other. 'The closed and personal decision-making process' showed an immediate and non-communicative decision making where the couples decided each for themselves. The couples showing 'The searching and communicative decision-making process' followed an arduous road in deciding whether to participate or not in prenatal screening and how to cope with the result. The decision-making process was for some couples a fairly straightforward decision, while for others it was a more complex process that required a great deal of consideration. © 2013 John Wiley & Sons Ltd.

  6. Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction.

    PubMed

    Wang, H Y; Lin, C; Liu, B; Sheng, Z M; Lu, H Y; Ma, W J; Bin, J H; Schreiber, J; He, X T; Chen, J E; Zepf, M; Yan, X Q

    2014-01-01

    A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2.

  7. Three steps to gold: mechanism of protein adsorption revealed by Brownian and molecular dynamics simulations.

    PubMed

    Ozboyaci, M; Kokh, D B; Wade, R C

    2016-04-21

    The addition of three N-terminal histidines to β-lactamase inhibitor protein was shown experimentally to increase its binding potency to an Au(111) surface substantially but the binding mechanism was not resolved. Here, we propose a complete adsorption mechanism for this fusion protein by means of a multi-scale simulation approach and free energy calculations. We find that adsorption is a three-step process: (i) recognition of the surface predominantly by the histidine fusion peptide and formation of an encounter complex facilitated by a reduced dielectric screening of water in the interfacial region, (ii) adsorption of the protein on the surface and adoption of a specific binding orientation, and (iii) adaptation of the protein structure on the metal surface accompanied by induced fit. We anticipate that the mechanistic features of protein adsorption to an Au(111) surface revealed here can be extended to other inorganic surfaces and proteins and will therefore aid the design of specific protein-surface interactions.

  8. Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli

    2012-01-01

    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.

  9. Variable screening via quantile partial correlation

    PubMed Central

    Ma, Shujie; Tsai, Chih-Ling

    2016-01-01

    In quantile linear regression with ultra-high dimensional data, we propose an algorithm for screening all candidate variables and subsequently selecting relevant predictors. Specifically, we first employ quantile partial correlation for screening, and then we apply the extended Bayesian information criterion (EBIC) for best subset selection. Our proposed method can successfully select predictors when the variables are highly correlated, and it can also identify variables that make a contribution to the conditional quantiles but are marginally uncorrelated or weakly correlated with the response. Theoretical results show that the proposed algorithm can yield the sure screening set. By controlling the false selection rate, model selection consistency can be achieved theoretically. In practice, we proposed using EBIC for best subset selection so that the resulting model is screening consistent. Simulation studies demonstrate that the proposed algorithm performs well, and an empirical example is presented. PMID:28943683

  10. The design of light pipe with microstructures for touch screen

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Lu, Kan; Liu, Pengfei; Wei, Xiaona

    2010-11-01

    Touch screen has a very wide range of applications. Most of them are used in public information inquiries, for instance, service inquiries in telecommunication bureau, tax bureau, bank system, electric department, etc...Touch screen can also be used for entertainment and virtual reality applications too. Traditionally, touch screen was composed of pairs of infrared LED and correspondent receivers which were all installed in the screen frame. Arrays of LED were set in the adjacent sides of the frame of an infrared touch screen while arrays of the infrared receivers were fixed in each opposite side, so that the infrared detecting network was formed. While the infrared touch screen has some technical limitations nowadays such as the low resolution, limitations of touching methods and fault response due to environmental disturbances. The plastic material has a relatively high absorption rate for infrared light, which greatly limits the size of the touch screen. Our design uses laser diode as source and change the traditional inner structure of touch screen by using a light pipe with microstructures. The geometric parameters of the light pipe and the microstructures were obtained through equation solving. Simulation results prove that the design method for touch screen proposed in this paper could achieve high resolution and large size of touch screen.

  11. The Effect of Screen-to-Screen Versus Face-to-Face Consultation on Doctor-Patient Communication: An Experimental Study with Simulated Patients

    PubMed Central

    Tates, Kiek; Kanters, Saskia; Nieboer, Theodoor E; Gerritse, Maria BE

    2017-01-01

    Background Despite the emergence of Web-based patient-provider contact, it is still unclear how the quality of Web-based doctor-patient interactions differs from face-to-face interactions. Objective This study aimed to examine (1) the impact of a consultation medium on doctors’ and patients’ communicative behavior in terms of information exchange, interpersonal relationship building, and shared decision making and (2) the mediating role of doctors’ and patients’ communicative behavior on satisfaction with both types of consultation medium. Methods Doctor-patient consultations on pelvic organ prolapse were simulated, both in a face-to-face and in a screen-to-screen (video) setting. Twelve medical interns and 6 simulated patients prepared 4 different written scenarios and were randomized to perform a total of 48 consultations. Effects of the consultations were measured by questionnaires that participants filled out directly after the consultation. Results With respect to patient-related outcomes, satisfaction, perceived information exchange, interpersonal relationship building, and perceived shared decision making showed no significant differences between face-to-face and screen-to-screen consultations. Patients’ attitude toward Web-based communication (b=−.249, P=.02 and patients’ perceived time and attention (b=.271, P=.03) significantly predicted patients’ perceived interpersonal relationship building. Patients’ perceived shared decision making was positively related to their satisfaction with the consultation (b=.254, P=.005). Overall, patients experienced significantly greater shared decision making with a female doctor (mean 4.21, SD 0.49) than with a male doctor (mean 3.66 [SD 0.73]; b=.401, P=.009). Doctor-related outcomes showed no significant differences in satisfaction, perceived information exchange, interpersonal relationship building, and perceived shared decision making between the conditions. There was a positive relationship between perceived information exchange and doctors’ satisfaction with the consultation (b=.533, P<.001). Furthermore, doctors’ perceived interpersonal relationship building was positively related to doctors’ satisfaction with the consultation (b=.331, P=.003). Conclusions In this study, the quality of doctor-patient communication, as indicated by information exchange, interpersonal relationship building, and shared decision making, did not differ significantly between Web-based and face-to-face consultations. Doctors and simulated patients were equally satisfied with both types of consultation medium, and no differences were found in the manner in which participants perceived communicative behavior during these consultations. The findings suggest that worries about a negative impact of Web-based video consultation on the quality of patient-provider consultations seem unwarranted as they offer the same interaction quality and satisfaction level as regular face-to-face consultations. PMID:29263017

  12. Free-carrier mobility in GaN in the presence of dislocation walls

    NASA Astrophysics Data System (ADS)

    Farvacque, J.-L.; Bougrioua, Z.; Moerman, I.

    2001-03-01

    The free-carrier mobility versus carrier density in n-type GaN grown by low-pressure metal-organic vapor- phase epitaxy on a sapphire substrate experiences a particular behavior that consists of the appearance of a sharp transition separating a low- from a high-mobility regime. This separation appears as soon as the carrier density exceeds a critical value that depends on the growth process. Using low-field electrical transport simulations, we show that this particular mobility behavior cannot be simply interpreted in terms of dislocation scattering or trapping mechanisms, but that it is also controlled by the collective effect of dislocation walls (the columnar structure). As the free-carrier density increases, the more efficient screening properties result in the transition from a barrier-controlled mobility regime to a pure-diffusion-process-controlled mobility regime. The model permits us to reproduce the experimental mobility collapse quantitatively.

  13. [Screening of a Highly Efficient Quinoline-degrading Strain and Its Enhanced Biotreatment on Coking Waste Water].

    PubMed

    Li, Jing; Li, Wen-ying

    2015-04-01

    A bacterial strain, which could utilize quinoline as the sole carbon, nitrogen and energy source, was isolated from the activated sludge in a coking wastewater treatment plant. According to the 16S rRNA gene sequence analysis, the strain was identified as Acidovorax sp. Taken into consideration of both the growth and the quinoline degradation of the strain, the optimized degradation conditions were acquired as following: 10% inoculum, pH value of 8.0-10.0, 35 degrees C and 150 r x min(-1). The process of its growth was simulated by Haldane kinetic model under different initial quinoline concentrations, the fitted curve had a good correlation with test measured values. Furthermore, coking wastewater was bioaugmented by the mixed strains of DQS-01 and D2 with enhanced process in a moving bed biofilm reactor, and the COD degradation rate was 87.4% within 72 h.

  14. Influence of the electron-cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals: a study using ultrafast terahertz spectroscopy.

    PubMed

    Nemec, H; Rochford, J; Taratula, O; Galoppini, E; Kuzel, P; Polívka, T; Yartsev, A; Sundström, V

    2010-05-14

    Charge transport and recombination in nanostructured semiconductors are poorly understood key processes in dye-sensitized solar cells. We have employed time-resolved spectroscopies in the terahertz and visible spectral regions supplemented with Monte Carlo simulations to obtain unique information on these processes. Our results show that charge transport in the active solar cell material can be very different from that in nonsensitized semiconductors, due to strong electrostatic interaction between injected electrons and dye cations at the surface of the semiconductor nanoparticle. For ZnO, this leads to formation of an electron-cation complex which causes fast charge recombination and dramatically decreases the electron mobility even after the dissociation of the complex. Sensitized TiO2 does not suffer from this problem due to its high permittivity efficiently screening the charges.

  15. A feasibility study for anatomical noise reduction in dual-energy chest digital tomosynthesis

    NASA Astrophysics Data System (ADS)

    Lee, D.; Kim, Y.-s.; Choi, S.; Lee, H.; Choi, S.; Kim, H.-J.

    2016-01-01

    Lung cancer is the leading cause of cancer death worldwide. Thus, early diagnosis is of considerable importance. For early screening of lung cancer, computed tomography (CT) has been used as the gold standard. Chest digital tomosynthesis (CDT) is a recently introduced modality for lung cancer screening with a relatively low radiation dose compared to CT. The dual energy material decomposition method has been proposed for better detection of pulmonary nodules by means of reducing anatomical noise. In this study, the possibility of material decomposition in CDT was tested by both a simulation study and an experimental study using a CDT prototype. The Geant4 application for tomographic emission (GATE) v6 and tungsten anode spectral model using interpolating polynomials (TASMIP) codes were used for the simulation study to create simulated phantom shapes consisting of five inner cylinders filled with different densities of bone and airequivalent materials. Furthermore, the CDT prototype system and human phantom chest were used for the experimental study. CDT scan in both the simulation and experimental studies was performed with linear movement and 21 projection images were obtained over a 30 degree angular range with a 1.5 degree angular interval. To obtain materialselective images, a projectionbased energy subtraction technique was applied to high and low energy images. The resultant simulation images showed that dual-energy reconstruction could achieve an approximately 32% higher contrast to noise ratio (CNR) in images and the difference in CNR value according to bone density was significant compared to single energy CDT. Additionally, image artifacts were effectively corrected in dual energy CDT simulation studies. Likewise the experimental study with dual energy produced clear images of lung fields and bone structure by removing unnecessary anatomical structures. Dual energy tomosynthesis is a new technique; therefore, there is little guidance regarding its integration into clinical practice and this study can be used to improve the diagnostic efficiency of lung field and spinal bone screening using CDT.

  16. Testing an online, dynamic consent portal for large population biobank research.

    PubMed

    Thiel, Daniel B; Platt, Jodyn; Platt, Tevah; King, Susan B; Fisher, Nicole; Shelton, Robert; Kardia, Sharon L R

    2015-01-01

    Michigan's BioTrust for Health, a public health research biobank comprised of residual dried bloodspot (DBS) cards from newborn screening contains over 4 million samples collected without written consent. Participant-centric initiatives are IT tools that hold great promise to address the consent challenges in biobank research. Working with Private Access Inc., a pioneer in patient-centric web solutions, we created and pilot tested a dynamic informed consent simulation, paired with an educational website, focusing on consent for research utilizing DBSs in Michigan's BioTrust for Health. Out of 187 pilot testers recruited in 2 groups, 137 completed the consent simulation and exit survey. Over 50% indicated their willingness to set up an account if the simulation went live and to recommend it to others. Participants raised concerns about the process of identity verification and appeared to have little experience with sharing health information online. Applying online, dynamic approaches to address the consent challenges raised by biobanks with legacy sample collections should be explored, given the positive reaction to our pilot test and the strong preference for active consent. Balancing security and privacy with accessibility and ease of use will continue to be a challenge. © 2014 S. Karger AG, Basel.

  17. Accelerating the Design of Solar Thermal Fuel Materials through High Throughput Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Grossman, JC

    2014-12-01

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastablemore » structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.« less

  18. A Novel Modified Omega-K Algorithm for Synthetic Aperture Imaging Lidar through the Atmosphere

    PubMed Central

    Guo, Liang; Xing, Mendao; Tang, Yu; Dan, Jing

    2008-01-01

    The spatial resolution of a conventional imaging lidar system is constrained by the diffraction limit of the telescope's aperture. The combination of the lidar and synthetic aperture (SA) processing techniques may overcome the diffraction limit and pave the way for a higher resolution air borne or space borne remote sensor. Regarding the lidar transmitting frequency modulation continuous-wave (FMCW) signal, the motion during the transmission of a sweep and the reception of the corresponding echo were expected to be one of the major problems. The given modified Omega-K algorithm takes the continuous motion into account, which can compensate for the Doppler shift induced by the continuous motion efficiently and azimuth ambiguity for the low pulse recurrence frequency limited by the tunable laser. And then, simulation of Phase Screen (PS) distorted by atmospheric turbulence following the von Karman spectrum by using Fourier Transform is implemented in order to simulate turbulence. Finally, the computer simulation shows the validity of the modified algorithm and if in the turbulence the synthetic aperture length does not exceed the similar coherence length of the atmosphere for SAIL, we can ignore the effect of the turbulence. PMID:27879865

  19. Atomistic modeling of metallic thin films by modified embedded atom method

    NASA Astrophysics Data System (ADS)

    Hao, Huali; Lau, Denvid

    2017-11-01

    Molecular dynamics simulation is applied to investigate the deposition process of metallic thin films. Eight metals, titanium, vanadium, iron, cobalt, nickel, copper, tungsten, and gold, are chosen to be deposited on the aluminum substrate. The second nearest-neighbor modified embedded atom method potential is adopted to predict their thermal and mechanical properties. When quantifying the screening parameters of the potential, the error for Young's modulus and coefficient of thermal expansion between the simulated results and the experimental measurements is less than 15%, demonstrating the reliability of the potential to predict metallic behaviors related to thermal and mechanical properties. A set of potential parameters which governs the interactions between aluminum and other metals in a binary system is also generated from ab initio calculation. The details of interfacial structures between the chosen films and substrate are successfully simulated with the help of these parameters. Our results indicate that the preferred orientation of film growth depends on the film crystal structure, and the inter-diffusion at the interface is correlated the cohesive energy parameter of potential for the binary system. Such finding provides an important basis to further understand the interfacial science, which contributes to the improvement of the mechanical properties, reliability and durability of films.

  20. FEATURES, EVENTS, AND PROCESSES: SYSTEM-LEVEL AND CRITICALITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.L. McGregor

    The primary purpose of this Analysis/Model Report (AMR) is to identify and document the screening analyses for the features, events, and processes (FEPs) that do not easily fit into the existing Process Model Report (PMR) structure. These FEPs include the 3 1 FEPs designated as System-Level Primary FEPs and the 22 FEPs designated as Criticality Primary FEPs. A list of these FEPs is provided in Section 1.1. This AMR (AN-WIS-MD-000019) documents the Screening Decision and Regulatory Basis, Screening Argument, and Total System Performance Assessment (TSPA) Disposition for each of the subject Primary FEPs. This AMR provides screening information and decisionsmore » for the TSPA-SR report and provides the same information for incorporation into a project-specific FEPs database. This AMR may also assist reviewers during the licensing-review process.« less

  1. Population screening for genetic disorders in the 21st century: evidence, economics, and ethics.

    PubMed

    Grosse, S D; Rogowski, W H; Ross, L F; Cornel, M C; Dondorp, W J; Khoury, M J

    2010-01-01

    Proposals for population screening for genetic diseases require careful scrutiny by decision makers because of the potential for harms and the need to demonstrate benefits commensurate with the opportunity cost of resources expended. We review current evidence-based processes used in the United States, the United Kingdom, and the Netherlands to assess genetic screening programs, including newborn screening programs, carrier screening, and organized cascade testing of relatives of patients with genetic syndromes. In particular, we address critical evidentiary, economic, and ethical issues that arise in the appraisal of screening tests offered to the population. Specific case studies include newborn screening for congenital adrenal hyperplasia and cystic fibrosis and adult screening for hereditary hemochromatosis. Organizations and countries often reach different conclusions about the suitability of screening tests for implementation on a population basis. Deciding when and how to introduce pilot screening programs is challenging. In certain cases, e.g., hereditary hemochromatosis, a consensus does not support general screening although cascade screening may be cost-effective. Genetic screening policies have often been determined by technological capability, advocacy, and medical opinion rather than through a rigorous evidence-based review process. Decision making should take into account principles of ethics and opportunity costs. Copyright 2009 S. Karger AG, Basel.

  2. Fatigue failure of regenerator screens in a high frequency Stirling engine

    NASA Technical Reports Server (NTRS)

    Hull, David R.; Alger, Donald L.; Moore, Thomas J.; Scheuermann, Coulson M.

    1987-01-01

    Failure of Stirling Space Power Demonstrator Engine (SPDE) regenerator screens was investigated. After several hours of operation the SPDE was shut down for inspection and on removing the regenerator screens, debris of unknown origin was discovered along with considerable cracking of the screens in localized areas. Metallurgical analysis of the debris determined it to be cracked-off-deformed pieces of the 41 micron thickness Type 304 stainless steel wire screen. Scanning electron microscopy of the cracked screens revealed failures occurring at wire crossovers and fatigue striations on the fracture surface of the wires. Thus, the screen failure can be characterized as a fatigue failure of the wires. The crossovers were determined to contain a 30 percent reduction in wire thickness and a highly worked microstructure occurring from the manufacturing process of the wire screens. Later it was found that reduction in wire thickness occurred because the screen fabricator had subjected it to a light cold-roll process after weaving. Installation of this screen left a clearance in the regenerator allowing the screens to move. The combined effects of the reduction in wire thickness, stress concentration (caused by screen movement), and highly worked microstructure at the wire crossovers led to the fatigue failure of the screens.

  3. Consolidated principles for screening based on a systematic review and consensus process.

    PubMed

    Dobrow, Mark J; Hagens, Victoria; Chafe, Roger; Sullivan, Terrence; Rabeneck, Linda

    2018-04-09

    In 1968, Wilson and Jungner published 10 principles of screening that often represent the de facto starting point for screening decisions today; 50 years on, are these principles still the right ones? Our objectives were to review published work that presents principles for population-based screening decisions since Wilson and Jungner's seminal publication, and to conduct a Delphi consensus process to assess the review results. We conducted a systematic review and modified Delphi consensus process. We searched multiple databases for articles published in English in 1968 or later that were intended to guide population-based screening decisions, described development and modification of principles, and presented principles as a set or list. Identified sets were compared for basic characteristics (e.g., number, categorization), a citation analysis was conducted, and principles were iteratively synthesized and consolidated into categories to assess evolution. Participants in the consensus process assessed the level of agreement with the importance and interpretability of the consolidated screening principles. We identified 41 sets and 367 unique principles. Each unique principle was coded to 12 consolidated decision principles that were further categorized as disease/condition, test/intervention or program/system principles. Program or system issues were the focus of 3 of Wilson and Jungner's 10 principles, but comprised almost half of all unique principles identified in the review. The 12 consolidated principles were assessed through 2 rounds of the consensus process, leading to specific refinements to improve their relevance and interpretability. No gaps or missing principles were identified. Wilson and Jungner's principles are remarkably enduring, but increasingly reflect a truncated version of contemporary thinking on screening that does not fully capture subsequent focus on program or system principles. Ultimately, this review and consensus process provides a comprehensive and iterative modernization of guidance to inform population-based screening decisions. © 2018 Joule Inc. or its licensors.

  4. Consolidated principles for screening based on a systematic review and consensus process

    PubMed Central

    Hagens, Victoria; Chafe, Roger; Sullivan, Terrence; Rabeneck, Linda

    2018-01-01

    BACKGROUND: In 1968, Wilson and Jungner published 10 principles of screening that often represent the de facto starting point for screening decisions today; 50 years on, are these principles still the right ones? Our objectives were to review published work that presents principles for population-based screening decisions since Wilson and Jungner’s seminal publication, and to conduct a Delphi consensus process to assess the review results. METHODS: We conducted a systematic review and modified Delphi consensus process. We searched multiple databases for articles published in English in 1968 or later that were intended to guide population-based screening decisions, described development and modification of principles, and presented principles as a set or list. Identified sets were compared for basic characteristics (e.g., number, categorization), a citation analysis was conducted, and principles were iteratively synthesized and consolidated into categories to assess evolution. Participants in the consensus process assessed the level of agreement with the importance and interpretability of the consolidated screening principles. RESULTS: We identified 41 sets and 367 unique principles. Each unique principle was coded to 12 consolidated decision principles that were further categorized as disease/condition, test/intervention or program/system principles. Program or system issues were the focus of 3 of Wilson and Jungner’s 10 principles, but comprised almost half of all unique principles identified in the review. The 12 consolidated principles were assessed through 2 rounds of the consensus process, leading to specific refinements to improve their relevance and interpretability. No gaps or missing principles were identified. INTERPRETATION: Wilson and Jungner’s principles are remarkably enduring, but increasingly reflect a truncated version of contemporary thinking on screening that does not fully capture subsequent focus on program or system principles. Ultimately, this review and consensus process provides a comprehensive and iterative modernization of guidance to inform population-based screening decisions. PMID:29632037

  5. Virtual fragment preparation for computational fragment-based drug design.

    PubMed

    Ludington, Jennifer L

    2015-01-01

    Fragment-based drug design (FBDD) has become an important component of the drug discovery process. The use of fragments can accelerate both the search for a hit molecule and the development of that hit into a lead molecule for clinical testing. In addition to experimental methodologies for FBDD such as NMR and X-ray Crystallography screens, computational techniques are playing an increasingly important role. The success of the computational simulations is due in large part to how the database of virtual fragments is prepared. In order to prepare the fragments appropriately it is necessary to understand how FBDD differs from other approaches and the issues inherent in building up molecules from smaller fragment pieces. The ultimate goal of these calculations is to link two or more simulated fragments into a molecule that has an experimental binding affinity consistent with the additive predicted binding affinities of the virtual fragments. Computationally predicting binding affinities is a complex process, with many opportunities for introducing error. Therefore, care should be taken with the fragment preparation procedure to avoid introducing additional inaccuracies.This chapter is focused on the preparation process used to create a virtual fragment database. Several key issues of fragment preparation which affect the accuracy of binding affinity predictions are discussed. The first issue is the selection of the two-dimensional atomic structure of the virtual fragment. Although the particular usage of the fragment can affect this choice (i.e., whether the fragment will be used for calibration, binding site characterization, hit identification, or lead optimization), general factors such as synthetic accessibility, size, and flexibility are major considerations in selecting the 2D structure. Other aspects of preparing the virtual fragments for simulation are the generation of three-dimensional conformations and the assignment of the associated atomic point charges.

  6. Screening attenuation of coaxial cables determined in GTEM-cells

    NASA Astrophysics Data System (ADS)

    Knobloch, A.; Garbe, H.

    2004-05-01

    This paper describes the determination of the screening attenuation with a GTEM cell. An analytical part gives the link between the voltage at the cell port and the total radiated power. The next section investigates the optimal cable setup in the cell. With a measurement of the common mode current on the cable and a simulation of the radiation resistance the loop antenna characteristic of the cable setup could be verified. It is shown that the use of ferrit cores decrease the difference between the maximum and the minimum screening attenuation. The determination of great screening attenuation could be improved with the use of N-type measurement cables. A comparison between this GTEM cell method and the standard methods shows a good agreement.

  7. The impact of a public health department's expansion from a one-step to a two-step refugee screening process on the detection and initiation of treatment of latent tuberculosis.

    PubMed

    Einterz, E M; Younge, O; Hadi, C

    2018-06-01

    To determine, subsequent to the expansion of a county health department's refugee screening process from a one-step to a two-step process, the change in early loss to follow-up and time to initiation of treatment of new refugees with latent tuberculosis infection (LTBI). Quasi-experimental, quantitative. Review of patient medical records. Among 384 refugees who met the case definition of LTBI without prior tuberculosis (TB) classification, the number of cases lost to early follow-up fell from 12.5% to 0% after expansion to a two-step screening process. The average interval between in-country arrival and initiation of LTBI treatment was shortened by 41.4%. The addition of a second step to the refugee screening process was correlated with significant improvements in the county's success in tracking and treating cases of LTBI in refugees. Given the disproportionate importance of foreign-born cases of LTBI to the incidence of TB disease in low-incidence countries, these improvements could have a substantial impact on overall TB control, and the process described could serve as a model for other local health department refugee screening programs. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  8. Scalable screen-size enlargement by multi-channel viewing-zone scanning holography.

    PubMed

    Takaki, Yasuhiro; Nakaoka, Mitsuki

    2016-08-08

    Viewing-zone scanning holographic displays can enlarge both the screen size and the viewing zone. However, limitations exist in the screen size enlargement process even if the viewing zone is effectively enlarged. This study proposes a multi-channel viewing-zone scanning holographic display comprising multiple projection systems and a planar scanner to enable the scalable enlargement of the screen size. Each projection system produces an enlarged image of the screen of a MEMS spatial light modulator. The multiple enlarged images produced by the multiple projection systems are seamlessly tiled on the planar scanner. This screen size enlargement process reduces the viewing zones of the projection systems, which are horizontally scanned by the planar scanner comprising a rotating off-axis lens and a vertical diffuser to enlarge the viewing zone. A screen size of 7.4 in. and a viewing-zone angle of 43.0° are demonstrated.

  9. Conformation-dependent DNA attraction.

    PubMed

    Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang

    2014-06-21

    Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg(2+) ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg(2+) or Na(+), benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg(2+) bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.

  10. Discovery of new class of methoxy carrying isoxazole derivatives as COX-II inhibitors: Investigation of a detailed molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Joy, Monu; Elrashedy, Ahmed A.; Mathew, Bijo; Pillay, Ashona Singh; Mathews, Annie; Dev, Sanal; Soliman, Mahmoud E. S.; Sudarsanakumar, C.

    2018-04-01

    Two novel isoxazole derivatives were synthesized and characterized by NMR and single crystal X-ray crystallography techniques. The methoxy and dimethoxy functionalized variants of isoxazole were screened for its anti-inflammatory profile using cyclooxygenase fluorescent inhibitor screening assay methods along with standard drugs, Celecoxib and Diclofenac. The potent and selective nature of the two isoxazole derivatives on COX-II isoenzyme with a greater magnitude of inhibitory concentration, as compared to the standard drugs and further exploited through molecular dynamics (MD) simulation. Classical, accelerated and multiple MD simulations were performed to investigate the actual binding mode of the two non-steroidal anti-inflammatory drug candidates and addressed their functional selectivity towards COX-II enzyme inhibitory nature.

  11. Predictive simulations and optimization of nanowire field-effect PSA sensors including screening

    NASA Astrophysics Data System (ADS)

    Baumgartner, Stefan; Heitzinger, Clemens; Vacic, Aleksandar; Reed, Mark A.

    2013-06-01

    We apply our self-consistent PDE model for the electrical response of field-effect sensors to the 3D simulation of nanowire PSA (prostate-specific antigen) sensors. The charge concentration in the biofunctionalized boundary layer at the semiconductor-electrolyte interface is calculated using the propka algorithm, and the screening of the biomolecules by the free ions in the liquid is modeled by a sensitivity factor. This comprehensive approach yields excellent agreement with experimental current-voltage characteristics without any fitting parameters. Having verified the numerical model in this manner, we study the sensitivity of nanowire PSA sensors by changing device parameters, making it possible to optimize the devices and revealing the attributes of the optimal field-effect sensor.

  12. Introduction to CAUSES: Description of Weather and Climate Models and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the Southern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcrette, C. J.; Van Weverberg, K.; Ma, H. -Y.

    The Clouds Above the United States and Errors at the Surface (CAUSES) project is aimed at gaining a better understanding of the physical processes that are leading to the creation of warm screen-temperature biases over the American Midwest, which are seen in many numerical models. Here in Part 1, a series of 5-day hindcasts, each initialised from re-analyses and performed by 11 different models, are evaluated against screen-temperature observations. All the models have a warm bias over parts of the Midwest. Several ways of quantifying the impact of the initial conditions on the evolution of the simulations are presented, showingmore » that within a day or so all models have produced a warm bias that is representative of their bias after 5 days, and not closely tied to the conditions at the initial time. Although the surface temperature biases sometimes coincide with locations where the re-analyses themselves have a bias, there are many regions in each of the models where biases grow over the course of 5 days or are larger than the biases present in the reanalyses. At the Southern Great Plains site, the model biases are shown to not be confined to the surface, but extend several kilometres into the atmosphere. In most of the models, there is a strong diurnal cycle in the screen-temperature bias and in some models the biases are largest around midday, while in the others it is largest during the night. While the different physical processes that are contributing to a given model having a screen-temperature error will be discussed in more detail in the companion papers (Parts 2 and 3) the fact that there is a spatial coherence in the phase of the diurnal cycle of the error across wide regions and that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP suggest that the detailed evaluations of the role of different processes in contributing to errors at SGP will be representative of errors that are prevalent over a much larger spatial scale.« less

  13. Introduction to CAUSES: Description of weather and climate models and their near-surface temperature errors in 5-day hindcasts near the Southern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcrette, Cyril J.; Van Weverberg, Kwinten; Ma, H

    2018-02-16

    The Clouds Above the United States and Errors at the Surface (CAUSES) project is aimed at gaining a better understanding of the physical processes that are leading to the creation of warm screen-temperature biases over the American Midwest, which are seen in many numerical models. Here in Part 1, a series of 5-day hindcasts, each initialised from re-analyses and performed by 11 different models, are evaluated against screen-temperature observations. All the models have a warm bias over parts of the Midwest. Several ways of quantifying the impact of the initial conditions on the evolution of the simulations are presented, showingmore » that within a day or so all models have produced a warm bias that is representative of their bias after 5 days, and not closely tied to the conditions at the initial time. Although the surface temperature biases sometimes coincide with locations where the re-analyses themselves have a bias, there are many regions in each of the models where biases grow over the course of 5 days or are larger than the biases present in the reanalyses. At the Southern Great Plains site, the model biases are shown to not be confined to the surface, but extend several kilometres into the atmosphere. In most of the models, there is a strong diurnal cycle in the screen-temperature bias and in some models the biases are largest around midday, while in the others it is largest during the night. While the different physical processes that are contributing to a given model having a screen-temperature error will be discussed in more detail in the companion papers (Parts 2 and 3) the fact that there is a spatial coherence in the phase of the diurnal cycle of the error across wide regions and that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP suggest that the detailed evaluations of the role of different processes in contributing to errors at SGP will be representative of errors that are prevalent over a much larger spatial scale.« less

  14. What's New with Newborn Screening

    ERIC Educational Resources Information Center

    Exceptional Parent, 2008

    2008-01-01

    Newborn screening is the process of testing and screening newborns shortly after birth for certain, potentially dangerous, conditions and/or impairments--conditions that include everything from inborn errors of metabolism and other genetic disorders to hearing impairment. Early detection through newborn screening is paramount, often allowing the…

  15. Software Simulates Sight: Flat Panel Mura Detection

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In the increasingly sophisticated world of high-definition flat screen monitors and television screens, image clarity and the elimination of distortion are paramount concerns. As the devices that reproduce images become more and more sophisticated, so do the technologies that verify their accuracy. By simulating the manner in which a human eye perceives and interprets a visual stimulus, NASA scientists have found ways to automatically and accurately test new monitors and displays. The Spatial Standard Observer (SSO) software metric, developed by Dr. Andrew B. Watson at Ames Research Center, measures visibility and defects in screens, displays, and interfaces. In the design of such a software tool, a central challenge is determining which aspects of visual function to include while accuracy and generality are important, relative simplicity of the software module is also a key virtue. Based on data collected in ModelFest, a large cooperative multi-lab project hosted by the Optical Society of America, the SSO simulates a simplified model of human spatial vision, operating on a pair of images that are viewed at a specific viewing distance with pixels having a known relation to luminance. The SSO measures the visibility of foveal spatial patterns, or the discriminability of two patterns, by incorporating only a few essential components of vision. These components include local contrast transformation, a contrast sensitivity function, local masking, and local pooling. By this construction, the SSO provides output in units of "just noticeable differences" (JND) a unit of measure based on the assumed smallest difference of sensory input detectable by a human being. Herein is the truly amazing ability of the SSO, while conventional methods can manipulate images, the SSO models human perception. This set of equations actually defines a mathematical way of working with an image that accurately reflects the way in which the human eye and mind behold a stimulus. The SSO is intended for a wide variety of applications, such as evaluating vision from unmanned aerial vehicles, measuring visibility of damage to aircraft and to the space shuttles, predicting outcomes of corrective laser eye surgery, inspecting displays during the manufacturing process, estimating the quality of compressed digital video, evaluating legibility of text, and predicting discriminability of icons or symbols in a graphical user interface.

  16. Comparing ICD9-encoded diagnoses and NLP-processed discharge summaries for clinical trials pre-screening: a case study.

    PubMed

    Li, Li; Chase, Herbert S; Patel, Chintan O; Friedman, Carol; Weng, Chunhua

    2008-11-06

    The prevalence of electronic medical record (EMR) systems has made mass-screening for clinical trials viable through secondary uses of clinical data, which often exist in both structured and free text formats. The tradeoffs of using information in either data format for clinical trials screening are understudied. This paper compares the results of clinical trial eligibility queries over ICD9-encoded diagnoses and NLP-processed textual discharge summaries. The strengths and weaknesses of both data sources are summarized along the following dimensions: information completeness, expressiveness, code granularity, and accuracy of temporal information. We conclude that NLP-processed patient reports supplement important information for eligibility screening and should be used in combination with structured data.

  17. Modeling the cost-benefit of nerve conduction studies in pre-employment screening for carpal tunnel syndrome.

    PubMed

    Evanoff, Bradley; Kymes, Steve

    2010-06-01

    The aim of this study was to evaluate the costs associated with pre-employment nerve conduction testing as a screening tool for carpal tunnel syndrome (CTS) in the workplace. We used a Markov decision analysis model to compare the costs associated with a strategy of screening all prospective employees for CTS and not hiring those with abnormal nerve conduction, versus a strategy of not screening for CTS. The variables included in our model included employee turnover rate, the incidence of CTS, the prevalence of median nerve conduction abnormalities, the relative risk of developing CTS conferred by abnormal nerve conduction screening, the costs of pre-employment screening, and the worker's compensation costs to the employer for each case of CTS. In our base case, total employer costs for CTS from the perspective of the employer (cost of screening plus costs for workers' compensation associated with CTS) were higher when screening was used. Median costs per employee position over five years were US$503 for the screening strategy versus US$200 for a no-screening strategy. A sensitivity analysis showed that a strategy of screening was cost-beneficial from the perspective of the employer only under a few circumstances. Using Monte Carlo simulation varying all parameters, we found a 30% probability that screening would be cost-beneficial. A strategy of pre-employment screening for CTS should be carefully evaluated for yield and social consequences before being implemented. Our model suggests such screening is not appropriate for most employers.

  18. Cancer risk estimation in Digital Breast Tomosynthesis using GEANT4 Monte Carlo simulations and voxel phantoms.

    PubMed

    Ferreira, P; Baptista, M; Di Maria, S; Vaz, P

    2016-05-01

    The aim of this work was to estimate the risk of radiation induced cancer following the Portuguese breast screening recommendations for Digital Mammography (DM) when applied to Digital Breast Tomosynthesis (DBT) and to evaluate how the risk to induce cancer could influence the energy used in breast diagnostic exams. The organ doses were calculated by Monte Carlo simulations using a female voxel phantom and considering the acquisition of 25 projection images. Single organ cancer incidence risks were calculated in order to assess the total effective radiation induced cancer risk. The screening strategy techniques considered were: DBT in Cranio-Caudal (CC) view and two-view DM (CC and Mediolateral Oblique (MLO)). The risk of cancer incidence following the Portuguese screening guidelines (screening every two years in the age range of 50-80years) was calculated by assuming a single CC DBT acquisition view as standalone screening strategy and compared with two-view DM. The difference in the total effective risk between DBT and DM is quite low. Nevertheless in DBT an increase of risk for the lung is observed with respect to DM. The lung is also the organ that is mainly affected when non-optimal beam energy (in terms of image quality and absorbed dose) is used instead of an optimal one. The use of non-optimal energies could increase the risk of lung cancer incidence by a factor of about 2. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Effectiveness and Cost-Effectiveness of Blood Pressure Screening in Adolescents in the United States

    PubMed Central

    Wang, Y. Claire; Cheung, Angela M.; Bibbins-Domingo, Kirsten; Prosser, Lisa A.; Cook, Nancy R.; Goldman, Lee; Gillman, Matthew W.

    2014-01-01

    Objective To compare the long-term effectiveness and cost-effectiveness of 3 approaches to managing elevated blood pressure (BP) in adolescents in the United States: no intervention, “screen-and-treat,” and population-wide strategies to lower the entire BP distribution. Study design We used a simulation model to combine several data sources to project the lifetime costs and cardiovascular outcomes for a cohort of 15-year-old U.S. adolescents under different BP approaches and conducted cost-effectiveness analysis. We obtained BP distributions from the National Health and Nutrition Examination Survey 1999–2004 and used childhood-to-adult longitudinal correlation analyses to simulate the tracking of BP. We then used the coronary heart disease policy model to estimate lifetime coronary heart disease events, costs, and quality-adjusted life years (QALY). Results Among screen-and-treat strategies, finding and treating the adolescents at highest risk (eg, left ventricular hypertrophy) was most cost-effective ($18 000/QALY [boys] and $47 000/QALY [girls]). However, all screen-and-treat strategies were dominated by population-wide strategies such as salt reduction (cost-saving [boys] and $650/ QALY [girls]) and increasing physical education ($11 000/QALY [boys] and $35 000/QALY [girls]). Conclusions Routine adolescents BP screening is moderately effective, but population-based BP interventions with broader reach could potentially be less costly and more effective for early cardiovascular disease prevention and should be implemented in parallel. PMID:20850759

  20. Voyager electronic parts radiation program. Volume 2: Test requirements and procedures

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Martin, K. E.; Price, W. E.

    1978-01-01

    Documents are presented outlining the conditions and requirements of the test program. The Appendixes are as follows: appendix A -- Electron Simulation Radiation Test Specification for Voyager Electronic Parts and Devices, appendix B -- Electronic Piece-Part Testing Program for Voyager, appendix C -- Test Procedure for Radiation Screening of Voyager Piece Parts, appendix D -- Boeing In Situ Test Fixture, and appendix E -- Irradiate - Anneal (IRAN) Screening Documents.

  1. Evolution of carbon isotope signatures during reactive transport of hydrocarbons in heterogeneous aquifers.

    PubMed

    Höyng, Dominik; Prommer, Henning; Blum, Philipp; Grathwohl, Peter; D'Affonseca, Fernando Mazo

    2015-03-01

    Compound-specific isotope analysis (CSIA) of organic pollutants has become a well-established tool for assessing the occurrence and extent of biodegradation processes in contaminated aquifers. However, the precision of CSIA is influenced by the degree to which assumptions underlying CSIA data interpretation hold under realistic field-scale conditions. For the first time this study demonstrates how aquifer analogs combined with reactive transport models offer an underexplored way to develop generic process understanding, evaluate monitoring and quantification strategies in highly heterogeneous subsurface settings. Data from high-resolution aquifer analogs were used in numerical experiments to track the propagation of a representative oxidizable organic compound (toluene) within a variety of realistic heterogeneous aquifers and to investigate its detailed fate. The simulations were used to analyze (1) the effects of physical aquifer heterogeneities on spatiotemporal patterns of contaminant concentrations and isotope signatures, (2) the performance of the commonly applied Rayleigh equation and (3) the applicability of an extension of the Rayleigh equation for complex hydrogeological conditions. The results indicate that if field-derived enrichment factors are applied without corrections for dilution, the conventional Rayleigh equation is inaccurate and estimates for biodegradation are typically overestimated and unreliable in heterogeneous aquifers. Underestimations can occur due to the partial source zone depletion. In contrast, if dilution can be accurately accounted for, field-derived enrichment factors comprise a suitable alternative to laboratory-derived and redox-specific enrichment factors. The study also examines to what extent variations in monitoring/sampling strategies influence the obtained results. Especially measurements from long-screened wells (>1 m) reveal to be inappropriate for the application of the Rayleigh equation in the investigated aquifer analogs, as low resolution data sampled from the simulated scenarios only enable a qualitative assessment of biodegradation. Measurements from both long- and short-screened wells employing the Rayleigh equation streamline approach are only partly viable for in situ biodegradation measurements in heterogeneous systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Study on the influence of three-grid assembly thermal deformation on breakdown times and an ion extraction process

    NASA Astrophysics Data System (ADS)

    Mingming, SUN; Yanhui, JIA; Yongjie, HUANG; Juntai, YANG; Xiaodong, WEN; Meng, WANG

    2018-04-01

    In order to study the influence of three-grid assembly thermal deformation caused by heat accumulation on breakdown times and an ion extraction process, a hot gap test and a breakdown time test are carried out to obtain thermal deformation of the grids when the thruster is in 5 kW operation mode. Meanwhile, the fluid simulation method and particle-in-cell-Monte Carlo collision (PIC-MCC) method are adopted to simulate the ion extraction process according to the previous test results. The numerical calculation results are verified by the ion thruster performance test. The results show that after about 1.2 h operation, the hot gap between the screen grid and the accelerator grid reduce to 0.25–0.3 mm, while the hot gap between the accelerator grid and the decelerator grid increase from 1 mm to about 1.4 mm when the grids reach thermal equilibrium, and the hot gap is almost unchanged. In addition, the breakdown times experiment shows that 0.26 mm is the minimal safe hot gap for the grid assembly as the breakdown times improves significantly when the gap is smaller than this value. Fluid simulation results show that the plasma density of the screen grid is in the range 6 × 1017–6 × 1018 m13 and displays a parabolic characteristic, while the electron temperature gradually increases along the axial direction. The PIC-MCC results show that the current falling of an ion beam through a single aperture is significant. Meanwhile, the intercepted current of the accelerator grid and the decelerator grid both increase with the change in the hot gap. The ion beam current has optimal perveance status without thermal deformation, and the intercepted current of the accelerator grid and the decelerator grid are 3.65 mA and 6.26 mA, respectively. Furthermore, under the effect of thermal deformation, the ion beam current has over-perveance status, and the intercepted current of the accelerator grid and the decelerator grid are 10.46 mA and 18.24 mA, respectively. Performance test results indicate that the breakdown times increase obviously. The intercepted current of the accelerator grid and the decelerator grid increases to 13 mA and 16.5 mA, respectively, due to the change in the hot gap after 1.5 h operation. The numerical calculation results are well consistent with performance test results, and the error comes mainly from the test uncertainty of the hot gap.

  3. A case study of haemoglobinopathy screening in the Netherlands: witnessing the past, lessons for the future

    PubMed Central

    Jans, Suze M.P.J.; van El, Carla G.; Houwaart, Eddy S.; Westerman, Marjan J.; Janssens, Rien J.P.A.; Lagro-Janssen, Antoinette L.M.; Plass, Anne Marie C.; Cornel, Martina C.

    2011-01-01

    Objectives. In 2007 neonatal screening (NNS) was expanded to include screening for sickle cell disease (SCD) and beta-thalassaemia. Up until that year no formal recommendations for haemoglobinopathy (carrier) screening existed in the Netherlands. Although it has been subject to debate in the past, preconceptional and prenatal haemoglobinopathy carrier screening are not part of routine healthcare in the Netherlands. This study aimed to explore the decision-making process of the past: why was the introduction of a screening programme for haemoglobinopathy considered to be untimely, and did ethnicity play a role given the history in other countries surrounding the introduction of haemoglobinopathy screening? Design. A witness seminar was organised, inviting key figures to discuss the decision-making process concerning haemoglobinopathy screening in the Netherlands, thereby adding new perspectives on past events. The transcript was content-analysed. Results. The subject of haemoglobinopathy screening first appeared in the 1970s. As opposed to a long history of neglect of African-American health in the United States, the heritage of the Second World War influenced the decision-making process in the Netherlands. As a consequence, registration of ethnicity surfaced as an impeding factor. However, overall, official Dutch screening policy was restrained regarding reproductive issues caused by fear of eugenics. In the 1990s haemoglobinopathy screening was found to be ‘not opportune’ due to low prevalence, lack of knowledge and fear of stigmatisation. Currently the registration of ethnicity remains on the political agenda, but still proves to be a sensitive subject. Discussion. Carrier screening in general never appeared high on the policy agenda. Registration of ethnicity remains sensitive caused by the current political climate. Complexities related to carrier screening are a challenge in Dutch healthcare. Whether carrier screening will be considered a valuable complementary strategy in the Netherlands, depends partly on participation of representatives of high-risk groups in policy making. PMID:21819310

  4. Simulating Real Life: Enhancing Social Work Education on Alcohol Screening and Brief Intervention

    ERIC Educational Resources Information Center

    Osborne, Victoria A.; Benner, Kalea; Sprague, Debra J.; Cleveland, Ivy N.

    2016-01-01

    Social work students typically use role play with student colleagues to practice clinical intervention skills. Practice with simulated clients (SCs) rather than classmates changes the dynamics of the role play and may improve learning. This is the first known study to employ the SC model in substance use assessment in social work education. Social…

  5. General relativistic screening in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Paranjape, Aseem

    2016-10-01

    We revisit the issue of interpreting the results of large volume cosmological simulations in the context of large-scale general relativistic effects. We look for simple modifications to the nonlinear evolution of the gravitational potential ψ that lead on large scales to the correct, fully relativistic description of density perturbations in the Newtonian gauge. We note that the relativistic constraint equation for ψ can be cast as a diffusion equation, with a diffusion length scale determined by the expansion of the Universe. Exploiting the weak time evolution of ψ in all regimes of interest, this equation can be further accurately approximated as a Helmholtz equation, with an effective relativistic "screening" scale ℓ related to the Hubble radius. We demonstrate that it is thus possible to carry out N-body simulations in the Newtonian gauge by replacing Poisson's equation with this Helmholtz equation, involving a trivial change in the Green's function kernel. Our results also motivate a simple, approximate (but very accurate) gauge transformation—δN(k )≈δsim(k )×(k2+ℓ-2)/k2 —to convert the density field δsim of standard collisionless N -body simulations (initialized in the comoving synchronous gauge) into the Newtonian gauge density δN at arbitrary times. A similar conversion can also be written in terms of particle positions. Our results can be interpreted in terms of a Jeans stability criterion induced by the expansion of the Universe. The appearance of the screening scale ℓ in the evolution of ψ , in particular, leads to a natural resolution of the "Jeans swindle" in the presence of superhorizon modes.

  6. Evaluation of feedback interventions for improving the quality assurance of cancer screening in Japan: study design and report of the baseline survey.

    PubMed

    Machii, Ryoko; Saika, Kumiko; Higashi, Takahiro; Aoki, Ayako; Hamashima, Chisato; Saito, Hiroshi

    2012-02-01

    The importance of quality assurance in cancer screening has recently gained increasing attention in Japan. To evaluate and improve quality, checklists and process indicators have been developed. To explore effective methods of enhancing quality in cancer screening, we started a randomized control study of the methods of evaluation and feedback for cancer control from 2009 to 2014. We randomly assigned 1270 municipal governments, equivalent to 71% of all Japanese municipal governments that performed screening programs, into three groups. The high-intensity intervention groups (n = 425) were individually evaluated using both checklist performance and process indicator values, while the low-intensity intervention groups (n= 421) were individually evaluated on the basis of only checklist performance. The control group (n = 424) received only a basic report that included the national average of checklist performance scores. We repeated the survey for each municipality's quality assurance activity performance using checklists and process indicators. In this paper, we report our study design and the result of the baseline survey. The checklist adherence rates were especially low in the checklist elements related to invitation of individuals, detailed monitoring of process indicators such as cancer detection rates according to screening histories and appropriate selection of screening facilities. Screening rate and percentage of examinees who underwent detailed examination tended to be lower for large cities when compared with smaller cities for all cancer sites. The performance of the Japanese cancer screening program in 2009 was identified for the first time.

  7. A Guide for Developing Standard Operating Job Procedures for the Screening & Grinding Process Wastewater Treatment Facility. SOJP No. 1.

    ERIC Educational Resources Information Center

    Deal, Gerald A.; Montgomery, James A.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  8. Test equality between two binary screening tests with a confirmatory procedure restricted on screen positives.

    PubMed

    Lui, Kung-Jong; Chang, Kuang-Chao

    2015-01-01

    In studies of screening accuracy, we may commonly encounter the data in which a confirmatory procedure is administered to only those subjects with screen positives for ethical concerns. We focus our discussion on simultaneously testing equality of sensitivity and specificity between two binary screening tests when only subjects with screen positives receive the confirmatory procedure. We develop four asymptotic test procedures and one exact test procedure. We derive sample size calculation formula for a desired power of detecting a difference at a given nominal [Formula: see text]-level. We employ Monte Carlo simulation to evaluate the performance of these test procedures and the accuracy of the sample size calculation formula developed here in a variety of situations. Finally, we use the data obtained from a study of the prostate-specific-antigen test and digital rectal examination test on 949 Black men to illustrate the practical use of these test procedures and the sample size calculation formula.

  9. Simulating large atmospheric phase screens using a woofer-tweeter algorithm.

    PubMed

    Buscher, David F

    2016-10-03

    We describe an algorithm for simulating atmospheric wavefront perturbations over ranges of spatial and temporal scales spanning more than 4 orders of magnitude. An open-source implementation of the algorithm written in Python can simulate the evolution of the perturbations more than an order-of-magnitude faster than real time. Testing of the implementation using metrics appropriate to adaptive optics systems and long-baseline interferometers show accuracies at the few percent level or better.

  10. Integration of time as a factor in ergonomic simulation.

    PubMed

    Walther, Mario; Muñoz, Begoña Toledo

    2012-01-01

    The paper describes the application of a simulation based ergonomic evaluation. Within a pilot project, the algorithms of the screening method of the European Assembly Worksheet were transferred into an existing digital human model. Movement data was recorded with an especially developed hybrid Motion Capturing system. A prototype of the system was built and is currently being tested at the Volkswagen Group. First results showed the feasibility of the simulation based ergonomic evaluation with Motion Capturing.

  11. Sea level static calibration of a compact multimission aircraft propulsion simulator with inlet flow distortion

    NASA Technical Reports Server (NTRS)

    Won, Mark J.

    1990-01-01

    Wind tunnel tests of propulsion-integrated aircraft models have identified inlet flow distortion as a major source of compressor airflow measurement error in turbine-powered propulsion simulators. Consequently, two Compact Multimission Aircraft Propulsion Simulator (CMAPS) units were statically tested at sea level ambient conditions to establish simulator operating performance characteristics and to calibrate the compressor airflow against an accurate bellmouth flowmeter in the presence of inlet flow distortions. The distortions were generated using various-shaped wire mesh screens placed upstream of the compressor. CMAPS operating maps and performance envelopes were obtained for inlet total pressure distortions (ratio of the difference between the maximum and minimum total pressures to the average total pressure) up to 35 percent, and were compared to baseline simulator operating characteristics for a uniform inlet. Deviations from CMAPS baseline performance were attributed to the coupled variation of both compressor inlet-flow distortion and Reynolds number index throughout the simulator operating envelope for each screen configuration. Four independent methods were used to determine CMAPS compressor airflow; direct compressor inlet and discharge measurements, an entering/exiting flow-balance relationships, and a correlation between the mixer pressure and the corrected compressor airflow. Of the four methods, the last yielded the least scatter in the compressor flow coefficient, approximately + or - 3 percent over the range of flow distortions.

  12. Dispersing Zwitterions into Comb Polymers for Nonviral Transfection: Experiments and Molecular Simulation.

    PubMed

    Ghobadi, Ahmadreza F; Letteri, Rachel; Parelkar, Sangram S; Zhao, Yue; Chan-Seng, Delphine; Emrick, Todd; Jayaraman, Arthi

    2016-02-08

    Polymer-based gene delivery vehicles benefit from the presence of hydrophilic groups that mitigate the inherent toxicity of polycations and that provide tunable polymer-DNA binding strength and stable complexes (polyplexes). However, hydrophilic groups screen charge, and as such can reduce cell uptake and transfection efficiency. We report the effect of embedding zwitterionic sulfobetaine (SB) groups in cationic comb polymers, using a combination of experiments and molecular simulations. Ring-opening metathesis polymerization (ROMP) produced comb polymers with tetralysine (K4) and SB pendent groups. Dynamic light scattering, zeta potential measurements, and fluorescence-based experiments, together with coarse-grained molecular dynamics simulations, described the effect of SB groups on the size, shape, surface charge, composition, and DNA binding strength of polyplexes formed using these comb polymers. Experiments and simulations showed that increasing SB composition in the comb polymers decreased polymer-DNA binding strength, while simulations indicated that the SB groups distributed throughout the polyplex. This allows polyplexes to maintain a positive surface charge and provide high levels of gene expression in live cells. Notably, comb polymers with nearly 50 mol % SB form polyplexes that exhibit positive surface charge similarly as polyplexes formed from purely cationic comb polymers, indicating the ability to introduce an appreciable amount of SB functionality without screening surface charge. This integrated simulation-experimental study demonstrates the effectiveness of incorporating zwitterions in polyplexes, while guiding the design of new and effective gene delivery vectors.

  13. Experimental and numerical study of underwater beam propagation in a Rayleigh-Bénard turbulence tank.

    PubMed

    Nootz, Gero; Matt, Silvia; Kanaev, Andrey; Judd, Kyle P; Hou, Weilin

    2017-08-01

    The propagation of a laser beam through Rayleigh-Bénard (RB) turbulence is investigated experimentally and by way of numerical simulation. For the experimental part, a focused laser beam transversed a 5  m×0.5  m×0.5  m water filled tank lengthwise. The tank is heated from the bottom and cooled from the top to produce convective RB turbulence. The effect of the turbulence on the beam is recorded on the exit of the beam from the tank. From the centroid motion of the beam, the index of refraction structure constant Cn2 is determined. For the numerical efforts RB turbulence is simulated for a tank of the same geometry. The simulated temperature fields are converted to the index of refraction distributions, and Cn2 is extracted from the index of refraction structure functions, as well as from the simulated beam wander. To model the effect on beam propagation, the simulated index of refraction fields are converted to discrete index of refraction phase screens. These phase screens are then used in a split-step beam propagation method to investigate the effect of the turbulence on a laser beam. The beam wander as well as the index of refraction structure parameter Cn2 determined from the experiment and simulation are compared and found to be in good agreement.

  14. Use of electronic clinical reminders to increase preventive screenings in a primary care setting: blueprint from a successful process in Kodiak, Alaska.

    PubMed

    Onders, Robert; Spillane, James; Reilley, Brigg; Leston, Jessica

    2014-01-01

    The Kodiak Area Native Association (KANA) provides primary health care in Kodiak, Alaska and 6 outlying villages. KANA sought to actively improve key preventive screening rates for its patients. KANA adopted an electronic health record in 2008 and deployed national clinical reminders from the Indian Health Service for 5 key preventive screenings: tobacco use, alcohol use, depression, intimate partner violence, and a comprehensive cardiovascular exam. Clinical reminders were deployed in a 5-step process: (a) establish clinical demand, (b) pilot test reminder, (c) expand reminder to all providers, (d) measure outcomes and share results, and (e) delegate clinical reminder follow-up (primarily to nurses). Data from 2007-2011 show screening rates for all 5 measures improved considerably, to levels significantly above the national average for Indian Health Service facilities. Clinical reminders have been a key part of a multistep process to improve screening for depression, tobacco cessation, intimate partner violence, alcohol use, and cardiovascular disease. If deployed correctly, reminders are valuable tools in identifying patients who are overdue for preventive health screenings.

  15. Rapid assessment of Schistosoma mansoni: the validity, applicability and cost-effectiveness of the Lot Quality Assurance Sampling method in Uganda

    PubMed Central

    Brooker, Simon; Kabatereine, Narcis B.; Myatt, Mark; Stothard, J. Russell; Fenwick, Alan

    2007-01-01

    Summary Rapid and accurate identification of communities at highest risk of morbidity from schistosomiasis is key for sustainable control. Although school questionnaires can effectively and inexpensively identify communities with a high prevalence of Schistosoma haematobium, parasitological screening remains the preferred option for S. mansoni. To help reduce screening costs, we investigated the validity of Lot Quality Assurance Sampling (LQAS) in classifying schools according categories of S. mansoni prevalence in Uganda, and explored its applicability and cost-effectiveness. First, we evaluated several sampling plans using computer simulation and then field tested one sampling plan in 34 schools in Uganda. Finally, cost-effectiveness of different screening and control strategies (including mass treatment without prior screening) was determined, and sensitivity analysis undertaken to assess the effect of infection levels and treatment costs. In identifying schools with prevalence ≥50%, computer simulations showed that LQAS had high levels of sensitivity and specificity (>90%) at sample sizes <20. The method also provides an ability to classify communities into three prevalence categories. Field testing showed that LQAS where 15 children were sampled had excellent diagnostic performance (sensitivity: 100%, specificity: 96.4%, positive predictive value: 85.7% and negative predictive value: 92.3%). Screening using LQAS was more cost-effective than mass treating all schools (US$ 218 vs. US$ 482 / high prevalence school treated). Threshold analysis indicated that parasitological screening and mass treatment would become equivalent for settings where prevalence exceeds 50% in 75% of schools and for treatment costs of US$ 0.19 per schoolchild. We conclude that, in Uganda, LQAS provides a rapid, valid, and cost-effective method for guiding decision makers in allocating finite resources for the control of schistosomiasis. PMID:15960703

  16. Rapid assessment of Schistosoma mansoni: the validity, applicability and cost-effectiveness of the Lot Quality Assurance Sampling method in Uganda.

    PubMed

    Brooker, Simon; Kabatereine, Narcis B; Myatt, Mark; Russell Stothard, J; Fenwick, Alan

    2005-07-01

    Rapid and accurate identification of communities at highest risk of morbidity from schistosomiasis is key for sustainable control. Although school questionnaires can effectively and inexpensively identify communities with a high prevalence of Schistosoma haematobium, parasitological screening remains the preferred option for S. mansoni. To help reduce screening costs, we investigated the validity of Lot Quality Assurance Sampling (LQAS) in classifying schools according to categories of S. mansoni prevalence in Uganda, and explored its applicability and cost-effectiveness. First, we evaluated several sampling plans using computer simulation and then field tested one sampling plan in 34 schools in Uganda. Finally, cost-effectiveness of different screening and control strategies (including mass treatment without prior screening) was determined, and sensitivity analysis undertaken to assess the effect of infection levels and treatment costs. In identifying schools with prevalences > or =50%, computer simulations showed that LQAS had high levels of sensitivity and specificity (>90%) at sample sizes <20. The method also provides an ability to classify communities into three prevalence categories. Field testing showed that LQAS where 15 children were sampled had excellent diagnostic performance (sensitivity: 100%, specificity: 96.4%, positive predictive value: 85.7% and negative predictive value: 92.3%). Screening using LQAS was more cost-effective than mass treating all schools (US$218 vs. US$482/high prevalence school treated). Threshold analysis indicated that parasitological screening and mass treatment would become equivalent for settings where prevalence > or =50% in 75% of schools and for treatment costs of US$0.19 per schoolchild. We conclude that, in Uganda, LQAS provides a rapid, valid and cost-effective method for guiding decision makers in allocating finite resources for the control of schistosomiasis.

  17. Implementation of an optical diagnosis strategy saves costs and does not impair clinical outcomes of a fecal immunochemical test-based colorectal cancer screening program.

    PubMed

    Vleugels, Jasper L A; Greuter, Marjolein J E; Hazewinkel, Yark; Coupé, Veerle M H; Dekker, Evelien

    2017-12-01

     In an optical diagnosis strategy, diminutive polyps that are endoscopically characterized with high confidence are removed without histopathological analysis and distal hyperplastic polyps are left in situ. We evaluated the effectiveness and costs of optical diagnosis.  Using the Adenoma and Serrated pathway to Colorectal CAncer (ASCCA) model, we simulated biennial fecal immunochemical test (FIT) screening in individuals aged 55 - 75 years. In this program, we compared an optical diagnosis strategy with current histopathology assessment of all diminutive polyps. Base-case assumptions included 76 % high-confidence predictions and sensitivities of 88 %, 91 %, and 88 % for endoscopically characterizing adenomas, sessile serrated polyps, and hyperplastic polyps, respectively. Outcomes were colorectal cancer burden, number of colonoscopies, life-years, and costs.  Both the histopathology strategy and the optical diagnosis strategy resulted in 21 life-days gained per simulated individual compared with no screening. For optical diagnosis, €6 per individual was saved compared with the current histopathology strategy. These cost savings were related to a 31 % reduction in colonoscopies in which histopathology was needed for diminutive polyps. Projecting these results onto the Netherlands (17 million inhabitants), assuming a fully implemented FIT-based screening program, resulted in an annual undiscounted cost saving of € 1.7 - 2.2 million for optical diagnosis.  Implementation of optical diagnosis in a FIT-based screening program saves costs without decreasing program effectiveness when compared with current histopathology analysis of all diminutive polyps. Further work is required to evaluate how endoscopists participating in a screening program should be trained, audited, and monitored to achieve adequate competence in optical diagnosis.

  18. Potential human cholesterol esterase inhibitor design: benefits from the molecular dynamics simulations and pharmacophore modeling studies.

    PubMed

    John, Shalini; Thangapandian, Sundarapandian; Lee, Keun Woo

    2012-01-01

    Human pancreatic cholesterol esterase (hCEase) is one of the lipases found to involve in the digestion of large and broad spectrum of substrates including triglycerides, phospholipids, cholesteryl esters, etc. The presence of bile salts is found to be very important for the activation of hCEase. Molecular dynamic simulations were performed for the apoform and bile salt complexed form of hCEase using the co-ordinates of two bile salts from bovine CEase. The stability of the systems throughout the simulation time was checked and two representative structures from the highly populated regions were selected using cluster analysis. These two representative structures were used in pharmacophore model generation. The generated pharmacophore models were validated and used in database screening. The screened hits were refined for their drug-like properties based on Lipinski's rule of five and ADMET properties. The drug-like compounds were further refined by molecular docking simulation using GOLD program based on the GOLD fitness score, mode of binding, and molecular interactions with the active site amino acids. Finally, three hits of novel scaffolds were selected as potential leads to be used in novel and potent hCEase inhibitor design. The stability of binding modes and molecular interactions of these final hits were re-assured by molecular dynamics simulations.

  19. Small median tumor diameter at cure threshold (<20 mm) among aggressive non-small cell lung cancers in male smokers predicts both chest X-ray and CT screening outcomes in a novel simulation framework.

    PubMed

    Goldwasser, Deborah L; Kimmel, Marek

    2013-01-01

    The effectiveness of population-wide lung cancer screening strategies depends on the underlying natural course of lung cancer. We evaluate the expected stage distribution in the Mayo CT screening study under an existing simulation model of non-small cell lung cancer (NSCLC) progression calibrated to the Mayo lung project (MLP). Within a likelihood framework, we evaluate whether the probability of 5-year NSCLC survival conditional on tumor diameter at detection depends significantly on screening detection modality, namely chest X-ray and computed tomography. We describe a novel simulation framework in which tumor progression depends on cellular proliferation and mutation within a stem cell compartment of the tumor. We fit this model to randomized trial data from the MLP and produce estimates of the median radiologic size at the cure threshold. We examine the goodness of model fit with respect to radiologic tumor size and 5-year NSCLC survival among incident cancers in both the MLP and Mayo CT studies. An existing model of NSCLC progression under-predicts the number of advanced-stage incident NSCLCs among males in the Mayo CT study (p-value = 0.004). The probability of 5-year NSCLC survival conditional on tumor diameter depends significantly on detection modality (p-value = 0.0312). In our new model, selected solution sets having a median tumor diameter of 16.2-22.1 mm at cure threshold among aggressive NSCLCs predict both MLP and Mayo CT outcomes. We conclude that the median lung tumor diameter at cure threshold among aggressive NSCLCs in male smokers may be small (<20 mm). Copyright © 2012 UICC.

  20. 3D geometric modeling and simulation of laser propagation through turbulence with plenoptic functions

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Nelson, William; Davis, Christopher C.

    2014-10-01

    Plenoptic functions are functions that preserve all the necessary light field information of optical events. Theoretical work has demonstrated that geometric based plenoptic functions can serve equally well in the traditional wave propagation equation known as the "scalar stochastic Helmholtz equation". However, in addressing problems of 3D turbulence simulation, the dominant methods using phase screen models have limitations both in explaining the choice of parameters (on the transverse plane) in real-world measurements, and finding proper correlations between neighboring phase screens (the Markov assumption breaks down). Though possible corrections to phase screen models are still promising, the equivalent geometric approach based on plenoptic functions begins to show some advantages. In fact, in these geometric approaches, a continuous wave problem is reduced to discrete trajectories of rays. This allows for convenience in parallel computing and guarantees conservation of energy. Besides the pairwise independence of simulated rays, the assigned refractive index grids can be directly tested by temperature measurements with tiny thermoprobes combined with other parameters such as humidity level and wind speed. Furthermore, without loss of generality one can break the causal chain in phase screen models by defining regional refractive centers to allow rays that are less affected to propagate through directly. As a result, our work shows that the 3D geometric approach serves as an efficient and accurate method in assessing relevant turbulence problems with inputs of several environmental measurements and reasonable guesses (such as Cn 2 levels). This approach will facilitate analysis and possible corrections in lateral wave propagation problems, such as image de-blurring, prediction of laser propagation over long ranges, and improvement of free space optic communication systems. In this paper, the plenoptic function model and relevant parallel algorithm computing will be presented, and its primary results and applications are demonstrated.

Top