Exploring the role of 3-dimensional simulation in surgical training: feedback from a pilot study.
Podolsky, Dale J; Martin, Allan R; Whyne, Cari M; Massicotte, Eric M; Hardisty, Michael R; Ginsberg, Howard J
2010-12-01
Randomized control study assessing the efficacy of a pedicle screw insertion simulator. To evaluate the efficacy of an in-house developed 3-dimensional software simulation tool for teaching pedicle screw insertion, to gather feedback about the utility of the simulator, and to help identify the context and role such simulation has in surgical education. Traditional instruction for pedicle screw insertion technique consists of didactic teaching and limited hands-on training on artificial or cadaveric models before guided supervision within the operating room. Three-dimensional computer simulation can provide a valuable tool for practicing challenging surgical procedures; however, its potential lies in its effective integration into student learning. Surgical residents were recruited from 2 sequential years of a spine surgery course. Patient and control groups both received standard training on pedicle screw insertion. The patient group received an additional 1-hour session of training on the simulator using a CT-based 3-dimensional model of their assigned cadaver's spine. Qualitative feedback about the simulator was gathered from the trainees, fellows, and staff surgeons, and all pedicles screws physically inserted into the cadavers during the courses were evaluated through CT. A total of 185 thoracic and lumbar pedicle screws were inserted by 37 trainees. Eighty-two percent of the 28 trainees who responded to the questionnaire and all fellows and staff surgeons felt the simulator to be a beneficial educational tool. However, the 1-hour training session did not yield improved performance in screw placement. A 3-dimensional computer-based simulation for pedicle screw insertion was integrated into a cadaveric spine surgery instructional course. Overall, the tool was positively regarded by the trainees, fellows, and staff surgeons. However, the limited training with the simulator did not translate into widespread comfort with its operation or into improvement in physical screw placement.
Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Seki, Shoji; Hori, Takeshi; Kimura, Tomoatsu
2012-11-01
We developed a new technique for cervical pedicle screw and Magerl screw insertion using a 3-dimensional image guide. In posterior cervical spinal fusion surgery, instrumentation with screws is virtually routine. However, malpositioning of screws is not rare. To avoid complications during cervical pedicle screw and Magerl screw insertion, the authors developed a new technique which is a mold shaped to fit the lamina. Cervical pedicle screw fixation and Magerl screw fixation provide good correction of cervical alignment, rigid fixation, and a high fusion rate. However, malpositioning of screws is not a rare occurrence, and thus the insertion of screws has a potential risk of neurovascular injury. It is necessary to determine a safe insertion procedure for these screws. Preoperative computed tomographic (CT) scans of 1-mm slice thickness were obtained of the whole surgical area. The CT data were imported into a computer navigation system. We developed a 3-dimensional full-scale model of the patient's spine using a rapid prototyping technique from the CT data. Molds of the left and right sides at each vertebra were also constructed. One hole (2.0 mm in diameter and 2.0 cm in length) was made in each mold for the insertion of a screw guide. We performed a simulated surgery using the bone model and the mold before operation in all patients. The mold was firmly attached to the surface of the lamina and the guide wire was inserted using the intraoperative image of lateral vertebra. The proper insertion point, direction, and length of the guide were also confirmed both with the model bone and the image intensifier in the operative field. Then, drilling using a cannulated drill and tapping using a cannulated tapping device were carried out. Eleven consecutive patients who underwent posterior spinal fusion surgery using this technique since 2009 are included. The screw positions in the sagittal and axial planes were evaluated by postoperative CT scan to check for malpositioning. The screw insertion was done in the same manner as the simulated surgery. With the aid of this guide the pedicle screws and Magerl screws could be easily inserted even at the level where the pedicle seemed to be very thin and sclerotic on the CT scan. Postoperative CT scan showed that there were no critical breaches of the screws. This method employing the device using a 3-dimensional image guide seems to be easy and safe to use. The technique may improve the safety of pedicle screw and Magerl screw insertion even in difficult cases with narrow sclerotic pedicles.
Ioannou, Christopher; Knight, Matthew; Daniele, Luca; Flueckiger, Lee; Tan, Ezekiel S L
2016-10-17
The objective of this study is to analyse the effectiveness of the surgical torque limiter during operative use. The study also investigates the potential differences in torque between hand and drill-based screw insertion into locking plates using a standardised torque limiter. Torque for both hand and power screw insertion was measured through a load cell, registering 6.66 points per second. This was performed in a controlled environment using synthetic bone, a locking plate and locking screws to simulate plate fixation. Screws were inserted by hand and by drill with torque values measured. The surgical torque limiter (1.5 Nm) was effective as the highest recorded reading in the study was 1.409 Nm. Comparatively, there is a statistically significant difference between screw insertion methods. Torque produced for manually driven screw insertion into locking plates was 1.289 Nm (95 % CI 1.269-1.308) with drill-powered screw insertion at 0.740 Nm (95 % CI 0.723-0.757). The surgical torque limiter proved to be effective as per product specifications. Screws inserted under power produce significantly less torque when compared to manual insertion by hand. This is likely related to the mechanism of the torque limiter when being used at higher speeds for which it was designed. We conclude that screws may be inserted using power to the plate with the addition of a torque limiter. It is recommended that all screws inserted by drill be hand tightened to achieve adequate torque values.
Chatzistergos, Panagiotis E; Sapkas, George; Kourkoulis, Stavros K
2010-04-20
The pullout strength of a typical pedicle screw was evaluated experimentally for different screw insertion techniques. OBJECTIVE.: To conclude whether the self-tapping insertion technique is indeed the optimum one for self-tapping screws, with respect to the pullout strength. It is reported in the literature that the size of the pilot-hole significantly influences the pullout strength of a self-tapping screw. In addition it is accepted that an optimum value of the diameter of the pilot-hole exists. For non self-tapping screw insertion it is reported that undertapping of the pilot-hole can increase its pullout strength. Finally it is known that in some cases orthopedic surgeons open the threaded holes, using another screw instead of a tap. A typical commercial self-tapping pedicle screw was inserted into blocks of Solid Rigid Polyurethane Foam (simulating osteoporotic cancellous bone), following different insertion techniques. The pullout force was measured according to the ASTM-F543-02 standard. The screw was inserted into previously prepared holes of different sizes, either threaded or cylindrical, to conclude whether an optimum size of the pilot-hole exists and whether tapping can increase the pullout strength. The case where the tapping is performed using another screw was also studied. For screw insertion with tapping, decreasing the outer radius of the threaded hole from 1.00 to 0.87 of the screw's outer radius increased the pullout force 9%. For insertion without tapping, decreasing the pilot-hole's diameter from 0.87 to 0.47 of the screw's outer diameter increased its pullout force 75%. Finally, tapping using another screw instead of a tap, gave results similar to those of conventional tapping. Undertapping of a pilot-hole either using a tap or another screw can increase the pullout strength of self-tapping pedicle screws.
Locking design affects the jamming of screws in locking plates.
Sandriesser, Sabrina; Rupp, Markus; Greinwald, Markus; Heiss, Christian; Augat, Peter; Alt, Volker
2018-06-01
The seizing of locking screws is a frequently encountered clinical problem during implant removal of locking compression plates (LCP) after completion of fracture healing. The aim of this study was to investigate the effect of two different locking mechanisms on the seizing of locking screws. Specifically, the removal torques before and after cyclic dynamic loading were assessed for screws inserted at the manufacturer-recommended torque or at an increased insertion torque. The seizing of 3.5-mm angular stable screws was assessed as a function of insertion torque for two different locking mechanisms (Thread & Conus and Thread Only). Locking screws (n=10 for each configuration) were inserted either according to the manufacturer-recommended torque or at an increased torque of 150% to simulate an over-insertion of the screw. Half of the screws were removed directly after insertion and the remaining half was removed after a dynamic load protocol of 100,000 cycles. The removal torques of locking screws exceeded the insertion torques for all tested conditions confirming the adequacy of the test setup in mimicking screw seizing in locked plating. Screw seizing was more pronounced for Thread Only design (+37%) compared to Thread & Conus design (+14%; P<0.0001). Cyclic loading of the locking construct consistently resulted in an increased seizing of the locking screws (P<0.0001). Clinical observations from patients treated with the Thread & Conus locking design confirm the biomechanical findings of reduction in seizing effect by using a Thread & Conus design. In conclusion, both over-tightening and cyclic loading are potential causes for screw seizing in locking plate implants. Both effects were found to be less pronounced in the Thread & Conus design as compared to the traditional Thread Only design. © 2018 Elsevier Ltd. All rights reserved.
Effect of Real-Time Feedback on Screw Placement Into Synthetic Cancellous Bone.
Gustafson, Peter A; Geeslin, Andrew G; Prior, David M; Chess, Joseph L
2016-08-01
The objective of this study is to evaluate whether real-time torque feedback may reduce the occurrence of stripping when inserting nonlocking screws through fracture plates into synthetic cancellous bone. Five attending orthopaedic surgeons and 5 senior level orthopaedic residents inserted 8 screws in each phase. In phase I, screws were inserted without feedback simulating conventional techniques. In phase II, screws were driven with visual torque feedback. In phase III, screws were again inserted with conventional techniques. Comparison of these 3 phases with respect to screw insertion torque, surgeon rank, and perception of stripping was used to establish the effects of feedback. Seventy-three of 239 screws resulted in stripping. During the first phase, no feedback was provided and the overall strip rate was 41.8%; this decreased to 15% with visual feedback (P < 0.001) and returned to 35% when repeated without feedback. With feedback, a lower average torque was applied over a narrower torque distribution. Residents stripped 40.8% of screws compared with 20.2% for attending surgeons. Surgeons were poor at perceiving whether they stripped. Prevention and identification of stripping is influenced by surgeon perception of tactile sensation. This is significantly improved with utilization of real-time visual feedback of a torque versus roll curve. This concept of real-time feedback seems beneficial toward performance in synthetic cancellous bone and may lead to improved fixation in cancellous bone in a surgical setting.
Yuan, Cheng-song; Chen, Wan; Chen, Chen; Yang, Guang-hua; Hu, Chao; Tang, Kang-lai
2015-01-01
We investigated the effects on subtalar joint stress distribution after cannulated screw insertion at different positions and directions. After establishing a 3-dimensional geometric model of a normal subtalar joint, we analyzed the most ideal cannulated screw insertion position and approach for subtalar joint stress distribution and compared the differences in loading stress, antirotary strength, and anti-inversion/eversion strength among lateral-medial antiparallel screw insertion, traditional screw insertion, and ideal cannulated screw insertion. The screw insertion approach allowing the most uniform subtalar joint loading stress distribution was lateral screw insertion near the border of the talar neck plus medial screw insertion close to the ankle joint. For stress distribution uniformity, antirotary strength, and anti-inversion/eversion strength, lateral-medial antiparallel screw insertion was superior to traditional double-screw insertion. Compared with ideal cannulated screw insertion, slightly poorer stress distribution uniformity and better antirotary strength and anti-inversion/eversion strength were observed for lateral-medial antiparallel screw insertion. Traditional single-screw insertion was better than double-screw insertion for stress distribution uniformity but worse for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion was slightly worse for stress distribution uniformity than was ideal cannulated screw insertion but superior to traditional screw insertion. It was better than both ideal cannulated screw insertion and traditional screw insertion for anti-rotary strength and anti-inversion/eversion strength. Lateral-medial antiparallel screw insertion is an approach with simple localization, convenient operation, and good safety. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
White, Alexander A; Kubacki, Meghan R; Samona, Jason; Telehowski, Paul; Atkinson, Patrick J
2016-06-01
Studies have shown that titanium implants can be challenging to explant due to the material's excellent biocompatibility and resulting osseointegration. Clinically, titanium alloy nail interlocking screws may require removal to dynamize a construct or revise the nail due to nonunion, infection, pain, or periprosthetic fracture. This study was designed to determine what variables influence the removal torque for titanium alloy interlocking screws. An intramedullary nail with four interlocking screws was used to stabilize a 1-cm segmental femoral defect in a canine model for 16 weeks. The animals were observed to be active following a several-day recovery after surgery. In six animals, the femora and implanted nail/screws were first tested to failure in torsion to simulate periprosthetic fracture of an implant after which the screws were then removed. In four additional animals, the screws were removed without mechanical testing. Both intraoperative insertional and extraction torques were recorded for all screws. Mechanical testing to failure broke 10/24 screws. On average, the intact screws required 70% of the insertional torque during removal while broken screws only required 16% of the insertional torque (p < 0.001). In addition, intact screws closer to the fracture required 2.8 times more removal torque than the outboard distal screw (p < 0.005). On average, the angle of rotation to peak torque was ∼80°. The peak axial load did not significantly correlate with the torque required to remove the screws. On average, the removal torque was lower than at the time of insertion, and less torque was required to remove broken screws and screws remote to the fracture. However, broken screws will require additional time to retrieve the remaining screw fragment. This study suggests that broken screws and screws in prematurely active patients will require less torque to remove. © IMechE 2016.
Desktop-based computer-assisted orthopedic training system for spinal surgery.
Rambani, Rohit; Ward, James; Viant, Warren
2014-01-01
Simulation and surgical training has moved on since its inception during the end of the last century. The trainees are getting more exposed to computers and laboratory training in different subspecialties. More needs to be done in orthopedic simulation in spinal surgery. To develop a training system for pedicle screw fixation and validate its effectiveness in a cohort of junior orthopedic trainees. Fully simulated computer-navigated training system is used to train junior orthopedic trainees perform pedicle screw insertion in the lumbar spine. Real patient computed tomography scans are used to produce the real-time fluoroscopic images of the lumbar spine. The training system was developed to simulate pedicle screw insertion in the lumbar spine. A total of 12 orthopedic senior house officers performed pedicle screw insertion in the lumbar spine before and after the training on training system. The results were assessed based on the scoring system, which included the amount of time taken, accuracy of pedicle screw insertion, and the number of exposures requested to complete the procedure. The result shows a significant improvement in amount of time taken, accuracy of fixation, and the number of exposures after the training on simulator system. This was statistically significant using paired Student t test (p < 0.05). Fully simulated computer-navigated training system is an efficient training tool for young orthopedic trainees. This system can be used to augment training in the operating room, and trainees acquire their skills in the comfort of their study room or in the training room in the hospital. The system has the potential to be used in various other orthopedic procedures for learning of technical skills in a manner aimed at ensuring a smooth escalation in task complexity leading to the better performance of procedures in the operating theater. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Newcomb, Anna G. U. S.; Baek, Seungwon; Kelly, Brian P.; Crawford, Neil R.
2016-01-01
Angled screw insertion has been advocated to enhance fixation strength during posterior spine fixation. Stresses on a pedicle screw and surrounding vertebral bone with different screw angles were studied by finite element analysis during simulated multidirectional loading. Correlations between screw-specific vertebral geometric parameters and stresses were studied. Angulations in both the sagittal and axial planes affected stresses on the cortical and cancellous bones and the screw. Pedicle screws pointing laterally (vs. straight or medially) in the axial plane during superior screw angulation may be advantageous in terms of reducing the risk of both screw loosening and screw breakage. PMID:27454197
Achievable accuracy of hip screw holding power estimation by insertion torque measurement.
Erani, Paolo; Baleani, Massimiliano
2018-02-01
To ensure stability of proximal femoral fractures, the hip screw must firmly engage into the femoral head. Some studies suggested that screw holding power into trabecular bone could be evaluated, intraoperatively, through measurement of screw insertion torque. However, those studies used synthetic bone, instead of trabecular bone, as host material or they did not evaluate accuracy of predictions. We determined prediction accuracy, also assessing the impact of screw design and host material. We measured, under highly-repeatable experimental conditions, disregarding clinical procedure complexities, insertion torque and pullout strength of four screw designs, both in 120 synthetic and 80 trabecular bone specimens of variable density. For both host materials, we calculated the root-mean-square error and the mean-absolute-percentage error of predictions based on the best fitting model of torque-pullout data, in both single-screw and merged dataset. Predictions based on screw-specific regression models were the most accurate. Host material impacts on prediction accuracy: the replacement of synthetic with trabecular bone decreased both root-mean-square errors, from 0.54 ÷ 0.76 kN to 0.21 ÷ 0.40 kN, and mean-absolute-percentage errors, from 14 ÷ 21% to 10 ÷ 12%. However, holding power predicted on low insertion torque remained inaccurate, with errors up to 40% for torques below 1 Nm. In poor-quality trabecular bone, tissue inhomogeneities likely affect pullout strength and insertion torque to different extents, limiting the predictive power of the latter. This bias decreases when the screw engages good-quality bone. Under this condition, predictions become more accurate although this result must be confirmed by close in-vitro simulation of the clinical procedure. Copyright © 2018 Elsevier Ltd. All rights reserved.
Deng, Ting; Jiang, Minghui; Lei, Qing; Cai, Lihong; Chen, Li
2016-12-01
Clinical trial for cervical screw insertion by using individualized 3-dimensional (3D) printing screw insertion templates device. The objective of this study is to evaluate the safety and accuracy of the individualized 3D printing screw insertion template in the cervical spine. Ten patients who underwent posterior cervical fusion surgery with cervical pedicle screws, laminar screws or lateral mass screws between December 2014 and December 2015 were involved in this study. The patients were examined by CT scan before operation. The individualized 3D printing templates were made with photosensitive resin by a 3D printing system to ensure the screw shafts entered the vertebral body without breaking the pedicle or lamina cortex. The templates were sterilized by a plasma sterilizer and used during the operation. The accuracy and the safety of the templates were evaluated by CT scans at the screw insertion levels after operation. The accuracy of this patient-specific template technique was demonstrated. Only one screw axis greatly deviated from the planned track and breached the cortex of the pedicle because the template was split by rough handling and then we inserted the screws under the fluoroscopy. The remaining screws were inserted in the track as preoperative design and the screw axis deviated by less than 2 mm. Vascular or neurologic complications or injuries did not happen. And no infection, broken nails, fracture of bone structure, or screw pullout occurred. This study verified the safety and the accuracy of the individualized 3D printing screw insertion templates in the cervical spine as a kind of intraoperative screw navigation. This individualized 3D printing screw insertion template was user-friendly, moderate cost, and enabled a radiation-free cervical screw insertion.
Kaneyama, Shuichi; Sugawara, Taku; Sumi, Masatoshi
2015-03-15
Clinical trial for midcervical pedicle screw insertion using a novel patient-specific intraoperative screw guiding device. To evaluate the availability of the "Screw Guide Template" (SGT) system for insertion of midcervical pedicle screws. Despite many efforts for accurate midcervical pedicle screw insertion, there still remain unacceptable rate of screw malpositioning that might cause neurovascular injuries. We developed patient-specific SGT system for safe and accurate intraoperative screw navigation tool and have reported its availability for the screw insertion to C2 vertebra and thoracic spine. Preoperatively, the bone image on computed tomography was analyzed and the trajectories of the screws were designed in 3-dimensional format. Three types of templates were created for each lamina: location template, drill guide template, and screw guide template. During the operations, after engaging the templates directly with the laminae, drilling, tapping, and screwing were performed with each template. We placed 80 midcervical pedicle screws for 20 patients. The accuracy and safety of the screw insertion by SGT system were evaluated using postoperative computed tomographic scan by calculation of screw deviation from the preplanned trajectory and evaluation of screw breach of pedicle wall. All templates fitted the laminae and screw navigation procedures proceeded uneventfully. All screws were inserted accurately with the mean screw deviation from planned trajectory of 0.29 ± 0.31 mm and no neurovascular complication was experienced. We demonstrated that our SGT system could support the precise screw insertion in midcervical pedicle. SGT prescribes the safe screw trajectory in a 3-dimensional manner and the templates fit and lock directly to the target laminae, which prevents screwing error along with the change of spinal alignment during the surgery. These advantages of the SGT system guarantee the high accuracy in screw insertion, which allowed surgeons to insert cervical pedicle screws safely. 3.
Rajasekaran, S; Bhushan, Manindra; Aiyer, Siddharth; Kanna, Rishi; Shetty, Ajoy Prasad
2018-01-09
To develop a classification based on the technical complexity encountered during pedicle screw insertion and to evaluate the performance of AIRO ® CT navigation system based on this classification, in the clinical scenario of complex spinal deformity. 31 complex spinal deformity correction surgeries were prospectively analyzed for performance of AIRO ® mobile CT-based navigation system. Pedicles were classified according to complexity of insertion into five types. Analysis was performed to estimate the accuracy of screw placement and time for screw insertion. Breach greater than 2 mm was considered for analysis. 452 pedicle screws were inserted (T1-T6: 116; T7-T12: 171; L1-S1: 165). The average Cobb angle was 68.3° (range 60°-104°). We had 242 grade 2 pedicles, 133 grade 3, and 77 grade 4, and 44 pedicles were unfit for pedicle screw insertion. We noted 27 pedicle screw breach (medial: 10; lateral: 16; anterior: 1). Among lateral breach (n = 16), ten screws were planned for in-out-in pedicle screw insertion. Among lateral breach (n = 16), ten screws were planned for in-out-in pedicle screw insertion. Average screw insertion time was 1.76 ± 0.89 min. After accounting for planned breach, the effective breach rate was 3.8% resulting in 96.2% accuracy for pedicle screw placement. This classification helps compare the accuracy of screw insertion in range of conditions by considering the complexity of screw insertion. Considering the clinical scenario of complex pedicle anatomy in spinal deformity AIRO ® navigation showed an excellent accuracy rate of 96.2%.
Youssef, J A; McKinley, T O; Yerby, S A; McLain, R F
1999-06-01
A bending analysis of pedicle screws inserted into vertebral body analogues. Intravertebral and intrapedicular pedicle screw bending moments were studied as a function of sagittal insertion angle. To determine how the pedicle screw bending moment is affected by changes in the insertion angle. There is a significant incidence of failure when pedicle screws are used to instrument unstable spinal segments. Extrinsic factors that affect screw bending failure have been poorly characterized. Previous work has demonstrated that intrapedicular pedicle screw bending moments are significantly affected by the sagittal location and depth of pedicle screw placement. Pedicle screw transducers were inserted in analogue vertebrae at one of three orientations: 7 degrees cephalad (toward the superior endplate), 7 degrees caudal (toward the inferior endplate), or parallel to the superior endplate (control). An axial load was applied to the superior endplate of the vertebra, and screw bending moments were recorded directly from the transducers. Screws angled 7 degrees cephalad developed significantly greater mean intrapedicular bending moments compared with screws inserted caudal or control screws. There was no significant difference in bending moments realized within the vertebral body for the three screw positions. Angulating pedicle screws toward the superior endplate increased bending moments within the pedicle. If attention to optimal screw insertion technique can reduce bending moments and potential for screw failure without increasing morbidity, surgical risk, or operative time, then proper insertion technique takes on new importance.
BIOMECHANICAL EVALUATION OF THE INFLUENCE OF CERVICAL SCREWS TAPPING AND DESIGN.
Silva, Patricia; Rosa, Rodrigo César; Shimano, Antonio Carlos; Albuquerque de Paula, Francisco José; Volpon, José Batista; Aparecido Defino, Helton Luiz
2009-01-01
To assess if the screw design (self-drilling/self-tapping) and the pilot hole tapping could affect the insertion torque and screw pullout strength of the screw used in anterior fixation of the cervical spine. Forty self-tapping screws and 20 self-drilling screws were inserted into 10 models of artificial bone and 10 cervical vertebrae of sheep. The studied parameters were the insertion torque and pullout strength. The following groups were created: Group I-self-tapping screw insertion after pilot hole drilling and tapping; Group II-self-tapping screw insertion after pilot hole drilling without tapping; Group III-self-drilling screw insertion without drilling and tapping. In Groups I and II, the pilot hole had 14.0 mm in depth and was made with a 3mmn drill, while tapping was made with a 4mm tap. The insertion torque was measured and the pullout test was performed. The comparison between groups was made considering the mean insertion torque and the maximum mean pullout strength with the variance analysis (ANOVA; p≤ 0.05). Previous drilling and tapping of pilot hole significantly decreased the insertion torque and the pullout strength. The insertion torque and pullout strength of self-drilling screws were significantly higher when compared to self-tapping screws inserted after pilot hole tapping.
Zhang, Yu-peng; Shi, Ya-min; Wang, Hua-dong; Hou, Shu-xun
2015-10-01
To evaluate the accuracy and safety of pedicle screw insertion with the aid of novel patient-specific drill-guide templates in scoliosis cases. Ten patients with scoliosis were selected to participate in the research (the observation group) from December 2013 to December 2014. The data was obtained from CT scanning, and put into the computer to perform reconstruction of spine, simulation of pedicle screw insertion, and design of patient-specific drill-guide templates with software. The templates were made with rapid prototyping technique. After sterilization, the templates were used to aid the pedicle screw insertion intraoperatively. The blood loss, operation duration, change of creatinine level pre- and post-operation, and complications related to pedicle screw insertion were recorded. The location of pedicle screws were graded so as to evaluate the accuracy. A comparative study was then performed with the data of ten scoliosis cases operated with free-hand method during the same period (control group). There were 5 cases of idiopathic scoliosis and 5 cases of congenital scoliosis in the observation group, including 3 males and 7 females. Their average age was 11.9 years old (ranged, 4 to 18 years old), and the average Cobb angle of main curve was 54.9° (ranged, 42.1° to 78.4°). There were also 5 cases of idiopathic scoliosis and 5 cases of congenital scoliosis in the control group,including 2 males and 8 females. Their average age was 12.6 years old (ranged, 6 to 17 years old), and the average Cobb angle of main curve was 56.6° (ranged, 38.2° to 93.4°). A total of 167 pedicle screws were inserted intraoperatively, with 138 screws (82.6%) in grade I, 26 screws (15.0%) in grade II, 4 screws in grade III (2.4%), but no screws in grade IV according to the CT image. There were 29 (17.4%) screws perforated, and 163 (97.6%) screws could be accepted. In the control group, a total of 165 pedicle screws were inserted intraoperatively, with 98 screws (59.4%) in grade I, 39 screws (23.6%) in grade II, 21 screws in grade III (12.7%), and 7 screws in grade IV (4.2%). There were 67 (40.6%) screws perforated, and 137 (83.0%) screws could be accepted. The grade distribution of screw position, ratio of perforated and accepted screws were significantly different between the two groups respectively (Z=-5.013, P=0.000; χ2=9.347, P=0.002; χ2=20.242, P=0.000). The correction rate of Cobb angle were (74.1±10.0)% vs (69.7±17.6)%; blood loss were (455±447) ml vs (415±389) ml; operation duration were (163.5±53.7) min vs (164.0±48.7) min; and the changes of creatinine level pre- and post-operatively were (-5.3±3.2) μmol/L vs (-3.4±3.1) μmol/L; all above data had no significant differences respectively (t=0.696, P=0.496; t=0.214, P=0.833; t=0.022, P=0.983; t=1.375, P=0.192). There were no complications related to pedicle screw insertion in each group. The novel patient-specific drill guide template can be used to assist the insertion of pedicle screws in scoliosis cases with much higher accuracy than that of freehand method and fair safety.
Numerical investigations of MRI RF field induced heating for external fixation devices
2013-01-01
Background The magnetic resonance imaging (MRI) radio frequency (RF) field induced heating on external fixation devices can be very high in the vicinity of device screws. Such induced RF heating is related to device constructs, device placements, as well as the device insertion depth into human subjects. In this study, computational modeling is performed to determine factors associated with such induced heating. Methods Numerical modeling, based on the finite-difference time-domain (FDTD) method, is used to evaluate the temperature rises near external device screw tips inside the ASTM phantom for both 1.5-T and 3-T MRI systems. The modeling approach consists of 1) the development of RF coils for 1.5-T and 3-T, 2) the electromagnetic simulations of energy deposition near the screw tips of external fixation devices, and 3) the thermal simulations of temperature rises near the tips of these devices. Results It is found that changing insertion depth and screw spacing could largely affect the heating of these devices. In 1.5-T MRI system, smaller insertion depth and larger pin spacing will lead to higher temperature rise. However, for 3-T MRI system, the relation is not very clear when insertion depth is larger than 5 cm or when pin spacing became larger than 20 cm. The effect of connection bar material on device heating is also studied and the heating mechanism of the device is analysed. Conclusions Numerical simulation is used to study RF heating for external fixation devices in both 1.5-T and 3-T MRI coils. Typically, shallower insertion depth and larger pin spacing with conductive bar lead to higher RF heating. The heating mechanism is explained using induced current along the device and power decay inside ASTM phantom. PMID:23394173
Andritzky, Juliane; Rossol, Melanie; Lischer, Christoph; Auer, Joerg A
2005-01-01
To compare the precision obtained with computer-assisted screw insertion for treatment of mid-sagittal articular fractures of the distal phalanx (P3) with results achieved with a conventional technique. In vitro experimental study. Thirty-two cadaveric equine limbs. Four groups of 8 limbs were studied. Either 1 or 2 screws were inserted perpendicular to an imaginary axial fracture of P3 using computer-assisted surgery (CAS) or conventional technique. Screw insertion time, predetermined screw length, inserted screw length, fit of the screw, and errors in placement were recorded. CAS technique took 15-20 minutes longer but resulted in greater precision of screw length and placement compared with the conventional technique. Improved precision in screw insertion with CAS makes insertion of 2 screws possible for repair of mid-sagittal P3 fractures. CAS although expensive improves precision in screw insertion into P3 and consequently should yield improved clinical outcome.
Effect of Off-Axis Screw Insertion, Insertion Torque, and Plate Contouring on Locked Screw Strength
Gallagher, Bethany; Silva, Matthew J.; Ricci, William M.
2015-01-01
Objectives This study quantifies the effects of insertion torque, off-axis screw angulation, and plate contouring on the strength of locking plate constructs. Methods Groups of locking screws (n = 6–11 screws) were inserted at 50%, 100%, 150%, and 200% of the manufacturer-recommended torque (3.2 Nm) into locking compression plates at various angles: orthogonal (control), 5-degree angle off-axis, and 10-degree angle off-axis. Screws were loaded to failure by a transverse force (parallel to the plate) either in the same (“+”) or opposite direction (“−”) of the initial screw angulation. Separately, locking plates were bent to 5 and 10-degree angles, with the bend apex at a screw hole. Locking screws inserted orthogonally into the apex hole at 100% torque were loaded to failure. Results Orthogonal insertion resulted in the highest average load to failure, 2577 ± 141 N (range, 2413–2778 N), whereas any off-axis insertion significantly weakened constructs (165–1285 N, at 100% torque) (P < 0.05). For “+” loading, torque beyond 100% did not increase strength, but 50% torque reduced screw strength (P < 0.05). Loading in the “−” direction consistently resulted in higher strengths than “+” loading (P < 0.05). Plate contouring of 5-degree angle did not significantly change screw strength compared with straight plates but contouring of 10-degree angle significantly reduced load to failure (P < 0.05). Conclusions To maximize the screw plate interface strength, locking screws should be inserted without cross-threading. The mechanical stability of locked screws is significantly compromised by loose insertion, off-axis insertion, or severe distortion of the locking mechanism. PMID:24343255
Hijazi, Loai; Hejazi, Wael; Darwich, Mhd Ayham; Darwich, Khaldoun
2016-12-01
The purpose of the study was to evaluate the effect of clenching tasks on the stress and strain of condylar osteosynthesis screws and plates, as well as on the stress, strain distribution and displacement on the whole mandible and bone surrounding screws. Three-dimensional finite element models of the mandible, two straight four-hole plates and eight screws were established. Six static clenching tasks were simulated in this study: incisal clench (INC), intercuspal position (ICP), right unilateral molar clench (RMOL), left unilateral molar clench (LMOL), right group function (RGF) and left group function (LGF). Based on the simulation of the six clenching tasks, none of the inserted screws and plates were broken or bended. For the whole mandibular bone, the maximum von Mises stress and von Mises strain observed were yielded by the ICP. For the bone surrounding the inserted screws, the maximum von Mises stress and von Mises strain were yielded by the LMOL (49.2 MPa and 3795.1 μ). Clenching tasks had significant effects on the stress distribution on the condylar osteosynthesis and the bone surrounding screws. Contralateral occlusion task (LMOL) had the maximal results of von Mises stress and strain and healing problems could be occur, this result confirms the importance of soft diet after surgery.
Comparison of success rates of orthodontic mini-screws by the insertion method.
Kim, Jung Suk; Choi, Seong Hwan; Cha, Sang Kwon; Kim, Jang Han; Lee, Hwa Jin; Yeom, Sang Seon; Hwang, Chung Ju
2012-10-01
The aim of this study was to compare the success rates of the manual and motor-driven mini-screw insertion methods according to age, gender, length of mini-screws, and insertion sites. We retrospectively reviewed 429 orthodontic mini-screw placements in 286 patients (102 in men and 327 in women) between 2005 and 2010 at private practice. Age, gender, mini-screw length, and insertion site were cross-tabulated against the insertion methods. The Cochran-Mantel-Haenszel test was performed to compare the success rates of the 2 insertion methods. The motor-driven method was used for 228 mini-screws and the manual method for the remaining 201 mini-screws. The success rates were similar in both men and women irrespective of the insertion method used. With respect to mini-screw length, no difference in success rates was found between motor and hand drivers for the 6-mm-long mini-screws (68.1% and 69.5% with the engine driver and hand driver, respectively). However, the 8-mm-long mini-screws exhibited significantly higher success rates (90.4%, p < 0.01) than did the 6-mm-long mini-screws when placed with the engine driver. The overall success rate was also significantly higher in the maxilla (p < 0.05) when the engine driver was used. Success rates were similar among all age groups regardless of the insertion method used. Taken together, the motor-driven insertion method can be helpful to get a higher success rate of orthodontic mini-screw placement.
Effect of insertion torque on bone screw pullout strength.
Lawson, K J; Brems, J
2001-05-01
The effect of insertion torque on the holding strength of 4.5-mm ASIF/AO cortical bone screws was studied in vitro. Screw holding strength was determined using an Instron materials testing machine (Bristol, United Kingdom) on 55 lamb femora and 30 human tibiocortical bone sections. Holding strength was defined as tensile stress at pullout with rapid loading to construct failure. Different insertion torques were tested, normalizing to the thickness of cortical bone specimen engaged. These represented low, intermediate, high, and thread-damaging insertion torque. All screws inserted with thread-damaging torque and single cortex engaging screws inserted to high torque tightening moments showed diminished holding strength. This loss of strength amounted to 40%-50% less than screws inserted with less torque.
Wu, Jian-Qun; Ma, Sheng-Hui; Liu, Song; Qin, Cheng-He; Jin, Dan; Yu, Bin
2017-02-01
To investigate the optimal posterior screw placement and the geometry of safe zones for screw insertion in the talar neck. Computed tomography data for 15 normal feet were imported into Mimics 10.01 software for 3-dimensional reconstruction; 4.0-mm-diameter screws were simulated from the lateral tubercle of the posterior process of the talus to the talar head. The range of screw paths trajectories and screw lengths at nine locations that did not breach the cortex of the talus were evaluated. In addition, the farthest (point a) and nearest point (point b) of the safe zone to the subtalar joint at each location, the anteversion angle (angle A), which is parallel to the sagittal plane, and the horizontal angle (angle B), which is perpendicular to the sagittal plane, were measured. The safe zone was mainly between the 30% location and the 60% location; the width of each safe zone was 13.6° ± 1.4°; the maximum height of each safe zone was 7.8° ± 1.2°. The height of the safe zone was lowest at the 30% location (4.5°) and highest at the 50% location (7.3°). The mixed safe zone of all tali was between the 50% location and the 60% location. When a screw was inserted at point a, the safe entry distance (screw length) ranged from 48.8 to 49.5 mm, and when inserted to point b, the distance ranged from 48.2 to 48.9 mm. And inserting a 48.7 mm screw, 5.6° laterally and 7.4° superiorly, from the lateral tubercle of the posterior process of the talus towards the talar head is safest. The safe zone of posterior screw fixation have been defined applying to most talus, assuming the fractures are well reduced, this may strengthen the stability, shorten the operation time and reduce the incidence of surgical complications. © 2017 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Simple New Screw Insertion Technique without Extraction for Broken Pedicle Screws.
Kil, Jin-Sang; Park, Jong-Tae
2018-05-01
Spinal transpedicular screw fixation is widely performed. Broken pedicle screw rates range from 3%-7.1%. Several techniques have been described for extraction of broken pedicle screws. However, most of these techniques require special instruments. We describe a simple, modified technique for management of broken pedicle screws without extraction. No special instruments or drilling in an adjacent pedicle are required. We used a high-speed air drill with a round burr. With C-arm fluoroscopy guidance, the distal fragment of a broken pedicle screw was palpated using free-hand technique through the screw entry hole. A high-speed air drill with a round burr (not a diamond burr) was inserted through the hole. Drilling began slowly and continued until enough space was obtained for new screw insertion. Using this space, we performed new pedicle screw fixation medially alongside the distal fragment of the broken pedicle screw. We performed the insertion with a previously used entry hole and pathway in the pedicle. The same size pedicle screw was used. Three patients were treated with this modified technique. New screw insertion was successful in all cases after partial drilling of the distal broken pedicle screw fragment. There were no complications, such as screw loosening, dural tears, or root injury. We describe a simple, modified technique for management of broken pedicle screws without extraction. This technique is recommended in patients who require insertion of a new screw. Copyright © 2017. Published by Elsevier Inc.
Matsukawa, Keitaro; Yato, Yoshiyuki; Kato, Takashi; Imabayashi, Hideaki; Asazuma, Takashi; Nemoto, Koichi
2014-02-15
The insertional torque of pedicle screws using the cortical bone trajectory (CBT) was measured in vivo. To investigate the effectiveness of the CBT technique by measurement of the insertional torque. The CBT follows a mediolateral and caudocephalad directed path, engaging with cortical bone maximally from the pedicle to the vertebral body. Some biomechanical studies have demonstrated favorable characteristics of the CBT technique in cadaveric lumbar spine. However, no in vivo study has been reported on the mechanical behavior of this new trajectory. The insertional torque of pedicle screws using CBT and traditional techniques were measured intraoperatively in 48 consecutive patients. A total of 162 screws using the CBT technique and 36 screws using the traditional technique were compared. In 8 of 48 patients, the side-by-side comparison of 2 different insertional techniques for each vertebra were performed, which formed the H group. In addition, the insertional torque was correlated with bone mineral density. The mean maximum insertional torque of CBT screws and traditional screws were 2.49 ± 0.99 Nm and 1.24 ± 0.54 Nm, respectively. The CBT screws showed 2.01 times higher torque and the difference was significant between the 2 techniques (P < 0.01). In the H group, the insertional torque were 2.71 ± 1.36 Nm in the CBT screws and 1.58 ± 0.44 Nm in the traditional screws. The CBT screws demonstrated 1.71 times higher torque and statistical significance was achieved (P < 0.01). Positive linear correlations between maximum insertional torque and bone mineral density were found in both technique, the correlation coefficient of traditional screws (r = 0.63, P < 0.01) was higher than that of the CBT screws (r = 0.59, P < 0.01). The insertional torque using the CBT technique is about 1.7 times higher than the traditional technique. 2.
Wiendieck, Kurt; Müller, Helge; Buchfelder, Michael; Sommer, Björn
2018-06-01
We investigated mechanical pull-out behavior and tightening torque of a novel dual-core pedicle "6T screw" (6T). The aim of this study was to test if these changes in screw geometry are increasing the strength of the pedicle screw fixation after repeated insertion. Three different types of pedicle screws were inserted in rigid foam blocks. Tightening torque and pull-out strength were measured during two repetitive insertions of a standard 6.5×45-mm conical screw. The third insertion into the pilot hole was performed using either standard 6.5×45-mm or 7.2×45-mm conical screws or the novel 6.5×45-mm (6T) screw. Additionally, we performed a surface analysis to investigate the bone/screw interface. The maximal tightening torque at the third insertion of the novel 6T screw was 194% higher compared to the standard 6.5×45-mm conical screw and 135% higher compared to the standard 7.2×45-mm conical screw. The pull-out strength of the 6T screw showed no significant changes, and surface analysis revealed a compression of the screw-foam interface due to the different internal diameters. The modified geometrical design of the 6T screw seems to have no statistically significant effect on the pull-out strength, although it achieved a higher tightening torque. This might be due to the different pitch angle cutting a new thread into the material and also to the enlarged inner diameter.
Schmoelz, W; Mayr, R; Schlottig, F; Ivanovic, N; Hörmann, R; Goldhahn, J
2016-03-01
Screw anchorage in osteoporotic bone is still limited and makes treatment of osteoporotic fractures challenging for surgeons. Conventional screws fail in poor bone quality due to loosening at the screw-bone interface. A new technology should help to improve this interface. In a novel constant amelioration process technique, a polymer sleeve is melted by ultrasound in the predrilled screw hole prior to screw insertion. The purpose of this study was to investigate in vitro the effect of the constant amelioration process platform technology on primary screw anchorage. Fresh frozen femoral heads (n=6) and vertebrae (n=6) were used to measure the maximum screw insertion torque of reference and constant amelioration process augmented screws. Specimens were cut in cranio-caudal direction, and the screws (reference and constant amelioration process) were implanted in predrilled holes in the trabecular structure on both sides of the cross section. This allowed the pairwise comparison of insertion torque for constant amelioration process and reference screws (femoral heads n=18, vertebrae n=12). Prior to screw insertion, a micro-CT scan was made to ensure comparable bone quality at the screw placement location. The mean insertion torque for the constant amelioration process augmented screws in both, the femoral heads (44.2 Ncm, SD 14.7) and the vertebral bodies (13.5 Ncm, SD 6.3) was significantly higher than for the reference screws of the femoral heads (31.7 Ncm, SD 9.6, p<0.001) and the vertebral bodies (7.1 Ncm, SD 4.5, p<0.001). The interconnection of the melted polymer sleeve with the surrounding trabecular bone in the constant amelioration process technique resulted in a higher screw insertion torque and can improve screw anchorage in osteoporotic trabecular bone. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sugawara, Taku; Higashiyama, Naoki; Kaneyama, Shuichi; Sumi, Masatoshi
2017-03-15
Prospective clinical trial of the screw insertion method for posterior C1-C2 fixation utilizing the patient-specific screw guide template technique. To evaluate the efficacy of this method for insertion of C1 lateral mass screws (LMS), C2 pedicle screws (PS), and C2 laminar screws (LS). Posterior C1LMS and C2PS fixation, also known as the Goel-Harms method, can achieve immediate rigid fixation and high fusion rate, but the screw insertion carries the risk of injury to neuronal and vascular structures. Dissection of venous plexus and C2 nerve root to confirm the insertion point of the C1LMS may also cause problems. We have developed an intraoperative screw guiding method using patient-specific laminar templates. Preoperative bone images of computed tomography (CT) were analyzed using three-dimensional (3D)/multiplanar imaging software to plan the trajectories of the screws. Plastic templates with screw guiding structures were created for each lamina using 3D design and printing technology. Three types of templates were made for precise multistep guidance, and all templates were specially designed to fit and lock on the lamina during the procedure. Surgery was performed using this patient-specific screw guide template system, and placement of the screws was postoperatively evaluated using CT. Twelve patients with C1-C2 instability were treated with a total of 48 screws (24 C1LMS, 20 C2PS, 4 C2LS). Intraoperatively, each template was found to exactly fit and lock on the lamina and screw insertion was completed successfully without dissection of the venous plexus and C2 nerve root. Postoperative CT showed no cortical violation by the screws, and mean deviation of the screws from the planned trajectories was 0.70 ± 0.42 mm. The multistep, patient-specific screw guide template system is useful for intraoperative screw navigation in posterior C1-C2 fixation. This simple and economical method can improve the accuracy of screw insertion, and reduce operation time and radiation exposure of posterior C1-C2 fixation surgery. 3.
Rossol, Melanie; Gygax, Diego; Andritzky-Waas, Juliane; Zheng, Guoyan; Lischer, Christoph J; Zhang, Xuan; Auer, Joerg A
2008-01-01
To (1) evaluate and compare computer-assisted surgery (CAS) with conventional screw insertion (conventional osteosynthesis [COS]) for treatment of equine abaxial distal phalanx fractures; (2) compare planned screw position with actual postoperative position; and (3) determine preferred screw insertion direction. Experimental study. Cadaveric equine limbs (n=32). In 8 specimens each, a 4.5 mm cortex bone screw was inserted in lag fashion in dorsopalmar (plantar) direction using CAS or COS. In 2 other groups of 8, the screws were inserted in opposite direction. Precision of CAS was determined by comparison of planned and actual screw position. Preferred screw direction was also assessed for CAS and COS. In 4 of 6 direct comparisons, screw positioning was significantly better with CAS. Results of precision analysis for screw position were similar to studies published in human medicine. None of evaluated criteria identified a preferred direction for screw insertion. For abaxial fractures of the distal phalanx, superior precision in screw position is achieved with CAS technique compared with COS technique. Abaxial fractures of the distal phalanx lend themselves to computer-assisted implantation of 1 screw in a dorsopalmar (plantar) direction. Because of the complex anatomic relationships, and our results, we discourage use of COS technique for repair of this fracture type.
EFFECT OF PILOT HOLE TAPPING ON PULLOUT STRENGTH AND INSERTION TORQUE OF DUAL CORE PEDICLE SCREWS.
Rosa, Rodrigo César; Silva, Patrícia; Falcai, Maurício José; Shimano, Antônio Carlos; Defino, Helton Luiz Aparecido
2010-01-01
To evaluate the influence of pilot hole tapping on pullout resistance and insertion torque of pedicle screws with a conical core. Mechanical tests using a universal testing machine were performed on pedicle screws with a conical core that were inserted into pedicles in the fifth lumbar vertebra of calves. The insertion torque was measured using a torque meter with a capacity of 10 Nm, which was considered to be the highest torque value. The pilot holes were prepared using a probe of external diameter 3.8 mm and tapping of the same dimensions and thread characteristics as the screw. Decreased insertion torque and pullout resistance were observed in the group with prior tapping of the pilot hole. Pilot hole tapping reduced the insertion torque and pullout resistance of pedicle screws with a conical core that had been inserted into the pedicle of the fifth lumbar vertebra of calves.
Ikeuchi, Hiroko; Ikuta, Ko
2016-09-01
In the last decade, posterior instrumented fusion using percutaneous pedicle screws (PPSs) had been growing in popularity, and its safety and good clinical results have been reported. However, there have been few previous reports of the accuracy of PPS placement compared with that of conventional open screw insertion in an institution. This study aimed to evaluate the accuracy of PPS placement compared with that of conventional open technique. One hundred patients were treated with posterior instrumented fusion of the thoracic and lumbar spine from April 2008 to July 2013. Four cases of revised instrumentation surgery were excluded. In this study, the pedicle screws inserted below Th7 were investigated, therefore, a total of 455 screws were enrolled. Two hundred and ninety-three pedicle screws were conventional open-inserted screws (O-group) and 162 screws were PPSs (P-group). We conducted a comparative study about the accuracy of placement between the two groups. Postoperative computed tomography scans were carried out to all patients, and the pedicle screw position was assessed according to a scoring system described by Zdichavsky et al. (Eur J Trauma 30:241-247, 2004; Eur J Trauma 30:234-240, 2004) and a classification described by Wiesner et al. (Spine 24:1599-1603, 1999). Based on Zdichavsky's scoring system, the number of grade Ia screws was 283 (96.6 %) in the O-group and 153 (94.4 %) in the P-group, whereas 5 screws (1.7 %) in the O-group and one screw (0.6 %) in the P-group were grade IIIa/IIIb. Meanwhile, the pedicle wall penetrations based on Wiesner classification were demonstrated in 20 screws (6.8 %) in the O-group, and 12 screws (7.4 %) in the P-group. No neurologic complications were observed and no screws had to be replaced in both groups. The PPSs could be ideally inserted without complications. There were no statistically significant differences about the accuracy between the conventional open insertion and PPS placement.
Time-elapsed screw insertion with microCT imaging.
Ryan, M K; Mohtar, A A; Cleek, T M; Reynolds, K J
2016-01-25
Time-elapsed analysis of bone is an innovative technique that uses sequential image data to analyze bone mechanics under a given loading regime. This paper presents the development of a novel device capable of performing step-wise screw insertion into excised bone specimens, within the microCT environment, whilst simultaneously recording insertion torque, compression under the screw head and rotation angle. The system is computer controlled and screw insertion is performed in incremental steps of insertion torque. A series of screw insertion tests to failure were performed (n=21) to establish a relationship between the torque at head contact and stripping torque (R(2)=0.89). The test-device was then used to perform step-wise screw insertion, stopping at intervals of 20%, 40%, 60% and 80% between screw head contact and screw stripping. Image data-sets were acquired at each of these time-points as well as at head contact and post-failure. Examination of the image data revealed the trabecular deformation as a result of increased insertion torque was restricted to within 1mm of the outer diameter of the screw thread. Minimal deformation occurred prior to the step between the 80% time-point and post-failure. The device presented has allowed, for the first time, visualization of the micro-mechanical response in the peri-implant bone with increased tightening torque. Further testing on more samples is expected to increase our understanding of the effects of increased tightening torque at the micro-structural level, and the failure mechanisms of trabeculae. Copyright © 2015 Elsevier Ltd. All rights reserved.
Predicting cancellous bone failure during screw insertion.
Reynolds, Karen J; Cleek, Tammy M; Mohtar, Aaron A; Hearn, Trevor C
2013-04-05
Internal fixation of fractures often requires the tightening of bone screws to stabilise fragments. Inadequate application of torque can leave the fracture unstable, while over-tightening results in the stripping of the thread and loss of fixation. The optimal amount of screw torque is specific to each application and in practice is difficult to attain due to the wide variability in bone properties including bone density. The aim of the research presented in this paper is to investigate the relationships between motor torque and screw compression during powered screw insertion, and to evaluate whether the torque during insertion can be used to predict the ultimate failure torque of the bone. A custom test rig was designed and built for bone screw experiments. By inserting cancellous bone screws into synthetic, ovine and human bone specimens, it was established that variations related to bone density could be automatically detected through the effects of the bone on the rotational characteristics of the screw. The torque measured during screw insertion was found to be directly related to bone density and can be used, on its own, as a good predictor of ultimate failure torque of the bone. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Pedicle screw placement using image guided techniques.
Merloz, P; Tonetti, J; Pittet, L; Coulomb, M; Lavalleé, S; Sautot, P
1998-09-01
Clinical evaluation of a computer assisted spine surgical system is presented. Eighty pedicle screws were inserted using computer assisted technology in thoracic and lumbar vertebrae for treatment of different types of disorders including fractures, spondylolisthesis, and scoliosis. Fifty-two patients with severe fractures, spondylolisthesis, or pseudoarthrosis of T10 to L5 were treated using a computer assisted technique on 1/2 the patients and performing the screw insertion manually for the other 1/2. At the same time, 28 pedicle screws were inserted in T12 to L4 vertebrae for scoliosis with the help of the computer assisted technique. Surgery was followed in all cases (66 vertebrae; 132 pedicle screws) by postoperative radiographs and computed tomographic examination, on which measurements of screw position relative to pedicle position could be done. For fractures, spondylolisthesis, or pseudarthrosis, comparison between the two groups showed that four screws in 52 (8%) vertebrae had incorrect placement with computer assisted technique whereas 22 screws in 52 (42%) vertebrae had incorrect placement with manual insertion. In patients with scoliosis, four screws in 28 (14%) vertebrae had incorrect placement. In all of the patients (132 pedicle screws) there were no neurologic complications. These results show that a computer assisted technique is much more accurate and safe than manual insertion.
Shin, Sung Joon; Lee, Ji-Ho; Lee, Jae Hyup
2017-07-01
A prospective, within-patient, left-right comparative study. To evaluate the efficacy of hydroxyapatite (HA) stick augmentation method by comparing the insertional torque of the pedicle screw in osteoporotic and nonosteoporotic patients. Unsatisfactory clinical outcomes after spine surgery in osteoporotic patients are related to pedicle screw loosening or pull-outs. HA, as a bone graft extender, has a possibility to enhance the fixation strength at the bone-screw interface. From November 2009 to December 2010, among patients who required bilateral pedicle screw fixation for lumbar spine surgery, 22 patients were enrolled, who recieved unilateral HA stick augmentation and completed intraoperative insertional torque measurement of each pedicle screws. On the basis of preoperative evaluation of bone mineral density, patients with osteoporosis had 2 HA sticks inserted unilaterally, and 1 stick for patients without osteoporosis. Pedicle screw loosening and pull-outs were assessed using 12-month postoperative CT scans and follow-up radiographs. Clinical evaluation was done preoperatively and at 1 year postoperatively, based on Visual Analog Scale score, Oswestry Disability Index, and Short Form-36 Health Survey. Regardless of bone mineral density, the average torque value of all pedicle screws with HA stick insertion (HA stick inserted group) was significantly higher than that of all pedicle screws without HA insertion (control group) (P<0.0001). Same results were seen in the HA stick inserted subgroups and the control subgroups within both of the osteoporosis group (P=0.009) and the nonosteoporosis group (P=0.0004). There was no statistically significant difference of the rate of pedicle screw loosening in between the HA stick inserted group and the control group. Clinical evaluation also showed no statistically significant difference in between patients with loosening and those without. The enhancement of initial pedicle screw fixation strength in osteoporotic patients can be achieved by HA stick augmentation.
Weninger, Patrick; Dall'Ara, Enrico; Drobetz, Herwig; Nemec, Wolfgang; Figl, Markus; Redl, Heinz; Hertz, Harald; Zysset, Philippe
2011-01-01
Volar fixed-angle plating is a popular treatment for unstable distal radius fractures. Despite the availability of plating systems for treating distal radius fractures, little is known about the mechanical properties of multidirectional fixed-angle plates. The aim of this study was to compare the primary fixation stability of three possible screw configurations in a distal extra-articular fracture model using a multidirectional fixed-angle plate with metaphyseal cancellous screws distally. Eighteen Sawbones radii (Sawbones, Sweden, model# 1027) were used to simulate an extra-articular distal radius fracture according to AO/OTA 23 A3. Plates were fixed to the shaft with one non-locking screw in the oval hole and two locking screws as recommended by the manufacturer. Three groups (n = 6) were defined by screw configuration in the distal metaphyseal fragment: Group 1: distal row of screws only; Group 2: 2 rows of screws, parallel insertion; Group 3: 2 rows of screws, proximal screws inserted with 30° of inclination. Specimens underwent mechanical testing under axial compression within the elastic range and load controlled between 20 N and 200 N at a rate of 40 N/s. Axial stiffness and type of construct failure were recorded. There was no difference regarding axial stiffness between the three groups. In every specimen, failure of the Sawbone-implant-construct occurred as plastic bending of the volar titanium plate when the dorsal wedge was closed. Considering the limitations of the study, the recommendation to use two rows of screws or to place screws in the proximal metaphyseal row with inclination cannot be supported by our mechanical data.
Laudato, Pietro Aniello; Pierzchala, Katarzyna; Schizas, Constantin
2018-03-15
A retrospective radiological study. The aim of this study was to evaluate the accuracy of pedicle screw insertion using O-Arm navigation, robotic assistance, or a freehand fluoroscopic technique. Pedicle screw insertion using either "O-Arm" navigation or robotic devices is gaining popularity. Although several studies are available evaluating each of those techniques separately, no direct comparison has been attempted. Eighty-four patients undergoing implantation of 569 lumbar and thoracic screws were divided into three groups. Eleven patients (64 screws) had screws inserted using robotic assistance, 25 patients (191 screws) using the O-arm, while 48 patients (314 screws) had screws inserted using lateral fluoroscopy in a freehand technique. A single experienced spine surgeon assisted by a spinal fellow performed all procedures. Screw placement accuracy was assessed by two independent observers on postoperative computed tomography (CTs) according to the A to D Rampersaud criteria. No statistically significant difference was noted between the three groups. About 70.4% of screws in the freehand group, 69.6% in the O arm group, and 78.8% in the robotic group were placed completely within the pedicle margins (grade A) (P > 0.05). About 6.4% of screws were considered misplaced (grades C&D) in the freehand group, 4.2% in the O-arm group, and 4.7% in the robotic group (P > 0.05). The spinal fellow inserted screws with the same accuracy as the senior surgeon (P > 0.05). The advent of new technologies does not appear to alter accuracy of screw placement in our setting. Under supervision, spinal fellows might perform equally well to experienced surgeons using new tools. The lack of difference in accuracy does not imply that the above-mentioned techniques have no added advantages. Other issues, such as surgeon/patient radiation, fiddle factor, teaching suitability, etc., outside the scope of our present study, need further assessment. 3.
Luo, Jiaquan; Wu, Chunyang; Huang, Zhongren; Pan, Zhimin; Li, Zhiyun; Zhong, Junlong; Chen, Yiwei; Han, Zhimin; Cao, Kai
2017-04-01
This is a cadaver specimen study to confirm new pedicle screw (PS) entry point and trajectory for subaxial cervical PS insertion. To assess the accuracy of the lateral vertebral notch-referred PS insertion technique in subaxial cervical spine in cadaver cervical spine. Reported morphometric landmarks used to guide the surgeon in PS insertion show significant variability. In the previous study, we proposed a new technique (as called "notch-referred" technique) primarily based on coronal multiplane reconstruction images (CMRI) and cortical integrity after PS insertion in cadavers. However, the PS position in cadaveric cervical segment was not confirmed radiologically. Therefore, the difference between the pedicle trajectory and the PS trajectory using the notch-referred technique needs to be illuminated. Twelve cadaveric cervical spines were conducted with PS insertion using the lateral vertebral notch-referred technique. The guideline for entry point and trajectory for each vertebra was established based on the morphometric data from our previous study. After 3.5-mm diameter screw insertion, each vertebra was dissected and inspected for pedicle trajectory by CT scan. The pedicle trajectory and PS trajectory were measured and compared in axial plane. The perforation rate was assessed radiologically and was graded from ideal to unacceptable: Grade 0 = screw in pedicle; Grade I = perforation of pedicle wall less than one-fourth of the screw diameter; Grade II = perforation more than one-fourth of the screw diameter but less than one-second; Grade III = perforation more than one-second outside of the screw diameter. In addition, pedicle width between the acceptable and unacceptable screws was compared. A total of 120 pedicle screws were inserted. The perforation rate of pedicle screws was 78.3% in grade 0 (excellent PS position), 10.0% in grade I (good PS position), 8.3% in grade II (fair PS position), and 3.3% in grade III (poor PS position). The overall accepted accuracy of pedicle screws was 96.7% (Grade 0 + Grade I + Grade II), and only 3.3% had critical breach. There was no statistical difference between the pedicle trajectory and PS trajectory (p > 0.05). Compared to the pedicle width (4.4 ± 0.7 mm) in acceptably inserted screw, the unacceptably screw is 3.2 ± 0.3 mm which was statistically different (p < 0.05). The accuracy of the notch-referred PS insertion in cadaveric subaxial cervical spine is satisfactory.
A comparison of screw insertion torque and pullout strength.
Ricci, William M; Tornetta, Paul; Petteys, Timothy; Gerlach, Darin; Cartner, Jacob; Walker, Zakiyyah; Russell, Thomas A
2010-06-01
Pullout strength of screws is a parameter used to evaluate plate screw fixation strength. However, screw fixation strength may be more closely related to its ability to generate sufficient insertion because stable nonlocked plate-screw fracture fixation requires sufficient compression between plate and bone such that no motion occurs between the plate and bone under physiological loads. Compression is generated by tightening of screws. In osteoporotic cancellous bone, sufficient screw insertion torque may not be generated before screw stripping. The effect of screw thread pitch on generation of maximum insertion torque (MIT) and pullout strength (POS) was investigated in an osteoporotic cancellous bone model and the relationship between MIT and POS was analyzed. Stainless steel screws with constant major (5.0 mm) and minor (2.7 mm) diameters but with varying thread pitches (1, 1.2, 1.5, 1.6, and 1.75 mm) were tested for MIT and POS in a validated osteoporotic surrogate for cancellous bone (density of 160 kg/m(3) [10 lbs/ft(3)]). MIT was measured with a torque-measuring hex driver for screws inserted through a one-third tubular plate. POS was measured after insertion of screws to a depth of 20 mm based on the Standard Specification and Test Methods for Metallic Medical Bone Screws (ASTM F 543-07). Five screws were tested for each failure mode and screw design. The relationship between MIT and compressive force between the plate and bone surrogate was evaluated using pressure-sensitive film. There was a significant difference in mean MIT based on screw pitch (P < 0.0001), whereas POS did not show statistically significant differences among the different screw pitches (P = 0.052). Small screw pitches (1.0 mm and 1.2 mm) had lower MIT and were distinguished from large pitches (1.5 mm, 1.6 mm, and the 1.75 mm) with higher MIT. For POS, only the 1-mm and 1.6-mm pitch screws were found to be different from each other. Linear regression analysis of MIT revealed a moderate correlation to the screw pitch (R(2) = 0.67, P < 0.0001), whereas the analysis of POS suggested no correlation to the screw pitch (R(2) = 0.28, P = 0.006). Pearson correlation analysis indicated no correlation between MIT and POS (P = 0.069, r = -0.37). A linear relationship of increased compression between the plate and bone surrogate was found for increasing screw torque (R(2) = 0.97). These results indicate that the ability of different screw designs to generate high screw insertion torque in a model of osteoporotic cancellous bone is unrelated to their pullout strength. Therefore, extrapolation of results for POS to identify optimal screw design for osteoporotic bone may not be valid. Screw designs that optimize MIT should be sought for fixation in osteoporotic bone.
Schizas, Constantin; Theumann, Nicolas; Kosmopoulos, Victor
2007-05-01
Several studies have looked at accuracy of thoracic pedicle screw placement using fluoroscopy, image guidance, and anatomical landmarks. To our knowledge the upper thoracic spine (T1-T6) has not been specifically studied in the context of screw insertion and placement accuracy without the use of either image guidance or fluoroscopy. Our objective was to study the accuracy of upper thoracic screw placement without the use of fluoroscopy or image guidance, and report on implant related complications. A single surgeon inserted 60 screws in 13 consecutive non-scoliotic spine patients. These were the first 60 screws placed in the high thoracic spine in our institution. The most common diagnosis in our patient population was trauma. All screws were inserted using a modified Roy-Camille technique. Post-operative axial computed tomography (CT) images were obtained for each patient and analyzed by an independent senior radiologist for placement accuracy. Implant related complications were prospectively noted. No pedicle screw misplacement was found in 61.5% of the patients. In the remaining 38.5% of patients some misplacements were noted. Fifty-three screws out of the total 60 implanted were placed correctly within all the pedicle margins. The overall pedicle screw placement accuracy was 88.3% using our modified Roy-Camille technique. Five medial and two lateral violations were noted in the seven misplaced screws. One of the seven misplaced screws was considered to be questionable in terms of pedicle perforation. No implant related complications were noted. We found that inserting pedicle screws in the upper thoracic spine based solely on anatomical landmarks was safe with an accuracy comparable to that of published studies using image-guided navigation at the thoracic level.
C1 lateral mass screw-induced occipital neuralgia: a report of two cases.
Conroy, Eimear; Laing, Alan; Kenneally, Rory; Poynton, A R
2010-03-01
C1-2 polyaxial screw-rod fixation is a relatively new technique. While recognizing the potential for inadvertent vertebral artery injury, there have been few reports in the literature outlining all the possible complications. Aim of this study is to review all cases of C1 lateral mass screws insertion with emphasis on the evaluation of potential structures at risk during the procedure. We retrospectively reviewed all patients in our unit who had C1 lateral mass screw insertion over a 2-year period. The C1 lateral mass screw was inserted as part of an atlantoaxial stabilization or incorporated into a modular occiput/subaxial construct. Outcome measures included clinical and radiological parameters. Clinical indicators included age, gender, neurologic status, surgical indication and the number of levels stabilized. Intraoperative complications including blood loss, vertebral artery injury or dural tears were recorded. Postoperative pain distribution and neurological deficit were recorded. Radiological indicators included postoperative plain radiographs to assess sagittal alignment and to check for screw malposition or construct failure. A total of 18 lateral mass screws were implanted in 9 patients. There were three male and six female patients who had C1 lateral mass screw insertion in this unit. Two patients had atlantoaxial stabilization for C2 fracture. There were four patients with rheumatoid arthritis whose C1 lateral mass screws were inserted as part of an occipitocervical or subaxial cervical stabilization. There was no vertebral artery injury, no cerebrospinal fluid leak and minimal blood loss in all patients. Three patients developed postoperative occipital neuralgia. This neuralgia was transient, in one of the patients having settled at 6-week follow-up. In the other two patients the neuralgia was unresolved at time of latest follow-up but was adequately controlled with appropriate pain management. Postoperatively no patient had radiographic evidence of construct failure and all demonstrated excellent sagittal alignment. It has been reported that the absence of threads on the upper portion of the long shank screw may protect against neural irritation. However, insertion of the C1 lateral mass screw necessitates careful caudal retraction of the C2 dorsal root ganglion. The insertion point for the C1 lateral mass screw is at the junction of the C1 posterior arch and the midpoint of the posterior inferior part of the C1 lateral mass. Two patients in our series suffered occipital neuralgia post-insertion of C1 lateral mass screws. This highlights the potential for damage to the C2 nerve root during C1 lateral mass screw placement.
C1 lateral mass screw-induced occipital neuralgia: a report of two cases
Laing, Alan; Kenneally, Rory; Poynton, A. R.
2009-01-01
C1–2 polyaxial screw-rod fixation is a relatively new technique. While recognizing the potential for inadvertent vertebral artery injury, there have been few reports in the literature outlining all the possible complications. Aim of this study is to review all cases of C1 lateral mass screws insertion with emphasis on the evaluation of potential structures at risk during the procedure. We retrospectively reviewed all patients in our unit who had C1 lateral mass screw insertion over a 2-year period. The C1 lateral mass screw was inserted as part of an atlantoaxial stabilization or incorporated into a modular occiput/subaxial construct. Outcome measures included clinical and radiological parameters. Clinical indicators included age, gender, neurologic status, surgical indication and the number of levels stabilized. Intraoperative complications including blood loss, vertebral artery injury or dural tears were recorded. Postoperative pain distribution and neurological deficit were recorded. Radiological indicators included postoperative plain radiographs to assess sagittal alignment and to check for screw malposition or construct failure. A total of 18 lateral mass screws were implanted in 9 patients. There were three male and six female patients who had C1 lateral mass screw insertion in this unit. Two patients had atlantoaxial stabilization for C2 fracture. There were four patients with rheumatoid arthritis whose C1 lateral mass screws were inserted as part of an occipitocervical or subaxial cervical stabilization. There was no vertebral artery injury, no cerebrospinal fluid leak and minimal blood loss in all patients. Three patients developed postoperative occipital neuralgia. This neuralgia was transient, in one of the patients having settled at 6-week follow-up. In the other two patients the neuralgia was unresolved at time of latest follow-up but was adequately controlled with appropriate pain management. Postoperatively no patient had radiographic evidence of construct failure and all demonstrated excellent sagittal alignment. It has been reported that the absence of threads on the upper portion of the long shank screw may protect against neural irritation. However, insertion of the C1 lateral mass screw necessitates careful caudal retraction of the C2 dorsal root ganglion. The insertion point for the C1 lateral mass screw is at the junction of the C1 posterior arch and the midpoint of the posterior inferior part of the C1 lateral mass. Two patients in our series suffered occipital neuralgia post-insertion of C1 lateral mass screws. This highlights the potential for damage to the C2 nerve root during C1 lateral mass screw placement. PMID:19856190
Insertion torque in different bone models with different screw pitch: an in vitro study.
Orlando, Bruno; Barone, Antonio; Giorno, Thierry M; Giacomelli, Luca; Tonelli, Paolo; Covani, Ugo
2010-01-01
Orthopedic surgeons use different types of screws for bone fixation. Whereas hard cortical bone requires a screw with a fine pitch, in softer cancellous bone a wider pitch might help prevent micromotion and eventually lead to greater implant stability. The aim of this study was to validate the assumption that fine-pitch implants are appropriate for cortical bone and wide-pitch implants are appropriate for cancellous bone. Wide-pitch and fine-pitch implants were inserted in both hard (D1 and D2) bone and soft (D3 and D4) bone, which was simulated by separate experimental blocks of cellular rigid polyurethane foam. A series of insertion sites in D1-D2 and D3-D4 experimental blocks were prepared using 1.5-mm and 2.5-mm drills. The final torque required to insert each implant was recorded. Wide-pitch implants displayed greater insertion torque (20% more than the fine-pitch implants) in cancellous bone and were therefore more suitable than fine-pitch implants. It is more appropriate to use a fine pitch design for implants, in conjunction with a 2.5-mm osteotomy site, in dense cortical bone (D1 or D2), whereas it is recommended to choose a wide-pitch design for implants, in conjunction with a 1.5-mm osteotomy site, in softer bone (D3 or D4).
Surgical simulation software for insertion of pedicle screws.
Eftekhar, Behzad; Ghodsi, Mohammad; Ketabchi, Ebrahim; Rasaee, Saman
2002-01-01
As the first step toward finding noninvasive alternatives to the traditional methods of surgical training, we have developed a small, stand-alone computer program that simulates insertion of pedicle screws in different spinal vertebrae (T10-L5). We used Delphi 5.0 and DirectX 7.0 extension for Microsoft Windows. This is a stand-alone and portable program. The program can run on most personal computers. It provides the trainee with visual feedback during practice of the technique. At present, it uses predefined three-dimensional images of the vertebrae, but we are attempting to adapt the program to three-dimensional objects based on real computed tomographic scans of the patients. The program can be downloaded at no cost from the web site: www.tums.ac.ir/downloads As a preliminary work, it requires further development, particularly toward better visual, auditory, and even proprioceptive feedback and use of the individual patient's data.
Byrne, Declan; Jacobs, Stuart; O'Connell, Brian; Houston, Frank; Claffey, Noel
2006-01-01
Abutment screw loosening, especially in the case of cemented single tooth restorations, is a cause of implant restoration failure. This study compared three screws (titanium alloy, gold alloy, and gold-coated) with similar geometry by recording the preload induced when torques of 10, 20, and 35 Ncm were used for fixation. Two abutment types were used-prefabricated preparable abutments and cast-on abutments. A custom-designed rig was used to measure preload in the abutment-screw-implant assembly with a strain gauge. Ten screws of each type were sequentially tightened to 10, 20, and 35 Ncm on ten of the two abutment types. The same screws were then loosened and re-tightened. This procedure was repeated. Thus, each screw was tightened on three occasions to the three insertion torques. A linear regression model was used to analyze the effects on preload values of screw type and abutment type for each of the three insertion torques. The results indicated that the gold-coated screw generated the highest preloads for all insertion torques and for each tightening episode. Further analysis focused on the effects of screw type and abutment type for each episode of tightening and for each fixation torque. The gold-coated screw, fixed to the prefabricated abutment, displayed higher preloads for the first tightening at 10, 20, and 35 Ncm. Conversely, the same screw fixed to the cast-on abutment showed higher values for the second and third tightening for all fixation torques. All screws showed decay in preload with the number of times tightened. Given the higher preloads generated using the gold-coated screw with both abutment types, it is more likely that this type of screw will maintain a secure joint when tightened for the second and third time. All screw types displayed some decay in preload with repeated tightening, irrespective of abutment type and insertion torque. The gold-coated screw showed markedly higher preloads for all insertion torques and for all instances of tightening when compared with the uncoated screws.
Voss, Andreas; Beitzel, Knut; Alaee, Farhang; Dukas, Alex; Herbst, Elmar; Obopilwe, Elifho; Apostolakos, John; DiVenere, Jessica; Singh, Hardeep; Cote, Mark P; Mazzocca, Augustus D
2016-08-01
To evaluate the biomechanical stability of a tendon-to-clavicle bone interface fixation of a graft in revision acromioclavicular reconstruction. Fifteen fresh-frozen cadaveric shoulders were used. All specimens underwent bone density evaluation. For the primary reconstruction, a 5-mm semitendinosus allograft was inserted into a 5-mm bone tunnel at 25 and 45 mm from the lateral end of the clavicle using a 5.5 × 8-mm PEEK (polyether ether ketone) tenodesis screw. Each single graft was fixed in a cryo-clamp and cyclically loaded from 5 to 70 N for 3,000 cycles, followed by load-to-failure testing at a rate of 120 mm/min to simulate the revision case. To simulate tunnel widening, the tunnels of the revision series were over-drilled with an 8-mm drill, and a 5-mm semitendinosus graft with an 8 × 12-mm PEEK tenodesis screw was inserted. Biomechanical testing was then repeated. The bone mineral density analysis showed a significantly higher density at the 45-mm hole compared with the 25-mm hole (P = .001). The ultimate load to failure increased from the 5.5-mm screw to the 8-mm screw at the 45-mm hole position (P = .001). There was no statistically significant difference at the 25-mm hole position (P = .934). No statistical significance for graft elongation comparing the 5.5-mm screw and the 8-mm screw at the 25-mm (P = .156) and 45-mm (P = .334) positions could be found. Comparable biomechanical stability for the tendon-to-bone interface fixation in different clavicular tunnel diameters simulating primary and revision reconstruction was achieved. There is a lack of literature regarding revision acromioclavicular joint reconstruction, but our biomechanical results show comparable stability to primary reconstruction. These data provide support for the use of anatomic acromioclavicular ligament reconstruction in revision cases. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
In vitro performance and fracture resistance of CAD/CAM-fabricated implant supported molar crowns.
Rosentritt, Martin; Hahnel, Sebastian; Engelhardt, Frank; Behr, Michael; Preis, Verena
2017-05-01
The aim of this study is to investigate the performance and fracture resistance of different CAD/CAM ceramic and composite materials as implant- or tooth-supported single crowns with respect to the clinical procedure (screwed/bonded restoration). One hundred twenty crowns were fabricated on implants or human molar teeth simulating (a) chairside procedure ([CHAIR] implant crown bonded to abutment), (b) labside procedure ([LAB] abutment and implant crown bonded in laboratory, screwed chairside), and (c) reference ([TOOTH] crowns luted on human teeth). Four materials were investigated: ZLS (zirconia-reinforced lithium silicate ceramic; Celtra Duo, Degudent: polished (P)/crystallized (C)), RB (resin-based composite; Cerasmart, GC), and RIC (resin-infiltrated ceramic; Enamic, Vita-Zahnfabrik). LiS (lithiumdisilicate; Emax CAD, Ivoclar-Vivadent) served as reference. Combined thermal cycling and mechanical loading (TCML) was performed simulating a 5-year clinical situation. Fracture force was determined. Data were statistically analyzed (Kolmogorov-Smirnov test, one-way ANOVA; post hoc Bonferroni, α = 0.05). One crown of ZLS_C[LAB] (1,200,000 cycles) and RB[CHAIR] (890 cycles) failed during TCML. Fracture values varied between 977.7 N(RB) and 3070.4 N(LiS)[CHAIR], 1130.6 N(RB) and 2998.1 N(LiS)[LAB], and 1802.4 N(ZLS) and 2664.3 N(LiS)[TOOTH]. Significantly (p < 0.003) different forces were found between the materials in all three groups. ZLS_C, RIC, and RB showed significantly (p < 0.014) different values for the individual groups. Partly ceramic and resin-based materials performed differently on implant or tooth abutments. The insertion of a screw channel reduced the stability for individual crown materials. Insertion of the screw channel should be performed carefully. All restorations were in a range where clinical application seems not restricted, but insertion of a screw channel might reduce stability of individual materials.
Wang, Huixiang; Wang, Fang; Leong, Anthony Peng Yew; Xu, Lu; Chen, Xiaojun; Wang, Qiugen
2016-09-01
Augmented reality (AR) enables superimposition of virtual images onto the real world. The aim of this study is to present a novel AR-based navigation system for sacroiliac screw insertion and to evaluate its feasibility and accuracy in cadaveric experiments. Six cadavers with intact pelvises were employed in our study. They were CT scanned and the pelvis and vessels were segmented into 3D models. The ideal trajectory of the sacroiliac screw was planned and represented visually as a cylinder. For the intervention, the head mounted display created a real-time AR environment by superimposing the virtual 3D models onto the surgeon's field of view. The screws were drilled into the pelvis as guided by the trajectory represented by the cylinder. Following the intervention, a repeat CT scan was performed to evaluate the accuracy of the system, by assessing the screw positions and the deviations between the planned trajectories and inserted screws. Post-operative CT images showed that all 12 screws were correctly placed with no perforation. The mean deviation between the planned trajectories and the inserted screws was 2.7 ± 1.2 mm at the bony entry point, 3.7 ± 1.1 mm at the screw tip, and the mean angular deviation between the two trajectories was 2.9° ± 1.1°. The mean deviation at the nerve root tunnels region on the sagittal plane was 3.6 ± 1.0 mm. This study suggests an intuitive approach for guiding screw placement by way of AR-based navigation. This approach was feasible and accurate. It may serve as a valuable tool for assisting percutaneous sacroiliac screw insertion in live surgery.
Ab-Lazid, Rosidah; Perilli, Egon; Ryan, Melissa K; Costi, John J; Reynolds, Karen J
2014-12-01
For cancellous bone screws, the respective roles of the applied insertion torque (TInsert) and of the quality of the host bone (microarchitecture, areal bone mineral density (aBMD)), in contributing to the mechanical holding strength of the bone-screw construct (FPullout), are still unclear. During orthopaedic surgery screws are tightened, typically manually, until adequate compression is attained, depending on surgeons' manual feel. This corresponds to a subjective insertion torque control, and can lead to variable levels of tightening, including screw stripping. The aim of this study, performed on cancellous screws inserted in human femoral heads, was to investigate which, among the measurements of aBMD, bone microarchitecture, and the applied TInsert, has the strongest correlation with FPullout. Forty six femoral heads were obtained, over which microarchitecture and aBMD were evaluated using micro-computed tomography and dual X-ray absorptiometry. Using an automated micro-mechanical test device, a cancellous screw was inserted in the femoral heads at TInsert set to 55% to 99% of the predicted stripping torque beyond screw head contact, after which FPullout was measured. FPullout exhibited strongest correlations with TInsert (R=0.88, p<0.001), followed by structure model index (SMI, R=-0.81, p<0.001), bone volume fraction (BV/TV, R=0.73, p<0.001) and aBMD (R=0.66, p<0.01). Combinations of TInsert with microarchitectural parameters and/or aBMD did not improve the prediction of FPullout. These results indicate that, for cancellous screws, FPullout depends most strongly on the applied TInsert, followed by microarchitecture and aBMD of the host bone. In trabecular bone, screw tightening increases the holding strength of the screw-bone construct. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lee, Sun-Ho; Kim, Eun-Sang; Eoh, Whan
2013-01-01
For the past decade, a screw-rod construct has been used commonly to stabilize the atlantoaxial joint, but the insertion of the screw through the C1 lateral mass (LM) can cause several complications. We evaluated whether using a higher screw entry point for C1 lateral mass (LM) fixation than in the standard procedure could prevent screw-induced occipital neuralgia. We enrolled 12 consecutive patients who underwent bilateral C1 LM fixation, with the modified screw insertion point at the junction of the C1 posterior arch and the midpoint of the posterior inferior portion of the C1 LM. We measured postoperative clinical and radiological parameters and recorded intraoperative complications, postoperative neurological deficits and the occurrence of occipital neuralgia. Postoperative plain radiographs were used to check for malpositioning of the screw or failure of the construct. Four patients underwent atlantoaxial stabilization for a transverse ligament injury or a C1 or C2 fracture, six patients for os odontoideum, and two patients for C2 metastasis. No patient experienced vertebral artery injury or cerebrospinal fluid leak, and all had minimal blood loss. No patient suffered significant occipital neuralgia, although one patient developed mild, transient unilateral neuralgia. There was also no radiographic evidence of construct failure. Twenty screws were positioned correctly through the intended entry points, but three screws were placed inferiorly (that is, below the arch), and one screw was inserted too medially. When performing C1-C2 fixation using the standard (Harms) construct, surgeons should be aware of the possible development of occipital neuralgia. A higher entry point may prevent this complication; therefore, we recommend that the screw should be inserted into the arch of C1 if it can be accommodated. Copyright © 2012 Elsevier Ltd. All rights reserved.
"Turn-of-the-Nut" Method Is Not Appropriate for Use in Cancellous Bone.
Ryan, Melissa K; Mohtar, Aaron A; Costi, John J; Reynolds, Karen J
2015-11-01
The level to which bone screws are tightened is determined subjectively by the operating surgeon. It is likely that the tactile feedback that surgeons rely on is based on localized tissue yielding, which may predispose the screw-bone interface to failure. A limited number of studies have investigated the ratio between clinical tightening torque and stripping torque. The purpose of this study was to measure, for the first time, the ratio between yield torque (T yield) and stripping torque (T max) during screw insertion into the cancellous bone and to compare these torques with clinical levels of tightening reported in the literature. Additionally, a rotational limit was investigated as a potential end point for screw insertion in cancellous bone. A 6.5-mm outer diameter commercial cancellous bone screw was inserted into human femoral head specimens (n = 89). Screws were inserted to failure, while recording insertion torque, compression under the screw head, and rotation angle. The median, interquartile ranges, and coefficient of variation were calculated for each of the following parameters: T yield, T max, T yield/T max, slope, T plateau, and rotation angle. The median ratio of T yield/T max and rotation angle was 85.45% and 96.5 degrees, respectively. The coefficient of variation was greatest for the rotation angle compared with the ratio of T yield/T max (0.37 vs. 0.12). The detection of yield may be a more precise method than the rotation angle in cancellous bone; however, bone-screw constructs that exhibit a T yield close to T max may be more susceptible to stripping during insertion. Future work can identify factors that influence the ratio of T yield/T max may help to reduce the incidence of screw stripping.
Maki, Satoshi; Aramomi, Masaaki; Matsuura, Yusuke; Furuya, Takeo; Ota, Mitsutoshi; Iijima, Yasushi; Saito, Junya; Suzuki, Takane; Mannoji, Chikato; Takahashi, Kazuhisa; Yamazaki, Masashi; Koda, Masao
2017-10-01
OBJECTIVE Fusion surgery with instrumentation is a widely accepted treatment for cervical spine pathologies. The authors propose a novel technique for subaxial cervical fusion surgery using paravertebral foramen screws (PVFS). The authors consider that PVFS have equal or greater biomechanical strength than lateral mass screws (LMS). The authors' goals of this study were to conduct a biomechanical study of PVFS, to investigate the suitability of PVFS as salvage fixation for failed LMS, and to describe this novel technique. METHODS The authors harvested 24 human cervical spine vertebrae (C3-6) from 6 fresh-frozen cadaver specimens from donors whose mean age was 84.3 ± 10.4 years at death. For each vertebra, one side was chosen randomly for PVFS and the other for LMS. For PVFS, a 3.2-mm drill with a stopper was advanced under lateral fluoroscopic imaging. The drill stopper was set to 12 mm, which was considered sufficiently short not to breach the transverse foramen. The drill was directed from 20° to 25° medially so that the screw could purchase the relatively hard cancellous bone around the entry zone of the pedicle. The hole was tapped and a 4.5-mm-diameter × 12-mm screw was inserted. For LMS, 3.5-mm-diameter × 14-mm screws were inserted into the lateral mass of C3-6. The pullout strength of each screw was measured. After pullout testing of LMS, a drill was inserted into the screw hole and the superior cortex of the lateral mass was pried to cause a fracture through the screw hole, simulating intraoperative fracture of the lateral mass. After the procedure, PVFS for salvage (sPVFS) were inserted on the same side and pullout strength was measured. RESULTS The CT scans obtained after screw insertion revealed no sign of pedicle breaching, violation of the transverse foramen, or fracture of the lateral mass. A total of 69 screws were tested (23 PVFS, 23 LMS, and 23 sPVFS). One vertebra was not used because of a fracture that occurred while the specimen was prepared. The mean bone mineral density of the specimens was 0.29 ± 0.10 g/cm 3 . The mean pullout strength was 234 ± 114 N for PVFS, 158 ± 91 N for LMS, and 195 ± 125 N for sPVFS. The pullout strength for PVFS tended to be greater than that for LMS. However, the difference was not quite significant (p = 0.06). CONCLUSIONS The authors introduce a novel fixation technique for the subaxial cervical spine. This study suggests that PVFS tend to provide stronger fixation than LMS for initial applications and fixation equal to LMS for salvage applications. If placement of LMS fails, PVFS can serve as a salvage fixation technique.
Effect of screw fixation on acetabular component alignment change in total hip arthroplasty.
Fujishiro, Takaaki; Hayashi, Shinya; Kanzaki, Noriyuki; Hashimoto, Shingo; Shibanuma, Nao; Kurosaka, Masahiro
2014-06-01
The use of screws can enhance immediate cup fixation, but the influence of screw insertion on cup position has not previously been measured. The purpose of this study was to quantitatively evaluate the effect of intra-operative screw fixation on acetabular component alignment that has been inserted with the use of a navigation system. We used a navigation system to measure cup alignment at the time of press-fit and after screw fixation in 144 hips undergoing total hip arthroplasty. We also compared those findings with factors measured from postoperative radiographs. The mean intra-operative change of cup position was 1.78° for inclination and 1.81° for anteversion. The intra-operative change of anteversion correlated with the number of screws. The intra-operative change of inclination also correlated with medial hip centre. The insertion of screws can induce changes in cup alignment, especially when multiple screws are used or if a more medial hip centre is required for rigid acetabular fixation.
Lee, J H; Lee, J-H; Park, J W; Shin, Y H
2012-01-01
In patients with osteoporosis there is always a strong possibility that pedicle screws will loosen. This makes it difficult to select the appropriate osteoporotic patient for a spinal fusion. The purpose of this study was to determine the correlation between bone mineral density (BMD) and the magnitude of torque required to insert a pedicle screw. To accomplish this, 181 patients with degenerative disease of the lumbar spine were studied prospectively. Each underwent dual-energy x-ray absorptiometry (DEXA) and intra-operative measurement of the torque required to insert each pedicle screw. The levels of torque generated in patients with osteoporosis and osteopenia were significantly lower than those achieved in normal patients. Positive correlations were observed between BMD and T-value at the instrumented lumbar vertebrae, mean BMD and mean T-value of the lumbar vertebrae, and mean BMD and mean T-value of the proximal femur. The predictive torque (Nm) generated during pedicle screw insertion was [-0.127 + 1.62 × (BMD at the corresponding lumbar vertebrae)], as measured by linear regression analysis. The positive correlation between BMD and the maximum torque required to insert a pedicle screw suggests that pre-operative assessment of BMD may be useful in determining the ultimate strength of fixation of a device, as well as the number of levels that need to be fixed with pedicle screws in patients who are suspected of having osteoporosis.
Evaluation of torque maintenance of abutment and cylinder screws with Morse taper implants.
Ferreira, Mayara Barbosa; Delben, Juliana Aparecida; Barão, Valentim Adelino Ricardo; Faverani, Leonardo Perez; Dos Santos, Paulo Henrique; Assunção, Wirley Gonçalves
2012-11-01
The screw loosening of implant-supported prostheses is a common mechanical failure and is related to several factors as insertion torque and preload. The aim of this study was to evaluate the torque maintenance of retention screws of tapered abutments and cylinders of Morse taper implants submitted to retightening and detorque measurements. Two groups were obtained (n = 12): group I-tapered abutment connected to the implant with titanium retention screw and group II-cylinder with metallic base connected to tapered abutment with titanium retention screw. The detorque values were measured by an analogic torque gauge after 3 minutes of torque insertion. The detorque was measured 10 times for each retention screw of groups I and II, totalizing 120 detorque measurements in each group. Data were submitted to ANOVA and Fisher exact test (P < 0.05). Both groups presented reduced detorque value (P < 0.05) in comparison to the insertion torque in all measurement periods. There was a statistically significant difference (P < 0.05) between the detorque values of the first measurement and the other measurement periods for the abutment screw. However, there was no statistically significant difference (P > 0.05) for the detorque values of all measurement periods for the cylinder screw. In conclusion, the abutment and cylinder screws exhibited torque loss after insertion, which indicates the need for retightening during function of the implant-supported prostheses.
Qi, Bao-Chang; Ju, Wei-Na; Wang, Tie-Jun; Yu, Tie-Cheng; Zhao, Yi; Sun, Da-Hui
2015-01-01
Cannulated screws (4.0 mm) provide inter-fragmentary compression and stability to fractures. A guide wire is used to define the screw trajectory and hold the fracture fragment while the screw is being inserted. The cannulated shaft typically accommodates a 1.25 mm guide pin. Since the guide pin is very slender and undergoes elastic deformation during insertion, there is a high probability of pin breakage. The authors have devised a new way to place the 4.0 mm cannulated screws in a manner that prevents the intraoperative complication of guide wire breakage. For this technique, predrilling was achieved using a 2.0 mm K-wire which was subsequently replaced with a 1.25 mm guide pin under the protection of sleeve. 4.0 mm cannulated screws were then inserted into a defined trajectory over the guide pin. Using the technique, over 20 patients were managed in our department over a period of two years without any complications. We have observed that patients treated with this method experience short operation time, combined with good clinical outcome and we recommend its use in cases where cannulated screw use is warranted.
Influence of Screw Length and Bone Thickness on the Stability of Temporary Implants
Fernandes, Daniel Jogaib; Elias, Carlos Nelson; Ruellas, Antônio Carlos de Oliveira
2015-01-01
The purpose of this work was to study the influence of screw length and bone thickness on the stability of temporary implants. A total of 96 self-drilling temporary screws with two different lengths were inserted into polyurethane blocks (n = 66), bovine femurs (n = 18) and rabbit tibia (n = 12) with different cortical thicknesses (1 to 8 mm). Screws insertion in polyurethane blocks was assisted by a universal testing machine, torque peaks were collected by a digital torquemeter and bone thickness was monitored by micro-CT. The results showed that the insertion torque was significantly increased with the thickness of cortical bone from polyurethane (p < 0.0001), bovine (p = 0.0035) and rabbit (p < 0.05) sources. Cancellous bone improved significantly the mechanical implant stability. Insertion torque and insertion strength was successfully moduled by equations, based on the cortical/cancellous bone behavior. Based on the results, insertion torque and bone strength can be estimate in order to prevent failure of the cortical layer during temporary screw placement. The stability provided by a cortical thickness of 2 or 1 mm coupled to cancellous bone was deemed sufficient for temporary implants stability. PMID:28793582
Koistinen, A P; Korhonen, H; Kiviranta, I; Kröger, H; Lappalainen, R
2011-07-01
Insertion of internal fracture fixation devices, such as screws, mechanically weakens the bone. Diamond-like carbon has outstanding tribology properties which may decrease the amount of damage in tissue. The purpose of this study was to investigate methods for quantification of cortical bone damage after orthopaedic bone screw insertion and to evaluate the effect of surface modification on tissue damage. In total, 48 stainless steel screws were inserted into cadaver bones. Half of the screws were coated with a smooth amorphous diamond coating. Geometrical data of the bones was determined by peripheral quantitative computed tomography. Thin sections of the bone samples were prepared after screw insertion, and histomorphometric evaluation of damage was performed on images obtained using light microscopy. Micro-computed tomography and scanning electron microscopy were also used to examine tissue damage. A positive correlation was found between tissue damage and the geometric properties of the bone. The age of the cadaver significantly affected the bone mineral density, as well as the damage perimeter and diameter of the screw hole. However, the expected positive effect of surface modification was probably obscured by large variations in the results and, thus, statistically significant differences were not found in this study. This can be explained by natural variability in bone tissue, which also made automated image analysis difficult.
Buchowski, Jacob M; Bridwell, Keith H; Lenke, Lawrence G; Good, Christopher R
2009-06-01
Case report. In order to demonstrate the dangers of intrapedicular application of a hemostatic gelatin matrix to decrease blood loss during pedicle screw insertion, we present 2 patients who--as a result of inadvertent extravasation of the matrix into the spinal canal--developed epidural spinal cord compression (ESCC) requiring emergent decompression. Variety of hemostatic agents can control bleeding during pedicle screw insertion. We have often used a hemostatic gelatin matrix to decrease bleeding from cannulated pedicles by injecting the material into the pedicle after manually palpating the pedicle. Medical records and radiographic studies of 2 patients with AIS who underwent surgical treatment of their deformity and developed a neurologic deficit due to extravasation of FloSeal were reviewed. A 15 year-old male underwent T4 to L2 posterior spinal fusion (PSF). During pedicle screw insertion, a change in NMEPs and SSEPs was noted. A wake-up test confirmed bilateral LE paraplegia. Screws were removed and no perforations were noted on manual palpation. MRI showed T7 to T10 ESCC. He underwent a T5 to T10 laminectomy and hemostatic gelatin matrix noted in the canal and was evacuated. He was ambulatory at 2 weeks and by 3 months he had complete recovery. The second patient was a 15 year-old female who underwent T4 to L1 PSF. Following screw insertion, deterioration in NMEPs and SSEPs was noted. Screws were removed and SCM data returned to baseline. Except for 3 screws that had an inferior breach (Left T7 and Bilateral T8), screws were reinserted and remainder of the surgery was uneventful. Postoperative examination was normal initially but 2 days later, she developed left LE numbness/weakness. Implants were removed and MRI showed T4 to T9 ESCC.She underwent a left (concave) T4 to T9 hemilaminectomy. Hemostatic gelatin matrix was noted and was evacuated. Six weeks following surgery, she had a complete neurologic recovery. The use of a hemostatic gelatin matrix to decrease bleeding from cannulated pedicles during pedicle screw insertion can result in inadvertent extravasation into the spinal canal resulting in ESCC even in the absence of an apparent medial pedicle breach. Given the dangers associated with the technique, we recommend that gelatin matrix products be used judiciously during pedicle screw insertion.
Screw-Thread Inserts As Temporary Flow Restrictors
NASA Technical Reports Server (NTRS)
Trimarchi, Paul
1992-01-01
Coil-spring screw-thread inserts found useful as temporary flow restrictors. Inserts placed in holes through which flow restricted, effectively reducing cross sections available for flow. Friction alone holds inserts against moderate upstream pressures. Use of coil-spring thread inserts as flow restrictors conceived as inexpensive solution to problem of adjusting flow of oxygen through orifices in faceplate into hydrogen/oxygen combustion chamber. Installation and removal of threaded inserts gentle enough not to deform orifice tubes.
Oba, Hiroki; Ebata, Shigeto; Takahashi, Jun; Koyama, Kensuke; Uehara, Masashi; Kato, Hiroyuki; Haro, Hirotaka; Ohba, Tetsuro
2018-06-11
Observational cohort study. To compare the rate of pedicle perforation while inserting screws (PS) using O-arm navigation during surgery for scoliosis with that reported previously, and to determine risk factors specific to O-arm navigation. O-arm navigation provides intraoperative three-dimensional fluoroscopic imaging with an image quality similar to that of computed tomography. Surgeons have started using O-arm navigation in treatment of adolescent idiopathic sclerosis (AIS). However, there are few reports of the perforation rate when using O-arm navigation to insert pedicle screws for AIS. To our knowledge, no information has been published regarding risk factors for pedicle perforation by PS when using O-arm navigation during surgery for AIS. We retrospectively reviewed the cases of 23 consecutive patients with AIS (all female; mean age 15.4 years, range 12-19 years) who had all undergone PS fixation under O-arm navigation. There were 11 major pedicle perforations (Grade 2 or 3) by the 404 screws (2.7%). For both Grade 1-3 and Grade 2 or 3 perforations, the pedicle perforation rate by the ninth or subsequent screws was significantly higher than that for the other two groups (screws 1-4, 5-8) (P < 0.01). Grade 1-3, Grades 2 or 3, and Grade 3 perforation rates after a previous perforation were significantly higher than those in patients without a previous perforation (P < 0.01). The rate of screw deviation can increase significantly to 12.2% after insertion of 8. The rate of major perforation of pedicles after inserting PS using O-arm navigation during surgery for AIS is relatively low. However, we recommend caution using intraoperative navigation after inserting 8 pedicle screws because after this, the trajectory deviation rate can increase significantly. 3.
Varghese, Vicky; Saravana Kumar, Gurunathan; Krishnan, Venkatesh
2017-02-01
Pedicle screws are widely used for the treatment of spinal instability by spine fusion. Screw loosening is a major problem of spine fusion, contributing to delayed patient recovery. The present study aimed to understand the factor and interaction effects of density, insertion depth and insertion angle on pedicle screw pull out strength and insertion torque. A pull out study was carried out on rigid polyurethane foam blocks representing osteoporotic to normal bone densities according to the ASTM-1839 standard. It was found that density contributes most to pullout strength and insertion torque. The interaction effect is significant (p < 0.05) and contributes 8% to pull out strength. Axial pullout strength was 34% lower than angled pull out strength in the osteoporotic bone model. Insertion angle had no significant effect (p > 0.05) on insertion torque. Pullout strength and insertion torque had no significant correlation (p > 0.05) in the case of the extremely osteoporotic bone model. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Beumer, Annechien; Campo, Martin M; Niesing, Ruud; Day, Judd; Kleinrensink, Gert-Jan; Swierstra, Bart A
2005-01-01
We assessed syndesmotic set screw strength and fixation capacity during cyclical testing in a cadaver model simulating protected weight bearing. Sixteen fresh frozen legs with artificial syndesmotic injuries and a syndesmotic set screw made of stainless steel or titanium, inserted through three or four cortices, were axially loaded with 800 N for 225,000 cycles in a materials testing machine. The 225,000 cycles equals the number of paces taken by a person walking in a below knee plaster during 9 weeks. Syndesmotic fixation failure was defined as: bone fracture, screw fatigue failure, screw pullout, and/or excessive syndesmotic widening. None of the 14 out of 16 successfully tested legs or screws failed. No difference was found in fixation of the syndesmosis when stainless steel screws were compared to titanium screws through three or four cortices. Mean lateral displacement found after testing was 1.05 mm (S.D. = 0.42). This increase in tibiofibular width exceeds values described in literature for the intact syndesmosis loaded with body weight. Based on this laboratory study it is concluded that the syndesmotic set screw cannot prevent excessive syndesmotic widening when loaded with a load comparable with body weight. Therefore, we advise that patients with a syndesmotic set screw in situ should not bear weight.
A novel electromagnetic navigation tool for acetabular surgery.
Lehmann, Wolfgang; Rueger, Johannes M; Nuechtern, Jakob; Grossterlinden, Lars; Kammal, Michael; Hoffmann, Michael
2015-10-01
Acetabular fracture surgery is demanding and screw placement along narrow bony corridors remains challenging. It necessitates x-ray radiation for fluoroscopically assisted screw insertion. The purpose of this cadaver study was to evaluate the feasibility, accuracy and operation time of a novel electromagnetic navigation system for screw insertion along predefined acetabular corridors. A controlled laboratory study with a total of 24 electromagnetically navigated screw insertions was performed on 8 cadaveric acetabula. 3 peri-acetabular bony corridors (QSS, Quadrilateral Surface Screw; IAS, Infra-Acetabular Screw; PCS, Posterior Column Screw) were defined and screws were placed in a defined order without fluoroscopy. Operation time was documented. Postoperative CT scans were performed to analyse accuracy of screw placement. Mean cadaver age was 70.4 ± 11.7. Successful screw placement was accomplished in 22 out of 24 (91.7%) cases. The overall mean time for all 3 acetabular screws was 576.6 ± 75.9s. All 3 complications occurred during the placement of the IAS due to an impassable narrow bony corridor. QSS mean length was 50 ± 5mm, IAS mean length was 85 ± 10mm and PCS mean length was 120 ± 5mm. In this cadaver study the novel electromagnetic navigation system was feasible to allow accurate screw placement without fluoroscopy in defined narrow peri-acetabular bony corridors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Does maximum torque mean optimal pullout strength of screws?
Tankard, Sara E; Mears, Simon C; Marsland, Daniel; Langdale, Evan R; Belkoff, Stephen M
2013-04-01
To determine the relationship between insertion torque and pullout strength of 3.5-mm-diameter cortical screws in cadaveric humeri with different bone mineral densities (BMDs). Five pairs of human humeri from each of 3 BMD groups (normal, osteopenic, and osteoporotic) were used. Holes were drilled in each humerus, and maximum insertion torque (T(max)) was measured by tightening a screw until stripping occurred. In the remaining holes, screws were tightened to 50%, 70%, or 90% of the T(max). A servohydraulic testing machine pulled each screw out at 1 mm/s while resulting force and axial displacement were recorded at 10 Hz. The authors checked for an effect of insertion torque (percent T(max)) on pullout strength using a general linearized and latent mixed model (Stata10), controlling for cortical thickness and BMD (T-score). Pullout strength for normal and osteoporotic bone was greatest for screws inserted to 50% T(max) and was significantly greater than that at T(max) but not significantly different from that at 70% or 90% T(max). For osteopenic bone, pullout strength was greatest at 70% peak torque, but it was not significantly different from the pullout strength at the 50% or 90% T(max) levels. Tightening screws beyond 50% T(max) does not increase pullout strength of the screw and may place bone at risk for damage that might result in loss of fixation. Even after adjusting for bone thickness and density, there is no clear relationship between pullout strength and screw torque.
Lvov, Ivan; Grin, Andrey; Kaykov, Aleksandr; Smirnov, Vladimir; Krylov, Vladimir
2017-08-08
Anterior transarticular fixation of the C1-C2 vertebrae is a well-known technique that involves screw insertion through the body of the C2 vertebra into the lateral masses of the atlas through an anterior transcervical approach. Meanwhile, contralateral screw insertion has been previously described only in anatomical studies. We describe two case reports of the clinical application of this new technique. In Case 1, the patient was diagnosed with an unstable C1 fracture. The clinical features of the case did not allow for any type of posterior atlantoaxial fusion, Halo immobilization, or routine anterior fixation using the Reindl and Koller techniques. The possible manner of screw insertion into the anterior third of the right lateral mass was via a contralateral trajectory, which was performed in this case. Case 2 involved a patient with neglected posteriorly dislocated dens fracture who could not lie in the prone position due to concomitant cardiac pathology. Reduction of atlantoaxial dislocation was insufficient, even after scar tissue resection at the fracture, while transdental fusion was not possible. Considering the success of the previous case, atlantoaxial fixation was performed through the small approach, using the Reindl technique and contralateral screw insertion. These two cases demonstrate the potential of anterior transarticular fixation of C1-C2 vertebrae in cases where posterior atlantoaxial fusion is not achievable. This type of fixation can be performed through a single approach if one screw is inserted using the Reindl technique and another is inserted via a contralateral trajectory.
Gupta, Nishant; Kotrashetti, S M; Naik, Vijay
2012-03-01
Self-tapping miniscrews are commonly being used as a temporary anchorage device for orthodontic purpose. A prerequisite for the insertion of these screws is the preparation of a pilot hole, which is time consuming and may result in damage to nerves, tooth root, drill bit breakage and thermal necrosis of bone. On the other hand the design of drill-free screws enables them to be inserted without drilling. The aim of this prospective study was to compare the stability and clinical response of the soft tissue around the self tapping and drill free screws when used for orthodontic anchorage for en mass retraction of maxillary anterior teeth. The study sample consisted of 20 patients requiring retraction of maxillary anterior teeth. The screws were placed in the alveolar bone between maxillary 2nd premolar and 1st molar bilaterally at the junction of attached gingiva and moveable mucosa. Pilot hole was drilled on the side which was selected for insertion of the self tapping screw under copious irrigation, after which it was inserted. Drill free screw was inserted on the contralateral side without predrilling. All screws were immediately loaded with 150-200 gm of retraction force. Patients were recalled for regular follow up for a period of 6 months. If the screws became mobile or showed any signs of inflammation during the course of the study, they were considered to be a failure. After a period of 6 months an overall success rate of 77.5% was noted. Four self tapping and five drill-free screws failed during the study. There was no statistically significant difference between the two types of screws with respect to success/failure. Mobility was found to be the major cause for the failure. Both self-tapping and the drill-free screws are effective anchorage units. But the latter have an edge over the conventional self-tapping screws because of decrease in operative time, little bone debris, less thermal damage, lower morbidity, and minimal patient discomfort as predrilling is not required, thus they can be used as a viable alternative. But self-tapping screws are still recommended for areas with high bone density and thick cortical bone.
Bioactive ceramic coating of cancellous screws improves the osseointegration in the cancellous bone.
Lee, Jae Hyup; Nam, Hwa; Ryu, Hyun-Seung; Seo, Jun-Hyuk; Chang, Bong-Soon; Lee, Choon-Ki
2011-05-01
A number of methods for coating implants with bioactive ceramics have been reported to improve osseointegration in bone, but the effects of bioactive ceramic coatings on the osseointegration of cancellous screws are not known. Accordingly, biomechanical and histomorphometric analyses of the bone-screw interface of uncoated cancellous screws and cancellous screws coated with four different bioactive ceramics were performed. After coating titanium alloy cancellous screws with calcium pyrophosphate (CPP), CaO-SiO(2)-B(2)O(3) glass-ceramics (CSG), apatite-wollastonite 1:3 glass-ceramics (W3G), and CaO-SiO(2)-P(2)O(5)-B(2)O(3) glass-ceramics (BGS-7) using an enameling method, the coated and the uncoated screws were inserted into the proximal tibia and distal femur metaphysis of seven male mongrel dogs. The torque values of the screws were measured at the time of insertion and at removal after 8 weeks. The bone-screw contact ratio was analyzed by histomorphometry. There was no significant difference in the insertion torque between the uncoated and coated screws. The torque values of the CPP and BGS-7 groups measured at removal after 8 weeks were significantly higher than those of the uncoated group. Moreover, the values of the CPP and BGS-7 groups were significantly higher than the insertion torques. The fraction of bone-screw interface measured from the undecalcified histological slide showed that the CPP, W3G, and BGS-7 groups had significantly higher torque values in the cortical bone area than the uncoated group, and the CPP and BGS-7 groups had significantly higher torque values in the cancellous bone area than the uncoated group. In conclusion, a cancellous screw coated with CPP and BGS-7 ceramic bonds directly to cancellous bone to improve the bone-implant osseointegration. This may broaden the indications for cancellous screws by clarifying their contribution to improving osseointegration, even in the cancellous bone area.
Mann, Charles J; Costi, John J; Stanley, Richard M; Dobson, Peter J
2005-10-01
The effect of screw geometry on the pullout strength of an anterior cruciate ligament reconstruction is well documented. The effect of a truly tapered screw has not been previously investigated. Thirty bovine knees in right and left knee pairs were collected. Superficial digital flexors from the hind legs of sheep were harvested to form a quadruple tendon graft. For each knee pair, one tendon graft was fixed using a tapered screw (n=15) and the other with a non-tapered screw (n=15). Interference screws were manufactured from stainless steel, and apart from the tapered or non-tapered profile were identical. The screws were inserted into a tibial tunnel already containing the tendon graft. The interference fit was tested by extensile load to failure tests. The insertion torque of the screws and first sign of load to failure (by pullout) of the interference fit were recorded. Results were analysed using paired t-tests. The results indicated that tapered screws have significantly higher resistance to interference failure (p=0.007) and insertion torque (p<0.001) than non-tapered screws. The improved biomechanical performance of tapered screws demonstrated in this study may translate into superior clinical results, particularly at the tibial attachment of hamstring anterior cruciate ligament reconstruction, and also of hamstring fixation to the medial femoral condyle for patella instability.
Satarasinghe, Praveen; Hamilton, Kojo D; Tarver, Michael J; Buchanan, Robert J; Koltz, Michael T
2018-04-17
Utilization of pedicle screws (PS) for spine stabilization is common in spinal surgery. With reliance on visual inspection of anatomical landmarks prior to screw placement, the free-hand technique requires a high level of surgeon skill and precision. Three-dimensional (3D), computer-assisted virtual neuronavigation improves the precision of PS placement and minimization steps. Twenty-three patients with degenerative, traumatic, or neoplastic pathologies received treatment via a novel three-step PS technique that utilizes a navigated power driver in combination with virtual screw technology. (1) Following visualization of neuroanatomy using intraoperative CT, a navigated 3-mm match stick drill bit was inserted at an anatomical entry point with a screen projection showing a virtual screw. (2) A Navigated Stryker Cordless Driver with an appropriate tap was used to access the vertebral body through a pedicle with a screen projection again showing a virtual screw. (3) A Navigated Stryker Cordless Driver with an actual screw was used with a screen projection showing the same virtual screw. One hundred and forty-four consecutive screws were inserted using this three-step, navigated driver, virtual screw technique. Only 1 screw needed intraoperative revision after insertion using the three-step, navigated driver, virtual PS technique. This amounts to a 0.69% revision rate. One hundred percent of patients had intraoperative CT reconstructed images taken to confirm hardware placement. Pedicle screw placement utilizing the Stryker-Ziehm neuronavigation virtual screw technology with a three step, navigated power drill technique is safe and effective.
Electrical wiring box with structure for fast device mounting
Johnston, Earl S.
1991-01-08
An electrical wiring box of molded insulating material is provided with bosses having screw holes for receiving a mounting screw that include two colinear portions of which a first portion proximate the front surface has an internal configuration, such as molded threads, that engage the mounting screw while permitting the mounting screw to be manually inserted therethrough without turning because of flexibility built into the boss structure. A second portion of the screw hole is of greater restriction for securely engaging the screw such as by self tapping. The flexibility of the boss is provided by a first center slot that extends from the screw hole to the boss exterior over a length substantially equal to the first portion of the screw hole. Second and third slots are located respectively on each side of the screw hole and provide projections respectively between the first and second slots and the first and third slots that flex to allow easy screw insertion through the first portion of the screw hole.
Boon Tow, Benjamin Phak; Yue, Wai Mun; Srivastava, Abhishek; Lai, Jenn Ming; Guo, Chang Ming; Wearn Peng, Benedict Chan; Chen, John L T; Yew, Andy K S; Seng, Chusheng; Tan, Seang Beng
2015-10-01
This was a prospective, nonrandomized study. To assess the accuracy of O-arm navigation-based pedicle screw insertion in lumbar degenerative spondylolisthesis and to compare it with free-hand pedicle screw insertion technique in matched population. O-arm navigation is latest in navigation technology that can provide real-time intraoperative images in 3 dimensions while placing the pedicle screws to improve intraoperative pedicle screw accuracy. Degenerative lumbar spondylolisthesis is a locally unstable pathology and placement of pedicle screws can cause increased rotation and translation of the vertebral body. However, is this motion detected by the tracker placed across the unstable segment, is a matter of debate. Inability to detect these positional changes can lead to pedicle perforation while inserting screws using navigation. No study has evaluated the role of O-arm navigation in this patient population. The study population was divided into 2 groups with 19 patients each, one comprising patients who underwent O-arm navigation-based pedicle screw insertion (group 1) and the other comprising patients who underwent free-hand pedicle screw insertion technique (group 2). A total of 152 pedicle screws were implanted in 38 patients for 1-level instrumented fusion for degenerative lumbar spondylolisthesis. Intraoperative 3-dimensional computed tomography scans using the O-arm were obtained for all patients after insertion of pedicle screws. The images were reviewed intraoperatively and postoperatively for the analysis of pedicle breaches. Assessments in either of the group included (i) accuracy of placement of screws; (ii) the rate and direction of perforation; and (iii) the number of segments the perforated screw was away from the navigation tracker. Mean age of patients in group 1 (O-arm navigation-assisted) was 60 years (SD 11.25; range, 37-73 y), whereas in group 2 (free-hand pedicle screw) was 62 years (SD 18.07; range, 36-90 y). Overall anatomic perforation rate was 12.5% (19/152). Individually, group 1 had 14.47% (11/76) of perforations in comparison with 10.53% (8/76) observed in group 2. The difference was not statistically significant. The lateral margin was the most common site of perforation in both group 1 (64%, 7/11) and group 2 (62.5%, 5/8). Functional perforation rate for the series was 3.3% (5/152), with group 1 having 2.63% (2/76) and group 2 having 3.95% (3/76). The rate of perforation (PR) was significantly higher statistically when the tracker was placed 3 or more [PR 37.5% (6/16)] spinal segments away from instrumented segment compared with when it was placed 1 (0%) or 2 [PR 13.89% (5/36)] spinal segments away. Overall, 11 screws (11/152, 7.24%) had grade 2 perforations and had to be revised. No neurological complications were observed in the series. O-arm navigation does not provide any significant advantage over conventional free-hand pedicle screw insertion technique in patients with single-level degenerative spondylolisthesis. The accuracy is dependent on the distance of the tracker from the level of instrumentation. Lateral perforations are more common because of instability at the instrumented level leading to translation and rotation of the vertebral body while placing pedicle screws leading to preferential lateral trajectory. These lateral perforations could not be prevented by using navigation. However, no significant complications were noted in either technique.
Mahesh, Bijjawara; Upendra, Bidre; Vijay, Sekharappa; Arun, Kumar; Srinivasa, Reddy
2017-03-01
More than half of the perforations reported with usage of cervical pedicle screws (CPS) are lateral perforations, endangering the vertebral artery. The medial cortical pedicle screw (MCPS) technique with partial drilling of the medial cortex shifts the trajectory of pedicle screws medially, decreasing the lateral perforations. To evaluate the decrease in lateral perforations of CPS with use of MCPS technique, in relation to medial angulation. Retrospective analysis and technical report of the MCPS technique and its safety. A total of 58 patients operated on between December 2011 and May 2015 with insertion of pedicle screws from C3 to C7 were included in the study. Axial reconstructed computed tomography (CT) scan images of the inserted screws were evaluated for placement, perforations, and transverse plane angulations using the Surgimap software (Surgimap Spine 1.1.2.271 Intl. 2009 Nemaris LLC). The angulations of screws were analyzed by the type and level of placement through unpaired t test and analysis of variance test. A total of 58 patients operated on between December 2011 and May 2015 with insertion of pedicle screws from C3 to C7 were included in the study. There were 49 males and 9 females. Thirty-seven patients had cervical trauma, 17 had cervical spondylotic myelopathy, two had tumors, and two had ankylosing spondylitis. The average age was 49 years (range 18 to 80 years). The screws were inserted using the MCPS technique. All patients underwent postoperative CT scans with GE Optima CT540 16 slice CT scanner (GE Healthcare Chalfont St. Giles, Buckinghamshire, UK). Axial reconstructed images along the axis of the inserted screws were evaluated for placement and perforations. Further, all the screws were evaluated for transverse plane angulations using the Surgimap software. The angulations of screw were analyzed by the type and level of placement through unpaired t test and analysis of variance test. No funds were received by any of the authors for the purpose of the present study. A total of 324 screws were assessed with postoperative CT scans. Two hundred fifty-six were found to be placed within the pedicle and 68 (20.98%) screws were found to have perforations. Forty screws (12.34%) had grade I medial perforations, 14 screws (4.32%) had grade I lateral perforations, 10 screws (3.08%) had grade II medial perforations, and 4 screws (1.23%) had grade IIlateral perforations. The average angulation of the nonperforated screws (n=256) was 28.6° (43°-17°), that of laterally perforated screws was 20.33° (13°-24°), and that of the medially perforated screws was 34.94° (45°-20°). On statistical analysis with each series, the 99% CI range for the in-screw angles was 27.91° to 29.34°; for the laterally perforated screw series, it was 18.42° to 22.23°; and that for the medially perforated screw series was 32.97° to 36.9°. The MCPS technique represents a shift in the concept of placement of CPS from the cancellous core to the medial cortex, avoiding screw deflection laterally by the thick proximal medial cortex. The present study shows that the lateral perforations can be consistently avoided, with a medial angulation of more than 27.91°, which is the primary concern with the use of pedicle screws in lower cervical spine. Further, the MCPS technique reduces the lateral perforations at a lesser insertion angle, which is technically desirable. Copyright © 2016 Elsevier Inc. All rights reserved.
Tan, E S; Mat Jais, I S; Abdul Rahim, S; Tay, S C
2018-01-01
We investigated the effect of an interfragmentary gap on the final compression force using the Acutrak 2 Mini headless compression screw (length 26 mm) (Acumed, Hillsboro, OR, USA). Two blocks of solid rigid polyurethane foam in a custom jig were separated by spacers of varying thickness (1.0, 1.5, 2.0 and 2.5 mm) to simulate an interfragmentary gap. The spacers were removed before full insertion of the screw and the compression force was measured when the screw was buried 2 mm below the surface of the upper block. Gaps of 1.5 mm and 2.0 mm resulted in significantly decreased compression forces, whereas there was no significant decrease in compression force with a gap of 1 mm. An interfragmentary gap of 2.5 mm did not result in any contact between blocks. We conclude that an increased interfragmentary gap leads to decreased compression force with this screw, which may have implications on fracture healing.
Measuring temperature rise during orthopaedic surgical procedures.
Manoogian, Sarah; Lee, Adam K; Widmaier, James C
2016-09-01
A reliable means for measuring temperatures generated during surgical procedures is needed to recommend best practices for inserting fixation devices and minimizing the risk of osteonecrosis. Twenty four screw tests for three surgical procedures were conducted using the four thermocouples in the bone and one thermocouple in the screw. The maximum temperature rise recorded from the thermocouple in the screw (92.7±8.9°C, 158.7±20.9°C, 204.4±35.2°C) was consistently higher than the average temperature rise recorded in the bone (31.8±9.3°C, 44.9±12.4°C, 77.3±12.7°C). The same overall trend between the temperatures that resulted from three screw insertion procedures was recorded with significant statistical analyses using either the thermocouple in the screw or the average of several in-bone thermocouples. Placing a single thermocouple in the bone was determined to have limitations in accurately comparing temperatures from different external fixation screw insertion procedures. Using the preferred measurement techniques, a standard screw with a predrilled hole was found to have the lowest maximum temperatures for the shortest duration compared to the other two insertion procedures. Future studies evaluating bone temperature increase need to use reliable temperature measurements for recommending best practices to surgeons. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Ninomiya, Koshi; Iwatsuki, Koichi; Ohnishi, Yu-Ichiro; Ohkawa, Toshika; Yoshimine, Toshiki
2016-10-01
Retrospective study. Cortical bone trajectory (CBT), a more medial-to-lateral and shorter path than the traditional one for spinal fusion, is thought to be effective for severely degenerated vertebrae because screws are primarily stabilized at the posterior elements. We evaluated the efficacy of this approach through in vivo insertional torque measurement. There has been only one prior in vivo study on CBT insertional torque. Between January 2013 and April 2014, a total of 22 patients underwent posterior lumbar fusion using the CBT technique. The maximum insertional torque, which covers the radial strength needed for insertion, was measured for 113 screws, 8 of which were inserted for L5 spondylolysis. The insertional torque for cases with (n=8) and without (n=31) spondylolysis of L5 were compared using one-way analysis of variance (ANOVA). To evaluate vertebral degeneration, we classified 53 vertebrae without spondylolysis by lumbar radiography using semiquantitative methods; the insertional torque for the 105 screws used was compared on the basis of this classification. Additionally, differences in insertional torque among cases grouped by age, sex, and lumbar level were evaluated for these 105 screws using ANOVA and the Tukey test. The mean insertional torque was significantly lower for patients with spondylolysis than for those without spondylolysis (4.25 vs. 8.24 in-lb). There were no statistical differences in insertional torque according to vertebral grading or level. The only significant difference in insertional torque between age and sex groups was in men <75 years and women ≥75 years (10 vs. 5.5 in-lb). Although CBT should be used with great caution in patient with lysis who are ≥75 years, it is well suited for dealing with severely degenerated vertebrae because the pars interarticularis plays a very important role in the implementation of this technique.
Yin, Yiheng; Yu, Xinguang; Tong, Huaiyu; Xu, Tao; Wang, Peng; Qiao, Guangyu
2015-10-06
To investigate the clinical application value of the 3D printing technique in the treatment of basilar invagination and atlantoaxial dislocation. From January 2013 to September 2013, 10 patients with basilar invagination and atlantoaxial dislocation needing posterior fixation undertook 3D printing modes at the Department of Neurosurgery in PLA General Hospital. The 1:1 size models were established from skull base to C4 level with different colors between bone structures and vertebral arteries. The simulation of screw insertion was made to investigate the fixation plan and ideal entry point to avoid vertebral artery injury. After obtaining the individual screw insertion data in 3D printing modes, the according surgical operations were performed. The actual clinical results and virtual screw data in 3D printing mode were compared with each other. The 3D printing modes revealed that all the 10 patients had the dysplasia or occipitalized C1 posterior arch indicating C1 posterior arch screw implantation was not suitable. C1 lateral masses were chosen as the screws entry points. C2 screws were designed individually based on the 3D printing modes as follows: 3 patients with aberrant vertebral artery or narrow C2 pedicle less than 3.5 mm were not suitable for pedicle screw implantation. Among the 3 patients, 1 was fixed with C2 laminar screw, and 1 with C2-3 transarticular screw and 1 with C3 pedicle screw (also combined with congenital C2-3 vertebral fusion). Two patients with narrow C2 pedicle between 3.5 and 4mm were designed to choose pedicle screw fixation after 3D printing mode evaluation. One patient with C1 lateral mass vertically dislocated axis was planned with C1-2 transarticular screw fixation. All the other patients were planned with C2 pedicle screws. All the 10 patients had operation designed as the 3D printing modes schemes. The follow-up ranged from 12 to 18 months and all the patients recovered from the clinical symptoms and the bony fusion attained to 100%. 3D printing mode could provide thorough information of the bony structure abnormalities and route of vertebral artery. It is helpful for setting operation strategy and designing screw entry point and trajectory and avoiding vertebral artery and spinal cord injury and thus deserves generalization.
Polyaxial Screws in Locked Plating of Tibial Pilon Fractures.
Yenna, Zachary C; Bhadra, Arup K; Ojike, Nwakile I; Burden, Robert L; Voor, Michael J; Roberts, Craig S
2015-08-01
This study examined the axial and torsional stiffness of polyaxial locked plating techniques compared with fixed-angle locked plating techniques in a distal tibia pilon fracture model. The effect of using a polyaxial screw to cross the fracture site was examined to determine its ability to control relative fracture site motion. A laboratory experiment was performed to investigate the biomechanical stiffness of distal tibia fracture models repaired with 3.5-mm anterior polyaxial distal tibial plates and locking screws. Sawbones Fourth Generation Composite Tibia models (Pacific Research Laboratories, Inc, Vashon, Washington) were used to model an Orthopaedic Trauma Association 43-A1.3 distal tibia pilon fracture. The polyaxial plates were inserted with 2 central locking screws at a position perpendicular to the cortical surface of the tibia and tested for load as a function of axial displacement and torque as a function of angular displacement. The 2 screws were withdrawn and inserted at an angle 15° from perpendicular, allowing them to span the fracture and insert into the opposing fracture surface. Each tibia was tested again for axial and torsional stiffness. In medial and posterior loading, no statistically significant difference was found between tibiae plated with the polyaxial plate and the central screws placed in the neutral position compared with the central screws placed at a 15° position. In torsional loading, a statistically significant difference was noted, showing greater stiffness in tibiae plated with the polyaxial plate and the central screws placed at a 15° position compared with tibiae plated with the central screws placed at a 0° (or perpendicular) position. This study showed that variable angle constructs show similar stiffness properties between perpendicular and 15° angle insertions in axial loading. The 15° angle construct shows greater stiffness in torsional loading. Copyright 2015, SLACK Incorporated.
Acosta, Frank; Tauber, Mark; Fox, Michael; Martin, Hudelmaier; Forstner, Rosmarie; Augat, Peter; Penzkofer, Rainer; Pirich, Christian; Kässmann, H.; Resch, Herbert; Hitzl, Wolfgang
2008-01-01
Reconstruction after multilevel decompression of the cervical spine, especially in the weakened osteoporotic, neoplastic or infectious spine often requires circumferential stabilization and fusion. To avoid the additional posterior surgery in these cases while increasing rigidity of anterior-only screw-plate constructs, the authors introduce the concept of anterior transpedicular screw (ATPS) fixation. We demonstrated its morphological feasibility as well as its indications in a previous study in Part I of our project. Consequently, the objectives of the current study were to assess the ex vivo accuracy of placing ATPS into the cervical vertebra as well as the biomechanical performance of ATPS in comparison to traditional vertebral body screws (VBS) in terms of pull-out strength (POS). Twenty-three ATPS were inserted alternately to two screws into the pedicles and vertebral bodies, respectively, of six cadaveric specimens from C3–T1. For insertion of ATPS, a manual fluoroscopically assisted technique was used. Pre- and post insertional CT-scans were used to assess accuracy of ATPS insertion in the axial and sagittal planes. A newly designed grading system and accuracy score were used to delineate accuracy of ATPS insertion. Following insertion of screws, 23 ATPS and 22 VBS were subjected to pull-out testing (POT). The bone mineral density (BMD) of each specimen was assessed prior to POT. Statistical analysis showed that the incidence of correctly placed screws and non-critical pedicles breaches in axial plane was 78.3%, and 95.7% in sagittal plane. Hence, according to our definition of “critical” pedicle breach that exposes neurovascular structures at risk, 21.7% (n = 5) of all ATPS inserted showed a critical pedicle breach in axial plane. Notably, no critical pedicle perforation occurred at the C6 to T1 levels. Pull-out testing of ATPS and VBS revealed that pull-out resistance of ATPS was 2.5-fold that of VBS. Mean POS of 23 ATPS with a mean BMD of 0.566 g/cm2 and a mean osseus screw purchase of 27.2 mm was 467.8 N. In comparison, POS of 22 VBS screws with a mean BMD of 0.533 g/cm2 and a mean osseus screw purchase of 16.0 mm was 181.6 N. The difference in ultimate pull-out strength between the ATPS and VBS group was significant (p < 0.000001). Also, accuracy of ATPS placement in axial plane was shown to be significantly correlated with POS. In contrast, there was no correlation between screw-length, BMD, or level of insertion and the POS of ATPS or VBS. The study demonstrated that the use of ATPS might be a new technique worthy of further investigation. The use of ATPS shows the potential to increase construct rigidity in terms of screw-plate pull-out resistance. It might diminish construct failures during anterior-only reconstructions of the highly unstable decompressed cervical spine. Electronic supplementary material The online version of this article (doi:10.1007/s00586-007-0573-x) contains supplementary material, which is available to authorized users. PMID:18224357
Somerson, Jeremy S; Rowley, David; Kennedy, Chad; Buttacavoli, Frank; Agarwal, Animesh
2014-07-01
To compare the time required for proximal locking screw placement between a standard freehand technique and the navigated technique, and to quantify the reduction in ionizing radiation exposure. A fresh frozen cadaver model was used for 48 proximal interlocking screw procedures. Each procedure consisted of insertion of 2 anteroposterior locking screws. Standard fluoroscopic technique was used for 24 procedures, and an electromagnetic navigation system was used for the remaining 24 procedures. Procedure duration was recorded using an electronic timer and radiation doses were documented. Mean total insertion time for both proximal interlocking screws was 405 ± 165.7 seconds with the freehand technique and 311 ± 78.3 seconds in the navigation group (P = 0.002). All procedures resulted in successful locking screw placement. Mean ionizing radiation exposure time for proximal locking was 29.5 ± 12.8 seconds. Proximal locking screw insertion using the navigation technique evaluated in this work was significantly faster than the standard fluoroscopic method. The navigated technique is effective and has the potential to prevent ionizing radiation exposure.
iPod touch-assisted instrumentation of the spine: a technical report.
Jost, Gregory F; Bisson, Erica F; Schmidt, Meic H
2013-12-01
Instrumentation of the spine depends on choosing the correct insertion angles to implant screws. Although modern image guidance facilitates precise instrumentation of the spine, the equipment is costly and availability is limited. Although most surgeons use lateral fluoroscopy to guide instrumentation in the sagittal plane, the lateromedial angulation is often chosen by estimation. To overcome the associated uncertainty, iPod touch-based applications for measuring angles can be used to assist with screw implantation. To evaluate the use of the iPod touch to adjust instruments to the optimal axial insertion angle for placement of pedicle screws in the lumbar spine. Twenty lumbar pedicle screws in 5 consecutive patients were implanted using the iPod touch. The lateromedial angulation was measured on preoperative images and reproduced in the operative field with the iPod touch. The instruments to implant the screws were aligned with the side of the iPod for screw insertion. Actual screw angles were remeasured on postoperative imaging. We collected demographic, clinical, and operative data for each patient. In 16 of 20 screws, the accuracy of implantation was within 3 degrees of the ideal trajectory. The 4 screws with an angle mismatch of 7 to 13 degrees were all implanted at the caudal end of the exposure, where maintaining the planned angulation was impeded by strong muscles pushing medially. iPod touch-assisted instrumentation of the spine is a very simple technique, which, in combination with a lateral fluoroscopy, may guide placement of pedicle screws in the lumbar spine.
Sod, Gary A; Riggs, Laura M; Mitchell, Colin F; Hubert, Jeremy D; Martin, George S
2010-01-01
To compare in vitro monotonic biomechanical properties of an axial 3-hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (DCP-TLS) with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion (3-TLS) for the equine proximal interphalangeal (PIP) joint arthrodesis. Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. Cadaveric adult equine forelimbs (n=15 pairs). For each forelimb pair, 1 PIP joint was stabilized with an axial 3-hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion and 1 with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion. Five matching pairs of constructs were tested in single cycle to failure under axial compression, 5 construct pairs were tested for cyclic fatigue under axial compression, and 5 construct pairs were tested in single cycle to failure under torsional loading. Mean values for each fixation method were compared using a paired t-test within each group with statistical significance set at P<.05. Mean yield load, yield stiffness, and failure load under axial compression and torsion, single cycle to failure, of the DCP-TLS fixation were significantly greater than those of the 3-TLS fixation. Mean cycles to failure in axial compression of the DCP-TLS fixation was significantly greater than that of the 3-TLS fixation. The DCP-TLS was superior to the 3-TLS in resisting the static overload forces and in resisting cyclic fatigue. The results of this in vitro study may provide information to aid in the selection of a treatment modality for arthrodesis of the equine PIP joint.
Kotani, Yoshihisa; Abumi, Kuniyoshi; Ito, Manabu; Takahata, Masahiko; Sudo, Hideki; Ohshima, Shigeki; Minami, Akio
2007-06-15
The accuracy of pedicle screw placement was evaluated in posterior scoliosis surgeries with or without the use of computer-assisted surgical techniques. In this retrospective cohort study, the pedicle screw placement accuracy in posterior scoliosis surgery was compared between conventional fluoroscopic and computer-assisted surgical techniques. There has been no study systemically analyzing the perforation pattern and comparative accuracy of pedicle screw placement in posterior scoliosis surgery. The 45 patients who received posterior correction surgeries were divided into 2 groups: Group C, manual control (25 patients); and Group N, navigation surgery (20 patients). The average Cobb angles were 73.7 degrees and 73.1 degrees before surgery in Group C and Group N, respectively. Using CT images, vertebral rotation, pedicle axes as measured to anteroposterior sacral axis and vertebral axis, and insertion angle error were measured. In perforation cases, the angular tendency, insertion point, and length abnormality were evaluated. The perforation was observed in 11% of Group C and 1.8% in Group N. In Group C, medial perforations of left screws were demonstrated in 8 of 9 perforated screws and 55% were distributed either in L1 or T12. The perforation consistently occurred in pedicles in which those axes approached anteroposterior sacral axis within 5 degrees . The average insertion errors were 8.4 degrees and 5.0 degrees in Group C and Group N, respectively, which were significantly different (P < 0.02). The medial perforation in Group C occurred around L1, especially when pedicle axis approached anteroposterior sacral axis. This consistent tendency was considered as the limitation of fluoroscopic screw insertion in which horizontal vertebral image was not visible. The use of surgical navigation system successfully reduced the perforation rate and insertion angle errors, demonstrating the clear advantage in safe and accurate pedicle screw placement of scoliosis surgery.
Zhang, Xin-Liang; Huang, Da-Geng; Wang, Xiao-Dong; Zhu, Jin-Wen; Li, Yi-Bing; He, Bao-Rong; Hao, Ding-Jun
2017-04-01
Ponticulus posticus is a common anatomic variation that can be mistaken for a broad posterior arch during C1 pedicle screw placement. When the atlas lateral mass screws are placed via the posterior arch, injury to the vertebral artery may result. To our knowledge, there are few clinical studies that have analyzed the feasibility of C1 pedicle screw fixation in patients with ponticulus posticus, in clinical practice. To evaluate the feasibility of inserting a C1 pedicle screw in patients with ponticulus posticus. Between January 2008 and January 2012, 11 consecutive patients with atlantoaxial instability, and with a ponticulus posticus at C1, underwent posterior fusion surgery in our institution. According to preoperative computed tomography (CT) reconstruction, a complete ponticulus posticus was found unilaterally in nine patients and bilaterally in two. Postoperative CT reconstructive imaging was performed to assess whether C1 pedicle screw placement was successful. Patients were followed up at regular intervals and evaluated for symptoms of ponticulus posticus syndrome. Thirteen C1 pedicles (atlas vertebral artery groove), each with a complete ponticulus posticus, were successfully inserted with thirteen 3.5- or 4.0-mm diameter pedicle screws, without resection of the bony anomaly. No intraoperative complications (venous plexus, vertebral artery, or spinal cord injury) occurred. The mean follow-up period was 21 (range 14-30) months. Postoperative CT reconstructive images showed that all 13 pedicle screws were inserted in the C1 pedicles without destruction of the atlas pedicle cortical bone. In the follow-up period, none of the patients demonstrated clinical symptoms of ponticulus posticus syndrome or developed bone fusion. Three-dimensional CT imaging should be considered prior to C1 pedicle screw fixation in patients with ponticulus posticus, to avoid mistaking the ponticulus posticus for a widened dorsal arch of the atlas. If there is no ponticulus posticus syndrome preoperatively, C1 pedicle screw fixation can be successfully performed without removing the bony anomaly.
Wadhwani, Chandur; Chung, Kwok-Hung
2014-07-01
The effect of managing the screw access channels of zirconia implant abutments in the esthetic zone has not been extensively evaluated. The purpose of this study was to determine the effect of an insert placed within the screw access channel of an anterior zirconia implant abutment on the amount of cement retained within the restoration-abutment system and on the dislodging force. Thirty-six paired zirconia abutments and restorations were fabricated by computer-aided design and computer-aided manufacturing and were divided into 3 groups: open abutment, with the screw access channel unfilled; closed abutment, with the screw access channel sealed; and insert abutment, with a thin, tubular metal insert projection continuous with the screw head and placed into the abutment screw access channel. The restorations were cemented to the abutments with preweighed eugenol-free zinc oxide cement (TempBond NE). Excess cement was removed, and the weight of the cement that remained in the restoration-abutment system was measured. Vertical tensile dislodging forces were recorded at a crosshead speed of 5 mm/min after incubation in a 37°C water bath for 24 hours. The specimens were examined for the cement flow pattern into the screw access channel after dislodgement. Data were analyzed with ANOVA, followed by multiple comparisons by using the Tukey honestly significant difference test (α = .05). The mean (standard deviation) of retentive force values ranged from 108.1 ± 29.9 N to 148.3 ± 21.0 N. The retentive force values differed significantly between the insert abutment and both the open abutment (P < .05) and closed abutment groups (P < .01). Distinct patterns of cement failure were noted. The weight of the cement that remained in the system differed significantly, with both open abutment and insert abutment being greater than closed abutment (P < .05). Modifying the internal configuration of the screw access channel of an esthetic zirconia implant abutment with a metal insert significantly affected both the cement retained within the abutment itself and the retention capabilities of the zirconia restoration cemented with TempBond NE cement. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Kong, Xiangxue; Tang, Lei; Ye, Qiang; Huang, Wenhua; Li, Jianyi
2017-11-01
Accurate and safe posterior thoracic pedicle insertion (PTPI) remains a challenge. Patient-specific drill templates (PDTs) created by rapid prototyping (RP) can assist in posterior thoracic pedicle insertion, but pose biocompatibility risks. The aims of this study were to develop alternative PDTs with computer numerical control (CNC) and assess their feasibility and accuracy in assisting PTPI. Preoperative CT images of 31 cadaveric thoracic vertebras were obtained and then the optimal pedicle screw trajectories were planned. The PDTs with optimal screw trajectories were randomly assigned to be designed and manufactured by CNC or RP in each vertebra. With the guide of the CNC- or RP-manufactured PDTs, the appropriate screws were inserted into the pedicles. Postoperative CT scans were performed to analyze any deviations at entry point and midpoint of the pedicles. The CNC group was found to be significant manufacture-time-shortening, and cost-decreasing, when compared with the RP group (P < 0.01). The PDTs fitted the vertebral laminates well while all screws were being inserted into the pedicles. There were no significant differences in absolute deviations at entry point and midpoint of the pedicle on either axial or sagittal planes (P > 0.05). The screw positions were grade 0 in 90.3% and grade 1 in 9.7% of the cases in the CNC group and grade 0 in 93.5% and grade 1 in 6.5% of the cases in the RP group (P = 0.641). CNC-manufactured PDTs are viable for assisting in PTPI with good feasibility and accuracy.
Cardoso, Mayra; Torres, Marcelo Ferreira; Lourenço, Eduardo José Veras; de Moraes Telles, Daniel; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria
2012-04-01
The aim of this study was to evaluate the variation in removal torque of implant prosthetic abutment screws after successive tightening and loosening cycles, in addition to evaluating the influence of the hexagon at the abutment base on screw removal torque. Twenty hexagonal abutments were tightened to 20 regular external hex implants with a titanium alloy screw, with an insertion torque of 32 N cm, measured with a digital torque gauge. The implant/abutment/screw assemblies were divided into two groups: (1) abutments without hexagon at the base and (2) abutments with a hexagon at the base. Each assembly received a provisional restoration and was submitted to mechanical loading cycles. After this, the screws were removed and the removal torque was measured. This sequence was repeated 10 times, then the screw was replaced by a new one, and another cycle was performed. Linear regression analysis was performed. Removal torque values tended to decrease as the number of insertion/removal cycles increased, for both groups. Comparisons of the slopes and the intercepts between groups showed no statistical difference. There was no significant difference between the mean values of last five cycles and the 11th cycle. Within the limitations of this in vitro study, it was concluded that (1) repeated insertion/removal cycles promoted gradual reduction in removal torque of screws, (2) replacing the screw with a new one after 10 cycles did not increase resistance to loosening, and (3) removal of the hexagon from the abutment base had no effect on the removal torque of the screws. © 2011 John Wiley & Sons A/S.
Inoue, Gen; Ueno, Masaki; Nakazawa, Toshiyuki; Imura, Takayuki; Saito, Wataru; Uchida, Kentaro; Ohtori, Seiji; Toyone, Tomoaki; Takahira, Naonobu; Takaso, Masashi
2014-09-01
The object of this study was to examine the efficacy of preoperative teriparatide treatment for increasing the insertional torque of pedicle screws during fusion surgery in postmenopausal women with osteoporosis. Fusion surgery for the thoracic and/or lumbar spine was performed in 29 postmenopausal women with osteoporosis aged 65-82 years (mean 72.2 years). The patients were divided into 2 groups based on whether they were treated with teriparatide (n = 13) or not (n = 16) before the surgery. In the teriparatide-treated group, patients received preoperative teriparatide therapy as either a daily (20 μg/day, n = 7) or a weekly (56.5 μg/week, n = 6) injection for a mean of 61.4 days and a minimum of 31 days. During surgery, the insertional torque was measured in 212 screws inserted from T-7 to L-5 and compared between the 2 groups. The correlation between the insertional torque and the duration of preoperative teriparatide treatment was also investigated. The mean insertional torque value in the teriparatide group was 1.28 ± 0.42 Nm, which was significantly higher than in the control group (1.08 ± 0.52 Nm, p < 0.01). There was no significant difference between the daily and the weekly teriparatide groups with respect to mean insertional torque value (1.34 ± 0.50 Nm and 1.18 ± 0.43 Nm, respectively, p = 0.07). There was negligible correlation between insertional torque and duration of preoperative teriparatide treatment (r(2) = 0.05, p < 0.01). Teriparatide injections beginning at least 1 month prior to surgery were effective in increasing the insertional torque of pedicle screws during surgery in patients with postmenopausal osteoporosis. Preoperative teriparatide treatment might be an option for maximizing the purchase of the pedicle screws to the bone at the time of fusion surgery.
Liu, Da; Zhang, Yi; Lei, Wei; Wang, Cai-ru; Xie, Qing-yun; Liao, Dong-fa; Jiang, Kai; Zhou, Jin-song; Zhang, Bo; Pan, Xian-ming
2014-04-01
Expansive pedicle screw (EPS) and polymethylmethacrylate-augmented pedicle screw (PMMA-PS) were inserted in sheep vertebrae in vitro and were evaluated by performing biomechanical tests, radiographic examinations and histological observations. The objective of the study was to compare the biomechanical and interfacial performances of EPS and PMMA-PS in sheep lumbar vertebrae in vitro. It is a great challenge for orthopedic surgeons performing transpedicular fixation in the osteoporotic spine. It was reported that either the EPS or PMMA-PS could increase the screw stability. However, there are no studies comparing the 2 kinds of screws especially in primary spinal instrumentation. A total of 60 sheep lumbar vertebrae were randomly divided into 3 groups. A pilot hole was made in advance in all samples using the same method. Thereafter, the conventional pedicle screw (CPS) was inserted directly into the pilot hole in the CPS group; the hole in PMMA-PS group was first filled with polymethylmethacrylate (PMMA; 1.0 mL) and then inserted with CPS; and the EPS was inserted directly into the vertebrae in EPS group. After a period of 24 hours, biomechanical tests were performed to evaluate screw stability, and x-ray examination, micro-computerized tomography analysis, and histologic observation were performed to evaluate the interface between screw and bone. Compared with the stability of CPS, those of EPS and PMMA-PS were significantly enhanced. However, no significant differences were detected between the stabilities of EPS and PMMA-PS. The PMMA surrounding the screw blocked direct contact between bone and screw and formed a "screw-PMMA-bone" interface in the PMMA-PS group. There was a "screw-bone" interface in both CPS and EPS groups. Nevertheless, the expanded anterior part of EPS formed a claw-like structure pressing the surrounding bone trabeculae, which made the local bone tissue more compacted and denser than that in the CPS group. EPS can enhance the screw stability as markedly as the traditional PMMA-PS in primary surgery, and EPS can form a better immediate interface between screw and bone compared with PMMA-PS. EPS also can effectively avoid thermal injury, leakage, and compression caused by PMMA. A great feasibility was proved in this study to perform comparisons between the 2 kinds of pedicle screws in osteoporotic sheep vertebrae in vivo in the further research. In conclusion, we propose that EPS has a great application potential in augmentation of screw stability in the clinic.
Zhang, Li-Lian; Chen, Qi; Wang, Hao-Li; Xu, Hua-Zi; Tian, Nai-Feng
2018-05-03
Anterior odontoid screw fixation (AOSF) has been suggested as the optimal treatment for type II and some shallow type III odontoid fractures. However, only the classical surgical trajectory is available; no newer entry points or trajectories have been reported. We evaluated the anatomic feasibility of a new trajectory for AOSF using 3-dimensional (3D) screw insertion simulation software (Mimics). Computed tomography (CT) scans of patients (65 males and 59 females) with normal cervical structures were obtained consecutively, and the axes were reconstructed in 3 dimensions by Mimics software. Then simulated operations were performed using 2 new entry points below the superior articular process using bilateral screws of different diameters (group 1: 4 mm and 4 mm; group 2: 4 mm and 3.5 mm; group 3: 3.5 mm and 3.5 mm). The success rates and the required screw lengths were recorded and analyzed. The success rates were 79.03% for group 1, 95.16% for group 2, and 98.39% for group 3. The success rates for groups 2 and 3 did not differ significantly, and both were significantly better than the rate for group 1. The success rate was much higher in males than in females in group 1, but the success rate was similar in males and females in the other 2 groups. Screw lengths did not differ significantly among the 3 groups, but an effect of sex was apparent. Our modified trajectory is anatomically feasible for fixation of anterior odontoid fractures, but further anatomic experiments and clinical research are needed. Copyright © 2018 Elsevier Inc. All rights reserved.
Pull out strength calculator for pedicle screws using a surrogate ensemble approach.
Varghese, Vicky; Ramu, Palaniappan; Krishnan, Venkatesh; Saravana Kumar, Gurunathan
2016-12-01
Pedicle screw instrumentation is widely used in the treatment of spinal disorders and deformities. Currently, the surgeon decides the holding power of instrumentation based on the perioperative feeling which is subjective in nature. The objective of the paper is to develop a surrogate model which will predict the pullout strength of pedicle screw based on density, insertion angle, insertion depth and reinsertion. A Taguchi's orthogonal array was used to design an experiment to find the factors effecting pullout strength of pedicle screw. The pullout studies were carried using polyaxial pedicle screw on rigid polyurethane foam block according to American society for testing of materials (ASTM F543). Analysis of variance (ANOVA) and Tukey's honestly significant difference multiple comparison tests were done to find factor effect. Based on the experimental results, surrogate models based on Krigging, polynomial response surface and radial basis function were developed for predicting the pullout strength for different combination of factors. An ensemble of these surrogates based on weighted average surrogate model was also evaluated for prediction. Density, insertion depth, insertion angle and reinsertion have a significant effect (p <0.05) on pullout strength of pedicle screw. Weighted average surrogate performed the best in predicting the pull out strength amongst the surrogate models considered in this study and acted as insurance against bad prediction. A predictive model for pullout strength of pedicle screw was developed using experimental values and surrogate models. This can be used in pre-surgical planning and decision support system for spine surgeon. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kuhns, Craig A; Reiter, Michael; Pfeiffer, Ferris; Choma, Theodore J
2014-02-01
Study Design Biomechanical study of pedicle screw fixation in osteoporotic bone. Objective To investigate whether it is better to tap or not tap osteoporotic bone prior to placing a cement-augmented pedicle screw. Methods Initially, we evaluated load to failure of screws placed in cancellous bone blocks with or without prior tapping as well as after varying the depths of tapping prior to screw insertion. Then we evaluated load to failure of screws placed in bone block models with a straight-ahead screw trajectory as well as with screws having a 23-degree cephalad trajectory (toward the end plate). These techniques were tested with nonaugmented (NA) screws as well as with bioactive cement (BioC) augmentation prior to screw insertion. Results In the NA group, pretapping decreased fixation strength in a dose-dependent fashion. In the BioC group, the tapped screws had significantly greater loads to failure (p < 0.01). Comparing only the screw orientation, the screws oriented at 23 degrees cephalad had a significantly higher failure force than their respective counterparts at 0 degrees (p < 0.01). Conclusions Standard pedicle screw fixation is often inadequate in the osteoporotic spine, but this study suggests tapping prior to cement augmentation will substantially improve fixation when compared with not tapping. Angulating screws more cephalad also seems to enhance aging spine fixation.
Fogel, Guy R; Parikh, Rachit D; Ryu, Stephen I; Turner, Alexander W L
2014-03-01
Lumbar interbody fusion is indicated in the treatment of degenerative conditions. Laterally inserted interbody cages significantly decrease range of motion (ROM) compared with other cages. Supplemental fixation options such as lateral plates or spinous process plates have been shown to provide stability and to reduce morbidity. The authors of the current study investigate the in vitro stability of the interbody cage with a combination of lateral and spinous process plate fixation and compare this method to the established bilateral pedicle screw fixation technique. Ten L1-5 specimens were evaluated using multidirectional nondestructive moments (± 7.5 N · m), with a custom 6 degrees-of-freedom spine simulator. Intervertebral motions (ROM) were measured optoelectronically. Each spine was evaluated under the following conditions at the L3-4 level: intact; interbody cage alone (stand-alone); cage supplemented with lateral plate; cage supplemented with ipsilateral pedicle screws; cage supplemented with bilateral pedicle screws; cage supplemented with spinous process plate; and cage supplemented with a combination of lateral plate and spinous process plate. Intervertebral rotations were calculated, and ROM data were normalized to the intact ROM data. The stand-alone laterally inserted interbody cage significantly reduced ROM with respect to the intact state in flexion-extension (31.6% intact ROM, p < 0.001), lateral bending (32.5%, p < 0.001), and axial rotation (69.4%, p = 0.002). Compared with the stand-alone condition, addition of a lateral plate to the interbody cage did not significantly alter the ROM in flexion-extension (p = 0.904); however, it was significantly decreased in lateral bending and axial rotation (p < 0.001). The cage supplemented with a lateral plate was not statistically different from bilateral pedicle screws in lateral bending (p = 0.579). Supplemental fixation using a spinous process plate was not significantly different from bilateral pedicle screws in flexion-extension (p = 0.476). The combination of lateral plate and spinous process plate was not statistically different from the cage supplemented with bilateral pedicle screws in all the loading modes (p ≥ 0.365). A combination of lateral and spinous process plate fixation to supplement a laterally inserted interbody cage helps achieve rigidity in all motion planes similar to that achieved with bilateral pedicle screws.
21 CFR 872.4880 - Intraosseous fixation screw or wire.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraosseous fixation screw or wire. 872.4880... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4880 Intraosseous fixation screw or wire. (a) Identification. An intraosseous fixation screw or wire is a metal device intended to be inserted...
21 CFR 872.4880 - Intraosseous fixation screw or wire.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraosseous fixation screw or wire. 872.4880... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Surgical Devices § 872.4880 Intraosseous fixation screw or wire. (a) Identification. An intraosseous fixation screw or wire is a metal device intended to be inserted...
Intramedullary nails with two lag screws.
Brown, C J; Wang, C J; Yettram, A L; Procter, P
2004-06-01
To investigate the structural integrity of intramedullary nails with two lag screws, and to give guidance to orthopaedic surgeons in the choice of appropriate devices. Alternative designs of the construct are considered, and the use of a slotted upper lag screw insertion hole is analysed. Intramedullary fixation devices with a single lag screw have been known to fail at the lag screw insertion hole. Using two lag screws is considered. It has also been proposed to use a slot in the nail for the upper lag screw to prevent the upper lag screw from sticking. Bending and torsion load cases are analysed using finite element method. Consideration of both load conditions is essential. The results present the overall stiffness of the assembly, the load sharing between lag screws, and the possibility for cut-out to occur. While the slot for the upper lag screw might be advantageous with regard to the stresses in the lag screws, it could be detrimental for cut-out occurring adjacent to the lag screws. Comparative analyses demonstrate that two lag screws may be advantageous in patients whose cancellous bone quality is good and who impose large loads on the lag screw/nail interface. However, the use of two screws might pre-dispose to failure by cut-out of the lag screws. The addition of a slotted hole for the upper lag screw appears to do nothing significant to reduce the risk of such a failure. Copyright 2004 Elsevier Ltd.
End Restraints for Impact-Energy-Absorbing Tube Specimens
NASA Technical Reports Server (NTRS)
Farley, G. L.; Modlin, J. T.
1985-01-01
Inexpensive device developed that eliminates tipping problem without affecting crushing process. Device consists of soft sponge-rubber insert approximately 0.5 inches (1.3 centimeters) thick, cut to same diameter as internal diameter of tube specimen. Metal washer, slightly smaller than internal diameter of tube, placed on top of rubber insert. Screw passed through washer and rubber insert and threaded into base of test machine. As screw tightened against washer, rubber insert compressed and expands radially. Radial expansion applies pressure against internal wall of tube specimen, which provides sufficient support to tube to prevent tipping.
Helgeson, Melvin D; Kang, Daniel G; Lehman, Ronald A; Dmitriev, Anton E; Luhmann, Scott J
2013-08-01
There is currently no reliable technique for intraoperative assessment of pedicle screw fixation strength and optimal screw size. Several studies have evaluated pedicle screw insertional torque (IT) and its direct correlation with pullout strength. However, there is limited clinical application with pedicle screw IT as it must be measured during screw placement and rarely causes the spine surgeon to change screw size. To date, no study has evaluated tapping IT, which precedes screw insertion, and its ability to predict pedicle screw pullout strength. The objective of this study was to investigate tapping IT and its ability to predict pedicle screw pullout strength and optimal screw size. In vitro human cadaveric biomechanical analysis. Twenty fresh-frozen human cadaveric thoracic vertebral levels were prepared and dual-energy radiographic absorptiometry scanned for bone mineral density (BMD). All specimens were osteoporotic with a mean BMD of 0.60 ± 0.07 g/cm(2). Five specimens (n=10) were used to perform a pilot study, as there were no previously established values for optimal tapping IT. Each pedicle during the pilot study was measured using a digital caliper as well as computed tomography measurements, and the optimal screw size was determined to be equal to or the first size smaller than the pedicle diameter. The optimal tap size was then selected as the tap diameter 1 mm smaller than the optimal screw size. During optimal tap size insertion, all peak tapping IT values were found to be between 2 in-lbs and 3 in-lbs. Therefore, the threshold tapping IT value for optimal pedicle screw and tap size was determined to be 2.5 in-lbs, and a comparison tapping IT value of 1.5 in-lbs was selected. Next, 15 test specimens (n=30) were measured with digital calipers, probed, tapped, and instrumented using a paired comparison between the two threshold tapping IT values (Group 1: 1.5 in-lbs; Group 2: 2.5 in-lbs), randomly assigned to the left or right pedicle on each specimen. Each pedicle was incrementally tapped to increasing size (3.75, 4.00, 4.50, and 5.50 mm) until the threshold value was reached based on the assigned group. Pedicle screw size was determined by adding 1 mm to the tap size that crossed the threshold torque value. Torque measurements were recorded with each revolution during tap and pedicle screw insertion. Each specimen was then individually potted and pedicle screws pulled out "in-line" with the screw axis at a rate of 0.25 mm/sec. Peak pullout strength (POS) was measured in Newtons (N). The peak tapping IT was significantly increased (50%) in Group 2 (3.23 ± 0.65 in-lbs) compared with Group 1 (2.15 ± 0.56 in-lbs) (p=.0005). The peak screw IT was also significantly increased (19%) in Group 2 (8.99 ± 2.27 in-lbs) compared with Group 1 (7.52 ± 2.96 in-lbs) (p=.02). The pedicle screw pullout strength was also significantly increased (23%) in Group 2 (877.9 ± 235.2 N) compared with Group 1 (712.3 ± 223.1 N) (p=.017). The mean pedicle screw diameter was significantly increased in Group 2 (5.70 ± 1.05 mm) compared with Group 1 (5.00 ± 0.80 mm) (p=.0002). There was also an increased rate of optimal pedicle screw size selection in Group 2 with 9 of 15 (60%) pedicle screws compared with Group 1 with 4 of 15 (26.7%) pedicle screws within 1 mm of the measured pedicle width. There was a moderate correlation for tapping IT with both screw IT (r=0.54; p=.002) and pedicle screw POS (r=0.55; p=.002). Our findings suggest that tapping IT directly correlates with pedicle screw IT, pedicle screw pullout strength, and optimal pedicle screw size. Therefore, tapping IT may be used during thoracic pedicle screw instrumentation as an adjunct to preoperative imaging and clinical experience to maximize fixation strength and optimize pedicle "fit and fill" with the largest screw possible. However, further prospective, in vivo studies are necessary to evaluate the intraoperative use of tapping IT to predict screw loosening/complications. Published by Elsevier Inc.
Automated Bone Screw Tightening to Adaptive Levels of Stripping Torque.
Reynolds, Karen J; Mohtar, Aaron A; Cleek, Tammy M; Ryan, Melissa K; Hearn, Trevor C
2017-06-01
To use relationships between tightening parameters, related to bone quality, to develop an automated system that determines and controls the level of screw tightening. An algorithm relating current at head contact (IHC) to current at construct failure (Imax) was developed. The algorithm was used to trigger cessation of screw insertion at a predefined tightening level, in real time, between head contact and maximum current. The ability of the device to stop at the predefined level was assessed. The mean (±SD) current at which screw insertion ceased was calculated to be [51.47 ± 9.75% × (Imax - IHC)] + IHC, with no premature bone failures. A smart screwdriver was developed that uses the current from the motor driving the screw to predict the current at which the screw will strip the bone threads. The device was implemented and was able to achieve motor shut-off and cease tightening at a predefined threshold, with no premature bone failures.
Jeng, Ming-Dih; Liu, Po-Yi; Kuo, Jia-Hum; Lin, Chun-Li
2017-04-01
This study evaluates the load fatigue performance of different abutment-implant connection implant types-retaining-screw (RS) and taper integrated screwed-in (TIS) types under 3 applied torque levels based on the screw elastic limit. Three torque levels-the recommended torque (25 Ncm), 10% less, and 10% more than the ratio of recommended torque to screw elastic limits of different implants were applied to the implants to perform static and dynamic testing according to the ISO 14801 method. Removal torque loss was calculated for each group after the endurance limitation was reached (passed 5 × 10 6 cycles) in the fatigue test. The static fracture resistance results showed that the fracture resistance in the TIS-type implant significantly increased (P < .05) when the abutment screw was inserted tightly. The dynamic testing results showed that the endurance limitations for the RS-type implant were 229 N, 197 N, and 224 N and those for the TIS-type implant were 322 N, 364 N, and 376 N when the screw insertion torques were applied from low to high. The corresponding significant (P < .05) removal torque losses for the TIS-type implant were 13.2%, 5.3%, and 2.6% but no significant difference was found for the RS-type implant. This study concluded that the static fracture resistance and dynamic endurance limitation of the TIS-type implant (1-piece solid abutment) increased when torque was applied more tightly on the screw. Less torque loss was also found when increasing the screw insertion torque.
Z-2 Threaded Insert Design and Testing
NASA Technical Reports Server (NTRS)
Ross, Amy; Rhodes, Richard; Jones, Robert J.; Graziosi, David; Ferl, Jinny; Sweeny, Mitch; Scarborough, Stephen
2016-01-01
NASA's Z-2 prototype space suit contains several components fabricated from an advanced hybrid composite laminate consisting of IM10 carbon fiber and fiber glass. One requirement was to have removable, replaceable helicoil inserts to which other suit components would be fastened. An approach utilizing bonded in inserts with helicoils inside of them was implemented. During initial assembly, cracking sounds were heard followed by the lifting of one of the blind inserts out of its hole when the screws were torqued. A failure investigation was initiated to understand the mechanism of the failure. Ultimately, it was determined that the pre-tension caused by torqueing the fasteners is a much larger force than induced from the pressure loads of the suit which was not considered in the insert design. Bolt tension is determined by dividing the torque on the screw by a k value multiplied by the thread diameter of the bolt. The k value is a factor that accounts for friction in the system. A common value used for k for a non-lubricated screw is 0.2. The k value can go down by as much as 0.1 if the screw is lubricated which means for the same torque, a much larger tension could be placed on the bolt and insert. This paper summarizes the failure investigation that was performed to identify the root cause of the suit failure and details how the insert design was modified to resist a higher pull out tension.
Zhang, Bo; Xie, Qing-yun; Wang, Cai-ru; Liu, Jin-biao; Liao, Dong-fa; Jiang, Kai; Lei, Wei; Pan, Xian-ming
2013-01-01
Background It was reported that expansive pedicle screw (EPS) and polymethylmethacrylate-augmented pedicle screw (PMMA-PS) could be used to increase screw stability in osteoporosis. However, there are no studies comparing the two kinds of screws in vivo. Thus, we aimed to compare biomechanical and interfacial performances of EPS and PMMA-PS in osteoporotic sheep spine. Methodology/Principal Findings After successful induction of osteoporotic sheep, lumbar vertebrae in each sheep were randomly divided into three groups. The conventional pedicle screw (CPS) was inserted directly into vertebrae in CPS group; PMMA was injected prior to insertion of CPS in PMMA-PS group; and the EPS was inserted in EPS group. Sheep were killed and biomechanical tests, micro-CT analysis and histological observation were performed at both 6 and 12 weeks post-operation. At 6-week and 12-week, screw stabilities in EPS and PMMA-PS groups were significantly higher than that in CPS group, but there were no significant differences between EPS and PMMA-PS groups at two study periods. The screw stability in EPS group at 12-week was significantly higher than that at 6-week. The bone trabeculae around the expanding anterior part of EPS were more and denser than that in CPS group at 6-week and 12-week. PMMA was found without any degradation and absorption forming non-biological “screw-PMMA-bone” interface in PMMA-PS group, however, more and more bone trabeculae surrounded anterior part of EPS improving local bone quality and formed biological “screw-bone” interface. Conclusions/Significance EPS can markedly enhance screw stability with a similar effect to the traditional method of screw augmentation with PMMA in initial surgery in osteoporosis. EPS can form better biological interface between screw and bone than PMMA-PS. In addition, EPS have no risk of thermal injury, leakage and compression caused by PMMA. We propose EPS has a great application potential in augmentation of screw stability in osteoporosis in clinic. PMID:24086381
Silveira, Francisco; Quinn, Robert J; Adrian, Anna M; Owen, Martin R; Bush, Mark A
2017-01-16
To assess the effect of intra-operative radiology on the quality of lag screw insertion for the management of sacroiliac joint luxations in cats. In this retrospective single-centre study, the surgical, anaesthetic and imaging records of 40 screws (32 cats) placed with lag effect for management of sacroiliac luxation were reviewed. Postoperative radiographs were assessed for sacroiliac joint reduction, screw position, and sacral width purchased by each screw. Cases were divided into two groups according to the use of (IOR) or the absence of intra-operative radiology (NIOR). A total of 23 lag screws were placed with the aid of intra-operative radiology and 17 without. Three of the 23 screws placed in the IOR group exited the sacrum as opposed to eight of 17 screws in the NIOR group (p = 0.03). Mean sacral width purchased by the screws in the IOR group (70.8%) was also significantly higher (p = 0.002) than in the NIOR group (54.6%). Mean general anaesthetic times for unilateral and bilateral screw placement for the IOR group and NIOR group were not significantly different. The use of intra-operative radiology can significantly improve the quality of lag screw insertion for the stabilization of sacroiliac luxations in cats, which should lead to a reduced incidence of postoperative screw loosening.
Yamada, Kentaro; Abe, Yuichiro; Satoh, Shigenobu
2018-05-01
OBJECTIVE S-2 alar iliac (S2AI) screws are commonly used as anchors for lumbosacral fixation. A serious potential complication of screw insertion is major vascular injury due to anterior or caudal screw deviation. To avoid screw deviation, the pelvic inlet view on intraoperative fluoroscopy images is recommended. However, there has been no detailed investigation of optimal fluoroscopic incline with the pelvic inlet view. The purpose of this study was to investigate the safety margins and to optimize fluoroscopic settings to avoid screw deviation with 2 reported insertion techniques using 3D analysis software and CT. METHODS The study included 50 patients (25 men and 25 women) who underwent abdominal-pelvic CT. With the use of software, the ideal S2AI screws were set from 2 entry points: A) the midpoint between the S-1 dorsal foramen and the S-2 dorsal foramen where they meet the lateral sacral crest, and B) 1 mm inferior and 1 mm lateral to the S-1 dorsal foramen. Anteriorly or caudally deviated screws were defined as deviation of a half thread of the ideal screw by rotation anteriorly or caudally from the entry point. The angular safety margins were compared between the 2 entry points, and patients with small safety margins were investigated. Subsequently, fluoroscopic images were virtualized on ray sum-rendered images. Conditions that provided proper recognition of screw deviation were investigated via lateral and anteroposterior views with the beam tilted caudally. RESULTS The safety margins of S2AI screws were smaller in the anterior direction than in the caudal direction and by entry point A than by entry point B (A: 9.1° ± 1.6° and B: 9.7° ± 1.5° in the anterior direction; A: 10.9° ± 3.8° and B: 13.9° ± 4.1° in the caudal direction). In contrast, patients with a deep-seated L-5 vertebral body tended to have smaller safety margins in the caudal direction. All anteriorly deviated screws were recognized with a 60°-70° inlet view from the S-1 slope. The caudally deviated screws were all recognized on the lateral view, but 31% of screws at entry point A and 21% of screws at entry point B were not recognized on the pelvic inlet view. CONCLUSIONS S2AI screws should be carefully placed to avoid anterior deviation compared with caudal deviation in terms of the safety margin, except in patients with a deep-seated L-5. The difference in safety margins between entry points A and B was negligible. Intraoperative fluoroscopy is recommended with a pelvic inlet view tilted 60°-70° from the S-1 slope to avoid anterior screw deviation. The lateral view is recommended to confirm that the screw is not deviated caudally.
Chan, Chris Yin Wei; Kwan, Mun Keong; Saw, Lim Beng
2010-01-01
The objective of this cadaveric study is to determine the safety and outcome of thoracic pedicle screw placement in Asians using the funnel technique. Pedicle screws have superior biomechanical as well as clinical data when compared to other methods of instrumentation. However, misplacement in the thoracic spine can result in major neurological implications. There is great variability of the thoracic pedicle morphometry between the Western and the Asian population. The feasibility of thoracic pedicle screw insertion in Asians has not been fully elucidated yet. A pre-insertion radiograph was performed and surgeons were blinded to the morphometry of the thoracic pedicles. 240 pedicle screws were inserted in ten Asian cadavers from T1 to T12 using the funnel technique. 5.0 mm screws were used from T1 to T6 while 6.0 mm screws were used from T7 to T12. Perforations were detected by direct visualization via a wide laminectomy. The narrowest pedicles are found between T3 and T6. T5 pedicle width is smallest measuring 4.1 +/- 1.3 mm. There were 24 (10.0%) Grade 1 perforations and only 1 (0.4%) Grade 2 perforation. Grade 2 or worse perforation is considered significant perforation which would threaten the neural structures. There were twice as many lateral and inferior perforations compared to medial perforations. 48.0% of the perforations occurred at T1, T2 and T3 pedicles. Pedicle fracture occurred in 10.4% of pedicles. Intra-operatively, the absence of funnel was found in 24.5% of pedicles. In conclusion, thoracic pedicle screws using 5.0 mm at T1-T6 and 6.0 mm at T7-T12 can be inserted safely in Asian cadavers using the funnel technique despite having smaller thoracic pedicle morphometry.
Placzek, R; Deuretzbacher, G; Meiss, A L
2002-12-01
It is claimed in the literature that hydroxyapatite(HA)-coated screws of external fixators have superior fixation strength in bone, which is postulated to lead to a substantial decrease in loosening and infection rates. We report on a study of the maximum torque values developed while inserting and removing 30 HA-coated Schanz screws of 8 Heidelberg external fixation systems applied to the tibia to correct leg length differences and axial deformities. The infection rate was determined in accordance with defined criteria, and was found to be about 20% for the HA-coated screws. Screws without infection showed an extraction torque above insertion torque, screws with infection an extraction torque below. A significant correlation (p = 0.05) was seen between infection and decrease in fixation strength (quotient: loosening torque/tightening torque). To exclude the impact of such biological processes as osteointegration and bone remodelling, the clinical results were compared with the torques measured for coated and uncoated Schanz screws in a human cadaveric tibia. A significantly higher fixation strength in bone was found for HA-coated screws in comparison with uncoated screws (p = 0.002). These data warrant a clinical study directly comparing HA-coated and uncoated Schanz screws.
Power-Tool Adapter For T-Handle Screws
NASA Technical Reports Server (NTRS)
Deloach, Stephen R.
1992-01-01
Proposed adapter enables use of pneumatic drill, electric drill, electric screwdriver, or similar power tool to tighten or loosen T-handled screws. Notched tube with perpendicular rod welded to it inserted in chuck of tool. Notched end of tube slipped over screw handle.
Smith, Brandon W; Joseph, Jacob R; Kirsch, Michael; Strasser, Mary Oakley; Smith, Jacob; Park, Paul
2017-08-01
OBJECTIVE Percutaneous pedicle screw insertion (PPSI) is a mainstay of minimally invasive spinal surgery. Traditionally, PPSI is a fluoroscopy-guided, multistep process involving traversing the pedicle with a Jamshidi needle, placement of a Kirschner wire (K-wire), placement of a soft-tissue dilator, pedicle tract tapping, and screw insertion over the K-wire. This study evaluates the accuracy and safety of PPSI with a simplified 2-step process using a navigated awl-tap followed by navigated screw insertion without use of a K-wire or fluoroscopy. METHODS Patients undergoing PPSI utilizing the K-wire-less technique were identified. Data were extracted from the electronic medical record. Complications associated with screw placement were recorded. Postoperative radiographs as well as CT were evaluated for accuracy of pedicle screw placement. RESULTS Thirty-six patients (18 male and 18 female) were included. The patients' mean age was 60.4 years (range 23.8-78.4 years), and their mean body mass index was 28.5 kg/m 2 (range 20.8-40.1 kg/m 2 ). A total of 238 pedicle screws were placed. A mean of 6.6 pedicle screws (range 4-14) were placed over a mean of 2.61 levels (range 1-7). No pedicle breaches were identified on review of postoperative radiographs. In a subgroup analysis of the 25 cases (69%) in which CT scans were performed, 173 screws were assessed; 170 (98.3%) were found to be completely within the pedicle, and 3 (1.7%) demonstrated medial breaches of less than 2 mm (Grade B). There were no complications related to PPSI in this cohort. CONCLUSIONS This streamlined 2-step K-wire-less, navigated PPSI appears safe and accurate and avoids the need for radiation exposure to surgeon and staff.
[Odontoid bending stiffness after anterior fixation with a single lag screw: biomechanical study].
Buchvald, P; Čapek, L; Barsa, P
2015-01-01
PURPOSE OF THE STUDY The aim of the experiment was to compare the bending stiffness of an intact odontoid process with bending stiffness after its simulated type II fracture was fixed with a single lag screw. The experiment was done with a desire to answer the question of whether a single osteosynthetic screw is sufficient for good fixation of a type II odontoid fracture. MATERIAL AND METHODS The C2 vertebrae of six cadavers were used. With simultaneous measurement of odontoid bending stiffness, the occurrence of a fracture (type IIA, Grauer's modification of the Anderson- D'Alonzo classification) was simulated using action exerted by a tearing machine in the direction perpendicular to the odontoid axis. Each odontoid fracture was subsequently treated by direct osteosynthesis with a single lag screw inserted in the axial direction by a standard surgical procedure in order to provide conditions similar to those achieved by routine surgical management. The treated odontoid process was subsequently subjected to the same tearing machine loading as applied to it at the start of the experiment. The bending stiffness measured was then compared with that found before the fracture occurred. The results were statistically evaluated by the t-test for paired samples at the level of significance α = 0.05. RESULTS The average value of bending stiffness for odontoid processes of intact vertebrae at the moment of fracture occurrence was 318.3 N/mm. After single axial lag screw fixation of the fracture, the average bending stiffness for the odontoid processes treated was 331.3 N/mm. DISCUSSION Higher values of bending stiffness after screw fixation were found in all specimens and, in comparison with the values recorded before simulated fractures, the increase was statistically significant. CONCLUSIONS The results of our measurements suggest that the single lag screw fixation of a type IIA odontoid fracture will provide better stability for the fracture fragment-C2 body complex on antero-posterior perpendicular loading than can be found in intact C2 vertebrae. Key words: odontoid fracture, odontoid fixation, bending stiffness, lag screw.
Peak insertion torque values of five mini-implant systems under different insertion loads.
Quraishi, Erma; Sherriff, Martyn; Bister, Dirk
2014-06-01
To assess the effect of 1 and 3 kg insertion load on five makes of self-drilling mini-implants on peak insertion torque values to establish risk factors involved in the fracture of mini-implants. Two different loads were applied during insertion of 40 mini-implants from five different manufacturers (Dual Top(™) (1·6×8 mm), Infinitas(™) (1·5×9 mm), Ortho Easy(™) (1·7×8 mm), Spider Screw(™) (1·5×8 mm) and Vector TAS(™) (1·4×8 mm)) into acrylic blocks at 8 rev/min utilizing a Motorized Torque Measurement Stand. Peak insertion torque values for both loads were highest for Vector TAS followed by Ortho Easy and Dual Top and were nearly three times higher than Infinitas (original version) and Spider Screws(TM). The log-rank test showed statistically significant differences for both loads for Vector TAS, Ortho Easy and Spider Screws. Unlike other designs tested, both tapered mini-implant designs (Spider Screw and Infinitas) showed a tendency to buckle in the middle of the body but fractured at the tip. Non-tapered mini-implants fractured at significantly higher torque values compared to tapered designs under both loads. Increased pressure resulted in slightly higher maximum torque values at fracture for some of the mini-implant designs, although this is unlikely to be of clinical relevance. Tripling insertion pressure from 1 to 3 kg increased the risk of bending tapered mini-implants before fracture. © 2014 British Orthodontic Society.
Esthetic abutment design for angulated screw channels: A technical report.
Sakamoto, Satoshi; Ro, Munehiko; Al Ardah, Aladdin; Goodacre, Charles
2017-11-15
Angulated screw channel system abutments (ASCs) have recently been introduced to address the problem with visible screw access that may compromise esthetics. ASCs allow the screw access to be modified up to 25 degrees relative to the implant axis. However, a widened channel, which may cause thinning of the facial ceramic, is needed at the implant screw head to allow for proper engagement of the screwdriver. This technical report introduces a custom titanium insert design, the Satoshi Sakamoto (SS) abutment. The SS abutment consists of a custom titanium metal insert and zirconia coping in which the access hole is located in an esthetic position with an ASC system. The SS abutment results in a crown with more normal crown dimensions that also provides more space for the soft tissues. This SS abutment design allows clinicians to obtain screw-retained restorations with optimal esthetics and mechanical strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Metallic fragments on the surface of miniplates and screws before insertion.
Ray, M S; Matthew, I R; Frame, J W
1999-02-01
Particulate metal fragments have been identified histologically within the tissues adjacent to miniplates and screws after they have been removed. These were thought to have been caused by corrosion and degradation of the metal. However, the particles may have originated from rough edges or from protuberances left on the metal surface after cutting and machining during manufacture, and subsequently become detached. This study was undertaken to analyse the incidence and distribution of metal fragments on the surface of miniplates and screws before use. Fifteen miniplates and 60 screws were examined by stereomicroscopy and scanning electron microscopy. Rough metal edges or protuberances were identified on over half the samples, mostly in the countersink area of screw holes on the mini-plates. Fragments were detected within some of the cruciform screw heads and on some screw threads. We conclude that metal protuberances are present on the surface of mini-plate components when they are received from the manufacturer. There is a risk that the fragments might be detached and deposited into the tissues during insertion.
Ma, Li-Tai; Liu, Hao; Li, Tao; Song, Yue-Ming; Pei, Fu-Xing; Liu, Li-Min; Gong, Quan; Zeng, Jian-Cheng; Feng, Gan-Jun; Zhou, Zhong-Jie
2012-12-01
To compare screw's inserting angle through the 11th and 12th rib in treating L1 burst fracture, explore effects on inserting screw and postoperative angle. From October 2007 to October 2010, 108 patients with L1 brust fracture treated through anterior approach were analyzed,including 68 males and 40 females, aged from 21 to 64 years (mean 38.22 years). All patients were divided into the 11th (A, 51 cases) and 12th (B, 57 cases) approach. The data of operation time,blood loss, duration of incision pain, JOA score, Oswestry score, VAS score, quality of life (SF-36), recovery of nervous function, coronal Cobb angle, included angle between screw and plate were observed. All patients were followed up for 9 to 37 months, mean 23 months. The operation time, blood loss, duration of incision pain, in group A were lower than group B (P<0.05), JOA score, Oswestry score, VAS score, SF-36, recovery of nervous function had no significant differences (P>0.05). There were no differences in Cobb angle before operation, but had significance after operation (P=0.000). There were statistically significance between two group in angle between screw and plate (P=0.000, P=0.003). The 11th rib approach for the treatment of L1 burst fracture has less effects on screw, less trauma and less angle between screw and plate.
Tibial Lengthening: Extraarticular Calcaneotibial Screw to Prevent Ankle Equinus
Belthur, Mohan V.; Paley, Dror; Jindal, Gaurav; Burghardt, Rolf D.; Specht, Stacy C.
2008-01-01
Between 2003 and 2006, we used an extraarticular, cannulated, fully threaded posterior calcaneotibial screw to prevent equinus contracture in 10 patients (four male and six female patients, 14 limbs) undergoing tibial lengthening with the intramedullary skeletal kinetic distractor. Diagnoses were fibular hemimelia (two), mesomelic dwarfism (two), posteromedial bow (one), hemihypertrophy (one), poliomyelitis (one), achondroplasia (one), posttraumatic limb-length discrepancy (one), and hypochondroplasia (one). Average age was 24.5 years (range, 15–54 years). The screw (length, typically 125 mm; diameter, 7 mm) was inserted with the ankle in 10° dorsiflexion. Gastrocnemius soleus recession was performed in two patients to achieve 10° dorsiflexion. Average lengthening was 4.9 cm (range, 3–7 cm). Screws were removed after a mean 3.3 months (range, 2–6 months). Preoperative ankle range of motion was regained within 6 months of screw removal. No neurovascular complications were encountered, and no patients experienced equinus contracture. We also conducted a cadaveric study in which one surgeon inserted screws in eight cadaveric legs under image intensifier control. The flexor hallucis longus muscle belly was the closest anatomic structure noted during dissection. The screw should be inserted obliquely from upper lateral edge of the calcaneus and aimed lateral in the tibia to avoid the flexor hallucis longus muscle. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18800215
LagLoc - a new surgical technique for locking plate systems.
Triana, Miguel; Gueorguiev, Boyko; Sommer, Christoph; Stoffel, Karl; Agarwal, Yash; Zderic, Ivan; Helfen, Tobias; Krieg, James C; Krause, Fabian; Knobe, Matthias; Richards, R Geoff; Lenz, Mark
2018-06-19
Treatment of oblique and spiral fractures remains challenging. The aim of this study was to introduce and investigate the new LagLoc technique for locked plating with generation of interfragmentary compression, combining the advantages of lag-screw and locking-head-screw techniques. Oblique fracture was simulated in artificial diaphyseal bones, assigned to three groups for plating with a 7-hole locking compression plate. Group I was plated with three locking screws in holes 1, 4 and 7. The central screw crossed the fracture line. In group II the central hole was occupied with a lag screw perpendicular to fracture line. Group III was instrumented applying the LagLoc technique as follows. Hole 4 was predrilled perpendicularly to the plate, followed by overdrilling of the near cortex and insertion of a locking screw whose head was covered by a holding sleeve to prevent temporarily the locking in the plate hole and generate interfragmentary compression. Subsequently, the screw head was released and locked in the plate hole. Holes 1 and 7 were occupied with locking screws. Interfragmentary compression in the fracture gap was measured using pressure sensors. All screws in the three groups were tightened with 4Nm torque. Interfragmentary compression in group I (167 ± 25N) was significantly lower in comparison to groups II (431 ± 21N) and III (379 ± 59N), p≤0.005. The difference in compression between groups II and III remained not significant (p = 0.999). The new LagLoc technique offers an alternative tool to generate interfragmentary compression with the application of locking plates by combining the biomechanical advantages of lag screw and locking screw fixations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Nyland, Mark A; Lanting, Brent A; Nikolov, Hristo N; Somerville, Lyndsay E; Teeter, Matthew G; Howard, James L
2016-12-01
It is common practice to burr custom holes in revision porous metal cups for screw insertion. The objective of this study was to determine how different hole types affect a surgeon's sense of screw fixation. Porous revision cups were prepared with pre-drilled and custom burred holes. Cups were held in place adjacent to synthetic bone material of varying density. Surgeons inserted screws through the different holes and materials. Surgeon subjective rating, compression, and torque was recorded. The torque achieved was greater ( p = 0.002) for screws through custom holes than pre-fabricated holes in low and medium density material, with no difference for high density. Peak compression was greater ( p = 0.026) through the pre-fabricated holes only in high density material. Use of burred holes affects the torque generated, and may decrease the amount of cup-acetabulum compression achieved.
Two-Finger Tightness: What Is It? Measuring Torque and Reproducibility in a Simulated Model.
Acker, William B; Tai, Bruce L; Belmont, Barry; Shih, Albert J; Irwin, Todd A; Holmes, James R
2016-05-01
Residents in training are often directed to insert screws using "two-finger tightness" to impart adequate torque but minimize the chance of a screw stripping in bone. This study seeks to quantify and describe two-finger tightness and to assess the variability of its application by residents in training. Cortical bone was simulated using a polyurethane foam block (30-pcf density) that was prepared with predrilled holes for tightening 3.5 × 14-mm long cortical screws and mounted to a custom-built apparatus on a load cell to capture torque data. Thirty-three residents in training, ranging from the first through fifth years of residency, along with 8 staff members, were directed to tighten 6 screws to two-finger tightness in the test block, and peak torque values were recorded. The participants were blinded to their torque values. Stripping torque (2.73 ± 0.56 N·m) was determined from 36 trials and served as a threshold for failed screw placement. The average torques varied substantially with regard to absolute torque values, thus poorly defining two-finger tightness. Junior residents less consistently reproduced torque compared with other groups (0.29 and 0.32, respectively). These data quantify absolute values of two-finger tightness but demonstrate considerable variability in absolute torque values, percentage of stripping torque, and ability to consistently reproduce given torque levels. Increased years in training are weakly correlated with reproducibility, but experience does not seem to affect absolute torque levels. These results question the usefulness of two-finger tightness as a teaching tool and highlight the need for improvement in resident motor skill training and development within a teaching curriculum. Torque measuring devices may be a useful simulation tools for this purpose.
Probing and Tapping: Are We Inserting Pedicle Screws Correctly?
Prasad, Vishal; Mesfin, Addisu; Lee, Robert; Reigrut, Julie; Schmidt, John
2016-11-01
Although there are a significant number of research publications on the topic of bone morphology and the strength of bone, the clinical significance of a failed pedicle screw is often revision surgery and the potential for further postoperative complications; especially in elderly patients with osteoporotic bone. The purpose of this report is to quantify the mechanical strength of the foam-screw interface by assessing probe/pilot hole diameter and tap sizes using statistically relevant sample sizes under highly controlled test conditions. The study consisted of two experiments and used up to three different densities of reference-grade polyurethane foam (ASTM 1839), including 0.16, 0.24, and 0.32 g/cm 3 . All screws and rods were provided by K2M Inc. and screws were inserted to a depth of 25 mm. A series of pilot holes, 1.5, 2.2, 2.7, 3.2, 3.7, 4.2, 5.0, and 6.0 mm in diameter were drilled through the entire depth of the material. A 6.5 × 45-mm pedicle screw was inserted and axially pulled from the material (n = 720). A 3.0-mm pilot hole was drilled and tapped with: no tap, 3.5-, 4.5-, 5.5-, and 6.5-mm taps. A 6.5 × 45-mm pedicle screw was inserted and axially pulled from the material (n = 300). The size of the probe/pilot hole had a nonlinear, parabolic effect on pullout strength. This shape suggests an optimum-sized probe hole for a given size pedicle screw. Too large or too small of a probe hole causes a rapid falloff in pullout strength. The tap data demonstrated that not tapping and undertapping by two or three sizes did not significantly alter the pullout strength of the screws. The data showed an exponential falloff of pullout strength when as tap size increased to the diameter of the screw. In the current study, the data show that an ideal pilot hole size half the diameter of the screw is a starting point. Also, that if tapping was necessary, to use a tap two sizes smaller than the screw being implanted. A similar optimum pilot hole or tap size may be expected in the clinical scenario, however, it may not be the same as seen with the uniform density polyurethane foam tested in the current study. Copyright © 2016 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Park, Jin-Woo; Kim, Kyoung-Tae; Sung, Joo-Kyung; Park, Seong-Hyun; Seong, Ki-Woong; Cho, Dae-Chul
2017-09-01
The purpose of the present study was to compare inter-fragmentary compression pressures after fixation of a simulated type II odontoid fracture with the headless compression Herbert screw and a half threaded cannulated lag screw. We compared inter-fragmentary compression pressures between 40- and 45-mm long 4.5-mm Herbert screws (n=8 and n=9, respectively) and 40- and 45-mm long 4.0-mm cannulated lag screws (n=7 and n=10, respectively) after insertion into rigid polyurethane foam test blocks (Sawbones, Vashon, WA, USA). A washer load cell was placed between the two segments of test blocks to measure the compression force. Because the total length of each foam block was 42 mm, the 40-mm screws were embedded in the cancellous foam, while the 45-mm screws penetrated the denser cortical foam at the bottom. This enabled us to compare inter-fragmentary compression pressures as they are affected by the penetration of the apical dens tip by the screws. The mean compression pressures of the 40- and 45-mm long cannulated lag screws were 50.48±1.20 N and 53.88±1.02 N, respectively, which was not statistically significant (p=0.0551). The mean compression pressures of the 40-mm long Herbert screw was 52.82±2.17 N, and was not statistically significant compared with the 40-mm long cannulated lag screw (p=0.3679). However, 45-mm Herbert screw had significantly higher mean compression pressure (60.68±2.03 N) than both the 45-mm cannulated lag screw and the 40-mm Herbert screw (p=0.0049 and p=0.0246, respectively). Our results showed that inter-fragmentary compression pressures of the Herbert screw were significantly increased when the screw tip penetrated the opposite dens cortical foam. This can support the generally recommended surgical technique that, in order to facilitate maximal reduction of the fracture gap using anterior odontoid screws, it is essential to penetrate the apical dens tip with the screw.
76 FR 15802 - Airworthiness Directives; Eurocopter France (Eurocopter) Model EC130 B4 Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
... in insert D of Figure 5 of the EASB, and determine if it is covered with heat shrink, P/N... shown in insert D of Figure 5 or the attachment screw is not covered with heat shrink, modify the.... Figure 5 of the EASB does not show the heat shrink installed for clarity of screw head and lug detail. (3...
Jin, Mengran; Liu, Zhen; Liu, Xingyong; Yan, Huang; Han, Xiao; Qiu, Yong; Zhu, Zezhang
2016-06-01
To assess the accuracy of O-arm-navigation-based pedicle screw insertion in dystrophic scoliosis secondary to NF-1 and compare it with free-hand pedicle screw insertion technique. 32 patients with dystrophic NF-1-associated scoliosis were divided into two groups. A total of 92 pedicle screws were implanted in apical region (two vertebrae above and below the apex each) in 13 patients using O-arm-based navigation (O-arm group), and 121 screws were implanted in 19 patients using free-hand technique (free-hand group). The postoperative CT images were reviewed and analyzed for pedicle violation. The screw penetration was divided into four grades: grade 0 (ideal placement), grade 1 (penetration <2 mm), grade 2 (penetration between 2 and 4 mm), and grade 3 (penetration >4 mm). The accuracy rate of pedicle screw placement (grade 0, 1) was significantly higher in the O-arm group (79 %, 73/92) compared to 67 % (81/121) of the free-hand group (P = 0.045). Meanwhile, a significantly lower prevalence of grade 2-3 perforation was observed in the O-arm group (21 vs. 33 %, P < 0.05), and the incidence of medial perforation was significantly minimized by using O-arm navigation compared to free-hand technique (2 vs. 15 %, P < 0.01). Moreover, the implant density in apical region was significantly elevated by using O-arm navigation (58 vs. 42 %, P < 0.001). We reported 79 % accuracy of O-arm-based pedicle screw placement in dystrophic NF-1-associated scoliosis. O-arm navigation system does facilitate pedicle screw insertion in dystrophic NF-1-associated scoliosis, demonstrating superiorities in the safety and accuracy of pedicle screw placement in comparison with free-hand technique.
A histological study of stainless steel and titanium screws in bone.
Millar, B G; Frame, J W; Browne, R M
1990-04-01
This study compared histologically the tissue response of stainless steel and titanium screws when inserted into the calvaria of eight beagle dogs for periods of 1, 4, 12, and 24 weeks. There was minimal fibrous reaction around both screw types with excellent long-term bone healing. After 24 weeks there was no discernable difference in the tissue reaction between the two types of screw.
Aziz, Mina Sr; Tsuji, Matthew Rs; Nicayenzi, Bruce; Crookshank, Meghan C; Bougherara, Habiba; Schemitsch, Emil H; Zdero, Radovan
2014-05-01
During orthopedic surgery, screws are inserted by "subjective feel" in humeri for fracture fixation, that is, stopping torque, while trying to prevent accidental over-tightening that causes screw-bone interface failure, that is, stripping torque. However, no studies exist on stopping torque, stripping torque, or stopping/stripping torque ratio in human or artificial humeri. This study evaluated five types of humeri, namely, human fresh-frozen (n = 19), human embalmed (n = 18), human dried (n = 15), artificial "normal" (n = 13), and artificial "osteoporotic" (n = 13). An orthopedic surgeon used a torque screwdriver to insert 3.5-mm-diameter cortical screws into humeral shafts and 6.5-mm-diameter cancellous screws into humeral heads by "subjective feel" to obtain stopping and stripping torques. The five outcome measures were raw and normalized stopping torque, raw and normalized stripping torque, and stopping/stripping torque ratio. Normalization was done as raw torque/screw-bone interface area. For "gold standard" fresh-frozen humeri, cortical screw tests yielded averages of 1312 N mm (raw stopping torque), 30.4 N/mm (normalized stopping torque), 1721 N mm (raw stripping torque), 39.0 N/mm (normalized stripping torque), and 82% (stopping/stripping torque ratio). Similarly, fresh-frozen humeri gave cancellous screw average results of 307 N mm (raw stopping torque), 0.9 N/mm (normalized stopping torque), 392 N mm (raw stripping torque), 1.2 N/mm (normalized stripping torque), and 79% (stopping/stripping torque ratio). Of the five cortical screw parameters for fresh-frozen humeri versus other groups, statistical equivalence (p ≥ 0.05) occurred in four cases (embalmed), three cases (dried), four cases (artificial "normal"), and four cases (artificial "osteoporotic"). Of the five cancellous screw parameters for fresh-frozen humeri versus other groups, statistical equivalence (p ≥ 0.05) occurred in five cases (embalmed), one case (dried), one case (artificial "normal"), and zero cases (artificial "osteoporotic"). Stopping/stripping torque ratios were relatively constant for all groups at 77%-88% (cortical screws) and 79%-92% (cancellous screws). © IMechE 2014.
Fracture Gap Reduction With Variable-Pitch Headless Screws.
Roebke, Austin J; Roebke, Logan J; Goyal, Kanu S
2018-04-01
Fully threaded, variable-pitch, headless screws are used in many settings in surgery and have been extensively studied in this context, especially in regard to scaphoid fractures. However, it is not well understood how screw parameters such as diameter, length, and pitch variation, as well as technique parameters such as depth of drilling, affect gap closure. Acutrak 2 fully threaded variable-pitch headless screws of various diameters (Standard, Mini, and Micro) and lengths (16-28 mm) were inserted into polyurethane blocks of "normal" and "osteoporotic" bone model densities using a custom jig. Three drilling techniques (drill only through first block, 4 mm into second block, or completely through both blocks) were used. During screw insertion, fluoroscopic images were taken and later analyzed to measure gap reduction. The effect of backing the screw out after compression was evaluated. Drilling at least 4 mm past the fracture site reduces distal fragment push-off compared with drilling only through the proximal fragment. There were no significant differences in gap closure in the normal versus the osteoporotic model. The Micro screw had a smaller gap closure than both the Standard and the Mini screws. After block contact and compression with 2 subsequent full forward turns, backing the screw out by only 1 full turn resulted in gapping between the blocks. Intuitively, fully threaded headless variable-pitch screws can obtain compression between bone fragments only if the initial gap is less than the gap closed. Gap closure may be affected by drilling technique, screw size, and screw length. Fragment compression may be immediately lost if the screw is reversed. We describe characteristics of variable-pitch headless screws that may assist the surgeon in screw choice and method of use. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Huang, Kuo-Yuan; Lin, Ruey-Mo; Fang, Jing-Jing
2016-10-01
Atlantoaxial instability treated with the C1-2 transarticular screw fixation is biomechanically more stable; however, the technique demanding and the potential risk of neurovascular injury create difficulties for clinical usage, and there is still lack of clinical experience till now.We reported an adult female patient with symptomatic atlantoaxial instability due to rheumatoid arthritis that was successfully treated with a bilateral C1-C2 transarticular screw fixation using a customized guiding block. We preoperatively determined the trajectories for bilateral C1-C2 transarticular screws on a 3-dimensional reconstruction model from the computed tomography (CT) and self-developed computer software, and designed a rapid prototyping customized guiding block in order to offer a guide for the entry point and insertion angle of the C1-C2 transarticular screws.The clinical outcome was good, and the follow-up period was >3 years. The accuracy of the screws is good in comparison with preoperative and postoperative CT findings, and no neurovascular injury occurred.The patient was accurately and successfully treated with a bilateral C1-C2 transarticular screw fixation using a customized guiding block.
Antar, Veysel; Turk, Okan
2018-03-01
Craniovertebral junctional anomalies constitute a technical challenge. Surgical opening of atlantoaxial joint region is a complex procedure especially in patients with nuchal deformity like basilar invagination. This region has actually very complicated anatomical and functional characteristics, including multiple joints providing extension, flexion, and wide rotation. In fact, it is also a bottleneck region where bones, neural structures, and blood vessels are located. Stabilization surgery regarding this region should consider the fact that the area exposes excessive and life-long stress due to complex movements and human posture. Therefore, all options should be considered for surgical stabilization, and they could be interchanged during the surgery, if required. A 53-year-old male patient applied to outpatients' clinic with complaints of head and neck pain persisting for a long time. Physical examination was normal except increased deep tendon reflexes. The patient was on long-term corticosteroid due to an allergic disease. Magnetic resonance imaging and computed tomography findings indicated basilar invagination and atlantoaxial dislocation. The patient underwent C0-C3-C4 (lateral mass) and additional C0-C2 (translaminar) stabilization surgery. In routine practice, the sites where rods are bound to occipital plates were placed as paramedian. Instead, we inserted lateral mass screw to the sites where occipital screws were inserted on the occipital plate, thereby creating a site where extra rod could be bound. When C2 translaminar screw is inserted, screw caps remain on the median plane, which makes them difficult to bind to contralateral system. These bind directly to occipital plate without any connection from this region to the contralateral system. Advantages of this technique include easy insertion of C2 translaminar screws, presence of increased screw sizes, and exclusion of pullout forces onto the screw from neck movements. Another advantage of the technique is the median placement of the rod; i.e., thick part of the occipital bone is in alignment with axial loading. We believe that this technique, which could be easily performed as adjuvant to classical stabilization surgery with no need for special screw and rod, may improve distraction force in patients with low bone density.
Z-2 Threaded Insert Design and Testing Abstract
NASA Technical Reports Server (NTRS)
Rhodes, RIchard; Graziosi, Dave; Jones, Bobby; Ferl, Jinny; Scarborough, Steve; Sweeney, Mitch
2016-01-01
The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z series of spacesuits. The Z-2 is another step in the NASA's technology development roadmap leading to human exploration of the Martian surface. To meet a more challenging set of requirements than previous suit systems standard design features, such as threaded inserts, have been re-analyzed and improved. NASA's Z-2 prototype space suit contains several components fabricated from an advanced hybrid composite laminate consisting of IM10 carbon fiber and fiber glass. One requirement NASA levied on the suit composites was the ability to have removable, replaceable helicoil inserts to which other suit components would be fastened. An approach utilizing bonded in inserts with helicoils inside of them was implemented. The design of the interface flanges of the composites allowed some of the inserts to be a "T" style insert that was installed through the entire thickness of the laminate. The flange portion of the insert provides a mechanical lock as a redundancy to the adhesive aiding in the pullout load that the insert can withstand. In some locations it was not possible to utilize at "T" style insert and a blind insert was used instead. These inserts rely completely on the bond strength of the adhesive to resist pullout. It was determined during the design of the suit that the inserts did not need to withstand loads induced from pressure cycling but instead tension induced from torqueing the screws to bolt on hardware which creates a much higher stress on them. Bolt tension is determined by dividing the torque on the screw by a k value multiplied by the thread diameter of the bolt. The k value is a factor that accounts for friction in the system. A common value used for k for a non-lubricated screw is 0.2. The k value can go down by as much as 0.1 if the screw is lubricated which means for the same torque, a much larger tension could be placed on the bolt and insert. This paper summarizes testing that was performed to determine a k value for helicoil inserts in the Z2 suit and how the insert design was modified to resist a higher pull out tension.
Immediate percutaneous sacroiliac screw insertion for unstable pelvic fractures: is it safe enough?
Acker, A; Perry, Z H; Blum, S; Shaked, G; Korngreen, A
2018-04-01
The purpose of this study was to compare the results of immediate and delayed percutaneous sacroiliac screws surgery for unstable pelvic fractures, regarding technical results and complication rate. Retrospective study. The study was conducted at the Soroka University Medical center, Beer Sheva, Israel, which is a level 1 trauma Center. 108 patients with unstable pelvic injuries were operated by the orthopedic department at the Soroka University Medical Center between the years 1999-2010. A retrospective analysis found 50 patients with immediate surgery and 58 patients with delayed surgery. Preoperative and postoperative imaging were analyzed and data was collected regarding complications. All patients were operated on by using the same technique-percutaneous fixation of sacroiliac joint with cannulated screws. The study's primary outcome measure was the safety and quality of the early operation in comparison with the late operation. A total of 156 sacroiliac screws were inserted. No differences were found between the immediate and delayed treatment groups regarding technical outcome measures (P value = 0.44) and complication rate (P value = 0.42). The current study demonstrated that immediate percutaneous sacroiliac screw insertion for unstable pelvic fractures produced equally good technical results, in comparison with the conventional delayed operation, without additional complications.
Torsional stability of interference screws derived from bovine bone - a biomechanical study
2010-01-01
Background In the present biomechanical study, the torsional stability of different interference screws, made of bovine bone, was tested. Interference screws derived from bovine bone are a possible biological alternative to conventional metallic or bioabsorbable polymer interference screws. Methods In the first part of the study we compared the torsional stability of self-made 8 mm Interference screws (BC) and a commercial 8 mm interference screw (Tutofix®). Furthermore, we compared the torsional strength of BC screws with different diameters. For screwing in, a hexagon head and an octagon head were tested. Maximum breaking torques in polymethyl methacrylate resin were recorded by means of an electronic torque screw driver. In the second part of the study the tibial part of a bone-patellar tendon-bone graft was fixed in porcine test specimens using an 8 mm BC screw and the maximum insertion torques were recorded. Each interference screw type was tested 5 times. Results There was no statistically significant difference between the different 8 mm interference screws (p = 0.121). Pairwise comparisons did not reveal statistically significant differences, either. It was demonstrated for the BC screws, that a larger screw diameter significantly leads to higher torsional stability (p = 9.779 × 10-5). Pairwise comparisons showed a significantly lower torsional stability for the 7 mm BC screw than for the 8 mm BC screw (p = 0.0079) and the 9 mm BC screw (p = 0.0079). Statistically significant differences between the 8 mm and the 9 mm BC screw could not be found (p = 0.15). During screwing into the tibial graft channel of the porcine specimens, insertion torques between 0.5 Nm and 3.2 Nm were recorded. In one case the hexagon head of a BC screw broke off during the last turn. Conclusions The BC screws show comparable torsional stability to Tutofix® interference screws. As expected the torsional strength of the screws increases significantly with the diameter. The safety and in vivo performance of products derived from xenogeneic bone should be the focus of further investigations. PMID:20433761
Yi, Seong; Rim, Dae-Cheol; Park, Seoung Woo; Murovic, Judith A; Lim, Jesse; Park, Jon
2015-06-01
In vertebrae with low bone mineral densities pull out strength is often poor, thus various substances have been used to fill screw holes before screw placement for corrective spine surgery. We performed biomechanical cadaveric studies to compare nonaugmented pedicle screws versus hydroxyapatite, calcium phosphate, or polymethylmethacrylate augmented pedicle screws for screw tightening torques and pull out strengths in spine procedures requiring bone screw insertion. Seven human cadaveric T10-L1 spines with 28 vertebral bodies were examined by x-ray to exclude bony abnormalities. Dual-energy x-ray absorptiometry scans evaluated bone mineral densities. Twenty of 28 vertebrae underwent ipsilateral fluoroscopic placement of 6-mm holes augmented with hydroxyapatite, calcium phosphate, or polymethylmethacrylate, followed by transpedicular screw placements. Controls were pedicle screw placements in the contralateral hemivertebrae without augmentation. All groups were evaluated for axial pull out strength using a biomechanical loading frame. Mean pedicle screw axial pull out strength compared with controls increased by 12.5% in hydroxyapatite augmented hemivertebrae (P = 0.600) and by 14.9% in calcium phosphate augmented hemivertebrae (P = 0.234), but the increase was not significant for either method. Pull out strength of polymethylmethacrylate versus hydroxyapatite augmented pedicle screws was 60.8% higher (P = 0.028). Hydroxyapatite and calcium phosphate augmentation in osteoporotic vertebrae showed a trend toward increased pedicle screw pull out strength versus controls. Pedicle screw pull out force of polymethylmethacrylate in the insertion stage was higher than that of hydroxyapatite. However, hydroxyapatite is likely a better clinical alternative to polymethylmethacrylate, as hydroxyapatite augmentation, unlike polymethylmethacrylate augmentation, stimulates bone growth and can be revised. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Juan; Zhou, Yicheng; Hu, Ning; Wang, Renfa
2006-01-01
To investigate the value of the guidance of three dimensional (3-D) reconstruction of multi-slice spiral CT (MSCT) for the placement of pedicle screws, the 3-D anatomical data of the thoracic pedicles were measured by MSCT in two embalmed human cadaveric thoracic pedicles spines (T1-T10) to guide the insertion of pedicle screws. After pulling the screws out, the pathways were filled with contrast media. The PW, PH, TSA and SSA of developed pathways were measured on the CT images and they were also measured on the real objects by caliper and goniometer. Analysis of variance demonstrated that the difference between the CT scans and real objects had no statistical significance (P > 0.05). Moreover, the difference between pedicle axis and developed pathway also had no statistical significance (P > 0.05). The data obtained from 3-D reconstruction of MSCT demonstrated that individualized standards, are not only accurate but also helpful for the successful placement of pedicle screws.
NASA Astrophysics Data System (ADS)
Borisov, A.
2018-05-01
The current issue of studying the vector velocity field in a cyclone-separator with a screw insert is considered in the article. Modeling of the velocity vector field in SolidWorks was carried out, tangential, axial and radial velocities were investigated. Also, a software and hardware complex was developed that makes it possible to obtain data on the speed inside a cyclone separator. The results of the experiment showed that on flour dusts the efficiency of the cyclone separator in question was more than 99.5%, with an air flow rate of 376 m3 / h, 472 m3 / h and 516 m3 / h, and ΔP less than 600 Pa. The velocity in the inlet branch of the screw insert was 18-20 m / s, and at the exit of the screw insert the airflow velocity is 50-70 m / s.
Costa, Francesco; Ortolina, Alessandro; Galbusera, Fabio; Cardia, Andrea; Sala, Giuseppe; Ronchi, Franco; Uccelli, Carlo; Grosso, Rossella; Fornari, Maurizio
2016-02-01
Pedicle screws with polymethyl methacrylate (PMMA) cement augmentation have been shown to significantly improve the fixation strength in a severely osteoporotic spine. However, the efficacy of screw fixation for different cement augmentation techniques remains unknown. This study aimed to determine the difference in pullout strength between different cement augmentation techniques. Uniform synthetic bones simulating severe osteoporosis were used to provide a platform for each augmentation technique. In all cases a polyaxial screw and acrylic cement (PMMA) at medium viscosity were used. Five groups were analyzed: I) only screw without PMMA (control group); II) retrograde cement pre-filling of the tapped area; III) cannulated and fenestrate screw with cement injection through perforation; IV) injection using a standard trocar of PMMA (vertebroplasty) and retrograde pre-filling of the tapped area; V) injection through a fenestrated trocar and retrograde pre-filling of the tapped area. Standard X-rays were taken in order to visualize cement distribution in each group. Pedicle screws at full insertion were then tested for axial pullout failure using a mechanical testing machine. A total of 30 screws were tested. The results of pullout analysis revealed better results of all groups with respect to the control group. In particular the statistical analysis showed a difference of Group V (p = 0.001) with respect to all other groups. These results confirm that the cement augmentation grants better results in pullout axial forces. Moreover they suggest better load resistance to axial forces when the distribution of the PMMA is along all the screw combining fenestration and pre-filling augmentation technique. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Impact of implant design on primary stability of orthodontic mini-implants.
Wilmes, Benedict; Ottenstreuer, Stephanie; Su, Yu-Yu; Drescher, Dieter
2008-01-01
Skeletal anchorage with mini-implants has greatly broadened the treatment possibilities in orthodontics over the last few years. To reduce implant failure rates, it is advisable to obtain adequate primary stability. The aim of this study was to quantitatively analyze the impact of implant design and dimension on primary stability. Forty-two porcine iliac bone segments were prepared and embedded in resin. To evaluate the primary stability, we documented insertion torques of the following mini-implants: Aarhus Screw, AbsoAnchor, LOMAS, Micro-Anchorage-System, ORLUS and Spider Screw. In each bone, five Dual Top Screws were inserted for reference purposes to achieve comparability among the specimens. We observed wide variation in insertion torques and hence primary stability, depending on mini-implant design and dimension; the great impact that mini-implant diameter has on insertion torques was particularly conspicuous. Conical mini-implants achieved higher primary stabilities than cylindrical designs. The diameter and design of the mini-implant thread have a distinctive impact on primary stability. Depending on the region of insertion and local bone quality, the choice of the mini-implant design and size is crucial to establish sufficient primary stability.
Dixon, Daniel; Darden, Bruce; Casamitjana, Jose; Weissmann, Karen A; Cristobal, San; Powell, David; Baluch, Daniel
2017-04-01
A fresh frozen cadaver study was conducted. To report the cortical breach rate using the dynamic surgical guidance (DSG) probe versus traditional freehand technique for cervical lateral mass, cervical pedicle and cervical laminar screws. Nine male fresh frozen cadaveric torsos were utilized for this study. Each investigator was assigned three specimens that were randomized by fixation point, side and order of technique for establishing a screw pilot hole. The technique for screw hole preparation utilized was either a DSG probe in the "on" mode or in the "off" mode using a freehand technique popularized by Lenke et al. Levels instrumented included C1 lateral mass, C2 pedicle screws and lamina screws, and C6-T1 pedicle screws. Fluoroscopy and other navigational assistance were not used for screw hole preparation or screw insertion. All specimens were CT imaged following insertion of all screws. A senior radiologist evaluated all scans and determined that a misplaced screw was a breach of ≥2 mm. A total of 104 drillings were performed, 52 with DSG and 52 without DSG There were 68 total pedicle drillings, 34 in each group. There were 18 drillings in the lamina and lateral mass. There was no significant difference between surgeons or between the left and right side. All breaches were in the pedicle, and none in the lamina or lateral mass. The breach rate for PG "on" was 6/68 = 8.96% (95% CI 3.69, 19.12%). The breach rate for PG "off" was 20/68 = 29.41% (95% CI 19.30, 41.87%). Of the 20 pedicle breaches in the non-DSG group, 7 were lateral and superior, 8 were lateral, 4 medial and 1 inferior. Of the six pedicle breaches in the DSG group, two were lateral/superior, two were lateral and two were medial in the pedicle. The dynamic surgical guidance probe is a safe tool to assist the surgeon with screw placement in the cervical spine. Additionally, the DSG potentially avoids the cumulative risks associated with fluoroscopy and provides real-time feedback to the surgeon allowing correction at the time of breach. Level of evidence Level IV.
Effect of recycling protocol on mechanical strength of used mini-implants.
Estelita, Sérgio; Janson, Guilherme; Chiqueto, Kelly; Ferreira, Eduardo Silveira
2014-01-01
Purpose. This study evaluated the influence of recycling process on the torsional strength of mini-implants. Materials and Methods. Two hundred mini-implants were divided into 4 groups with 50 screws equally distributed in five diameters (1.3 to 1.7 mm): control group (CG): unused mini-implants, G1: mini-implants inserted in pig iliac bone and removed, G2: same protocol of group 1 followed by sonication for cleaning and autoclave sterilization, and G3: same insertion protocol of group 1 followed by sonication for cleaning before and after sandblasting (Al2O3-90 µ) and autoclave sterilization. G2 and G3 mini-implants were weighed after recycling process to evaluate weight loss (W). All the screws were broken to determine the fracture torque (FT). The influence of recycling process on FT and W was evaluated by ANOVA, Mann-Whitney, and multiple linear regression analysis. Results. FT was not influenced by recycling protocols even when sandblasting was added. Sandblasting caused weight loss due to abrasive mechanical stripping of screw surface. Screw diameter was the only variable that affected FT. Conclusions. Torsional strengths of screws that underwent the recycling protocols were not changed. Thus, screw diameter choice can be a more critical step to avoid screw fracture than recycling decision.
21 CFR 888.3060 - Spinal intervertebral body fixation orthosis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... each of a series of vertebral bodies. An eye-type screw is inserted in a hole in the center of each of the plates. A braided cable is threaded through each eye-type screw. The cable is tightened with a tension device and it is fastened or crimped at each eye-type screw. The device is used to apply force to...
21 CFR 888.3060 - Spinal intervertebral body fixation orthosis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... each of a series of vertebral bodies. An eye-type screw is inserted in a hole in the center of each of the plates. A braided cable is threaded through each eye-type screw. The cable is tightened with a tension device and it is fastened or crimped at each eye-type screw. The device is used to apply force to...
Chassis unit insert tightening-extract device
NASA Technical Reports Server (NTRS)
Haerther, L. W.; Zimmerman, P. A. (Inventor)
1964-01-01
The invention relates to the insertion and extraction of rack mounted electronic units and in particular to a screw thread insert tightening and extract device, for chassis units having a collar which may be rotatably positioned manually for the insert tightening or extraction of various associated chassis units, as desired.
[Surgical Correction of Scoliosis: Does Intraoperative CT Navigation Prolong Operative Time?
Skála-Rosenbaum, J; Ježek, M; Džupa, V; Kadeřábek, R; Douša, P; Rusnák, R; Krbec, M
2016-01-01
PURPOSE OF THE STUDY The aim of the study was to compare the duration of corrective surgery for scoliosis in relation to the intra-operative use of either fluoroscopic or CT navigation. MATERIAL AND METHODS The indication for surgery was adolescent idiopathic scoliosis in younger patients and degenerative scoliosis in middleage or elderly patients. In a retrospective study, treatment outcomes in 43 consecutive patients operated on between April 2011 and April 2014 were compared. Only patients undergoing surgical correction of five or more spinal segments (fixation of six and more vertebrae) were included. RESULTS Transpedicular screw fixation of six to 13 vertebrae was performed under C-arm fluoroscopy guidance in 22 patients, and transpedicular screws were inserted in six to 14 vertebrae using the O-arm imaging system in 21 patients. A total of 246 screws were placed using the C-arm system and 340 screws were inserted using the O-arm system (p < 0.001). The procedures with use of the O-arm system were more complicated and required an average operative time longer by 48% (measured from the first skin incision to the completion of skin suture). However, the mean time needed for one screw placement (the sum of all surgical procedures with the use of a navigation technique divided by the number of screws placed using this technique) was the same in both techniques (19 min). DISCUSSION With good teamwork (surgeons, anaesthesiologists and a radiologist attending to the O-arm system), the time required to obtain one intra-operative CT scan is 3 to 5 minutes. The study showed that the mean time for placement of one screw was identical in both techniques although the average operative time was longer in surgery with O-arm navigation. The 19- minute interval was not the real placement time per screw. It was the sum of all operative times of surgical procedures (from first incision to suture completion including the whole approach within the range of planned stabilization) which used the same navigation technique divided by the number of all screws inserted during the procedures. The longer average operative time in procedures using O-arm navigation was not related to taking intra-operative O-arm scans. The authors consider surgery with an O-arm imaging system to be a safer procedure and use it currently in surgical correction of scoliosis. CONCLUSIONS The study focused on the length of surgery to correct scoliosis performed using either conventional fluoroscopy (C-arm) or intra-operative CT scanning (O-arm) showed that the mean placement time for one screw was identical in both imaging techniques when six or more vertebrae were stabilised. The use of intra-operative CT navigation did not make the surgery longer, and the higher number of inserted screws provides evidence that this technique is safer and allows us to achieve good stability of the correction procedure. Key words: virtual CT guidance, O-arm, scoliosis, transpedicular screw.
Cutburth, Ronald W.; Smauley, David A.
1987-01-01
A clamp or dog is disclosed which preferably comprises a slotted stepped cylindrical body which is inserted into a hole in a workpiece and then fastened to a base or fixture using a screw which is inserted through the slot. The stepped configuration provides an annular clamping surface which securely clamps the workpiece against the base or fixture. The slotted cylindrical configuration permits adjustment of the workpiece and retaining clamp in any direction, i.e., over 360.degree., relative to the mounting position of the screw in the base or fixture.
Tsuji, Matthew; Crookshank, Meghan; Olsen, Michael; Schemitsch, Emil H; Zdero, Rad
2013-06-01
Orthopedic surgeons apply torque to metal screws manually by "subjective feel" to obtain adequate fracture fixation, i.e. stopping torque, and attempt to avoid accidental over-tightening that leads to screw-bone interface failure, i.e. stripping torque. Few studies have quantified stripping torque in human bone, and only one older study from 1980 reported stopping/ stripping torque ratio. The present aim was to measure stopping and stripping torque of cortical and cancellous screws in artificial and human bone over a wide range of densities. Sawbone blocks were obtained having densities from 0.08 to 0.80g/cm(3). Sixteen fresh-frozen human femurs of known standardized bone mineral density (sBMD) were also used. Using a torque screwdriver, 3.5-mm diameter cortical screws and 6.5-mm diameter cancellous screws were inserted for adequate tightening as determined subjectively by an orthopedic surgeon, i.e. stopping torque, and then further tightened until failure of the screw-bone interface, i.e. stripping torque. There were weak (R=0.25) to strong (R=0.99) linear correlations of absolute and normalized torque vs. density or sBMD. Maximum stopping torques normalized by screw thread area engaged by the host material were 15.2N/mm (cortical screws) and 13.4N/mm (cancellous screws) in sawbone blocks and 20.9N/mm (cortical screws) and 6.1N/mm (cancellous screws) in human femurs. Maximum stripping torques normalized by screw thread area engaged by the host material were 23.4N/mm (cortical screws) and 16.8N/mm (cancellous screws) in sawbone blocks and 29.3N/mm (cortical screws) and 8.3N/mm (cancellous screws) in human femurs. Combined average stopping/ stripping torque ratios were 80.8% (cortical screws) and 76.8% (cancellous screws) in sawbone blocks, as well as 66.6% (cortical screws) and 84.5% (cancellous screws) in human femurs. Surgeons should be aware of stripping torque limits for human femurs and monitor stopping torque during surgery. This is the first study of the effect of sawbone density or human bone sBMD on stopping and stripping torque. Copyright © 2013 Elsevier Ltd. All rights reserved.
Moran, Eduardo; Zderic, Ivan; Klos, Kajetan; Simons, Paul; Triana, Miguel; Richards, R Geoff; Gueorguiev, Boyko; Lenz, Mark
2017-10-01
Split fractures of the lateral tibia plateau in young patients with good bone quality are commonly treated using two minimally invasive percutaneous lag screws, followed by unloading of the knee joint. Improved stability could be achieved with the use of a third screw inserted either in the jail-technique fashion or with a triangular support screw configuration. The aim of this study was to investigate under cyclic loading the compliance and endurance of the triangular support fixation in comparison with the standard two lag-screw fixation and the jail technique. Lateral split fractures of type AO/OTA 41-B1 were created on 21 synthetic tibiae and subsequently fixed with one of the following three techniques for seven specimens: standard fixation by inserting two partially threaded 6.5 mm cannulated lag screws parallel to each other and orthogonal to the fracture plane; triangular support fixation-standard fixation with one additional support screw at the distal end of the fracture at 30° proximal inclination; and jail fixation-standard fixation with one additional orthogonal support screw inserted in the medial nonfractured part of the bone. Mechanical testing was performed under progressively increasing cyclic compression loading. Fragment displacement was registered via triggered radiographic imaging. Mean construct compliance was 3.847 × 10 -3 mm/N [standard deviation (SD) 0.784] for standard fixation, 3.838 × 10 -3 mm/N (SD 0.242) for triangular fixation, and 3.563 × 10 -3 mm/N (SD 0.383) for jail fixation, with no significant differences between the groups ( p = 0.525). The mean numbers of cycles to 2 mm fragment dislocation, defined as a failure criterion, were 12,384 (SD 2267) for standard fixation, 17,708 (SD 2193) for triangular fixation, and 14,629 (SD 5194) for jail fixation. Triangular fixation revealed significantly longer endurance than the standard one ( p = 0.047). Triangular support fixation enhanced interfragmentary stability at the ultimate stage of dynamic loading. However, the level of improvement seems to be limited and may not legitimate the intervention with an additional third screw.
Tribst, João Paulo Mendes; Dal Piva, Amanda Maria de Oliveira; Shibli, Jamil Awad; Borges, Alexandre Luiz Souto; Tango, Rubens Nisie
2017-12-07
This study evaluated the effect of implantoplasty on different bone insertion levels of exposed implants. A model of the Bone Level Tapered implant (Straumann Institute, Waldenburg, Switzerland) was created through the Rhinoceros software (version 5.0 SR8, McNeel North America, Seattle, WA, USA). The abutment was fixed to the implant through a retention screw and a monolithic crown was modeled over a cementation line. Six models were created with increasing portions of the implant threads exposed: C1 (1 mm), C2 (2 mm), C3 (3 mm), C4 (4 mm), C5 (5 mm) and C6 (6 mm). The models were made in duplicates and one of each pair was used to simulate implantoplasty, by removing the threads (I1, I2, I3, I4, I5 and I6). The final geometry was exported in STEP format to ANSYS (ANSYS 15.0, ANSYS Inc., Houston, USA) and all materials were considered homogeneous, isotropic and linearly elastic. To assess distribution of stress forces, an axial load (300 N) was applied on the cusp. For the periodontal insert, the strains increased in the peri-implant region according to the size of the exposed portion and independent of the threads' presence. The difference between groups with and without implantoplasty was less than 10%. Critical values were found when the inserted portion was smaller than the exposed portion. In the exposed implants, the stress generated on the implant and retention screw was higher in the models that received implantoplasty. For the bone tissue, exposure of the implant's thread was a damaging factor, independent of implantoplasty. Implantoplasty treatment can be safely used to control peri-implantitis if at least half of the implant is still inserted in bone.
Jiang, Lianghai; Dong, Liang; Tan, Mingsheng; Qi, Yingna; Yang, Feng; Yi, Ping; Tang, Xiangsheng
2017-01-01
Background Atlantoaxial posterior pedicle screw fixation has been widely used for treatment of atlantoaxial instability (AAI). However, precise and safe insertion of atlantoaxial pedicle screws remains challenging. This study presents a modified drill guide template based on a previous template for atlantoaxial pedicle screw placement. Material/Methods Our study included 54 patients (34 males and 20 females) with AAI. All the patients underwent posterior atlantoaxial pedicle screw fixation: 25 patients underwent surgery with the use of a modified drill guide template (template group) and 29 patients underwent surgery via the conventional method (conventional group). In the template group, a modified drill guide template was designed for each patient. The modified drill guide template and intraoperative fluoroscopy were used for surgery in the template group, while only intraoperative fluoroscopy was used in the conventional group. Results Of the 54 patients, 52 (96.3%) completed the follow-up for more than 12 months. The template group had significantly lower intraoperative fluoroscopy frequency (p<0.001) and higher accuracy of screw insertion (p=0.045) than the conventional group. There were no significant differences in surgical duration, intraoperative blood loss, or improvement of neurological function between the 2 groups (p>0.05). Conclusions Based on the results of this study, it is feasible to use the modified drill guide template for atlantoaxial pedicle screw placement. Using the template can significantly lower the screw malposition rate and the frequency of intraoperative fluoroscopy. PMID:28301445
Malham, Gregory M; Parker, Rhiannon M
2018-04-01
OBJECTIVE Image guidance for spine surgery has been reported to improve the accuracy of pedicle screw placement and reduce revision rates and radiation exposure. Current navigation and robot-assisted techniques for percutaneous screws rely on bone-anchored trackers and Kirchner wires (K-wires). There is a paucity of published data regarding the placement of image-guided percutaneous screws without K-wires. A new skin-adhesive stereotactic patient tracker (SpineMask) eliminates both an invasive bone-anchored tracker and K-wires for pedicle screw placement. This study reports the authors' early experience with the use of SpineMask for "K-wireless" placement of minimally invasive pedicle screws and makes recommendations for its potential applications in lumbar fusion. METHODS Forty-five consecutive patients (involving 204 screws inserted) underwent K-wireless lumbar pedicle screw fixation with SpineMask and intraoperative neuromonitoring. Screws were inserted by percutaneous stab or Wiltse incisions. If required, decompression with or without interbody fusion was performed using mini-open midline incisions. Multimodality intraoperative neuromonitoring assessing motor and sensory responses with triggered electromyography (tEMG) was performed. Computed tomography scans were obtained 2 days postoperatively to assess screw placement and any cortical breaches. A breach was defined as any violation of a pedicle screw involving the cortical bone of the pedicle. RESULTS Fourteen screws (7%) required intraoperative revision. Screws were removed and repositioned due to a tEMG response < 13 mA, tactile feedback, and 3D fluoroscopic assessment. All screws were revised using the SpineMask with the same screw placement technique. The highest proportion of revisions occurred with Wiltse incisions (4/12, 33%) as this caused the greatest degree of SpineMask deformation, followed by a mini midline incision (3/26, 12%). Percutaneous screws via a single stab incision resulted in the fewest revisions (7/166, 4%). Postoperative CT demonstrated 7 pedicle screw breaches (3%; 5 lateral, 1 medial, 1 superior), all with percutaneous stab incisions (7/166, 4%). The radiological accuracy of the SpineMask tracker was 97% (197/204 screws). No patients suffered neural injury or required postoperative screw revision. CONCLUSIONS The noninvasive cutaneous SpineMask tracker with 3D image guidance and tEMG monitoring provided high accuracy (97%) for percutaneous pedicle screw placement via stab incisions without K-wires.
Release of metal in vivo from stressed and nonstressed maxillofacial fracture plates and screws.
Matthew, I R; Frame, J W
2000-07-01
To analyze the release of metal into the adjacent tissues from stressed and nonstressed titanium and stainless steel miniplates and screws. Two miniplates were inserted into the cranial vaults of 12 beagle dogs while they were under general endotracheal anesthesia. One miniplate was shaped to fit the curvature of the skull (control). Another miniplate, made of the same material, was bent in a curve until the midpoint was raised 3 mm above the ends. Screws were inserted and tightened until the plate conformed to the skull curvature, creating stresses in the system. Four animals (2 each, having titanium or stainless steel plates and screws) were killed after 4, 12, and 24 weeks. Metallosis of adjacent soft tissues was assessed qualitatively. Miniplates and screws were removed, and adjacent soft tissue and bone was excised. Titanium, iron, chromium, nickel, and aluminum levels were assayed by ultraviolet/visible light and atomic absorption spectrophotometry. Nonparametric statistical methods were used for data analysis. There was no clear relationship between pigmentation of soft tissue adjacent to the miniplates and screws and the concentrations of metal present. The data did not demonstrate any consistent differences in the concentrations of metallic elements next to stressed and nonstressed (control) miniplates and screws of either material. Stresses arising through poor contouring of miniplates do not appear to influence the extent of release of metal into the adjacent tissues.
Zhang, Ying; Xie, Jingming; Wang, Yingsong; Bi, Ni; Zhao, Zhi; Li, Tao
2014-08-13
Posterior vertebral column resection (PVCR) is an effective alternative for treating rigid and severe spinal deformities. Accurate placement of pedicle screws, especially apically, is crucial. As morphologic evaluations of thoracic pedicles have not provided objective criteria, we propose a thoracic pedicle classification for treating rigid and severe spinal deformities. A consecutive series of 56 patients with severe and rigid spinal deformities who underwent PVCR at a single institution were reviewed retrospectively. Altogether, 1098 screws were inserted into thoracic pedicles at T2-T12. Based on the inner cortical width of the thoracic pedicles, the patients were divided into four groups: group 1 (0-1.0 mm), group 2 (1.1-2.0 mm), group 3 (2.1-3.0 mm), group 4 (≥3.1 mm). The proportion of screws accurately inserted in thoracic pedicles for each group was calculated. Statistical analysis was also performed regarding types of thoracic pedicles classified by Lenke et al. (SPINE 35:1836-1842, 2010) using a morphological method. There were statistically significant differences in the rates of screws inserted in thoracic pedicles between the groups (P < 0.008) except groups 3 and 4 (P > 0.008), which were then combined. The accuracies for the three new groups were 35.05%, 65.34%, and 88.32%, respectively, with statistically significant differences between the groups (P < 0.017). Rates of screws inserted in thoracic pedicles classified by Lenke et al. (SPINE 35:1836-1842, 2010) were 82.31%, 83.40%, 80.00%, and 30.28% for types A, B, C, and D, respectively. There was no statistically significant difference (P > 0.008) between these types except between type D and the other three types (P < 0.008). The inner cortical width of thoracic pedicles is the sole factor crucial for accurate placement of thoracic pedicle screws. We propose a computed tomography-based classification of the pedicle's inner cortical width: type I thoracic pedicle: absent channel, inner cortical width of 0-1 mm; type II: presence of a channel of which type IIa has an inner cortical width of 1.1-2.0 mm and type IIb a width of ≥2.1 mm. The proposed classification can help surgeons predict whether screws can be inserted into the thoracic pedicle, thus guiding instrumentation when PVCR is performed.
Bone fracture repair - series (image)
... by the following methods: a) one or more screws inserted across the break to hold it. b) a steel plate held by screws drilled into the bone. c) a long fluted metal pin with holes in it, is driven down the shaft of the bone ...
Effects of recycling on the biomechanical characteristics of retrieved orthodontic miniscrews
Yun, Soon-Dong; Choi, Sung-Hwan; Cha, Jung-Yul; Yu, Hyung-Seog; Kim, Kwang-Mahn; Kim, Jin
2017-01-01
Objective The aim of this study was to compare recycled and unused orthodontic miniscrews to determine the feasibility of reuse. The comparisons included both miniscrews with machined surfaces (MS), and those with etched surfaces (ES). Methods Retrieved MS and ES were further divided into three subgroups according to the assigned recycling procedure: group A, air-water spray; group B, mechanical cleaning; and group C, mechanical and chemical cleaning. Unused screws were used as controls. Scanning electron microscopy, energy-dispersive X-ray spectrometry, insertion time and maximum insertion torque measurements in artificial bone, and biological responses in the form of periotest values (PTV), bone–implant contact ratio (BIC), and bone volume ratio (BV) were assessed. Results Morphological changes after recycling mainly occurred at the screw tip, and the cortical bone penetration success rate of recycled screws was lower than that of unused screws. Retrieved ES needed more thorough cleaning than retrieved MS to produce a surface composition similar to that of unused screws. There were no significant differences in PTV or BIC between recycled and unused screws, while the BV of the former was significantly lower than that of the latter (p < 0.05). Conclusions These results indicate that reuse of recycled orthodontic miniscrews may not be feasible from the biomechanical aspect. PMID:28670565
Acocella, Alessandro; Ercoli, Carlo; Geminiani, Alessandro; Feng, Changyong; Billi, Mauro; Acocella, Gabriele; Giannini, Domenico; Sacco, Roberto
2012-05-01
Immediate occlusal loading of dental implants in the edentulous mandible has proven to be an effective, reliable, and predictable treatment protocol. However, there is limited long-term data available in the literature, when an electroeroded definitive cast-titanium fixed prosthesis is used for this treatment protocol. The aim of this study was to evaluate the clinical effectiveness of dental implants (Astra Tech Dental, Mölndal, Sweden) in the edentulous mandible immediately loaded with an electroeroded cast-titanium screw-retained fixed prosthesis. Forty-five patients received five implants each in the interforaminal area. All the implants were inserted with torque up to 40 Ncm and the distal implants were distally tilted approximately 20 to 30 degrees to minimize the length of posterior cantilevers. Implants were loaded within 48 hours of placement with an acrylic resin-titanium screw-retained prosthesis fabricated by electroerosion. Two of the 225 inserted implants failed after 3 and 16 months of healing, respectively, with a cumulative survival rate of 99.1% and a prosthetic survival rate of 97.8%. Immediate loading of tilted dental implants inserted in the edentulous mandible with a screw-retained titanium definitive prosthesis fabricated with electrical discharge machining provide reliable and predictable results. © 2011 Wiley Periodicals, Inc.
Yang, Yunpeng; Jiang, Shan; Yang, Zhiyong; Yuan, Wei; Dou, Huaisu; Wang, Wei; Zhang, Daguang; Bian, Yuan
2017-04-01
Nowadays, biopsy is a decisive method of lung cancer diagnosis, whereas lung biopsy is time-consuming, complex and inaccurate. So a computed tomography-compatible robot for rapid and precise lung biopsy is developed in this article. According to the actual operation process, the robot is divided into two modules: 4-degree-of-freedom position module for location of puncture point is appropriate for patient's almost all positions and 3-degree-of-freedom tendon-based orientation module with remote center of motion is compact and computed tomography-compatible to orientate and insert needle automatically inside computed tomography bore. The workspace of the robot surrounds patient's thorax, and the needle tip forms a cone under patient's skin. A new error model of the robot based on screw theory is proposed in view of structure error and actuation error, which are regarded as screw motions. Simulation is carried out to verify the precision of the error model contrasted with compensation via inverse kinematics. The results of insertion experiment on specific phantom prove the feasibility of the robot with mean error of 1.373 mm in laboratory environment, which is accurate enough to replace manual operation.
Weninger, Patrick; Dall'Ara, Enrico; Leixnering, Martin; Pezzei, Christoph; Hertz, Harald; Drobetz, Herwig; Redl, Heinz; Zysset, Philippe
2010-11-01
Distal radius fractures represent the most common fractures in adult individuals. Volar fixed-angle plating has become a popular modality for treating unstable distal radius fractures. Most of the plates allow insertion of either threaded locking screws or smooth locking pegs. To date, no biomechanical studies compare locking screws and pegs under axial and torsional loading. Ten Sawbones radii were used to simulate an AO/OTA A3 fracture. Volar fixed-angle plates (Aptus Radius 2.5, Medartis, Switzerland) with threaded locking screws (n = 5) or smooth locking pegs (n = 5) were used to fix the distal metaphyseal fragment. Each specimen was tested under axial compression and under torsional load with a servohydraulic testing machine. Qualitative parameters were recorded as well as axial and torsional stiffness, torsion strength, energy absorbed during monotonic loading and energy absorbed in one cycle. Axial stiffness was comparable between both groups (p = 0.818). If smooth pegs were used, a 17% reduction of torsional stiffness (p = 0.017) and a 12% reduction of minimum torque (p = 0.012) were recorded. A 12% reduction of energy absorbed (p = 0.013) during monotonic loading and unloading was recorded if smooth pegs were used. A 34% reduction of energy absorbed in one cycle (p < 0.007) was recorded if threaded screws were used. Sliding of the pegs out of the distal radius metaphyses of the synthetic bones was recorded at a mean torque of 3.80 Nm ± 0.19 Nm. No sliding was recorded if threaded screws were used. According to the results of this study using Sawbones, volar fixed-angle plates with threaded locking screws alone are mechanically superior to volar fixed-angle plates with smooth locking pegs alone under torsional loading.
Matityahu, Amir; Kahler, David; Krettek, Christian; Stöckle, Ulrich; Grutzner, Paul Alfred; Messmer, Peter; Ljungqvist, Jan; Gebhard, Florian
2014-12-01
To evaluate the accuracy of computer-assisted sacral screw fixation compared with conventional techniques in the dysmorphic versus normal sacrum. Review of a previous study database. Database of a multinational study with 9 participating trauma centers. The reviewed group included 130 patients, 72 from the navigated group and 58 from the conventional group. Of these, 109 were in the nondysmorphic group and 21 in the dysmorphic group. Placement of sacroiliac (SI) screws was performed using standard fluoroscopy for the conventional group and BrainLAB navigation software with either 2-dimensional or 3-dimensional (3D) navigation for the navigated group. Accuracy of SI screw placement by 2-dimensional and 3D navigation versus conventional fluoroscopy in dysmorphic and nondysmorphic patients, as evaluated by 6 observers using postoperative computerized tomography imaging at least 1 year after initial surgery. Intraobserver agreement was also evaluated. There were 11.9% (13/109) of patients with misplaced screws in the nondysmorphic group and 28.6% (6/21) of patients with misplaced screws in the dysmorphic group, none of which were in the 3D navigation group. Raw agreement between the 6 observers regarding misplaced screws was 32%. However, the percent overall agreement was 69.0% (kappa = 0.38, P < 0.05). The use of 3D navigation to improve intraoperative imaging for accurate insertion of SI screws is magnified in the dysmorphic proximal sacral segment. We recommend the use of 3D navigation, where available, for insertion of SI screws in patients with normal and dysmorphic proximal sacral segments. Therapeutic level I.
Clinical Outcomes of Posterior C1 and C2 Screw-Rod Fixation for Atlantoaxial Instability.
Işik, Hasan Serdar; Sandal, Evren; Çağli, Sedat
2017-06-14
In this study, we aimed at sharing our experiences and contributing to the literature by making a retrospective analysis of the patients we operated with screw-rod system for atlantoaxial instability in our clinic. Archive files of adult patients, who were operated for posterior C1-C2 stabilization with screw and rod in our clinic between January 2006 and January 2016, were analyzed. 28 patients, who had pre and post-operative images, follow-up forms and who were followed for at least one year, were analyzed. Preoperative clinical and radiological records, preoperative observations, postoperative complications, and clinical responses were evaluated. The average age of 28 patients (F:13 M:19) was 44.7 (21-73). Fixation was performed with C1-C2 screw-rod system on the basis of the following diagnoses; type 2 odontoid fracture (16), basilar invagination (5), C1-C2 instability (5), and atlantoaxial subluxation secondary to rheumatoid arthritis (2). Lateral mass screws were inserted at C1 segment. C2 screws inserted were bilateral pedicle in 12 cases, bilateral pars in 4, bilateral laminar in 8 and one side pars, one side laminar in 4 cases. There was no screw malposition. Neither implant failure nor recurrent instability was observed during follow-up. Significant clinical improvement was reported according to the assessments done with JOA and VAS scores. C1-C2 screw fixation is regarded as a more successful and safe method than other fixation methods in surgical treatment of atlantoaxial instability considering complications, success in reduction, fusion and fixation strength. C2 laminar screw technique is as successful as the other alternatives in fixation and fusion.
van den Bergh, B; Blankestijn, J; van der Ploeg, T; Tuinzing, D B; Forouzanfar, T
2015-06-01
A mandibular condyle fracture can be treated conservatively by intermaxillary fixation (IMF) or by open reposition and internal fixation (ORIF). Many IMF-modalities can be chosen, including IMF-screws (IMFS). This prospective multi-centre randomised clinical trial compared the use of IMFS with the use of arch bars in the treatment of mandibular condyle fractures. The study population consisted of 50 patients (mean age: 31.8 years). Twenty-four (48%) patients were allocated in the IMFS group. Twenty-six (52%) patients were assigned to the arch bars group. In total 188 IMF-screws were used (5-12 screws per patient, mean 7.83 screws per patient). All pain scores were lower in the IMFS group. Three patients developed a malocclusion (IFMS-group: one patient, arch bars-group: two patients). Mean surgical time was significantly shorter in the IMFS group (59 vs. 126 min; p<0.001). There were no needlestick injuries (0%) in the IMFS group and eight (30.7%) in the arch bars group (p=0.003). One IMF-screw fractured on insertion (0.53%), one (0.53%) screw was inserted into a root. Six (3.2%) screws loosened spontaneously in four patients. Mucosal disturbances were seen in 22 patients, equally divided over both groups. Considering the advantages and the disadvantages of IMFS, and observing the results of this study, the authors conclude that IMFS provide a superior method for IMF. IMFS are safer for the patients and surgeons. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Niederhäuser, Simone K; Tepic, Slobodan; Weber, Urs T
2015-05-01
To evaluate the effect of screw position on strength and stiffness of a combination locking plate-rod construct in a synthetic feline femoral gap model. 30 synthetic long-bone models derived from beechwood and balsa wood. 3 constructs (2 locking plate-rod constructs and 1 locking plate construct; 10 specimens/construct) were tested in a diaphyseal bridge plating configuration by use of 4-point bending and torsion. Variables included screw position (near the fracture gap and far from the fracture gap) and application of an intramedullary pin. Constructs were tested to failure in each loading mode to determine strength and stiffness. Failure was defined as plastic deformation of the plate or breakage of the bone model or plate. Strength, yield angle, and stiffness were compared by use of a Wilcoxon test. Placement of screws near the fracture gap did not increase bending or torsional stiffness in the locking plate-rod constructs, assuming the plate was placed on the tension side of the bone. Addition of an intramedullary pin resulted in a significant increase in bending strength of the construct. Screw positioning did not have a significant effect on any torsion variables. Results of this study suggested that, in the investigated plate-rod construct, screw insertion adjacent to the fracture lacked mechanical advantages over screw insertion at the plate ends. For surgeons attempting to minimize soft tissue dissection, the decision to make additional incisions for screw placement should be considered with even more caution.
Fischer, Sebastian; Vogl, Thomas J; Marzi, Ingo; Zangos, Stephan; Wichmann, Julian L; Scholtz, Jan-Erik; Mack, Martin G; Schmidt, Sven; Eichler, Katrin
2015-02-01
The purpose of our study was to evaluate minimally invasive sacroiliac screw fixation for treatment of posterior pelvic instability with the help of CT controlled guidewires, assess its accuracy, safety and effectiveness, and discuss potential pitfalls. 100 guidewires and hollow titan screws were inserted in 38 patients (49.6±19.5 years) suffering from 35 sacral fractures and/or 16 sacroiliac joint disruptions due to 33 (poly-)traumatic, 2 osteoporotic and 1 post-infectious conditions. The guidewire and screw positions were analyzed in multiplanar reconstructions. The mean minimal distance between guidewire and adjacent neural foramina was 4.5±2.01mm, with a distinctly higher precision in S1 than S2. Eight guidewires showed cortical contacts, resulting in a total of 2% mismatched screws with subsequent wall violation. The fracture gaps were reduced from 3.6±0.53mm to 1.2±0.54mm. During follow-up 3 cases of minor iatrogenic sacral impaction (<5mm) due to the bolting and 2 cases of screw loosening were observed. Interventional time was 84.0min with a mean of 2.63 screws per patient whilst acquiring a mean of 93.7 interventional CT-images (DLP 336.7mGycm). The treatment of posterior pelvic instability with a guidewire-based screw insertion technique under CT-imaging results in a very high accuracy and efficacy with a low complication rate. Careful attention should be drawn to radiation levels. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Proposal for a new trajectory for subaxial cervical lateral mass screws.
Amhaz-Escanlar, Samer; Jorge-Mora, Alberto; Jorge-Mora, Teresa; Febrero-Bande, Manuel; Diez-Ulloa, Maximo-Alberto
2018-06-20
Lateral mass screws combined with rods are the standard method for posterior cervical spine subaxial fixation. Several techniques have been described, among which the most used are Roy Camille, Magerl, Anderson and An. All of them are based on tridimensional angles. Reliability of freehand angle estimation remains poorly investigated. We propose a new technique based on on-site spatial references and compare it with previously described ones assessing screw length and neurovascular potential complications. Four different lateral mass screw insertion techniques (Magerl, Anderson, An and the new described technique) were performed bilaterally, from C3 to C6, in ten human spine specimens. A drill tip guide wire was inserted as originally described for each trajectory, and screw length was measured. Exit point was examined, and potential vertebral artery or nerve root injury was assessed. Mean screw length was 14.05 mm using Magerl's technique, 13.47 mm using Anderson's, 12.8 mm using An's and 17.03 mm using the new technique. Data analysis showed significantly longer lateral mass screw length using the new technique (p value < 0.00001). Nerve potential injury occurred 37 times using Magerl's technique, 28 using Anderson's, 13 using An's and twice using the new technique. Vertebral artery potential injury occurred once using Magerl's technique, 8 times using Anderson's and none using either An's or the new proposed technique. The risk of neurovascular complication was significantly lower using the new technique (p value < 0.01). The new proposed technique allows for longer screws, maximizing purchase and stability, while lowering the complication rate.
Effect of screw torque level on cortical bone pullout strength.
Cleek, Tammy M; Reynolds, Karen J; Hearn, Trevor C
2007-02-01
The objectives of this study were 2-fold: (1) to perform detailed analysis of cortical screw tightening stiffness during automated insertion, and (2) to determine the effect of 3 torque levels on the holding strength of the bone surrounding the screw threads as assessed by screw pullout. Ten pairs of ovine tibiae were used with 3 test sites spaced 20 mm apart centered along the shaft. One side of each pair was used for measuring ultimate failure torque (Tmax). These Tmax and bone-density values were used to predict Tmax at contralateral tibia sites. Screws were inserted and tightened to 50%, 70%, and 90% of predicted Tmax at the contralateral sites to encompass the average clinical level of torque (86% Tmax). Pullout tests were performed and maximum force values were normalized by cortical thickness. Torque to failure tests indicated tightening to 86% Tmax occurs after yield and leads to an average 51% loss in stiffness. Normalized pullout strength for screws tightened to 50% Tmax, 70% Tmax, and 90% Tmax were 2525 +/- 244, 2707 +/- 280, and 2344 +/- 346 N, respectively, with a significant difference between 70% Tmax and 90% Tmax groups (P < 0.05). Within the limitations of our study involving the testing of 1 type of screw purchase in ovine tibiae, results demonstrate that clinical levels of lag screw tightening (86% Tmax) are past the yield point of bone. Tightening to these high torque levels can cause damage leading to compromised holding strength. Further research is still required to establish the appropriate level of torque required for achieving optimal fracture fixation and healing.
Wang, Jun-Qiang; Wang, Yu; Feng, Yun; Han, Wei; Su, Yong-Gang; Liu, Wen-Yong; Zhang, Wei-Jun; Wu, Xin-Bao; Wang, Man-Yi; Fan, Yu-Bo
2017-11-05
Sacroiliac (SI) screw fixation is a demanding technique, with a high rate of screw malposition due to the complex pelvic anatomy. TiRobot™ is an orthopedic surgery robot which can be used for SI screw fixation. This study aimed to evaluate the accuracy of robot-assisted placement of SI screws compared with a freehand technique. Thirty patients requiring posterior pelvic ring stabilization were randomized to receive freehand or robot-assisted SI screw fixation, between January 2016 and June 2016 at Beijing Jishuitan Hospital. Forty-five screws were placed at levels S1 and S2. In both methods, the primary end point screw position was assessed and classified using postoperative computed tomography. Fisher's exact probability test was used to analyze the screws' positions. Secondary end points, such as duration of trajectory planning, surgical time after reduction of the pelvis, insertion time for guide wire, number of guide wire attempts, and radiation exposure without pelvic reduction, were also assessed. Twenty-three screws were placed in the robot-assisted group and 22 screws in the freehand group; no postoperative complications or revisions were reported. The excellent and good rate of screw placement was 100% in the robot-assisted group and 95% in the freehand group. The P value (0.009) showed the same superiority in screw distribution. The fluoroscopy time after pelvic reduction in the robot-assisted group was significantly shorter than that in the freehand group (median [Q1, Q3]: 6.0 [6.0, 9.0] s vs. median [Q1, Q3]: 36.0 [21.5, 48.0] s; χ2 = 13.590, respectively, P < 0.001); no difference in operation time after reduction of the pelvis was noted (χ2 = 1.990, P = 0.158). Time for guide wire insertion was significantly shorter for the robot-assisted group than that for the freehand group (median [Q1, Q3]: 2.0 [2.0, 2.7] min vs. median [Q1, Q3]: 19.0 [15.5, 45.0] min; χ2 = 20.952, respectively, P < 0.001). The number of guide wire attempts in the robot-assisted group was significantly less than that in the freehand group (median [Q1, Q3]: 1.0 [1.0,1.0] time vs. median [Q1, Q3]: 7.0 [1.0, 9.0] times; χ2 = 15.771, respectively, P < 0.001). The instrumented SI levels did not differ between both groups (from S1 to S2, χ2 = 4.760, P = 0.093). Accuracy of the robot-assisted technique was superior to that of the freehand technique. Robot-assisted navigation is safe for unstable posterior pelvic ring stabilization, especially in S1, but also in S2. SI screw insertion with robot-assisted navigation is clinically feasible.
Derton, Nicola; Perini, Alessandro; Mutinelli, Sabrina; Gracco, Antonio
2012-01-01
To detail two different clinical protocols and case studies using mini-implant anchorage developed to respond to certain clinical conditions. Two clinical protocols are described to upright mesially tilted mandibular molars. In the first protocol, a single mini-implant is inserted distally to the molar to be uprighted, and an elastic traction chain is applied to the tooth. In the second clinical approach, two mini-implants are inserted mesially. A screw-suspended TMA sectional archwire is applied (Derton-Perini technique). Two cases, descriptive of the two different treatment protocols, are described. In the first case, the mandibular right second premolar was missing and the adjacent first molar needed to be uprighted. A single screw was inserted distally to the first molar, and an elastic chain was applied. In the second case, the mandibular left second molar was missing and the third molar needed to be uprighted. Two mini-implants were inserted mesially and a fully screw-supported sectional archwire was used to upright and bodily mesialize the third molar. Both uprighting approaches uprighted the molar axis without loss of anchorage. The two approaches to mandibular molar uprighting, developed as rational responses to different clinical cases, were both found to be effective.
Preload evaluation of different screws in external hexagon joint.
Assunção, Wirley Gonçalves; Delben, Juliana Aparecida; Tabata, Lucas Fernando; Barão, Valentim Adelino Ricardo; Gomes, Erica Alves; Garcia, Idelmo Rangel
2012-02-01
This study compared the maintenance of tightening torque in different retention screw types of implant-supported crowns. Twelve metallic crowns in UCLA abutments cast with cobalt-chromium alloy were attached to external hexagon osseointegrated implants with different retention screws: group A: titanium alloy retention screw; group B: gold alloy retention screw with gold coating; group C: titanium alloy retention screw with diamond-like carbon film coating; and group D: titanium alloy retention screw with aluminum titanium nitride coating. Three detorque measurements were obtained after torque insertion in each replica. Data were evaluated by analysis of variance (ANOVA), Tukey's test (P < 0.05), and t test (P < 0.05). Detorque value reduced in all groups (P < 0.05). Group A retained the highest percentage of torque in comparison with the other groups (P < 0.05). Groups B and D retained the lowest percentage of torque without statistically significant difference between them (P > 0.05). All screw types exhibited reduction in the detorque value. The titanium screw maintained the highest percentage of torque whereas the gold-coated screw and the titanium screw with aluminum titanium nitride coating retained the lowest percentage.
Vizcaíno Revés, Núria; Stahl, Cristina; Stoffel, Michael; Bali, Monty; Forterre, Franck
2013-10-01
To describe the most reliable insertion angle, corridor length and width to place a ventral transarticular atlantoaxial screw in miniature breed dogs. Retrospective CT imaging study. Cervical CT scans of toy breed dogs (n = 21). Dogs were divided into 2 groups--group 1: no atlantoaxial abnormalities; group 2: atlantoaxial instability. Insertion angle in medial to lateral and ventral to dorsal direction was measured in group 1. Corridor length and width were measured in groups 1 and 2. Corridor width was measured at 3 points of the corridor. Each variable was measured 3 times and the mean used for statistical analysis. Mean ± SD optimal transarticular atlantoaxial insertion angle was determined to be 40 ± 1° in medial to lateral direction from the midline and 20 ± 1° in ventral to dorsal direction from the floor of the neural canal of C2. Mean corridor length was 7 mm (range, 4.5-8.0 mm). Significant correlation was found between corridor length, body weight, and age. Mean bone corridor width ranged from 3 to 5 mm. Statistically significant differences were found between individuals, gender and measured side. Optimal placement of a transarticular screw for atlantoaxial joint stabilization is very demanding because the screw path corridor is very narrow. © Copyright 2013 by The American College of Veterinary Surgeons.
The biomechanical consequences of rod reduction on pedicle screws: should it be avoided?
Paik, Haines; Kang, Daniel G; Lehman, Ronald A; Gaume, Rachel E; Ambati, Divya V; Dmitriev, Anton E
2013-11-01
Rod contouring is frequently required to allow for appropriate alignment of pedicle screw-rod constructs. When residual mismatch is still present, a rod persuasion device is often used to achieve further rod reduction. Despite its popularity and widespread use, the biomechanical consequences of this technique have not been evaluated. To evaluate the biomechanical fixation strength of pedicle screws after attempted reduction of a rod-pedicle screw mismatch using a rod persuasion device. Fifteen 3-level, human cadaveric thoracic specimens were prepared and scanned for bone mineral density. Osteoporotic (n=6) and normal (n=9) specimens were instrumented with 5.0-mm-diameter pedicle screws; for each pair of comparison level tested, the bilateral screws were equal in length, and the screw length was determined by the thoracic level and size of the vertebra (35 to 45 mm). Titanium 5.5-mm rods were contoured and secured to the pedicle screws at the proximal and distal levels. For the middle segment, the rod on the right side was intentionally contoured to create a 5-mm residual gap between the inner bushing of the pedicle screw and the rod. A rod persuasion device was then used to engage the setscrew. The left side served as a control with perfect screw/rod alignment. After 30 minutes, constructs were disassembled and vertebrae individually potted. The implants were pulled in-line with the screw axis with peak pullout strength (POS) measured in Newton (N). For the proximal and distal segments, pedicle screws on the right side were taken out and reinserted through the same trajectory to simulate screw depth adjustment as an alternative to rod reduction. Pedicle screws reduced to the rod generated a 48% lower mean POS (495±379 N) relative to the controls (954±237 N) (p<.05) and significantly decreased work energy to failure (p<.05). Nearly half (n=7) of the pedicle screws had failed during the reduction attempt with visible pullout of the screw. After reduction, decreased POS was observed in both normal (p<.05) and osteoporotic (p<.05) bone. Back out and reinsertion of the screw resulted in no significant difference in mean POS, stiffness, and work energy to failure (p>.05). In circumstances where a rod is not fully seated within the pedicle screw, the use of a rod persuasion device decreases the overall POS and work energy to failure of the screw or results in outright failure. Further rod contouring or correction of pedicle screw depth of insertion may be warranted to allow for appropriate alignment of the longitudinal rods. Published by Elsevier Inc.
Neurovascular risks of sacral screws with bicortical purchase: an anatomical study.
Ergur, Ipek; Akcali, Omer; Kiray, Amac; Kosay, Can; Tayefi, Hamid
2007-09-01
The aim of this cadaver study is to define the anatomic structures on anterior sacrum, which are under the risk of injury during bicortical screw application to the S1 and S2 pedicles. Thirty formaldehyde-preserved human male cadavers were studied. Posterior midline incision was performed, and soft tissues and muscles were dissected from the posterior part of the lumbosacral region. A 6 mm pedicle screw was inserted between the superior facet of S1 and the S1 foramen. The entry point of the S2 pedicle screw was located between S1 and S2 foramina. S1 and S2 screws were placed on both right and the left sides of all cadavers. Then, all cadavers were turned into supine position. All abdominal and pelvic organs were moved away and carefully observed for any injury. The tips of the sacral screws were marked and the relations with the anatomic structures were defined. The position of the sacral screws relative to the middle and lateral sacral arteries and veins, and the sacral sympathetic trunk were measured. There was no injury to the visceral organs. In four cases, S1 screw tip was in direct contact with middle sacral artery. In two cases, S1 screw tip was in direct contact with middle sacral vein. It was observed that the S1 screw tips were in close proximity to sacral sympathetic trunk on both right and the left sides. The tip of the S2 screw was in contact with middle sacral artery on the left side only in one case. It is found that the tip of the S2 screw was closely located with the middle sacral vein in two cases. The tip of the S2 pedicle screw was in contact with the sacral sympathetic trunk in eight cases on the right side and seven cases on the left side. Lateral sacral vein was also observed to be disturbed by the S1 and S2 screws. As a conclusion, anterior cortical penetration during sacral screw insertion carries a risk of neurovascular injury. The risk of sacral sympathetic trunk and minor vascular structures together with the major neurovascular structures and viscera should be kept in mind.
Assenza, Bartolomeo; Artese, Luciano; Scarano, Antonio; Rubini, Corrado; Perrotti, Vittoria; Piattelli, Maurizio; Thams, Ulf; San Roman, Fidel; Piccirilli, Marcello; Piattelli, Adriano
2006-01-01
Crestal bone loss has been reported to occur around dental implants. Even if the causes of this bone loss are not completely understood, the presence of a microgap between implant and abutment with a possible contamination of the internal portion of the implants has been suggested. The aim of this study was to see if there were differences in the vascular endothelial growth factor (VEGF) expression, microvessel density (MVD), proliferative activity (MIB-1), and inflammatory infiltrate in the soft tissues around implants with screwed and cemented abutments. Sandblasted and acid-etched implants were inserted in the mandibles of 6 Beagle dogs. Ten 3.5- x 10-mm root-form implants were inserted in each mandible. A total of 60 implants (30 with screwed abutments and 30 with cemented abutments) were used. After 12 months, all the bridges were removed and all abutments were checked for mobility. A total of 8 loosened screws (27%) were found in the screwed abutments, whereas no loosening was observed in cemented abutments. A gingival biopsy was performed in 8 implants with cemented abutments, in 8 implants with screwed abutments, and in 8 implants with unscrewed abutments. No statistically significant differences were found in the inflammatory infiltrate and in the MIB-1 among the different groups. No statistically significant difference was found in the MVD between screwed and cemented abutments (P = .2111), whereas there was a statistically significant difference in MVD between screwed and unscrewed abutments (P = .0277) and between cemented and unscrewed abutments (P = .0431). A low intensity of VEGF was prevalent in screwed and in cemented abutments, whereas a high intensity of VEGF was prevalent in unscrewed abutments. These facts could be explained by the effects induced, in the abutments that underwent a screw loosening, by the presence of bacteria inside the hollow portion of the implants or by enhanced reparative processes.
Improving socket design to prevent difficult removal of locking screws.
Lin, Chen-Huei; Chao, Ching-Kong; Tang, Yi-Hsuan; Lin, Jinn
2018-03-01
Reports of driver slippage leading to difficult locking screw removals have increased since the adoption of titanium for screw fabrication; the use of titanium is known to cause cross-threading and cold welding. Such problems occur most frequently in screws with hex sockets, and may cause serious surgical complications. This study aimed to improve screw socket design to prevent slippage and difficult screw removal. Three types of small sockets (hex, Torx, and cruciate) and six types of large sockets (hex, Torx, Octatorx, Torx+ I, Torx+ II, and Torx+ III) with screw head diameters of 5.5 mm were manufactured from titanium, and corresponding screwdrivers were manufactured from stainless steel. The screw heads and drivers were mounted on a material testing machine, and torsional tests were conducted to simulate screw usage in clinical settings at two insertion depths: 1 and 2 mm. Ten specimens were tested from each design, and the maximum torque and failure patterns were recorded and compared. For small sockets in 2 mm conditions, the hex with the largest driver core had the highest torque, followed by Torx and cruciate. In these tests, the drivers were twisted off in all specimens. However, under the 1 mm condition, the hex slipped and the torque decreased markedly. Overall, torque was higher for large sockets than for small sockets. The Octatorx, with a large core and simultaneous deformation of the driver and socket lobes, had the highest torque at almost twice that of the small hex. The hex had the lowest torque, a result of slippage in both the 1 and 2 mm conditions. Torx plus designs, with more designed degrees of freedom, were able to maintain a higher driving angle and larger core for higher torque. The hex design showed slipping tendencies with a marked decrease in torque, especially under conditions with inadequate driver engagement. Large sockets allowed for substantial increases in torque. The Torx, Octatorx, and Torx plus designs displayed better performance than the hexes. Improvements to the socket design could effectively prevent slippage and solve difficult screw removal problems. Copyright © 2018. Published by Elsevier Ltd.
Use of a life-size three-dimensional-printed spine model for pedicle screw instrumentation training.
Park, Hyun Jin; Wang, Chenyu; Choi, Kyung Ho; Kim, Hyong Nyun
2018-04-16
Training beginners of the pedicle screw instrumentation technique in the operating room is limited because of issues related to patient safety and surgical efficiency. Three-dimensional (3D) printing enables training or simulation surgery on a real-size replica of deformed spine, which is difficult to perform in the usual cadaver or surrogate plastic models. The purpose of this study was to evaluate the educational effect of using a real-size 3D-printed spine model for training beginners of the free-hand pedicle screw instrumentation technique. We asked whether the use of a 3D spine model can improve (1) screw instrumentation accuracy and (2) length of procedure. Twenty life-size 3D-printed lumbar spine models were made from 10 volunteers (two models for each volunteer). Two novice surgeons who had no experience of free-hand pedicle screw instrumentation technique were instructed by an experienced surgeon, and each surgeon inserted 10 pedicle screws for each lumbar spine model. Computed tomography scans of the spine models were obtained to evaluate screw instrumentation accuracy. The length of time in completing the procedure was recorded. The results of the latter 10 spine models were compared with those of the former 10 models to evaluate learning effect. A total of 37/200 screws (18.5%) perforated the pedicle cortex with a mean of 1.7 mm (range, 1.2-3.3 mm). However, the latter half of the models had significantly less violation than the former half (10/100 vs. 27/100, p < 0.001). The mean length of time to complete 10 pedicle screw instrumentations in a spine model was 42.8 ± 5.3 min for the former 10 spine models and 35.6 ± 2.9 min for the latter 10 spine models. The latter 10 spine models had significantly less time than the former 10 models (p < 0.001). A life-size 3D-printed spine model can be an excellent tool for training beginners of the free-hand pedicle screw instrumentation.
Wang, Xiaoyu; Aubin, Carl-Eric; Coleman, John; Rawlinson, Jeremy
2017-05-01
Computer simulations to compare the correction capabilities of different pedicle screws in adolescent idiopathic scoliosis (AIS) instrumentations. To compare the correction and resulting bone-screw forces associated with different pedicle screws in scoliosis instrumentations. Pedicle screw fixation is widely used in surgical instrumentation for spinal deformity treatment. Screw design, correction philosophies, and surgical techniques are constantly evolving to achieve better control of the vertebrae and correction of the spinal deformity. Yet, there remains a lack of biomechanical studies that quantify the effects and advantages of different screw designs in terms of correction kinematics. The correction capabilities of fixed-angle, multiaxial, uniaxial, and saddle axial screws were kinematically analyzed, simulated, and compared. These simulations were based on the screw patterns and correction techniques proposed by 2 experienced surgeons for 2 AIS cases. Additional instrumentations were assessed to compare the correction and resulting bone-screw forces associated with each type of screw. The fixed-angle, uniaxial and saddle axial screws had similar kinematic behavior and performed better than multiaxial screws in the coronal and transverse planes (8% and 30% greater simulated corrections, respectively). Uniaxial and multiaxial screws were less effective than fixed-angle and saddle axial screws in transmitting compression/distraction to the anterior spine because of their sagittal plane mobility between the screw head and shank. Only the saddle axial screws allow vertebra angle in the sagittal plane to be independently adjusted. Pedicle screws of different designs performed differently for deformity corrections or for compensating screw placement variations in different anatomic planes. For a given AIS case, screw types should be determined based on the particular instrumentation objectives, the deformity's stiffness and characteristics so as to make the best of the screw designs.
Park, Jin Hoon; Kang, Dong-Ho; Lee, Moon Kyu; Yoo, Byoungwoo; Jung, Sang Ku; Hwang, Soo-Hyun; Kim, Jeoung Hee; Oh, Sunkyu; Lee, Eun Jung; Jeon, Sang Ryong; Roh, Sung Woo; Rhim, Seung Chul
2016-05-01
A retrospective cohort study. The aim of this study was to compare the anterior odontoid screw fixation (AOSF) with a guide tube or with a straight probe. AOSF associates with several complications, including malpositioning, fixation loss, and screw breakage. Screw pull-out from the C2 body is the most common complication. All consecutive patients with type II or rostral shallow type III odontoid fractures who underwent AOSFs during the study period were enrolled retrospectively. The guide-tube AOSF method followed the standard published method except C3 body and C2-3 disc annulus rimming was omitted to prevent disc injury; instead, the guide tube was anchored at the anterior inferior C2 vertebra corner. After 2 screw pull-outs, the guide-tube cohort was analyzed to identify the cause of instrument failure. Thereafter, the straight-probe method was developed. A guide tube was not used. A small pilot hole was made on the most anterior side of the inferior endplate, followed by insertion of a 2.5 mm straight probe through the C2 body. Non-union and instrument failure rates and screw-direction angles of the guide-tube and straight-probe groups were recorded. The guide-tube group (n = 13) had 2 screw pull-outs and 1 non-union. The straight-probe group (n = 8) had no complications and significantly larger screw-direction angles than the guide-tube group (60.5 ± 4.63 vs. 54.8 ± 3.82 degrees; P = 0.047). Straight-probe AOSF yielded larger direction angles without injuring bone and disc. Complications were absent. The procedure was easier than guide-tube AOSF and assured sufficient engagement, even in horizontal fracture orientation cases. 3.
Elgafy, Hossein; Miller, Jacob D; Benedict, Gregory M; Seal, Ryan J; Liu, Jiayong
2013-07-01
There have been many reports outlining differing methods for managing a broken S1 screw. To the authors' best knowledge, the technique used in the present study has not been described previously. It involves insertion of a second pedicle screw without removing the broken screw shaft. Radiological study, literature review, and two case reports of the surgical technique. To report a proposed new surgical technique for management of broken S1 pedicle screws. Computed tomography (CT) scans of 50 patients with a total of 100 S1 pedicles were analyzed. There were 25 male and 25 female patients with an average age of 51 years ranging from 36 to 68 years. The cephalad-caudal length, medial-lateral width, and cross-sectional area of the S1 pedicle were measured and compared with the diameter of a pedicle screw to illustrate the possibility of inserting a second screw in S1 pedicle without removal of the broken screw shaft. Two case reports of the proposed technique are presented. The left and right S1 pedicle cross-sectional area in female measured 456.00 ± 4.00 and 457.00 ± 3.00 mm(2), respectively. The left and right S1 pedicle cross-section area in male measured 638.00 ± 2.00 and 639.00 ± 1.00 mm(2), respectively. There were statistically significant differences when comparing male and female S1 pedicle length, width, and cross-sectional area (p<.05). At 2-year follow-up, the two case reports of the proposed technique showed resolution of low back pain and radicular pain. Plain radiograph and CT scan showed posterolateral fusion mass and hardware in good position with no evidence of screw loosening. The S1 pedicle dimensions measured on CT scan reviewed in the present study showed that it may be anatomically feasible to place a second screw through the S1 pedicle without the removal of the broken screw shaft. This treatment method will reduce the complications associated with other described revision strategies for broken S1 screws. Published by Elsevier Inc.
Fully customized placement of orthodontic miniplates: a novel clinical technique
2014-01-01
Introduction The initial stability and survival rate of orthodontic mini-implants are highly dependent on the amount of cortical bone at their insertion site. In areas with limited bone availability, mini-plates are preferred to provide effective skeletal anchorage. The purpose of this paper was to present a new clinical technique for the insertion of mini-plates. Methods In order to apply this new technique, a cone-beam image of the insertion area is required. A software (Galaxy Sirona, Bensheim, Germany) is used to construct a three-dimensional image of the scanned area and to virtually determine the exact location of the mini-plate as well as the position of the fixation screws. A stereolithographic model (STL) is then created by means of a three-dimensional scanner. Prior to its surgical insertion, the bone plate is adapted to the stereo-lithographic model. Finally, a custom transfer jig is fabricated in order to assist with accurate placement of the mini-plate intra-operatively. Results The presented technique minimizes intra-operative decision making, because the final position of the bone plate is determined pre-surgically. This significantly reduces the duration of the surgical procedure and improves its outcome. Conclusions A novel method for surgical placement of orthodontic mini-plates is presented. The technique facilitates accurate adaptation of mini-plates and insertion of retaining surgical screws; thereby enabling clinicians to more confidently increase the use of bone plates, especially in anatomical areas where the success of non-osseointegrated mini-screws is less favorable. PMID:24886597
Wang, Jun-Qiang; Wang, Yu; Feng, Yun; Han, Wei; Su, Yong-Gang; Liu, Wen-Yong; Zhang, Wei-Jun; Wu, Xin-Bao; Wang, Man-Yi; Fan, Yu-Bo
2017-01-01
Background: Sacroiliac (SI) screw fixation is a demanding technique, with a high rate of screw malposition due to the complex pelvic anatomy. TiRobot™ is an orthopedic surgery robot which can be used for SI screw fixation. This study aimed to evaluate the accuracy of robot-assisted placement of SI screws compared with a freehand technique. Methods: Thirty patients requiring posterior pelvic ring stabilization were randomized to receive freehand or robot-assisted SI screw fixation, between January 2016 and June 2016 at Beijing Jishuitan Hospital. Forty-five screws were placed at levels S1 and S2. In both methods, the primary end point screw position was assessed and classified using postoperative computed tomography. Fisher's exact probability test was used to analyze the screws’ positions. Secondary end points, such as duration of trajectory planning, surgical time after reduction of the pelvis, insertion time for guide wire, number of guide wire attempts, and radiation exposure without pelvic reduction, were also assessed. Results: Twenty-three screws were placed in the robot-assisted group and 22 screws in the freehand group; no postoperative complications or revisions were reported. The excellent and good rate of screw placement was 100% in the robot-assisted group and 95% in the freehand group. The P value (0.009) showed the same superiority in screw distribution. The fluoroscopy time after pelvic reduction in the robot-assisted group was significantly shorter than that in the freehand group (median [Q1, Q3]: 6.0 [6.0, 9.0] s vs. median [Q1, Q3]: 36.0 [21.5, 48.0] s; χ2 = 13.590, respectively, P < 0.001); no difference in operation time after reduction of the pelvis was noted (χ2 = 1.990, P = 0.158). Time for guide wire insertion was significantly shorter for the robot-assisted group than that for the freehand group (median [Q1, Q3]: 2.0 [2.0, 2.7] min vs. median [Q1, Q3]: 19.0 [15.5, 45.0] min; χ2 = 20.952, respectively, P < 0.001). The number of guide wire attempts in the robot-assisted group was significantly less than that in the freehand group (median [Q1, Q3]: 1.0 [1.0,1.0] time vs. median [Q1, Q3]: 7.0 [1.0, 9.0] times; χ2 = 15.771, respectively, P < 0.001). The instrumented SI levels did not differ between both groups (from S1 to S2, χ2 = 4.760, P = 0.093). Conclusions: Accuracy of the robot-assisted technique was superior to that of the freehand technique. Robot-assisted navigation is safe for unstable posterior pelvic ring stabilization, especially in S1, but also in S2. SI screw insertion with robot-assisted navigation is clinically feasible. PMID:29067950
Nagata, Kosei; Baba, Satoshi; Chikuda, Hirotaka; Takeshita, Katsushi
2013-01-01
Rigid screw fixation of C2 including transarticular screw and pedicle screw contain the risk of vertebral artery (VA) injury. On the other hand, translaminar screws are considered to be safer for patients with anomalous VA. But C2 translaminar screw placement was limited in patients who have thin laminas and there is marked variation in C2 laminar thickness. Appropriate C2 fixation method for a patient who has thin laminas and high-riding VA together was controversial. Here, we present a case of an elderly Asian woman who had thin laminas and high-riding VA together with progressive myelopathy to report a first case of C2 spinous process screw insertion. Although the stability and safety of C2 spinous process screw was reported in cadaver series, there was no clinical report to our knowledge. Spinous process screw can be an option of C2 fixation for patients with high-riding VA and severe degenerated cervical spines including thin C2 laminas. PMID:23814004
Liu, Z; Qiu, Y; Li, Y; Zhao, Z H; Wang, B; Zhu, F; Yu, Y; Sun, X; Zhu, Z Z
2017-03-01
Objective: To investigate the clinical outcomes and the accuracy of O-arm-navigation system assisted pedicle screw insertion in dystrophic scoliosis secondary to neurofibromatosis type Ⅰ(NF-1). Methods: A retrospective study was conducted in 41 patients with dystrophic NF-1-associated thoracic scoliosis who were surgically treated at Department of Orthopaedics, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School between June 2012 and October 2014 with more than 18 months follow-up. The patients were then divided into two groups: 18 patients were under the assistance of O-arm-navigation-based pedicle screw insertion (O-arm group) and the remaining 23 patients' pedicle screws insertion were conducted by free-hand (free-hand group). The X-ray and CT were analyzed to investigate the correction rate and safety of pedicle insertion. t -test was used to analyze measurement data and χ(2) test was used to analyze accuracy of screw insertion between the two groups. Results: The mean coronal Cobb angle was 63.2°±8.7° in the O-arm group and 66.9°±7.4° in the free-hand group ( P >0.05), which was then corrected into 23.1°±6.8° and 30.2°±7.6°( t =2.231, P =0.031) after surgery respectively.Operation time was (265.0±70.3)minutes and estimated blood loss was (1 024±465)ml in the O-arm group. Operation time and estimated blood loss was (243.0±49.6)minutes and (1 228±521)ml respectively in the free-hand group, which had no significant difference between the two groups. However, the implant density was higher in the O-arm group than that in the free-hand group ((64.1±10.8)% vs .(44.3±15.3)%)( t =4.652, P =0.000). The O-arm group comprised 122 screws, of which 72.9% were excellent, 22.1% were good and 4.9% were bad. The free-hand group comprised 136 screws and 48.5% of them were excellent, 33.8% were good and 17.6% were bad.Accuracy of pedicle screw insertion was higher in the O-arm group than that in the free-hand group(χ(2)=10.140, P <0.05). By June 2016, the average follow-up period was (20.9±3.4)months(ranging from18 to 26 months), including (20.3±3.1)months in the O-arm group and (21.4±5.5)months in the free-hand group. At last follow-up point, coronal correction loss was significantly higher in the free-hand group than that in the O-arm group (6.3°±2.6° vs . 4.4°±1.6°)( t =2.719, P =0.009). Conclusions: Compared with free-hand technique, O-arm-navigation technique could enhance accuracy of pedicle insertion and implant density of dystrophic region in dystrophic NF-1-associated scoliosis patients, which result in a better correction rate and less correction loss. Besides, the advantage of O-arm-navigation do not increase operative time and estimate blood loss.
Schödel, Petra; Proescholdt, Martin; Brawanski, Alexander; Bele, Sylvia; Schebesch, Karl-Michael
2012-04-01
Burr-hole trephine and insertion of an external ventricular drainage (EVD) is a common procedure in neurosurgical practice. In critically ill patients, the transport to the operating room, OR represents a major risk. Thus, the burr-hole trephine and implantation of an EVD is frequently performed on the Intensive Care Unit (ICU). Since 2004, we have applied two different procedures: the conventional method with a mechanical compressed air or an electric drill, and an alternative method with a manual twist drill, including fixation of the EVD in a skull screw (Bolt Kit, Raumedic AG, Germany). This study was designed to evaluate the outcome of both surgical procedures. In this retrospective analysis we included 166 consecutive patients with acute hydrocephalus due to intracranial hemorrhage that had been operated at our neurosurgical ICU in a six years interval. We reviewed the charts for gender and age, kind of surgical procedure, cerebrospinal fluid (CSF)-infections, duration of drainage, attempts of insertions, wound infections, misplacement rate, post-surgical hemorrhages, revisions, comorbidities and shunt-dependency. In 122 patients we applied the Bolt Kit System, in 44 patients the conventional method was performed. We found a significantly lower rate of CSF-infections and significantly fewer attempts of insertions in the Bolt Kit group (p = 0.002 and p = 0.001, respectively). The rate of wound infections, misplacement, revisions, shunt-dependency and the post-surgical hemorrhages did not differ significantly. Our data indicate that the manual drill and the skull screw are safe and feasible tools in the treatment of acute hydrocephalus. Presumably, the direct skin contact is causative for the higher rate of CSF-infections when the conventional method is performed. The skull screw guides the EVD into the ventricle without skin contact. The lower number of insertions needed may be due to the fact that the skull screw allows just one trajectory for the insertion of the EVD.
Kawasaki, Yoshiteru; Hirano, Tetsuya; Miyatake, Katsutoshi; Fujii, Koji; Takeda, Yoshitsugu
2014-07-01
Coracoid base fracture accompanied by acromioclavicular joint dislocation with intact coracoclavicular ligaments is a rare injury. Generally, an open reduction with screw fixation is the first treatment choice, as it protects the important structures around the coracoid process. This report presents a new technique of screw fixation for coracoid base fracture and provides anatomic information on cross-sectional size of the coracoid base obtained by computed tomography (CT). An axial image of the coracoid base was visualized over the neck of the scapula, and a guidewire was inserted into this circle under fluoroscopic guidance. The wire was inserted easily into the neck of scapula across the coracoid base fracture with imaging in only 1 plane. In addition, 25 measurements of the coracoid base were made in 25 subjects on axial CT images. Average length of the long and short axes at the thinnest part of the coracoid base was 13.9 ± 2.0 mm (range 10.6-17.0) and 10.5 ± 2.2 mm (6.6-15.1), respectively. This new screw fixation technique and measurement data on the coracoid base may be beneficial for safety screw fixation of coracoid base fracture.
Devito, Dennis P; Kaplan, Leon; Dietl, Rupert; Pfeiffer, Michael; Horne, Dale; Silberstein, Boris; Hardenbrook, Mitchell; Kiriyanthan, George; Barzilay, Yair; Bruskin, Alexander; Sackerer, Dieter; Alexandrovsky, Vitali; Stüer, Carsten; Burger, Ralf; Maeurer, Johannes; Donald, Gordon D; Gordon, Donald G; Schoenmayr, Robert; Friedlander, Alon; Knoller, Nachshon; Schmieder, Kirsten; Pechlivanis, Ioannis; Kim, In-Se; Meyer, Bernhard; Shoham, Moshe
2010-11-15
Retrospective, multicenter study of robotically-guided spinal implant insertions. Clinical acceptance of the implants was assessed by intraoperative radiograph, and when available, postoperative computed tomography (CT) scans were used to determine placement accuracy. To verify the clinical acceptance and accuracy of robotically-guided spinal implants and compare to those of unguided free-hand procedures. SpineAssist surgical robot has been used to guide implants and guide-wires to predefined locations in the spine. SpineAssist which, to the best of the authors' knowledge, is currently the sole robot providing surgical assistance in positioning tools in the spine, guided over 840 cases in 14 hospitals, between June 2005 and June 2009. Clinical acceptance of 3271 pedicle screws and guide-wires inserted in 635 reported cases was assessed by intraoperative fluoroscopy, where placement accuracy of 646 pedicle screws inserted in 139 patients was measured using postoperative CT scans. Screw placements were found to be clinically acceptable in 98% of the cases when intraoperatively assessed by fluoroscopic images. Measurements derived from postoperative CT scans demonstrated that 98.3% of the screws fell within the safe zone, where 89.3% were completely within the pedicle and 9% breached the pedicle by up to 2 mm. The remaining 1.4% of the screws breached between 2 and 4 mm, while only 2 screws (0.3%) deviated by more than 4 mm from the pedicle wall. Neurologic deficits were observed in 4 cases yet, following revisions, no permanent nerve damage was encountered, in contrast to the 0.6% to 5% of neurologic damage reported in the literature. SpineAssist offers enhanced performance in spinal surgery when compared to free-hand surgeries, by increasing placement accuracy and reducing neurologic risks. In addition, 49% of the cases reported herein used a percutaneous approach, highlighting the contribution of SpineAssist in procedures without anatomic landmarks.
Fastener Retention Requirements and Practices in Spaceflight Hardware
NASA Technical Reports Server (NTRS)
Dasgupta, Rajib
2004-01-01
This presentation reviews the requirements for safety critical fasteners in spaceflight hardware. Included in the presentation are design guidelines and information for Locking Helicoils, key locked inserts and thinwalled inserts, self locking screws and bolts. locknuts, and a locking adhesives, Loctite and Vibratite.
Low Cost Electrode Assembly for EEG Recordings in Mice
Vogler, Emily C.; Flynn, Daniel T.; Busciglio, Federico; Bohannan, Ryan C.; Tran, Alison; Mahavongtrakul, Matthew; Busciglio, Jorge A.
2017-01-01
Wireless electroencephalography (EEG) of small animal subjects typically utilizes miniaturized EEG devices which require a robust recording and electrode assembly that remains in place while also being well-tolerated by the animal so as not to impair the ability of the animal to perform normal living activities or experimental tasks. We developed simple and fast electrode assembly and method of electrode implantation using electrode wires and wire-wrap technology that provides both higher survival and success rates in obtaining recordings from the electrodes than methods using screws as electrodes. The new wire method results in a 51% improvement in the number of electrodes that successfully record EEG signal. Also, the electrode assembly remains affixed and provides EEG signal for at least a month after implantation. Screws often serve as recording electrodes, which require either drilling holes into the skull to insert screws or affixing screws to the surface of the skull with adhesive. Drilling holes large enough to insert screws can be invasive and damaging to brain tissue, using adhesives may interfere with conductance and result in a poor signal, and soldering screws to wire leads results in fragile connections. The methods presented in this article provide a robust implant that is minimally invasive and has a significantly higher success rate of electrode implantation. In addition, the implant remains affixed and produces good recordings for over a month, while using economical, easily obtained materials and skills readily available in most animal research laboratories. PMID:29184480
Low Cost Electrode Assembly for EEG Recordings in Mice.
Vogler, Emily C; Flynn, Daniel T; Busciglio, Federico; Bohannan, Ryan C; Tran, Alison; Mahavongtrakul, Matthew; Busciglio, Jorge A
2017-01-01
Wireless electroencephalography (EEG) of small animal subjects typically utilizes miniaturized EEG devices which require a robust recording and electrode assembly that remains in place while also being well-tolerated by the animal so as not to impair the ability of the animal to perform normal living activities or experimental tasks. We developed simple and fast electrode assembly and method of electrode implantation using electrode wires and wire-wrap technology that provides both higher survival and success rates in obtaining recordings from the electrodes than methods using screws as electrodes. The new wire method results in a 51% improvement in the number of electrodes that successfully record EEG signal. Also, the electrode assembly remains affixed and provides EEG signal for at least a month after implantation. Screws often serve as recording electrodes, which require either drilling holes into the skull to insert screws or affixing screws to the surface of the skull with adhesive. Drilling holes large enough to insert screws can be invasive and damaging to brain tissue, using adhesives may interfere with conductance and result in a poor signal, and soldering screws to wire leads results in fragile connections. The methods presented in this article provide a robust implant that is minimally invasive and has a significantly higher success rate of electrode implantation. In addition, the implant remains affixed and produces good recordings for over a month, while using economical, easily obtained materials and skills readily available in most animal research laboratories.
Wu, Yang; Long, Xing; Deng, Mohong; Cai, Hengxing; Meng, Qinggong; Li, Bo
2015-04-01
To evaluate the effectiveness of the screw-based intermaxillary traction combined with occlusal splint in the treatment of pediatric mandibular condylar fracture. Between June 2005 and December 2013, 35 pediatric patients with 49 mandibular condylar fractures were treated, and the clinical data were retrospectively reviewed. There were 25 boys and 10 girls, aged 3-13 years (mean, 7.3 years). The injury causes included falling (18 cases), traffic accident (14 cases), and violence (3 cases). The time between injury and treatment was 2-30 days (mean, 6.8 days). Restricted mouth opening was observed, and the maximal mouth opening was (22.74 +/- 7.22) mm except 3 patients who were too young to measure. Condylar fractures were located at the left (12 cases), at the right (9 cases), at bilateral (14 cases) based on the sites; and fractures were classified as intracapsular (35 fractures), neck (10 fractures), and subcondylar (4 fractures) based on the fracture line. Four self-drilling titanium screws were inserted into the alveolar bone of both maxilla and mandible. After screw inserting, an occlusal splint with a fulcrum was used on the affected side and elastic band was put to perform anterior intermaxillary traction. After 1 month, the screws and splint were removed. Follow-up examinations were carried out on schedule. All the patients were followed up from 6 months to 8 years and 10 months (median, 71 months). No screw-related complication occurred in the others except one case of screw loosening. The postoperative maximal mouth opening was (38.82 +/- 2.02) nim. Mild joint noise was found in 4 cases and opening deviation occurred in 6 cases. Radiographic results demonstrated complete condyle remodeling was achieved in 24 cases (32 fractures), and moderate remodeling in 11 cases (17 fractures) at last follow-up. The screw-based intermaxillary traction combined with occlusal splint might be an effective method for pediatric mandibular condylar fracture. The screw-related complications may be avoided by careful preoperative investigations.
Keric, Naureen; Eum, David J; Afghanyar, Feroz; Rachwal-Czyzewicz, Izabela; Renovanz, Mirjam; Conrad, Jens; Wesp, Dominik M A; Kantelhardt, Sven R; Giese, Alf
2017-03-01
Robot-assisted percutaneous insertion of pedicle screws is a recent technique demonstrating high accuracy. The optimal treatment for spondylodiscitis is still a matter of debate. We performed a retrospective cohort study on surgical patients treated with pedicle screw/rod placement alone without the application of intervertebral cages. In this collective, we compare conventional open to a further minimalized percutaneous robot-assisted spinal instrumentation, avoiding a direct contact of implants and infectious focus. 90 records and CT scans of patients treated by dorsal transpedicular instrumentation of the infected segments with and without decompression and antibiotic therapy were analysed for clinical and radiological outcome parameters. 24 patients were treated by free-hand fluoroscopy-guided surgery (121 screws), and 66 patients were treated by percutaneous robot-assisted spinal instrumentation (341 screws). Accurate screw placement was confirmed in 90 % of robot-assisted and 73.5 % of free-hand placed screws. Implant revision due to misplacement was necessary in 4.95 % of the free-hand group compared to 0.58 % in the robot-assisted group. The average intraoperative X-ray exposure per case was 0.94 ± 1.04 min in the free-hand group vs. 0.4 ± 0.16 min in the percutaneous group (p = 0.000). Intraoperative adverse events were observed in 12.5 % of free-hand placed pedicle screws and 6.1 % of robot robot-assisted screws. The mean postoperative hospital stay in the free-hand group was 18.1 ± 12.9 days, and in percutaneous group, 13.8 ± 5.6 days (p = 0.012). This study demonstrates that the robot-guided insertion of pedicle screws is a safe and effective procedure in lumbar and thoracic spondylodiscitis with higher accuracy of implant placement, lower radiation dose, and decreased complication rates. Percutaneous spinal dorsal instrumentation seems to be sufficient to treat lumbar and thoracic spondylodiscitis.
Caron, M; Kron, E; Saltrick, K R
1999-04-01
The technical aspects of fusion of the rheumatoid ankle do not deviate from those in the post-traumatic or osteoarthritic ankle. Screw fixation can usually be achieved, and rarely is fixation failure a problem in rheumatoid ankle arthrodesis. If fixation is difficult because of deformity or bone quality, external fixation or locking intramedullary nails should be used. The placement of cannulated screws and adequacy of screw fixation has not been a problem (Fig. 13). Screw fixation provides compression and prevents rotation. The surgeon, however, needs to be assured that no screws invade the subtalar joint and that all threads are beyond the arthrodesis site. A washer may be necessary for further stability if this screw is not inserted at too great an angle. The authors have found that troughing out of the cortical surface of the tibia with a power bur aids in screw insertion. Not only does the trough act as a countersink, but it also provides a path for screw insertion and prevents palpable screw irritation. Malalignment is unforgiving. The foot must be placed neutral to dorsiflexion and plantarflexion. Equinus positioning places added stress on the tibia and a back-knee gait occurs. Approximately 5 degrees of valgus is recommended, and varus positioning is unforgiving. Internal and external rotation is determined by the position of the contralateral extremity. Nonunion does not seem to be a problem with rigid internal fixation to any greater degree in patients with RA. Despite this, patients may continue to have pain despite solid fusion, which can be caused by incomplete correction of deformity, painful internal fixation, or adjacent joint pathology. Additionally, patients may experience supramalleolar pain above the fusion site consistent with tibial stress fracture, which is more common if the subtalar or midtarsal joint is rigid or if the patient is obese. A rocker sole shoe with impact-absorbing soles used after brief periods of guarded mobilization in a removable walking cast alleviates this stress on the tibia. Neurovascular insult can be avoided with careful dissection direct to bone, incisions placed in nerve-free zones, and avoidance of plunging deep posteriorly-medially and anteriorly when dissecting and resecting surfaces. Arthrodesis of the tibiotalar joint in the patient with RA should be performed to relieve severe pain caused by advanced arthrosis. Achieving a solid arthrodesis does not seem to be a problem and provides the patient with pain relief; however, marked improvement in patient function and level of activity remains limited by the nature of RA and adjacent joint involvement.
Akhtar, Kashif; Sugand, Kapil; Sperrin, Matthew; Cobb, Justin; Standfield, Nigel; Gupte, Chinmay
2015-01-01
Virtual-reality (VR) simulation in orthopedic training is still in its infancy, and much of the work has been focused on arthroscopy. We evaluated the construct validity of a new VR trauma simulator for performing dynamic hip screw (DHS) fixation of a trochanteric femoral fracture. 30 volunteers were divided into 3 groups according to the number of postgraduate (PG) years and the amount of clinical experience: novice (1-4 PG years; less than 10 DHS procedures); intermediate (5-12 PG years; 10-100 procedures); expert (> 12 PG years; > 100 procedures). Each participant performed a DHS procedure and objective performance metrics were recorded. These data were analyzed with each performance metric taken as the dependent variable in 3 regression models. There were statistically significant differences in performance between groups for (1) number of attempts at guide-wire insertion, (2) total fluoroscopy time, (3) tip-apex distance, (4) probability of screw cutout, and (5) overall simulator score. The intermediate group performed the procedure most quickly, with the lowest fluoroscopy time, the lowest tip-apex distance, the lowest probability of cutout, and the highest simulator score, which correlated with their frequency of exposure to running the trauma lists for hip fracture surgery. This study demonstrates the construct validity of a haptic VR trauma simulator with surgeons undertaking the procedure most frequently performing best on the simulator. VR simulation may be a means of addressing restrictions on working hours and allows trainees to practice technical tasks without putting patients at risk. The VR DHS simulator evaluated in this study may provide valid assessment of technical skill.
Bernhardt, G; Awiszus, F; Meister, U; Heyde, C E; Böhm, H
2016-06-01
Transpedicular screw fixation of spinal segments has been described for a variety of surgical indications and is a key element in spinal surgery. The aim of transpedicular screw fixation is to achieve maximal stability. Screw malposition should be obviated to avoid neurological complications. There are published methods of applying evoked EMG to control screw position in relation to neural structures. These studies demonstrated that an intact bony pedicle wall acts as an electrical isolator between the screw and spinal nerve root. The aim of our study was to evaluate the impact of intraoperative pedicle screw monitoring on screw positioning. We enrolled 22 patients in this prospective randomised study, who underwent spinal instrumentation after being split into two equal groups. In the first group, dorsal instrumentation was supplemented with intraoperative nerve root monitoring using the INS-1-System (NuVasive, San Diego USA). In the second group, screws were inserted without additional pedicle monitoring. All patients underwent monosegmental instrumentation with "free hand implanted" pedicle screws. 44 screws were inserted in each group. The screw position was evaluated postoperatively using CT scans. The position of the screws in relation to the pedicle was measured in three different planes: sagittal, axial and coronal. The accuracy of the screw position was described using the Berlemann classification system. Screw position is classified in three groups: type 1 correct screw position, type 2 encroachment on the inner cortical wall, type 3 pedicle cortical perforation. Screw angulation and secondary operative criteria were also evaluated. The use of neuromonitoring did not influence the distance between the centre of the screws and the pedicle wall. Distances only depended on the implantation side (right and left) and the height of implantation (caudal or cranial screw). Because of the low number of cases, no conclusion could be reached about the influence of root monitoring on the correct positioning of the screws. There was at least a non-significant trend towards more frequent perforation of the pedicle in the monitor group. In the present study, we showed that root monitoring had a significant effect on the scattering of transversal angles. These were increased compared to the control group. Otherwise, the implantation angle was not shown to depend on the use of neuromonitoring. Neuromonitoring did not influence blood loss or operative time. The data did not permit any conclusion as to whether this technique can minimise the frequency of pedicle screw malposition. The four coronal plane distances did not depend on the use of neuromonitoring. The inclination angle was also unaffected by neuromonitoring. The only parameter for which we found any effect was the transverse angle. The mean values were similar in both groups, but the variances were not equal. The effect of monitoring on the only parameter which could not be evaluated by fluoroscopy is thus rather unfavourable. Georg Thieme Verlag KG Stuttgart · New York.
Chen, Zhong-hui; Chen, Xi; Zhu, Ze-zhang; Wang, Bin; Qian, Bang-ping; Zhu, Feng; Sun, Xu; Qiu, Yong
2015-07-01
Use of pedicle screws has been popularized in the treatment of pediatric spinal deformity. Despite many studies regarding the effect of pedicle screws on the immature spine, there is no study concerning the impact of addition of crosslink to pedicle-screw-based instrumentation on the development of the spinal canal in young children. This study aims to determine the influence of the screw-rod-crosslink complex on the development of the spinal canal. This study reviewed 34 patients with congenital scoliosis (14 boys and 20 girls) who were treated with posterior-only hemivertebrectomy and pedicle-screw-based short-segment instrumentation before the age of 5 years. The mean age at surgery in this cohort was 37 ± 11 months (range 21-57 months). They were followed up for at least 24 months. Of these patients, 10 underwent only pedicle screw instrumentation without crosslink, and 24 with additional crosslink placement. The vertebrae were divided into three regions as follows: (1) S-CL (screw-crosslink) region, in which the vertebrae were inserted with bilateral pedicle screws and two rods connected with the crosslink; (2) S (screw) region, in which the vertebrae were inserted with bilateral pedicle screws but without crosslink; (3) NS (no screws) region, which comprised vertebrae cephalad or caudal to the instrumented region. The area, anteroposterior and transverse diameters of the spinal canal were measured at all vertebrae on the postoperative and last follow-up computed tomography axial images. The instrumentation-related parameters were also measured, including the distance between the bilateral screws and the screw base angles. The changes in the above measurements were compared between each region to evaluate the instrumentation's effect on the spinal canal growth. The mean follow-up was 37 ± 13 months (range 24-68 months) and the mean age at the last follow-up was 74 ± 20 months (range 46-119 months). In each region, the spinal canal dimensions significantly increased during the follow-up period. There was no significant difference in the spinal canal growth rate between the S and NS regions or between the S-CL and NS regions. Besides, a comparison of the S-CL and S regions regarding the changes in the measurements of the instrumentation construct revealed no significant differences. Pedicle-screw-based instrumentation does not cause retardation of the development of the spinal canal in young children. Moreover, use of the crosslink added to the screw-rod instrumentation also demonstrates no negative effect on the growth of the spinal canal. Thus, the addition of the crosslink to short screw-based instrumentation is recommended as an alternative to increase fixation stability in growing patients, even in very young pediatric population.
Cornelius, Carl-Peter; Ehrenfeld, Michael
2010-01-01
Mandibulo-maxillary fixation (MMF) screws are inserted into the bony base of both jaws in the process of fracture realignment and immobilisation. The screw heads act as anchor points to fasten wire loops or rubber bands connecting the mandible to the maxilla. Traditional interdental chain-linked wiring or arch bar techniques provide the anchorage by attached cleats, hooks, or eyelets. In comparison to these tooth-borne appliances MMF screws facilitate and shorten the way to achieve intermaxillary fixation considerably. In addition, MMF screws help to reduce the hazards of glove perforation and wire stick injuries. On the downside, MMF screws are attributed with the risk of tooth root damage and a lack of versatility beyond the pure maintenance of occlusion such as stabilizing loose teeth or splinting fragments of the alveolar process. The surgical technique of MMF screws as well as the pros and cons of the clinical application are reviewed. The adequate screw placement to prevent serious tooth root injuries is still an issue to rethink and modify conceptual guidelines. PMID:22110819
Archavlis, Eleftherios; Amr, Nimer; Kantelhardt, Sven Rainer; Giese, Alf
2018-01-01
Minimally invasive pedicle screw placement may have a higher incidence of violation of the superior cephalad unfused facet joint. We investigated the incidence and risk factors of upper facet joint violation in percutaneous robot-assisted instrumentation versus percutaneous fluoroscopy-guided and open transpedicular instrumentation. A retrospective study including all consecutive patients who underwent lumbar instrumentation, fusion, and decompression for spondylolisthetic stenosis and degenerative disk disease was conducted between January 2012 and January 2016. All operations were performed by the same surgeon; the patients were divided into three groups according to the method of instrumentation. Group 1 involved the robot-assisted instrumentation in 58 patients, group 2 consisted of 64 patients treated with a percutaneous transpedicular instrumentation using fluoroscopic guidance, and 72 patients in group 3 received an open midline approach for pedicle screw insertion. Superior segment facet joint violation occurred in 2 patients in the robot-assisted group 1 (7%), in 22 of the percutaneous fluoroscopy-guided group 2 (34%), and in 6 cases of the open group (8%). The incidence of facet joint violation was present in 5% (3) of the screws in group 1, 22% (28) of the screws in group 2, and 3% (4) of the screws in group 3. Meticulous surgical planning of the appropriate entry site (Weinstein's method), trajectory planning, and proper robot-assisted instrumentation of pedicle screws reduced the risk of superior segment facet joint violation. Georg Thieme Verlag KG Stuttgart · New York.
Arthroscopic Management of Tibial Spine Avulsion Fractures: Principles and Techniques.
Strauss, Eric J; Kaplan, Daniel James; Weinberg, Maxwell E; Egol, Jonathan; Jazrawi, Laith M
2018-05-15
Tibial spine fractures are uncommon injuries affecting the insertion of the anterior cruciate ligament on the tibia. They typically occur in skeletally immature patients aged 8 to 14 years and result from hyperextension of the knee with a valgus or rotational force. Diagnosis is based on history, physical examination, and standard radiographs. The use of MRI can identify entrapped soft tissue that may prevent reduction. Open or arthroscopic repair is indicated in patients with partially displaced fractures (>5 mm) with one third to one half of the avulsed fragment elevated, in patients who have undergone unsuccessful nonsurgical reduction and long leg casting or bracing, and in patients with completely displaced fractures. Arthroscopy offers reduced invasiveness and decreased morbidity. Suture fixation and screw fixation have produced successful results. Suture fixation can eliminate the risk of fracture fragment comminution during screw insertion, the risk of neurovascular injury, and the need for hardware removal. Suture fixation is ideal in cases in which existing comminution prevents screw fixation.
Kiyak, Gorkem; Balikci, Tevfik; Heydar, Ahmed Majid; Bezer, Murat
2018-02-01
Mechanical study. To compare the pullout strength of different screw designs and augmentation techniques in an osteoporotic bone model. Adequate bone screw pullout strength is a common problem among osteoporotic patients. Various screw designs and augmentation techniques have been developed to improve the biomechanical characteristics of the bone-screw interface. Polyurethane blocks were used to mimic human osteoporotic cancellous bone, and six different screw designs were tested. Five standard and expandable screws without augmentation, eight expandable screws with polymethylmethacrylate (PMMA) or calcium phosphate augmentation, and distal cannulated screws with PMMA and calcium phosphate augmentation were tested. Mechanical tests were performed on 10 unused new screws of each group. Screws with or without augmentation were inserted in a block that was held in a fixture frame, and a longitudinal extraction force was applied to the screw head at a loading rate of 5 mm/min. Maximum load was recorded in a load displacement curve. The peak pullout force of all tested screws with or without augmentation was significantly greater than that of the standard pedicle screw. The greatest pullout force was observed with 40-mm expandable pedicle screws with four fins and PMMA augmentation. Augmented distal cannulated screws did not have a greater peak pullout force than nonaugmented expandable screws. PMMA augmentation provided a greater peak pullout force than calcium phosphate augmentation. Expandable pedicle screws had greater peak pullout forces than standard pedicle screws and had the advantage of augmentation with either PMMA or calcium phosphate cement. Although calcium phosphate cement is biodegradable, osteoconductive, and nonexothermic, PMMA provided a significantly greater peak pullout force. PMMA-augmented expandable 40-mm four-fin pedicle screws had the greatest peak pullout force.
Abe, Yuichiro; Ito, Manabu; Abumi, Kuniyoshi; Kotani, Yoshihisa; Sudo, Hideki; Minami, Akio
2011-11-01
Use of computer-assisted spine surgery (CASS) technologies, such as navigation systems, to improve the accuracy of pedicle screw (PS) placement is increasingly popular. Despite of their benefits, previous CASS systems are too expensive to be ubiquitously employed, and more affordable and portable systems are desirable. The aim of this study was to introduce a novel and affordable computer-assisted technique that 3-dimensionally visualizes anatomical features of the pedicles and assists in PS insertion. The authors have termed this the 3D-visual guidance technique for inserting pedicle screws (3D-VG TIPS). The 3D-VG technique for placing PSs requires only a consumer-class computer with an inexpensive 3D DICOM viewer; other special equipment is unnecessary. Preoperative CT data of the spine were collected for each patient using the 3D-VG TIPS. In this technique, the anatomical axis of each pedicle can be analyzed by volume-rendered 3D models, as with existing navigation systems, and both the ideal entry point and the trajectory of each PS can be visualized on the surface of 3D-rendered images. Intraoperative guidance slides are made from these images and displayed on a TV monitor in the operating room. The surgeon can insert PSs according to these guidance slides. The authors enrolled 30 patients with adolescent idiopathic scoliosis (AIS) who underwent posterior fusion with segmental screw fixation for validation of this technique. The novel technique allowed surgeons, from office or home, to evaluate the precise anatomy of each pedicle and the risks of screw misplacement, and to perform 3D preoperative planning for screw placement on their own computer. Looking at both 3D guidance images on a TV monitor and the bony structures of the posterior elements in each patient in the operating theater, surgeons were able to determine the best entry point for each PS with ease and confidence. Using the current technique, the screw malposition rate was 4.5% in the thoracic region in corrective surgery for AIS. The authors found that 3D-VG TIPS worked on a consumer-class computer and easily visualized the ideal entry point and trajectory of PSs in any operating theater without costly special equipment. This new technique is suitable for preoperative planning and intraoperative guidance when performing reconstructive surgery with PSs.
Reinforcing the role of the conventional C-arm--a novel method for simplified distal interlocking.
Windolf, Markus; Schroeder, Josh; Fliri, Ladina; Dicht, Benno; Liebergall, Meir; Richards, R Geoff
2012-01-25
The common practice for insertion of distal locking screws of intramedullary nails is a freehand technique under fluoroscopic control. The process is technically demanding, time-consuming and afflicted to considerable radiation exposure of the patient and the surgical personnel. A new concept is introduced utilizing information from within conventional radiographic images to help accurately guide the surgeon to place the interlocking bolt into the interlocking hole. The newly developed technique was compared to conventional freehand in an operating room (OR) like setting on human cadaveric lower legs in terms of operating time and radiation exposure. The proposed concept (guided freehand), generally based on the freehand gold standard, additionally guides the surgeon by means of visible landmarks projected into the C-arm image. A computer program plans the correct drilling trajectory by processing the lens-shaped hole projections of the interlocking holes from a single image. Holes can be drilled by visually aligning the drill to the planned trajectory. Besides a conventional C-arm, no additional tracking or navigation equipment is required.Ten fresh frozen human below-knee specimens were instrumented with an Expert Tibial Nail (Synthes GmbH, Switzerland). The implants were distally locked by performing the newly proposed technique as well as the conventional freehand technique on each specimen. An orthopedic resident surgeon inserted four distal screws per procedure. Operating time, number of images and radiation time were recorded and statistically compared between interlocking techniques using non-parametric tests. A 58% reduction in number of taken images per screw was found for the guided freehand technique (7.4 ± 3.4) (mean ± SD) compared to the freehand technique (17.6 ± 10.3) (p < 0.001). Total radiation time (all 4 screws) was 55% lower for the guided freehand technique compared to conventional freehand (p = 0.001). Operating time per screw (from first shot to screw tightened) was on average 22% reduced by guided freehand (p = 0.018). In an experimental setting, the newly developed guided freehand technique for distal interlocking has proven to markedly reduce radiation exposure when compared to the conventional freehand technique. The method utilizes established clinical workflows and does not require cost intensive add-on devices or extensive training. The underlying principle carries potential to assist implant positioning in numerous other applications within orthopedics and trauma from screw insertions to placement of plates, nails or prostheses.
Li, Xu; Zhang, Feng; Zhang, Wenzhi; Shang, Xifu; Han, Jintao; Liu, Pengfei
2017-03-01
Technique note. To report a new method for precisely controlling the depth of percutaneous pedicle screws (PPS)-without radiation exposure to surgeons and less fluoroscopy exposure to patients than with conventional methods. PPS is widely used in minimal invasive spine surgery; the advantages include reduced muscle damage, pain, and hospital stays. However, placement of PPS demands repeated checking with fluoroscopy. Thus, radiation exposure is considerable for both surgeons and patients. The PPS depth was determined by counting rotations of the screws. The distance between screw threads can be measured for particular screws; thus, full rotations of the PPS results in the screw advancing in the pedicle the distance between screw threads. To fully insert screws into the pedicle, the number of full rotations is equal to the number of threads in the PPS. We applied this technique in 58 patients with thoracolumbar fracture. The position and depth of the screws was checked during the operation with the C-arm and after operation by anteroposterior X-ray film or computed tomography. No additional procedures were required to correct the screws; we observed no neurological deficits or malpositioning of the screws. In the screw placement procedure, the radiation exposure for surgeons is zero, and the patient is well protected from extensive radiation exposure. This method of counting rotation of screws is a safe way to precisely determine the depth of PPS in the placement procedure. IV.
Wang, Di; Wang, Yimeng; Wang, Jianhua; Song, Changhui; Yang, Yongqiang; Zhang, Zimian; Lin, Hui; Zhen, Yongqiang; Liao, Suixiang
2016-07-22
In order to meet the clinical requirements of spine surgery, this paper proposes the fabrication of the customized template for spine surgery through computer-aided design. A 3D metal printing-selective laser melting (SLM) technique was employed to directly fabricate the 316L stainless steel template, and the metal template with tiny locating holes was used as an auxiliary tool to insert spinal screws inside the patient's body. To guarantee accurate fabrication of the template for cervical vertebra operation, the contact face was placed upwards to improve the joint quality between the template and the cervical vertebra. The joint surface of the printed template had a roughness of Ra = 13 ± 2 μm. After abrasive blasting, the surface roughness was Ra = 7 ± 0.5 μm. The surgical metal template was bound with the 3D-printed Acrylonitrile Butadiene Styrene (ABS) plastic model. The micro-hardness values determined at the cross-sections of SLM-processed samples varied from HV0.3 250 to HV0.3 280, and the measured tensile strength was in the range of 450 MPa to 560 MPa, which showed that the template had requisite strength. Finally, the metal template was clinically used in the patient's surgical operation, and the screws were inserted precisely as the result of using the auxiliary template. The geometrical parameters of the template hole (e.g., diameter and wall thickness) were optimized, and measures were taken to optimize the key geometrical units (e.g., hole units) in metal 3D printing. Compared to the traditional technology of screw insertion, the use of the surgical metal template enabled the screws to be inserted more easily and accurately during spinal surgery. However, the design of the high-quality template should fully take into account the clinical demands of surgeons, as well as the advice of the designing engineers and operating technicians.
Design and Fabrication of a Precision Template for Spine Surgery Using Selective Laser Melting (SLM)
Wang, Di; Wang, Yimeng; Wang, Jianhua; Song, Changhui; Yang, Yongqiang; Zhang, Zimian; Lin, Hui; Zhen, Yongqiang; Liao, Suixiang
2016-01-01
In order to meet the clinical requirements of spine surgery, this paper proposes the fabrication of the customized template for spine surgery through computer-aided design. A 3D metal printing-selective laser melting (SLM) technique was employed to directly fabricate the 316L stainless steel template, and the metal template with tiny locating holes was used as an auxiliary tool to insert spinal screws inside the patient’s body. To guarantee accurate fabrication of the template for cervical vertebra operation, the contact face was placed upwards to improve the joint quality between the template and the cervical vertebra. The joint surface of the printed template had a roughness of Ra = 13 ± 2 μm. After abrasive blasting, the surface roughness was Ra = 7 ± 0.5 μm. The surgical metal template was bound with the 3D-printed Acrylonitrile Butadiene Styrene (ABS) plastic model. The micro-hardness values determined at the cross-sections of SLM-processed samples varied from HV0.3 250 to HV0.3 280, and the measured tensile strength was in the range of 450 MPa to 560 MPa, which showed that the template had requisite strength. Finally, the metal template was clinically used in the patient’s surgical operation, and the screws were inserted precisely as the result of using the auxiliary template. The geometrical parameters of the template hole (e.g., diameter and wall thickness) were optimized, and measures were taken to optimize the key geometrical units (e.g., hole units) in metal 3D printing. Compared to the traditional technology of screw insertion, the use of the surgical metal template enabled the screws to be inserted more easily and accurately during spinal surgery. However, the design of the high-quality template should fully take into account the clinical demands of surgeons, as well as the advice of the designing engineers and operating technicians. PMID:28773730
Heidari, Behzad Shiroud; Oliaei, Erfan; Shayesteh, Hadi; Davachi, Seyed Mohammad; Hejazi, Iman; Seyfi, Javad; Bahrami, Mozhgan; Rashedi, Hamid
2017-01-01
In this study, injection molding of three poly lactic acid (PLA) based bone screws was simulated and optimized through minimizing the shrinkage and warpage of the bone screws. The optimization was carried out by investigating the process factors such as coolant temperature, mold temperature, melt temperature, packing time, injection time, and packing pressure. A response surface methodology (RSM), based on the central composite design (CCD), was used to determine the effects of the process factors on the PLA based bone screws. Upon applying the method of maximizing the desirability function, optimization of the factors gave the lowest warpage and shrinkage for nanocomposite PLA bone screw (PLA9). Moreover, PLA9 has the greatest desirability among the selected materials for bone screw injection molding. Meanwhile, a finite element analysis (FE analysis) was also performed to determine the force values and concentration points which cause yielding of the screws under certain conditions. The Von-Mises stress distribution showed that PLA9 screw is more resistant against the highest loads as compared to the other ones. Finally, according to the results of injection molding simulations, the design of experiments (DOE) and structural analysis, PLA9 screw is recommended as the best candidate for the production of biomedical materials among all the three types of screws. Copyright © 2016 Elsevier Ltd. All rights reserved.
Absorbable screws through the greater trochanter do not disturb physeal growth: rabbit experiments.
Gil-Albarova, J; Fini, M; Gil-Albarova, R; Melgosa, M; Aldini-Nicolo, N; Giardino, R; Seral, F
1998-06-01
We studied the effect of implantation of self-reinforced polyglycolic acid (SR-PGA) screws through the greater trochanter in rabbits. 15 rabbits aged 10 weeks had an SR-PGA screw inserted through the left trochanter physis. A similar drilling was made through the right greater trochanter without screw implantation. The animals were assigned to 3 groups of 5, and were killed after 1, 2 or 3 months. Radiographs of both femurs were obtained monthly and the articulo-trochanteric distance and the neck-shaft angle were measured. After killing the animals, a histological study was performed. The drilling on the right trochanter generated a bony bridge in all the animals. The SR-PGA screws did not give rise to an epiphysiodesis. The progressive peripheral degradation of the implants gave rise to the formation of only modest bridges, which were smaller in size than those observed in the control trochanter. Our findings suggest that absorbable PGA screws implanted through a growth plate cause only minor bone formation and no epiphyseodesis.
Liu, Da; Sheng, Jun; Luo, Yang; Huang, Chen; Wu, Hong-Hua; Zhou, Jiang-Jun; Zhang, Xiao-Jun; Zheng, Wei
2018-03-19
Polymethylmethacrylate (PMMA) is widely used for pedicle screw augmentation in osteoporosis. Until now, there had been no studies of the relationship between screw stability and the distribution and volume of PMMA. The objective of this study was to analyze the relationship between screw stability and the distribution pattern and injected volume of PMMA. This is a biomechanical comparison of injectable pedicle screws with different lateral holes augmented with different volumes of PMMA in cadaveric osteoporotic lumbar vertebrae. Forty-eight osteoporotic lumbar vertebrae were randomly divided into Groups A, B, and C with different pedicle screws (16 vertebrae in each group), and then each group was randomly divided into Subgroups 0, 1, 2, and 3 with different volumes of PMMA (four vertebra with eight pedicles in each subgroup). A pilot hole was prepared in advance using the same method in all samples. Type A and type B pedicle screws were directly inserted into vertebrae in Groups A and B, respectively, and then different volumes of PMMA (0, 1.0, 1.5, and 2.0 mL) were injected through the screws and into vertebrae in Subgroups 0, 1, 2, and 3. The pilot holes were filled with different volumes of PMMA (0, 1.0, 1.5, and 2.0 mL), and then the screws were inserted in Groups C0, C1, C2, and C3. Screw position and distribution of PMMA were evaluated radiographically, and axial pullout tests were performed to measure maximum axial pullout strength (F max ). Polymethylmethacrylate surrounded the anterior one-third of screws in the vertebral body in Groups A1, A2, and A3; the middle one-third of screws in the junction area of the vertebral body and the pedicle in Groups B1, B2, and B3; and the full length of screws evenly in both the vertebral body and the pedicle in Groups C1, C2, and C3. There was no malpositioning of screws or leakage of PMMA in any sample. Two-way analysis of variance revealed that two factors-distribution and volume of PMMA-significantly influenced F max (p<.05) but that they were not significantly correlated (p=.088). F max values in groups using augmentation with PMMA values significantly improved compared with those in groups without PMMA (p<.05). Polymethylmethacrylate can significantly enhance the stability of different injectable pedicle screws in osteoporotic lumbar vertebrae, and screw stability is significantly correlated with the distribution pattern and the injected volume of PMMA. The closer the PMMA to the pedicle and the greater the quantity of injected PMMA, the greater is the pedicle screw stability. Injection of 2.0 mL of PMMA through screws with four lateral 180° holes or of 1.0 mL of PMMA through screws with six lateral 180° holes increases the stability of pedicle screws. Copyright © 2018 Elsevier Inc. All rights reserved.
Enhanced bone screw fixation with biodegradable bone cement in osteoporotic bone model.
Juvonen, Tiina; Koistinen, Arto; Kröger, Heikki; Lappalainen, Reijo
2012-09-27
The purpose of this study was to study the potential of novel biodegradable PCL bone cement to improve bone screw fixation strength in osteoporotic bone. The biomechanical properties of bone cement (ε-polycaprolactone, PCL) and fixation strength were studied using biomechanical tests and bone screws fixed in an osteoporotic bone model. Removal torques and pullout strengths were assessed for cortical, self-tapping, and cancellous screws inserted in the osteoporotic bone model (polyurethane foam blocks with polycarbonate plate) with and without PCL bone cement. Open cell and cellular rigid foam blocks with a density of 0.12 g/cm3 were used in this model. Removal torques were significantly (more than six-fold) improved with bone cement for cancellous screws. Furthermore, the bone cement improved pullout strengths three to 12 times over depending on the screw and model material. Biodegradable bone cement turned out to be a very potential material to stabilize screw fixation in osteoporotic bone. The results warrant further research before safe clinical use, especially to clarify clinically relevant factors using real osteoporotic bone under human body conditions and dynamic fatigue testing for long-term performance.
Prosthetic Tool For Holding Small Ferromagnetic Parts
NASA Technical Reports Server (NTRS)
Norton, William E.; Carden, James R.; Belcher, Jewell G., Jr.; Vest, Thomas W.
1995-01-01
Tool attached to prosthetic hand or arm enables user to hold nails, screws, nuts, rivets, and other small ferromagnetic objects on small magnetic tip. Device adjusted to hold nail or screw at proper angle for hammering or for use of screwdriver, respectively. Includes base connector with threaded outer surface and lower male member inserted in standard spring-action, quick-connect/quick-disconnect wrist adapter on prosthetic hand or arm.
Yuenyongviwat, Varah; Tuntarattanapong, Pakjai; Tangtrakulwanich, Boonsin
2016-01-11
Internal fixation is one treatment for femoral neck fracture. Some devices and techniques reported improved accuracy and decreased fluoroscopic time. However, these are not widely used nowadays due to the lack of available special instruments and techniques. To improve the surgical procedure, the authors designed a new adjustable drill guide and tested the efficacy of the device. The authors developed a new adjustable drill guide for cannulated screw guide wire insertion for multiple screw fixation. Eight orthopaedic surgeons performed the experimental study to evaluate the efficacy of this device. Each surgeon performed guide wire insertion for multiple screw fixation in six synthetic femurs: three times with the new device and three times with the conventional technique. The fluoroscopic time, operative time and surgeon satisfaction were evaluated. In the operations with the new adjustable drill guide, the fluoroscopic and operative times were significantly lower than the operations with the conventional technique (p < 0.05). The mean score for the level of satisfaction of this device was also statistically significantly better (p = 0.02) than the conventional technique. The fluoroscopic and operative times with the new adjustable drill guide were reduced for multiple screw fixation of femoral neck fracture and the satisfaction of the surgeons was good.
Iliac screw fixation using computer-assisted computer tomographic image guidance: technical note.
Shin, John H; Hoh, Daniel J; Kalfas, Iain H
2012-03-01
Iliac screw fixation is a powerful tool used by spine surgeons to achieve fusion across the lumbosacral junction for a number of indications, including deformity, tumor, and pseudarthrosis. Complications associated with screw placement are related to blind trajectory selection and excessive soft tissue dissection. To describe the technique of iliac screw fixation using computed tomographic (CT)-based image guidance. Intraoperative registration and verification of anatomic landmarks are performed with the use of a preoperatively acquired CT of the lumbosacral spine. With the navigation probe, the ideal starting point for screw placement is selected while visualizing the intended trajectory and target on a computer screen. Once the starting point is selected and marked with a burr, a drill guide is docked within this point and the navigation probe re-inserted, confirming the trajectory. The probe is then removed and the high-speed drill reinserted within the drill guide. Drilling is performed to a depth measured on the computer screen and a screw is placed. Confirmation of accurate placement of iliac screws can be performed with standard radiographs. CT-guided navigation allows for 3-dimensional visualization of the pelvis and minimizes complications associated with soft-tissue dissection and breach of the ilium during screw placement.
Melikian, Rojeh; Yoon, Sangwook Tim; Kim, Jin Young; Park, Kun Young; Yoon, Caroline; Hutton, William
2016-09-01
Cadaveric biomechanical study. To determine the degree of segmental correction that can be achieved through lateral transpsoas approach by varying cage angle and adding anterior longitudinal ligament (ALL) release and posterior element resection. Lordotic cage insertion through the lateral transpsoas approach is being used increasingly for restoration of sagittal alignment. However, the degree of correction achieved by varying cage angle and ALL release and posterior element resection is not well defined. Thirteen lumbar motion segments between L1 and L5 were dissected into single motion segments. Segmental angles and disk heights were measured under both 50 N and 500 N compressive loads under the following conditions: intact specimen, discectomy (collapsed disk simulation), insertion of parallel cage, 10° cage, 30° cage with ALL release, 30° cage with ALL release and spinous process (SP) resection, 30° cage with ALL release, SP resection, facetectomy, and compression with pedicle screws. Segmental lordosis was not increased by either parallel or 10° cages as compared with intact disks, and contributed small amounts of lordosis when compared with the collapsed disk condition. Placement of 30° cages with ALL release increased segmental lordosis by 10.5°. Adding SP resection increased lordosis to 12.4°. Facetectomy and compression with pedicle screws further increased lordosis to approximately 26°. No interventions resulted in a decrease in either anterior or posterior disk height. Insertion of a parallel or 10° cage has little effect on lordosis. A 30° cage insertion with ALL release resulted in a modest increase in lordosis (10.5°). The addition of SP resection and facetectomy was needed to obtain a larger amount of correction (26°). None of the cages, including the 30° lordotic cage, caused a decrease in posterior disk height suggesting hyperlordotic cages do not cause foraminal stenosis. N/A.
Bostelmann, Richard; Keiler, Alexander; Steiger, Hans Jakob; Scholz, Armin; Cornelius, Jan Frederick; Schmoelz, Werner
2017-01-01
Augmentation of pedicle screws is recommended in selected indications (for instance: osteoporosis). Generally, there are two techniques for pedicle screw augmentation: inserting the screw in the non cured cement and in situ-augmentation with cannulated fenestrated screws, which can be applied percutaneously. Most of the published studies used an axial pull out test for evaluation of the pedicle screw anchorage. However, the loading and the failure mode of pullout tests do not simulate the cranio-caudal in vivo loading and failure mechanism of pedicle screws. The purpose of the present study was to assess the fixation effects of different augmentation techniques (including percutaneous cement application) and to investigate pedicle screw loosening under physiological cyclic cranio-caudal loading. Each of the two test groups consisted of 15 vertebral bodies (L1-L5, three of each level per group). Mean age was 84.3 years (SD 7.8) for group 1 and 77.0 years (SD 7.00) for group 2. Mean bone mineral density was 53.3 mg/cm 3 (SD 14.1) for group 1 and 53.2 mg/cm 3 (SD 4.3) for group 2. 1.5 ml high viscosity PMMA bone cement was used for all augmentation techniques. For test group 1, pedicles on the right side of the vertebrae were instrumented with solid pedicle screws in standard fashion without augmentation and served as control group. Left pedicles were instrumented with cannulated screws (Viper cannulated, DePuy Spine) and augmented. For test group 2 pedicles on the left side of the vertebrae were instrumented with cannulated fenestrated screws and in situ augmented. On the right side solid pedicle screws were augmented with cement first technique. Each screw was subjected to a cranio-caudal cyclic load starting at 20-50 N with increasing upper load magnitude of 0.1 N per cycle (1 Hz) for a maximum of 5000 cycles or until total failure. Stress X-rays were taken after cyclic loading to evaluate screw loosening. Test group 1 showed a significant higher number of load cycles until failure for augmented screws compared to the control (4030 cycles, SD 827.8 vs. 1893.3 cycles, SD 1032.1; p < 0.001). Stress X-rays revealed significant less screw toggling for the augmented screws (5.2°, SD 5.4 vs. 16.1°, SD 5.9; p < 0.001). Test group 2 showed 3653.3 (SD 934) and 3723.3 (SD 560.6) load cycles until failure for in situ and cement first augmentation. Stress X-rays revealed a screw toggling of 5.1 (SD 1.9) and 6.6 (SD 4.6) degrees for in situ and cement first augmentation techniques (p > 0.05). Augmentation of pedicle screws in general significantly increased the number of load cycles and failure load comparing to the nonaugmented control group. For the augmentation technique (cement first, in situ augmented, percutaneously application) no effect could be exhibited on the failure of the pedicle screws. By the cranio-caudal cyclic loading failure of the pedicle screws occurred by screw cut through the superior endplate and the characteristic "windshield-wiper effect", typically observed in clinical practice, could be reproduced.
Percutaneous spinal fixation simulation with virtual reality and haptics.
Luciano, Cristian J; Banerjee, P Pat; Sorenson, Jeffery M; Foley, Kevin T; Ansari, Sameer A; Rizzi, Silvio; Germanwala, Anand V; Kranzler, Leonard; Chittiboina, Prashant; Roitberg, Ben Z
2013-01-01
In this study, we evaluated the use of a part-task simulator with 3-dimensional and haptic feedback as a training tool for percutaneous spinal needle placement. To evaluate the learning effectiveness in terms of entry point/target point accuracy of percutaneous spinal needle placement on a high-performance augmented-reality and haptic technology workstation with the ability to control the duration of computer-simulated fluoroscopic exposure, thereby simulating an actual situation. Sixty-three fellows and residents performed needle placement on the simulator. A virtual needle was percutaneously inserted into a virtual patient's thoracic spine derived from an actual patient computed tomography data set. Ten of 126 needle placement attempts by 63 participants ended in failure for a failure rate of 7.93%. From all 126 needle insertions, the average error (15.69 vs 13.91), average fluoroscopy exposure (4.6 vs 3.92), and average individual performance score (32.39 vs 30.71) improved from the first to the second attempt. Performance accuracy yielded P = .04 from a 2-sample t test in which the rejected null hypothesis assumes no improvement in performance accuracy from the first to second attempt in the test session. The experiments showed evidence (P = .04) of performance accuracy improvement from the first to the second percutaneous needle placement attempt. This result, combined with previous learning retention and/or face validity results of using the simulator for open thoracic pedicle screw placement and ventriculostomy catheter placement, supports the efficacy of augmented reality and haptics simulation as a learning tool.
Diamond-anvil high-pressure cell with improved X-ray collimation system
Schiferl, David; Olinger, Barton W.; Livingston, Robert W.
1986-01-01
An adjustable X-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The X-ray collimation system includes a tubular insert which contains an X-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric O-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the O-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.
Diamond-anvil high-pressure cell with improved x-ray collimation system
Schiferl, D.; Olinger, B.W.; Livingston, R.W.
1984-03-30
An adjustable x-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The x-ray collimation system includes a tubular insert which contains an x-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric o-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the o-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.
Arshad, Mahnaz; Mahgoli, Hosseinali; Payaminia, Leila
To evaluate the effect of repeated screw joint closing and opening cycles and cyclic loading on abutment screw removal torque and screw thread morphology using scanning electron microscopy (SEM). Three groups (n = 10 in each group) of implant-abutment-abutment screw assemblies were created. There were also 10 extra abutment screws as new screws in group 3. The abutment screws were tightened to 12 Ncm with an electronic torque meter; then they were removed and removal torque values were recorded. This sequence was repeated 5 times for group 1 and 15 times for groups 2 and 3. The same screws in groups 1 and 2 and the new screws in group 3 were then tightened to 12 Ncm; this was also followed by screw tightening to 30 Ncm and retightening to 30 Ncm 15 minutes later. Removal torque measurements were performed after screws were subjected to cyclic loading (0.5 × 10⁶ cycles; 1 Hz; 75 N). Moreover, the surface topography of one screw from each group before and after cyclic loading was evaluated with SEM and compared with an unused screw. All groups exhibited reduced removal torque values in comparison to insertion torque in each cycle. However, there was a steady trend of torque loss in each group. A comparison of the last cycle of the groups before loading showed significantly greater torque loss value in the 15th cycle of groups 2 and 3 compared with the fifth cycle of group 1 (P < .05). Nonetheless, torque loss values after loading were not shown to be significantly different from each other. Using a new screw could not significantly increase the value of removal torque. It was concluded that restricting the amount of screw tightening is more important than replacing the screw with a new one when an abutment is definitively placed.
Reinforcing the role of the conventional C-arm - a novel method for simplified distal interlocking
2012-01-01
Background The common practice for insertion of distal locking screws of intramedullary nails is a freehand technique under fluoroscopic control. The process is technically demanding, time-consuming and afflicted to considerable radiation exposure of the patient and the surgical personnel. A new concept is introduced utilizing information from within conventional radiographic images to help accurately guide the surgeon to place the interlocking bolt into the interlocking hole. The newly developed technique was compared to conventional freehand in an operating room (OR) like setting on human cadaveric lower legs in terms of operating time and radiation exposure. Methods The proposed concept (guided freehand), generally based on the freehand gold standard, additionally guides the surgeon by means of visible landmarks projected into the C-arm image. A computer program plans the correct drilling trajectory by processing the lens-shaped hole projections of the interlocking holes from a single image. Holes can be drilled by visually aligning the drill to the planned trajectory. Besides a conventional C-arm, no additional tracking or navigation equipment is required. Ten fresh frozen human below-knee specimens were instrumented with an Expert Tibial Nail (Synthes GmbH, Switzerland). The implants were distally locked by performing the newly proposed technique as well as the conventional freehand technique on each specimen. An orthopedic resident surgeon inserted four distal screws per procedure. Operating time, number of images and radiation time were recorded and statistically compared between interlocking techniques using non-parametric tests. Results A 58% reduction in number of taken images per screw was found for the guided freehand technique (7.4 ± 3.4) (mean ± SD) compared to the freehand technique (17.6 ± 10.3) (p < 0.001). Total radiation time (all 4 screws) was 55% lower for the guided freehand technique compared to conventional freehand (p = 0.001). Operating time per screw (from first shot to screw tightened) was on average 22% reduced by guided freehand (p = 0.018). Conclusions In an experimental setting, the newly developed guided freehand technique for distal interlocking has proven to markedly reduce radiation exposure when compared to the conventional freehand technique. The method utilizes established clinical workflows and does not require cost intensive add-on devices or extensive training. The underlying principle carries potential to assist implant positioning in numerous other applications within orthopedics and trauma from screw insertions to placement of plates, nails or prostheses. PMID:22276698
Chen, Chun; Ruan, Dike; Wu, Changfu; Wu, Weidong; Sun, Peidong; Zhang, Yuanzhi; Wu, Jigong; Lu, Sheng; Ouyang, Jun
2013-01-01
Background Accurate placement of pedicle screw during Anterior Transpedicular Screw fixation (ATPS) in cervical spine depends on accurate anatomical knowledge of the vertebrae. However, little is known of the morphometric characteristics of cervical vertebrae in Chinese population. Methods Three-dimensional reconstructions of CT images were performed for 80 cases. The anatomic data and screw fixation parameters for ATPS fixation were measured using the Mimics software. Findings The overall mean OPW, OPH and PAL ranged from 5.81 to 7.49 mm, 7.77 to 8.69 mm, and 33.40 to 31.13 mm separately, and SPA was 93.54 to 109.36 degrees from C3 to C6, 104.99 degrees at C7, whereas, 49.00 to 32.26 degrees from C4 to C7, 46.79 degrees at C3 (TPA). Dl/rSIP had an increasing trend away from upper endplate with mean value from 1.87 to 5.83 mm. Dl/rTIP was located at the lateral portion of the anterior cortex of vertebrae for C3 to C5 and ipsilateral for C6 to C7 with mean value from −2.70 to −3.00 mm, and 0.17 to 3.18 mm. The entrance points for pedicular screw insertion for C3 to C5 and C6 to C7 were recommended −2∼−3 mm and 0–4 mm from the median sagittal plane, respectively, 1–4 mm and 5–6 mm from the upper endplate, with TPA being 46.79–49.00 degrees and 40.89–32.26 degrees, respectively, and SPA being 93.54–106.69 degrees and 109.36–104.99 degrees, respectively. The pedicle screw insertion diameter was recommended 3.5 mm (C3 and C4), 4.0 mm (C5 to C7), and the pedicle axial length was 21–24 mm for C3 to C7 for both genders. However, the ATPS insertion in C3 should be individualized given its relatively small anatomical dimensions. Conclusions The data provided a morphometric basis for the ATPS fixation technique in lower cervical fixation. It will help in preoperative planning and execution of this surgery. PMID:24349038
Sindel, A; Demiralp, S; Colok, G
2014-09-01
Sagittal split ramus osteotomy (SSRO) is used for correction of numerous congenital or acquired deformities in facial region. Several techniques have been developed and used to maintain fixation and stabilisation following SSRO application. In this study, the effects of the insertion formations of the bicortical different sized screws to the stresses generated by forces were studied. Three-dimensional finite elements analysis (FEA) and static linear analysis methods were used to investigate difference which would occur in terms of forces effecting onto the screws and transmitted to bone between different application areas. No significant difference was found between 1·5- and 2-mm screws used in SSRO fixation. Besides, it was found that 'inverted L' application was more successful compared to the others and that was followed by 'L' and 'linear' formations which showed close rates to each other. Few studies have investigated the effect of thickness and application areas of bicortical screws. This study was performed on both advanced and regressed jaws positions. © 2014 John Wiley & Sons Ltd.
Muthusamy, Saravanaraja; Rozbruch, S Robert; Fragomen, Austin T
2016-11-01
Internal lengthening nail (ILN) is a recent development in limb lengthening and deformity correction specialty. The ILN has the distinct advantage of combining acute deformity correction with gradual lengthening of bone. While using ILN, the short metaphyseal bone fragment may develop a deformity at the time of osteotomy and nail insertion or during bone lengthening because of the wide medullary canal. These deformities are typically predictable, and blocking screws (Poller screws) are helpful in these situations. This manuscript describes the common deformities that occur in femur and tibia with osteotomies at different locations while using ILN in antegrade and retrograde nailing technique. Also, a systematic approach to the appropriate use of blocking screws in these deformities is described. In addition, the "reverse rule of thumb" is introduced as a quick reference to determine the ideal location(s) and number of blocking screws. These principles are applicable to limb lengthening and deformity correction as well as fracture fixation using intramedullary nails.
Saraph, Vinay; Zwick, Ernst-Bernhard; Maizen, Claudia; Schneider, Frank; Linhart, Wolfgang E
2004-01-01
Nine unicameral bone cysts of the calcaneus in children were managed surgically using the technique of continuous decompression with titanium cannulated cancellous screws. The average age of the patients at surgery was 12.8 years. At follow-up a minimum of 2 years after surgery, eight cysts showed complete healing; one patient showed healing with residuals. Irritation at the screw insertion site necessitated early removal of the screw in one patient; implant-related problems were not observed in the other patients. Patients were allowed to bear weight after surgery. Implant extraction was performed after full consolidation of the cyst and was uneventful in all patients. A review of the literature and the different treatment modalities used for managing calcaneal cysts is also presented.
Chen, Ziqiang; Wu, Bing; Zhai, Xiao; Bai, Yushu; Zhu, Xiaodong; Luo, Beier; Chen, Xiao; Li, Chao; Yang, Mingyuan; Xu, Kailiang; Liu, Chengcheng; Wang, Chuanfeng; Zhao, Yingchuan; Wei, Xianzhao; Chen, Kai; Yang, Wu; Ta, Dean; Li, Ming
2015-01-01
The purpose of this study was to understand the acoustic properties of human vertebral cancellous bone and to study the feasibility of ultrasound-based navigation for posterior pedicle screw fixation in spinal fusion surgery. Fourteen human vertebral specimens were disarticulated from seven un-embalmed cadavers (four males, three females, 73.14 ± 9.87 years, two specimens from each cadaver). Seven specimens were used to measure the transmission, including tests of attenuation and phase velocity, while the other seven specimens were used for backscattered measurements to inspect the depth of penetration and A-Mode signals. Five pairs of unfocused broadband ultrasonic transducers were used for the detection, with center frequencies of 0.5 MHz, 1 MHz, 1.5 MHz, 2.25 MHz, and 3.5 MHz. As a result, good and stable results were documented. With increased frequency, the attenuation increased (P<0.05), stability of the speed of sound improved (P<0.05), and penetration distance decreased (P>0.05). At about 0.6 cm away from the cortical bone, warning signals were easily observed from the backscattered measurements. In conclusion, the ultrasonic system proved to be an effective, moveable, and real-time imaging navigation system. However, how ultrasonic navigation will benefit pedicle screw insertion in spinal surgery needs to be determined. Therefore, ultrasound-guided pedicle screw implantation is theoretically effective and promising. PMID:25861053
Bacchiocchi, Danilo
2017-01-01
Purpose To present a new intraoral welding technique, which can be used to manufacture screw-retained, mandibular fixed full-arch prostheses. Methods Over a 4-year period, all patients with complete mandibular edentulism or irreparably compromised mandibular dentition, who will restore the masticatory function with a fixed mandibular prosthesis, were considered for inclusion in this study. The “Ball Welding Bar” (BWB) technique is characterised by smooth prosthetic cylinders, interconnected by means of titanium bars which are adjustable in terms of distance from ball terminals and are inserted in the rotating rings of the cylinders. All the components are welded and self-posing. Results Forty-two patients (18 males; 24 females; mean age 64.2 ± 6.7 years) were enrolled and 210 fixtures were inserted to support 42 mandibular screw-retained, fixed full-arch prostheses. After two years of loading, 2 fixtures were lost, for an implant survival rate of 97.7%. Five implants suffered from peri-implant mucositis and 3 implants for peri-implantitis. Three of the prostheses (3/42) required repair for fracture (7.1%): the prosthetic success was 92.9%. Conclusions The BWB technique seems to represent a reliable technique for the fabrication of screw-retained mandibular fixed full-arch prostheses. This study was registered in the ISRCTN register with number ISRCTN71229338. PMID:28835752
Min, Kyong S; Zamorano, David P; Wahba, George M; Garcia, Ivan; Bhatia, Nitin; Lee, Thay Q
2014-09-01
Transforaminal pelvic fractures are high-energy injuries that are translationally and rotationally unstable. This study compared the biomechanical stability of triangular osteosynthesis vs 2-transsacral-screw fixation in the repair of a transforaminal pelvic fracture model. A transforaminal fracture model was created in 10 cadaveric lumbopelvic specimens. Five of the specimens were stabilized with triangular osteosynthesis, which consisted of unilateral L5-to-ilium lumbopelvic fixation and ipsilateral iliosacral screw fixation. The remaining 5 were stabilized with a 2-transsacral-screw fixation technique that consisted of 2 transsacral screws inserted across S1. All specimens were loaded cyclically and then loaded to failure. Translation and rotation were measured using the MicroScribe 3D digitizing system (Revware Inc, Raleigh, North Carolina). The 2-transsacral-screw group showed significantly greater stiffness than the triangular osteosynthesis group (2-transsacral-screw group, 248.7 N/mm [standard deviation, 73.9]; triangular osteosynthesis group, 125.0 N/mm [standard deviation, 66.9]; P=.02); however, ultimate load and rotational stiffness were not statistically significant. Compared with triangular osteosynthesis fixation, the use of 2 transsacral screws provides a comparable biomechanical stability profile in both translation and rotation. This newly revised 2-transsacral-screw construct offers the traumatologist an alternative method of repair for vertical shear fractures that provides biplanar stability. It also offers the advantage of percutaneous placement in either the prone or supine position. Copyright 2014, SLACK Incorporated.
Iida, Seiji; Haraguchi, Seiji; Aikawa, Tomonao; Yashiro, Kohtaro; Okura, Masaya; Kogo, Mikihiko
2008-02-01
Surgical-assisted rapid palatal expansion includes various treatment procedures for solving transverse maxillary deficiencies, especially in cases with a matured palatal suture. Recent introduction of the concept of distraction osteogenesis has contributed to generalize this useful treatment and to develop some bone-borne devices that will not cause the problems found in cases treated by tooth-supported palatal expander. This report shows a conventional bone-borne distractor using commercially available orthodontic palatal expansion screws. The distractor consists of 2 parts: one is a commercially available orthodontic palatal expansion screw (Hyrax type, Fan style) and another is a screw-ring, which is one of the attached parts of the mandibular distraction system. The bone screws are inserted transmucosally to the palatal bone via the screw-rings. The palatal distractor can be applied to varied palatal shapes and can expand the palate without any trouble. This conventional palatal distractor may contribute to generalize the transpalatal maxillary distraction osteogenesis for cases with maxillary teeth problems.
Araugio, Rafael Marques de Sousa; Landre, Jánes; Silva, Diana de Lourdes Almeida; Pacheco, Wellington; Pithon, Matheus Melo; Oliveira, Dauro Douglas
2013-02-01
Our objective was to evaluate the influence of the expansion screw height of a hyrax expander on the degree of dental inclination during rapid maxillary expansion by using the finite element method. The hyrax expander and the maxillary arch were modeled by using Solidworks software (Dassault Systèmes, Paris, France). Three distinct finite element method models were created by simulating different screw heights relative to the plane that intersected the center of resistance of the maxillary first molars. These 3 relative positions were 10 mm below the maxillary first molars' center of resistance, at the same level as the maxillary first molars' center of resistance, and 10 mm above the maxillary first molars' center of resistance. The initial activation of the expanders was simulated, and tooth displacements for each finite element method model were registered in the buccolingual, corono-apical, and mesiodistal directions. The simulations tested showed that the 3 hyrax screw heights had different dental tipping tendencies. When the screw was simulated below the maxillary first molars' center of resistance, buccal tipping of the crowns and lingual tipping of the roots were registered. This tendency decreased when the screw was simulated at the same level as the maxillary first molars' center of resistance. However, when the screw was simulated above the maxillary first molars' center of resistance, the tipping tendency was inverted, with the crowns displaying lingual tipping and the roots displaying buccal tipping. These findings might explain the importance of carefully planning the height of the hyrax expander screw, since, depending on this position, different tooth movements can be achieved. From an orthopedic perspective, the ideal screw position might be slightly above the maxillary first molars' center of resistance; this would generate less dental tipping. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Maslow, Jed; Collinge, Cory A
2017-12-01
Iliosacral (IS) and transsacral (TS) screws are popular techniques to repair complicated injuries to the pelvis. The anatomy of the superior gluteal neurovasculature (SG NV bundle) is well described as running along the posterior ilium, providing innervation and perfusion to important abductor muscles. The method of pelvis fixation least likely to injure the SG NV bundle is unknown. Twenty uninjured patients with a contrasted computed tomogram of the pelvis and lower extremities (CTA) were evaluated. Starting points for an S1 IS screw and S1 and S2 TS screws were estimated on the "ghost" lateral CTA image for those pelvi with safe corridors (>9 mm diameter). The distance from the projected screw to the SG artery was measured. A distance of <3.65 mm (half of a 7.3-mm screw's diameter) was considered likely for NV bundle injury. Of 40 pelvi CTAs (single sides), 10 pelvi (25%) were determined to be inappropriate for an S1 TS screw. The average distances from the screw starting point and the artery were 25.3 mm (±9.2) for S1 IS, 12.4 mm (±9.0) for S1 TS, and 23.5 mm (±10.7) for S2 TS screws, respectively. Ten S1 TS screws (25%) and no S1 IS or S2 TS screws were projected to have caused injury to the SG NV bundle (P < 0.001). Inserting S1 IS and S2 TS screws put the SG NV anatomy at significantly less risk than S1 TS screws. This information may aid in choosing the "best" fixation option for patients with pelvic ring trauma requiring surgery.
Jacobsen, C; Obwegeser, J A
2010-12-01
Despite invention of titanium and resorbable screws and plates, still, one of the main challenges in bone fixation is the search for an ideal osteosynthetic material. Biomechanical properties, biocompatibility, and also cost effectiveness and clinical practicability are factors for the selection of a particular material. A promising alternative seems to be screws and plates made of bone. Recently, xenogenic bone pins and screws have been invented for use in joint surgery. In this study, screws made of allogenic sheep and xenogenic human bone were analyzed in a vital and dynamic sheep-model and compared to conventional titanium screws over a standard period of bone healing of 56 days with a constant applied extrusion force. Biomechanical analysis and histomorphological evaluation were performed. After 56 days of insertion xenogenic screws made of human bone showed significantly larger distance of extrusion of on average 173.8 μm compared to allogenic screws made of sheep bone of on average 27.8 and 29.95 μm of the titanium control group. Severe resorption processes with connective tissue interposition were found in the histomorphological analysis of the xenogenic screws in contrast to new bone formation and centripetal vascularization of the allogenic bone screw, as well as in processes of incorporation of the titanium control group. The study showed allogenic cortical bone screws as a substantial alternative to titanium screws with good biomechanical properties. In contrast to other reports a different result was shown for the xenogenic bone screws. They showed insufficient holding strength with confirmative histomorphological signs of degradation and insufficient osseointegration. Before common clinical use of xenogenic osteosynthetic material, further evaluation should be performed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Yin, Y C; Zhang, R P; Li, S L; Hou, Z Y; Chen, W; Zhang, Y Z
2018-03-01
Objective: To evaluate the possibility of transverse sacroiliac screw placement in different segments of the sacrum. Methods: Data of 80 pelvic CT scans (slice thickness ≤1.0 mm) archived in CT department of the Third Hospital of Hebei Medical University from September 2016 to October 2017 were retrospectively collected. Mimics software was used to rebuild the pelvis three-dimensional model. According to whether the sacral 1(S(1)) segment could place the transverse sacroiliac screws or not, all the sacrums were divided into normal group ( n =55) and dysmorphic group ( n =25). Simulation the S(1), sacral 2(S(2)) transverse sacroiliac screw placement in 3-Matic software. Analysis whether there was any difference in maximum diameter and length of S(2) transverse sacroiliac screw between the normal group and the dysmorphic group. The pelvic CT data of the dysmorphic group were measured, and the optimal tilt angle and length of the oblique S(1) screw were obtained. The feasibility of transverse sacroiliac screw insertion in sacral 3(S(3)) segment was evaluated. t -test, rank sum test, and χ(2) test was used to analyze data, respectively. Results: In the dysmorphic group, the largest diameter of the S(1) transverse screw was (4.9±1.6)mm, and the normal group was (13.6±3.6)mm ( t =-15.07, P =0.00). In the dysmorphic group, the largest diameter of S(2) transverse screw was (13.8±3.0)mm, and was (12.4±2.2)mm in the normal group( t =2.11, P =0.04). There was no significant difference in the length of S(2) transverse sacroiliac screw between the two groups ( t =0.47, P =0.64). In the dysmorphic group, the anterior vertebral height of S(1) was (23.1±4.0)mm, which was significantly higher than that of the normal group ((14.1±4.2)mm)( t =9.01, P =0.00). The angle of S(1)S(2) in the dysmorphic group was 10.9°(3.8°, 17.6°), which was significantly larger than that of the normal group (2.0°(1.0°, 2.0°) ( Z =-4.03, P =0.00). In the dysmorphic group, the incline angle of the oblique S(1) sacroiliac screw was (35.6±6.2)°, the anteversion angle was (37.2±4.4)°, and the mean screw length was (90.2±4.7)mm. In the dysmorphic group, the placement rate of S(3) transverse sacroiliac screw was 48.0%, and that of the normal sacral group was 9.1%. Conclusions: There is often dysmorphic in the sacrum in patients with large S(1) anterior vertebral height and S(1)S(2) angle. Sacral dysmorphic patients with posterior pelvic ring injury may be treated with S(1) pedicle oblique sacroiliac screws. S(3) transverse sacroiliac screws should be carefully placed, especially for the absence of sacral dysmorphic in patients.
Chiu, C K; Kwan, M K; Chan, C Y W; Schaefer, C; Hansen-Algenstaedt, N
2015-08-01
We undertook a retrospective study investigating the accuracy and safety of percutaneous pedicle screws placed under fluoroscopic guidance in the lumbosacral junction and lumbar spine. The CT scans of patients were chosen from two centres: European patients from University Medical Center Hamburg-Eppendorf, Germany, and Asian patients from the University of Malaya, Malaysia. Screw perforations were classified into grades 0, 1, 2 and 3. A total of 880 percutaneous pedicle screws from 203 patients were analysed: 614 screws from 144 European patients and 266 screws from 59 Asian patients. The mean age of the patients was 58.8 years (16 to 91) and there were 103 men and 100 women. The total rate of perforation was 9.9% (87 screws) with 7.4% grade 1, 2.0% grade 2 and 0.5% grade 3 perforations. The rate of perforation in Europeans was 10.4% and in Asians was 8.6%, with no significant difference between the two (p = 0.42). The rate of perforation was the highest in S1 (19.4%) followed by L5 (14.9%). The accuracy and safety of percutaneous pedicle screw placement are comparable to those cited in the literature for the open method of pedicle screw placement. Greater caution must be taken during the insertion of L5 and S1 percutaneous pedicle screws owing to their more angulated pedicles, the anatomical variations in their vertebral bodies and the morphology of the spinal canal at this location. ©2015 The British Editorial Society of Bone & Joint Surgery.
Farina, Ana Paula; Spazzin, Aloísio Oro; Consani, Rafael Leonardo Xediek; Mesquita, Marcelo Ferraz
2014-06-01
Screws can loosen through mechanisms that have not been clearly established. The purpose of this study was to evaluate the influence of the tightening technique (the application of torque and retorque on the joint stability of titanium and gold prosthetic screws) in implant-supported dentures under different fit levels after 1 year of simulated masticatory function by means of mechanical cycling. Ten mandibular implant-supported dentures were fabricated, and 20 cast models were prepared by using the dentures to create 2 fit levels: passive fit and created misfit. The tightening protocol was evaluated according to 4 distinct profiles: without retorque plus titanium screws, without retorque plus gold screws, retorque plus titanium screws, and retorque plus gold screws. In the retorque application, the screws were tightened to 10 Ncm and retightened to 10 Ncm after 10 minutes. The screw joint stability after 1 year of simulated clinical function was measured with a digital torque meter. Data were analyzed statistically by 2-way ANOVA and Tukey honestly significant difference (HSD) post hoc tests (α=.05). The factors of fit level and tightening technique as well as the interaction between the factors, were statistically significant. The misfit decreases the loosening torque. The retorque application increased joint stability independent of fit level or screw material, which suggests that this procedure should be performed routinely during the tightening of these devices. All tightening techniques revealed reduced loosening torque values that were significantly lower in misfit dentures than in passive fit dentures. However, the retorque application significantly increased the loosening torque when titanium and gold screws were used. Therefore, this procedure should be performed routinely during screw tightening. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Linear motion device and method for inserting and withdrawing control rods
Smith, Jay E.
1984-01-01
A linear motion device, more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core, is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.
Pilling, E; Mai, R; Theissig, F; Stadlinger, B; Loukota, R; Eckelt, U
2007-09-01
We compared the healing and reaction in the mandibles of 11 sheep of a conventional bioresorbable screw osteosynthesis with the newly developed ultrasound-activated pin osteosynthesis. The thermal stress caused by insertion of the ultrasound-aided pins leads to no cellular reaction around the pin. There is neither clinical nor histological evidence of any initial inflammation that could have been induced by the insertion. Adequate attachment of fibrous tissue to the pin head and the absence of any inflammation are important preconditions for the introduction of this new method of osteosynthesis into clinical practice. Further advantageous characteristics are easy intraoperative handling and a reduction in operating time, because cutting the thread is not required. There must be sufficient interlinkage of the polymer and the trabecular structures to ensure stability.
Radiographic predictors of symptomatic screw removal after retrograde femoral nail insertion.
Hamaker, Max; O'Hara, Nathan N; Eglseder, W Andrew; Sciadini, Marcus F; Nascone, Jason W; O'Toole, Robert V
2017-03-01
Removal of symptomatic implants is a common procedure performed by orthopaedic trauma surgeons. No guidance is available regarding which factors contribute to the likelihood of an implant becoming symptomatic. Our objective was to determine whether radiographic parameters associated with distal interlocks in retrograde femoral nails are associated with the rate of symptomatic screw removal. We conducted a retrospective review at a Level I trauma center. Study patients (n=442) had femoral fractures treated with retrograde intramedullary nails from 2007 to 2014 and at least 1year of follow-up. The main outcome measurement was symptomatic distal screw removal as predicted by radiographic parameters. Symptomatic screw removal occurred in 12% of the patients. Increased distance between the most distal screw and the articular surface of the femur significantly reduced likelihood of symptomatic screw removal. A cutoff of 40mm from the articular block was predictive of removal (≥40mm, 0% removal; <40mm, 18% removal, p<0.0001). In patients with distal screws placed within 40mm of the articular surface of the femur, a ratio of screw length to distance between medial and lateral femoral cortices that was ≥1 was a strong predictor of symptomatic screw removal (area under Receiver Operating Characteristic curve, 0.75; p<0.0001). More distal screws and screws that radiographically extend to or beyond the medial cortex are more likely to cause pain and require removal in femoral fractures treated with retrograde intramedullary nails. We identified a specific distance from the joint (<40mm) and a ratio of screw length to bone width (≥1) that significantly increased the likelihood of symptomatic screw removal. Clinicians can use these data to inform patients of the likely risk of implant removal and perhaps to better guide placement and length of screws when the clinical scenario allows some flexibility in location and length of screws. Copyright © 2017 Elsevier Ltd. All rights reserved.
Al-Habib, Amro F; Al-Rabie, Abdulkarim; Aleissa, Sami; Albakr, Abdulrahman; Abobotain, Abdulaziz
2017-01-01
This was an interventional human cadaver study and radiological study. Atlas instrumentation is frequently involved in fusion procedures involving the craniocervical junction area. Identification of the entry point at the center of atlas lateral mass (ALM) is challenging because of its rounded posterior surface and the surrounding venous plexus. This report examines using the medial edge of atlas posterior arch (MEC1) as a fixed and reliable anatomic reference to guide the entry point of ALM screws. Fifty, normal, cervical spine computed tomography studies were reviewed. ALM screw trajectories were planned at one point along MEC1 and another point 2 mm lateral to MEC1. Free-hand ALM instrumentation was performed in ten fresh human cadavers using the 2 mm entry point, with a sagittal trajectory parallel to atlas inferior arch (IAC1); three-dimensional imaging was then performed to confirm instrumentation accuracy. The average ALM diameter was 12.35 mm. Inserting a screw using the entry point 2 mm lateral to MEC1 was closer to ALM midpoint than using the entry point along MEC1 ( P < 0.0001). Twenty ALM screws were successfully inserted in the ten cadavers. No encroachments into the spinal canal or foramen transversarium occurred. However, two screws were superiorly directed and violated the occipitocervical joint; they were not parallel to IAC1. MEC1 provides a fixed and reliable landmark for ALM instrumentation. An entry point 2 mm point lateral to MEC1 is close to ALM midpoint. IAC1 also provides a guide for the sagittal trajectory. Attention to anatomic landmarks may help reduce complications associated with atlas instrumentation but should be verified in future clinical studies.
Uruc, Vedat; Ozden, Raif; Dogramacı, Yunus; Kalacı, Aydıner; Hallaceli, Hasan; Küçükdurmaz, Fatih
2014-01-01
The aim of this study was to test a simple technique to augment the pullout resistance of an anchor in an over-drilled sheep humerus model. Sixty-four paired sheep humeri were harvested from 32 male sheep aged 18 months. Specimens were divided into an augmented group and non-augmented group. FASTIN RC 5-mm titanium screw anchors (DePuy Mitek, Raynham, MA) double loaded with suture material (braided polyester, nonabsorbable USP No. 2) were used in both groups. Osteoporosis was simulated by over-drilling with a 4.5-mm drill. Augmentation was performed by fixing 1 of the sutures 1.5 cm inferior to the anchor insertion site with a washer screw. This was followed by a pull-to-failure test at 50 mm/min. The ultimate load (the highest value of strength before anchor pullout) was recorded. A paired t test was used to compare the biomechanical properties of the augmented and non-augmented groups. In all specimens the failure mode was pullout of the anchor. The ultimate failure loads were statistically significantly higher in the augmented group (P < .0001). The mean pullout strength was 121.1 ± 10.17 N in the non-augmented group and 176.1 ± 10.34 N in the augmented group. The described augmentation technique, which is achieved by inferior-lateral fixation of 1 of the sutures of the double-loaded anchor to a fully threaded 6.5-mm cancellous screw with a washer, significantly increases the ultimate failure loads in the over-drilled sheep humerus model. Our technique is simple, safe, and inexpensive. It can be easily used in all osteoporotic patients and will contribute to the reduction of anchor failure. This technique might be difficult to apply arthroscopically. Cannulated smaller screws would probably be more practical for arthroscopic use. Further clinical studies are needed. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Validity of computed tomography in predicting scaphoid screw prominence: a cadaveric study.
Griffis, Clare E; Olsen, Cara; Nesti, Leon; Gould, C Frank; Frew, Michael; McKay, Patricia
2017-04-01
Studies of hardware protrusion into joint spaces following fracture fixation have been performed to address whether or not there is discrepancy between the actual and radiographic appearance of screw prominence. The purpose of our study was to prove that, with respect to the scaphoid, prominence as visualized on CT scan is real and not a result of metal artifact. Forty-two cadaveric wrists were separated into four allotted groups with 21 control specimens and 21 study specimens. All specimens were radiographically screened to exclude those with inherent carpal abnormalities. Acutrak® headless compression screws were placed into all specimens using an open dorsal approach. Cartilage was removed from screw insertion site at the convex surface of the scaphoid proximal pole. Control specimens had 0 mm screw head prominence. The studied specimens had 1, 2, and 3 mm head prominence measured with a digital caliper. Computed tomography, with direct sagittal acquisition and metal suppression technique, was then performed on all specimens following screw placement. Two staff radiologists blinded to the study groups interpreted the images. Results revealed that only one of 21 control specimens was interpreted as prominent. Comparatively, in the studied groups, 90% were accurately interpreted as prominent. CT provides an accurate assessment of scaphoid screw head prominence. When a screw appears prominent on CT scan, it is likely to be truly prominent without contribution from metallic artifact.
[Percutaneous treatment of unstable spine fractures - OP video and results from over 300 cases].
Prokop, A; Chmielnicki, M
2014-02-01
Minimally invasive surgery for vertebral fractures results in less approach-related morbidity, decreased postoperative pain, and rapid mobilisation of patients. Such procedures can be performed even in elderly patients. However, along with the many advantages, minimally invasive procedures are technically demanding, require sophisticated tools, and there is a learning curve for surgeons. Intraoperative visualisation is often possible only radiologically, and implants are generally much more expensive. Using the data from over 300 unstable vertebral fracture cases treated over the past 3.5 years, we have developed a differentiated treatment concept, depending on the age of the patient and the fracture characteristics. Unstable fractures with involvement of the posterior edge are stabilised from posterior, percutaneously with a fixator. In patients under 60 years, monoaxial screws with inserted rods (top loading) are used, with which distraction and restoration of lordosis are also possible. Patients over 60 years are treated percutaneously with a polyaxial sextant system with rods inserted to avoid avulsion of the pedicle screws from the vertebral body. To avoid cutting through the vertebra, the fenestrated screws can be augmented with cement. The operation technique is demonstrated by a video. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Li, Zhonghua; Han, Xuesong; Li, Xiaolei; Qin, Xiaofei
2018-04-01
To report the surgical technique and clinical outcomes for the treatment of AAD with atlas assimilation by single-stage posterior reduction and fixation applying intraoperative distraction between occipital and C2 screws. From April 2008 to January 2014, 25 patients underwent single-stage posterior reduction and fixation applying occipital plate, C2 screws and rigid cantilever beam system through intraoperative distraction between occipital and C2 screws. The pre- and postoperative radiologic parameters and JOA score were examined. Follow-up ranged from 6 to 17months in 25 patients. Clinical symptoms improved in 24 patients (96%) and were stable in 1 patient (4%). Radiologic assessment illustrated that complete reduction was achieved in 24 patients and partial reduction (>60%) in 1 patient. Overall, satisfactory decompression and reduction were showed on postoperative MRT and 3D-CT scans of all 25 patients. The single-stage posterior reduction and fixation applying occipital plate, C2 screws and rigid cantilever beam system through intraoperative distraction between occipital and C2 screws for AAD with atlas assimilation is simple, fast, safe and effective. C1 screws insertion for the treatment of AAD with atlas assimilation should be considered.
Lepesqueur, Laura Soares; de Figueiredo, Viviane Maria Gonçalves; Ferreira, Leandro Lameirão; Sobrinho, Argemiro Soares da Silva; Massi, Marcos; Bottino, Marco Antônio; Nogueira Junior, Lafayette
2015-01-01
To determine the effect of maintaining torque after mechanical cycling of abutment screws that are coated with diamondlike carbon and coated with diamondlike carbon doped with diamond nanoparticles, with external and internal hex connections. Sixty implants were divided into six groups according to the type of connection (external or internal hex) and the type of abutment screw (uncoated, coated with diamondlike carbon, and coated with diamondlike carbon doped with diamond nanoparticles). The implants were inserted into polyurethane resin and crowns of nickel chrome were cemented on the implants. The crowns had a hole for access to the screw. The initial torque and the torque after mechanical cycling were measured. The torque values maintained (in percentages) were evaluated. Statistical analysis was performed using one-way analysis of variance and the Tukey test, with a significance level of 5%. The largest torque value was maintained in uncoated screws with external hex connections, a finding that was statistically significant (P = .0001). No statistically significant differences were seen between the groups with and without coating in maintaining torque for screws with internal hex connections (P = .5476). After mechanical cycling, the diamondlike carbon with and without diamond doping on the abutment screws showed no improvement in maintaining torque in external and internal hex connections.
Wang, Yingxu; Mori, Ryuji; Ozoe, Nobuaki; Nakai, Takahisa; Uchio, Yuji
2009-11-01
Screws with strong pull-out strength have been sought for the treatment of cancellous bone. We hypothesized that an obliquely angled screw thread has advantages over conventional vertical thread with a minimal proximal half angle. Metal and bone screws were made of stainless steel and porcine cortical bone. Their proximal half angle was set at 0 degrees , 30 degrees , or 60 degrees . The screws were inserted into porcine cancellous bone. At 0 degrees , the thread faced the recipient bone vertically. Pullout tests at a rate of 30 mm/min (n=40, each screw type) and microcomputed tomography (n=6) were conducted. The pull-out strength of the screws was maximal at 30 degrees ; 348.8 (SD, 44.1)N with metal and 326.6 (39.4)N with bone. It was intermediate at 0 degrees ; 301.9 (35.9)N with metal and 278.2 (30.6)N with bone. It was minimal at 60 degrees; 126.5 (39.0)N with metal and 174.8 (29.7)N with bone. Cancellous bone was damaged between the threads at 30 degrees , while intact cancellous bone was preserved between the threads at 0 degrees. A proximal half angle of around 30 degrees is appropriate because the pullout force is applied to the recipient bone evenly. Commercial cancellous screws can be improved by changing the thread shape to minimize the damage to recipient bone.
Halder, Andreas M; Ludwig, Silke; Neumann, Wolfram
2002-01-01
Patellar tendon autograft fixation in arthroscopic anterior cruciate ligament reconstruction is commonly accomplished using interference screws. However, improper insertion of the screws may reduce primary stability, injure the posterior femoral cortex, or displace hardware into the joint. Even if placed properly, metallic screws interfere with postoperative magnetic resonance imaging. In case of revision surgery, removing screws may be difficult and leaves bone defects. Retrospective study. An arthroscopic technique was developed that achieves patellar tendon autograft fixation by press-fit without any supplemental internal fixation. Forty patients were examined clinically and by KT-1000 arthrometer 28.7 months (range, 22 to 40 months) postoperatively. The mean difference in side-to-side laxity was 1.3 mm (SD 2.2) and the results according to the IKDC score were as follows: 7 A, 28 B, 5 C, and 0 D. The double press-fit technique we present avoids all complications related to the use of interference screws and creates an ideal environment for osseous integration of the bone-patellar tendon-bone autograft. Concurrently, it achieves a stable fixation of the autograft and allows early functional rehabilitation. However, fixation strength depends on bone quality and the arthroscopic procedure is demanding.
Wan, Shiyong; Wu, Zixiang; Liu, Da; Gao, Mingxuan; Fu, Suochao
2010-01-01
Transpedicular fixation can be challenging in the osteoporotic spine as reduced bone mineral density compromises the mechanical stability of the pedicle screw. Here, we sought to investigate the biomechanical and histological properties of stabilization of expandable pedicle screw (EPS) in the osteoporotic spine in sheep. EPSs and standard pedicle screws, SINO screws, were inserted on the vertebral bodies in four female ovariectomized sheep. Pull-out and cyclic bending resistance test were performed to compare the holding strength of these pedicle screws. High-resolution micro-computed tomography (CT) was performed for three-dimensional image reconstruction. We found that the EPSs provided a 59.6% increase in the pull-out strength over the SINO screws. Moreover, the EPSs withstood a greater number of cycles or load with less displacement before loosening. Micro-CT image reconstruction showed that the tissue mineral density, bone volume fraction, bone surface/bone volume ratio, trabecular thickness, and trabecular separation were significantly better in the expandable portion of the EPSs than those in the anterior portion of the SINO screws (P < 0.05). Furthermore, the trabecular architecture in the screw–bone interface was denser in the expandable portion of the EPS than that in the anterior portion of the SINO screw. Histologically, newly formed bone tissues grew into the center of EPS and were in close contact with the EPS. Our results show that the EPS demonstrates improved biomechanical and histological properties over the standard screw in the osteoporotic spine. The EPS may be of value in treating patients with osteoporosis and warrants further clinical studies. PMID:20577766
Feng, Xiaoreng; Zhang, Sheng; Luo, Qiang; Fang, Jintao; Lin, Chaowen; Leung, Frankie; Chen, Bin
2016-03-01
The objective of this study was to define a safe zone for antegrade lag screw fixation of fracture of posterior column of the acetabulum using a novel 3D technology. Pelvic CT data of 59 human subjects were obtained to reconstruct three-dimensional (3D) models. The transparency of 3D models was then downgraded along the axial perspective (the view perpendicular to the cross section of the posterior column axis) to find the largest translucent area. The outline of the largest translucent area was drawn on the iliac fossa. The line segments of OA, AB, OC, CD, the angles of OAB and OCD that delineate the safe zone (ABDC) were precisely measured. The resultant line segments OA, AB, OC, CD, and angles OAB and OCD were 28.46mm(13.15-44.97mm), 45.89mm (34.21-62.85mm), 36.34mm (18.68-55.56mm), 53.08mm (38.72-75.79mm), 37.44° (24.32-54.96°) and 55.78° (43.97-79.35°) respectively. This study demonstrates that computer-assisted 3D modelling techniques can aid in the precise definition of the safe zone for antegrade insertion of posterior column lag screws. A full-length lag screw can be inserted into the zone (ABDC), permitting a larger operational error. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bayani, Shahin; Masoomi, Fatemeh; Aghaabbasi, Sharereh; Farsinejad, Alireza
2016-01-01
The purpose of this study was to evaluate the effect of platelet-released growth factor (PRGF) and immediate orthodontic forces on the removal torque of miniscrews. This study was conducted on three male dogs aged 6 to 8 months with a body weight of 17.6 to 18.4 kg. Sixty miniscrews were inserted in the posterior aspect of the femur. There were four groups, including loaded miniscrews with application of PRGF, unloaded miniscrews without application of PRGF, unloaded miniscrews with PRGF, and loaded miniscrews without PRGF. Twenty miniscrews were inserted in the femoral bone of one foot of each dog, including all the aforementioned subgroups. After 12 weeks, the miniscrews were removed by a removal torque tester device and measured in newton centimeters. The mean removal torque values in four groups of immediately loaded screws with PRGF, unloaded screws with PRGF, immediately loaded screws without PRGF, and unloaded screws without PRGF were 19.68, 21.74, 13.65, and 15.46 Ncm, respectively. It was shown that the mean removal torque value for the group with PRGF was significantly higher than that in the other groups (P = .0001). Although there was a tendency toward a decrease in removal torque value with immediate loading, it was not statistically significant (P = .21). According to the results of this study, applying PRGF with miniscrews increased their stability, but the delivery of immediate force on miniscrews had no effect on the miniscrews' stability.
Efficacy of Sealing Agents on Preload Maintenance of Screw-Retained Implant-Supported Prostheses.
Seloto, Camila Berbel; Strazzi Sahyon, Henrico Badaoui; Dos Santos, Paulo Henrique; Delben, Juliana Aparecida; Assunção, Wirley Gonçalves
The aim of this study was to evaluate the effect of sealing agents on preload maintenance of screw joints. A total of four groups (n = 10 in each group) of abutment/implant systems, including external hexagon implants and antirotational UCLA abutments with a metallic collar in cobalt-chromium alloy, were assessed. In the control group (CG), no sealing agent was used at the abutment screw/implant interface. In the other groups, three different sealing agents were used at the abutment screw/implant interface: anaerobic sealing agent for medium torque (ASMT), anaerobic sealing agent for high torque (ASHT), and cyanoacrylate-based bonding agent (CYAB). All abutments were attached to the implants at 32 ± 1 N.cm. After 48 ± 2 hours of initial tightening, loosing torque (detorque) was measured using a digital torque wrench. Data were analyzed using Shapiro-Wilk, Wilcoxon, and Kruskal-Wallis tests, at 5% level of significance. In the CG and ASMT groups, detorque was lower than the insertion torque (24.6 ± 1.5 N.cm and 24.3 ± 1.1 N.cm, respectively). In the ASHT and CYAB groups, mean detorque increased in comparison to the insertion torque (51.0 ± 7.4 N.cm and 47.7 ± 15.1 N.cm, respectively). The ASHT was more efficient than the other sealing agents, increasing the remaining preload (detorque value) 58.88%. Although the cyanoacrylate-based bonding agent also generated high detorque values, the high standard deviation suggested its lower reliability.
Biomechanical analysis of a novel hook-screw technique for C1-2 stabilization.
Reis, Marco Túlio; Nottmeier, Eric W; Reyes, Phillip M; Baek, Seungwon; Crawford, Neil R
2012-09-01
The Food and Drug Administration has not cleared the following medical devices for the use described in this study. The following medical devices are being discussed for an off-label use: cervical lateral mass screws. As an alternative for cases in which the anatomy and spatial relationship between C-2 and a vertebral artery precludes insertion of C-2 pedicle/pars or C1-2 transarticular screws, a technique that includes opposing laminar hooks (claw) at C-2 combined with C-1 lateral mass screws may be used. The biomechanical stability of this alternate technique was compared with that of a standard screw-rod technique in vitro. Flexibility tests were performed in 7 specimens (occiput to C-3) in the following 6 different conditions: 1) intact; 2) after creating instability and attaching a posterior cable/graft at C1-2; 3) after removing the graft and attaching a construct comprising C-1 lateral mass screws and C-2 laminar claws; 4) after reattaching the posterior cable-graft at C1-2 (posterior hardware still in place); 5) after removing the posterior cable-graft and laminar hooks and placing C-2 pedicle screws interconnected to C-1 lateral mass screws via rod; and 6) after reattaching the posterior cable-graft at C1-2 (screw-rod construct still in place). All types of stabilization significantly reduced the range of motion, lax zone, and stiff zone compared with the intact condition. There was no significant biomechanical difference in terms of range of motion or lax zone between the screw-rod construct and the screw-claw-rod construct in any direction of loading. The screw-claw-rod technique restricts motion much like the standard Harms technique, making it an acceptable alternative technique when aberrant arterial anatomy precludes the placement of C-2 pars/pedicle screws or C1-2 transarticular screws.
Sod, Gary A; Mitchell, Colin F; Hubert, Jeremy D; Martin, George S; Gill, Marjorie S
2007-12-01
To compare in vitro monotonic biomechanical properties of an equine spoon plate (ESP) with an axial 3-hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws (DCP-TLS) inserted in lag fashion for equine proximal interphalangeal (PIP) joint arthrodesis. Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. Cadaveric adult equine forelimbs (n=18 pairs). For each forelimb pair, 1 PIP joint was stabilized with an ESP (8 hole, 4.5 mm) and 1 with an axial 3-hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion. Six matching pairs of constructs were tested in single cycle to failure under axial compression with load applied under displacement control at a constant rate of 5 cm/s. Six construct pairs were tested for cyclic fatigue under axial compression with cyclic load (0-7.5 kN) applied at 6 Hz; cycles to failure were recorded. Six construct pairs were tested in single cycle to failure under torsional loading applied at a constant displacement rate (0.17 radians/s) until rotation of 0.87 radians occurred. Mean values for each fixation method were compared using a paired t-test within each group with statistical significance set at P<.05. Mean yield load, yield stiffness, and failure load for ESP fixation were significantly greater (for axial compression and torsion) than for DCP-TLS fixation. Mean (+/- SD) values for the ESP and DCP-TLS fixation techniques, respectively, in single cycle to failure under axial compression were: yield load 123.9 +/- 8.96 and 28.5 +/- 3.32 kN; stiffness, 13.11 +/- 0.242 and 2.60 +/- 0.17 kN/cm; and failure load, 144.4 +/- 13.6 and 31.4 +/- 3.8 kN. In single cycle to failure under torsion, mean (+/- SD) values for ESP and DCP-TLS, respectively, were: stiffness 2,022 +/- 26.2 and 107.9 +/- 11.1 N m/rad; and failure load: 256.4 +/- 39.2 and 87.1 +/- 11.5 N m. Mean cycles to failure in axial compression of ESP fixation (622,529 +/- 65,468) was significantly greater than DCP-TLS (95,418 +/- 11,037). ESP was superior to an axial 3-hole narrow DCP with 2 abaxial transarticular screws inserted in lag fashion in resisting static overload forces and cyclic fatigue. In vitro results support further evaluation of ESP for PIP joint arthrodesis in horses. Its specific design may provide increased stability without need for external coaptation support.
Kim, Seok-Gyu; Son, Mee-Kyoung
2015-01-01
PURPOSE The purpose of this study was to examine the abutment screw stability of screw- and cement-retained implant-supported dental prosthesis (SCP) after simulated cement washout as well as the stability of SCP cements after complete loosening of abutment screws. MATERIALS AND METHODS Thirty-six titanium CAD/CAM-made implant prostheses were fabricated on two implants placed in the resin models. Each prosthesis is a two-unit SCP: one screw-retained and the other cemented. After evaluating the passive fit of each prosthesis, all implant prostheses were randomly divided into 3 groups: screwed and cemented SCP (Control), screwed and noncemented SCP (Group 1), unscrewed and cemented SCP (Group 2). Each prosthesis in Control and Group 1 was screwed and/or cemented, and the preloading reverse torque value (RTV) was evaluated. SCP in Group 2 was screwed and cemented, and then unscrewed (RTV=0) after the cement was set. After cyclic loading was applied, the postloading RTV was measured. RTV loss and decementation ratios were calculated for statistical analysis. RESULTS There was no significant difference in RTV loss ratio between Control and Group 1 (P=.16). No decemented prosthesis was found among Control and Group 2. CONCLUSION Within the limits of this in vitro study, the stabilities of SCP abutment screws and cement were not significantly changed after simulated cement washout or screw loosening. PMID:26140172
Tabata, Tomonori; Kaku, Nobuhiro; Hara, Katsutoshi; Tsumura, Hiroshi
2015-04-01
Press-fit and screw fixation are important technical factors to achieve initial stability of a cementless acetabular cup for good clinical results of total hip arthroplasty. However, how these factors affect one another in initial cup fixation remains unclear. Therefore, this study aimed to evaluate the mutual influence between press-fit and screw fixation on initial cup stability. Foam bone was subjected to exact hemispherical-shape machining to diameters of 48, 48.5 and 49 mm. A compressive force was applied to ensure seating of a 48-mm-diameter acetabular cup in the foam bone prior to testing. Screws were inserted in six different conditions and tightened in a radial direction at the same torque strength. Then, the socket was rotated with a twist-testing machine, and the torque value at the start of axial rotation between the socket and the foam bone was measured under each screw condition. The torque values for the 48-mm-diameter reaming were >20 N m higher than those for the 48.5- and 49-mm-diameter reaming in each screw condition, indicating that press-fit fixation is stronger than screw fixation. Meanwhile, torque values for the 48.5- and 49-mm-diameter reaming tended to increase with increasing the number of screws. According to our experiment, press-fit fixation of a cementless acetabular cup achieved rigid stability. Although the supplemental screws increased stability of the implant under good press-fit conditions, they showed little impact on whole-cup stability. In the case of insufficient press-fit fixation, cup stability depends on screw stability and increasing the number of additional screws increases cup stability.
Computation and visualization of uncertainty in surgical navigation.
Simpson, Amber L; Ma, Burton; Vasarhelyi, Edward M; Borschneck, Dan P; Ellis, Randy E; James Stewart, A
2014-09-01
Surgical displays do not show uncertainty information with respect to the position and orientation of instruments. Data is presented as though it were perfect; surgeons unaware of this uncertainty could make critical navigational mistakes. The propagation of uncertainty to the tip of a surgical instrument is described and a novel uncertainty visualization method is proposed. An extensive study with surgeons has examined the effect of uncertainty visualization on surgical performance with pedicle screw insertion, a procedure highly sensitive to uncertain data. It is shown that surgical performance (time to insert screw, degree of breach of pedicle, and rotation error) is not impeded by the additional cognitive burden imposed by uncertainty visualization. Uncertainty can be computed in real time and visualized without adversely affecting surgical performance, and the best method of uncertainty visualization may depend upon the type of navigation display. Copyright © 2013 John Wiley & Sons, Ltd.
Arthroscopic fixation of the clavicle shaft fracture.
Kim, Yang-Soo; Lee, Hyo-Jin; Kim, Jong-Ick; Yang, Hyo; Jin, Hong-Ki; Patel, Hiren Kirtibhai; Kim, Jong-Ho; Park, In
2017-01-01
This article describes an arthroscopic technique for the fixation of clavicle shaft fractures. A viewing portal is made 2 cm anterior to the fracture site, and a working portal is made 2 cm lateral to the fracture site. The guide wire for a 4.0-mm cannulated screw is inserted through the fracture site to the medial fracture fragment under arthroscopic guidance. Through the medial fragment, the guide wire is delivered through the skin anteriorly. The fracture is reduced, and then, the guide wire is drilled back across the fracture site to the lateral fracture fragment. After confirming the reduction under arthroscopy, the appropriately sized cannulated screw is inserted after reaming. This arthroscopic technique would be useful for the precise reduction and minimal invasive fixation of clavicle shaft fractures. Preliminary results are encouraging, and further studies with long-term follow-up are needed to determine the precise indications and limitations of the procedure.
Sugand, Kapil; Wescott, Robert A; Carrington, Richard; Hart, Alister; Van Duren, Bernard H
2018-05-10
Background and purpose - Simulation is an adjunct to surgical education. However, nothing can accurately simulate fluoroscopic procedures in orthopedic trauma. Current options for training with fluoroscopy are either intraoperative, which risks radiation, or use of expensive and unrealistic virtual reality simulators. We introduce FluoroSim, an inexpensive digital fluoroscopy simulator without the need for radiation. Patients and methods - This was a multicenter study with 26 surgeons in which everyone completed 1 attempt at inserting a guide-wire into a femoral dry bone using surgical equipment and FluoroSim. 5 objective performance metrics were recorded in real-time to assess construct validity. The surgeons were categorized based on the number of dynamic hip screws (DHS) performed: novices (< 10), intermediates (10-39) and experts (≥ 40). A 7-point Likert scale questionnaire assessed the face and content validity of FluoroSim. Results - Construct validity was present for 2 clinically validated metrics in DHS surgery. Experts and intermediates statistically significantly outperformed novices for tip-apex distance and for cut-out rate. Novices took the least number of radiographs. Face and content validity were also observed. Interpretation - FluoroSim discriminated between novice and intermediate or expert surgeons based on tip-apex distance and cut-out rate while demonstrating face and content validity. FluoroSim provides a useful adjunct to orthopedic training. Our findings concur with results from studies using other simulation modalities. FluoroSim can be implemented for education easily and cheaply away from theater in a safe and controlled environment.
Noonan, Timothy; Pinzur, Michael; Paxinos, Odysseas; Havey, Robert; Patwardhin, Avinash
2005-04-01
Fatigue fractures of the tibia have been observed at the level of the proximal end of the nail after successful tibiocalcaneal arthrodesis with a retrograde intramedullary device. To study the effect of nail length, five matched pairs of cadaver tibiae were instrumented with strain gauges and potted in methylmethacrylate from a level 3 cm proximal to the distal medial malleolus to simulate a successful tibiocalcaneal arthrodesis. A standard length (15 cm) ankle arthrodesis nail and an identical longer device terminating in the proximal tibial metaphysis were inserted in each paired tibia using appropriate technique. The strain of the posterior cortex of the tibia was recorded under bending moments of up to 50 Nm for each intact specimen after nail insertion and after proximal locking of the nail. The nails were then exchanged between the specimens of the same pairs and the experiment was repeated to insure uniformity. The standard length locked nail increased the principal strain of the posterior cortex of the tibia at the level of the proximal screw holes 5.3 times more than the locked long nail (353 and 67 microstrains), respectively. This stress concentration was not observed when the proximal extent of the nail terminated within the proximal tibial metaphysis. A successful tibiocalcaneal arthrodesis with a standard length locked intramedullary nail creates stress concentration around the proximal screw holes that may be responsible for the fractures observed clinically. This study supports the use of a "long" retrograde locked intramedullary nail for tibiocalcaneal arthrodesis in patients with systemic or localized osteopenia.
Patil, Sunit; Mahon, Andrew; Green, Sarah; McMurtry, Ian; Port, Andrew
2006-06-01
There has been a recent trend towards using a raft of small diameter 3.5mm cortical screws for supporting depressed tibial plateau fractures (Schatzker type III). Our aim was to compare the biomechanical properties of a raft of 3.5 mm cortical screws with that of 6.5 mm cancellous screws in a synthetic bone model. Ten rigid polyurethane foam (sawbone) blocks, with a density simulating osteoporotic bone and ten blocks with a density simulating normal density bone were obtained. A Schatzker type III fracture was created in each block. The fracture fragments were then elevated and supported using two 6.5 mm cancellous screws in ten blocks and four 3.5 mm cortical screws in the remaining. The fractures were loaded using a Lloyd testing machine. The mean force needed to produce a depression of 5 mm was 700.8 N with the four-screw construct and 512.4 N with the two-screw construct in the osteoporotic model. This difference was highly statistically significant (p = 0.009). The mean force required to produce the same depression was 1878.2 N with the two-screw construct and 1938.2 N with the four-screw construct in the non-osteoporotic model. Though the difference was not statistically significant (p = 0.42), an increased fragmentation of the synthetic bone fragments was noticed with the two-screw construct but not with the four-screw construct. A raft of four 3.5 mm cortical screws is biomechanically stronger than two 6.5 mm cancellous screws in resisting axial compression in osteoporotic bone.
Self-designed femoral neck guide pin locator for femoral neck fractures.
Xia, Shengli; Wang, Ziping; Wang, Minghui; Wu, Zuming; Wang, Xiuhui
2014-01-01
Closed reduction and fixation with 3 cannulated screws is a widely accepted surgery for the treatment of femoral neck fractures. However, how to obtain optimal screw placement remains unclear. In the current study, the authors designed a guide pin positioning system for femoral neck fracture cannulated screw fixation and examined its application value by comparing it with freehand guide needle positioning and with general guide pin locator positioning provided by equipment manufacturers. The screw reset rate, screw parallelism, triangle area formed by the link line of the entry point of 3 guide pins, and maximum vertical load bearing of the femoral neck after internal fixation were recorded. As expected, the triangle area was largest in the self-designed positioning group, followed by the general positioning group and the freehand positioning group. The difference among the 3 groups was statistically significant (P<.05). Anteroposterior and lateral radiographs showed that the screws were more parallel in the self-designed positioning group and general positioning group compared with the freehand positioning group (P<.05). The screw reset rate in the self-designed positioning group was significantly lower than that in the general positioning group and the freehand positioning group (P<.05). Maximum bearing load among the 3 groups was equivalent, showing no statistically significant difference (P>.05). The authors’ self-designed guide pin positioning system has the potential to accurately insert cannulated screws in femoral neck fractures and may reduce bone loss and unnecessary radiation.
Liu, Kun; Zhang, Qiang; Li, Xin; Zhao, Changsong; Quan, Xuemin; Zhao, Rugang; Chen, Zongfeng; Li, Yansheng
2017-06-01
Accurate implantation of pedicle screw in spinal deformity correction surgeries is always challenging. We have developed a method of pedicle screw placement in severe and rigid scoliosis with a multi-level 3D printing drill guide template. From November 2011 to March 2015, ten patients (4 males and 6 females) with severe and rigid scoliosis (Cobb angle >70° and flexibility <30%)were included. Multi-level template was designed and manufactured according to the part (two or three levels) of the most severe deformity. The drill template was then placed on the corresponding vertebral surface. Then, pedicle screws were carefully inserted along the trajectories. The other screws were placed in free hand. After surgery, the positions of the pedicle screws were evaluated by CT scan and graded for validation. 48 screws were implanted using templates, other 104 screws in free hand, and the accuracies were 93.8 and 78.8%, respectively, with significant difference. The deformity correction ratio was 67.1 and 41.2% in coronal and sagittal plane post-operatively, respectively. The average operation time was 234.0 ± 34.1 min, and average blood loss was 557 ± 67.4 ml. With the application of multi-level template, the incidence of cortex perforation in severe and rigid scoliosis decreased and this technology is, therefore, potentially applicable in clinical practice.
Linear motion device and method for inserting and withdrawing control rods
Smith, J.E.
Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.
Chiu, Chee Kidd; Chan, Chris Yin Wei; Kwan, Mun Keong
2017-01-01
This study investigates the safety and accuracy of percutaneous pedicle screws placed using fluoroscopic guidance in the thoracolumbosacral spine among Asian patients. Computerized tomography scans of 128 patients who had surgery using fluoroscopic-guided percutaneous pedicle screws were selected. Medial, lateral, superior, and inferior screw perforations were classified into grade 0 (no violation), grade 1 (<2 mm perforation), grade 2 (2-4 mm perforation), and grade 3(>4 mm perforation). Anterior perforations were classified into grade 0 (no violation), grade 1 (<4 mm perforation), grade 2 (4-6 mm perforation), and grade 3(>6 mm perforation). Grade 2 and grade 3 perforation were considered as "critical" perforation. In total, 1002 percutaneous pedicle screws from 128 patients were analyzed. The mean age was 52.7 ± 16.6. There were 70 male patients and 58 female patients. The total perforation rate was 11.3% (113) with 8.4% (84) grade 1, 2.6% (26) grade 2, and 0.3% (3) grade 3 perforations. The overall "critical" perforation rate was 2.9% (29 screws) and no complications were noted. The highest perforation rates were at T4 (21.6%), T2 (19.4%), and T6 (19.2%). The total perforation rate of 11.3% with the total "critical" perforation rate of 2.9% (2.6% grade 2 and 0.3% grade 3 perforations). The highest perforation rates were found over the upper to mid-thoracic region. Fluoroscopic-guided percutaneous pedicle screws insertion among Asians has the safety and accuracy comparable to the current reported percutaneous pedicle screws and open pedicle screws techniques.
Beer, Andreas; Gahleitner, André; Holm, Anders; Birkfellner, Wolfgang; Homolka, Peter
2007-02-01
The aim of this study was to quantify the effect of adapted preparation on the insertion torque of self-tapping implants in cancellous bone. In adapted preparation, bone condensation - and thus, insertion torque - is controlled by changing the diameter of the drilling. After preparation of cancellous porcine vertebral bone with drills of 2.85, 3, 3.15 or 3.35 mm final diameters, Brånemark sytem Mk III implants (3.75 x 11.5 mm) were inserted in 141 sites. During implantation, the insertion torque was recorded. Prior to implant insertion, bone mineralization (bone mineral density (BMD)) was measured with dental quantative computed tomography. The BMD values measured at the implant position were correlated with insertion torque for varying bone condensation. Based on the average torque recorded during implant insertion into the pre-drilled canals with a diameter of 3 mm, torque increased by approximately 17% on reducing the diameter of the drill by 5% (to 2.85 mm). On increasing the diameter of the osteotomy to 3.15 mm (5%) or 3.35 mm (12%), torque values decreased by approximately 21% and 50%, respectively. The results demonstrate a correlation between primary stability (average insertion torque) and the diameter of the implant bed on using a screw-shaped implant. Thus, using an individualized bone mineralization-dependent drilling technique, optimized torque values could be achieved in all tested bone qualities with BMDs ranging from 330 to 500 mg/cm(3). The results indicate that using a bone-dependent drilling technique, higher torque values can also be achieved in poor bone using an individualized drilling resulting in higher bone condensation. As immediate function is dependent on primary stability (high insertion torque), this indicates that primary stability can be increased using a modified drilling technique in lesser mineralized bone.
Hunt, Patrick; Rehm, Oliver; Weiler, Andreas
2006-12-01
Using soft tissue grafts for anterior cruciate ligament (ACL) reconstruction, insertion site healing plays a crucial role in the long-term fate of the graft. It has been shown in an experimental animal study that using a soft tissue graft and anatomic graft fixation, a direct ligamentous insertion alike the native ACL developed 24 weeks postoperatively. Yet there are no reports on the long-term insertion site healing of anatomically fixed soft tissue grafts. The objective of this study was to evaluate graft insertion site healing, the intra-tunnel fate of the graft and its osseous replacement 2 years after ACL reconstruction in sheep. The left ACLs of six sheep were replaced by an autologous flexor tendon split graft and anatomically fixed with biodegradable poly-(D, L-lactide) interference screws. Animals received polychromic sequential labeling at different points in time to determine bone apposition per period. For evaluation of the insertion site healing and intra-tunnel changes, MRI scans were taken in vivo. Following sacrifice, radiographic imaging, conventional histology and fluorescence microscopy was undertaken. Most of the specimens showed a wide direct ligamentous insertion. It showed patterns alike the direct ligament insertion seen in intact ACLs. The intra-tunnel part of the graft had completely lost its tendon-like structure and in two cases, it was separated from the graft insertion by a thick bony layer. The biodegradable interference screw was fully degraded in all specimens. Ossification of the former drill tunnels was intense, showing only partial-length tunnel remnants in one femoral and three tibial specimens. As the graft heals to the joint surface and the aperture site is closed with soft tissue, mechanical stress of the intra-tunnel part of the graft is eliminated and the bone tunnel is protected from synovial fluid, resulting in osseous bridging of the tunnel aperture site, accelerated intra-tunnel graft resorption and its osseous replacement.
Preliminary Design on Screw Press Model of Palm Oil Extraction Machine
NASA Astrophysics Data System (ADS)
Firdaus, Muhammad; Salleh, S. M.; Nawi, I.; Ngali, Z.; Siswanto, W. A.; Yusup, E. M.
2017-01-01
The concept of the screw press is to compress the fruit bunch between the main screw and travelling cones to extract the palm oil. Visual inspection, model development and simulation of screw press by using Solidworks 2016 and calculation of design properties were performed to support the investigation. The project aims to analyse different design of screw press which improves in reducing maintenance cost and increasing lifespan. The currently existing of screw press can endure between 500 to 900 hours and requires frequent maintenance. Different configurations have been tried in determination of best design properties in screw press. The results specify that screw press with tapered inner shaft has more total lifespan (hours) compared existing screw press. The selection of the screw press with tapered inner shaft can reduce maintenance cost and increase lifespan of the screw press.
CLINICAL APPLICATION OF A DRILL GUIDE TEMPLATE FOR PEDICLE SCREW PLACEMENT IN SEVERE SCOLIOSIS.
Li, Xin; Zhang, Yaoshen; Zhang, Qiang; Zhao, Changsong; Liu, Kun
2017-01-01
To evaluate the accuracy and the effect of drill guide template for pedicle screw placement in severe scoliosis. Eight patients with rigid scoliosis were enrolled, five males and three females, ranging from nine to 23 years old. A three-dimensional CT scan of the spine was performed and saved as a DICOM file type. The multi-level template was designed by Mimics software and manufactured according to the part of the most severe deformity. The drill template was placed on the corresponding vertebral surface. Pedicle screws were carefully inserted across the trajectory of the template. Postoperatively, the positions of the pedicle screws were evaluated by CT scan and graded for validation. No spinal cord injury or nerve damage occurred. All patients had satisfactory outcomes. The abnormalities and the measures observed during operation were the same as those found in the preoperative period. The position of the pedicle screws was accurate, according to the postoperative X-ray and CT scan. The rate of scoliosis correction was 60%. Compared with controls, surgery time, blood loss and radiation were significantly lower. With the application of multi-level template, the placement of pedicle screws shows high accuracy in scoliosis with shorter surgical time, less blood loss and less radiation exposure. Level of Evidence III, Retrospective Comparative Study.
Farrokhi, Majid Reza; Kiani, Arash; Rezaei, Hamid
2018-01-15
We describe a novel and new technique of posterior unilateral lag screw fixation of non-union atlas lateral mass fracture. A 46-year-old man presented with cervical pain and tenderness after a vehicle turn over accident and he was diagnosed to have left atlas lateral mass fracture. He was initially treated by immobilization using Minerva orthosis. About 2 months later, he developed severe neck pain and limitation of motion and thus he was scheduled for operation due to non-union atlas lateral mass fracture. A 28 mm lag screw was inserted under anterior-posterior and lateral fluoroscopic views. The entrance point was at the dorsal aspect of left atlas posterior arc at its junction to the lateral mass, and by using the trajectory of 10 degrees medial and 22 degrees cephalad fracture reduction was achieved. Unilateral lag screw fixation of atlas fractures is an appropriate, safe and effective surgical technique for the management of unilateral atlas fractures.
Payer, M
2005-06-01
A number of conservative and operative approaches have been described for the treatment of unstable traumatic upper and middle thoracic fractures. The advantage of surgical correction and fixation/fusion lies in its potential to restore sagittal and coronal alignment, thereby indirectly decompressing the spinal cord. A consecutive series of 8 patients with unstable traumatic upper and middle thoracic fractures is reviewed. In all patients, polyaxial pedicle screws were inserted bilaterally into the two levels above and below the fracture. Rods that were less contoured ("undercontoured") than the regional hyperkyphosis at the injured level, were anchored to the caudal four screws. The cranial four screws, with the vertebrae to which they were inserted, were then progressively pulled posteriorly onto the undercontoured rods with rod reducers, thus correcting the hyperkyphosis and anterolisthesis. The mean follow-up was 15 months. The mean regional kyphosis was 23 degrees preoperatively, 17 degrees postoperatively and 18 degrees at follow-up. The mean anterolisthesis was 8 mm preoperatively, 1 mm postoperatively and 1 mm at follow-up. No hardware failure occurred. Five patients with complete spinal cord injury at presentation made no neurological recovery, two patients with incomplete spinal cord injury initially (ASIA B), recovered substantially (to ASIA D), and the patients who were neurologically intact at presentation remained so.
New Proximal Femoral Compaction Blade Provides Strong Antirotation Stability of the Femoral Head.
Hayashi, Shinya; Hirata, Yukiaki; Okamoto, Daiki; Kakunai, Satoshi; Hashimoto, Shingo; Takayama, Koji; Matsumoto, Tomoyuki; Niikura, Takahiro; Fujishiro, Takaaki; Hiranaka, Takafumi; Nishida, Kotaro; Kuroda, Ryosuke
2017-05-01
This study investigated the mechanical properties of a new rectangular compaction blade and compared this blade with other types of nail. Three types of nail were tested: the Magnum lag screw (Robert Reid Inc, Tokyo, Japan), proximal femoral nail, and Magnum Fid blade (Robert Reid Inc). The nails were inserted into solid rigid polyurethane foam, and the torsional moments were loaded with an Instron testing machine (Instron, Kanagawa, Japan). The force curve was recorded, and the average maximum torque was calculated from this curve. A simulation study was performed with finite element models to determine the mechanism underlying differences in rotational stability. Mechanical testing showed that the new compaction blade had stronger resistance against rotational force than the helical blade and lag screw implants. Finite element analysis also showed that the new compaction blade had stronger resistance to migration of the polyurethane foam cylinder than the other implant types. In addition, the new compaction blade had strong rotational stability. This implant should be useful for the treatment of unstable trochanteric fracture in patients with osteoporosis. [Orthopedics. 2017; 40(3):e491-e494.]. Copyright 2017, SLACK Incorporated.
Zhao, Xin; Zhao, Jie; Xie, Youzhuan; Mi, Jie
2016-01-01
This study assessed the utility of three-dimensional preoperative image reconstruction as digital virtual templating for junior surgeons in placing a pedicle screw (PS) in the lumbar spine. Twenty-three patients of lumbar disease were operated on with bilateral PS fixation in our hospital. The two sides of lumbar pedicles were randomly divided into "hand-free group" (HFG) and "digital virtual template group" (DVTG) in each patient. Two junior surgeons preoperatively randomly divided into these two groups finished the placement of PSs. The accuracy of PS and the procedure time of PS insertion were recorded. The accuracy of PS in DVTG was 91.8% and that in HFG was 87.7%. The PS insertion procedure time of DVTG was 74.5 ± 8.1 s and that of HFG was 90.9 ± 9.9 s. Although no significant difference was reported in the accurate rate of PS between the two groups, the PS insertion procedure time was significantly shorter in DVTG than in HFG (P < 0.05). Digital virtual template is simple and can reduce the procedure time of PS placement.
Kanna, P Rishimugesh; Shetty, Ajoy Prasad; Rajasekaran, S
2011-07-15
Prospective analysis of computed tomographic images of 376 normal pediatric cervical pedicles. To study the normal cervical pedicle morphometrics, the changes in pedicle morphology with skeletal growth, and the possibility of pedicle screw insertion. Although the usage of cervical pedicle screws in adults has become established, the feasibility of its application in children has not been studied. There are no in vivo studies that define the normal pediatric cervical pedicle morphometrics and its changes with growth and development of the child. A total of 376 normal pediatric cervical spine pedicles of 30 children (mean age = 6.7 ± 3.9 years) were analyzed for pedicle width (PW), pedicle height (PH), pedicle length (PL), pedicle axis length (PAL), transverse pedicle angle (TPA), and sagittal pedicle angle (SPA). The study population was categorized into three age groups (A: <5 years, B: 5-10 years, and C >10 years). The mean values of these parameters in the different age groups and the possibility of application cervical pedicle screws were studied. RESULTS.: The mean PW was lowest in the C3 vertebra and increased distally to be widest at C7. Sixty percent of C3 pedicles had a width less than 4 mm making screw passage risky and unsafe. With growth, the PW increased at all levels but this increase was significant only up to the age of 10 years. More than 75% of adult pedicle dimensions were achieved by 5 years of age. The mean PL at all levels remained the same with no significant increase with growth. However, the PAL showed continuous increase with growth similar to PW. The PAL also showed an increase from C3 to C7. The PH was always more than the PW at any level. Mild insignificant asymmetry was present between the right and left side pedicles in all values. With growth, there was a gradual increase in PW, PH, and PAL but was mainly before the age of 10 years. Majority of C3 pedicles were thin making screw fixation unsafe. However, at all other levels, the pedicle morphometrics per se were adequate and do not restrict safe application of 3-mm cervical pedicle screw.
Feasibility of detecting orthopaedic screw overtightening using acoustic emission.
Pullin, Rhys; Wright, Bryan J; Kapur, Richard; McCrory, John P; Pearson, Matthew; Evans, Sam L; Crivelli, Davide
2017-03-01
A preliminary study of acoustic emission during orthopaedic screw fixation was performed using polyurethane foam as the bone-simulating material. Three sets of screws, a dynamic hip screw, a small fragment screw and a large fragment screw, were investigated, monitoring acoustic-emission activity during the screw tightening. In some specimens, screws were deliberately overtightened in order to investigate the feasibility of detecting the stripping torque in advance. One set of data was supported by load cell measurements to directly measure the axial load through the screw. Data showed that acoustic emission can give good indications of impending screw stripping; such indications are not available to the surgeon at the current state of the art using traditional torque measuring devices, and current practice relies on the surgeon's experience alone. The results suggest that acoustic emission may have the potential to prevent screw overtightening and bone tissue damage, eliminating one of the commonest sources of human error in such scenarios.
Bosco, Aju; Venugopal, Prakash; Shetty, Ajoy Prasad; Shanmuganathan, Rajasekaran; Kanna, Rishi Mugesh
2018-04-01
Computed tomographic (CT) morphometric analysis. To assess the feasibility and safety of occipital condyle (OC)-based occipitocervical fixation (OCF) in Indians and to define anatomical zones and screw lengths for safe screw placement. Limitations of occipital squama-based OCF has led to development of two novel OC-based OCF techniques. Morphometric analysis was performed on the OCs of 70 Indian adults. The feasibility of placing a 3.5-mm-diameter screw into OCs was investigated. Safe trajectories and screw lengths for OC screws and C0-C1 transarticular screws without hypoglossal canal or atlantooccipital joint compromise were estimated. The average screw length and safe sagittal and medial angulations for OC screws were 19.9±2.3 mm, ≤6.4°±2.4° cranially, and 31.1°±3° medially, respectively. An OC screw could not be accommodated by 27% of the population. The safe sagittal angles and screw lengths for C0-C1 transarticular screw insertion (48.9°±5.7° cranial, 26.7±2.9 mm for junctional entry technique; 36.7°±4.6° cranial, 31.6±2.7 mm for caudal C1 arch entry technique, respectively) were significantly different than those in other populations. The risk of vertebral artery injury was high for the caudal C1 arch entry technique. Screw placement was uncertain in 48% of Indians due to the presence of aberrant anatomy. There were significant differences in the metrics of OC-based OCF between Indian and other populations. Because of the smaller occipital squama dimensions in Indians, OC-based OCF techniques may have a higher application rate and could be a viable alternative/salvage option in selected cases. Preoperative CT, including three-dimensional-CT-angiography (to delineate vertebral artery course), is imperative to avoid complications resulting from aberrant bony and vascular anatomy. Our data can serve as a valuable reference guide in placing these screws safely under fluoroscopic guidance.
Bosco, Aju; Venugopal, Prakash; Shanmuganathan, Rajasekaran; Kanna, Rishi Mugesh
2018-01-01
Study Design Computed tomographic (CT) morphometric analysis. Purpose To assess the feasibility and safety of occipital condyle (OC)-based occipitocervical fixation (OCF) in Indians and to define anatomical zones and screw lengths for safe screw placement. Overview of Literature Limitations of occipital squama-based OCF has led to development of two novel OC-based OCF techniques. Methods Morphometric analysis was performed on the OCs of 70 Indian adults. The feasibility of placing a 3.5-mm-diameter screw into OCs was investigated. Safe trajectories and screw lengths for OC screws and C0–C1 transarticular screws without hypoglossal canal or atlantooccipital joint compromise were estimated. Results The average screw length and safe sagittal and medial angulations for OC screws were 19.9±2.3 mm, ≤6.4°±2.4° cranially, and 31.1°±3° medially, respectively. An OC screw could not be accommodated by 27% of the population. The safe sagittal angles and screw lengths for C0–C1 transarticular screw insertion (48.9°±5.7° cranial, 26.7±2.9 mm for junctional entry technique; 36.7°±4.6° cranial, 31.6±2.7 mm for caudal C1 arch entry technique, respectively) were significantly different than those in other populations. The risk of vertebral artery injury was high for the caudal C1 arch entry technique. Screw placement was uncertain in 48% of Indians due to the presence of aberrant anatomy. Conclusions There were significant differences in the metrics of OC-based OCF between Indian and other populations. Because of the smaller occipital squama dimensions in Indians, OC-based OCF techniques may have a higher application rate and could be a viable alternative/salvage option in selected cases. Preoperative CT, including three-dimensional-CT-angiography (to delineate vertebral artery course), is imperative to avoid complications resulting from aberrant bony and vascular anatomy. Our data can serve as a valuable reference guide in placing these screws safely under fluoroscopic guidance. PMID:29713401
Accuracy of S2 Alar-Iliac Screw Placement Under Robotic Guidance.
Laratta, Joseph L; Shillingford, Jamal N; Lombardi, Joseph M; Alrabaa, Rami G; Benkli, Barlas; Fischer, Charla; Lenke, Lawrence G; Lehman, Ronald A
Case series. To determine the safety and feasibility of S2 alar-iliac (S2AI) screw placement under robotic guidance. Similar to standard iliac fixation, S2AI screws aid in achieving fixation across the sacropelvic junction and decreasing S1 screw strain. Fortunately, the S2AI technique minimizes prominent instrumentation and the need for offset connectors to the fusion construct. Herein, we present an analysis of the largest series of robotic-guided S2AI screws in the literature without any significant author conflicts of interest with the robotics industry. Twenty-three consecutive patients who underwent spinopelvic fixation with 46 S2AI screws under robotic guidance were analyzed from 2015 to 2016. Screws were placed by two senior spine surgeons, along with various fellow or resident surgical assistants, using a proprietary robotic guidance system (Renaissance; Mazor Robotics Ltd., Caesara, Israel). Screw position and accuracy was assessed on intraoperative CT O-arm scans and analyzed using three-dimensional interactive viewing and manipulation of the images. The average caudal angle in the sagittal plane was 31.0° ± 10.0°. The average horizontal angle in the axial plane using the posterior superior iliac spine as a reference was 42.8° ± 6.6°. The average S1 screw to S2AI screw angle was 11.3° ± 9.9°. Two violations of the iliac cortex were noted, with an average breach distance of 7.9 ± 4.8 mm. One breach was posterior (2.2%) and one was anterior (2.2%). The overall robotic S2AI screw accuracy rate was 95.7%. There were no intraoperative neurologic, vascular, or visceral complications related to the placement of the S2AI screws. Spinopelvic fixation achieved using a bone-mounted miniature robotic-guided S2AI screw insertion technique is safe and reliable. Despite two breaches, no complications related to the placement of the S2AI screws occurred in this series. Level IV, therapeutic. Copyright © 2017 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Paredes, Igor; Panero, Irene; Cepeda, Santiago; Castaño-Leon, Ana M; Jimenez-Roldan, Luis; Perez-Nuñez, Ángel; Alén, Jose A; Lagares, Alfonso
2018-06-14
This study aimed to compare the accuracy of screw placement between open pedicle screw fixation and percutaneous pedicle screw fixation (MIS) for the treatment of thoracolumbar spine fractures (TSF). Forty-nine patients with acute TSF who were treated with transpedicular screw fixation from January 2013 to December 2016 were retrospectively reviewed. The patients were divided into Open and MIS groups. Laminectomy was performed in either group if needed. The accuracy of the screw placement, the evolution of the Cobb sagital angle postoperatively and at 12-month follow up and the neurological status were recorded. AO type of fracture and TLICS score were also recorded. Mean age was 42 years old. Mean TLICS score was 6,29 and 5,96 for open and MIS groups respectively. Twenty five MIS and 24 open surgeries were performed, and 350 (175 in each group) screws were inserted (7,14 per patient). Twenty-four and 13 screws were considered ̈out ̈ in the open and MIS groups respectively (Odds ratio 1,98. 0,97-4,03 p=0,056). The Cobb sagittal angle went from 13,3o to 4,5o and from 14,9o to 8,2o in the Open and MIS groups respectively (both p<0,0001). Loss of correction at 12-month follow up was 3,2o and 4,2o for the open and MIS groups respectively. No neurological worsening was observed. For the treatment of acute thoracolumbar fractures, the MIS technique seems to achieve similar results to the open technique in relation to neurological improvement and deformity correction, while placing the screws more accurately.
Zhong, Dejun; Song, Yueming
2006-08-01
To explore the technique of fusing the reconstructed titanic plate, the C2 pedical screws, and the autogenous granulated cancellous bone graft in the occipitocervical region. From April 2002 to January 2005, 19 patients aged 31-67 years with occipitocervical instability underwent the occipitocervical fusion using the reconstructed plate, C2 pedical screws, and autogenous granulated cancellous bone graft. Of the patients, 8 had complex occipitocervical deformity, 8 had old atlantoaxial fracture and dislocation, 2 had rheumatoid arthritis and anterior dislocation of the atlantoaxial joint, and 1 had cancer of the deltoid process of the axis. No complication occurred during and after operation. The follow-up for an average of 16 months in 19 patients showed that all the patients achieved solid bony fusion in the occipitocervical region. There was no broken plate, broken screw, looseness of the internal fixation or neurovascular injury. The fixation of the C2 pedical screws with the reconstructed titanic plate is reliable, the insertion is easy, and the autogenous granulated cancellous bone graft has a high fusion rate, thus resulting in a satisfactory effect in the occipitocervical fusion.
In vivo surface analysis of titanium and stainless steel miniplates and screws.
Matthew, I R; Frame, J W; Browne, R M; Millar, B G
1996-12-01
This study was undertaken to characterize the surfaces of Champy titanium and stainless steel miniplates and screws that had been used to stabilize fractures of the mandible in an animal model. Miniplates and screws were retrieved at 4, 12, and 24 weeks after surgery. Low-vacuum scanning electron microscopy (SEM) of autoclaved unused (control) and test miniplates from the same production batches was undertaken. Energy-dispersive X-ray (EDX) analysis was used to identify compositional variations of the miniplate surface, and Vickers hardness testing was performed. At autopsy, clinical healing of all fractures was noted. SEM analysis indicated no perceptible difference in the surface characteristics of the miniplates at all time intervals. Aluminium and silicon deposits were identified by EDX analysis over the flat surfaces. There was extensive damage to some screw heads. It is concluded that there were no significant changes in the surface characteristics of miniplates retrieved up to 24 weeks after implantation in comparison with controls. Damage to the screws during insertion due to softness of the materials may render their removal difficult. There was no evidence to support the routine removal of titanium or stainless steel miniplates because of surface corrosion up to 6 months after implantation.
Long-term absorption of poly-L-lactic Acid interference screws.
Barber, F Alan; Dockery, W Dee
2006-08-01
To evaluate the long term in vivo degradation of poly-L-lactic acid (PLLA) interference screws with computed tomography (CT) and radiography as used in patellar tendon autograft anterior cruciate ligament (ACL) reconstruction. A total of 20 patients who had undergone patellar tendon autograft ACL reconstruction fixed with PLLA screws at least 7 years earlier were evaluated by physical examination, radiography, and CT to determine whether PLLA screw reabsorption and bone ingrowth had occurred. This study was granted Institutional Review Board approval. Lysholm, Tegner, Cincinnati, and International Knee Documentation Committee (IKDC) scores were obtained. CT data were measured in Hounsfield units. In all, 15 men and 5 women were evaluated 104 months after surgery (range, 89 to 124 months). CT and radiography demonstrated that the bone plug had fused to the tunnel wall, and that no intact interference screw was left. A parallel, threaded, and corticated screw tract was visible adjacent to the bone plug. No bone ingrowth had occurred at the screw site, although, occasionally, minimal calcification was seen. This was never as dense as cancellous bone, and no trabeculae were ever present. No positive pivot-shift test results were obtained. Lysholm, Tegner, and Cincinnati scores were 83, 5.6, and 75, respectively, at follow-up. Average KT difference was 0.7 mm. PLLA interference screws completely degraded, and the resulting area demonstrated a low Hounsfield count, consistent with soft tissue 7 years after insertion. No significant bone ingrowth occurred at the screw site. Femoral and tibial ACL tunnels were absent of anything but fibrous tissue and usually had a sclerotic cortical lining. PLLA biodegradable ACL screws eventually disappear completely. PLLA material is not replaced by bone. ACL graft tunnels are filled with nonossified material. This study provides a baseline for comparison with other biodegradable interference screws that may encourage bone ingrowth as they degrade. Level IV (no or historical control).
Reinforcement of osteosynthesis screws with brushite cement.
Van Landuyt, P; Peter, B; Beluze, L; Lemaître, J
1999-08-01
The fixation of osteosynthesis screws remains a severe problem for fracture repair among osteoporotic patients. Polymethyl-methacrylate (PMMA) is routinely used to improve screw fixation, but this material has well-known drawbacks such as monomer toxicity, exothermic polymerization, and nonresorbability. Calcium phosphate cements have been developed for several years. Among these new bone substitution materials, brushite cements have the advantage of being injectable and resorbable. The aim of this study is to assess the reinforcement of osteosynthesis screws with brushite cement. Polyurethane foams, whose density is close to that of cancellous bone, were used as bone model. A hole was tapped in a foam sample, then brushite cement was injected. Trabecular osteosynthesis screws were inserted. After 24 h of aging in water, the stripping force was measured by a pull-out test. Screws (4.0 and 6.5 mm diameter) and two foam densities (0.14 and 0.28 g/cm3) were compared. Cements with varying solid/liquid ratios and xanthan contents were used in order to obtain the best screw reinforcement. During the pull-out test, the stripping force first increases to a maximum, then drops to a steady-state value until complete screw extraction. Both maximum force and plateau value increase drastically in the presence of cement. The highest stripping force is observed for 6.5-mm screws reinforced with cement in low-density foams. In this case, the stripping force is multiplied by 3.3 in the presence of cement. In a second experiment, cements with solid/liquid ratio ranging from 2.0 to 3.5 g/mL were used with 6.5-mm diameter screws. In some compositions, xanthan was added to improve injectability. The best results were obtained with 2.5 g/mL cement containing xanthan and with 3.0 g/mL cements without xanthan. A 0.9-kN maximal stripping force was observed with nonreinforced screws, while 1.9 kN was reached with reinforced screws. These first results are very promising regarding screw reinforcement with brushite cement. However, the polyurethane foam model presents noninterconnected porosity and physiological liquid was not modelized.
Carrera, Ion; Gelber, Pablo Eduardo; Chary, Gaetan; González-Ballester, Miguel A; Monllau, Juan Carlos; Noailly, Jerome
2016-10-01
To assess, with finite element (FE) calculations, whether immediate weight bearing would be possible after surgical stabilization either with cannulated screws or with a locking plate in a split fracture of the lateral tibial plateau (LTP). A split fracture of the LTP was recreated in a FE model of a human tibia. A three-dimensional FE model geometry of a human femur-tibia system was obtained from the VAKHUM project database, and was built from CT images from a subject with normal bone morphologies and normal alignment. The mesh of the tibia was reconverted into a geometry of NURBS surfaces. A split fracture of the lateral tibial plateau was reproduced by using geometrical data from patient radiographs. A locking screw plate (LP) and a cannulated screw (CS) systems were modelled to virtually reduce the fracture and 80 kg static body-weight was simulated. While the simulated body-weight led to clinically acceptable interfragmentary motion, possible traumatic bone shear stresses were predicted nearby the cannulated screws. With a maximum estimation of about 1.7 MPa maximum bone shear stresses, the Polyax system might ensure more reasonable safety margins. Split fractures of the LTP fixed either with locking screw plate or cannulated screws showed no clinically relevant IFM in a FE model. The locking screw plate showed higher mechanical stability than cannulated screw fixation. The locking screw plate might also allow full or at least partial weight bearing under static posture at time zero.
Modeling bicortical screws under a cantilever bending load.
James, Thomas P; Andrade, Brendan A
2013-12-01
Cyclic loading of surgical plating constructs can precipitate bone screw failure. As the frictional contact between the plate and the bone is lost, cantilever bending loads are transferred from the plate to the head of the screw, which over time causes fatigue fracture from cyclic bending. In this research, analytical models using beam mechanics theory were developed to describe the elastic deflection of a bicortical screw under a statically applied load. Four analytical models were developed to simulate the various restraint conditions applicable to bicortical support of the screw. In three of the models, the cortical bone near the tip of the screw was simulated by classical beam constraints (1) simply supported, (2) cantilever, and (3) split distributed load. In the final analytical model, the cortices were treated as an elastic foundation, whereby the response of the constraint was proportional to screw deflection. To test the predictive ability of the new analytical models, 3.5 mm cortical bone screws were tested in a synthetic bone substitute. A novel instrument was developed to measure the bending deflection of screws under radial loads (225 N, 445 N, and 670 N) applied by a surrogate surgical plate at the head of the screw. Of the four cases considered, the analytical model utilizing an elastic foundation most accurately predicted deflection at the screw head, with an average difference of 19% between the measured and predicted results. Determination of the bending moments from the elastic foundation model revealed that a maximum moment of 2.3 N m occurred near the middle of the cortical wall closest to the plate. The location of the maximum bending moment along the screw axis was consistent with the fracture location commonly observed in clinical practice.
Li, Shuang; Chang, Shi-Min; Jin, Yan-Min; Zhang, Ying-Qi; Niu, Wen-Xin; Du, Shou-Chao; Zhang, Li-Zhi; Ma, Hui
2016-06-01
As a predictor of the risk of lag screw cutout, it was recommended that keeping tip-apex distance (TAD)<25mm and placing the screw centrally or inferiorly, but positioning the lag screw too inferiorly in the head would produce TAD>25mm. We aim to simulate various positions of the lag screw in the femoral head and identify whether 25mm is a suitable cut-off value that favours all sizes of femoral heads with intertrochanteric fractures of the hip. Using a general mathematical software, the positions of the screw tip points were simulated. The virtual anterior-posterior and lateral views were then visualised, and the locus of the screw tips was projected into a Cartesian coordinate system according to the TAD and calcar-referenced tip-apex distance (CalTAD) formulas. Each original virtual anterior-posterior and lateral image was zoomed and compiled to match a calculated average image. The screw tip points were recorded, traced and compiled into volumes which could be used to visualise the screw's movements and positioning within the femoral head. The extracted volumes were calculated when 10mm
A semi-automatic computer-aided method for surgical template design
NASA Astrophysics Data System (ADS)
Chen, Xiaojun; Xu, Lu; Yang, Yue; Egger, Jan
2016-02-01
This paper presents a generalized integrated framework of semi-automatic surgical template design. Several algorithms were implemented including the mesh segmentation, offset surface generation, collision detection, ruled surface generation, etc., and a special software named TemDesigner was developed. With a simple user interface, a customized template can be semi- automatically designed according to the preoperative plan. Firstly, mesh segmentation with signed scalar of vertex is utilized to partition the inner surface from the input surface mesh based on the indicated point loop. Then, the offset surface of the inner surface is obtained through contouring the distance field of the inner surface, and segmented to generate the outer surface. Ruled surface is employed to connect inner and outer surfaces. Finally, drilling tubes are generated according to the preoperative plan through collision detection and merging. It has been applied to the template design for various kinds of surgeries, including oral implantology, cervical pedicle screw insertion, iliosacral screw insertion and osteotomy, demonstrating the efficiency, functionality and generality of our method.
NASA Astrophysics Data System (ADS)
Bondarenko, J. A.; Fedorenko, M. A.; Pogonin, A. A.
2018-03-01
The loading and unloading units and grinding mills of raw devices have internal cone type or pipe screw perceive load of incoming and outgoing material. The main part of the support assembly is a pin. Mounting seats for the pipe screws cone have traces of deformation and work hardening, while they themselves have wear of pins and deformation of the inner and outer cylindrical working surface. In the mill body, there are constantly acting dynamic forces causing vibration, which are transmitted to the stud and inner accelerating elements. Under the influence of stress and vibration, the housing spigot is in the stress-compressed state and stretched vertically and horizontally. As a result, the insertion element is deformed and weakened in the fixture. A moving element appears in the gap leading to the fact that it drops lfeedstock and under the influence of variable loads it is destroyed, as well as the seating surfaces of the insert pin member.
A semi-automatic computer-aided method for surgical template design
Chen, Xiaojun; Xu, Lu; Yang, Yue; Egger, Jan
2016-01-01
This paper presents a generalized integrated framework of semi-automatic surgical template design. Several algorithms were implemented including the mesh segmentation, offset surface generation, collision detection, ruled surface generation, etc., and a special software named TemDesigner was developed. With a simple user interface, a customized template can be semi- automatically designed according to the preoperative plan. Firstly, mesh segmentation with signed scalar of vertex is utilized to partition the inner surface from the input surface mesh based on the indicated point loop. Then, the offset surface of the inner surface is obtained through contouring the distance field of the inner surface, and segmented to generate the outer surface. Ruled surface is employed to connect inner and outer surfaces. Finally, drilling tubes are generated according to the preoperative plan through collision detection and merging. It has been applied to the template design for various kinds of surgeries, including oral implantology, cervical pedicle screw insertion, iliosacral screw insertion and osteotomy, demonstrating the efficiency, functionality and generality of our method. PMID:26843434
A semi-automatic computer-aided method for surgical template design.
Chen, Xiaojun; Xu, Lu; Yang, Yue; Egger, Jan
2016-02-04
This paper presents a generalized integrated framework of semi-automatic surgical template design. Several algorithms were implemented including the mesh segmentation, offset surface generation, collision detection, ruled surface generation, etc., and a special software named TemDesigner was developed. With a simple user interface, a customized template can be semi- automatically designed according to the preoperative plan. Firstly, mesh segmentation with signed scalar of vertex is utilized to partition the inner surface from the input surface mesh based on the indicated point loop. Then, the offset surface of the inner surface is obtained through contouring the distance field of the inner surface, and segmented to generate the outer surface. Ruled surface is employed to connect inner and outer surfaces. Finally, drilling tubes are generated according to the preoperative plan through collision detection and merging. It has been applied to the template design for various kinds of surgeries, including oral implantology, cervical pedicle screw insertion, iliosacral screw insertion and osteotomy, demonstrating the efficiency, functionality and generality of our method.
SU-E-T-609: Perturbation Effects of Pedicle Screws On Radiotherapy Dose Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bar-Deroma, R; Borzov, E; Nevelsky, A
2015-06-15
Purpose: Radiation therapy in conjunction with surgical implant fixation is a common combined treatment in case of bone metastases. However, metal implants generally used in orthopedic implants perturb radiation dose distributions. Carbon-Fiber Reinforced (CFR) PEEK material has been recently introduced for production of intramedullary screws and plates. Gold powder can be added to the CFR-PEEK material in order to enhance visibility of the screws during intraoperative imaging procedures. In this work, we investigated the perturbation effects of the pedicle screws made of CFR-PEEK, CFR-PEEK with added gold powder (CFR-PEEK-AU) and Titanium (Ti) on radiotherapy dose distributions. Methods: Monte Carlo (MC)more » simulations were performed using the EGSnrc code package for 6MV beams with 10×10 fields at SSD=100cm. By means of MC simulations, dose distributions around titanium, CFR- PEEK and CFR-PEEK-AU screws (manufactured by Carbo-Fix Orthopedics LTD, Israel) placed in a water phantom were calculated. The screw axis was either parallel or perpendicular to the beam axis. Dose perturbation (relative to dose in homogeneous water phantom) was assessed. Results: Maximum overdose due to backscatter was 10% for the Ti screws, 5% for the CFR-PEEK-AU screws and effectively zero for the CFR-PEEK screws. Maximum underdose due to attenuation was 25% for the Ti screws, 15% for the CFR-PEEK-AU screws and 5% for the CFR-PEEK screws. Conclusion: Titanium screws introduce the largest distortion on the radiation dose distribution. The gold powder added to the CFR-PEEK material improves visibility at the cost of increased dose perturbation. CFR-PEEK screws caused minimal alteration on the dose distribution. This can decrease possible over and underdose of adjacent tissue and thus favorably influence treatment efficiency. The use of such implants has potential clinical advantage in the treatment of neoplastic bone disease.« less
A computer-guided minimally-invasive technique for orthodontic forced eruption of impacted canines.
BERTELè, Matteo; Minniti, Paola P; Dalessandri, Domenico; Bonetti, Stefano; Visconti, Luca; Paganelli, Corrado
2016-06-01
The aim of this study was to develop a computer-guided minimally-invasive protocol for the surgical application of an orthodontic traction during the forced eruption of an impacted canine. 3Diagnosys® software was used to evaluate impacted canines position and to plan the surgical access, taking into account soft and hard tissues thickness, orthodontic traction path and presence of possible obstacles. Geomagic® software was used for reverse engineering and RhinocerosTM software was employed as three-dimensional modeller in preparing individualized surgical guides. Surgical access was gained flapless through the use of a mucosal punch for soft tissues, followed by a trephine bur with a pre-adjusted stop for bone path creation. A diamond bur mounted on SONICflex® 2003/L handpiece was used to prepare a 2-mm-deep calibrated hole into the canine enamel where a titanium screw connected with a stainless steel ligature was screwed. In-vitro pull-out tests, radiological and SEM analysis were realized in order to investigate screw stability and position. In two out of ten samples the screw was removed after the application of a 1-kg pull-out force. Radiological and SEM analysis demonstrated that all the screws were inserted into the enamel without affecting dentine integrity. This computer-guided minimally-invasive technique allowed a precise and reliable positioning of screws utilized during the orthodontic traction of impacted canines.
Fatalla, Abdalbseet A; Song, Ke; Du, Tianfeng; Cao, Yingguang
2012-02-01
Previously, the choice of prosthetic implant-retained overdentures has depended on data from previous studies about the retention-fatigue strength of the attachment system selected. Little or no data have been available on the correlation between the attachment system selected and the overdenture support configuration. The purpose of the present study was to evaluate the retention force and fatigue resistance of three attachment systems and four support designs of overdenture prosthesis. Four lower edentulous acrylic models were prepared and eight combinations of attachments groups were investigated in the study. These included: O-Rings with mini-dental implants (MDIs), Dalbo elliptic with Dalbo Rotex and fabricated flexible acrylic attachments with both MDI and Dalbo Rotex. The study was divided into four test groups: groups A and B, controls, and groups C and D, experimental groups. Control group A contained three overdenture supports: two free standing MDIs in the canine region and at the midline, and one simulated tooth root with Dalbo Rotex screwed in. Control group B contained four overdenture support foundations: two free standing MDIs in the right canine region and the first premolar region, and two simulated tooth roots with Dalbo Rotex screwed in at the same MDI position, but on the left side of the model. Experimental group C contained three overdenture support foundations: two free standing MDIs in the canine region and at the midline, and one simulated tooth root with MDI screwed in. Experimental group D contained four overdenture support foundations: two free standing MDIs in the right canine region and the first premolar region, and two simulated tooth roots with MDIs screwed in at the same MDI position, but on the left side of the model. Each group was further divided into two subgroups according to attachment type used. Five samples were prepared for each group. Retention force (N) values were recorded initially (0 cycles) and after 360, 720, 1440 and 2880 insertion and removal cycles. During the tensile test a cross-head speed of 10 mm/min was applied. Values of absolute force (AF) and relative force (RF) were statistically analyzed by two-way ANOVA and multiple comparison Tukey's tests between groups and cycles periods. The results of fatigue tests showed a 50% reduction in retention force in the subgroups with flexible attachments. A triangular design of overdenture support foundations with O-Ring attachments revealed the lowest value of AF and a relatively high reduction in RF. The four overdenture support designs with flexible acrylic attachments improved the retention force and reduced the fatigue retention. Furthermore, the results of the investigation demonstrate that flexible acrylic attachments for both teeth and implant-supported overdentures offer a wide range of retention forces.
Min, Woo-Kie; Seo, Il; Na, Sang-Bong; Choi, Young-Seo; Choi, Ji-Yeon
2017-01-01
This study aimed to present radiologic analysis of minimal safe distance (MSD) and optimal screw angle (OSA) that enables to fix screws in a lateral mass safely without facet joint violation in open-door laminoplasty using a plate. A retrospective analysis was made of 22 patients (male: 17; female: 5), average age 62 years. Seventy-nine lateral mass screws were fixed among a total of 158 screws. MSD that doesn't allow 5-mm screws to violate a facet joint was measured for C3-C7 and a comparative analysis was performed. If the MSD is not secured, the OSA to be given to the cephalad direction is calculated to avoid violation of the facet joint. The screws violating inferior facet joints accounted for 34.1% of the screws fixed in inferior lateral mass. Joint surface to distal mini-screw distances were 3.18 ± 1.46 mm and 4.75 ± 1.71 mm in groups of facet joint violation and non-facet violation (FV), respectively ( p = 0.001). When 5-mm screws were inserted into a lateral mass, MSD was 4.39 ± 0.83 mm. The average MSD of C3, C4, and C5 was 4.05 ± 0.78 mm, 4.10 ± 0.70 mm, and 4.26 ± 0.74 mm, respectively. There was no significant differences among levels ( p > 0.05). The average MSD of C6 and C7 was 4.92 ± 0.81 mm and 4.80 ± 0.96 mm, respectively, showing significant differences from those of C3, C4, and C5 ( p < 0.05). If 6 mm of the MSD isn't secured, OSA showed in the cephalad direction of 11.5° for 5 mm and 22° for 4 mm approximately. We suggest that mini-screw on lateral mass can be fixed safely without FV, if they are fixed at MSD of 6 mm from a joint surface. Facet joint violation doesn't occur if an OSA is given in the cephalad direction in case of not enough MSD for mini-screws.
Nousiainen, Markku T; Omoto, Daniel M; Zingg, Patrick O; Weil, Yoram A; Mardam-Bey, Sami W; Eward, William C
2013-02-01
: Femoral neck fractures are among the most common orthopaedic injuries impacting the health care system. Surgical management of such fractures with cannulated screws is a commonly performed procedure. The acquisition of surgical skills necessary to perform this procedure typically involves learning on real patients with fluoroscopic guidance. This study attempts to determine if a novel computer-navigated training model improves the learning of this basic surgical skill. A multicenter, prospective, randomized, and controlled study was conducted using surgical trainees with no prior experience in surgically managing femoral neck fractures. After a training session, participants underwent a pretest by performing the surgical task (screw placement) on a simulated hip fracture using fluoroscopic guidance. Immediately after, participants were randomized into either undergoing a training session using conventional fluoroscopy or computer-based navigation. Immediate posttest, retention (4 weeks later), and transfer tests were performed. Performance during the tests was determined by radiographic analysis of hardware placement. Screw placement by trainees was ultimately equal to the level of an expert surgeon with either training technique. Participants who trained with computer navigation took fewer attempts to position hardware and used less fluoroscopy time than those trained with fluoroscopy. When those trained with fluoroscopy used computer navigation at the transfer test, less fluoroscopy time and dosage was used. The concurrent augmented feedback provided by computer navigation did not affect the learning of this basic surgical skill in surgical novices. No compromise in learning occurred if the surgical novice trained with one type of technology and transferred to using the other. The findings of this study suggest that computer navigation may be safely used to train surgical novices in a basic procedure. This model avoids using both live patients and harmful radiation without a compromise in the acquisition of a 3-dimensional technical skill.
A biomechanical evaluation of a cannulated compressive screw for use in fractures of the scaphoid.
Rankin, G; Kuschner, S H; Orlando, C; McKellop, H; Brien, W W; Sherman, R
1991-11-01
The compressive force generated by a 3.5 mm ASIF cannulated cancellous screw with a 5 mm head was compared with that generated by a standard 3.5 mm ASIF screw (6 mm head), a 2.7 mm ASIF screw (5 mm head), and a Herbert screw. The screws were evaluated in the laboratory with the use of a custom-designed load washer (transducer) to the maximum compressive force generated by each screw until failure, either by thread stripping or by head migration into the specimen. Testing was done on paired cadaver scaphoids. To minimize the variability that occurs with human bone, and because of the cost and difficulty of obtaining human tissue specimens, a study was also done on polyurethane foam simulated bones. The 3.5 cannulated screw generated greater compressive forces than the Herbert screw but less compression than the 2.7 mm and 3.5 mm ASIF cortical screws. The 3.5 mm cannulated screw offers more rigid internal fixation for scaphoid fractures than the Herbert screw and gives the added advantage of placement over a guide wire.
Xie, Mei-Ming; Xia, Kang; Zhang, Hong-Xin; Cao, Hong-Hui; Yang, Zhi-Jin; Cui, Hai-Feng; Gao, Shang; Tang, Kang-Lai
2017-01-23
Screw fixation is a typical technique for isolated talonavicular arthrodesis (TNA), however, no consensus has been reached on how to select most suitable inserted position and direction. The study aimed to present a new fixation technique and to evaluate the clinical outcome of individual headless compression screws (HCSs) applied with three-dimensional (3D) image processing technology to isolated TNA. From 2007 to 2014, 69 patients underwent isolated TNA by using double Acutrak HCSs. The preoperative three-dimensional (3D) insertion model of double HCSs was applied by Mimics, Catia, and SolidWorks reconstruction software. One HCS oriented antegradely from the edge of dorsal navicular tail where intersected interspace between the first and the second cuneiform into the talus body along the talus axis, and the other one paralleled the first screw oriented from the dorsal-medial navicular where intersected at the medial plane of the first cuneiform. The anteroposterior and lateral X-ray examinations certified that the double HCSs were placed along the longitudinal axis of the talus. Postoperative assessment included the American Orthopaedic Foot & Ankle Society hindfoot (AOFAS), the visual analogue scale (VAS) score, satisfaction score, imaging assessments, and complications. At the mean 44-months follow-up, all patients exhibited good articular congruity and solid bone fusion at an average of 11.26 ± 0.85 weeks (range, 10 ~ 13 weeks) without screw loosening, shifting, or breakage. The overall fusion rates were 100%. The average AOFAS score increased from 46.62 ± 4.6 (range, 37 ~ 56) preoperatively to 74.77 ± 5.4 (range, 64-88) at the final follow-up (95% CI: -30.86 ~ -27.34; p < 0.001). The mean VAS score decreased from 7.01 ± 1.2 (range, 4 ~ 9) to 1.93 ± 1.3 (range, 0 ~ 4) (95% CI: 4.69 ~ 5.48; p < 0.001). One cases (1.45%) and three cases (4.35%) experienced wound infection and adjacent arthritis respectively. The postoperative satisfaction score including pain relief, activities of daily living, and return to recreational activities were good to excellent in 62 (89.9%) cases. Individual 3D reconstruction of HCSs insertion model can be designed with three-dimensional image processing technology in TNA. The technology is safe, effective, and reliable to isolated TNA method with high bone fusion rates, low incidences of complications.
Pujari-Palmer, Michael; Robo, Celine; Persson, Cecilia; Procter, Philip; Engqvist, Håkan
2018-01-01
Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R 2 = 0.79) was weaker than correlation with total cement porosity (R 2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may still produce a significant improvement in screw pull-out force. When the correlation strength of all the tested models were compared both cement porosity and compressive strength accurately predicted pull-out force (R 2 =1.00, R 2 =0.808), though prediction accuracy depended upon the strength of the material surrounding the Sawbone. The correlations strength was low for bone with no, or weak, cortical fixation (R 2 =0.56, 0.36). Higher strength and lower porosity CPCs also produced greater pull-out force (1-1.5kN) than commercial CPC (0.2-0.5kN), but lower pull-out force than PMMA (2-3kN). The results of this study suggest that the likelihood of screw fixation failure may be reduced by selecting calcium phosphate cements with lower porosity and higher compressive strength, in patients with healthy bone mineral density and/or sufficient cortical thickness. This is of particular clinical relevance when fixation with metal plates is indicated, or where the augmentation volume is limited. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hou, Yang; Shi, Jiangang; Lin, Yanping; Chen, Huajiang; Yuan, Wen
2018-06-01
The cervical screw placement is one of the most difficult procedures in spine surgery, which often needs a long period of repeated practices and could cause screw placement-related complications. We performed this cadaver study to investigate the effectiveness of virtual surgical training system (VSTS) on cervical pedicle screw instrumentation for residents. A total of ten novice residents were randomly assigned to two groups: the simulation training (ST) group (n = 5) and control group (n = 5). The ST group received a surgical training of cervical pedicle screw placement on VSTS and the control group was given an introductory teaching session before cadaver test. Ten fresh adult spine specimens including 6 males and 4 females were collected, and were randomly allocated to the two groups. The bilateral C3-C6 pedicle screw instrumentation was performed in the specimens of the two groups, respectively. After instrumentation, screw positions of the two groups were evaluated by image examinations. There was significantly statistical difference in screw penetration rates between the ST (10%) and control group (62.5%, P < 0.05). The acceptable rates of screws were 100 and 50% in the ST and control groups with significant difference between each other (P < 0.05). In addition, the average screw penetration distance in the ST group (1.12 ± 0.47 mm) was significantly lower than the control group (2.08 ± 0.39 mm, P < 0.05). This study demonstrated that the VSTS as an advanced training tool exhibited promising effects on improving performance of novice residents in cervical pedicle screw placement compared with the traditional teaching methods.
Long-term absorption of beta-tricalcium phosphate poly-L-lactic acid interference screws.
Barber, F Alan; Dockery, William D
2008-04-01
The purpose of this study was to evaluate the long-term in vivo degradation of biodegradable interference screws made of poly-L-lactic acid (PLLA) and beta-tricalcium phosphate (beta-TCP). Twenty patients undergoing patellar tendon autograft anterior cruciate ligament reconstruction fixed at both the femur and tibia with beta-TCP-PLLA screws at least 44 months earlier were evaluated by physical, radiographic, and computed tomography (CT) evaluations. This study was approved by the institutional review board. Lysholm, Tegner, Cincinnati, and International Knee Documentation Committee scores were also obtained. CT data were measured in Hounsfield units. We evaluated 13 male and 7 female patients at a mean of 50 months after surgery (range, 44 to 56 months). CT scans and radiographs showed the bone plug fused to the tunnel wall with no beta-TCP-PLLA screw remaining. The screws were replaced with clearly calcified non-trabecular material, denser than soft tissue. Osteoconductivity was present in 75% of the tunnels and complete in 10%. No positive pivot-shift tests were found. Lysholm, Tegner, and Cincinnati scores improved from 60.4, 3.7, and 53.3, respectively, preoperatively to 90.8, 5.8, and 86.4, respectively, at follow-up. The mean side-to-side difference determined by use of the KT arthrometer (MEDmetric, San Diego, CA) was 0.4 mm. The beta-TCP-PLLA interference screw (Bilok; ArthroCare, Sunnyvale, CA) completely degraded, and no remnant was present 4 years after insertion. Osteoconductivity was confirmed by CT scans at 75% of the screw sites and completely filled the site in 10%. The addition of beta-TCP to PLLA results in a biocomposite interference screw that is osteoconductive. Level IV, therapeutic case series.
Fatigue strength of common tibial intramedullary nail distal locking screws
Griffin, Lanny V; Harris, Robert M; Zubak, Joseph J
2009-01-01
Background Premature failure of either the nail and/or locking screws with unstable fracture patterns may lead to angulation, shortening, malunion, and IM nail migration. Up to thirty percent of all unreamed nail locking screws can break after initial weight bearing is allowed at 8–10 weeks if union has not occurred. The primary problem this presents is hardware removal during revision surgery. The purposes of our study was to evaluate the relative fatigue resistance of distal locking screws and bolts from representative manufacturers of tibial IM nail systems, and develop a relative risk assessment of screws and materials used. Evaluations included quantitative and qualitative measures of the relative performance of these screws. Methods Fatigue tests were conducted to simulate a comminuted fracture that was treated by IM nailing assuming that all load was carried by the screws. Each screw type was tested ten times in a single screw configuration. One screw type was tested an additional ten times in a two-screw parallel configuration. Fatigue tests were performed using a servohydraulic materials testing system and custom fixturing that simulated screws placed in the distal region of an appropriately sized tibial IM nail. Fatigue loads were estimated based on a seventy-five kilogram individual at full weight bearing. The test duration was one million cycles (roughly one year), or screw fracture, whichever occurred first. Failure analysis of a representative sample of titanium alloy and stainless steel screws included scanning electron microscopy (SEM) and quantitative metallography. Results The average fatigue life of a single screw with a diameter of 4.0 mm was 1200 cycles, which would correspond roughly to half a day of full weight bearing. Single screws with a diameter of 4.5 mm or larger have approximately a 50 percent probability of withstanding a week of weight bearing, whereas a single 5.0 mm diameter screw has greater than 90 percent probability of withstanding more than a week of weight bearing. If two small diameter screws are used, our tests showed that the probability of withstanding a week of weight bearing increases from zero to about 20 percent, which is similar to having a single 4.5 mm diameter screw providing fixation. Conclusion Our results show that selecting the system that uses the largest distal locking screws would offer the best fatigue resistance for an unstable fracture pattern subjected to full weight bearing. Furthermore, using multiple screws will substantially reduce the risk of premature hardware failure. PMID:19371438
Ni, Ming; Wong, Duo Wai-Chi; Mei, Jiong; Niu, Wenxin; Zhang, Ming
2016-09-01
The locking plate and percutaneous crossing metallic screws and crossing absorbable screws have been used clinically to treat intra-articular calcaneal fractures, but little is known about the biomechanical differences between them. This study compared the biomechanical stability of calcaneal fractures fixed using a locking plate and crossing screws. Three-dimensional finite-element models of intact and fractured calcanei were developed based on the CT images of a cadaveric sample. Surgeries were simulated on models of Sanders type III calcaneal fractures to produce accurate postoperative models fixed by the three implants. A vertical force was applied to the superior surface of the subtalar joint to simulate the stance phase of a walking gait. This model was validated by an in vitro experiment using the same calcaneal sample. The intact calcaneus showed greater stiffness than the fixation models. Of the three fixations, the locking plate produced the greatest stiffness and the highest von Mises stress peak. The micromotion of the fracture fixated with the locking plate was similar to that of the fracture fixated with the metallic screws but smaller than that fixated with the absorbable screws. Fixation with both plate and crossing screws can be used to treat intra-articular calcaneal fractures. In general, fixation with crossing metallic screws is preferable because it provides sufficient stability with less stress shielding.
Mikula, Anthony L; Williams, Seth K; Anderson, Paul A
2016-04-01
Insertion of instruments or implants into the spine carries a risk for injury to neural tissue. Triggered electromyography (tEMG) is an intraoperative neuromonitoring technique that involves electrical stimulation of a tool or screw and subsequent measurement of muscle action potentials from myotomes innervated by nerve roots near the stimulated instrument. The authors of this study sought to determine the ability of tEMG to detect misplaced pedicle screws (PSs). The authors searched the U.S. National Library of Medicine, the Web of Science Core Collection database, and the Cochrane Central Register of Controlled Trials for PS studies. A meta-analysis of these studies was performed on a per-screw basis to determine the ability of tEMG to detect misplaced PSs. Sensitivity, specificity, and receiver operating characteristic (ROC) area under the curve (AUC) were calculated overall and in subgroups. Twenty-six studies were included in the systematic review. The authors analyzed 18 studies in which tEMG was used during PS placement in the meta-analysis, representing data from 2932 patients and 15,065 screws. The overall sensitivity of tEMG for detecting misplaced PSs was 0.78, and the specificity was 0.94. The overall ROC AUC was 0.96. A tEMG current threshold of 10-12 mA (ROC AUC 0.99) and a pulse duration of 300 µsec (ROC AUC 0.97) provided the most accurate testing parameters for detecting misplaced screws. Screws most accurately conducted EMG signals (ROC AUC 0.98). Triggered electromyography has very high specificity but only fair sensitivity for detecting malpositioned PSs.
Park, Sang Min; Kim, Ho Joong; Lee, Se Yeon; Chang, Bong Soon; Lee, Choon Ki; Yeom, Jin S
2018-05-01
We prospectively assessed the early radiographic and clinical outcomes (minimum follow-up of 2 years) of robot-assisted pedicle screw fixation (Robot-PSF) and conventional freehand pedicle screw fixation (Conv-PSF). Patients were randomly assigned to Robot-PSF (37 patients) or Conv-PSF (41 patients) for posterior interbody fusion surgery. The Robot-PSF group underwent minimally invasive pedicle screw fixation using a pre-planned robot-guided screw trajectory. The Conv-PSF underwent screw fixation using the freehand technique. Radiographic adjacent segment degeneration (ASD) was measured on plain radiographs, and clinical outcomes were measured using visual analogue scale (VAS) and Oswestry disability index (ODI) scores regularly after surgery. The two groups had similar values for radiographic ASD, including University California at Los Angeles grade, vertebral translation, angular motion, and loss of disc height (p=0.320). At final follow-up, both groups had experienced significant improvements in back VAS, leg VAS, and ODI scores after surgery (p<0.001), although inter-group differences were not significant for back VAS (p=0.876), leg VAS (p=0.429), and ODI scores (p=0.952). In the Conv-PSF group, revision surgery was required for two of the 25 patients (8%), compared to no patients in the Robot-PSF group. There were no significant differences in radiographic ASD and clinical outcomes between Robot-PSF and Conv-PSF. Thus, the advantages of robot-assisted surgery (accurate pedicle screw insertion and minimal facet joint violation) do not appear to be clinically significant. © Copyright: Yonsei University College of Medicine 2018.
Percutaneous insertion of a proximal humeral locking plate: an anatomic study.
Smith, Jason; Berry, Greg; Laflamme, Yves; Blain-Pare, Etienne; Reindl, Rudy; Harvey, Edward
2007-02-01
This cadaveric study sought to evaluate the feasibility of applying a locking proximal humerus plate with a novel minimally invasive technique. A unique pre-contoured locking plate was placed on cadaveric proximal humeri through a described minimally invasive approach. Proximity of the plate and screws to the axillary nerve and their respective surgical tracks were quantified. Safe screw hole placement with respect to the axillary nerve was determined. Risk of entrapment of the nerve beneath the plate was evaluated. Three of the holes near the middle of the locking plate consistently intersected the course of the axillary nerve and were unsafe for percutaneous placement of the screws. The axillary nerve could be palpated during the course of surgery and easily protected from injury. No entrapment of the axillary nerve occurred using this minimally invasive technique. The screw-in locking guide cannot be used with this technique as it caused tenting of the axillary nerve. Placement of a locking proximal humerus plate via a minimally invasive lateral trans-deltoid approach is safe if the locking screws are limited to superior and inferior holes. This can be done safely without entrapment of the axillary beneath the plate. Plate fixation of proximal humerus fractures may now be more desirable with the use of this approach.
Continuous decompression of unicameral bone cyst with cannulated screws: a comparative study.
Brecelj, Janez; Suhodolcan, Lovro
2007-09-01
We determined the role of mechanical decompression in the resolution of unicameral bone cyst. A total of 69 children with unicameral bone cysts were treated either by (i) open curettage and bone grafting, (ii) steroid injection or (iii) cannulated screw insertion. During a mean follow-up of 69 months (range, 12-58), the cysts were evaluated by radiological criteria. The healing rates in the three groups were 25, 12 and 29% after the first treatment, and a further 50, 19 and 65% after the second. The study has demonstrated the advantages of the decompression technique for unicameral bone cysts over other treatment modalities studied.
Variable-Speed Screw Chiller, Sidney Yates Building, Washington, DC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrouchov, George; Adams, Mark B.; Howett, Daniel H.
2017-07-01
This report captures the findings from an evaluation ORNL performed on a new chiller technology as part of GSA's Proving Ground Program. Note: Appendices B&C were removed from this report while the author looks for a way to insert them without consuming over 200MB of file size.
46 CFR 154.524 - Piping joints: Welded and screwed couplings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 154.524 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and... 979 kPa gauge (142 psig) must be removed after the weld is completed; (2) A consumable insert; or (3...
46 CFR 154.524 - Piping joints: Welded and screwed couplings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Section 154.524 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and... 979 kPa gauge (142 psig) must be removed after the weld is completed; (2) A consumable insert; or (3...
Pardun, Karoline; Treccani, Laura; Volkmann, Eike; Streckbein, Philipp; Heiss, Christian; Li Destri, Giovanni; Marletta, Giovanni; Rezwan, Kurosch
2015-03-01
Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. Copyright © 2014 Elsevier B.V. All rights reserved.
Weiler, Andreas; Peine, Ricarda; Pashmineh-Azar, Alireza; Abel, Clemens; Südkamp, Norbert P; Hoffmann, Reinhard F G
2002-02-01
Interference fit fixation of soft-tissue grafts has recently raised strong interest because it allows for anatomic graft fixation that may increase knee stability and graft isometry. Although clinical data show promising results, no data exist on how tendon healing progresses using this fixation. The purpose of the present study was to investigate anterior cruciate ligament (ACL) reconstruction biomechanically using direct tendon-to-bone interference fit fixation with biodegradable interference screws in a sheep model. Animal study. Thirty-five mature sheep underwent ACL reconstruction with an autologous Achilles tendon split graft. Grafts were directly fixed with poly-(D,L-lactide) interference screws. Animals were euthanized after 6, 9, 12, 24, and 52 weeks and standard biomechanical evaluations were performed. All grafts at time zero failed by pullout from the bone tunnel, whereas grafts at 6 and 9 weeks failed intraligamentously at the screw insertion site. At 24 and 52 weeks, grafts failed by osteocartilaginous avulsion. At 24 weeks, interference screws were macroscopically degraded. At 6 and 9 weeks tensile stress was only 6.8% and 9.6%, respectively, of the graft tissue at time zero. At 52 weeks, tensile stress of the reconstruction equaled 63.8% and 47.3% of the Achilles tendon graft at time zero and the native ACL, respectively. A complete restitution of anterior-posterior drawer displacement was found at 52 weeks compared with the time-zero reconstruction. It was found that over the whole healing period the graft fixation proved not to be the weak link of the reconstruction and that direct interference fit fixation withstands loads without motion restriction in the present animal model. The weak link during the early healing stage was the graft at its tunnel entrance site, leading to a critical decrease in mechanical properties. This finding indicates that interference fit fixation of a soft-tissue graft may additionally alter the mechanical properties of the graft in the early remodeling stage because of a possible tissue compromise at the screw insertion site. Although mechanical properties of the graft tissue had not returned to normal at 1 year compared with those at time zero, knee stability had returned to normal at that time. There was no graft pullout after 24 weeks, indicating that screw degradation does not compromise graft fixation.
Biomechanical analysis comparing three C1-C2 transarticular screw salvaging fixation techniques.
Elgafy, Hossein; Potluri, Tejaswy; Goel, Vijay K; Foster, Scott; Faizan, Ahmad; Kulkarni, Nikhil
2010-02-15
This is an in vitro biomechanical study. To compare the biomechanical stability of the 3 C1-C2 transarticular screw salvaging fixation techniques. Stabilization of the atlantoaxial complex is a challenging procedure because of its complicated anatomy. Many posterior stabilization techniques of the atlantoaxial complex have been developed with C1-C2 transarticular screw fixation been the current gold standard. The drawback of using the transarticular screws is that it has a potential risk of vertebral artery injury due to a high riding transverse foramen of C2 vertebra, and screw malposition. In such cases, it is not recommended to proceed with inserting the contralateral transarticular screw and the surgeon should find an alternative to fix the contralateral side. Many studies are available comparing different atlantoaxial stabilization techniques, but none of them compared the techniques to fix the contralateral side while using the transarticular screw on one side. The current options are C1 lateral mass screw and short C2 pedicle screw or C1 lateral mass screw and C2 intralaminar screw, or C1-C2 sublaminar wire. Nine fresh human cervical spines with intact ligaments (C0-C4) were subjected to pure moments in the 6 loading directions. The resulting spatial orientations of the vertebrae were recorded using an Optotrak 3-dimensional Motion Measurement System. Measurements were made sequentially for the intact spine after creating type II odontoid fracture and after stabilization with unilateral transarticular screw placement across C1-C2 (TS) supplemented with 1 of the 3 transarticular salvaging techniques on the contralateral side; C1 lateral mass screw and C2 pedicle screw (TS+C1LMS+C2PS), C1 lateral mass and C2 intralaminar screw (TS+C1LMS+C2ILS), or sublaminar wire (TS + wire). The data indicated that all the 3 stabilization techniques significantly decreased motion when compared to intact in all the loading cases (left/right lateral bending, left/right axial rotation, flexion) except extension. All the 3 instrumented specimens were equally stable in extension/flexion and lateral bending modes. TS+C1LMS+C2PS was equivalent to TS+C1LMS+C2ILS (P > 0.05) and superior to TS + wire in axial rotation (P < 0.05). Also, TS+C1LMS+C2ILS was superior to TS + wire in axial rotation (P < 0.05). Fixation of atlantoaxial complex using unilateral transarticular screw supplemented with contralateral C1 lateral mass and C2 intralaminar screws is biomechanically equivalent to C1 lateral mass and C2 pedicle screws and both are biomechanically superior to C1-C2 sublaminar wire in axial rotation.
Wang, Guoyou; Fu, Shijie; Shen, Huarui; Guan, Taiyuan; Xu, Ping
2013-10-01
To explore the effectiveness of fixation of atlas translaminar screws in the treatment of atlatoaxial instability. A retrospective analysis was made on the clinical data of 32 patients with atlatoaxial instability treated with atlantoaxial trans-pedicle screws between March 2007 and August 2009. Of them, 7 patients underwent atlas translaminar screws combined with axis transpedicle screws fixation because of fracture types, anatomic variation, and intraoperative reason, including 5 males and 2 females with an average age of 48.2 years (range, 35-69 years). A total of 9 translaminar screws were inserted. Injury was caused by traffic accident in 4 cases, falling from height in 2 cases, and crushing in 1 case. Two cases had simple odontoid fracture (Anderson type II), and 5 cases had odontoid fracture combined with other injuries (massa lateralis atlantis fracture in 2, atlantoaxial dislocation in 1, and Hangman fracture in 2). The interval between injury and operation was 4-9 days (mean, 6 days). The preoperative Japanese Orthopaedic Association (JOA) score was 8.29 +/- 1.60. The X-ray films showed good position of the screws. Healing of incision by first intention was obtained, and no patient had injuries of the spinal cord injury, nerve root, and vertebral artery. Seven cases were followed up 9-26 months (mean, 14 months). Good bone fusion was observed at 8 months on average (range, 6-11 months). No loosening, displacement, and breakage of internal fixation, re-dislocation and instability of atlantoaxial joint, or penetrating of pedicle screw into the spinal canal and the spinal cord occurred. The JOA score was significantly improved to 15.29 +/- 1.38 at 6 months after operation (t = 32.078, P = 0.000). Atlas translaminar screws fixation has the advantages of firm fixation, simple operating techniques, and relative safety, so it may be a remedial measure of atlatoaxial instability.
Stability of the prosthetic screws of three types of craniofacial prostheses retention systems
2016-01-01
Objectives This study aimed to evaluate the stability of prosthetic screws from three types of craniofacial prostheses retention systems (bar-clip, ball/O-ring, and magnet) when submitted to mechanical cycling. Materials and Methods Twelve models of acrylic resin were used with implants placed 20 mm from each other and separated into three groups: (1) bar-clip (Sistema INP, São Paulo, Brazil), (2) ball/O-ring (Sistema INP), and (3) magnet (Metalmag, São Paulo, Brazil), with four samples in each group. Each sample underwent a mechanical cycling removal and insertion test (f=0.5 Hz) to determine the torque and the detorque values of the retention screws. A servo-hydraulic MTS machine (810-Flextest 40; MTS Systems, Eden Prairie, MN, USA) was used to perform the cycling with 2.5 mm and a displacement of 10 mm/s. The screws of the retention systems received an initial torque of 30 Ncm and the torque values required for loosening the screw values were obtained in three cycles (1,080, 2,160, and 3,240). The screws were retorqued to 30 Ncm before each new cycle. Results The sample was composed of 24 screws grouped as follows: bar-clip (n=8), ball/O-ring (n=8), and magnet (n=8). There were significant differences between the groups, with greater detorque values observed in the ball/O-ring group when compared to the bar-clip and magnet groups for the first cycle. However, the detorque value was greater in the bar-clip group for the second cycle. Conclusion The results of this study indicate that all prosthetic screws will loosen slightly after an initial tightening torque, also the bar-clip retention system demonstrated greater loosening of the screws when compared with ball/O-ring and magnet retention systems. PMID:28053905
Castro-Castro, Julián
2014-01-01
The purpose of this study was to asses the value of intraoperative cone-beam CT (O-arm) and stereotactic navigation for the insertion of anterior odontoid screws. this was a retrospective review of patients receiving surgical treatment for traumatic odontoid fractures during a period of 18 months. Procedures were guided with O-arm assistance in all cases. The screw position was verified with an intraoperative CT scan. Intraoperative and clinical parameters were evaluated. Odontoid fracture fusion was assessed on postoperative CT scans obtained at 3 and 6 months' follow-up Five patients were included in this series; 4 patients (80%) were male. Mean age was 63.6 years (range 35-83 years). All fractures were acute type ii odontoid fractures. The mean operative time was 116minutes (range 60-160minutes). Successful screw placement, judged by intraoperative computed tomography, was attained in all 5 patients (100%). The average preoperative and postoperative times were 8.6 (range 2-22 days) and 4.2 days (range 3-7 days) respectively. No neurological deterioration occurred after surgery. The rate of bone fusion was 80% (4/5). Although this initial study evaluated a small number of patients, anterior odontoid screw fixation utilizing the O-arm appears to be safe and accurate. This system allows immediate CT imaging in the operating room to verify screw position. Copyright © 2014 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.
Oral mucosa tissue response to titanium cover screws.
Olmedo, Daniel G; Paparella, María L; Spielberg, Martín; Brandizzi, Daniel; Guglielmotti, María B; Cabrini, Rómulo L
2012-08-01
Titanium is the most widely used metal in dental implantology. The release of particles from metal structures into the biologic milieu may be the result of electrochemical processes (corrosion) and/or mechanical disruption during insertion, abutment connection, or removal of failing implants. The aim of the present study is to evaluate tissue response of human oral mucosa adjacent to titanium cover screws. One hundred fifty-three biopsies of the supra-implant oral mucosa adjacent to the cover screw of submerged dental implants were analyzed. Histologic studies were performed to analyze epithelial and connective tissue as well as the presence of metal particles, which were identified using microchemical analysis. Langerhans cells, macrophages, and T lymphocytes were studied using immunohistochemical techniques. The surface of the cover screws was evaluated by scanning electron microscopy (SEM). Forty-one percent of mucosa biopsies exhibited metal particles in different layers of the section thickness. Particle number and size varied greatly among specimens. Immunohistochemical study confirmed the presence of macrophages and T lymphocytes associated with the metal particles. Microchemical analysis revealed the presence of titanium in the particles. On SEM analysis, the surface of the screws exhibited depressions and irregularities. The biologic effects seen in the mucosa in contact with the cover screws might be associated with the presence of titanium or other elements, such as aluminum or vanadium. The potential long-term biologic effects of particles on soft tissues adjacent to metallic devices should be further investigated because these effects might affect the clinical outcome of the implant.
Plan to procedure: combining 3D templating with rapid prototyping to enhance pedicle screw placement
NASA Astrophysics Data System (ADS)
Augustine, Kurt E.; Stans, Anthony A.; Morris, Jonathan M.; Huddleston, Paul M.; Matsumoto, Jane M.; Holmes, David R., III; Robb, Richard A.
2010-02-01
Spinal fusion procedures involving the implantation of pedicle screws have steadily increased over the past decade because of demonstrated improvement in biomechanical stability of the spine. However, current methods of spinal fusion carries a risk of serious vascular, visceral, and neurological injury caused by inaccurate placement or inappropriately sized instrumentation, which may lead to patient paralysis or even fatality. 3D spine templating software developed by the Biomedical Imaging Resource (BIR) at Mayo Clinic allows the surgeon to virtually place pedicle screws using pre-operative 3D CT image data. With the template plan incorporated, a patient-specific 3D anatomic model is produced using a commercial rapid prototyping system. The pre-surgical plan and the patient-specific model then are used in the procedure room to provide real-time visualization and quantitative guidance for accurate placement of each pedicle screw, significantly reducing risk of injury. A pilot study was conducted at Mayo Clinic by the Department of Radiology, the Department of Orthopedics, and the BIR, involving seven complicated pediatric spine cases. In each case, pre-operative 3D templating was carried out and patient specific models were generated. The plans and the models were used intra-operatively, providing precise pedicle screw starting points and trajectories. Postoperative assessment by the surgeon confirmed all seven operations were successful. Results from the study suggest that patient-specific, 3D anatomic models successfully acquired from 3D templating tools are valuable for planning and conducting pedicle screw insertion procedures.
van Duren, B H; Sugand, K; Wescott, R; Carrington, R; Hart, A
2018-05-01
Hip fractures contribute to a significant clinical burden globally with over 1.6 million cases per annum and up to 30% mortality rate within the first year. Insertion of a dynamic hip screw (DHS) is a frequently performed procedure to treat extracapsular neck of femur fractures. Poorly performed DHS fixation of extracapsular neck of femur fractures can result in poor mobilisation, chronic pain, and increased cut-out rate requiring revision surgery. A realistic, affordable, and portable fluoroscopic simulation system can improve performance metrics in trainees, including the tip-apex distance (the only clinically validated outcome), and improve outcomes. We developed a digital fluoroscopic imaging simulator using orthogonal cameras to track coloured markers attached to the guide-wire which created a virtual overlay on fluoroscopic images of the hip. To test the accuracy with which the augmented reality system could track a guide-wire, a standard workshop femur was used to calibrate the system with a positional marker fixed to indicate the apex; this allowed for comparison between guide-wire tip-apex distance (TAD) calculated by the system to be compared to that physically measured. Tests were undertaken to determine: (1) how well the apex could be targeted; (2) the accuracy of the calculated TAD. (3) The number of iterations through the algorithm giving the optimal accuracy-time relationship. The calculated TAD was found to have an average root mean square error of 4.2 mm. The accuracy of the algorithm was shown to increase with the number of iterations up to 20 beyond which the error asymptotically converged to an error of 2 mm. This work demonstrates a novel augmented reality simulation of guide-wire insertion in DHS surgery. To our knowledge this has not been previously achieved. In contrast to virtual reality, augmented reality is able to simulate fluoroscopy while allowing the trainee to interact with real instrumentation and performing the procedure on workshop bone models. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ban, Kyunha
We have investigated slippage effect on melt flow of various polyolefins and their compounds in modular intermeshing co-rotating twin screw extruder, which include high density polyethylene (HDPE), isotactic polypropylene (iPP), isotactic polybutene-1 (PB1), isotactic poly(4-methyl pentene-1) (P4MP1) and two different kinds of particle filled polypropylenes (PP/carbon black and PP/Silica). To induce slippage during the process, octadecanoic acid was introduced on the second port of the extruder. Length of fill, die pressure and screw characteristics in twin screw extruder were studied under varying processing parameters: volumetric flow rate, screw rotational speed, and die geometry. The effort to account for these variations on slippage effect was combined with considerations of the structures of polyolefins and polarities of fillers. One of five different polyolefins, CPO, has different backbone structure and the others have different pendant group. The order of pendant group size from small to big was found out to be HDPE > PP > PB1 > P4MP1. Two different kinds of inorganic particle fillers (carbon black and silica) were compounded to study the effect of polarity of inorganic particles on the slippage behavior. Carbon black represented non-polar filler and silica represented polar filler. In order to make objective and quantitative predictions in twin screw extrusion process, it was necessary to figure out slip velocity - shear stress relation since the boundary conditions on the barrel, screw and die surfaces are determined by slip velocities which are only can be predicted from applied shear stress fields. From the Mooney's method, we could find out slip velocity - shear stress relations using three different diameters of capillary dies having same L/D ratio. A numerical method (Flow Analysis Network method) was applied to simulate the effect of slippage on the flow in twin screw channel based on the slip velocity and shear stress relations obtained from capillary experiments. To confirm the simulation, length of fills for various process conditions were predicted by simulation and they were compared with experimental results. In addition, the screw characteristics and flow patterns for two different special mixing elements (SME, ZME) were obtained to investigate the mechanism and functions of these elements using the FAN method. The simulation of these special mixing elements were compared with conventional screw elements which having same helix angle, diameter and length.
Finite element analysis of the axial stiffness of a ball screw
NASA Astrophysics Data System (ADS)
Zhou, L.-X.; Li, P.-Y.
2018-06-01
The ball screw was developed for high speed and high precision operation; therefore, increasingly greater demands have been placed on the stiffness of the ball screw. Firstly, ANSYS software was used to compare the axial stiffness of a single-nut and single-arc ball screw and a single-nut and double-arc ball screw when the spiral angle is not considered. On this basis, the model of a single-nut ball screw was established taking into consideration the spiral lead angle, and then the variations in displacement and stiffness when the ball screw pair was subjected to an axial force were determined. The axial contact stiffness of the double-nut ball screw pair, subject to a pre-tightening force, was analyzed, according to the above-mentioned steps. The simulation results demonstrated that under the same working conditions, the stiffness of the double-arc ball screw was larger by between 5∼100 N/um than that of the single-arc ball screw. The spiral lead angle increased the axial stiffness of the ball screw pair, and the axial stiffness of the double-nut ball screw pair subject to a pre-tightening force was larger by between 790∼1360 N/um than that of the axial stiffness of the single-nut ball screw pair.
Conci, Ricardo Augusto; Tomazi, Flavio Henrique Silveira; Noritomi, Pedro Yoshito; da Silva, Jorge Vicente Lopes; Fritscher, Guilherme Genehr; Heitz, Claiton
2015-07-01
To compare the mechanical stress on the mandibular condyle after the reduction and fixation of mandibular condylar fractures using the neck screw and 2 other conventional techniques according to 3-dimensional finite element analysis. A 3-dimensional finite element model of a mandible was created and graphically simulated on a computer screen. The model was fixed with 3 different techniques: a 2.0-mm plate with 4 screws, 2 plates (1 1.5-mm plate and 1 2.0-mm plate) with 4 screws, and a neck screw. Loads were applied that simulated muscular action, with restrictions of the upper movements of the mandible, differentiation of the cortical and medullary bone, and the virtual "folds" of the plates and screws so that they could adjust to the condylar surface. Afterward, the data were exported for graphic visualization of the results and quantitative analysis was performed. The 2-plate technique exhibited better stability in regard to displacement of fractures, deformity of the synthesis materials, and minimum and maximum tension values. The results with the neck screw were satisfactory and were similar to those found when a miniplate was used. Although the study shows that 2 isolated plates yielded better results compared with the other groups using other fixation systems and methods, the neck screw could be an option for condylar fracture reduction. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Fatigue properties on the failure mode of a dental implant in a simulated body environment
NASA Astrophysics Data System (ADS)
Kim, Min Gun
2011-10-01
This study undertook a fatigue test in a simulated body environment that has reflected the conditions (such as the body fluid conditions, the micro-current of cell membranes, and the chewing force) within a living body. First, the study sought to evaluate the fatigue limit under normal conditions and in a simulated body environment, looking into the governing factors of implant fatigue strength through an observation of the fracture mode. In addition, the crack initiation behavior of a tungsten-carbide-coated abutment screw was examined. The fatigue limit of an implant within the simulated body environment decreased by 19 % compared to the limit noted under normal conditions. Several corrosion pits were observed on the abutment screw after the fatigue test in the simulated body environment. For the model used in this study, the implant fracture was mostly governed by the fatigue failure of the abutment screw; accordingly, the influence by the fixture on the fatigue strength of the implant was noted to be low. For the abutment screw coated with tungsten carbide, several times the normal amount of stress was found to be concentrated on the contact part due to the elastic interaction between the coating material and the base material.
Screw expander for light duty diesel engines
NASA Technical Reports Server (NTRS)
1983-01-01
Preliminary selection and sizing of a positive displacement screw compressor-expander subsystem for a light-duty adiabatic diesel engine; development of a mathematical model to describe overall efficiencies for the screw compressor and expander; simulation of operation to establish overall efficiency for a range of design parameters and at given engine operating points; simulation to establish potential net power output at light-duty diesel operating points; analytical determination of mass moments of inertia for the rotors and inertia of the compressor-expander subsystem; and preparation of engineering layout drawings of the compressor and expander are discussed. As a result of this work, it was concluded that the screw compressor and expander designed for light-duty diesel engine applications are viable alternatives to turbo-compound systems, with acceptable efficiencies for both units, and only a moderate effect on the transient response.
Electrical apparatus lockout device
Gonzales, Rick
1999-01-01
A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards.
Evaluation of the success and complication rates of self-drilling orthodontic mini-implants.
Gurdan, Z; Szalma, J
2018-05-01
Orthodontic mini-implants are important devices for successful anchorage management in orthodontics; however, the survival of these devices depends on several clinical factors. The aim of our study was to calculate the success and complication rates of orthodontic mini-implants. In this retrospective study, patients of our orthodontic department were enrolled, getting overall 59 orthodontic mini-implants during their orthodontic treatment in a 2-year period. Every patient had one or more of the 1.6 mm × 8 mm in size self-drilling mini-implants (Jeil Dual Top Anchor System, Jeil Medical Corp., Seoul, Korea). Screw loading was performed immediately after insertions, keeping tension forces under 150 g. Soft tissue and bone infections, implant mobility and screw loss, implant fracture, and neighboring tooth injury were registered. Relationships between variables were tested using the Chi-square test for statistical significance. The success rate of the orthodontic mini-implants was 89.8% in this study while the average loading period was 8.1 months. Soft-tissue infections varied between 6.3% and 33.3% of the cases while screw mobility varied between 3.1% and 20.8% of the cases regarding the anatomic localization. Screw mobility was significantly more frequent in the buccal fold than in the palate (P = 0.034). Screw mobility was significantly more frequent in the buccal fold than in the palate (P = 0.034) and screw mobility was found more frequently in case of intrusions than by extrusions (P = 0.036). The overall success rate of mini-implants was found acceptable in this study, however, screw mobility in the buccal fold showed a high incidence, suggesting the thorough consideration of the immediate loading by buccal mini-implants.
Filli, Lukas; Marcon, Magda; Scholz, Bernhard; Calcagni, Maurizio; Finkenstädt, Tim; Andreisek, Gustav; Guggenberger, Roman
2014-12-01
The aim of this study was to evaluate a prototype correction algorithm to reduce metal artefacts in flat detector computed tomography (FDCT) of scaphoid fixation screws. FDCT has gained interest in imaging small anatomic structures of the appendicular skeleton. Angiographic C-arm systems with flat detectors allow fluoroscopy and FDCT imaging in a one-stop procedure emphasizing their role as an ideal intraoperative imaging tool. However, FDCT imaging can be significantly impaired by artefacts induced by fixation screws. Following ethical board approval, commercially available scaphoid fixation screws were inserted into six cadaveric specimens in order to fix artificially induced scaphoid fractures. FDCT images corrected with the algorithm were compared to uncorrected images both quantitatively and qualitatively by two independent radiologists in terms of artefacts, screw contour, fracture line visibility, bone visibility, and soft tissue definition. Normal distribution of variables was evaluated using the Kolmogorov-Smirnov test. In case of normal distribution, quantitative variables were compared using paired Student's t tests. The Wilcoxon signed-rank test was used for quantitative variables without normal distribution and all qualitative variables. A p value of < 0.05 was considered to indicate statistically significant differences. Metal artefacts were significantly reduced by the correction algorithm (p < 0.001), and the fracture line was more clearly defined (p < 0.01). The inter-observer reliability was "almost perfect" (intra-class correlation coefficient 0.85, p < 0.001). The prototype correction algorithm in FDCT for metal artefacts induced by scaphoid fixation screws may facilitate intra- and postoperative follow-up imaging. Flat detector computed tomography (FDCT) is a helpful imaging tool for scaphoid fixation. The correction algorithm significantly reduces artefacts in FDCT induced by scaphoid fixation screws. This may facilitate intra- and postoperative follow-up imaging.
Shih, Kao-Shang; Hou, Sheng-Mou; Lin, Shang-Chih
2017-12-01
The pullout strength of a screw is an indicator of how secure bone fragments are being held in place. Such bone-purchasing ability is sensitive to bone quality, thread design, and the pilot hole, and is often evaluated by experimental and numerical methods. Historically, there are some mathematical formulae to simulate the screw withdrawal from the synthetic bone. There are great variations in screw specifications. However, extensive investigation of the correlation between experimental and analytical results has not been reported in literature. Referring to the literature formulae, this study aims to evaluate the differences in the calculated pullout strengths. The pullout tests of the surgical screws are measured and the sawbone is used as the testing block. The absolute errors and correlation coefficients of the experimental and analytical results are calculated as the comparison baselines of the formulae. The absolute error of the dental, traumatic, and spinal groups are 21.7%, 95.5%, and 37.0%, respectively. For the screws with a conical profile and/or tiny threads, the calculated and measured results are not well correlated. The formulae are not accurate indicators of the pullout strengths of the screws where the design parameters are slightly varied. However, the experimental and numerical results are highly correlated for the cylindrical screws. The pullout strength of a conical screw is higher than that of its counterpart, but all formulae consistently predict the opposite results. In general, the bony purchase of the buttress threads is securer than that of the symmetric thread. An absolute error of up to 51.4% indicates the theoretical results cannot predict the actual value of the pullout strength. Only thread diameter, pitch, and depth are considered in the investigated formulae. The thread profile and shape should be formulated to modify the slippage mechanism at the bone-screw interfaces and simulate the strength change in the squeezed bones, especially for the conical screw. Copyright © 2017. Published by Elsevier B.V.
Biomechanical study of anterior spinal instrumentation configurations
Cloutier, Luc P.; Grimard, Guy
2007-01-01
The biomechanical impact of the surgical instrumentation configuration for spine surgery is hard to evaluate by the surgeons in pre-operative situation. This study was performed to evaluate different configurations of the anterior instrumentation of the spine, with simulated post-operative conditions, to recommend configurations to the surgeons. Four biomechanical parameters of the anterior instrumentation with simulated post-operative conditions have been studied. They were the screw diameter (5.5–7.5 mm) and its angle (0°–22.5°), the bone grip of the screw (mono–bi cortical) and the amount of instrumented levels (5–8). Eight configurations were tested using an experimental plan with instrumented synthetic spinal models. A follower load was applied and the models were loaded in flexion, torsion and lateral bending. At 5 Nm, average final stiffness was greater in flexion (0.92 Nm/°) than in lateral bending (0.56 Nm/°) and than in torsion (0.26 Nm/°). The screw angle was the parameter influencing the most the final stiffness and the coupling behaviors. It has a significant effect (p ≤ 0.05) on increasing the final stiffness for a 22.5° screw angle in flexion and for a coronal screw angle (0°) in lateral bending. The bi-cortical bone grip of the screw significantly increased the initial stiffness in flexion and lateral bending. Mathematical models representing the behavior of an instrumented spinal model have been used to identify optimal instrumentation configurations. A variation of the angle of the screw from 22.5° to 0° gave a global final stiffness diminution of 13% and a global coupling diminution of 40%. The screw angle was the most important parameter affecting the stiffness and the coupling of the instrumented spine with simulated post-operative conditions. Information about the effect of four different biomechanical parameters will be helpful in preoperative situations to guide surgeons in their clinical choices. PMID:17205240
Baumbach, Sebastian F; Synek, Alexander; Traxler, Hannes; Mutschler, Wolf; Pahr, Dieter; Chevalier, Yan
2015-09-08
Extensor tendon irritation is one of the most common complications following volar locking plate osteosynthesis (VLPO) for distal radius fractures. It is most likely caused by distal screws protruding the dorsal cortex. Shorter distal screws could avoid this, yet the influence of distal screw length on the primary stability in VLPO is unknown. The aim of this study was to compare 75 to 100% distal screw lengths in VLPO. A biomechanical study was conducted on 11 paired fresh-frozen radii. HRpQCT scans were performed to assess bone mineral density (BMD) and bone mineral content (BMC). The specimens were randomized pair-wise into two groups: 100% (group A) and 75% (group B) unicortical distal screw lengths. A validated fracture model for extra-articular distal radius fractures (AO-23 A3) was used. Polyaxial volar locking plates were mounted, and distal screws was inserted using a drill guide block. For group A, the distal screw tips were intended to be flush or just short of the dorsal cortex. In group B, a target screw length of 75% was calculated. The specimens were tested to failure using a displacement-controlled axial compression test. Primary biomechanical stability was assessed by stiffness, elastic limit, and maximum force as well as with residual tilt, which quantified plastic deformation. Nine specimens were tested successfully. BMD and BMC did not differ between the two groups. The mean distal screw length of group A was 21.7 ± 2.6 mm (range: 16 to 26 mm), for group B 16.9 ± 1.9 mm (range: 12 to 20 mm). Distal screws in group B were on average 5.6 ± 0.9 mm (range: 3 to 7 mm) shorter than measured. No significant differences were found for stiffness (706 ± 103 N/mm vs. 660 ± 124 N/mm), elastic limit (177 ± 25 N vs. 167 ± 36 N), maximum force (493 ± 139 N vs. 471 ± 149 N), or residual tilt (7.3° ± 0.7° vs. 7.1° ± 1.3°). The 75% distal screw length in VLPO provides similar primary stability to 100% unicortical screw length. This study, for the first time, provides the biomechanical basis to choose distal screws significantly shorter then measured.
Windolf, Markus; Muths, Raphael; Braunstein, Volker; Gueorguiev, Boyko; Hänni, Markus; Schwieger, Karsten
2009-01-01
Compaction of cancellous bone is believed to prevent cut-out. This in vitro study quantified the compaction in the femoral head due to insertion of a dynamic hip screw-blade with and without predrilling and investigated the resulting implant anchorage under cyclic loading. Eight pairs of human cadaveric femoral heads were instrumented with a dynamic hip screw-blade made of Polyetheretherketon. Pairwise instrumentation was performed either with or without predrilling the specimens. CT scanning was performed before and after implantation, to measure bone-compaction. Subsequently the implant was removed and a third scan was performed to analyze the relaxation of the bone structure. Commercial implants were reinserted and the specimens were cyclically loaded until onset of cut-out occurred. The bone-implant interface was monitored by means of fluoroscopic imaging throughout the experiment. Paired t-tests were performed to identify differences regarding compaction, relaxation and cycles to failure. Bone density in the surrounding of the implant increased about 30% for the non-predrilled and 20% for the predrilled group when inserting the implant. After implant removal the predrilled specimens fully relaxed; the non-predrilled group showed about 10% plastic deformation. No differences were found regarding cycles to failure (P=0.32). Significant bone-compaction due to blade insertion was verified. Even though compaction was lower when predrilling the specimens, mainly elastic deformation was present, which is believed to primarily enhance the implant anchorage. Cyclic loading tests confirmed this thesis. The importance of the implantation technique with regard to predrilling is therefore decreased.
Imagama, Shiro; Ito, Zenya; Wakao, Norimitsu; Ando, Kei; Hirano, Kenichi; Tauchi, Ryoji; Muramoto, Akio; Matsui, Hiroki; Matsumoto, Tomohiro; Sakai, Yoshihito; Katayama, Yoshito; Matsuyama, Yukihiro; Ishiguro, Naoki
2016-10-01
Prospective clinical case series. To describe our surgical procedure and results for posterior correction and fusion with a hybrid approach using pedicle screws, hooks, and ultrahigh-molecular weight polyethylene tape with direct vertebral rotation (DVR) (the PSTH-DVR procedure) for treatment of adolescent idiopathic scoliosis (AIS) with satisfactory correction in the coronal and sagittal planes. Introduction of segmental pedicle screws in posterior surgery for AIS has facilitated good correction and fusion. However, procedures using only pedicle screws have risks during screw insertion, higher costs, and decreased postoperative thoracic kyphosis. We have obtained good outcomes compared with segmental pedicle screw fixation in surgery for AIS using a relatively simple operative procedure (PSTH-DVR) that uses fewer pedicle screws. The subjects were 30 consecutive patients with AIS who underwent the PSTH-DVR procedure and were followed for a minimum of 2 years. Preoperative flexibility, preoperative and postoperative Cobb angles, correction rates, loss of correction, thoracic kyphotic angles (T5-T12), coronal balance, sagittal balance, and shoulder balance were measured on plain radiographs. Rib hump, operation time, estimated blood loss, spinal cord monitoring findings, complications, and scoliosis research society (SRS)-22 scores were also examined. The mean preoperative curve of 58.0 degrees (range, 40-96 degrees) was corrected to a mean of 9.9 degrees postoperatively, and the correction rate was 83.6%. Fusion was obtained in all patients without loss of correction. In 10 cases with preoperative kyphosis angles (T5-T12) <10 degrees, the preoperative mean of 5.8 degrees improved to 20.2 degrees at the final follow-up. Rib hump and coronal, sagittal and shoulder balances were also improved, and good SRS-22 scores were achieved at final follow-up. The correction of deformity with PSTH-DVR is equivalent to that of all-pedicle screw constructs. The procedure gives favorable correction, is advantageous for kyphosis compared with segmental screw fixation, and uses the minimum number of pedicle screws. Therefore, the PSTH-DVR procedure may be useful for treatment of idiopathic scoliosis.
21. NBS SUIT LAB. THREE GLOVES, HELMET, AND SCREW DRIVER ...
21. NBS SUIT LAB. THREE GLOVES, HELMET, AND SCREW DRIVER TORQUE WRENCH FOR ASSEMBLY AND REPAIR OF BOTH. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
The use of power tools in the insertion of cortical bone screws.
Elliott, D
1992-01-01
Cortical bone screws are commonly used in fracture surgery, most patterns are non-self-tapping and require a thread to be pre-cut. This is traditionally performed using hand tools rather than their powered counterparts. Reasons given usually imply that power tools are more dangerous and cut a less precise thread, but there is no evidence to support this supposition. A series of experiments has been performed which show that the thread pattern cut with either method is identical and that over-penetration with the powered tap is easy to control. The conclusion reached is that both methods produce consistently reliable results but use of power tools is much faster.
Muto, Toshitaka
2012-05-01
Most rigid fixation techniques after sagittal split ramus osteotomies of the mandible involve the transbuccal approach. A skin incision in the cheek carries with it possible undesirable sequelae, such as noticeable scarring. The aim of this study was to investigate whether there is scarring in the face after this technique. For screw insertion, a 5-mm stab incision was performed on 40 Japanese patients (20 men and 20 women) with class III occlusion. After surgery, gross examination (via the naked eyes) of the skin incision was performed monthly for 1 year by the same oral surgeon. In all cases, the skin incision had disappeared by 1 year after the surgery.
Gbara, Ali; Heiland, Max; Schmelzle, Rainer; Blake, Felix
2008-04-01
Following open reduction, internal fixation of fractures of the mandible is predominantly achieved using plates and screws. Today, a multitude of osteosynthesis systems are available on the market. One therapy modality, primarily developed for orthopaedic surgery, is using angular stable osteosynthesis plate systems. The dominating principle of these is the bond between screw and plate following insertion. This principle of an "internal fixateur" results in a more stable fixation of the fragments associated with less compression of the bone surfaces. A new multidirectional osteosynthesis system (TiFix=Smartlock, Hamburg - Germany) was modified to fit the maxillofacial region and compared with four other well established osteosynthesis systems developed by Mondial, Medicon, Synthes, Leibinger-Stryker, one of these (Unilock by Synthes) being also angular stable. The resistance to deformation in varying directions was investigated following fixation in four different materials. The TiFix system proved more resistant to deformation even when mounted with fewer screws than the non-angular stable systems. This system results in greater stability even when fewer screws are used. For the clinician this means smaller access incisions, less soft tissue trauma, better aesthetic results, decreased duration of operation and a reduction of costs.
Phan, Kevin; Ramachandran, Vignesh; Tran, Tommy M; Shah, Kevin P; Fadhil, Matthew; Lackey, Alan; Chang, Nicholas; Wu, Ai-Min; Mobbs, Ralph J
2017-12-01
Fusion of the lumbosacral spine is a common surgical procedure to address a range of spinal pathologies. Fixation in lumbar fusion has traditionally been performed using pedicle screw (PS) augmentation. However, an alternative method of screw insertion via cortical bone trajectory (CBT) has been advocated as a less invasive approach which improves initial fixation and reduces neurovascular injury. There is a paucity of robust clinical evidence to support these claims, particularly in comparison to traditional pedicle screws. This study aims to review the available evidence to assess the merits of the CBT approach. Six electronic databases were searched for original published studies which compared CBT with traditional PS and their findings reviewed. Nine comparative studies were identified through a comprehensive literature search. Studies were classified as retrospective cohort, prospective cohort or case control studies with medium quality as assessed by the GRADE criteria. The available literature is not cohesive regarding outcomes and complications of CBT versus PT procedures. Most studies found no difference in operative time, but reported less blood loss during CBT. Radiological outcomes show no difference in slippage at one year although CBT is associated with greater bone-density compared to PT. Results for post-operative pain are inconclusive.
Design of a surgical instrument for removing bone to provide screw access to a spinal fusion cage.
Jabbary Aslani, F; Hukins, D W L; Shepherd, D E T; Parry, J J; Fennell, A J; Lambell, S
2012-01-01
A surgical instrument to aid implantation of a range of lumbar spinal fusion cages has been developed. Once the cage is in position, the entrance to screw holes is partially blocked by the edge of the vertebral body. In order to insert fixation screws to secure the cage between the vertebrae, some part of the blocking edge has to be removed. Rongeurs are currently being used, but they can be time consuming and have the disadvantage that they may remove more bone than is necessary and may cause damage to the fusion cage if not used with care. In addition, access around some of the screw holes may be difficult. The aim of this instrument was to overcome these shortcomings. This paper describes the design of a surgical instrument for cutting edges from vertebral bodies. The development and evaluation of concept designs are presented and discussed. Potential risks were considered and modifications were performed on the selected concept. Functional prototypes were manufactured and tested on sheep lumbar vertebrae. The results showed that the newly designed cutting instrument functions as required and removes the required amount of bone from the vertebral body edge.
MEYNARDI, F.; PASQUALINI, M.E.; ROSSI, F.; DAL CARLO, L.; NARDONE, M.; BAGGI, L.
2016-01-01
SUMMARY Purpose To assess the changes in bacterial profile along the transmucosal path of healing screws placed immediately after insertion of two-piece endosseus implants during the 4-month osseointegration phase, in absence of functional load. Materials and methods Two site-specific samples were collected at the peri-implant mucosa of the healing screws of 80 two-piece implants, for a total of 640 samples. Implants placement was performed following a single protocol with flapless technique, in order to limit bacterial contamination of the surgical site. Identical healing screws (5 mm diameter/4 mm height) were used for each of the 80 implants. During the 4 months of the study, the patients followed a standard oral care regimen with no special hygiene maneuvers at the collection sites. Results The present research documents that during the 4-month period prior to application of function load the bacterial profile of all sites exhibited a clear prevalence of cocci at the interface between implant neck and osteoalveolar crest margin. Conclusions A potentially pathogenic bacterial flora developed only along the peri-implant transmucosal path. PMID:28280528
Magnetic Resonance Imaging Studies of Process Rheology
1990-08-14
a Twin - screw Extruder ................ 7 2.1.2 NMR Flow Imaging Studies ................................... 7U 2.2 Theoretical Modeling ...run at high production rates, mixed in a 50.8 mm fully intermeshing, co - rotating twin - screw off-line techniques of quality control may lead to very...Imaging Studies of............... A -1 Mixing in a Twin - Screw Extruder " B. "Stokesian Dynamics Simulation of Polyether-coated
Hou, Yang; Lin, Yanping; Shi, Jiangang; Chen, Huajiang; Yuan, Wen
2018-03-14
The virtual simulation surgery has initially exhibited its promising potentials in neurosurgery training. To evaluate effectiveness of the Virtual Surgical Training System (VSTS) on novice residents placing thoracic pedicle screws in a cadaver study. A total of 10 inexperienced residents participated in this study and were randomly assigned to 2 groups. The group using VSTS to learn thoracic pedicle screw fixation was the simulation training (ST) group and the group receiving an introductory teaching session was the control group. Ten fresh adult spine specimens including 6 males and 4 females with a mean age of 58.5 yr (range: 33-72) were collected and randomly allocated to the 2 groups. After exposing anatomic structures of thoracic spine, the bilateral pedicle screw placement of T6-T12 was performed on each cadaver specimen. The postoperative computed tomography scan was performed on each spine specimen, and experienced observers independently reviewed the placement of the pedicle screws to assess the incidence of pedicle breach. The screw penetration rates of the ST group (7.14%) was significantly lower in comparison to the control group (30%, P < .05). Statistically significant difference in acceptable rates of screws also occurred between the ST (100%) and control (92.86%) group (P < .05). In addition, the average screw penetration distance in control group (2.37 mm ± 0.23 mm) was significantly greater than ST group (1.23 mm ± 0.56 mm, P < .05). The virtual reality surgical training of thoracic pedicle screw instrumentation effectively improves surgical performance of novice residents compared to those with traditional teaching method, and can help new beginners to master the surgical technique within shortest period of time.
NASA Astrophysics Data System (ADS)
Aigner, M.; Köpplmayr, T.; Kneidinger, C.; Miethlinger, J.
2014-05-01
Barrier screws are widely used in the plastics industry. Due to the extreme diversity of their geometries, describing the flow behavior is difficult and rarely done in practice. We present a systematic approach based on networks that uses tensor algebra and numerical methods to model and calculate selected barrier screw geometries in terms of pressure, mass flow, and residence time. In addition, we report the results of three-dimensional simulations using the commercially available ANSYS Polyflow software. The major drawbacks of three-dimensional finite-element-method (FEM) simulations are that they require vast computational power and, large quantities of memory, and consume considerable time to create a geometric model created by computer-aided design (CAD) and complete a flow calculation. Consequently, a modified 2.5-dimensional finite volume method, termed network analysis is preferable. The results obtained by network analysis and FEM simulations correlated well. Network analysis provides an efficient alternative to complex FEM software in terms of computing power and memory consumption. Furthermore, typical barrier screw geometries can be parameterized and used for flow calculations without timeconsuming CAD-constructions.
Knee arthrodesis using a short locked intramedullary nail. A new technique.
Cheng, S L; Gross, A E
1995-01-01
This article reports on the use of a new intramedullary nail designed specifically for fixation of knee fusions. The nail is a short locked stainless steel nail that is inserted through a single anterior knee incision and uses an outrigger targeting rod to guide the insertion of the locking screws. The successful use of this technique is illustrated in two cases. The advantages of this nail compared with previously reported techniques of fixation for knee fusions are that the short locked nail avoids the second incision required for the insertion of long knee fusion nails, the bulkiness of the double plating technique in the relatively subcutaneous anterior knee area, and the difficulties inherent with the prolonged use of pins for external fixation.
Biomechanics of halo-vest and dens screw fixation for type II odontoid fracture.
Ivancic, Paul C; Beauchman, Naseem N; Mo, Fred; Lawrence, Brandon D
2009-03-01
An in vitro biomechanical study of halo-vest and odontoid screw fixation of Type II dens fracture. The objective were to determine upper cervical spine instability due to simulated dens fracture and investigate stability provided by the halo-vest and odontoid screw, applied individually and combined. Previous studies have evaluated posterior fixation techniques for stabilizing dens fracture. No previous biomechanical study has investigated the halo-vest and odontoid screw for stabilizing dens fracture. A biofidelic skull-neck-thorax model was used with 5 osteoligamentous whole cervical spine specimens. Three-dimensional flexibility tests were performed on the specimens while intact, following simulated dens fracture, and following application of the halo-vest alone, odontoid screw alone, and halo-vest and screw combined. Average total neutral zone and total ranges of motion at C0/1 and C1/2 were computed for each experimental condition and statistically compared with physiologic motion limits, obtained from the intact flexibility test. Significance was set at P < 0.05 with a trend toward significance at P < 0.1. Type II dens fracture caused trends toward increased sagittal neutral zone and lateral bending range of motion at C1/2. Spinal motions with the dens screw alone could not be differentiated from physiologic limits. Significant reductions in motion were observed at C0/1 and C1/2 in flexion-extension and axial rotation due to the halo-vest, applied individually or combined with the dens screw. At C1/2, the halo-vest combined with the dens screw generally allowed the smallest average percentages of intact motion: 3% in axial rotation, 17% in flexion-extension, and 18% in lateral bending. The present reduction in C1/2 motion observed, due to the halo-vest and dens screw combined is similar to previously reported immobilization provided by the polyaxial screw/rod system and transarticular screw fixation combined with wiring. The present biomechanical data may be useful to clinicians when choosing an appropriate treatment for those with Type II dens fracture.
Hernigou, P; Germany, W
1998-09-01
Within an anatomical and a clinical study, the authors employed computerized tomographic scans to evaluate the risks of anterior surrounding tissues injuries during screw insertion. CT scans of 20 patients suffering from cardiac disease were reviewed retrospectively. Scans through the thoracic and lumbar spine were obtained using 6 mm slice thickness. These examinations were performed with intravenous contrast medium. Measurements of vessel diameters and distance of the soft tissues situated directly anterior to the spine were done. A retrospective study of 61 pedicle screws implanted for spine fractures evaluated the penetration of the anterior vertebral cordex with X rays and CT scans. Computerized tomographic scans of the thoracic and lumbar spine of the 20 patients in the control group confirmed proximity of the posterior mediastinal structures to the anterior vertebral cortex. Many structures of the posterior mediastinum were within five millimeters of the anterior vertebral cortex and thus were at risk: aorta, azygos vein, vena cava, parietal pleura and lungs. The theoretical risk of unrecognized screw penetrations evaluated on geometric shape of the anterior vertebral body is as high as 21 per cent when screw position is only seen with an antero posterior and a lateral X Ray. In the other group, computerized tomographic scans showed that 30 per cent of the implanted screws were outside the boundaries of the anterior thoracic spine. Two orthogonal incidences do not enable determination of whether the extremity of the screw is slightly outside the anterior cortex of the vertebral body. However the geometric shape of the anterior vertebral body enables peroperative definition of a safety zone on two orthogonal incidences. Even if a breach of a few millimeters of the anterior cortical boundaries of the vertebral body may not initially damage the adjacent soft-tissue structures, chronic irritation may result in late damages of these structures. The use of metallic markers and the respect of a safe vertebral zone on X Rays could guide the choice of the appropriate screw length.
Gonsalves, Mishka N; Jankovits, Daniel A; Huber, Michael L; Strom, Adam M; Garcia, Tanya C; Stover, Susan M
2016-09-20
To compare the biomechanical properties of simulated humeral condylar fractures reduced with one of two screw fixation methods: 3.0 mm headless compression screw (HCS) or 3.5 mm cortical bone screw (CBS) placed in lag fashion. Bilateral humeri were collected from nine canine cadavers. Standardized osteotomies were stabilized with 3.0 mm HCS in one limb and 3.5 mm CBS in the contralateral limb. Condylar fragments were loaded to walk, trot, and failure loads while measuring construct properties and condylar fragment motion. The 3.5 mm CBS-stabilized constructs were 36% stiffer than 3.0 mm HCS-stabilized constructs, but differences were not apparent in quality of fracture reduction nor in yield loads, which exceeded expected physiological loads during rehabilitation. Small residual fragment displacements were not different between CBS and HCS screws. Small fragment rotation was not significantly different between screws, but was weakly correlated with moment arm length (R² = 0.25). A CBS screw placed in lag fashion provides stiffer fixation than an HCS screw, although both screws provide similar anatomical reduction and yield strength to condylar fracture fixation in adult canine humeri.
Trisi, Paolo; De Benedittis, Simona; Perfetti, Giorgio; Berardi, Davide
2011-05-01
Protocols of immediate loading have been reported in several studies. It has also been demonstrated that the cause of failure of immediate loaded implants is due to the micromotion on the bone-implant interface induced by immediate loading. There should be a minimum gap between the implant and the peri-implant bone, without micromotions occurring above a definite threshold risk as they induce bone resorption and fibrosis around the implant. Measurement of the torque necessary to insert an implant in the bone is a parameter for measuring initial stability. The higher the implant insertion torque, the higher the initial stability attained. The aim of this study was to evaluate in vitro the correlation between the micromotion of cylindric screw implants ad modum Branemark and the insertion torque in bone of different densities. The test was carried out on 2 × 2 cm samples of fresh bovine bone of three different densities: hard (H), medium (M) and soft (S). One hundred and fifty hexa implants ad modum Branemark were used, 3.75 mm in diameter and 9 mm long. To screw in the implants, a customized manual key was used, controlled digitally to evaluate the peak insertion torques. Ten implants were prepared for each torque (20, 35, 45, 70 and 100 N/cm). The bone sample was then fixed on a loading device, which allowed evaluating the micromotion. On each sample, we applied a 25 N horizontal force. The results indicate that the peak insertion torque and the implant micromotion are statistically correlated, and statistically significant differences in H and M bone were found compared with S bone. In S bone, we noted a micromotion significantly higher than the risk threshold, and it was not possible to reach peak insertion torque above 35 N/cm. In H and M bone, the micromotion is below the threshold of all insertion torques. Increasing the peak insertion torque, we can reduce the extent of the micromotion between the implant and the bone when submitted to lateral forces in vitro. In soft bone, the micromotion was always high; hence, immediate loading of implants in low-density bone should be evaluated with care. © 2010 John Wiley & Sons A/S.
Monier, Bryan C; Aronsson, David D; Sun, Michael
2015-10-01
Percutaneous epiphysiodesis using transphyseal screws (PETS) was developed as a minimally invasive outpatient procedure to address limb-length discrepancy (LLD) that allowed immediate postoperative weight bearing and was potentially reversible by removing the screws. The aims of our study were to report our results using PETS for LLD and evaluate the accuracy of three growth predictor models. Sixteen patients with an average age of 14 years were treated for LLD using PETS. Thirteen patients had screws inserted in a parallel fashion and 3 had crossed screws. We compared the predicted LLD at skeletal maturity using the three growth predictor methods with the actual LLD at skeletal maturity and preoperative LLD with the final LLD at skeletal maturity. The mean LLD at skeletal maturity between the predicted and final measurements was 0.2 cm using the Green-Anderson method, 1.4 cm using the Moseley method, and -0.1 cm using the Paley method. The mean preoperative LLD of 3.1 cm was corrected to 1.7 cm at skeletal maturity (p < 0.001). Six patients complained of pain over the screw heads; however, no patient developed an infection or angular deformity. The three growth predictor methods predicted the final LLD within an average of 1.4 cm, but there was high variability. Although PETS improved the LLD by a mean of 1.4 cm, we believe the results would have been better if PETS was performed at an earlier skeletal age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trumm, Christoph Gregor, E-mail: christoph.trumm@med.lmu.de; Rubenbauer, Bianca; Piltz, Stefan
We present a case of combined surgical screw placement and osteoplasty guided by computed tomography-fluoroscopy (CTF) in a 68-year-old man with unilateral osteolytic destruction and a pathological fracture of the iliosacral joint due to a metastasis from renal cell carcinoma. The patient experienced intractable lower back pain that was refractory to analgesia. After transarterial particle and coil embolization of the tumor-feeding vessels in the angiography unit, the procedure was performed under general anesthesia by an interdisciplinary team of interventional radiologists and trauma surgeons. Under intermittent single-shot CTF, two K wires were inserted into the left iliosacral joint from a lateralmore » transiliac approach at the S1 level followed by two self-tapping surgical screws. Continuous CTF was used for monitoring of the subsequent polymethylmethacrylate injection through two vertebroplasty cannulas for further stabilization of the screw threads within the osteolytic sacral ala. Both the screw placement and cement injection were successful, with no complications occurring during or after the procedure. With additional nonsteroidal anti-inflammatory and opioid medication, the patient reported a marked decrease in his lower back pain and was able to move independently again at the 3-month follow-up assessment. In our patient with intolerable back pain due to tumor destruction and consequent pathological fracture of the iliosacral joint, CTF-guided iliosacral screw placement combined with osteoplasty was successful with respect to joint stabilization and a reduction in the need for analgesic therapy.« less
Bowlt, Kelly L; Shales, Christopher J
2011-01-01
To define a safe corridor in the dorsal plane relative to the articular surface for placement of a single screw in lag fashion to achieve stabilization of sacroiliac luxation in the dog. Cadaveric study. Dorsoventral radiographs of denuded canine sacra (n=49) were taken to determine the safe corridor in the craniocaudal plane, and the maximum, optimum and minimum angles were calculated that would allow a screw inserted in lag fashion to engage at least 60% of the width of the sacral body without cranial or caudal penetration through the bone. The mean safe corridor in the dorsal plane is ∼24° wide. Mean craniocaudal minimum, optimum and maximum drill angles from the drill start point were 88°, 100°, and 111° from the articular surface, respectively. No single angle will completely avoid risk of screw penetration beyond the safe corridor cranially and caudally. There is sufficient anatomic variation between different canine sacra that a single angle cannot be recommended for screw placement in the dorsal plane. A standard angle cannot be recommended for screw placement in lag fashion within the canine sacrum in the dorsal plane. Because of the narrow width of the safe corridor, preoperative measurements on radiographs are recommended and a range of angled drill guides may be useful to decrease surgeon margin of error. © Copyright 2010 by The American College of Veterinary Surgeons.
Accuracy of image-guided surgical navigation using near infrared (NIR) optical tracking
NASA Astrophysics Data System (ADS)
Jakubovic, Raphael; Farooq, Hamza; Alarcon, Joseph; Yang, Victor X. D.
2015-03-01
Spinal surgery is particularly challenging for surgeons, requiring a high level of expertise and precision without being able to see beyond the surface of the bone. Accurate insertion of pedicle screws is critical considering perforation of the pedicle can result in profound clinical consequences including spinal cord, nerve root, arterial injury, neurological deficits, chronic pain, and/or failed back syndrome. Various navigation systems have been designed to guide pedicle screw fixation. Computed tomography (CT)-based image guided navigation systems increase the accuracy of screw placement allowing for 3- dimensional visualization of the spinal anatomy. Current localization techniques require extensive preparation and introduce spatial deviations. Use of near infrared (NIR) optical tracking allows for realtime navigation of the surgery by utilizing spectral domain multiplexing of light, greatly enhancing the surgeon's situation awareness in the operating room. While the incidence of pedicle screw perforation and complications have been significantly reduced with the introduction of modern navigational technologies, some error exists. Several parameters have been suggested including fiducial localization and registration error, target registration error, and angular deviation. However, many of these techniques quantify error using the pre-operative CT and an intra-operative screenshot without assessing the true screw trajectory. In this study we quantified in-vivo error by comparing the true screw trajectory to the intra-operative trajectory. Pre- and post- operative CT as well as intra-operative screenshots were obtained for a cohort of patients undergoing spinal surgery. We quantified entry point error and angular deviation in the axial and sagittal planes.
Lee, Byung Ho; Lee, Hwan-Mo; Kim, Tae-Hwan; Kim, Hak-Sun; Moon, Eun-Soo; Park, Jin-Oh; Chong, Hyun-Soo
2012-01-01
Background Infective spondylodiscitis usually occurs in patients of older age, immunocompromisation, co-morbidity, and individuals suffering from an overall poor general condition unable to undergo reconstructive anterior and posterior surgeries. Therefore, an alternative, less aggressive surgical method is needed for these select cases of infective spondylodiscitis. This retrospective clinical case series reports our novel surgical technique for the treatment of infective spondylodiscitis. Methods Between January 2005 and July 2011, among 48 patients who were diagnosed with pyogenic lumbar spondylodiscitis or tuberculosis lumbar spondylodiscitis, 10 patients (7 males and 3 females; 68 years and 48 to 78 years, respectively) underwent transpedicular curettage and drainage. The mean postoperative follow-up period was 29 months (range, 7 to 61 months). The pedicle screws were inserted to the adjacent healthy vertebrae in the usual manner. After insertion of pedicle screws, the drainage pedicle holes were made through pedicles of infected vertebra(e) in order to prevent possible seeding of infective emboli to the healthy vertebra, as the same instruments and utensils are used for both pedicle screws and the drainage holes. A minimum of 15,000 mL of sterilized normal saline was used for continuous irrigation through the pedicular pathways until the drained fluid looked clear. Results All patients' symptoms and inflammatory markers significantly improved clinically between postoperative 2 weeks and postoperative 3 months, and they were satisfied with their clinical results. Radiologically, all patients reached the spontaneous fusion between infected vertebrae and 3 patients had the screw pulled-out but they were clinically tolerable. Conclusions We suggest that our method of transpedicular curettage and drainage is a useful technique in regards to the treatment of infectious spondylodiscitic patients, who could not tolerate conventional combined anterior and posterior surgery due to multiple co-morbidities, multiple level infectious lesions and poor general condition. PMID:22949951
Alhashash, Mohamed; Shousha, Mootaz; Gendy, Hany; Barakat, Ahmed Samir; Boehm, Heinrich
2018-06-01
A prospective study of 20 multimorbid patients older than 65 years undergoing minimally invasive surgical treatment for odontoid fracture. To analyze the results of percutaneous transarticular atlantoaxial screw fixation as a new minimally invasive treatment modality in this high risk group of patients. Odontoid fractures are a common injury pattern in the elderly. These fractures typically present significant challenges as geriatric patients often have multiple comorbidities that may adversely affect fracture management. Despite numerous publications on this subject, with a trend toward primary operative stabilization, the appropriate treatment for this frequent and potentially life threatening injury remains controversial. Between January 2013 and December 2015, 20 consecutive patients underwent posterior percutaneous transarticular atlantoaxial screw fixation for odontoid fracture type II. The two main inclusion criteria were age 65 years or older and ASA score of III or IV. The screws were inserted percutaneously with the help of two fluoroscopy devices. Clinical and radiological examinations were regularly performed for a minimum of 18 months postoperatively. The mean age was 81 years, all of them with multiple comorbidities. Reduction of the fracture and screw insertion was possible in all cases. The mean operative time was 51.75 minutes and mean blood loss was 41.7 mL. Three patients died in the first 3 months after surgery. Healing of the fracture occurred in 15 patients (88.2%). Revision surgery was not necessary in any of the patients. Mean visual analogue scale (VAS) at the final follow-up was 2.4, and mean patient satisfaction score was 7.1. Percutaneous transarticular atlantoaxial fixation in elderly patients offers a good minimally invasive operative treatment in this multimorbid group of patients. This new technique with short operative time is well tolerated by the geriatric patients leading to a healing rate up to 88%. 4.
Lee, Myung Chul; Jo, Hyunchul; Bae, Tae-Soo; Jang, Jin Dae; Seong, Sang Cheol
2003-03-01
We performed a controlled laboratory study to evaluate the initial fixation strength of press-fit technique. Forty porcine lower limbs were used and divided into four groups according to the method of fixation; group 1 (press-fit+1.4 mm), in which the diameter difference between the bone plug and the femoral tunnel was 1.4 mm; group 2 (press-fit+1.4 mm, 30 degrees), in which the diameter difference was the same with group 1, but the tensile loading axis was 30 degrees away from the long axis of the femoral tunnel; group 3 (titanium), in which a titanium interference screw was used for fixation; group 4 (bioabsorbable), in which a bioabsorbable interference screw was used for fixation. The graft in the press-fit group was harvested with a hollow oscillating saw with inner diameter of 9.4 mm to obtain consistent and completely circular shape of the bone plug. The femoral tunnel with diameter of 8 mm was drilled at the original ACL insertion. Following the bone plug insertion into the femoral tunnel and applying a preload of 20 N, the specimen underwent 500 loading cycles between 0 and 2 mm of displacement. Thereafter the specimen was loaded to failure. There was no fixation site failure during the cyclic loading test. Significant differences in the stiffness, linear load, or failure mode among the groups were not found. The average ultimate failure load of group 1 and group 2 were not significantly different from those of group 3 and group 4. The press-fit groups demonstrated sufficient fixation strength for the rehabilitation and interference screw groups. The completely circular shape of the bone plug and increased diameter difference between the bone plug and the femoral tunnel seemed to contribute to the strong fixation.
CFD simulation of a screw compressor including leakage flows and rotor heating
NASA Astrophysics Data System (ADS)
Spille-Kohoff, Andreas, Dr.; Hesse, Jan; El Shorbagy, Ahmed
2015-08-01
Computational Fluid Dynamics (CFD) simulations have promising potential to become an important part in the development process of positive displacement (PD) machines. CFD delivers deep insights into the flow and thermodynamic behaviour of PD machines. However, the numerical simulation of such machines is more complex compared to dynamic pumps like turbines or fans. The fluid transport in size-changing chambers with very small clearances between the rotors, and between rotors and casing, demands complex meshes that change with each time step. Additionally, the losses due to leakage flows and the heat transfer to the rotors need high-quality meshes so that automatic remeshing is almost impossible. In this paper, setup steps and results for the simulation of a dry screw compressor are shown. The rotating parts are meshed with TwinMesh, a special hexahedral meshing program for gear pumps, gerotors, lobe pumps and screw compressors. In particular, these meshes include axial and radial clearances between housing and rotors, and beside the fluid volume the rotor solids are also meshed. The CFD simulation accounts for gas flow with compressibility and turbulence effects, heat transfer between gas and rotors, and leakage flows through the clearances. We show time- resolved results for torques, forces, interlobe pressure, mass flow, and heat flow between gas and rotors, as well as time- and space-resolved results for pressure, velocity, temperature etc. for different discharge ports and working points of the screw compressor. These results are also used as thermal loads for deformation simulations of the rotors.
Gallizzi, Michael A.; Kuhns, Craig A.; Jenkins, Tyler J.; Pfeiffer, Ferris M.
2014-01-01
Study Design Biomechanical analysis of lateral mass screw pullout strength. Objective We compare the pullout strength of our bone cement–revised lateral mass screw with the standard lateral mass screw. Methods In cadaveric cervical spines, we simulated lateral mass screw “cutouts” unilaterally from C3 to C7. We salvaged fixation in the cutout side with polymethyl methacrylate (PMMA) or Cortoss cement (Orthovita, Malvern, Pennsylvania, United States), allowed the cement to harden, and then drilled and placed lateral mass screws back into the cement-augmented lateral masses. On the contralateral side, we placed standard lateral mass screws into the native, or normal lateral, masses and then compared pullout strength of the cement-augmented side to the standard lateral mass screw. For pullout testing, each augmentation group was fixed to a servohydraulic load frame and a specially designed pullout fixture was attached to each lateral mass screw head. Results Quick-mix PMMA-salvaged lateral mass screws required greater force to fail when compared with native lateral mass screws. Cortoss cement and PMMA standard-mix cement-augmented screws demonstrated less strength of fixation when compared with control-side lateral mass screws. Attempts at a second round of cement salvage of the same lateral masses led to more variations in load to failure, but quick-mix PMMA again demonstrated greater load to failure when compared with the nonaugmented control lateral mass screws. Conclusion Quick-mix PMMA cement revision equips the spinal surgeon with a much needed salvage option for a failed lateral mass screw in the subaxial cervical spine. PMID:25649421
The dynamic natures of implant loading.
Wang, Rui-Feng; Kang, Byungsik; Lang, Lisa A; Razzoog, Michael E
2009-06-01
A fundamental problem in fully understanding the dynamic nature of implant loading is the confusion that exists regarding the torque load delivered to the implant complex, the initial force transformation/stress/strain developed within the system during the implant complex assembly, and how the clamping forces at the interfaces and the preload stress impact the implant prior to any external loading. The purpose of this study was to create an accurately dimensioned finite element model with spiral threads and threaded bores included in the implant complex, positioned in a bone model, and to determine the magnitude and distribution of the force transformation/stress/strain patterns developed in the modeled implant system and bone and, thus, provide the foundational data for the study of the dynamic loading of dental implants prior to any external loading. An implant (Brånemark Mark III), abutment (CeraOne), abutment screw (Unigrip), and the bone surrounding the implant were modeled using HyperMesh software. The threaded interfaces between screw/implant and implant/bone were designed as a spiral thread helix assigned with specific coefficient of friction values. Assembly simulation using ABAQUS and LS-DYNA was accomplished by applying a 32-Ncm horizontal torque load on the abutment screw (Step 1), then decreasing the torque load to 0 Ncm to simulate the wrench removal (Step 2). The postscript data were collected and reviewed by HyperMesh. A regression analysis was used to depict the relationships between the torque load and the mechanical parameters. During the 32-Ncm tightening sequence, the abutment screw elongated 13.3 mum. The tightening torque generated a 554-N clamping force at the abutment/implant interface and a 522-N preload. The von Mises stress values were 248 MPa in the abutment at the abutment-implant interface, 765 MPa at the top of the screw shaft, 694 MPa at the bottom of the screw shaft, 1365 MPa in the top screw thread, and 21 MPa in the bone at the top of the implant-bone interface. This study also identified various characteristic isosurface stress patterns. The maximum stress magnitude to complete the von Mises stress joint pattern in the present model was 107 MPa during screw tightening, and was reduced to 104 MPa with removal of the wrench. Various specific stress patterns were identified within all elements of the implant complex during the assembly simulation. During the torque moment application, the abutment screw was elongated, and every 1.0-mum elongation of the screw was equivalent to a 47.9-N increase of the preload in the implant complex. The ideal index to determine the preload amount was the contact force at the interface between the screw threads and the threaded screw bore. The isosurface mode identified various characteristic stress patterns developed within the implant complex at the various interfaces during the assembly simulation. These patterns are the (1) spiral and ying-yang pattern of the XY stress, (2) spring, cap, clamping, and preload pattern of the ZZ stress, and (3) bone holding and joint pattern of the von Mises stress.
Chitale, Rohan; Ghobrial, George M; Lobel, Darlene; Harrop, James
2013-10-01
The learning and development of technical skills are paramount for neurosurgical trainees. External influences and a need for maximizing efficiency and proficiency have encouraged advancements in simulator-based learning models. To confirm the importance of establishing an educational curriculum for teaching minimally invasive techniques of pedicle screw placement using a computer-enhanced physical model of percutaneous pedicle screw placement with simultaneous didactic and technical components. A 2-hour educational curriculum was created to educate neurosurgical residents on anatomy, pathophysiology, and technical aspects associated with image-guided pedicle screw placement. Predidactic and postdidactic practical and written scores were analyzed and compared. Scores were calculated for each participant on the basis of the optimal pedicle screw starting point and trajectory for both fluoroscopy and computed tomographic navigation. Eight trainees participated in this module. Average mean scores on the written didactic test improved from 78% to 100%. The technical component scores for fluoroscopic guidance improved from 58.8 to 52.9. Technical score for computed tomography-navigated guidance also improved from 28.3 to 26.6. Didactic and technical quantitative scores with a simulator-based educational curriculum improved objectively measured resident performance. A minimally invasive spine simulation model and curriculum may serve a valuable function in the education of neurosurgical residents and outcomes for patients.
Analysis of stress induced by screws in the vertebral fixation system
Fakhouri, Sarah Fakher; Shimano, Marcos Massao; de Araújo, Cleudmar Amaral; Defino, Helton Luiz Aparecido; Shimano, Antônio Carlos
2014-01-01
Objective: To compare, using photoelasticity, internal stress produced by USS II type screw with 5.2 and 6.2 mm external diameters, when submitted to three different pullout strengths. Methods: Two photoelastic models were especially made. The simulation was performed using loads of 1.8, 2.4 e 3.3 kgf.The fringe orders were evaluated around the screws. In all the models analyzed the shear stress were calculated. Results: Independently of the applied load, the smaller screw showed higher values of shear stress. Conclusion: According to the analysis performed, we observed that the place of highest stress was in the first thread of the lead, close to the head of the screws. Experimental study. PMID:24644414
The Peierls stress of the moving [Formula: see text] screw dislocation in Ta.
Liu, Ruiping; Wang, Shaofeng; Wu, Xiaozhi
2009-08-26
The Peierls stress of the moving [Formula: see text] screw dislocation with a planar and non-dissociated core structure in Ta has been calculated. The elastic strain energy which is associated with the discrete effect of the lattice and ignored in classical Peierls-Nabarro (P-N) theory has been taken into account in calculating the Peierls stress, and it can make the Peierls stress become smaller. The Peierls stress we obtain is very close to the experimental data. As shown in the numerical calculations and atomistic simulations, the core structure of the screw dislocation undergoes significant changes under the explicit stress before the screw dislocation moves. Moreover, the mechanism of the screw dislocation is revealed by our results and the experimental data that the screw dislocation retracts its extension in three {110} planes and transforms its dissociated core structure into a planar configuration. Therefore, the core structure of the moving [Formula: see text] screw dislocation in Ta is proposed to be planar.
Possible Vascular Injury Due to Screw Eccentricity in Minimally Invasive Total Hip Arthroplasty.
Singh, Nishant Kumar; Rai, Sanjay Kumar; Rastogi, Amit
2017-01-01
Vascular injury during minimally invasive total hip arthroplasty (THA) is uncommon, yet a well-recognized and serious issue. It emerges because of non-visibility of vascular structures proximal to the pelvic bone during reaming, drilling holes, and fixing of screws. Numerous studies have found that screw fixation during cementless THA is beneficial for the initial stability of cup; yet, no anatomical guidelines support angular eccentric screw fixation. In this study, we obtained the pelvic arterial-phase computed tomographic data of thirty eight humans and reconstructed the three-dimensional models of osseous and vessel structures. We performed the surgical simulation to fix these structures with cementless cups and screws with angular eccentricities. The effect of screw eccentricities (angular eccentricities of ±17° and ±34°) on the vascular injury was determined. Measurement between screw and adjoining vessels was performed and analyzed statistically to ascertain a comparative risk study for blood vessels that are not visible during surgery. Authors similarly discussed the significant absence of appreciation of quadrant systems proposed by Wasielewski et al . on eccentric screws. Adjustment of quadrant systems provided by Wasielewski et al . is required for acetabular implants with eccentric holes for fixation of acetabular screws.
NASA Astrophysics Data System (ADS)
Buerger, C.; Lorenz, C.; Babic, D.; Hoppenbrouwers, J.; Homan, R.; Nachabe, R.; Racadio, J. M.; Grass, M.
2017-03-01
Spinal fusion is a common procedure to stabilize the spinal column by fixating parts of the spine. In such procedures, metal screws are inserted through the patients back into a vertebra, and the screws of adjacent vertebrae are connected by metal rods to generate a fixed bridge. In these procedures, 3D image guidance for intervention planning and outcome control is required. Here, for anatomical guidance, an automated approach for vertebra segmentation from C-arm CT images of the spine is introduced and evaluated. As a prerequisite, 3D C-arm CT images are acquired covering the vertebrae of interest. An automatic model-based segmentation approach is applied to delineate the outline of the vertebrae of interest. The segmentation approach is based on 24 partial models of the cervical, thoracic and lumbar vertebrae which aggregate information about (i) the basic shape itself, (ii) trained features for image based adaptation, and (iii) potential shape variations. Since the volume data sets generated by the C-arm system are limited to a certain region of the spine the target vertebra and hence initial model position is assigned interactively. The approach was trained and tested on 21 human cadaver scans. A 3-fold cross validation to ground truth annotations yields overall mean segmentation errors of 0.5 mm for T1 to 1.1 mm for C6. The results are promising and show potential to support the clinician in pedicle screw path and rod planning to allow accurate and reproducible insertions.
Anatomic determination of optimal entry point and direction for C1 lateral mass screw placement.
Blagg, Stuart E; Don, Angus S; Robertson, Peter A
2009-06-01
Anatomic study of C1 osteology using computerized tomography. To define the anatomy of the C1 lateral mass and make recommendations for optimal entry point and screw placement at C1. C1 lateral mass screw fixation is a reliable biomechanical technique that gives equivalent stability to that of Magerl transarticular screw fixation combined with posterior wiring for C1-C2 fusion. Use of a lateral mass screw allows alternative stabilization constructs to the transarticular technique when C2 vertebral artery anatomy is unfavorable. Because the vertebral artery travels lateral to the lateral mass, then crosses medially over the C1 neural arch, it is at risk during instrumentation. Medially, the cord and canal contents are at risk. While the anatomy of the C1 vertebra and lateral mass is well known, specific definition of ideal entry points, screw pathway direction, and dimensions of screws requires further clarification to enable a clinically safe surgical technique. Fifty consecutive patients underwent computerized tomography scans of their cervical spine. Using calibrated scans, measurements were taken to give the average dimensions of the C1 vertebra with a view for insertion of lateral mass screws beneath the posterior arch. The range of anatomic dimensions was examined to assess risk of vertebral artery damage in this population. The average length of screw within the lateral mass is 17.9 mm with 21.5 mm of screw posterior to the lateral mass, necessary to allow rod placement posteriorly. The safest entry point was directly beneath the medial edge of the posterior arch/lamina where it joins the lateral mass. The ideal direction of screw angulation in the sagittal plane was parallel to the posterior arch of C1. In the medial lateral plane, direct anterior placement could be used, but the lateral mass will tolerate 20 degrees of medial angulation from this starting point. The average distance between the vertebral artery foramen laterally and the screw pathway was 8.8 mm using these landmarks, and 5.8 mm from the medial aspect of the lateral mass. The range of anatomic variation was such that 9 lateral masses had a vertebral artery foramen to screw distance of only 3 mm. The vertebral artery was not at risk when these anatomic landmarks were used. C1 lateral mass screws are best placed beneath the posterior arch, parallel with the arch in the sagittal plan. The entry point is the medial border of the neural arch at its junction with the lateral mass. Straight ahead screw direction is safe in the axial plane, but up to 20 degrees of medial angulation will increase the safety margin from the vertebral artery foramen, and this technique avoids vertebral artery damage and optimizes lateral mass screw purchase. We suggest that this is the preferred method of entry into the lateral mass of C1.
Bulaqi, Haddad Arabi; Mousavi Mashhadi, Mahmoud; Geramipanah, Farideh; Safari, Hamed; Paknejad, Mojgan
2015-05-01
To prevent screw loosening, a clear understanding of the factors influencing secure preload is necessary. The purpose of this study was to investigate the effect of coefficient of friction and tightening speed on screw tightening based on energy distribution method with exact geometric modeling and finite element analysis. To simulate the proper boundary conditions of the screw tightening process, the supporting bone of an implant was considered. The exact geometry of the implant complex, including the Straumann dental implant, direct crown attachment, and abutment screw were modeled with Solidworks software. Abutment screw/implant and implant/bone interfaces were designed as spiral thread helixes. The screw-tightening process was simulated with Abaqus software, and to achieve the target torque, an angular displacement was applied to the abutment screw head at different coefficients of friction and tightening speeds. The values of torque, preload, energy distribution, elastic energy, and efficiency were obtained at the target torque of 35 Ncm. Additionally, the torque distribution ratio and preload simulated values were compared to theoretically predicted values. Upon reducing the coefficient of friction and enhancing the tightening speed, the angle of turn increased at the target torque. As the angle of turn increased, the elastic energy and preload also increased. Additionally, by increasing the coefficient of friction, the frictional dissipation energy increased but the efficiency decreased, whereas the increase in tightening speed insignificantly affected efficiency. The results of this study indicate that the coefficient of friction is the most influential factor on efficiency. Increasing the tightening speed lowered the response rate to the frictional resistance, thus diminishing the coefficient of friction and slightly increasing the preload. Increasing the tightening speed has the same result as reducing the coefficient of friction. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Garcia, Anthony R.; Johnston, Roger G.
2003-07-08
The present invention provides an apparatus and method whereby the reliability and tamper-resistance of tamper indicators can be improved. A flexible connector may be routed through a latch for an enclosure such as a door or container, and the free ends of the flexible connector may be passed through a first locking member and firmly attached to an insert through the use of one or more attachment members such as set screws. A second locking member may then be assembled in interlocking relation with the first locking member to form an interlocked assembly around the insert. The insert may have one or more sharp projections extending toward the first or second locking member so that any compressive force applied in an attempt to disassemble the interlocked assembly results in permanent, visible damage to the first or second locking member.
Huang, Xiaowei; Zhi, Zhongzheng; Yu, Baoqing; Chen, Fancheng
2015-11-25
The purpose of this study is to compare the stress and stability of plate-screw fixation and screw fixation in the treatment of Schatzker type IV medial tibial plateau fracture. A three-dimensional (3D) finite element model of the medial tibial plateau fracture (Schatzker type IV fracture) was created. An axial force of 2500 N with a distribution of 60% to the medial compartment was applied to simulate the axial compressive load on an adult knee during single-limb stance. The equivalent von Mises stress, displacement of the model relative to the distal tibia, and displacement of the implants were used as the output measures. The mean stress value of the plate-screw fixation system was 18.78 MPa, which was significantly (P < 0.001) smaller than that of the screw fixation system. The maximal value of displacement (sum) in the plate-screw fixation system was 2.46 mm, which was lower than that in the screw fixation system (3.91 mm). The peak stress value of the triangular fragment in the plate-screw fixation system model was 42.04 MPa, which was higher than that in the screw fixation model (24.18 MPa). But the mean stress of the triangular fractured fragment in the screw fixation model was significantly higher in terms of equivalent von Mises stress (EVMS), x-axis, and z-axis (P < 0.001). This study demonstrated that the load transmission mechanism between plate-screw fixation system and screw fixation system was different and the stability provided by the plate-screw fixation system was superior to the screw fixation system.
Numerical Simulation of the Working Process in the Twin Screw Vacuum Pump
NASA Astrophysics Data System (ADS)
Lu, Yang; Fu, Yu; Guo, Bei; Fu, Lijuan; Zhang, Qingqing; Chen, Xiaole
2017-08-01
Twin screw vacuum pumps inherit the advantages of screw machinery, such as high reliability, stable medium conveying, small vibration, simple and compact structures, convenient operation, etc, which have been widely used in petrochemical and air industry. On the basis of previous studies, this study analyzed the geometric features of variable pitch of the twin screw vacuum pump such as the sealing line, the meshing line and the volume between teeth. The mathematical model of numerical simulation of the twin screw vacuum pump was established. The leakage paths of the working volume including the sealing line and the addendum arc were comprehensively considered. The corresponding simplified geometric model of leakage flow was built up for different leak paths and the flow coefficients were calculated. The flow coefficient value range of different leak paths was given. The results showed that the flow coefficient of different leak paths can be taken as constant value for the studied geometry. The analysis of recorded indicator diagrams showed that the increasing rotational speed can dramatically decrease the exhaust pressure and the lower rotational speed can lead to over-compression. The pressure of the isentropic process which was affected by leakage was higher than the theoretical process.
Arlt, Stephan; Noser, Hansrudi; Wienke, Andreas; Radetzki, Florian; Hofmann, Gunther Olaf; Mendel, Thomas
2018-05-21
Acetabular fracture surgery is directed toward anatomical reduction and stable fixation to allow for the early functional rehabilitation of an injured hip joint. Recent biomechanical investigations have shown the superiority of using an additional screw in the infraacetabular (IA) region, thereby transfixing the separated columns to strengthen the construct by closing the periacetabular fixation frame. However, the inter-individual existence and variance concerning secure IA screw corridors are poorly understood. This computer-aided 3-D radiomorphometric study examined 124 CT Digital Imaging and Communications in Medicine (DICOM) datasets of intact human pelves (248 acetabula) to visualize the spatial IA corridors as the sum of all intraosseous screw positions. DICOM files were pre-processed using the Amira® 4.2 visualization software. Final corridor computation was accomplished using a custom-made software algorithm. The volumetric measurement data of each corridor were calculated for further statistical analyses. Correlations between the volumetric values and the biometric data were investigated. Furthermore, the influence of hip dysplasia on the IA corridor configuration was analyzed. The IA corridors consistently showed a double-cone shape with the isthmus located at the acetabular fovea. In 97% of male and 91% of female acetabula, a corridor for a 3.5-mm screw could be found. The number of IA corridors was significantly lower in females for screw diameters ≥ 4.5 mm. The mean 3.5-mm screw corridor volume was 16 cm 3 in males and 9.2 cm 3 in female pelves. Corridor volumes were significantly positively correlated with body height and weight and with the diameter of Köhler's teardrop on standard AP pelvic X-rays. No correlation was observed between hip dysplasia and the IA corridor extent. IA corridors are consistently smaller in females. However, 3.5-mm small fragment screws may still be used as the standard implant because sex-specific differences are significant only with screw diameters ≥ 4.5 mm. Congenital hip dysplasia does not affect secure IA screw insertion. The described method allows 3-D shape analyses with highly reliable results. The visualization of secure IA corridors may support the spatial awareness of surgeons. Volumetric data allow the reliable assessment of individual IA corridors using standard AP X-ray views, which aids preoperative planning.
Wan, Shi-yong; Lei, Wei; Wu, Zi-xiang; Lv, Rong; Wang, Jun; Fu, Suo-chao; Li, Bo; Zhan, Ce
2008-04-01
To investigate the properties of screw-bone interface of expansive pedicle screw (EPS) in osteoporotic sheep by micro-CT and histological observation. Six female sheep with bilateral ovariectomy-induced osteoporosis were employed in this experiment. After EPS insertion in each femoral condyle, the sheep were randomly divided into two groups: 3 sheep were bred for 3 months (Group A), while the other 3 were bred for 6 months (Group B). After the animals being killed, the femoral condyles with EPS were obtained, which were three-dimensionally-imaged and reconstructed by micro-CT. Histological evaluation was made thereafter. The trabecular microstructure was denser at the screw-bone interface than in the distant parts in expansive section, especially within the spiral marking. In the non-expansive section, however, there was no significant difference between the interface and the distant parts. The regions of interest (ROI) adjacent to EPS were reconstructed and analyzed by micro-CT with the same thresholds. The three-dimensional (3-D) parameters, including tissue mineral density (TMD), bone volume fraction (BVF, BV/TV), bone surface/bone volume (BS/BV) ratio, trabecular thickness (Tb.Th), and trabecular separation (Tb.Sp), were significantly better in expansive sections than non-expansive sections (P less than 0.05). Histologically, newly-formed bony trabeculae crawled along the expansive fissures and into the center of EPS. The newly-formed bones, as well as the bones at the bone-screw interface, closely contacted with the EPS and constructed four compartments. The findings of the current study, based on micro-CT and histological evaluation, suggest that EPS can significantly provide stabilization in osteoporotic cancellous bones.
CONTROL ROD DRIVE MECHANISM FOR A NUCLEAR REACTOR
Hawke, B.C.; Liederbach, F.J.; Lones, W.
1963-05-14
A lead-screw-type control rod drive featuring an electric motor and a fluid motor arranged to provide a selectably alternative driving means is described. The electric motor serves to drive the control rod slowly during normal operation, while the fluid motor, assisted by an automatic declutching of the electric motor, affords high-speed rod insertion during a scram. (AEC)
Theoretical investigation of flash vaporisation in a screw expander
NASA Astrophysics Data System (ADS)
Vasuthevan, Hanushan; Brümmer, Andreas
2017-08-01
In the present study flash vaporisation of liquid injection in a twin screw expander for a Trilateral Flash Cycle (TFC) is examined theoretically. The TFC process comprises a pressure increase in the working fluid, followed by heating the liquid close to boiling point. The hot liquid is injected into the working chamber of a screw expander. During this process the pressure of the liquid drops below the saturation pressure, while the temperature of the liquid remains virtually constant. Hence the liquid is superheated and in a metastable state. The liquid jet seeks to achieve a stable state in thermodynamic equilibrium and is therefore partially vaporised. This effect is referred to as flash vaporisation. Accordingly, a two-phase mixture, consisting of vapour and liquid, exists in the working chamber. Thermodynamic simulations were carried out using water as the working fluid for representative screw expander geometry. The simulations presented are performed from two different aspects during the filling process of a screw expander. The first case is the vaporisation of the injected liquid in a state of thermodynamic equilibrium, whereby the two-phase mixture is treated entirely as a compressible and homogeneous gas. The second case considers flashing efficiency. It describes the quantity of flashed vapour and consists of a liquid and vapour domain. Both models are compared and analysed with respect to the operational behaviour of a screw expander.
A fiducial skull marker for precise MRI-based stereotaxic surgery in large animal models.
Glud, Andreas Nørgaard; Bech, Johannes; Tvilling, Laura; Zaer, Hamed; Orlowski, Dariusz; Fitting, Lise Moberg; Ziedler, Dora; Geneser, Michael; Sangill, Ryan; Alstrup, Aage Kristian Olsen; Bjarkam, Carsten Reidies; Sørensen, Jens Christian Hedemann
2017-06-15
Stereotaxic neurosurgery in large animals is used widely in different sophisticated models, where precision is becoming more crucial as desired anatomical target regions are becoming smaller. Individually calculated coordinates are necessary in large animal models with cortical and subcortical anatomical differences. We present a convenient method to make an MRI-visible skull fiducial for 3D MRI-based stereotaxic procedures in larger experimental animals. Plastic screws were filled with either copper-sulfate solution or MRI-visible paste from a commercially available cranial head marker. The screw fiducials were inserted in the animal skulls and T1 weighted MRI was performed allowing identification of the inserted skull marker. Both types of fiducial markers were clearly visible on the MRÍs. This allows high precision in the stereotaxic space. The use of skull bone based fiducial markers gives high precision for both targeting and evaluation of stereotaxic systems. There are no metal artifacts and the fiducial is easily removed after surgery. The fiducial marker can be used as a very precise reference point, either for direct targeting or in evaluation of other stereotaxic systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Ryu, Won Hyung A; Mostafa, Ahmed E; Dharampal, Navjit; Sharlin, Ehud; Kopp, Gail; Jacobs, W Bradley; Hurlbert, R John; Chan, Sonny; Sutherland, Garnette R
2017-10-01
Simulation-based education has made its entry into surgical residency training, particularly as an adjunct to hands-on clinical experience. However, one of the ongoing challenges to wide adoption is the capacity of simulators to incorporate educational features required for effective learning. The aim of this study was to identify strengths and limitations of spine simulators to characterize design elements that are essential in enhancing resident education. We performed a mixed qualitative and quantitative cohort study with a focused survey and interviews of stakeholders in spine surgery pertaining to their experiences on 3 spine simulators. Ten participants were recruited spanning all levels of training and expertise until qualitative analysis reached saturation of themes. Participants were asked to perform lumbar pedicle screw insertion on 3 simulators. Afterward, a 10-item survey was administrated and a focused interview was conducted to explore topics pertaining to the design features of the simulators. Overall impressions of the simulators were positive with regards to their educational benefit, but our qualitative analysis revealed differing strengths and limitations. Main design strengths of the computer-based simulators were incorporation of procedural guidance and provision of performance feedback. The synthetic model excelled in achieving more realistic haptic feedback and incorporating use of actual surgical tools. Stakeholders from trainees to experts acknowledge the growing role of simulation-based education in spine surgery. However, different simulation modalities have varying design elements that augment learning in distinct ways. Characterization of these design characteristics will allow for standardization of simulation curricula in spinal surgery, optimizing educational benefit. Copyright © 2017 Elsevier Inc. All rights reserved.
Brizuela-Velasco, Aritza; Álvarez-Arenal, Ángel; Gil-Mur, Francisco Javier; Herrero-Climent, Mariano; Chávarri-Prado, David; Chento-Valiente, Yelko; Dieguez-Pereira, Markel
2015-10-01
To evaluate the micromobility of dental implants under occlusal loading in relation to stability measurements of resonance frequency analysis and insertion torque. The sample comprised of 24 implants inserted in 12 fresh cow ribs. Insertion torque and Osstell implant stability quotient (ISQ) measurements were recorded. An "ad hoc" acrylic premolar was made on a temporary abutment and screwed to each implant, and a force of 100 N was subsequently applied at an angle of 6 degrees. Implant micromotion was measured using a Questar microscope with a resolution of 2 μm and an image analysis program. Data show a statistically significant inverse correlation between the ISQ values and implant micromotion under a load of 100 N (R = 0.86, P < 0.0001). The same relationship is found between insertion torque and implant micromotion, although the relationship is linear up to 34 N·cm and becomes exponential for higher values (R = 0.78, P < 0.0001). A direct correlation is established between insertion torque and ISQ values. There is an inverse relationship between both ISQ and insertion torque values and implant micromotion under a load of 100 N.
Possible Vascular Injury Due to Screw Eccentricity in Minimally Invasive Total Hip Arthroplasty
Singh, Nishant Kumar; Rai, Sanjay Kumar; Rastogi, Amit
2017-01-01
Background: Vascular injury during minimally invasive total hip arthroplasty (THA) is uncommon, yet a well-recognized and serious issue. It emerges because of non-visibility of vascular structures proximal to the pelvic bone during reaming, drilling holes, and fixing of screws. Numerous studies have found that screw fixation during cementless THA is beneficial for the initial stability of cup; yet, no anatomical guidelines support angular eccentric screw fixation. Materials and Methods: In this study, we obtained the pelvic arterial-phase computed tomographic data of thirty eight humans and reconstructed the three-dimensional models of osseous and vessel structures. We performed the surgical simulation to fix these structures with cementless cups and screws with angular eccentricities. Results: The effect of screw eccentricities (angular eccentricities of ±17° and ±34°) on the vascular injury was determined. Measurement between screw and adjoining vessels was performed and analyzed statistically to ascertain a comparative risk study for blood vessels that are not visible during surgery. Conclusion: Authors similarly discussed the significant absence of appreciation of quadrant systems proposed by Wasielewski et al. on eccentric screws. Adjustment of quadrant systems provided by Wasielewski et al. is required for acetabular implants with eccentric holes for fixation of acetabular screws. PMID:28790474
Miller, Mark Carl; Redman, Christopher N; Mistovich, R Justin; Muriuki, Muturi; Sangimino, Mark J
2017-09-01
Pin fixation of Salter-II proximal humeral fractures in adolescents approaching skeletal maturity has potential complications that can be avoided with single-screw fixation. However, the strength of screw fixation relative to parallel and diverging pin fixation is unknown. To compare the biomechanical fixation strength between these fixation modalities, we used synthetic composite humeri, and then compared these results in composite bone with cadaveric humeri specimens. Parallel pinning, divergent pinning, and single-screw fixation repairs were performed on synthetic composite humeri with simulated fractures. Six specimens of each type were tested in axial loading and other 6 were tested in torsion. Five pair of cadaveric humeri were tested with diverging pins and single screws for comparison. Single-screw fixation was statistically stronger than pin fixation in axial and torsional loading in both composite and actual bone. There was no statistical difference between composite and cadaveric bone specimens. Single-screw fixation can offer greater stability to adolescent Salter-II fractures than traditional pinning. Single-screw fixation should be considered as a viable alternative to percutaneous pin fixation in transitional patients with little expected remaining growth.
Kanneganti, Krishna Chaitanya; Vinnakota, Dileep Nag; Pottem, Srinivas Rao; Pulagam, Mahesh
2018-01-01
The purpose of this study is to compare the effect of implant-abutment connections, abutment angulations, and screw lengths on screw loosening (SL) of preloaded abutment using three dimensional (3D) finite element analysis. 3D models of implants (conical connection with hex/trilobed connections), abutments (straight/angulated), abutment screws (short/long), and crown and bone were designed using software Parametric Technology Corporation Creo and assembled to form 8 simulations. After discretization, the contact stresses developed for 150 N vertical and 100 N oblique load applications were analyzed, using ABAQUS. By assessing damage initiation and shortest fatigue load on screw threads, the SL for 2.5, 5, and 10 lakh cyclic loads were estimated, using fe-safe program. The obtained values were compared for influence of connection design, abutment angulation, and screw length. In straight abutment models, conical connection showed more damage (14.3%-72.3%) when compared to trilobe (10.1%-65.73%) at 2.5, 5, and 10 lakh cycles for both vertical and oblique loads, whereas in angulated abutments, trilobe (16.1%-76.9%) demonstrated more damage compared to conical (13.5%-70%). Irrespective of the connection type and abutment angulation, short screws showed more percentage of damage compared to long screws. The present study suggests selecting appropriate implant-abutment connection based on the abutment angulation, as well as preferring long screws with more number of threads for effective preload retention by the screws.
Somberg, Andrew Max; Whiteside, William K; Nilssen, Erik; Murawski, Daniel; Liu, Wei
2016-03-01
Many types of screws, plates, and strut grafts have been utilized for ankle arthrodesis. Biomechanical testing has shown that these constructs can have variable stiffness. More recently, headless compression screws have emerged as an evolving method of achieving compression in various applications but there is limited literature regarding ankle arthrodesis. The aim of this study was to determine the biomechanical stability provided by a second generation fully threaded headless compression screw compared to a standard headed, partially threaded cancellous screw in a cadaveric ankle arthrodesis model. Twenty fresh frozen human cadaver specimens were subjected to simulated ankle arthrodesis with either three standard cancellous-bone screws (InFix 7.3mm) or with three headless compression screws (Acumed Acutrak 2 7.5mm). The specimens were subjected to cyclic loading and unloading at a rate of 1Hz, compression of 525 Newtons (N) and distraction of 20N for a total of 500 cycles using an electromechanical load frame (Instron). The amount of maximum distraction was recorded as well as the amount of motion that occurred through 1, 10, 50, 100, and 500 cycles. No significant difference (p=0.412) was seen in the amount of distraction that occurred across the fusion site for either screw. The average maximum distraction after 500 cycles was 201.9μm for the Acutrak 2 screw and 235.4μm for the InFix screw. No difference was seen throughout each cycle over time for the Acutrak 2 screw (p-value=0.988) or the InFix screw (p-value=0.991). Both the traditional InFix type screw and the second generation Acumed Acutrak headless compression screws provide adequate fixation during ankle arthrodesis under submaximal loads. There is no demonstrable difference between traditional cannulated partially threaded screws and headless compression screws studied in this model. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.
Hickerson, Lindsay E; Owen, John R; Wayne, Jennifer S; Tuten, H Robert
2013-01-01
Biomechanical pullout study using calcium triglyceride (CTG) and polymethylmethacrylate (PMMA) for screw augmentation. Compare the biomechanical performance of CTG augmentation versus the gold standard, PMMA, in primary and revision models, using a pedicle screw pullout model. CTG is a novel form of bone augmentation with several reported biocompatible properties compared with PMMA. PMMA is the standard of care for pedicle screw augmentation in osteoporotic spine. Blocks of closed-cell rigid polyurethane foam of uniform density, representing subcortical layer in osteoporotic pedicle, were prepared according to ASTM standards. After the components of PMMA (n = 11) and CTG (n = 11) were individually mixed in a standardized fashion, 0.2 ml was injected from deep to superficial along a predrilled pilot hole followed by immediate insertion of the pedicle screw. An unaugmented group (n = 10) was also prepared. Blocks cured for 24 hrs, and screws were pulled out at a rate of 5 mm/min on materials testing equipment. For the revision model, the unaugmented group, after screw pullout, was augmented with 0.8 ml of PMMA (n = 5) or CTG (n = 5) as detailed above and screw pullout performed similarly. The mean pullout strengths (SD) for the intact models were as follows: unaugmented, 976.6 N (94.2 N); PMMA, 1,218.1 N (66.8 N); and CTG, 1,841.6 N (57.4 N). A one-way analysis of variance indicated a significant difference among the primary models (p < .0001). For the revision models, the pullout strength for PMMA was 1,939.2 N (108.9 N) and for CTG, 2,513.0 N (149.1 N), which were statistically different from each other (p < .0003). Stiffness of the constructs was increased with both PMMA and CTG augmentation over no augmentation (p < .0001) although no significant difference in stiffness was detected between the 2 forms of augmentation. We conclude that CTG augmentation of pedicle screws resulted in significantly higher axial pullout strength in primary (p < .0001) and revision (p < .0003) models compared with PMMA. Copyright © 2013 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
[Bone repair in pseudarthrosis after arthrodesis of the upper ankle joint].
Eingartner, C; Volkmann, R; Winter, E; Weller, S
1994-06-01
Delayed union or non-union of ankle arthrodesis is a common problem and revision arthrodesis is necessary in those difficult cases. Three cases are presented, in which a non-union after tibiotalar or tibiacalcanear fusion could be treated effectively with a bone graft taken from the anterior cortex of the distal tibia or from the anterior iliacal spine. The bone graft was fixed proximally with a screw. Distally the graft was inserted in an slot gouged into the talus or the calcaneus respectively with or without screw fixation. Postoperative care included short-time external fixation and immobilisation with a shortleg weight bearing cast. We conclude that the technique of a sliding tibiotalar graft can be used for effective treatment of non-union following ankle arthrodesis.
Solooki, Saeed; Azad, Ali
2014-01-01
Simultaneous middle third clavicle fracture and acromioclavicular joint dislocation is a rare combination injury, as a result of high-energy trauma. We report a patient with a middle third clavicle fracture and ipsilateral grade three-acromioclavicular joint dislocation, which is a rare combination. The patient wanted to get back to work as soon as possible, so the fracture was fixed with reconstruction plate after open reduction and plate contouring; and acromioclavicular joint dislocation was reduced and fixed with two full threaded cancellous screws. One screw was inserted through the plate to the coracoid process. Clinical and radiographic finding revealed complete union of clavicle fracture and anatomical reduction of acromioclavicular joint with pain free full joint range of motion one year after operation. PMID:25207318
Blade number impact on pressure and performance of archimedes screw turbine using CFD
NASA Astrophysics Data System (ADS)
Maulana, Muhammad Ilham; Syuhada, Ahmad; Nawawi, Muhammad
2018-02-01
Many rivers in Indonesia can be used as source of mini/micro hydro power plant using low head turbine. The most suitable type of turbine used in fluid flow with low head is the Archimedes screw turbine. The Archimedes screw hydro turbine is a relative newcomer to the small-scale hydropower that can work efficiently on heads as low as 10 meter. In this study, the performance of Archimedes water turbines that has different blade numbers that are thoroughly evaluated to obtain proper blade configuration. For this purpose, numerical simulations are used to predict the pressure changes that occur along the turbine. The simulation results show that turbines with an amount of two blades have more sloping pressure distribution so that it has better stability.
Blind Fastener Is Easy To Install
NASA Technical Reports Server (NTRS)
Peterson, S. A.
1982-01-01
Panels, sheets, doors and other structures could be easily attached to and removed from mating part by proposed new fastener. Fastener is permanently anchored in removable part only. Its protruding end is inserted into a hole in mating part. When wedge pin is screwed tightly closed, segmented collar contracts or expands to release parts or to grip them. Installation has no loose parts, and no rear nut is needed.
3D printing-based minimally invasive cannulated screw treatment of unstable pelvic fracture.
Cai, Leyi; Zhang, Yingying; Chen, Chunhui; Lou, Yiting; Guo, Xiaoshan; Wang, Jianshun
2018-04-04
Open reduction and internal fixation of pelvic fractures could restore the stability of the pelvic ring, but there were several problems. Minimally invasive closed reduction cannulated screw treatment of pelvic fractures has lots advantages. However, how to insert the cannulated screw safely and effectively to achieve a reliable fixation were still hard for orthopedist. Our aim was to explore the significance of 3D printing technology as a new method for minimally invasive cannulated screw treatment of unstable pelvic fracture. One hundred thirty-seven patients with unstable pelvic fractures from 2014 to 2016 were retrospectively analyzed. Based on the usage of 3D printing technology for preoperative simulation surgery, they were assigned to 3D printing group (n = 65) and control group (n = 72), respectively. These two groups were assessed in terms of operative time, intraoperative fluoroscopy, postoperative reduction effect, fracture healing time, and follow-up function. The effect of 3D printing technology was evaluated through minimally invasive cannulated screw treatment. There was no significant difference in these two groups with respect to general conditions, such as age, gender, fracture type, time from injury to operation, injury cause, and combined injury. Length of surgery and average number of fluoroscopies were statistically different for 3D printing group and the control group (p < 0.01), i.e., 58.6 vs. 72.3 min and 29.3 vs. 37 min, respectively. Using the Matta radiological scoring systems, the reduction was scored excellent in 21/65 cases (32.3%) and good in 30/65 cases (46.2%) for the 3D printing group, versus 22/72 cases (30.6%) scored as excellent and 36/72 cases (50%) as good for the control group. On the other hand, using the Majeed functional scoring criteria, there were 27/65 (41.5%) excellent and 26/65 (40%) good cases for the 3D printing group in comparison to 30/72 (41.7%) and 28/72 (38.9%) cases for the control group, respectively. This suggests no significant difference between these two groups about the function outcomes. Full reduction and proper fixation of the pelvic ring and reconstruction of anatomical morphology are of great significance to patients' early functional exercise and for the reduction of long-term complications. This retrospective study has demonstrated the 3D printing technology as a potential approach for improving the diagnosis and treatment of pelvic fractures. The study was retrospectively registered at the Chinese Clinical Trial Registry, number: ChiCTR-TRC-17012798, trial registration date: 26 Sept. 2017.
[Development of polyaxial locking plate screw system of sacroiliac joint].
Fan, Weijie; Xie, Xuesong; Zhou, Shuping; Zhang, Yonghu
2014-09-01
To develop an instrument for sacroiliac joint fixation with less injury and less complications. Firstly, 18 adult pelvic specimens (8 males and 10 females) were used to measure the anatomical data related to the locking plates and locking screws on the sacrum and ilium, and the polyaxial locking plate screw system of the sacroiliac joint was designed according to the anatomic data. This system was made of medical titanium alloy. Then 4 adult male plevic specimens were harvested and the experiment was divided into 3 groups: group A (normal pelvic), group B (the dislocated sacroiliac joint fixed with sacroiliac screws), and group C (the dislocated sacroiliac joint fixed with polyaxial locking plate screw system). The vertical displacement of sacroiliac joint under the condition of 0-700 N vertical load and the horizontal displacement on angle under the condition of 0-12 N·m torsional load were compared among the 3 groups by using the biological material test system. Finally, the simulated application test was performed on 1 adult male cadaveric specimen to observe soft tissue injury and the position of the locking plate and screw by X-ray films. According to the anatomic data of the sacrum and ilium, the polyaxial locking plate screw system of the sacroiliac joint was designed. The biomechanical results showed that the vertical displacement of the sacroiliac joint under the condition of 0-700 N vertical load in group A was significantly bigger than that in group B and group C (P < 0.05), but there was no significant difference between group B and group C (P > 0.05). The horizontal displacement on angle under the condition of 0-12 N·m torsional load in group A was significantly less than that in group B and group C (P < 0.05). The horizontal displacement on angle under the condition of 0-6 N·m torsional load in group B was bigger than that in group C, and the horizontal displacement on angle under the condition of 6-12 N·m torsional load in group B was less than that in group C, but there was no significant difference between group B and group C (P > 0.05). The test of simulating application showed that the specimen suffered less soft tissue injury, and this instrument could be implanted precisely and safely. The polyaxial locking plate screw system of the sacroiliac joint has the advantages of smaller volume and less injury; polyaxial fixation enables flexible adjustment screw direction. The simulated application test shows satisfactory fixing effect.
Grau, Luis; Collon, Kevin; Alhandi, Ali; Kaimrajh, David; Varon, Maria; Latta, Loren; Vilella, Fernando
2018-06-01
The aim of this study is to evaluate the biomechanical effect of filling locking variable angle (VA) screw holes at the area of metaphyseal fracture comminution in a Sawbones® (Sawbones USA, Vashon, Washington) model (AO/OTA 33A-3 fracture) using a Synthes VA locking compression plate (LCP) (Depuy Synthes, Warsaw, Indiana). Seven Sawbones® femur models had a Synthes VA-LCP placed as indicated by the manufacturers technique. A 4cm osteotomy was then created to simulate an AO/OTA 33-A3 femoral fracture pattern with metaphyseal comminution. The control group consisted of four constructs in which the open screw holes at the area of comminution were left unfilled; the experimental group consisted of three constructs in which the VA screw holes were filled with locking screws. One of the control constructs was statically loaded to failure at a rate of 5mm/min. A value equal to 75% of the ultimate load to failure was used as the loading force for fatigue testing of 250,000 cycles at 3Hz. Cycles to failure was recorded for each construct and averages were compared between groups. The average number of cycles to failure in the control and experimental groups were 37524±8187 and 43304±23835, respectively (p=0.72). No significant difference was observed with respect to cycles to failure or mechanism of failure between groups. In all constructs in both the control and experimental groups, plate failure reproducibly occurred with cracks through the variable angle holes in the area of bridged comminution. The Synthes VA-LCP in a simulated AO/OTA 33-A3 comminuted metaphyseal femoral fracture fails in a reproducible manner at the area of comminution through the "honeycomb" VA screw holes. Filling open VA screw holes at the site of comminution with locking screws does not increase fatigue life of the Synthes VA-LCP in a simulated AO/OTA 33-A3 distal femoral fracture. Further studies are necessary to determine whether use of this particular plate is contraindicated when bridging distal femoral fractures with metaphyseal comminution.
Tepedino, Michele; Masedu, Francesco; Chimenti, Claudio
2017-05-30
The aim of the present study was to evaluate the relationship between insertion torque and stability of miniscrews in terms of resistance against dislocation, then comparing a self-tapping screw with a self-drilling one. Insertion torque was measured during placement of 30 self-drilling and 31 self-tapping stainless steel miniscrews (Leone SpA, Sesto Fiorentino, Italy) in synthetic bone blocks. Then, an increasing pulling force was applied at an angle of 90° and 45°, and the displacement of the miniscrews was recorded. The statistical analysis showed a statistically significant difference between the mean Maximum Insertion Torque (MIT) observed in the two groups and showed that force angulation and MIT have a statistically significant effect on miniscrews stability. For both the miniscrews, an angle of 90° between miniscrew and loading force is preferable in terms of stability. The tested self-drilling orthodontic miniscrews showed higher MIT and greater resistance against dislocation than the self-tapping ones.
Does the titanium plate fixation of symphyseal fracture affect mandibular growth?
Bayram, Burak; Yilmaz, Alev Cetinsahin; Ersoz, Esra; Uckan, Sina
2012-11-01
The effect of metallic fixation on growth is a major concern in children and is not yet clear. The aim of this study was to evaluate the effect of metallic fixation of mandibular symphyseal fracture on mandibular growth.Eighteen 90-day-old growing white New Zealand rabbits weighing 1.6 to 2.5 kg were included in this study and divided into 2 groups of 9 subjects. In the experimental group, animals underwent mandibular osteotomy, simulating a symphyseal fracture on the midline of mandibular symphysis. The bone segments were fixed with microplates and microscrews (1.6 mm).In the control group, the same surgical incision without performing symphyseal osteotomy was conducted, and 2 screws were inserted on each side of the symphyseal midline.Digital cephalometric and submentovertex radiographs were taken before the operation and at postoperative 6 months for each animal in 2 groups, and cephalometric measurements were performed. The distance between the centers of the head of 2 screws measured at the end of surgery in the control group was compared with measurements at 6 months after surgery. Obtained data were statistically analyzed.There is no statistically significant difference between the 2 groups for growth amount of both sides of the mandible. Difference of ANS-Id (the most anterior points of nasal bone, the most anterior point on the alveolar bone between the lower incisors) and Cd-Id (the uppermost and most distal point of the mandibular condyle, the most anterior point on the alveolar bone between the lower incisors) values of the 2 groups is not statistically significant (P > 0.05).The distance between the 2 screws at the first application significantly increased at the postoperative sixth month (P < 0.05). Metallic fixation of mandibular symphyseal fracture does not affect the vertical and sagittal mandibular growth in growing rabbits.
Moed, Berton R; O'Boynick, Christopher P; Bledsoe, J Gary
2014-04-01
The benefits of locked plating for pubic symphyseal disruption have not been established. The purpose of this biomechanical study was to determine whether locked plating offers any advantage over conventional unlocked plating of the pubic symphysis in the vertically unstable, Type-C pelvic injury. In each of eight embalmed cadaver pelvis specimens, sectioning of the pubic symphysis in conjunction with a unilateral release of the sacroiliac, sacrospinous, and sacrotuberous ligaments and pelvic floor was performed to simulate a vertically unstable Type-C (Orthopaedic Trauma Association 61-C1.2) pelvic injury. The disrupted SI joint was then reduced and fixed using two 6.5mm cannulated screws inserted into the S1 body. Using a six-hole 3.5mm plate specifically designed for the symphysis pubis having both locked and unlocked capability, four pelvises were fixed with locked screws and four pelvises were fixed with standard unlocked bicortical screws. Both groups were similar based on a dual-emission X-ray absorptiometry evaluation (P=0.69). Each pelvis was then mounted on a servohydraulic materials-testing apparatus using a bilateral stance model to mainly stress the symphyseal fixation and was cycled up to 1 million cycles or failure, whichever occurred first. Five specimens experienced failure at the jig mounting/S1 vertebral body interface, occurring between 360,000 and 715,000 cycles. Frank failure of the anterior or posterior instrumentation did not occur. However, end-trialing diastasis of the initial pubic symphysis reduction was found in all pelvises. There were no differences between the groups with respect to this loss of symphyseal reduction (P=0.69) or average cycles to failure (P=1.0). Pubic symphyseal locked plating does not appear to offer any advantage over standard unlocked plating for a Type-C (OTA 61-C1.2) pelvic ring injury. Copyright © 2013 Elsevier Ltd. All rights reserved.
Grover, Dustin M; Howell, Stephen M; Hull, Maury L
2005-02-01
The tensile force applied to an anterior cruciate ligament graft determines the maximal anterior translation; however, it is unknown whether the tensile force is transferred to the intra-articular portion of the graft and whether the intra-articular tension and maximal anterior translation are maintained shortly after ligament reconstruction. Ten cadaveric knees were reconstructed with a double-looped tendon graft. The graft was looped through a femoral fixation transducer that measured the resultant force on the proximal end of the graft. A pneumatic cylinder applied a tensile force of 110 N to the graft exiting the tibial tunnel with the knee in full extension. The graft was fixed sequentially with four tibial fixation devices (a spiked metal washer, double staples, a bioabsorbable interference screw, and a WasherLoc). Three cyclic loading treatments designed to conservatively load the graft and its fixation were applied. The combined loss in intra-articular graft tension from friction, insertion of the tibial fixation device, and three cyclic loading treatments was 50% for the spiked washer (p = 0.0004), 100% for the double staples (p < 0.0001), 64% for the interference screw (p = 0.0001), and 56% for the WasherLoc (p < 0.0001). The tension loss caused an increase in the maximal anterior translation from that of the intact knee of 2.0 mm for the spiked washer (p = 0.005), 7.8 mm for the double staples (p < 0.0001), 2.7 mm for the interference screw (p = 0.001), and 2.1 mm for the WasherLoc (p < 0.0001). The tensile force applied to a soft-tissue anterior cruciate ligament graft is not transferred intra-articularly and is not maintained during graft fixation. The loss in tension is caused by friction in the tibial tunnel and wrapping the graft around the shank of the screw of the spiked washer, insertion of the tibial fixation device, and cyclical loading of the knee. The amount of tension loss is sufficient to increase the maximal anterior translation.
Mechanistic modeling of modular co-rotating twin-screw extruders.
Eitzlmayr, Andreas; Koscher, Gerold; Reynolds, Gavin; Huang, Zhenyu; Booth, Jonathan; Shering, Philip; Khinast, Johannes
2014-10-20
In this study, we present a one-dimensional (1D) model of the metering zone of a modular, co-rotating twin-screw extruder for pharmaceutical hot melt extrusion (HME). The model accounts for filling ratio, pressure, melt temperature in screw channels and gaps, driving power, torque and the residence time distribution (RTD). It requires two empirical parameters for each screw element to be determined experimentally or numerically using computational fluid dynamics (CFD). The required Nusselt correlation for the heat transfer to the barrel was determined from experimental data. We present results for a fluid with a constant viscosity in comparison to literature data obtained from CFD simulations. Moreover, we show how to incorporate the rheology of a typical, non-Newtonian polymer melt, and present results in comparison to measurements. For both cases, we achieved excellent agreement. Furthermore, we present results for the RTD, based on experimental data from the literature, and found good agreement with simulations, in which the entire HME process was approximated with the metering model, assuming a constant viscosity for the polymer melt. Copyright © 2014. Published by Elsevier B.V.
[Ankle arthrodesis using the cable technique].
Labitzke, Reiner
2005-10-01
Arthrodesis of the ankle with a cable technique for restitution of pain-free gait with the foot in functional alignment. Painful osteoarthritis of the ankle unresponsive to conservative and surgical treatment or in instances where these treatments do not seem sensible. Osteomyelitis, acute arthritis, neuropathic arthropathy. Exposure of the ankle through bilateral longitudinal incisions. Resection of malleoli and of articular surfaces of tibia and talus correcting at the same time any malalignment. Insertion of two cortical screws into the lateral aspect of the tibia and one each into talar body and neck. All four screws must protrude the opposite cortex. Around the neck of each anterior and posterior pair of screws as well as around the tips of the protruding screws cables are placed, tensioned, and tightened in a crimp. An arthrodesis of the ankle was performed in 25 patients (25 ankles). The goal of surgery was reached in 21 patients at 6-8 weeks postoperatively. Two patients had to undergo a revision using the same method to secure a bony fusion. In another two the failure was due to a wrong indication; in both a bony fusion occurred after external fixation. Using the Mazur Score the patients reached an average of 74 points and with the MHH Score ("Medizinische Hochschule Hannover" [Hanover Medical School]) an average of 78 points, both attesting to a good result.
Lunar drill footplate and casing
NASA Technical Reports Server (NTRS)
Maassen, Erik C.; Hendrix, Thomas H.; Morrison, Eddie W.; Phillips, Rodrick B.; Le, Vu Quang; Works, Bruce A.
1989-01-01
To prevent hole collapse during lunar drilling operations, a casing has been devised of a graphite reinforced polyimide composite which will be able to withstand the lunar environment. Additionally, this casing will be inserted into the ground in segments two meters long which will penetrate the regolith simultaneously with the auger. The vertical action of the mobile platform will provide a downward force to the casing string through a special adaptor, giving the casing the needed impetus to sink the anticipated depth of ten meters. Casing segments will be connected with a simple snap arrangement. Excess casing will be cut off by a cylindrical cutting tool which will also transport the excess casing away from the hole. A footplate will be incorporated to grasp the auger rod string during rod segment additions or removals. The footplate grasping mechanism will consist of a set of vice-like arms, one end of each bearing threaded to a common power screw. The power screw will be threaded such that one end's thread pitch opposes that of the other end. The weight of the auger and rod string will be transmitted through the arms to the power screw and absorbed by a set of three ball bearing assemblies. The power screw will be driven by a one-half horsepower brushless motor actuated by radio control. The footplate will rest on four short legs and be anchored with pins that are an integral part of each leg.
García-Roncero, Herminio; Caballé-Serrano, Jordi; Cano-Batalla, Jordi; Cabratosa-Termes, Josep; Figueras-Álvarez, Oscar
2015-04-01
In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants. Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous®; Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at 30° in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's t-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%. Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes. Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants.
Long constructs in the thoracic and lumbar spine with a minimally invasive technique.
Roldan, H; Perez-Orribo, L; Spreafico, M; Ginoves-Sierra, M
2011-04-01
Literature about long implants used together with a minimally invasive spine surgery (MISS) technique is scarce. Our objective is to contribute our surgical experience in this field and to specifically focus on several technical details. A digitally-dissected canal along the paravertebral muscles was created linking the stab wounds on each side in relation with the pedicles to be cannulated. Screws were inserted following the percutaneous technique. Long rods were modelled, threaded through the extender sleeves along the paravertebral canal and pushed into the screw heads with the reduction forceps. When fusion was needed, the facet complex was decorticated with a drill. To insert a cross-link, a canal between the 2 rods was digitally created and the spinous process was drilled. 8 patients underwent surgery (age range: 25-77 years). Indications were postosteomyelitis kyphosis in 3 patients, bone tumor in 3, and spine fracture in 2. No blood transfusions were necessary during or after surgery. A cross-link was inserted in 2 patients. Posterolateral bone fusion was attempted in 4, but radiologically identifiable in none. In one patient a cantilever manoeuvre was done to correct kyphosis. Mean duration of surgery was 4 h. There were no clinical complications related to the operation or the hardware (mean follow-up of 7.14 months, range: 1-15 months). The application of MISS techniques can be broadened to long spinal constructs to assess fractures, tumors or deformity, especially in elderly or debilitated patients. Nevertheless, posterolateral fusion is still a challenge through these limited exposures. © Georg Thieme Verlag KG Stuttgart · New York.
Kuemmerle, Jan M; Kühn, Karolin; Bryner, Marco; Fürst, Anton E
2013-10-01
To evaluate if the use of locking head screws (LHS) in the distal holes of a locking compression plate (LCP) applied to the caudal aspect of the ulna to treat equine ulnar fractures is associated with a risk of injury to the lateral cortex of the radius. Controlled laboratory study. Cadaveric equine forelimbs (n = 8 pair). After transverse ulnar osteotomy, osteosynthesis was performed with a narrow 10-13 hole 4.5/5.0 LCP applied to the caudal aspect of each ulna. The distal 3 holes were filled with 4.5 mm cortex screws (CS) in 1 limb (group 1) and with 5.0 mm LHS contralaterally (group 2). CS were inserted in an angle deemed appropriate by the surgeon and LHS were inserted perpendicular to the plate. Implant position and injury to the lateral cortex of the radius were assessed by radiography, CT, and limb dissection. In group 1, injury of the lateral radius cortex did not occur. In group 2, 4 limbs and 6/24 LHS were associated with injury of the lateral radius cortex by penetration of a LHS. This difference was statistically significant. CS were inserted with a mean angle of 17.6° from the sagittal plane in a caudolateral-craniomedial direction. Use of LHS in the distal part of a LCP applied to the caudal aspect of the ulna is associated with a risk of inadvertent injury to the lateral cortex of the radius. © Copyright 2013 by The American College of Veterinary Surgeons.
Wieding, Jan; Souffrant, Robert; Fritsche, Andreas; Mittelmeier, Wolfram; Bader, Rainer
2012-01-01
The use of finite element analysis (FEA) has grown to a more and more important method in the field of biomedical engineering and biomechanics. Although increased computational performance allows new ways to generate more complex biomechanical models, in the area of orthopaedic surgery, solid modelling of screws and drill holes represent a limitation of their use for individual cases and an increase of computational costs. To cope with these requirements, different methods for numerical screw modelling have therefore been investigated to improve its application diversity. Exemplarily, fixation was performed for stabilization of a large segmental femoral bone defect by an osteosynthesis plate. Three different numerical modelling techniques for implant fixation were used in this study, i.e. without screw modelling, screws as solid elements as well as screws as structural elements. The latter one offers the possibility to implement automatically generated screws with variable geometry on arbitrary FE models. Structural screws were parametrically generated by a Python script for the automatic generation in the FE-software Abaqus/CAE on both a tetrahedral and a hexahedral meshed femur. Accuracy of the FE models was confirmed by experimental testing using a composite femur with a segmental defect and an identical osteosynthesis plate for primary stabilisation with titanium screws. Both deflection of the femoral head and the gap alteration were measured with an optical measuring system with an accuracy of approximately 3 µm. For both screw modelling techniques a sufficient correlation of approximately 95% between numerical and experimental analysis was found. Furthermore, using structural elements for screw modelling the computational time could be reduced by 85% using hexahedral elements instead of tetrahedral elements for femur meshing. The automatically generated screw modelling offers a realistic simulation of the osteosynthesis fixation with screws in the adjacent bone stock and can be used for further investigations. PMID:22470474
DOE Office of Scientific and Technical Information (OSTI.GOV)
Praher, B., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Straka, K., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Usanovic, J., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at
We developed novel non-invasive ultrasound based systems for the measurement of temperature distributions in the screw-ante chamber, the detection of unmelted granules and for the monitoring of the plasticizing process along the screw channel. The temperature of the polymer melt stored in the screw ante-chamber after the plasticization should be homogeneous. However, in reality the polymer melt in the screw ante-chamber is not homogeneous. Due to the fact the sound velocity in a polymer melt is temperature depending, we developed a tomography system using the measured transit times of ultrasonic pulses along different sound paths for calculating the temperature distributionmore » in radial direction of a polymer melt in the screw ante-chamber of an injection moulding machine. For the detection of unmelted granules in the polymer melt we implemented an ultrasound transmission measurement. By analyzing the attenuation of the received pulses it is possible to detect unwanted inclusions. For the monitoring of the plasticizing process in the channels of the screw an ultrasonic pulse is transmitted into the barrel. By analyzing the reflected pulses it is possible to estimate solid bed and melt regions in the screw channel. The proposed systems were tested for accuracy and validity by simulations and test measurements.« less
Schröder, Marc L; Staartjes, Victor E
2017-05-01
OBJECTIVE The accuracy of robot-guided pedicle screw placement has been proven to be high, but little is known about the impact of such guidance on clinical outcomes such as the rate of revision surgeries for screw malposition. In addition, there are very few data about the impact of robot-guided fusion on patient-reported outcomes (PROs). Thus, the clinical benefit for the patient is unclear. In this study, the authors analyzed revision rates for screw malposition and changes in PROs following minimally invasive robot-guided pedicle screw fixation. METHODS A retrospective cohort study of patients who had undergone minimally invasive posterior lumbar interbody fusion (MI-PLIF) or minimally invasive transforaminal lumbar interbody fusion was performed. Patients were followed up clinically at 6 weeks, 12 months, and 24 months after treatment and by mailed questionnaire in March 2016 as a final follow-up. Visual analog scale (VAS) scores for back and leg pain severity, Oswestry Disability Index (ODI), screw revisions, and socio-demographic factors were analyzed. A literature review was performed, comparing the incidence of intraoperative screw revisions and revision surgery for screw malposition in robot-guided, navigated, and freehand fusion procedures. RESULTS Seventy-two patients fit the study inclusion criteria and had a mean follow up of 32 ± 17 months. No screws had to be revised intraoperatively, and no revision surgery for screw malposition was needed. In the literature review, the authors found a higher rate of intraoperative screw revisions in the navigated pool than in the robot-guided pool (p < 0.001, OR 9.7). Additionally, a higher incidence of revision surgery for screw malposition was observed for freehand procedures than for the robot-guided procedures (p < 0.001, OR 8.1). The VAS score for back pain improved significantly from 66.9 ± 25.0 preoperatively to 30.1 ± 26.8 at the final follow-up, as did the VAS score for leg pain (from 70.6 ± 22.8 to 24.3 ± 28.3) and ODI (from 43.4 ± 18.3 to 16.2 ± 16.7; all p < 0.001). Undergoing PLIF, a high body mass index, smoking status, and a preoperative ability to work were identified as predictors of a reduction in back pain. Length of hospital stay was 2.4 ± 1.1 days and operating time was 161 ± 50 minutes. Ability to work increased from 38.9% to 78.2% of patients (p < 0.001) at the final follow-up, and 89.1% of patients indicated they would choose to undergo the same treatment again. CONCLUSIONS In adults with low-grade spondylolisthesis, the data demonstrated a benefit in using robotic guidance to reduce the rate of revision surgery for screw malposition as compared with other techniques of pedicle screw insertion described in peer-reviewed publications. Larger comparative studies are required to assess differences in PROs following a minimally invasive approach in spinal fusion surgeries compared with other techniques.
Alegre, G M; Gupta, M C; Bay, B K; Smith, T S; Laubach, J E
2001-09-15
A biomechanical study comparing fixation across the lumbosacral junction. To determine which long posterior construct across the lumbosacral junction produces the least bending moment on the S1 screw when only one ilium is available for fixation. Recent in vitro studies have demonstrated the benefit of anterior support and fixation into the ilium when instrumenting a long posterior construct across the lumbosacral junction. Four L2-sacrum constructs were tested on six synthetic models of the lumbar spine and pelvis simulating that the right ilium had been harvested. Construct 1: L2-S1 bilateral screws. Construct 2: L2-S1 + left iliac bolt. Construct 3: L2-S1 + left iliac bolt + right S2 screw. Construct 4: L2-S1 + bilateral S2 screws. The four constructs were then retested with an anterior L5-S1 strut. A flexion-extension moment was applied across each construct, and the moment at the left and right S1 pedicle screw was measured with internal strain gauges. Iliac bolt fixation was found to significantly decrease the flexion-extension moment on the ipsilateral S1 screw by 70% and the contralateral screw by 26%. An anterior L5-S1 strut significantly decreased the S1 screw flexion-extension moment by 33%. Anterior support at L5-S1 provided no statistical decrease in the flexion-extension moment when bilateral posterior fixation beyond S1 was present with either a unilateral iliac bolt and contralateral S2 screw, or bilateral S2 screws. There is a significant decrease in the flexion-extension moment on the S1 screw when extending long posterior constructs to either the ilium or S2 sacral screw. There is no biomechanical advantage of the iliac bolt over the S2 screw in decreasing the moment on the S1 screw in flexion and extension. Adding anterior support to long posterior constructs significantly decreases the moment on the S1 screw. Adding distal posterior fixation to either the ilium or S2 decreases the moment on S1 screws more than adding anterior support. Further, adding anterior support when bilateral distal fixation past S1 is already present does not significantly decrease the moment on the S1 screws in flexion and extension.
Dayton, Paul; Ferguson, Joe; Hatch, Daniel; Santrock, Robert; Scanlan, Sean; Smith, Bret
2016-01-01
To better understand the mechanical characteristics of biplane locked plating in small bone fixation, the present study compared the stability under cyclic cantilever loading of a 2-plate locked biplane (BPP) construct without interfragmentary compression with that of a single-plate locked construct with an additional interfragmentary screw (SPS) using surrogate bone models simulating Lapidus arthrodesis. In static ultimate plantar bending, the BPP construct failed at significantly greater load than did the SPS construct (556.2 ± 37.1 N versus 241.6 ± 6.3 N, p = .007). For cyclic failure testing in plantar bending at a 180-N starting load, the BPP construct failed at a significantly greater number of cycles (158,322 ± 50,609 versus 13,718 ± 10,471 cycles) and failure load (242.5 ± 25.0 N versus 180.0 ± 0.0 N) than the SPS construct (p = .002). For cyclic failure testing in plantar bending at a 120-N starting load, the results were not significantly different between the BPP and SPS constructs for the number of cycles (207,646 ± 45,253 versus 159,334 ± 69,430) or failure load (205.0 ± 22.4 N versus 185.0 ± 33.5 N; p = .300). For cyclic testing with 90° offset loading (i.e., medial to lateral bending) at a 120-N starting load, all 5 BPP constructs (tension side) and 2 of the 5 SPS constructs reached 250,000 cycles without failure. Overall, the present study found the BPP construct to have superior or equivalent stability in multiplanar orientations of force application in both static and fatigue testing. Thus, the concept of biplane locked plating, using 2 low profile plates and unicortical screw insertion, shows promise in small bone fixation, because it provides consistent stability in multiplanar orientations, making it universally adaptable to many clinical situations. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Influence of different tightening forces before laser welding to the implant/framework fit.
da Silveira-Júnior, Clebio Domingues; Neves, Flávio Domingues; Fernandes-Neto, Alfredo Júlio; Prado, Célio Jesus; Simamoto-Júnior, Paulo César
2009-06-01
The aim of the present study was to evaluate the influence of abutment screw tightening force before laser welding procedures on the vertical fit of metal frameworks over four implants. To construct the frameworks, prefabricated titanium abutments and cylindrical titanium bars were joined by laser welding to compose three groups: group of manual torque (GMT), GT10 and GT20. Before welding, manual torque simulating routine laboratory procedure was applied to GTM. In GT10 and GT20, the abutment screws received 10 and 20 Ncm torque, respectively. After welding, the implant/framework interfaces were assessed by optical comparator microscope using two methods. First, the single screw test (SST) was used, in which the interfaces of the screwed and non-screwed abutments were assessed, considering only the abutments at the framework extremities. Second, the interfaces of all the abutments were evaluated when they were screwed. In the SST, intergroup analysis (Kruskal Wallis) showed no significant difference among the three conditions of tightening force; that is, the different tightening force before welding did not guarantee smaller distortions. Intragroup analysis (Wilcoxon) showed that for all groups, the interfaces of the non-screwed abutments were statistically greater than the interfaces of the screwed abutments, evidencing distortions in all the frameworks. ANOVA was applied for the comparison of interfaces when all the abutments were screwed and showed no significant difference among the groups. Under the conditions of this study, pre-welding tightness on abutment screws did not influence the vertical fit of implant-supported metal frameworks.
Liu, Hao; Chen, Weikai; Liu, Tao; Meng, Bin; Yang, Huilin
2017-01-01
To investigate the accuracy of pedicle screw placement based on preoperative computed tomography in comparison with intraoperative data set acquisition for spinal navigation system. The PubMed (MEDLINE), EMBASE, and Web of Science were systematically searched for the literature published up to September 2015. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines. Statistical analysis was performed using the Review Manager 5.3. The dichotomous data for the pedicle violation rate was summarized using relative risk (RR) and 95% confidence intervals (CIs) with the fixed-effects model. The level of significance was set at p < 0.05. For this meta-analysis, seven studies used a total of 579 patients and 2981 screws. The results revealed that the accuracy of intraoperative data set acquisition method is significantly higher than preoperative one using 2 mm grading criteria (RR: 1.82, 95% CI: 1.09, 3.04, I 2 = 0%, p = 0.02). However, there was no significant difference between two kinds of methods at the 0 mm grading criteria (RR: 1.13, 95% CI: 0.88, 1.46, I 2 = 17%, p = 0.34). Using the 2-mm grading criteria, there was a higher accuracy of pedicle screw insertion in O-arm-assisted navigation than CT-based navigation method (RR: 1.96, 95% CI: 1.05, 3.64, I 2 = 0%, p = 0.03). The accuracy between CT-based navigation and two-dimensional-based navigation showed no significant difference (RR: 1.02, 95% CI: 0.35-3.03, I 2 = 0%, p = 0.97). The intraoperative data set acquisition method may decrease the incidence of perforated screws over 2 mm but not increase the number of screws fully contained within the pedicle compared to preoperative CT-based navigation system. A significantly higher accuracy of intraoperative (O-arm) than preoperative CT-based navigation was revealed using 2 mm grading criteria.
Open Screw Placement in a 1.5 mm LCP Over a Fracture Gap Decreases Fatigue Life
Alwen, Sarah G. J.; Kapatkin, Amy S.; Garcia, Tanya C.; Milgram, Joshua; Stover, Susan M.
2018-01-01
Objective To investigate the influence of plate and screw hole position on the stability of simulated radial fractures stabilized with a 1.5 mm condylar locking compression plate (LCP). Study Design In vitro mechanical testing of paired cadaveric limbs. Sample Population Paired radii (n = 7) stabilized with a 1.5 mm condylar LCP with an open screw hole positioned either proximal to (PG), or over (OG), a simulated small fracture gap. Methods Constructs were cycled in axial compression at a simulated trot load until failure or a maximum of 200,000 cycles. Specimens that sustained 200,000 cycles without failure were then loaded in axial compression in a single cycle to failure. Construct cyclic axial stiffness and gap strain, fatigue life, and residual strength were evaluated and compared between constructs using analysis of variance. Results Of pairs that had a failure during cyclic loading, OG constructs survived fewer cycles (54,700 ± 60,600) than PG (116,800 ± 49,300). OG constructs had significantly lower initial stiffness throughout cyclic loading and higher gap strain range within the first 1,000 cycles than PG constructs. Residual strength variables were not significantly different between constructs, however yield loads occurred at loads only marginally higher than approximated trot loads. Fatigue life decreased with increasing body weight. Conclusion Fracture fixation stability is compromised by an open screw hole directly over a fracture gap compared to the open screw hole being buttressed by bone in the model studied. The 1.5 mm condylar LCP may be insufficient stabilization in dogs with appropriate radial geometry but high body weights. PMID:29876361
Whang, C Z Y; Bister, D; Sherriff, M
2011-12-01
This study compared peak insertion torque values of six commercially available self-drilling mini-implants [Mini Spider® screw (1.5 × 8 mm), Infinitas® (1.5 × 9 mm), Vector TAS® (1.4 × 8 mm), Dual Top® (1.6 × 8 mm), Tomas Pin® (1.6 × 8 mm), and Ortho-Easy® (1.7 × 6, 8, and 10 mm)]. Twenty implants each were drilled into acrylic rods at a speed of 8 rpm using a motorized torque measurement stand, and the values were recorded in Newton centimetres (Ncm). A further 20 Ortho-Easy® implants with a length of 6 and 10 mm were tested at 8 rpm; 20 implants of 6 mm length were also tested at 4 rpm. Kaplan-Meier estimates of the peak torque values were compared using the log-rank test with multiple comparisons evaluated by Sidak's test. There were significant differences in the maximum torque values for different mini-implants with the same length. The Mini Spider® screw and Infinitas® showed the lowest average torque values (6.5 and 12.4 Ncm) compared with Vector TAS®, Dual ToP®, Tomas Pin®, and Ortho-Easy® (30.9, 29.4, 25.4, and 24.8 Ncm, respectively). There was no correlation between the diameter of the implants and torque values. The Tomas Pin® showed the largest standard deviation (7.7 Ncm) and the Dual Top® implant the smallest (0.6 Ncm). Different insertion speeds did not result in significant differences in peak torque values but the 6 mm mini-implants showed significantly higher torque values than the 8 and 10 mm implants. Using a 'torque limiting' screwdriver or pre-drilling cortical bone to reduce insertion, torque appears justified for some of the tested implants.
Jazini, Ehsan; Petraglia, Carmen; Moldavsky, Mark; Tannous, Oliver; Weir, Tristan; Saifi, Comron; Elkassabany, Omar; Cai, Yiwei; Bucklen, Brandon; O'Brien, Joseph; Ludwig, Steven C
2017-04-01
Compromise of pedicle screw purchase is a concern in maintaining rigid spinal fixation, especially with osteoporosis. Little consistency exists among various tapping techniques. Pedicle screws are often prepared with taps of a smaller diameter, which can further exacerbate inconsistency. The objective of this study was to determine whether a mismatch between tap thread depth (D) and thread pitch (P) and screw D and P affects fixation when under-tapping in osteoporotic bone. This study is a polyurethane foam block biomechanical analysis. A foam block osteoporotic bone model was used to compare pullout strength of pedicle screws with a 5.3 nominal diameter tap of varying D's and P's. Blocks were sorted into seven groups: (1) probe only; (2) 0.5-mm D, 1.5-mm P tap; (3) 0.5-mm D, 2.0-mm P tap; (4) 0.75-mm D, 2.0-mm P tap; (5) 0.75-mm D, 2.5-mm P tap; (6) 0.75-mm D, 3.0-mm P tap; and (7) 1.0-mm D, 2.5-mm P tap. A pedicle screw, 6.5 mm in diameter and 40 mm in length, was inserted to a depth of 40 mm. Axial pullout testing was performed at a rate of 5 mm/min on 10 blocks from each group. No significant difference was noted between groups under axial pullout testing. The mode of failure in the probe-only group was block fracture, occurring in 50% of cases. Among the other six groups, only one screw failed because of block fracture. The other 59 failed because of screw pullout. In an osteoporotic bone model, changing the D or P of the tap has no statistically significant effect on axial pullout. Osteoporotic bone might render tap features marginal. Our findings indicate that changing the characteristics of the tap D and P does not help with pullout strength in an osteoporotic model. The high rate of fracture in the probe-only group might imply the potential benefit of tapping to prevent catastrophic failure of bone. Copyright © 2016 Elsevier Inc. All rights reserved.
He, Baorong; Yan, Liang; Zhao, Qinpeng; Chang, Zhen; Hao, Dingjun
2014-12-01
Most atlas fractures can be effectively treated nonoperatively with external immobilization unless there is an injury to the transverse atlantal ligament. Surgical stabilization is most commonly achieved using a posterior approach with fixation of C1-C2 or C0-C2, but these treatments usually result in loss of the normal motion of the C1-C2 and C0-C1 joints. To clinically validate feasibility, safety, and value of open reduction and fixation using an atlas polyaxial lateral mass screw-plate construct in unstable atlas fractures. Retrospective review of patients who sustained unstable atlas fractures treated with polyaxial lateral mass screw-plate construct. Twenty-two patients with unstable atlas fractures who underwent posterior atlas polyaxial lateral mass screw-plate fixation were analyzed. Visual analog scale, neurologic status, and radiographs for fusion. From January 2011 to September 2012, 22 patients with unstable atlas fractures were treated with this technique. Patients' charts and radiographs were reviewed. Bone fusion, internal fixation placement, and integrity of spinal cord and vertebral arteries were assessed via intraoperative and follow-up imaging. Neurologic function, range of motion, and pain levels were assessed clinically on follow-up. All patients were followed up from 12 to 32 months, with an average of 22.5±18.0 months. A total of 22 plates were placed, and all 44 screws were inserted into the atlas lateral masses. The mean duration of the procedure was 86 minutes, and the average estimated blood loss was 120 mL. Computed tomography scans 9 months after surgery confirmed that fusion was achieved in all cases. There was no screw or plate loosening or breakage in any patient. All patients had well-preserved range of motion. No vascular or neurologic complication was noted, and all patients had a good clinical outcome. An open reduction and posterior internal fixation with atlas polyaxial lateral mass screw-plate is a safe and effective surgical option in the treatment of unstable atlas fractures. This technique can provide immediate reduction and preserve C1-C2 motion. Copyright © 2014 Elsevier Inc. All rights reserved.
Park, Jong Woong; Kim, Yong-Il; Kang, Hyun Guy; Kim, June Hyuk; Kim, Han Soo
2018-05-15
We introduced a palliative joint-preserving surgery using proximal self-locking screws of intramedullary (IM) nail and percutaneous cementoplasty (PC) in patients with proximal humeral metastases, including the head and neck, and evaluated the outcome of the surgical method. Twenty-three patients (mean age = 63.0 ± 11.8 years, M:F = 14:9) had IM nailing with a self-locking screw system and PC for the treatment of humeral head and neck metastases. Usually, three proximal locking screws were inserted after IM nailing, and 20.9 ± 8.0 ml of polymethylmethacrylate (PMMA) bone cement was injected in the perimetal osteolytic area. Regional anesthesia with interscalene block was performed in 87.0% (20/23), and the duration of surgery (from anesthesia to awakening) was approximately 40-55 min. Red blood cell was not transfused intra- and/or postoperatively in 65.2% (15/23). The localized preoperative pain (visual analog scale (VAS), 8.2 ± 3.1) was gradually decreased at postoperative 1 week (VAS, 4.9 ± 2.1) and at 6 weeks (VAS, 2.9 ± 2.1) (P < 0.001). Among nine patients who underwent F-18-FDG PET/CT, the proximal humeral metastasis around PC showed improved, stable, and aggravated states in five (55.6%), three (33.3%), and one patient (11.1%), respectively. Meanwhile, 88.8% (8/9) of patients showed aggravation at the naive bone metastasis area. The selection of the self-locking screw type of the IM nail and PC was helpful in preventing fixation failure for joint-preserving palliative surgery in the proximal humeral metastasis.
2015-01-01
PURPOSE In this study, a temporal abutment fixation screw, designed to fracture in a controlled way upon application of an occlusal force sufficient to produce critical micromotion was developed. The purpose of the screw was to protect the osseointegration of immediate loaded single implants. MATERIALS AND METHODS Seven different screw prototypes were examined by fixing titanium abutments to 112 Mozo-Grau external hexagon implants (MG Osseous®; Mozo-Grau, S.A., Valladolid, Spain). Fracture strength was tested at 30° in two subgroups per screw: one under dynamic loading and the other without prior dynamic loading. Dynamic loading was performed in a single-axis chewing simulator using 150,000 load cycles at 50 N. After normal distribution of obtained data was verified by Kolmogorov-Smirnov test, fracture resistance between samples submitted and not submitted to dynamic loading was compared by the use of Student's t-test. Comparison of fracture resistance among different screw designs was performed by the use of one-way analysis of variance. Confidence interval was set at 95%. RESULTS Fractures occurred in all screws, allowing easy retrieval. Screw Prototypes 2, 5 and 6 failed during dynamic loading and exhibited statistically significant differences from the other prototypes. CONCLUSION Prototypes 2, 5 and 6 may offer a useful protective mechanism during occlusal overload in immediate loaded implants. PMID:25932315
Cryogenic pellet production developments for long-pulse plasma operation
NASA Astrophysics Data System (ADS)
Meitner, S. J.; Baylor, L. R.; Combs, S. K.; Fehling, D. T.; McGill, J. M.; Duckworth, R. C.; McGinnis, W. D.; Rasmussen, D. A.
2014-01-01
Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at a rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.
Cryogenic pellet production developments for long-pulse plasma operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meitner, S. J.; Baylor, L. R.; Combs, S. K.
Long pulse plasma operation on large magnetic fusion devices require multiple forms of cryogenically formed pellets for plasma fueling, on-demand edge localized mode (ELM) triggering, radiative cooling of the divertor, and impurity transport studies. The solid deuterium fueling and ELM triggering pellets can be formed by extrusions created by helium cooled, twin-screw extruder based injection system that freezes deuterium in the screw section. A solenoid actuated cutter mechanism is activated to cut the pellets from the extrusion, inserting them into the barrel, and then fired by the pneumatic valve pulse of high pressure gas. Fuel pellets are injected at amore » rate up to 10 Hz, and ELM triggering pellets are injected at rates up to 20 Hz. The radiative cooling and impurity transport study pellets are produced by introducing impurity gas into a helium cooled section of a pipe gun where it deposits in-situ. A pneumatic valve is opened and propellant gas is released downstream where it encounters a passive punch which initially accelerates the pellet before the gas flow around the finishes the pellet acceleration. This paper discusses the various cryogenic pellet production techniques based on the twin-screw extruder, pipe gun, and pellet punch designs.« less
Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study
NASA Astrophysics Data System (ADS)
Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.
2018-04-01
1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.
Frictional conditions between alloy AA6060 aluminium and tool steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wideroee, Fredrik; Welo, Torgeir
The frictional conditions in the new process of screw extrusion of aluminium have been investigated. The contact behaviour between the aluminum alloy and the tool steel in the extruder is vital for understanding the extrusion process. Using a compressive-rotational method for frictional measurements the conditions for unlubricated sticking friction between aluminum alloy AA6060 and tool steel at different combinations of temperatures and pressures have been investigated. In this method the samples in the form of disks are put under hydrostatic pressure while simultaneously being rotated at one end. Pins made from contrast material have been inserted into the samples tomore » measure the deformation introduced. This approach along with 3D simulations form a method for determining the frictional conditions. The paper describes the test method and the results. It was found that the necessary pressure for sticking to occur between the aluminum AA6060 and the different parts of the extruder is heavily influenced by the temperature.« less
Xu, Shuozhi; Xiong, Liming; Chen, Youping; ...
2017-04-26
Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF).more » For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Here, our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shuozhi; Xiong, Liming; Chen, Youping
Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF).more » For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Here, our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.« less
Operative treatment of lateral humeral condyle fractures in children.
Wirmer, Johannes; Kruppa, Christian; Fitze, Guido
2012-08-01
The operative treatment of lateral humeral condyle fractures in children remains controversial. The result of incorrectly treated fractures may lead to complications such as pseudoarthrosis and severe deformity, with considerable functional and cosmetic restrictions. The aim of this study was to determine whether operative treatment of lateral humeral condyle fractures in children using Screw-wires (Orthofix GmbH, Ottobrunn, Germany) has any advantage over treatment with Kirschner wires ("K-wires") (aap-Implantate AG, Berlin, Germany). These results were then compared with operative treatment using lag-screw osteosynthesis. We treated surgically 76 cases of fracture of the lateral humeral condyle in children at the Department of Pediatric Surgery in Dresden between 1989 to 2002 and 2004 to 2008, from which 42 were available for follow-up examination. Within this group, there were seven children that were followed-up twice (in 1996 to 2002). Of these, 21 patients were treated with Screw-wires, and another 21 had K-wires inserted. The results were evaluated according to the Dhillon criteria. Only seven patients (17%) had a fair result in the overall grading according to the Dhillon criteria, four after K-wire and three after Screw-wire osteosyntheses. The remaining patients scored good to excellent results. There were no pseudoarthroses. Six patients (14%) had a varisation in the carrying angle between 10 and 16 degrees (three each procedure), and 15 patients (36%) had no difference in the carrying angle at all. Of these 15 patients, 10 were treated with Screw-wire osteosynthesis. Only one patient (2.4%) had a deficit of more than 10 degrees in elbow joint flexion, while only two (4.8%, one each procedure) had a deficit of more than 10 degrees in elbow joint extension, compared with the uninjured arm. Our results demonstrate that the employment of Screw-wire osteosynthesis is superior to the use of K-wires concerning the carrying angle while scoring alike on the other criteria. Compared with the use of lag screws, both treatments (K-wire and Screw-wire osteosyntheses) bear less risk of nonvascular necrosis or small metaphyseal fragment rupture, by comparable results in the overall outcome. Regarding the long-term development of healed fractures, changes in the carrying angle and the range of motion are of a small degree. Considering the results of this study, we recommend the use of Screw-wire osteosynthesis in the operative treatment of lateral humeral condyle fractures in children. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
[Growth and deformity after in situ fixation of slipped capital femoral epiphysis].
Druschel, C; Placzek, R; Funk, J F
2013-08-01
For mild to moderate slipped capital femoral epiphysis (SCFE) in situ fixation is the current treatment standard. However, concerning the implant selection (screw versus k-wires) as well as the prophylactic stabilisation of the non-affected hip, controversies still exist. The aim of this study was to analyse femoral residual growth and femoral deformities after in situ fixation of SCFE either with k-wires or screws. We conducted a retrospective analysis of the radiographs of adolescents treated for SCFE in our department between 01/2003 and 02/2011. To evaluate femoral growth the articulo-trochanteric distance, centro-trochanteric distance, caput-collum-diaphyseal angle, pin-joint ratio and pin-physis ratio were determined. The femoral deformity was assessed by measuring the sphericity of the femoral head. Degenerative changes were evaluated in the final radiographs. Statistical analysis was performed concerning differences between therapeutically and prophylactically treated hips as well as stabilisations with k-wires and screws. A total of 22 patients (female : male = 14 : 8, mean age girls: 11 ± 1 years, boys: 13 ± 2 years) with 26 slipped capital femoral epiphyses was analysed. K-wires were used for fixation in 4 hips each therapeutically and prophylactically, 22 hips with SCFE and 14 non-affected hips were stabilised with screws. Treatment with screws did not lead to significantly earlier physeal closure than k-wire pinning. Regarding the femoral growth parameters a significant decrease in the articulo-trochanteric distance and CCD angle was detectable in all groups. The pin-joint ratio revealed an adequate residual growth in 58 % of the therapeutically and in 72 % of the prophylactically treated hips without significant difference between k-wires and screws. The pin-physis ratio demonstrated similar values. Regarding the femoral deformity the SCFE hips resulted in a significantly reduced sphericity, which remained unchanged during follow-up. The prophylactic stabilisation did not result in any deterioration of sphericity. The results of this study imply that further growth of the proximal femur after insertion of a sliding screw for in situ stabilisation of mild to moderate slipped capital femoral epiphysis does occur. Furthermore, an increase of deformity during follow-up through screw fixation as compared to pinning was not noticed. Hence, the assumption that screw fixation leads to permanent physeal impairment cannot be confirmed. The consideration of these results may be helpful for implant selection as well as indicating prophylactic surgery for non-affected hips. Georg Thieme Verlag KG Stuttgart · New York.
Sakaura, Hironobu; Miwa, Toshitada; Yamashita, Tomoya; Kuroda, Yusuke; Ohwada, Tetsuo
2018-01-01
OBJECTIVE The cortical bone trajectory (CBT) screw technique is a new nontraditional pedicle screw (PS) insertion method. However, the biomechanical behavior of multilevel CBT screw/rod fixation remains unclear, and surgical outcomes in patients after 2-level posterior lumbar interbody fusion (PLIF) using CBT screw fixation have not been reported. Thus, the purposes of this study were to examine the clinical and radiological outcomes after 2-level PLIF using CBT screw fixation for 2-level degenerative lumbar spondylolisthesis (DS) and to compare these outcomes with those after 2-level PLIF using traditional PS fixation. METHODS The study included 22 consecutively treated patients who underwent 2-level PLIF with CBT screw fixation for 2-level DS (CBT group, mean follow-up 39 months) and a historical control group of 20 consecutively treated patients who underwent 2-level PLIF using traditional PS fixation for 2-level DS (PS group, mean follow-up 35 months). Clinical symptoms were evaluated using the Japanese Orthopaedic Association (JOA) scoring system. Bony union was assessed by dynamic plain radiographs and CT images. Surgery-related complications, including symptomatic adjacent-segment disease (ASD), were examined. RESULTS The mean operative duration and intraoperative blood loss were 192 minutes and 495 ml in the CBT group and 218 minutes and 612 ml in the PS group, respectively (p < 0.05 and p > 0.05, respectively). The mean JOA score improved significantly from 12.3 points before surgery to 21.1 points (mean recovery rate 54.4%) at the latest follow-up in the CBT group and from 12.8 points before surgery to 20.4 points (mean recovery rate 51.8%) at the latest follow-up in the PS group (p > 0.05). Solid bony union was achieved at 90.9% of segments in the CBT group and 95.0% of segments in the PS group (p > 0.05). Symptomatic ASD developed in 2 patients in the CBT group (9.1%) and 4 patients in the PS group (20.0%, p > 0.05). CONCLUSIONS Two-level PLIF with CBT screw fixation for 2-level DS could be less invasive and result in improvement of clinical symptoms equal to those of 2-level PLIF using traditional PS fixation. The incidence of symptomatic ASD and the rate of bony union were lower in the CBT group than in the PS group, although these differences were not significant.
Schnider, Nicole; Forrer, Fiona Alena; Brägger, Urs; Hicklin, Stefan Paul
The aim of this study was to evaluate the clinical performance of one-piece, screw-retained implant crowns based on hand-veneered computer-aided design/computer-aided manufacture (CAD/CAM) zirconium dioxide abutments with a crossfit connection at least 1 year after insertion of the crown. Consecutive patients who had received at least one Straumann bone level implant and one-piece, screw-retained implant crowns fabricated with CARES zirconium dioxide abutments were reexamined. Patient satisfaction, occlusal and peri-implant parameters, mechanical and biologic complications, radiologic parameters, and esthetics were recorded. A total of 50 implant crowns in the anterior and premolar region were examined in 41 patients. The follow-up period of the definitive reconstructions ranged from 1.1 to 3.8 years. No technical and no biologic complications had occurred. At the reexamination, 100% of the implants and reconstructions were in situ. Radiographic evaluation revealed a mean distance from the implant shoulder to the first visible bone-to-implant contact of 0.06 mm at the follow-up examination. Screw-retained crowns based on veneered CAD/CAM zirconium dioxide abutments with a crossfit connection seem to be a promising way to replace missing teeth in the anterior and premolar region. In the short term, neither failures of components nor complications were noted, and the clinical and radiographic data revealed stable hard and soft tissue conditions.
Zhang, Ya-Kui; Wei, Hung-Wen; Lin, Kang-Ping; Chen, Wen-Chuan; Tsai, Cheng-Lun; Lin, Kun-Jhih
2016-06-01
Locking plate fixation for proximal humeral fractures is a commonly used device. Recently, plate breakages were continuously reported that the implants all have a mixture of holes allowing placement of both locking and non-locking screws (so-called combi plates). In commercialized proximal humeral plates, there still are two screw hole styles included "locking and dynamic holes separated" and "locking hole only" configurations. It is important to understand the biomechanical effect of different screw hole style on the stress distribution in bone plate. Finite element method was employed to conduct a computational investigation. Three proximal humeral plate models with different screw hole configurations were reconstructed depended upon an identical commercialized implant. A three-dimensional model of a humerus was created using process of thresholding based on the grayscale values of the CT scanning of an intact humerus. A "virtual" subcapital osteotomy was performed. Simulations were performed under an increasing axial load. The von Mises stresses around the screw holes of the plate shaft, the construct stiffness and the directional displacement within the fracture gap were calculated for comparison. The mean value of the peak von Mises stresses around the screw holes in the plate shaft was the highest for combi hole design while it was smallest for the locking and dynamic holes separated design. The stiffness of the plate-bone construct was 15% higher in the locking screw only design (132.6N/mm) compared with the combi design (115.0N/mm), and it was 4% higher than the combi design for the locking and dynamic holes separated design (119.5N/mm). The displacement within the fracture gap was greatest in the combi hole design, whereas it was smallest for the locking hole only design. The computed results provide a possible explanation for the breakages of combi plates revealed in clinical reports. The locking and dynamic holes separated design may be a better configuration to reduce the risk of plate fracture. Copyright © 2016 Elsevier Ltd. All rights reserved.
K.s. Micro-implant placement guide.
Sharma, K; Sangwan, A
2014-09-01
A one of the greatest concerns with orthodontic mini-implants is risk of injury to dental roots during placement is, especially when they are inserted between teeth. Many techniques have been used to facilitate safe placement of interradicular miniscrews. Brass Wires or metallic markers are easy to place in the interproximal spaces, but because their relative positions may be inconsistent in different radio -graphic views, they are not always accurate. K.S. micro implant placement guide suggested in this article is simple design and easy in fabrication, required minimal equipment for fabrication and does not disturb the existing appliance system, clearly located in the radiograph and the mini-screw can be easily inserted through the guide reducing the chance of implant misplacement.
Estimation of the axis of a screw motion from noisy data--a new method based on Plücker lines.
Kiat Teu, Koon; Kim, Wangdo
2006-01-01
The problems of estimating the motion and orientation parameters of a body segment from two n point-set patterns are analyzed using the Plücker coordinates of a line (Plücker lines). The aim is to find algorithms less complex than those in conventional use, and thus facilitating more accurate computation of the unknown parameters. All conventional techniques use point transformation to calculate the screw axis. In this paper, we present a novel technique that directly estimates the axis of a screw motion as a Plücker line. The Plücker line can be transformed via the dual-number coordinate transformation matrix. This method is compared with Schwartz and Rozumalski [2005. A new method for estimating joint parameters from motion data. Journal of Biomechanics 38, 107-116] in simulations of random measurement errors and systematic skin movements. Simulation results indicate that the methods based on Plücker lines (Plücker line method) are superior in terms of extremely good results in the determination of the screw axis direction and position as well as a concise derivation of mathematical statements. This investigation yielded practical results, which can be used to locate the axis of a screw motion in a noisy environment. Developing the dual transformation matrix (DTM) from noisy data and determining the screw axis from a given DTM is done in a manner analogous to that for handling simple rotations. A more robust approach to solve for the dual vector associated with DTM is also addressed by using the eigenvector and the singular value decomposition.
Accurate guide wire of lag screw placement in the intertrochanteric fractures: a technical note.
Li, Jiang; Wang, Liao; Li, Xiaodong; Feng, Kai; Tang, Jian; Wang, Xiaoqing
2017-09-01
Cephalomedullary fixations are commonly used in the treatment of intertrochanteric fractures. In clinical practice, one of the difficulties is when we exit the guide wire in a wrong position of femoral neck and insert near the hole again, the guide wire often flow into the previous track. This study develops a surgical technique to direct the guide wire to slip away the previous track and slip into a right position. When guide wire is exited to the cortex of femoral, we let the wire in and out at the cortical layer for several times to enlarge the entry hole. After that, electric drill is inverted, rubbed and entered slowly at a right angle. When guide wire encountered new resistance, the electric drill is turned back instantly. This technique can help trauma and orthopedic surgeons to obtain precision placement of the lag screw after the first try is failed.
Management strategy for unicameral bone cyst.
Chuo, Chin-Yi; Fu, Yin-Chih; Chien, Song-Hsiung; Lin, Gau-Tyan; Wang, Gwo-Jaw
2003-06-01
The management of a unicameral bone cyst varies from percutaneous needle biopsy, aspiration, and local injection of steroid, autogenous bone marrow, or demineralized bone matrix to the more invasive surgical procedures of conventional curettage and grafting (with autogenous or allogenous bone) or subtotal resection with bone grafting. The best treatment for a unicameral bone cyst is yet to be identified. Better understanding of the pathology will change the concept of management. The aim of treatment is to prevent pathologic fracture, to promote cyst healing, and to avoid cyst recurrence and re-fracture. We retrospectively reviewed 17 cases of unicameral bone cysts (12 in the humerus, 3 in the femur, 2 in the fibula) managed by conservative observation, curettage and bone grafting with open reduction and internal fixation, or continuous decompression and drainage with a cannulated screw. We suggest percutaneous cannulated screw insertion to promote cyst healing and prevent pathologic fracture. We devised a protocol for the management of unicameral bone cysts.
Screw-actuated displacement micropumps for thermoplastic microfluidics.
Han, J Y; Rahmanian, O D; Kendall, E L; Fleming, N; DeVoe, D L
2016-10-05
The fabrication of on-chip displacement pumps integrated into thermoplastic chips is explored as a simple and low cost method for achieving precise and programmable flow control for disposable microfluidic systems. The displacement pumps consist of stainless steel screws inserted into threaded ports machined into a thermoplastic substrate which also serve as on-chip reagent storage reservoirs. Three different methods for pump sealing are investigated to enable high pressure flows without leakage, and software-defined control of multiple pumps is demonstrated in a self-contained platform using a compact and self-contained microcontroller for operation. Using this system, flow rates ranging from 0.5-40 μl min -1 are demonstrated. The pumps are combined with on-chip burst valves to fully seal multiple reagents into fabricated chips while providing on-demand fluid distribution in a downstream microfluidic network, and demonstrated for the generation of size-tunable water-in-oil emulsions.
Arthroscopic ankle arthrodesis with intra-articular distraction.
Kim, Hyong Nyun; Jeon, June Young; Noh, Kyu Cheol; Kim, Hong Kyun; Dong, Quanyu; Park, Yong Wook
2014-01-01
Arthroscopic ankle arthrodesis has shown high rates of union comparable to those with open arthrodesis but with substantially less postoperative morbidity, shorter operative times, less blood loss, and shorter hospital stays. To easily perform arthroscopic resection of the articular cartilage, sufficient distraction of the joint is necessary to insert the arthroscope and instruments. However, sometimes, standard noninvasive ankle distraction will not be sufficient in post-traumatic ankle arthritis, with the development of arthrofibrosis and joint contracture after severe ankle trauma. In the present report, we describe a technique to distract the ankle joint by inserting a 4.6-mm stainless steel cannula with a blunt trocar inside the joint. The cannula allowed sufficient intra-articular distraction, and, at the same time, a 4.0-mm arthroscope can be inserted through the cannula to view the joint. Screws can be inserted to fix the joint under fluoroscopic guidance without changing the patient's position or removing the noninvasive distraction device and leg holder, which are often necessary during standard arthroscopic arthrodesis with noninvasive distraction. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.
2015-05-01
Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.
Foundations for computer simulation of a low pressure oil flooded single screw air compressor
NASA Astrophysics Data System (ADS)
Bein, T. W.
1981-12-01
The necessary logic to construct a computer model to predict the performance of an oil flooded, single screw air compressor is developed. The geometric variables and relationships used to describe the general single screw mechanism are developed. The governing equations to describe the processes are developed from their primary relationships. The assumptions used in the development are also defined and justified. The computer model predicts the internal pressure, temperature, and flowrates through the leakage paths throughout the compression cycle of the single screw compressor. The model uses empirical external values as the basis for the internal predictions. The computer values are compared to the empirical values, and conclusions are drawn based on the results. Recommendations are made for future efforts to improve the computer model and to verify some of the conclusions that are drawn.
Design of Nano Screw Pump for Water Transport and its Mechanisms
Wang, LiYa; Wu, HengAn; Wang, FengChao
2017-01-01
Nanopumps conducting fluids through nanochannels have attracted considerable interest for their potential applications in nanofiltration, water desalination and drug delivery. Here, we demonstrate by molecular dynamics (MD) simulations that a nano screw pump is designed with helical nanowires embedded in a nanochannel, which can be used to drive unidirectional water flow. Such helical nanowires have been successfully synthesized in many experiments. By investigating the water transport mechanism through nano screw pumps with different configuration parameters, three transport modes were observed: cluster-by-cluster, pseudo-continuous, and linear-continuous, in which the water flux increases linearly with the rotating speed. The influences of the nanowires’ surface energy and the screw’s diameter on water transport were also investigated. Results showed that the water flux rate increases as the decreasing wettability of helical nanowires. The deviation in water flux in screw pumps with smaller radius is attributed to the weak hydrogen bonding due to space confinement and the hydrophobic blade. Moreover, we also proposed that such screw pumps with appropriate diameter and screw pitch can be used for water desalination. The study provides an insight into the design of multifunctional nanodevices for not only water transport but water desalination in practical applications. PMID:28155898
Stress analysis of implant-bone fixation at different fracture angle
NASA Astrophysics Data System (ADS)
Izzawati, B.; Daud, R.; Afendi, M.; Majid, MS Abdul; Zain, N. A. M.; Bajuri, Y.
2017-10-01
Internal fixation is a mechanism purposed to maintain and protect the reduction of a fracture. Understanding of the fixation stability is necessary to determine parameters influence the mechanical stability and the risk of implant failure. A static structural analysis on a bone fracture fixation was developed to simulate and analyse the biomechanics of a diaphysis shaft fracture with a compression plate and conventional screws. This study aims to determine a critical area of the implant to be fractured based on different implant material and angle of fracture (i.e. 0°, 30° and 45°). Several factors were shown to influence stability to implant after surgical. The stainless steel, (S. S) and Titanium, (Ti) screws experienced the highest stress at 30° fracture angle. The fracture angle had a most significant effect on the conventional screw as compared to the compression plate. The stress was significantly higher in S.S material as compared to Ti material, with concentrated on the 4th screw for all range of fracture angle. It was also noted that the screws closest to the intense concentration stress areas on the compression plate experienced increasing amounts of stress. The highest was observed at the screw thread-head junction.
NASA Astrophysics Data System (ADS)
Shin, Ilgyou; Carter, Emily A.
2013-08-01
Dislocation motion governs the strength and ductility of metals, and the Peierls stress (σp) quantifies dislocation mobility. σp measurements carry substantial uncertainty in face-centered cubic (fcc) metals, and σp values can differ by up to two orders of magnitude. We perform first-principles simulations based on orbital-free density functional theory (OFDFT) to calculate the most accurate currently possible σp for the motion of (1)/(2)<110>111 dislocations in fcc Al. We predict the σps of screw and edge dislocations (dissociated in their equilibrium state) to be 1.9×10-4G and 4.9×10-5G, respectively (G is the shear modulus). These values fall within the range of measurements from mechanical deformation tests (10-4-10-5G). OFDFT also finds a new metastable structure for a screw dislocation not seen in earlier simulations, in which a dislocation core on the glide plane does not dissociate into partials. The corresponding σp for this undissociated dislocation is predicted to be 1.1×10-2G, which agrees with typical Bordoni peak measurements (10-2-10-3G). The calculated σps for dissociated and undissociated screw dislocations differ by two orders of magnitude. The presence of undissociated, as well as dissociated, screw dislocations may resolve the decades-long mystery in fcc metals regarding the two orders of magnitude discrepancy in σp measurements.
Torque loss of different abutment sizes before and after cyclic loading.
Moris, Izabela Cristina; Faria, Adriana Cláudia; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina
2015-01-01
The aim of this study was to compare 3.8- and 4.8-mm abutments submitted to simulations of masticatory cycles to examine whether abutment diameter and cemented vs screw-retained crowns affect torque loss of the abutments and crowns. Forty implant/abutment sets were divided into the following groups (n = 10 in each group): (1) G4.8S included 4.8-mm abutment with screw-retained crown; (2) G4.8C included 4.8-mm abutment with cemented crown; (3) G3.8S included 3.8-mm abutment with screw-retained crown; and (4) G3.8C included 3.8-mm abutment with cemented crown. All abutments were tightened with torque values of 20 Ncm, and 10 Ncm for screw-retained crowns. Torque loss was measured before and after cycling loading (300,000 cycles). Torque loss of screw-retained crowns significantly increased after cycling in abutments of groups G3.8S (P ≤ .05) and G4.8S (P = .001). No difference was noted between the abutments before cycling (P = .735), but G3.8S abutments presented greater torque loss than the other groups after cycling (P = .008). Significant differences were noted in the abutment torque loss before and after cycling loading only for the G3.8C group (P ≤ .05). The abutment diameter affects torque loss of screw-retained crowns and leads to failure during the test; mechanical cycling increases torque loss of abutment screw and screw-retained crowns.
Kholinne, Erica; Lee, Hyun Joo; Kim, Sung Jung; Park, So Hyun; Jeon, In-Ho
2018-01-01
The aim of this study was to compare the microarchitecture of the greater tuberosity with or without rotator cuff tear and to obtain optimum location for anchor screw insertion for rotator cuff repair. Twenty-five humeral heads were harvested from 13 male cadavers of mean age 58.4 years, including 6 humeri with rotator cuff tear and 19 intact humeri. Six regions of interest (proximal, intermediate, and distal zones of the superficial and deep regions) were divided into the anterior (G1), middle (G2), and posterior (G3) areas of the greater tuberosity. Trabecular bone volume and cortical thickness were evaluated. Total trabecular bone volume was greater in subjects <50 years old than in subjects >50 years old but did not differ significantly in subjects with and without rotator cuff tear. Cortical thickness in both intact and torn rotator cuff groups was significantly greater in the proximal and intermediate zones than in the distal zone. Cortical thickness was related to anatomic location rather than age or cuff tear. The optimal location for anchor screw insertion during rotator cuff repair is either the proximal or intermediate region of the greater tuberosity. Age has more influence in terms of trabecular bone volume loss than rotator cuff integrity. Copyright © 2017. Production and hosting by Elsevier B.V.
Osterhoff, G; Amiri, S; Unno, F; Dodd, A; Guy, P; O'Brien, P J; Lefaivre, K A
2015-08-01
Minimal-invasive placement of screws into the posterior column of the acetabulum (PC) is challenging. Due to the saddle-shaped curvature of the medial cortical border of the PC, the standard fluoroscopic views of the pelvis cannot provide the desired safety during screw insertion. The aim of this study was to define a view tangentially to the medial cortex of the PC and to evaluate its accuracy and inter-observer reproducibility. Radio-dense markers on the medial cortex of the PC along the axis of a PC screw were brought in line and landmarks of the new "Down the PC" view were determined. Kirschner wires were placed into the PC of a pelvis composite model and five pelvic cadaver specimens in a total of 34 different correct and incorrect positions. Based on either only the "Down the PC" view, only the standard views, or a combination of both, three fellowship-trained orthopaedic surgeons had to decide if the inserted wires were in bone in the posterior column or had exited cortex, and if they penetrated the acetabulum. Sensitivity, specificity, and the intra-class correlation coefficient were calculated. A view using three radiographic landmarks (pelvic brim, medial cortical wall of the body of the ischium, ischial spine) was found. Sensitivity and specificity to detect perforation out of the bone were 1.00 and 0.97 for the "Down the PC" view, 0.46 and 0.97 if only the standard views were used, and 1.00 and 0.95 for a combination of both. Sensitivity and specificity to detect intra-articular wire placement were 1.00 and 0.96 for the "Down the PC" view, 0.72 and 0.95 if only the standard views were used, and 0.94 and 0.99 for a combination of both. Inter-observer agreement using only the "Down the PC" view was excellent with an ICC of 0.92 for perforation and ICC of 0.82 for intra-articular wire placement. The "Down the PC" view is a useful addendum in the orthopaedic trauma surgeon's tool box. Using simple landmarks, it is easily to reproduce and thereby shows excellent accuracy and inter-observer agreement in order to detect medial perforation or intra-articular implant position. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bumči, Igor; Vlahović, Tomislav; Jurić, Filip; Žganjer, Mirko; Miličić, Gordana; Wolf, Hinko; Antabak, Anko
2015-11-01
Paediatric ankle fractures comprise approximately 4% of all paediatric fractures and 30% of all epiphyseal fractures. Integrity of the ankle "mortise", which consists of tibial and fibular malleoli, is significant for stability and function of the ankle joint. Tibial malleolar fractures are classified as SH III or SH IV intra-articular fractures and, in cases where the fragments are displaced, anatomic reposition and fixation is mandatory. Type SH III-IV fractures of the tibial malleolus are usually treated with open reduction and fixation with cannulated screws that are parallel to the physis. Two K-wires are used for temporary stabilisation of fragments during reduction. A third "guide wire" for the screw is then placed parallel with the physis. Considering the rules of mechanics, it is assumed that the two temporary pins with the additional third pin placed parallel to the physis create a strong triangle and thus provide strong fracture fixation. To prove this hypothesis, an experiment was conducted on the artificial models of the lower end of the tibia from the company "Sawbones". Each model had been sawn in a way that imitates the fracture of medial malleoli and then reattached with 1.8mm pins in various combinations. Prepared models were then tested for tensile and pressure forces. The least stable model was that in which the fractured pieces were attached with only two parallel pins. The most stable model comprised three pins, where two crossed pins were inserted in the opposite compact bone and the third pin was inserted through the epiphysis parallel with and below the growth plate. A potential method of choice for fixation of tibial malleolar fractures comprises three K-wires, where two crossed pins are placed in the opposite compact bone and one is parallel with the growth plate. The benefits associated with this method include shorter operating times and avoidance of a second operation for screw removal. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kumar, Ashish; Vercruysse, Jurgen; Vanhoorne, Valérie; Toiviainen, Maunu; Panouillot, Pierre-Emmanuel; Juuti, Mikko; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar
2015-04-25
Twin-screw granulation is a promising continuous alternative for traditional batchwise wet granulation processes. The twin-screw granulator (TSG) screws consist of transport and kneading element modules. Therefore, the granulation to a large extent is governed by the residence time distribution within each module where different granulation rate processes dominate over others. Currently, experimental data is used to determine the residence time distributions. In this study, a conceptual model based on classical chemical engineering methods is proposed to better understand and simulate the residence time distribution in a TSG. The experimental data were compared with the proposed most suitable conceptual model to estimate the parameters of the model and to analyse and predict the effects of changes in number of kneading discs and their stagger angle, screw speed and powder feed rate on residence time. The study established that the kneading block in the screw configuration acts as a plug-flow zone inside the granulator. Furthermore, it was found that a balance between the throughput force and conveying rate is required to obtain a good axial mixing inside the twin-screw granulator. Although the granulation behaviour is different for other excipients, the experimental data collection and modelling methods applied in this study are generic and can be adapted to other excipients. Copyright © 2015 Elsevier B.V. All rights reserved.
Greco, Gustavo Diniz; Jansen, Wellington Corrêa; Landre, Janis; Seraidarian, Paulo Isaías
2009-01-01
Objectives: This study evaluated by three-dimensional finite element analysis the tensions generated by different disocclusion patterns (canine guide and bilateral balanced occlusion) in an implant-supported mandibular complete denture. Material and Methods: A three-dimensional model of implant-supported mandibular complete denture was fabricated according to the Brånemark protocol. A 5-element 3.75 x 13-mm screw-shape dental implant system was modeled for this study. The implants were located in the intermental foramen region with 3-mm-high prosthetic components joined by a nickel-chromium framework with 12-mm bilateral cantilever covered by acrylic resin and 12 acrylic denture teeth. SolidWorks® software was used before and after processing the simulations. The mechanical properties of the components were inserted in the model and a 15 N load was established in fixed points, in each one of the simulations. Data were collected in the entire nickel-chromium framework. The results were displayed three-dimensionally as color graphic scales. Results: The canine guide generated greater tensions in the region of the first implant, while the bilateral balanced occlusion generated great tensions in the entire metallic framework. The maximum tension found in the simulation of the bilateral balanced occlusion was 3.22 fold higher than the one found in the simulation of the disocclusion in canine guide. Conclusion: The pattern of disocclusion in canine guide is the ideal for implant-supported mandibular complete denture. PMID:19936535
Greco, Gustavo Diniz; Jansen, Wellington Corrêa; Landre Junior, Janis; Seraidarian, Paulo Isaías
2009-01-01
This study evaluated by three-dimensional finite element analysis the tensions generated by different disocclusion patterns (canine guide and bilateral balanced occlusion) in an implant-supported mandibular complete denture. A three-dimensional model of implant-supported mandibular complete denture was fabricated according to the Brånemark protocol. A 5-element 3.75 x 13-mm screw-shape dental implant system was modeled for this study. The implants were located in the inter-mental foramen region with 3-mm-high prosthetic components joined by a nickel-chromium framework with 12-mm bilateral cantilever covered by acrylic resin and 12 acrylic denture teeth. SolidWorks software was used before and after processing the simulations. The mechanical properties of the components were inserted in the model and a 15 N load was established in fixed points, in each one of the simulations. Data were collected in the entire nickel-chromium framework. The results were displayed three-dimensionally as color graphic scales. The canine guide generated greater tensions in the region of the first implant, while the bilateral balanced occlusion generated great tensions in the entire metallic framework. The maximum tension found in the simulation of the bilateral balanced occlusion was 3.22 fold higher than the one found in the simulation of the disocclusion in canine guide. The pattern of disocclusion in canine guide is the ideal for implant-supported mandibular complete denture.
Fluid Structure Interaction Techniques For Extrusion And Mixing Processes
NASA Astrophysics Data System (ADS)
Valette, Rudy; Vergnes, Bruno; Coupez, Thierry
2007-05-01
This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each sub-domain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique background computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.
Pulsations Induced by Vibrations in Aircraft Engine Two-Stage Pump
NASA Astrophysics Data System (ADS)
Gafurov, S. A.; Salmina, V. A.; Handroos, H.
2018-01-01
This paper describes a phenomenon of induced pressure pulsations inside a two-stage aircraft engine pump. A considered pumps consists of a screw-centrifugal and gear stages. The paper describes the cause of two-stage pump elements loading. A number of hypothesis of pressure pulsations generation inside a pump were considered. The main focus in this consideration is made on phenomena that are not related to pump mode of operation. Provided analysis has shown that pump vibrations as well as pump elements self-oscillations are the main causes that lead to trailing vortices generation. Analysis was conducted by means FEM and CFD simulations as well by means of experimental investigations to obtain natural frequencies and flow structure inside a screw-centrifugal stage. To perform accurate simulations adequate boundary conditions were considered. Cavitation and turbulence phenomena have been also taken into account. Obtained results have shown generated trailing vortices lead to high-frequency loading of the impeller of screw-centrifugal stage and can be a cause of the bearing damage.
Devolatilization Analysis in a Twin Screw Extruder by using the Flow Analysis Network (FAN) Method
NASA Astrophysics Data System (ADS)
Tomiyama, Hideki; Takamoto, Seiji; Shintani, Hiroaki; Inoue, Shigeki
We derived the theoretical formulas for three mechanisms of devolatilization in a twin screw extruder. These are flash, surface refreshment and forced expansion. The method for flash devolatilization is based on the equation of equilibrium concentration which shows that volatiles break off from polymer when they are relieved from high pressure condition. For surface refreshment devolatilization, we applied Latinen's model to allow estimation of polymer behavior in the unfilled screw conveying condition. Forced expansion devolatilization is based on the expansion theory in which foams are generated under reduced pressure and volatiles are diffused on the exposed surface layer after mixing with the injected devolatilization agent. Based on these models, we developed the simulation software of twin-screw extrusion by the FAN method and it allows us to quantitatively estimate volatile concentration and polymer temperature with a high accuracy in the actual multi-vent extrusion process for LDPE + n-hexane.
Reusable captive blind fastener
NASA Technical Reports Server (NTRS)
Peterson, S. A. (Inventor)
1981-01-01
A one piece reusable fastener capable of joining materials together from one side (blind backside) comprises a screw driven pin ending in a wedge-shaped expander cone. The cone cooperates within a slotted collar end which has a number of tangs on a cylindrical body. The fastener is set by inserting it through aligned holes in the workpieces to be joined. Turning the pin in one direction draws the cone into the collar, deforming the tangs radially outward to mate with tapered back-tapered hold in the workpiece, thus fastening the two pieces together. Reversing the direction of the pin withdraws the cone from the collar, and allows the tangs to resume their contracted configuration without withdrawing the fastener from the insertion hole. The fastener is capable of joining materials together from only one side with substantial strength in tension and shear over many resue attachment cycles, with no special operations on the main assembly parts other than the tapering of the back end of the insertion hole.
NASA Technical Reports Server (NTRS)
Weddendorf, Bruce (Inventor)
1994-01-01
A quick connect fastener and method of use is presented wherein the quick connect fastener is suitable for replacing available bolts and screws, the quick connect fastener being capable of installation by simply pushing a threaded portion of the connector into a member receptacle hole, the inventive apparatus being comprised of an externally threaded fastener having a threaded portion slidably mounted upon a stud or bolt shaft, wherein the externally threaded fastener portion is expandable by a preloaded spring member. The fastener, upon contact with the member receptacle hole, has the capacity of presenting cylindrical threads of a reduced diameter for insertion purposes and once inserted into the receiving threads of the receptacle member hole, are expandable for engagement of the receptacle hole threads forming a quick connect of the fastener and the member to be fastened, the quick connect fastener can be further secured by rotation after insertion, even to the point of locking engagement, the quick connect fastener being disengagable only by reverse rotation of the mated thread engagement.
Treatment of a unicameral bone cyst in a dog using a customized titanium device.
Nojiri, Ayami; Akiyoshi, Hideo; Ohashi, Fumihito; Ijiri, Atsuki; Sawase, Osamu; Matsushita, Tomiharu; Takemoto, Mitsuru; Fujibayashi, Shunsuke; Nakamura, Takashi; Yamaguchi, Tsutomu
2015-01-01
A 4-year-old Shih-Tzu, referred for an enlarged left carpus, was diagnosed with a unicameral bone cyst. A customized titanium device was inserted into cystic lesion and fixed by titanium screws. Sufficient strength of the affected bone with the device inserted to maintain limb function was established after resection of contents of cystic lesion. There was no deterioration of the lesion of bone cyst, and acceptable function of the affected limb with no clinical signs of lameness was maintained during 36 months follow-up. The results of this study demonstrated that bone cyst curettage and use of a customized titanium device could provide an effective alternative treatment of huge lesion of unicameral bone cysts with the intent of preventing pathologic fractures.
Treatment of a unicameral bone cyst in a dog using a customized titanium device
NOJIRI, Ayami; AKIYOSHI, Hideo; OHASHI, Fumihito; IJIRI, Atsuki; SAWASE, Osamu; MATSUSHITA, Tomiharu; TAKEMOTO, Mitsuru; FUJIBAYASHI, Shunsuke; NAKAMURA, Takashi; YAMAGUCHI, Tsutomu
2014-01-01
ABSTRACT A 4-year-old Shih-Tzu, referred for an enlarged left carpus, was diagnosed with a unicameral bone cyst. A customized titanium device was inserted into cystic lesion and fixed by titanium screws. Sufficient strength of the affected bone with the device inserted to maintain limb function was established after resection of contents of cystic lesion. There was no deterioration of the lesion of bone cyst, and acceptable function of the affected limb with no clinical signs of lameness was maintained during 36 months follow-up. The results of this study demonstrated that bone cyst curettage and use of a customized titanium device could provide an effective alternative treatment of huge lesion of unicameral bone cysts with the intent of preventing pathologic fractures. PMID:25319515
Tsirikos, A I; Mataliotakis, G; Bounakis, N
2017-08-01
We present the results of correcting a double or triple curve adolescent idiopathic scoliosis using a convex segmental pedicle screw technique. We reviewed 191 patients with a mean age at surgery of 15 years (11 to 23.3). Pedicle screws were placed at the convexity of each curve. Concave screws were inserted at one or two cephalad levels and two caudal levels. The mean operating time was 183 minutes (132 to 276) and the mean blood loss 0.22% of the total blood volume (0.08% to 0.4%). Multimodal monitoring remained stable throughout the operation. The mean hospital stay was 6.8 days (5 to 15). The mean post-operative follow-up was 5.8 years (2.5 to 9.5). There were no neurological complications, deep wound infection, obvious nonunion or need for revision surgery. Upper thoracic scoliosis was corrected by a mean 68.2% (38% to 48%, p < 0.001). Main thoracic scoliosis was corrected by a mean 71% (43.5% to 8.9%, p < 0.001). Lumbar scoliosis was corrected by a mean 72.3% (41% to 90%, p < 0.001). No patient lost more than 3° of correction at follow-up. The thoracic kyphosis improved by 13.1° (-21° to 49°, p < 0.001); the lumbar lordosis remained unchanged (p = 0.58). Coronal imbalance was corrected by a mean 98% (0% to 100%, p < 0.001). Sagittal imbalance was corrected by a mean 96% (20% to 100%, p < 0.001). The Scoliosis Research Society Outcomes Questionnaire score improved from a mean 3.6 to 4.6 (2.4 to 4, p < 0.001); patient satisfaction was a mean 4.9 (4.8 to 5). This technique carries low neurological and vascular risks because the screws are placed in the pedicles of the convex side of the curve, away from the spinal cord, cauda equina and the aorta. A low implant density (pedicle screw density 1.2, when a density of 2 represents placement of pedicle screws bilaterally at every instrumented segment) achieved satisfactory correction of the scoliosis, an improved thoracic kyphosis and normal global sagittal balance. Both patient satisfaction and functional outcomes were excellent. Cite this article: Bone Joint J 2017;99-B:1080-7. ©2017 The British Editorial Society of Bone & Joint Surgery.
Klonz, A; Habermeyer, P
2007-10-01
Arthrodesis of the glenohumeral joint is a difficult intervention that involves a relatively high probability of complications. A stable internal fixation and secure consolidation is required. The operation needs to achieve several conditions: thorough denudation of the cartilage and partial decortication of the subchondral bone; good congruence of the corresponding surfaces; compression of the gap by tension screws and lasting stability. For increased primary stability a neutralizing plate is generally used as well as a compression screw. Up to now, the plate has usually been applied starting from the scapular spine and extending across the acromial corner to the humeral shaft. A wide exposure is needed for this procedure; the plate is difficult to shape during the operation and often causes some discomfort because it protrudes at the acromial corner. We present an alternative position of the plate in the supraspinatus fossa, where we have sited a 4.5 mm LCP locking plate (Synthes). The implant is inserted under the acromion, does not cause any discomfort at the acromial corner, and is far easier to shape. When it is used in association with a transarticular compressive screw, the technique results in a very stable situation, which allows physiotherapy from the first day after surgery onward.
A New Device for Percutaneous Elevation of the Depressed Fractures of Tibial Condyles
Ravindranath, V.S.; Kumar, Madhusudan; Murthy, G.V.S.
2012-01-01
Introduction: Monocondylar tibia plateau fractures with non-comminuted fragments can be treated using percutaneous screws. Currently indirect methods of reduction are used and thus the technique is limited to fragments with less than 5 mm depression. The first author has designed a device for direct elevation and reduction of the fragments thus potentially expanding the indications of percutaneous screws to fragments with >5mm depression Technical Note: A total of ten cases were treated by this method of percutaneous elevation of the depressed fractures of lateral condyles of the Tibia using this device. Device was inserted through a bony window on the anteromedial surface of tibia. The inner piston of the device in slowly hammered inside thus elevating the depressed fragment. Elevation of fragment could be achieved in all the cases. The fractures were fixed with cancellous screws applied percutaneously. There were no cases with loss of fixation or subsidence of the fragment. All cases achieved radiological union and have good knee function at follow up Conclusion: The new device is able to elevate unicondylar tibia plateau fragments with no subsidence or loss of fixation in our series. A longer follow up in a larger sample will be needed to establish the technique. PMID:27298860
Schumacher, J; Schumacher, J; de Graves, F; Steiger, R; Schramme, M; Smith, R; Coker, M
2001-05-01
The response of horses, with solar pain in the dorsal or palmar aspect of the foot, to 6 or 10 ml local analgesic solution administered into the distal interphalangeal (DIP) joint was examined. Lameness was induced in 7 horses by creating solar pain in the dorsal aspect of one forefoot and, at another time, the palmar aspect of the other forefoot with set-screws inserted into a custom-made shoe. Horses were videotaped trotting before and after application of set-screws and, in separate trials, after 6 or 10 ml local analgesic solution was administered into the DIP joint. Lameness scores were assigned by examining videotaped gaits. Scores were significantly lower (P < 0.05) for horses with set-screws applied to the angles of the sole and receiving 10 ml, but not 6 ml, local analgesic solution into the DIP joint. Scores were significantly lower (P < 0.05) for all horses with set-screws in the dorsal margin of the sole receiving either volume of local analgesic solution. Analgesia of the DIP joint was less effective in desensitising the angles of the sole than in desensitising the dorsal margin of the sole, and 10 ml local analgesic solution was more effective than 6 ml in desensitising these regions. The response of horses with solar pain to local analgesic solution in the DIP joint was influenced by the volume administered and the region of sole affected.
Philp, Helen; Durand, Alexane; De Vicente, Felipe
2018-06-01
Objectives This study aimed to define a safe corridor for 2.7 mm cortical sacroiliac screw insertion in the dorsal plane (craniocaudal direction) using radiography and CT, and in the transverse plane (dorsoventral direction) using CT in feline cadavers. A further aim was to compare the values obtained by CT with those previously reported by radiography in the transverse plane. Methods Thirteen pelvises were retrieved from feline cadavers and dissected to expose one of the articular surfaces of the sacrum. A 2.7 mm screw was placed in the sacrum to a depth of approximately 1 cm in each exposed articular surface. Dorsoventral radiography and CT scanning of each specimen were performed. Multiplanar reconstructions were performed to allow CT evaluation in both the dorsal and transverse planes. Calculations were made to find the maximum, minimum and optimum angles for screw placement in craniocaudal (radiography and CT) and dorsoventral (CT) directions when using a 2.7 mm cortical screw. Results Radiographic measurement showed a mean optimum craniocaudal angle of 106° (range 97-112°). The mean minimum angle was 95° (range 87-107°), whereas the mean maximum angle was 117° (108-124°). Measurement of the dorsal CT scan images showed a mean optimum craniocaudal angle of 101° (range 94-110°). The mean minimum angle was 90° (range 83-99°), whereas the mean maximum angle was 113° (104-125°). The transverse CT scan images showed a mean dorsoventral minimum angle of 103° (range 95-113°), mean maximum angle of 115° (104-125°) and mean optimum dorsoventral angle of 111° (102-119°). Conclusions and relevance An optimum craniocaudal angle of 101° is recommended for 2.7 mm cortical screw placement in the feline sacral body, with a safety margin between 99° and 104°. No single angle can be recommended in the dorsoventral direction and therefore preoperative measuring on individual cats using CT images is recommended to establish the ideal individual angle in the transverse plane.
Li, Wen; Chen, Fei; Zhang, Feng; Ding, Wanghui; Ye, Qingsong; Shi, Jiejun; Fu, Baiping
2013-01-01
Molar intrusion by mini-screw implantation can cause different degrees of root resorption. However, most methods (2-D and 3-D) used for evaluating root resorption have focused on the root length without considering 3-D resorption. The purpose of this study was to volumetrically evaluate root resorption using cone beam computed tomography(CBCT) after mini-screw implant intrusion. 1. The volumes of 32 teeth were measured using CBCT and laser scanning to verify the accuracy of CBCT. 2. Twelve overerupted molars from adult patients were investigated in this study. After mini-screw implants were inserted into the buccal and palatal alveolar bones, 150 g of force was applied to the mini-screw implants on each side to intrude the molars. CBCT images of all patients were taken immediately prior to intrusion and after intrusion. The volumes of the roots were calculated using the Mimics software program. The differences between the pre-intrusion and post-intrusion root volumes were statistically evaluated with a paired-samples t-test. In addition, the losses of the roots were statistically compared with each other using one-way analysis of variance at the P<0.05 level. No statistically significant volume differences were observed between the physical (laser scanning) and CBCT measurements (P>0.05). The overerupted molars were significantly intruded (P<0.05), and the average intrusion was 3.30±1.60 mm. The differences between the pre-intrusion and post-intrusion root volumes were statistically significant for all of the roots investigated (P<0.05). The roots were sorted by volume loss in descending order as follows: mesiobuccal, palatal, and distobuccal. Statistical significance was achieved among the three roots. The average total resorption for each tooth was 58.39±1.54 mm(3). Volume measurement using CBCT was able to effectively evaluate root resorption caused by mini-screw intrusion. The highest volume loss was observed in the mesiobuccal root among the three roots of the investigated first molar teeth.
Li, Wen; Chen, Fei; Zhang, Feng; Ding, Wanghui; Ye, Qingsong; Shi, Jiejun; Fu, Baiping
2013-01-01
Objective Molar intrusion by mini-screw implantation can cause different degrees of root resorption. However, most methods (2-D and 3-D) used for evaluating root resorption have focused on the root length without considering 3-D resorption. The purpose of this study was to volumetrically evaluate root resorption using cone beam computed tomography(CBCT) after mini-screw implant intrusion. Materials and Methods 1. The volumes of 32 teeth were measured using CBCT and laser scanning to verify the accuracy of CBCT. 2. Twelve overerupted molars from adult patients were investigated in this study. After mini-screw implants were inserted into the buccal and palatal alveolar bones, 150 g of force was applied to the mini-screw implants on each side to intrude the molars. CBCT images of all patients were taken immediately prior to intrusion and after intrusion. The volumes of the roots were calculated using the Mimics software program. The differences between the pre-intrusion and post-intrusion root volumes were statistically evaluated with a paired-samples t-test. In addition, the losses of the roots were statistically compared with each other using one-way analysis of variance at the P<0.05 level. Results No statistically significant volume differences were observed between the physical (laser scanning) and CBCT measurements (P>0.05). The overerupted molars were significantly intruded (P<0.05), and the average intrusion was 3.30±1.60 mm. The differences between the pre-intrusion and post-intrusion root volumes were statistically significant for all of the roots investigated (P<0.05). The roots were sorted by volume loss in descending order as follows: mesiobuccal, palatal, and distobuccal. Statistical significance was achieved among the three roots. The average total resorption for each tooth was 58.39±1.54 mm3. Conclusion Volume measurement using CBCT was able to effectively evaluate root resorption caused by mini-screw intrusion. The highest volume loss was observed in the mesiobuccal root among the three roots of the investigated first molar teeth. PMID:23585866
Mao, Ke-ya; Wang, Yan; Xiao, Song-hua; Zhang, Yong-gang; Liu, Bao-wei; Wang, Zheng; Zhang, Xi-Feng; Cui, Geng; Zhang, Xue-song; Li, Peng; Mao, Ke-zheng
2013-08-01
To investigate the feasibility of minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) using hybrid internal fixation of pedicle screws and a translaminar facet screw for recurrent lumbar disc herniation. From January 2010 to December 2011, 16 recurrent lumbar disc herniation patients, 10 male and 6 female patients with an average age of 45 years (35-68 years) were treated with unilateral incision MIS-TLIF through working channel. After decompression, interbody fusion and fixation using unilateral pedicle screws, a translaminar facet screw was inserted from the same incision through spinous process and laminar to the other side facet joint. The results of perioperative parameters, radiographic images and clinical outcomes were assessed. The repeated measure analysis of variance was applied in the scores of visual analogue scale (VAS) and Oswestry disablity index (ODI). All patients MIS-TLIF were accomplished under working channel including decompression, interbody fusion and hybrid fixation without any neural complication. The average operative time was (148 ± 75) minutes, the average operative blood loss was (186 ± 226) ml, the average postoperative ambulation time was (32 ± 15) hours, and the average hospitalization time was (6 ± 4) days. The average length of incision was (29 ± 4) mm, and the average length of translaminar facets screw was (52 ± 6) mm. The mean follow-up was 16.5 months with a range of 12-24 months. The postoperative X-ray and CT images showed good position of the hybrid internal fixation, and all facets screws penetrate through facets joint. The significant improvement could be found in back pain VAS, leg pain VAS and ODI scores between preoperative 1 day and postoperative follow-up at all time-points (back pain VAS:F = 52.845, P = 0.000;leg pain VAS:F = 113.480, P = 0.000;ODI:F = 36.665, P = 0.000). Recurrent lumbar disc herniation could be treated with MIS-TLIF using hybrid fixation through unilateral incision, and the advantage including less invasion and quickly recovery.
Tsutsui, Sadaaki; Kawasaki, Keikichi; Yamakoshi, Ken-Ichi; Uchiyama, Eiichi; Aoki, Mitsuhiro; Inagaki, Katsunori
2016-09-01
The present study compared the changes in biomechanical and radiographic properties under cyclic axial loadings between the 'double-tiered subchondral support' (DSS) group (wherein two rows of screws were used) and the 'non-DSS' (NDSS) group (wherein only one row of distal screws was used) using cadaveric forearm models of radius fractures fixed with a polyaxial locking plate. Fifteen fresh cadaveric forearms were surgically operated to generate an Arbeitsgemeinschaft für Osteosynthesefragen (AO) type 23-C2 fracture model with the fixation of polyaxial volar locking plates. The model specimens were randomized into two groups: DSS (n = 7) and NDSS (n = 8). Both the groups received 4 locking screws in the most distal row, as is usually applied, whereas the DSS group received 2 additional screws in the second row inserted at an inclination of about 15° to support the dorsal aspect of the dorsal subchondral bone. Cyclic axial compression test was performed (3000 cycles; 0-250 N; 60 mm/min) to measure absolute rigidity and displacement, after 1, 1000, 2000 and 3000 cycles, and values were normalized relative to cycle 1. These absolute and normalized values were compared between those two groups. Radiographic images were taken before and after the cyclic loading to measure changes in volar tilt (ΔVT) and radial inclination (ΔRI). The DSS group maintained significantly higher rigidity and lower displacement values than the NDSS group during the entire loading period. Radiographic analysis indicated that the ΔVT values of the DSS group were lower than those of the NDSS group. In contrast, the fixation design did not influence the impact of loading on the ΔRI values. Biomechanical and radiographic analyses demonstrated that two rows of distal locking screws in the DSS procedure conferred higher stability than one row of distal locking screws. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Reliability and Failure Modes of a Hybrid Ceramic Abutment Prototype.
Silva, Nelson Rfa; Teixeira, Hellen S; Silveira, Lucas M; Bonfante, Estevam A; Coelho, Paulo G; Thompson, Van P
2018-01-01
A ceramic and metal abutment prototype was fatigue tested to determine the probability of survival at various loads. Lithium disilicate CAD-milled abutments (n = 24) were cemented to titanium sleeve inserts and then screw attached to titanium fixtures. The assembly was then embedded at a 30° angle in polymethylmethacrylate. Each (n = 24) was restored with a resin-cemented machined lithium disilicate all-ceramic central incisor crown. Single load (lingual-incisal contact) to failure was determined for three specimens. Fatigue testing (n = 21) was conducted employing the step-stress method with lingual mouth motion loading. Failures were recorded, and reliability calculations were performed using proprietary software. Probability Weibull curves were calculated with 90% confidence bounds. Fracture modes were classified with a stereomicroscope, and representative samples imaged with scanning electron microscopy. Fatigue results indicated that the limiting factor in the current design is the fatigue strength of the abutment screw, where screw fracture often leads to failure of the abutment metal sleeve and/or cracking in the implant fixture. Reliability for completion of a mission at 200 N load for 50K cycles was 0.38 (0.52% to 0.25 90% CI) and for 100K cycles was only 0.12 (0.26 to 0.05)-only 12% predicted to survive. These results are similar to those from previous studies on metal to metal abutment/fixture systems where screw failure is a limitation. No ceramic crown or ceramic abutment initiated fractures occurred, supporting the research hypothesis. The limiting factor in performance was the screw failure in the metal-to-metal connection between the prototyped abutment and the fixture, indicating that this configuration should function clinically with no abutment ceramic complications. The combined ceramic with titanium sleeve abutment prototype performance was limited by the fatigue degradation of the abutment screw. In fatigue, no ceramic crown or ceramic abutment components failed, supporting the research hypothesis with a reliability similar to that of all-metal abutment fixture systems. A lithium disilcate abutment with a Ti alloy sleeve in combination with an all-ceramic crown should be expected to function clinically in a satisfactory manner. © 2016 by the American College of Prosthodontists.
Solid Rocket Booster Hydraulic Pump Port Cap Joint Load Testing
NASA Technical Reports Server (NTRS)
Gamwell, W. R.; Murphy, N. C.
2004-01-01
The solid rocket booster uses hydraulic pumps fabricated from cast C355 aluminum alloy, with 17-4 PH stainless steel pump port caps. Corrosion-resistant steel, MS51830 CA204L self-locking screw thread inserts are installed into C355 pump housings, with A286 stainless steel fasteners installed into the insert to secure the pump port cap to the housing. In the past, pump port cap fasteners were installed to a torque of 33 Nm (300 in-lb). However, the structural analyses used a significantly higher nut factor than indicated during tests conducted by Boeing Space Systems. When the torque values were reassessed using Boeing's nut factor, the fastener preload had a factor of safety of less than 1, with potential for overloading the joint. This paper describes how behavior was determined for a preloaded joint with a steel bolt threaded into steel inserts in aluminum parts. Finite element models were compared with test results. For all initial bolt preloads, bolt loads increased as external applied loads increased. For higher initial bolt preloads, less load was transferred into the bolt, due to external applied loading. Lower torque limits were established for pump port cap fasteners and additional limits were placed on insert axial deformation under operating conditions after seating the insert with an initial preload.
Yu, Xinguang; Li, Lianfeng; Wang, Peng; Yin, Yiheng; Bu, Bo; Zhou, Dingbiao
2014-07-01
This study was designed to report our preliminary experience with stabilization procedures for complex craniovertebral junction malformation (CVJM) using intraoperative computed tomography (iCT) with an integrated neuronavigation system (NNS). To evaluate the workflow, feasibility and clinical outcome of stabilization procedures using iCT image-guided navigation for complex CVJM. The stabilization procedures in CVJM are complex because of the area's intricate geometry and bony structures, its critical relationship to neurovascular structures and the intricate biomechanical issues involved. A sliding gantry 40-slice computed tomography scanner was installed in a preexisting operating room. The images were transferred directly from the scanner to the NNS using an automated registration system. On the basis of the analysis of intraoperative computed tomographic images, 23 cases (11 males, 12 females) with complicated CVJM underwent navigated stabilization procedures to allow more control over screw placement. The age of these patients were 19-52 years (mean: 33.5 y). We performed C1-C2 transarticular screw fixation in 6 patients to produce atlantoaxial arthrodesis with better reliability. Because of a high-riding transverse foramen on at least 1 side of the C2 vertebra and an anomalous vertebral artery position, 7 patients underwent C1 lateral mass and C2 pedicle screw fixation. Ten additional patients were treated with individualized occipitocervical fixation surgery from the hypoplasia of C1 or constraints due to C2 bone structure. In total, 108 screws were inserted into 23 patients using navigational assistance. The screws comprised 20 C1 lateral mass screws, 26 C2, 14 C3, or 4 C4 pedicle screws, 32 occipital screws, and 12 C1-C2 transarticular screws. There were no vascular or neural complications except for pedicle perforations that were detected in 2 (1.9%) patients and were corrected intraoperatively without any persistent nerves or vessel damage. The overall accuracy of the image guidance system was 98.1%. The duration of interruption during the surgical process for the iCT was 8±1.5 minutes. All patients were clinically evaluated using Nurick grade criteria and for neurological deficits 3 months after surgery. Twenty-one patients (91.3%) improved by at least 1 Nurick grade, whereas the grade remained unchanged in 2 (8.7%) patients. Craniovertebral stability and solid bone fusion was achieved in all patients. NNS was found to correlate well with the intraoperative findings, and the recalibration was uneventful in all cases and had an accuracy of 1.8 mm (range, 0.6-2.2 mm). iCT scanning with integrated NNS was found to be both feasible and beneficial in the stabilization procedures for complex CVJM. In this unusual patient population, the technique seemed to be of value for negotiating complex anatomy and for achieving more control over screw placement.
Interest of intra-operative 3D imaging in spine surgery: a prospective randomized study.
Ruatti, Sébastien; Dubois, C; Chipon, E; Kerschbaumer, G; Milaire, M; Moreau-Gaudry, A; Tonetti, J; Merloz, Ph
2016-06-01
We report a single-center, prospective, randomized study for pedicle screw insertion in opened and percutaneous spine surgeries, using a computer-assisted surgery (CAS) technique with three-dimensional (3D) intra-operative images intensifier (without planification on pre-operative CT scan) vs conventional surgical procedure. We included 143 patients: Group C (conventional, 72 patients) and Group N (3D Fluoronavigation, 71 patients). We measured the pedicle screw running time, and surgeon's radiation exposure. All pedicle runs were assessed according to Heary by two independent radiologists on a post-operative CT scan. 3D Fluoronavigation appeared less accurate in percutaneous procedures (24 % of misplaced pedicle screws vs 5 % in Group C) (p = 0.007), but more accurate in opened surgeries (5 % of misplaced pedicle screws vs 17 % in Group C) (p = 0.025). For one vertebra, the average surgical running time reached 8 min in Group C vs 21 min in Group N for percutaneous surgeries (p = 3.42 × 10(-9)), 7.33 min in Group C vs 16.33 min in Group N (p = 2.88 × 10(-7)) for opened surgeries. The 3D navigation device delivered less radiation in percutaneous procedures [0.6 vs 1.62 mSv in Group C (p = 2.45 × 10(-9))]. For opened surgeries, it was twice higher in Group N with 0.21 vs 0.1 mSv in Group C (p = 0.022). The rate of misplaced pedicle screws with conventional techniques was nearly the same as most papers and a little bit higher with CAS. Surgical running time and radiation exposure were consistent with many studies. Our work hypothesis is partially confirmed, depending on the type of surgery (opened or closed procedure).
A novel anchoring system for use in a nonfusion scoliosis correction device.
Wessels, Martijn; Homminga, Jasper J; Hekman, Edsko E G; Verkerke, Gijsbertus J
2014-11-01
Insertion of a pedicle screw in the mid- and high thoracic regions has a serious risk of facet joint damage. Because flexible implant systems require intact facet joints, we developed an enhanced fixation that is less destructive to spinal structures. The XSFIX is a posterior fixation system that uses cables that are attached to the transverse processes of a vertebra. To determine whether a fixation to the transverse process using the XSFIX is strong enough to withstand the loads applied by the XSLATOR (a novel, highly flexible nonfusion implant system) and thus, whether it is a suitable alternative for pedicle screw fixation. The strength of a novel fixation system using transverse process cables was determined and compared with the strength of a similar fixation using polyaxial pedicle screws on different vertebral levels. Each of the 58 vertebrae, isolated from four adult human cadavers, was instrumented with either a pedicle screw anchor (PSA) system or a prototype of the XSFIX. The PSA consisted of two polyaxial pedicle screws and a 5 mm diameter rod. The XSFIX prototype consisted of two bodies that were fixed to the transverse processes, interconnected with a similar rod. Each fixation system was subjected to a lateral or an axial torque. The PSA demonstrated fixation strength in lateral loading and torsion higher than required for use in the XSLATOR. The XSFIX demonstrated high enough fixation strength (in both lateral loading and torsion), only in the high and midthoracic regions (T10-T12). This experiment showed that the fixation strength of XSFIX is sufficient for use with the XSLATOR only in mid- and high thoracic regions. For the low thoracic and lumbar region, the PSA is a more rigid fixation. Because the performance of the new fixation system appears to be favorable in the high and midthoracic regions, a clinical study is the next challenge. Copyright © 2014 Elsevier Inc. All rights reserved.
Improved Rare-Earth Emitter Hollow Cathode
NASA Technical Reports Server (NTRS)
Goebel, Dan M.
2011-01-01
An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out the back. This configuration replaces the previous sheathed heater design that limited the cycling-life of the cathode.
Markolf, Keith L; Cheung, Edward; Joshi, Nirav B; Boguszewski, Daniel V; Petrigliano, Frank A; McAllister, David R
2016-06-01
Anterior midtibial stress fractures are an important clinical problem for patients engaged in high-intensity military activities or athletic training activities. When nonoperative treatment has failed, intramedullary (IM) nail and plate fixation are 2 surgical options used to arrest the progression of a fatigue fracture and allow bone healing. A plate will be more effective than an IM nail in preventing the opening of a simulated anterior midtibial stress fracture from tibial bending. Controlled laboratory study. Fresh-frozen human tibias were loaded by applying a pure bending moment in the sagittal plane. Thin transverse saw cuts, 50% and 75% of the depth of the anterior tibial cortex, were created at the midtibia to simulate a fatigue fracture. An extensometer spanning the defect was used to measure the fracture opening displacement (FOD) before and after the application of IM nail and plate fixation constructs. IM nails were tested without locking screws, with a proximal screw only, and with proximal and distal screws. Plates were tested with unlocked bicortical screws (standard compression plate) and locked bicortical screws; both plate constructs were tested with the plate edge placed 1 mm from the anterior tibial crest (anterior location) and 5 mm posterior to the crest. For the 75% saw cut depth, the mean FOD values for all IM nail constructs were 13% to 17% less than those for the saw cut alone; the use of locking screws had no significant effect on the FOD. The mean FOD values for all plate constructs were significantly less than those for all IM nail constructs. The mean FOD values for all plates were 28% to 46% less than those for the saw cut alone. Anterior plate placement significantly decreased mean FOD values for both compression and locked plate constructs, but the mean percentage reductions for locked and unlocked plates were not significantly different from each other for either plate placement. The percentage FOD reductions for all plate constructs and the unlocked IM nail were significantly less with a 50% saw cut depth. Plate fixation was superior to IM nail fixation in limiting the opening of a simulated midtibial stress fracture, and anterior-posterior placement of the plate was an important variable for this construct. Results from these tests can help guide the selection of fixation hardware for patients requiring surgical treatment for a midtibial stress fracture. © 2016 The Author(s).
Ramme, Austin J; Egol, Jonathan; Chang, Gregory; Davidovitch, Roy I; Konda, Sanjit
2017-07-01
Difficulty determining anatomic rotation following intramedullary (IM) nailing of the femur continues to be problematic for surgeons. Clinical exam and fluoroscopic imaging of the hip and knee have been used to estimate femoral version, but are inaccurate. We hypothesize that 3D c-arm imaging can be used to accurately measure femoral version following IM nailing of femur fractures to prevent rotational malreduction. A midshaft osteotomy was created in a femur Sawbone to simulate a transverse diaphyseal fracture. An intramedullary (IM) nail was inserted into the Sawbone femur without locking screws or cephalomedullary fixation. A goniometer was used to simulate four femoral version situations after IM nailing: 20° retroversion, 0° version, 15° anteversion, and 30° anteversion. In each simulated position, 3D c-arm imaging and, for comparison purposes, perfect lateral radiographs of the knee and hip were performed. The femoral version of each simulated 3D and fluoroscopic case was measured and the results were tabulated. The measured version from the 3D c-arm images was 22.25° retroversion, 0.66° anteversion, 19.53° anteversion, and 25.15° anteversion for the simulated cases of 20° retroversion, 0° version, 15° anteversion, and 30° anteversion, respectively. The lateral fluoroscopic views were measured to be 9.66° retroversion, 12.12° anteversion, 20.91° anteversion, and 18.77° anteversion for the simulated cases, respectively. This study demonstrates the utility of a novel intraoperative method to evaluate femur rotational malreduction following IM nailing. The use of 3D c-arm imaging to measure femoral version offers accuracy and reproducibility. Copyright © 2017 Elsevier Ltd. All rights reserved.
Venne, Gabriel; Rasquinha, Brian J; Pichora, David; Ellis, Randy E; Bicknell, Ryan
2015-07-01
Preoperative planning and intraoperative navigation technologies have each been shown separately to be beneficial for optimizing screw and baseplate positioning in reverse shoulder arthroplasty (RSA) but to date have not been combined. This study describes development of a system for performing computer-assisted RSA glenoid baseplate and screw placement, including preoperative planning, intraoperative navigation, and postoperative evaluation, and compares this system with a conventional approach. We used a custom-designed system allowing computed tomography (CT)-based preoperative planning, intraoperative navigation, and postoperative evaluation. Five orthopedic surgeons defined common preoperative plans on 3-dimensional CT reconstructed cadaveric shoulders. Each surgeon performed 3 computer-assisted and 3 conventional simulated procedures. The 3-dimensional CT reconstructed postoperative units were digitally matched to the preoperative model for evaluation of entry points, end points, and angulations of screws and baseplate. Values were used to find accuracy and precision of the 2 groups with respect to the defined placement. Statistical analysis was performed by t tests (α = .05). Comparison of the groups revealed no difference in accuracy or precision of screws or baseplate entry points (P > .05). Accuracy and precision were improved with use of navigation for end points and angulations of 3 screws (P < .05). Accuracy of the inferior screw showed a trend of improvement with navigation (P > .05). Navigated baseplate end point precision was improved (P < .05), with a trend toward improved accuracy (P > .05). We conclude that CT-based preoperative planning and intraoperative navigation allow improved accuracy and precision for screw placement and precision for baseplate positioning with respect to a predefined placement compared with conventional techniques in RSA. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Displacement of dental implants in trabecular bone under a static lateral load in fresh bovine bone.
Engelke, Wilfried; Müller, Alois; Decco, Oscar A; Rau, María J; Cura, Andrea C; Ruscio, Mara L; Knösel, Michael
2013-04-01
The study aims to provide objective data for the displacement of titanium screw implants in trabecular bone specimens. One hundred Semados implants (Bego, Bremen, Germany) were inserted in bovine type IV bone specimens. All implants had a diameter of 3.75 mm; 50 implants had a length of 8.5 mm and 50 implants had a length of 15 mm. Insertion torque was determined at intervals of 10, 20, and 30 Ncm. Implants were loaded horizontally with 10, 20, and 30 N for 2 seconds. An indicator strip was attached to the implant abutment to allow direct observation of implant movement relative to the bone surface. Horizontal displacement was assessed with an accuracy of measurement of 10 µm. Seven implants got lost by visible loosening. Degree of displacement was subject to evaluation with all others. Those implants showed a mean displacement of 59 µm for 10 N (n = 100), 173 µm for 20 N (n = 99), and 211 µm for 30 N (n = 93). The mean displacement of 15-mm implants (16, 37, 51 µm) was significantly lower compared with 8.5-mm implants (103, 311, 396 µm) corresponding to 10, 20, and 30 N as lateral loads. Displacement of screw implants in trabecular bone can be detected and visualized using commercially available endoscopes with a high magnification. A lateral load of 20 N indicates a mean displacement of over 100 µm and therefore results in a critical displacement. © 2011 Wiley Periodicals, Inc.
Perelli, Michele; Abundo, Roberto; Corrente, Giuseppe; Saccone, Carlo
2017-01-01
Tooth extraction is usually followed by bone reduction. In the maxillary posterior region, this remodelling combined with sinus pneumatisation and periodontal defects may lead to a reduced basal bone height available for implant placement. Sinus floor elevation can be performed with different surgical techniques. Crestal approach has demonstrated to be effective, less invasive, and associated with a reduced morbidity. This article reports a modified sinus floor elevation by means of rotary, noncutting instruments, addition of xenograft, and 2 short-threaded implant placements. The aim of the study was to evaluate the implant's success and intrasinus radiographical bone gain after 4 years of functional loading. The premolar implant site presented a starting basal bone height of 6 mm, while the molar site was of 2 mm. In the first surgical step, sinus floor elevation was performed mesially and the implant was inserted, and distally only sinus floor elevation was performed. After 6 months, the mesial implant was uncovered and the second implant was inserted; 4 months later, the second fixture was uncovered, and both fixtures were loaded with single provisional screw-retained crowns and later with single screw-retained porcelain fused to metal crowns. Implants integrated successfully, and crestal bone remodelling did not exceed the smooth collar. Bone gain was 3 mm for the mesial implant and more than 5 mm for the distal one. PMID:29403665
Perelli, Michele; Abundo, Roberto; Corrente, Giuseppe; Saccone, Carlo; Arduino, Paolo G
2017-01-01
Tooth extraction is usually followed by bone reduction. In the maxillary posterior region, this remodelling combined with sinus pneumatisation and periodontal defects may lead to a reduced basal bone height available for implant placement. Sinus floor elevation can be performed with different surgical techniques. Crestal approach has demonstrated to be effective, less invasive, and associated with a reduced morbidity. This article reports a modified sinus floor elevation by means of rotary, noncutting instruments, addition of xenograft, and 2 short-threaded implant placements. The aim of the study was to evaluate the implant's success and intrasinus radiographical bone gain after 4 years of functional loading. The premolar implant site presented a starting basal bone height of 6 mm, while the molar site was of 2 mm. In the first surgical step, sinus floor elevation was performed mesially and the implant was inserted, and distally only sinus floor elevation was performed. After 6 months, the mesial implant was uncovered and the second implant was inserted; 4 months later, the second fixture was uncovered, and both fixtures were loaded with single provisional screw-retained crowns and later with single screw-retained porcelain fused to metal crowns. Implants integrated successfully, and crestal bone remodelling did not exceed the smooth collar. Bone gain was 3 mm for the mesial implant and more than 5 mm for the distal one.
Domain Immersion Technique And Free Surface Computations Applied To Extrusion And Mixing Processes
NASA Astrophysics Data System (ADS)
Valette, Rudy; Vergnes, Bruno; Basset, Olivier; Coupez, Thierry
2007-04-01
This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment. We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each subdomain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique backgound computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.
Effects of Lateral Mass Screw Rod Fixation to the Stability of Cervical Spine after Laminectomy
NASA Astrophysics Data System (ADS)
Rosli, Ruwaida; Kashani, Jamal; Kadir, Mohammed Rafiq Abdul
There are many cases of injury in the cervical spine due to degenerative disorder, trauma or instability. This condition may produce pressure on the spinal cord or on the nerve coming from the spine. The aim of this study was, to analyze the stabilization of the cervical spine after undergoing laminectomy via computational simulation. For that purpose, a three-dimensional finite element (FE) model for the multilevel cervical spine segment (C1-C7) was developed using computed tomography (CT) data. There are various decompression techniques that can be applied to overcome the injury. Usually, decompression procedures will create an unstable spine. Therefore, in these situations, the spine is often surgically restabilized by using fusion and instrumentation. In this study, a lateral mass screw-rod fixation was created to stabilize the cervical spine after laminectomy. Material properties of the titanium alloy were assigned on the implants. The requirements moments and boundary conditions were applied on simulated implanted bone. Result showed that the bone without implant has a higher flexion and extension angle in comparison to the bone with implant under applied 1Nm moment. The bone without implant has maximum stress distribution at the vertebrae and ligaments. However, the bone with implant has maximum stress distribution at the screws and rods. Overall, the lateral mass screw-rod fixation provides stability to the cervical spine after undergoing laminectomy.
Rasse, Michael; Moser, Doris; Zahl, Christian; Gerlach, Klaus Louis; Eckelt, Uwe; Loukota, Richard
2007-01-01
We made osteotomies in the condylar neck in 12 adult sheep to simulate fractures, and joined the two ends with 2 poly(D,L)lactide (PDLLA) plates and 8 PDLLA screws 2mm in diameter. The animals were killed after 2, 6, and 12 months and bony healing was assessed macroscopically and histologically. The plates and screws remained intact and there was no displacement of the bony ends. The degrading plates, which were still visible in the specimens after 6 months, had been replaced by bone. At 12 months the PDLLA had been resorbed with no foreign body reaction and no resorption of underlying bone. The articular discs showed no signs of degeneration.
Implant-supported titanium prostheses following augmentation procedures: a clinical report.
Knabe, C; Hoffmeister, B
2003-03-01
This report describes a novel technique for fabricating retrievable implant-supported titanium (Ti) prostheses in patients requiring a comprehensive treatment plan involving the combined efforts of maxillofacial surgery and implant prosthodontics. Following bone graft reconstructive surgery and implant placement prosthetic treatment was initiated by inserting ITI-Octa abutments. An impression was made, and a framework was fabricated by fusing Ti-cast frameworks to prefabricated titanium copings by laser-welding. This was followed by veneering or fabrication of a removable denture with Ti metal re-enforcement. Favourable clinical results have been achieved using these screw-retained Ti implant-supported restorations for patients treated with reconstructive bone graft-surgery, with clinical observation periods ranging from three to four years. The present observations suggest that these screw-retained implant-supported Ti prostheses may be a meaningful contribution to implant prosthodontics, facilitating retrievable restorations of optimum biocompatibility, good marginal precision and with a good esthetic result. However, controlled clinical studies are needed to establish the long-term serviceability of these Ti restorations.
Liebsch, Christian; Zimmermann, Julia; Graf, Nicolas; Schilling, Christoph; Wilke, Hans-Joachim; Kienle, Annette
2018-01-01
Biomechanical in vitro tests analysing screw loosening often include high standard deviations caused by high variabilities in bone mineral density and pedicle geometry, whereas standardized mechanical models made of PU foam often do not integrate anatomical or physiological boundary conditions. The purpose of this study was to develop a most realistic mechanical model for the standardized and reproducible testing of pedicle screws regarding the resistance against screw loosening and the holding force as well as to validate this model by in vitro experiments. The novel mechanical testing model represents all anatomical structures of a human vertebra and is consisting of PU foam to simulate cancellous bone, as well as a novel pedicle model made of short carbon fibre filled epoxy. Six monoaxial cannulated pedicle screws (Ø6.5 × 45mm) were tested using the mechanical testing model as well as human vertebra specimens by applying complex physiological cyclic loading (shear, tension, and bending; 5Hz testing frequency; sinusoidal pulsating forces) in a dynamic materials testing machine with stepwise increasing load after each 50.000 cycles (100.0N shear force + 20.0N per step, 51.0N tension force + 10.2N per step, 4.2Nm bending moment + 0.8Nm per step) until screw loosening was detected. The pedicle screw head was fixed on a firmly clamped rod while the load was applied in the vertebral body. For the in vitro experiments, six human lumbar vertebrae (L1-3, BMD 75.4 ± 4.0mg/cc HA, pedicle width 9.8 ± 0.6mm) were tested after implanting pedicle screws under X-ray control. Relative motions of pedicle screw, specimen fixture, and rod fixture were detected using an optical motion tracking system. Translational motions of the mechanical testing model experiments in the point of load introduction (0.9-2.2mm at 240N shear force) were reproducible within the variation range of the in vitro experiments (0.6-3.5mm at 240N shear force). Screw loosening occurred continuously in each case between 140N and 280N, while abrupt failures of the specimen were observed only in vitro. In the mechanical testing model, no translational motion was detected in the screw entry point, while in vitro, translational motions of up to 2.5mm in inferior direction were found, leading to a slight shift of the centre of rotation towards the screw tip. Translational motions of the screw tip of about 5mm in superior direction were observed both in vitro and in the mechanical testing model, while they were continuous in the mechanical testing model and rapidly increasing after screw loosening initiation in vitro. The overall pedicle screw loosening characteristics were qualitatively and quantitatively similar between the mechanical testing model and the human vertebral specimens as long as there was no translation of the screw at the screw entrance point. Therefore, the novel mechanical testing model represents a promising method for the standardized testing of pedicle screws regarding screw loosening for cases where the screw rotates around a point close to the screw entry point. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Praher, Bernhard; Straka, Klaus; Steinbichler, Georg
2013-08-01
The polymer melt temperature in the screw ante-chamber of an injection moulding machine influences a number of parameters during the polymer process and therefore the final product quality. For measurement of this temperature, a sensor must be non-invasive (because of the axial moved screw during the injection of the plasticized polymer into the mould) and withstand the high pressure (>1000 bar) and temperature (>200 °C) during the injection moulding process. It is well known that the temperature of the polymer melt in the screw ante-chamber is inhomogeneous, and for that reason the sensor system must be able to measure the temperature spatially resolved. Due to the fact that sound velocity is temperature dependent, we developed a non-invasive tomography system using the transit times of ultrasonic pulses along different sound paths for calculating the temperature distribution in a polymer melt. Simulation results and example experiments at a test measurement setup are shown. Moreover, different strategies for the ultrasonic probe design (buffer rods, generation of wide beam angle) are discussed. The results of the proposed system are important for the validation of numerical simulations, a better understanding of the plasticizing process and can be used for the input of a novel temperature control system.
Three-dimensional finite element analysis of a newly designed onplant miniplate anchorage system.
Liu, Lin; Qu, Yin-Ying; Jiang, Li-Jun; Zhou, Qian; Tang, Tian-Qi
2016-06-01
The purpose of this research was to evaluate the structural stress and deformation of a newly designed onplant miniplate anchorage system compared to a standard anchorage system. A bone block integrated with a novel miniplate and fixation screw system was simulated in a three-dimensional model and subjected to force at different directions. The stress distribution and deformation of the miniplate system and cortical bone were evaluated using the three-dimensional finite element method. The results showed that the stress on the plate system and bone was linearly proportional to the force magnitude and was higher when the force was in a vertical direction (Y-axis). Stress and deformation values of the two screws (screw 1 and 2) were asymmetric when the force was added along Y-axis and was greater in screw 1. The highest deformation value of the screws was 7.5148 μm, much smaller than the limit value. The load was decreased for each single miniscrew, and the ability of the new anchorage system to bear the load was also enhanced to some degree. It was suggested that the newly designed onplant miniplate anchorage system is effective, easily implanted and minimally invasive.
[Three-dimensional Finite Element Analysis to T-shaped Fracture of Pelvis in Sitting Position].
Fan, Yanping; Lei, Jianyin; Liu, Haibo; Li, Zhiqiang; Cai, Xianhua; Chen, Weiyi
2015-10-01
We developed a three-dimensional finite element model of the pelvis. According to Letournel methods, we established a pelvis model of T-shaped fracture with its three different fixation systems, i. e. double column reconstruction plates, anterior column plate combined with posterior column screws and anterior column plate combined with quadrilateral area screws. It was found that the pelvic model was effective and could be used to simulate the mechanical behavior of the pelvis. Three fixation systems had great therapeutic effect on the T-shaped fracture. All fixation systems could increase the stiffness of the model, decrease the stress concentration level and decrease the displacement difference along the fracture line. The quadrilateral area screws, which were drilled into cortical bone, could generate beneficial effect on the T-type fracture. Therefore, the third fixation system mentioned above (i. e. the anterior column plate combined with quadrilateral area screws) has the best biomechanical stability to the T-type fracture.
Gritsch, Kerstin; Laroche, Norbert; Bonnet, Jeanne-Marie; Exbrayat, Patrick; Morgon, Laurent; Rabilloud, Muriel; Grosgogeat, Brigitte
2013-01-01
The present work intends to evaluate the use of immediate loaded orthodontic screws in a growing model, and to study the specific bone response. Thirty-two screws (half of stainless steel and half of titanium) were inserted in the alveolar bone of 8 growing pigs. The devices were immediately loaded with a 100 g orthodontic force. Two loading periods were assessed: 4 and 12 weeks. Both systems of screws were clinically assessed. Histological observations and histomorphometric analysis evaluated the percent of “bone-to-implant contact” and static and dynamic bone parameters in the vicinity of the devices (test zone) and in a bone area located 1.5 cm posterior to the devices (control zone). Both systems exhibit similar responses for the survival rate; 87.5% and 81.3% for stainless steel and titanium respectively (p = 0.64; 4-week period), and 62.5% and 50.0% for stainless steel and titanium respectively (p = 0.09; 12-week period). No significant differences between the devices were found regarding the percent of “bone-to-implant contact” (p = 0.1) or the static and dynamic bone parameters. However, the 5% threshold of “bone-to-implant contact” was obtained after 4 weeks with the stainless steel devices, leading to increased survival rate values. Bone in the vicinity of the miniscrew implants showed evidence of a significant increase in bone trabecular thickness when compared to bone in the control zone (p = 0.05). In our study, it is likely that increased trabecular thickness is a way for low density bone to respond to the stress induced by loading. PMID:24124540
Delben, Juliana Aparecida; Barão, Valentim Adelino Ricardo; Dos Santos, Paulo Henrique; Assunção, Wirley Gonçalves
2014-02-01
The effect of veneering materials on screw joint stability remains inconclusive. Thus, this study evaluated the preload maintenance of abutment screws of single crowns fabricated with different abutments and veneering materials. Sixty crowns were divided into five groups (n = 12): UCLA abutment in gold alloy with ceramic (group GC) and resin (group GR) veneering, UCLA abutment in titanium with ceramic (group TiC) and resin (group TiR) veneering, and zirconia abutment with ceramic veneering (group ZiC). Abutment screws made of gold were used with a 35 Ncm insertion torque. Detorque measurements were obtained initially and after mechanical cycling. Data were analyzed by ANOVA and Fisher's exact test at a significance level of 5%. For the initial detorque means (in Ncm), group TiC (21.4 ± 1.78) exhibited statistically lower torque maintenance than groups GC (23.9 ± 0.91), GR (24.1 ± 1.34), and TiR (23.2 ± 1.33) (p < 0.05, Fisher's exact test). Group ZiC (21.9 ± 2.68) exhibited significantly lower torque maintenance than groups GC, GR, and TiR (p < 0.05, Fisher's exact test). After mechanical cycling, there was a statistically significant difference between groups TiC (22.1 ± 1.86) and GR (23.8 ± 1.56); between groups ZiC (21.7 ± 2.02) and GR; and also between groups ZiC and TiR (23.6 ± 1.30) (p < 0.05, Fisher's exact test). Detorque reduction occurred regardless of abutment type and veneering material. More irregular surfaces in the hexagon area of the castable abutments were observed. The superiority of any veneering material concerning preload maintenance was not established. © 2013 by the American College of Prosthodontists.
Screw-in forces during instrumentation by various file systems.
Ha, Jung-Hong; Kwak, Sang Won; Kim, Sung-Kyo; Kim, Hyeon-Cheol
2016-11-01
The purpose of this study was to compare the maximum screw-in forces generated during the movement of various Nickel-Titanium (NiTi) file systems. Forty simulated canals in resin blocks were randomly divided into 4 groups for the following instruments: Mtwo size 25/0.07 (MTW, VDW GmbH), Reciproc R25 (RPR, VDW GmbH), ProTaper Universal F2 (PTU, Dentsply Maillefer), and ProTaper Next X2 (PTN, Dentsply Maillefer, n = 10). All the artificial canals were prepared to obtain a standardized lumen by using ProTaper Universal F1. Screw-in forces were measured using a custom-made experimental device (AEndoS- k , DMJ system) during instrumentation with each NiTi file system using the designated movement. The rotation speed was set at 350 rpm with an automatic 4 mm pecking motion at a speed of 1 mm/sec. The pecking depth was increased by 1 mm for each pecking motion until the file reach the working length. Forces were recorded during file movement, and the maximum force was extracted from the data. Maximum screw-in forces were analyzed by one-way ANOVA and Tukey's post hoc comparison at a significance level of 95%. Reciproc and ProTaper Universal files generated the highest maximum screw-in forces among all the instruments while M-two and ProTaper Next showed the lowest ( p < 0.05). Geometrical differences rather than shaping motion and alloys may affect the screw-in force during canal instrumentation. To reduce screw-in forces, the use of NiTi files with smaller cross-sectional area for higher flexibility is recommended.
Accuracy of electronic implant torque controllers following time in clinical service.
Mitrani, R; Nicholls, J I; Phillips, K M; Ma, T
2001-01-01
Tightening of the screws in implant-supported restorations has been reported to be problematic, in that if the applied torque is too low, screw loosening occurs. If the torque is too high, then screw fracture can take place. Thus, accuracy of the torque driver is of the utmost importance. This study evaluated 4 new electronic torque drivers (controls) and 10 test electronic torque drivers, which had been in clinical service for a minimum of 5 years. Torque values of the test drivers were measured and were compared with the control values using a 1-way analysis of variance. Torque delivery accuracy was measured using a technique that simulated the clinical situation. In vivo, the torque driver turns the screw until the selected tightening torque is reached. In this laboratory experiment, an implant, along with an attached abutment and abutment gold screw, was held firmly in a Tohnichi torque gauge. Calibration accuracy for the Tohnichi is +/- 3% of the scale value. During torque measurement, the gold screw turned a minimum of 180 degrees before contact was made between the screw and abutment. Three torque values (10, 20, and 32 N-cm) were evaluated, at both high- and low-speed settings. The recorded torque measurements indicated that the 10 test electronic torque drivers maintained a torque delivery accuracy equivalent to the 4 new (unused) units. Judging from the torque output values obtained from the 10 test units, the clinical use of the electronic torque driver suggests that accuracy did not change significantly over the 5-year period of clinical service.
Torque Loss After Miniscrew Placement: An In-Vitro Study Followed by a Clinical Trial.
Migliorati, Marco; Drago, Sara; Barberis, Fabrizio; Schiavetti, Irene; Dalessandri, Domenico; Benedicenti, Stefano; Biavati, Armando Silvestrini
2016-01-01
To evaluate torque loss a week after insertion, both in an in vivo and an in vitro experimental setup were designed. In the in vivo setup a total of 29 miniscrews were placed in 20 patients who underwent orthodontic treatment. Maximum insertion torque (MIT) was evaluated at insertion time (T1). A week later, insertion torque was measured again by applying a quarter turn (T2); no load was applied on the screw during the first week. In the in vitro setup a total of 20 miniscrews were placed in pig rib bone samples. MIT was evaluated at insertion time (T1). Bone samples were kept in saline solution and controlled environment for a week during which the solution was refreshed every day. Afterwards, torque was measured again by applying a quarter turn (T2). The comparison of MIT over time was done calculating the percentage difference of the torque values between pre- and post-treatment and using the parametric two independent samples t-test or the non-parametric Mann-Whitney test. After a week unloaded miniscrews showed a mean loss of rotational torque of 36.3% and 40.9% in in vitro and in in vivo conditions, respectively. No statistical differences were found between the two different setups. Torque loss was observed after the first week in both study models; in vitro experimental setup provided a reliable study model for studying torque variation during the first week after insertion.
Torque Loss After Miniscrew Placement: An In-Vitro Study Followed by a Clinical Trial
Migliorati, Marco; Drago, Sara; Barberis, Fabrizio; Schiavetti, Irene; Dalessandri, Domenico; Benedicenti, Stefano; Biavati, Armando Silvestrini
2016-01-01
To evaluate torque loss a week after insertion, both in an in vivo and an in vitro experimental setup were designed. In the in vivo setup a total of 29 miniscrews were placed in 20 patients who underwent orthodontic treatment. Maximum insertion torque (MIT) was evaluated at insertion time (T1). A week later, insertion torque was measured again by applying a quarter turn (T2); no load was applied on the screw during the first week. In the in vitro setup a total of 20 miniscrews were placed in pig rib bone samples. MIT was evaluated at insertion time (T1). Bone samples were kept in saline solution and controlled environment for a week during which the solution was refreshed every day. Afterwards, torque was measured again by applying a quarter turn (T2). The comparison of MIT over time was done calculating the percentage difference of the torque values between pre- and post-treatment and using the parametric two independent samples t-test or the non-parametric Mann–Whitney test. After a week unloaded miniscrews showed a mean loss of rotational torque of 36.3% and 40.9% in in vitro and in in vivo conditions, respectively. No statistical differences were found between the two different setups. Torque loss was observed after the first week in both study models; in vitro experimental setup provided a reliable study model for studying torque variation during the first week after insertion. PMID:27386011
Development of an off bypass mitral valve repair.
Morales, D L; Madigan, J D; Choudhri, A F; Williams, M R; Helman, D N; Elder, J B; Naka, Y; Oz, M C
1999-01-01
The Bow Tie Repair (BTR), a single edge-to-edge suture opposing the anterior and posterior leaflets of the mitral valve (MV), has led to satisfactory reduction of mitral regurgitation (MR) with few re-operations and excellent hemodynamic results. The simplicity of the repair lends itself to minimally invasive approaches. A MV grasper has been developed that will coapt both leaflets and fasten the structures with a graduated spiral screw. Eleven explanted adult human MVs were mounted in a mock circulatory loop created for simulating a variety of hemodynamic conditions. The MV grasper was used to place a screw in each valve, which was then continuously run for 300,000 to 1,000,000 cycles with a fixed transvalvular pressure gradient. At the completion of these studies, the valves were stressed to a maximal transvalvular gradient for ten minutes. In seven cases, MR was induced and subsequently repaired using the MV screw. In vivo, the MV screw was tested in nine male canines. Through a subcostal incision, the MV grasper entered the left ventricle, approximated the mitral leaflets and deployed the MV screw under direct visualization via an atriotomy. Follow-up transthoracic echocardiograms were done at postoperative week 1, 6, and 12 to identify screw migration, MV regurgitation/stenosis or clot formation. Dogs were sacrificed up to postoperative week 12 to allow gross and histologic assessment. In vitro, no MV screw detached from the valve leaflets or migrated during the durability testing period of 6.8 million cycles, including periods of stress load testing up to 350 mm Hg. The percent regurgitant flow used to assess MR statistically decreased with the placement of the screw from 72 +/- 7% to 34 +/- 17%; p = 0.0025. In vivo, seven dogs whose valves were examined within the first 48 hours revealed leaflet coaptation with an intact MV screw and no evidence of MR. Two dogs, followed for a prolonged period, had serial postoperative echocardiograms demonstrating consistent coaptation, no screw migration, no clot, and no regurgitation or stenosis. In the animal sacrificed at 12 weeks, the MV screw was integrated into the tissue of both leaflets. The MV screw has provided durable leaflet coaptation and has reduced regurgitation in human MVs. Initial data on the MV screw's biocompatibility and interactions with living valve tissue is promising. Our early success supports further efforts towards the maturation of this prototype into off bypass mitral valve repair technology.
Rodriguez, Lucas C.; Saba, Juliana N.; Meyer, Clark A.; Chung, Kwok‐Hung; Wadhwani, Chandur
2016-01-01
Abstract Recent literature indicates that the long‐term success of dental implants is, in part, attributed to how dental crowns are attached to their associated implants. The commonly utilized method for crown attachment – cementation, has been criticized because of recent links between residual cement and peri‐implant disease. Residual cement extrusion from crown‐abutment margins post‐crown seating is a growing concern. This study aimed at (1) identifying key abutment features, which would improve dental cement flow characteristics, and (2) understanding how these features would impact the mechanical stability of the abutment under functional loads. Computational fluid dynamic modeling was used to evaluate cement flow in novel abutment geometries. These models were then evaluated using 3D‐printed surrogate models. Finite element analysis also provided an understanding of how the mechanical stability of these abutments was altered after key features were incorporated into the geometry. The findings demonstrated that the key features involved in improved venting of the abutment during crown seating were (1) addition of vents, (2) diameter of the vents, (3) location of the vents, (4) addition of a plastic screw insert, and (5) thickness of the abutment wall. This study culminated in a novel design for a vented abutment consisting of 8 vents located radially around the abutment neck‐margin plus a plastic insert to guide the cement during seating and provide retrievability to the abutment system.Venting of the dental abutment has been shown to decrease the risk of undetected residual dental cement post‐cement‐retained crown seating. This article will utilize a finite element analysis approach toward optimizing dental abutment designs for improved dental cement venting. Features investigated include (1) addition of vents, (2) diameter of vents, (3) location of vents, (4) addition of plastic screw insert, and (5) thickness of abutment wall. PMID:29744160
Rodriguez, Lucas C; Saba, Juliana N; Meyer, Clark A; Chung, Kwok-Hung; Wadhwani, Chandur; Rodrigues, Danieli C
2016-11-01
Recent literature indicates that the long-term success of dental implants is, in part, attributed to how dental crowns are attached to their associated implants. The commonly utilized method for crown attachment - cementation, has been criticized because of recent links between residual cement and peri-implant disease. Residual cement extrusion from crown-abutment margins post-crown seating is a growing concern. This study aimed at (1) identifying key abutment features, which would improve dental cement flow characteristics, and (2) understanding how these features would impact the mechanical stability of the abutment under functional loads. Computational fluid dynamic modeling was used to evaluate cement flow in novel abutment geometries. These models were then evaluated using 3D-printed surrogate models. Finite element analysis also provided an understanding of how the mechanical stability of these abutments was altered after key features were incorporated into the geometry. The findings demonstrated that the key features involved in improved venting of the abutment during crown seating were (1) addition of vents, (2) diameter of the vents, (3) location of the vents, (4) addition of a plastic screw insert, and (5) thickness of the abutment wall. This study culminated in a novel design for a vented abutment consisting of 8 vents located radially around the abutment neck-margin plus a plastic insert to guide the cement during seating and provide retrievability to the abutment system.Venting of the dental abutment has been shown to decrease the risk of undetected residual dental cement post-cement-retained crown seating. This article will utilize a finite element analysis approach toward optimizing dental abutment designs for improved dental cement venting. Features investigated include (1) addition of vents, (2) diameter of vents, (3) location of vents, (4) addition of plastic screw insert, and (5) thickness of abutment wall.
Zander, T.; Burra, N. K.; Bergmann, G.
2007-01-01
The orthobiom™ non-fusion scoliosis correction system consists of two longitudinal rods, polyaxial pedicle screws, mobile and fixed connectors and a cross-connector. The mobile connectors can move along and around the rod, thus allowing length adaptation during growth. The aim of this study was to determine the effects of different features of this novel implant on intervertebral rotations, to calculate the movement of the mobile connectors along the rods for different loading cases and to compare the results with those of a rigid implant construct. A finite element analysis was performed using six versions (M1–M6) of a three-dimensional, nonlinear model of a spine ranging from T3 to L2. The models were loaded with pure moments of 7.5 N m in the three main anatomical planes. First, the validated intact model (M1) was studied. Then, the orthobiom™ implant system was inserted, bridging the segments between T4 and L1 (M2). The effect of pedicle screws only in every second vertebrae was investigated (M3). For comparison, three connection variations of screws and rods were investigated: (1) an implant with rigid screws and mobile connectors (M4), (2) an implant with non-locking polyaxial screws and fixed connectors (M5) and (3) a completely rigid implant construct (M6). For flexion, extension and lateral bending, intervertebral rotation was reduced at all implant levels due to the implants. A rigid implant construct (M6) and an implant with non-locking polyaxial screws and fixed connectors (M5) led to the strongest reduction of intervertebral rotation. The orthobiom™ non-fusion implant system (M2, M3) allowed much more intervertebral rotation than a rigid implant (M6). Differences in intervertebral rotations were small when polyaxial screws were placed at every second level only (M3) instead of at every level (M2). For axial rotation, intervertebral rotation was strongly reduced by a rigid implant construct (M6) and by an implant with rigid screws and mobile connectors (M4). For rotation, an implant with non-locking polyaxial screws (M2, M3, M5) led to nearly the same intervertebral rotations as in an intact spine without an implant (M1). The predicted maximum translation of the mobile connectors along the rod was 4.2 mm for extension, 3.1 mm for lateral bending, 1.6 mm for flexion and 0.8 mm for axial rotation. The movement of the connectors was highest for those closest to the ends of the rods. With rigid screws, the maximum translation was significantly reduced. This study, conducted under a load-controlled loading protocol, showed that intervertebral rotation was reduced much less by the non-fusion orthobiom™ system than by a rigid implant. The mobile connectors moved considerably along the rod when the spine was bent. It can be expected that the connectors also move along the rod as the adolescent grows, possibly leaving the discs intact until the patient is fully grown. PMID:17712575
Röderer, Götz; Scola, Alexander; Schmölz, Werner; Gebhard, Florian; Windolf, Markus; Hofmann-Fliri, Ladina
2013-10-01
Proximal humerus fracture fixation can be difficult because of osteoporosis making it difficult to achieve stable implant anchorage in the weak bone stock even when using locking plates. This may cause implant failure requiring revision surgery. Cement augmentation has, in principle, been shown to improve stability. The aim of this study was to investigate whether augmentation of particular screws of a locking plate aimed at a region of low bone quality is effective in improving stability in a proximal humerus fracture model. Twelve paired human humerus specimens were included. Quantitative computed tomography was performed to determine bone mineral density (BMD). Local bone quality in the direction of the six proximal screws of a standard locking plate (PHILOS, Synthes) was assessed using mechanical means (DensiProbe™). A three-part fracture model with a metaphyseal defect was simulated and fixed with the plate. Within each pair of humeri the two screws aimed at the region of the lowest bone quality according to the DensiProbe™ were augmented in a randomised manner. For augmentation, 0.5 ml of bone cement was injected in a screw with multiple outlets at its tip under fluoroscopic control. A cyclic varus-bending test with increasing upper load magnitude was performed until failure of the screw-bone fixation. The augmented group withstood significantly more load cycles. The correlation of BMD with load cycles until failure and BMD with paired difference in load cycles to failure showed that augmentation could compensate for a low BMD. The results demonstrate that augmentation of screws in locked plating in a proximal humerus fracture model is effective in improving primary stability in a cyclic varus-bending test. The augmentation of two particular screws aimed at a region of low bone quality within the humeral head was almost as effective as four screws with twice the amount of bone cement. Screw augmentation combined with a knowledge of the local bone quality could be more effective in enhancing the primary stability of a proximal humerus locking plate because the effect of augmentation can be exploited more effectively limiting it to the degree required. Copyright © 2013 Elsevier Ltd. All rights reserved.
Distal radius osteotomy with volar locking plates based on computer simulation.
Miyake, Junichi; Murase, Tsuyoshi; Moritomo, Hisao; Sugamoto, Kazuomi; Yoshikawa, Hideki
2011-06-01
Corrective osteotomy using dorsal plates and structural bone graft usually has been used for treating symptomatic distal radius malunions. However, the procedure is technically demanding and requires an extensive dorsal approach. Residual deformity is a relatively frequent complication of this technique. We evaluated the clinical applicability of a three-dimensional osteotomy using computer-aided design and manufacturing techniques with volar locking plates for distal radius malunions. Ten patients with metaphyseal radius malunions were treated. Corrective osteotomy was simulated with the help of three-dimensional bone surface models created using CT data. We simulated the most appropriate screw holes in the deformed radius using computer-aided design data of a locking plate. During surgery, using a custom-made surgical template, we predrilled the screw holes as simulated. After osteotomy, plate fixation using predrilled screw holes enabled automatic reduction of the distal radial fragment. Autogenous iliac cancellous bone was grafted after plate fixation. The median volar tilt, radial inclination, and ulnar variance improved from -20°, 13°, and 6 mm, respectively, before surgery to 12°, 24°, and 1 mm, respectively, after surgery. The median wrist flexion improved from 33° before surgery to 60° after surgery. The median wrist extension was 70° before surgery and 65° after surgery. All patients experienced wrist pain before surgery, which disappeared or decreased after surgery. Surgeons can operate precisely and easily using this advanced technique. It is a new treatment option for malunion of distal radius fractures.
Iglesia-Puig, Miguel A
2008-01-01
The objective of this report is to present a device to achieve equal platform height in the vertical axis to allow the spherical abutments to work correctly in mandibular overdentures retained with 2 implants. The device is fabricated over plastic castable abutments, with a plate perpendicular to the implant platforms and located at the top of the platform height. Once implants are inserted, the device is screwed to an implant and allows evaluation of the height of the platforms.
Automatic Modeling and Simulation of Modular Robots
NASA Astrophysics Data System (ADS)
Jiang, C.; Wei, H.; Zhang, Y.
2018-03-01
The ability of reconfiguration makes modular robots have the ability of adaptable, low-cost, self-healing and fault-tolerant. It can also be applied to a variety of mission situations. In this manuscript, a robot platform which relied on the module library was designed, based on the screw theory and module theory. Then, the configuration design method of the modular robot was proposed. And the different configurations of modular robot system have been built, including industrial mechanical arms, the mobile platform, six-legged robot and 3D exoskeleton manipulator. Finally, the simulation and verification of one system among them have been made, using the analyses of screw kinematics and polynomial planning. The results of experiments demonstrate the feasibility and superiority of this modular system.
NASA Astrophysics Data System (ADS)
Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.
2011-01-01
We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.
Strength of fixation constructs for basilar osteotomies of the first metatarsal.
Lian, G J; Markolf, K; Cracchiolo, A
1992-01-01
Twenty-four pairs of fresh-frozen human feet had a proximal osteotomy of the first metatarsal that was fixed using either screws, staples, or K wires. Each metatarsal was excised and the specimen was loaded to failure in a cantilever beam configuration by applying a superiorly directed force to the metatarsal head using an MTS servohydraulic test machine. Specimens with a crescentic osteotomy that were fixed using a single screw demonstrated higher mean failure moments than pairs that were fixed with four staples or two K wires; staples were the weakest construct. All specimens fixed with staples failed by bending of the staples without bony fracture; all K wire constructs but one failed by wire bending. Chevron and crescentic osteotomies fixed with a single screw demonstrated equal bending strengths; the bending strength of an oblique osteotomy fixed with two screws was 82% greater than for a crescentic osteotomy fixed with a single screw. Basilar osteotomies of the first metatarsal are useful in correcting metatarsus primus varus often associated with hallux valgus pathology. Fixation strength is an important consideration since weightbearing forces on the head of the first metatarsal acting at a distance from the osteotomy site subject the construct to a dorsiflexion bending moment, as simulated in our tests. Our results show that screw fixation is the strongest method for stabilizing a basilar osteotomy. Based upon the relatively low bending strengths of the staple and K wire constructs, we would not recommend these forms of fixation.(ABSTRACT TRUNCATED AT 250 WORDS)
Chowdhary, Ramesh; Jimbo, Ryo; Thomsen, Christian; Carlsson, Lennart; Wennerberg, Ann
2013-03-01
To investigate the combined effect of macro and pitch shortened threads on primary and secondary stability during healing, but before dynamic loading. Two sets of turned implants with different macro geometry were prepared. The test group possessed pitch shortened threads in between the large threads and the control group did not have thread alterations. The two implant groups were placed in both femur and tibiae of 10 lop-eared rabbits, and at the time of implant insertion, insertion torques were recorded. After 4 weeks, all implants were subjected to removal torque tests. The insertion torque values for the control and test groups for the tibia were 15.7 and 20.6 Ncm, respectively, and for the femur, 11.8, and 12.8 Ncm respectively. The removal torque values for the control and test groups in the tibia were 7.9 and 9.1 Ncm, respectively, and for the femur, 7.9 and 7.7 Ncm respectively. There was no statistically significant difference between the control and test groups. Under limited dynamic load, the addition of pitch shortened threads did not significantly improve either the primary or the secondary stability of the implants in bone. © 2011 John Wiley & Sons A/S.
NASA Technical Reports Server (NTRS)
Chandler, Faith T. (Inventor); Arnett, Michael C. (Inventor); Garton, Harry L. (Inventor); Valentino, William D. (Inventor)
2003-01-01
A fastener starter tool includes a number of spring retention fingers for retaining a small part, or combination of parts. The tool has an inner housing, which holds the spring retention fingers, a hand grip, and an outer housing configured to slide over the inner housing and the spring retention fingers toward and away from the hand grip, exposing and opening, or respectively, covering and closing, the spring retention fingers. By sliding the outer housing toward (away from) the hand grip, a part can be released from (retained by) the tool. The tool may include replaceable inserts, for retaining parts, such as screws, and configured to limit the torque applied to the part, to prevent cross threading. The inner housing has means to transfer torque from the hand grip to the insert. The tool may include replaceable bits, the inner housing having means for transferring torque to the replaceable bit.
PIXE microbeam analysis of the metallic debris release around endosseous implants
NASA Astrophysics Data System (ADS)
Buso, G. P.; Galassini, S.; Moschini, G.; Passi, P.; Zadro, A.; Uzunov, N. M.; Doyle, B. L.; Rossi, P.; Provencio, P.
2005-10-01
The mechanical friction that occurs during the surgical insertion of endosseous implants, both in dentistry and orthopaedics, may cause the detachment of metal debris which are dislodged into the peri-implant tissues and can lead to adverse clinical effects. This phenomenon more likely happens with coated or roughened implants that are the most widely employed. In the present study were studied dental implants screws made of commercially pure titanium and coated using titanium plasma-spray (TPS) technique. The implants were inserted in the tibia of rabbits, and removed "en bloc" with the surrounding bone after one month. After proper processing and mounting on plastic holders, samples from bones were analysed by EDXRF setup at of National Laboratories of Legnaro, INFN, Italy, and consequently at 3 MeV proton microbeam setup at Sandia National Laboratories. Elemental maps were drawn, showing some occasional presence of metal particles in the peri-implant bone.
Success Rate of Microimplants in a University Orthodontic Clinic
Sharma, P.; Valiathan, A.; Sivakumar, A.
2011-01-01
Introduction. The purpose of this study was to examine the success rate and find factors affecting the clinical success of microimplants used as orthodontic anchorage. Methods. Seventy-three consecutive patients (25 male, 48 female; mean age, 22.45 years) with a total of 139 screw implants of 2 types were examined. Success rate was determined according to 18 clinical variables. Results. The overall success rate was 87.8%. The clinical variables of microimplant factors (type), patient factors (sex, skeletal and dental relationships, overbite, jaw involved, side involved and site involved), and treatment factors (type of insertion, time of loading, purpose of microimplant insertion, mode of loading, type of anchorage used, direction of forces applied) did not show any statistical difference in success rates. Mandibular angle, vertical position of implant placement, oral hygiene status, and inflammation showed significant difference in success rates. Conclusions. Proper case selection and following the recommended protocol are extremely essential to minimise failures. PMID:22084789
The effect of in situ augmentation on implant anchorage in proximal humeral head fractures.
Unger, Stefan; Erhart, Stefanie; Kralinger, Franz; Blauth, Michael; Schmoelz, Werner
2012-10-01
Fracture fixation in patients suffering from osteoporosis is difficult as sufficient implant anchorage is not always possible. One method to enhance implant anchorage is implant/screw augmentation with PMMA-cement. The present study investigated the feasibility of implant augmentation with PMMA-cement to enhance implant anchorage in the proximal humerus. A simulated three part humeral head fracture was stabilised with an angular stable plating system in 12 pairs of humeri using six head screws. In the augmentation group the proximal four screws were treated with four cannulated screws, each augmented with 0.5ml of PMMA-cement, whereas the contra lateral side served as a non-augmented control. Specimens were loaded in varus-bending or axial-rotation using a cyclic loading protocol with increasing load magnitude until failure of the osteosynthesis occurred. Augmented specimens showed a significant higher number of load cycles until failure than non-augment specimens (varus-bending: 8516 (SD 951.6) vs. 5583 (SD 2273.6), P=0.014; axial-rotation: 3316 (SD 348.8) vs. 2050 (SD 656.5), P=0.003). Non-augmented specimens showed a positive correlation of load cycles until failure and measured bone mineral density (varus-bending: r=0.893, P=0.016; axial-rotation: r=0.753, P=0.084), whereas no correlation was present in augmented specimens (varus-bending: r=0,258, P=0.621; axial-rotation r=0.127, P=0.810). These findings suggest that augmentation of cannulated screws is a feasible method to enhance implant/screw anchorage in the humeral head. The improvement of screw purchase is increasing with decreasing bone mineral density. Copyright © 2012 Elsevier Ltd. All rights reserved.
Micromotion and stress distribution of immediate loaded implants: a finite element analysis.
Fazel, A; Aalai, S; Rismanchian, M; Sadr-Eshkevari, P
2009-12-01
Primary stability and micromotion of the implant fixture is mostly influenced by its macrodesign. To assess and compare the peri-implant stress distribution and micromotion of two types of immediate loading implants, immediate loaded screw (ILS) Nisastan and Xive (DENTSPLY/Friadent, Monnheim, Germany), and to determine the best macrodesign of these two implants by finite element analysis. In this experimental study, the accurate pictures of two fixtures (ILS: height = 13, diameter = 4 mm and Xive: height = 13, diameter = 3.8 mm) were taken by a new digital camera (Nikon Coolpix 5700 [Nikon, Japan], resolution = 5.24 megapixel, lens = 8x optical, 4x digital zoom). Following accurate measurements, the three-dimensional finite element computer model was simulated and inserted in simulated mandibular bone (D(2)) in SolidWorks 2003 (SolidWork Corp., MA, USA) and Ansys 7.1 (Ansys, Inc., Canonsburg, PA, USA). After loading (500 N, 75 degrees above horizon), the displacement was displayed and von Mises stress was recorded. It was found that the primary stability of ILS was greater (152 microm) than Xive (284 microm). ILS exhibited more favorable stress distribution. Maximum stress concentration found in periapical bone around Xive ( approximately 30 MPa) was lesser than Nisastan ( approximately 37 MPa). Macrodesign of ILS leads to better primary stability and stress distribution. Maximum stress around Xive was less.
Sundar, Swetha J; Healy, Andrew T; Kshettry, Varun R; Mroz, Thomas E; Schlenk, Richard; Benzel, Edward C
2016-05-01
OBJECTIVE Pedicle and lateral mass screw placement is technically demanding due to complex 3D spinal anatomy that is not easily visualized. Neurosurgical and orthopedic surgery residents must be properly trained in such procedures, which can be associated with significant complications and associated morbidity. Current training in pedicle and lateral mass screw placement involves didactic teaching and supervised placement in the operating room. The objective of this study was to assess whether teaching residents to place pedicle and lateral mass screws using navigation software, combined with practice using cadaveric specimens and Sawbones models, would improve screw placement accuracy. METHODS This was a single-blinded, prospective, randomized pilot study with 8 junior neurosurgical residents and 2 senior medical students with prior neurosurgery exposure. Both the study group and the level of training-matched control group (each group with 4 level of training-matched residents and 1 senior medical student) were exposed to a standardized didactic education regarding spinal anatomy and screw placement techniques. The study group was exposed to an additional pilot program that included a training session using navigation software combined with cadaveric specimens and accessibility to Sawbones models. RESULTS A statistically significant reduction in overall surgical error was observed in the study group compared with the control group (p = 0.04). Analysis by spinal region demonstrated a significant reduction in surgical error in the thoracic and lumbar regions in the study group compared with controls (p = 0.02 and p = 0.04, respectively). The study group also was observed to place screws more optimally in the cervical, thoracic, and lumbar regions (p = 0.02, p = 0.04, and p = 0.04, respectively). CONCLUSIONS Surgical resident education in pedicle and lateral mass screw placement is a priority for training programs. This study demonstrated that compared with a didactic-only training model, using navigation simulation with cadavers and Sawbones models significantly reduced the number of screw placement errors in a laboratory setting.
Hofmann-Fliri, Ladina; Nicolino, Tomas I; Barla, Jorge; Gueorguiev, Boyko; Richards, R Geoff; Blauth, Michael; Windolf, Markus
2016-02-01
Femoral neck fractures in the elderly are a common problem in orthopedics. Augmentation of screw fixation with bone cement can provide better stability of implants and lower the risk of secondary displacement. This study aimed to investigate whether cement augmentation of three cannulated screws in non-displaced femoral neck fractures could increase implant fixation. A femoral neck fracture was simulated in six paired human cadaveric femora and stabilized with three 7.3 mm cannulated screws. Pairs were divided into two groups: conventional instrumentation versus additional cement augmentation of screw tips with 2 ml TraumacemV+ each. Biomechanical testing was performed by applying cyclic axial load until failure. Failure cycles, axial head displacement, screw angle changes, telescoping and screw cut-out were evaluated. Failure (15 mm actuator displacement) occurred in the augmented group at 12,500 cycles (± 2,480) compared to 15,625 cycles (± 4,215) in the non-augmented group (p = 0.041). When comparing 3 mm vertical displacement of the head no significant difference (p = 0.72) was detected between the survival curves of the two groups. At 8,500 load-cycles (early onset failure) the augmented group demonstrated a change in screw angle of 2.85° (± 0.84) compared to 1.15° (± 0.93) in the non-augmented group (p = 0.013). The results showed no biomechanical advantage with respect to secondary displacement following augmentation of three cannulated screws in a non-displaced femoral neck fracture. Consequently, the indication for cement augmentation to enhance implant anchorage in osteoporotic bone has to be considered carefully taking into account fracture type, implant selection and biomechanical surrounding. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Use of simulation-based education to reduce catheter-related bloodstream infections.
Barsuk, Jeffrey H; Cohen, Elaine R; Feinglass, Joe; McGaghie, William C; Wayne, Diane B
2009-08-10
Simulation-based education improves procedural competence in central venous catheter (CVC) insertion. The effect of simulation-based education in CVC insertion on the incidence of catheter-related bloodstream infection (CRBSI) is unknown. The aim of this study was to determine if simulation-based training in CVC insertion reduces CRBSI. This was an observational education cohort study set in an adult intensive care unit (ICU) in an urban teaching hospital. Ninety-two internal medicine and emergency medicine residents completed a simulation-based mastery learning program in CVC insertion skills. Rates of CRBSI from CVCs inserted by residents in the ICU before and after the simulation-based educational intervention were compared over a 32-month period. There were fewer CRBSIs after the simulator-trained residents entered the intervention ICU (0.50 infections per 1000 catheter-days) compared with both the same unit prior to the intervention (3.20 per 1000 catheter-days) (P = .001) and with another ICU in the same hospital throughout the study period (5.03 per 1000 catheter-days) (P = .001). An educational intervention in CVC insertion significantly improved patient outcomes. Simulation-based education is a valuable adjunct in residency education.
A new adhesive technique for internal fixation in midfacial surgery
Endres, Kira; Marx, Rudolf; Tinschert, Joachim; Wirtz, Dieter Christian; Stoll, Christian; Riediger, Dieter; Smeets, Ralf
2008-01-01
Background The current surgical therapy of midfacial fractures involves internal fixation in which bone fragments are fixed in their anatomical positions with osteosynthesis plates and corresponding screws until bone healing is complete. This often causes new fractures to fragile bones while drilling pilot holes or trying to insert screws. The adhesive fixation of osteosynthesis plates using PMMA bone cement could offer a viable alternative for fixing the plates without screws. In order to achieve the adhesive bonding of bone cement to cortical bone in the viscerocranium, an amphiphilic bone bonding agent was created, analogous to the dentin bonding agents currently on the market. Methods The adhesive bonding strengths were measured using tension tests. For this, metal plates with 2.0 mm diameter screw holes were cemented with PMMA bone cement to cortical bovine bone samples from the femur diaphysis. The bone was conditioned with an amphiphilic bone bonding agent prior to cementing. The samples were stored for 1 to 42 days at 37 degrees C, either moist or completely submerged in an isotonic NaCl-solution, and then subjected to the tension tests. Results Without the bone bonding agent, the bonding strength was close to zero (0.2 MPa). Primary stability with bone bonding agent is considered to be at ca. 8 MPa. Moist storage over 42 days resulted in decreased adhesion forces of ca. 6 MPa. Wet storage resulted in relatively constant bonding strengths of ca. 8 MPa. Conclusion A new amphiphilic bone bonding agent was developed, which builds an optimizied interlayer between the hydrophilic bone surface and the hydrophobic PMMA bone cement and thus leads to adhesive bonding between them. Our in vitro investigations demonstrated the adhesive bonding of PMMA bone cement to cortical bone, which was also stable against hydrolysis. The newly developed adhesive fixing technique could be applied clinically when the fixation of osteosynthesis plates with screws is impossible. With the detected adhesion forces of ca. 6 to 8 MPa, it is assumed that the adhesive fixation system is able to secure bone fragments from the non-load bearing midfacial regions in their orthotopic positions until fracture consolidation is complete. PMID:18489785
NISHIOKA, Renato Sussumu; NISHIOKA, Lea Nogueira Braulino de Melo; ABREU, Celina Wanderley; de VASCONCELLOS, Luis Gustavo Oliveira; BALDUCCI, Ivan
2010-01-01
Objective Using strain gauge (SG) analysis, the aim of this in vitro study was quantify the strain development during the fixation of three-unit screw implant-supported fixed partial dentures, varying the types of implant-abutment joints and the type of prosthetic coping. The hypotheses were that the type of hexagonal connection would generate different microstrains and the type of copings would produce similar microstrains after prosthetic screws had been tightened onto microunit abutments. Materials and methods Three dental implants with external (EH) and internal (IH) hexagonal configurations were inserted into two polyurethane blocks. Microunit abutments were screwed onto their respective implant groups, applying a torque of 20 Ncm. Machined Co-Cr copings (M) and plastic prosthetic copings (P) were screwed onto the abutments, which received standard wax patterns. The wax patterns were cast in Co-Cr alloy (n=5), forming four groups: G1) EH/M; G2) EH/P; G3) IH/M and G4) IH/P. Four SGs were bonded onto the surface of the block tangentially to the implants, SG 1 mesially to implant 1, SG 2 and SG 3 mesially and distally to implant 2, respectively, and SG 4 distally to implant 3. The superstructure’s occlusal screws were tightened onto microunit abutments with 10 Ncm torque using a manual torque driver. The magnitude of microstrain on each SG was recorded in units of microstrain (µε). The data were analyzed statistically by ANOVA and Tukey’s test (p<0.05). Results Microstrain values of each group were: G1= 338.1±223.0 µε; G2= 363.9±190.9 µε; G3= 415.1±53.5 µε; G4= 363.9±190.9 µε. No statistically significant difference was found between EH and IH, regardless of the type of copings (p>0.05). The hypotheses were partially accepted. Conclusions It was concluded that the type of hexagonal connection and coping presented similar mechanical behavior under tightening conditions. PMID:20856998
Bozkaya, Dinçer; Müftü, Sinan
2004-08-01
A tapered interference fit provides a mechanically reliable retention mechanism for the implant-abutment interface in a dental implant. Understanding the mechanical properties of the tapered interface with or without a screw at the bottom has been the subject of a considerable amount of studies involving experiments and finite element (FE) analysis. In this paper, approximate closed-form formulas are developed to analyze the mechanics of a tapered interference fit. In particular, the insertion force, the efficiency, defined as the ratio of the pull-out force to insertion force, and the critical insertion depth, which causes the onset of plastic deformation, are analyzed. It is shown that the insertion force is a function of the taper angle, the contact length, the inner and outer radii of the implant, the static and the kinetic coefficients of friction, and the elastic modulii of the implant/abutment materials. The efficiency of the tapered interference fit, which is defined as the ratio of the pull-out force to insertion force, is found to be greater than one, for taper angles that are less than 6 deg when the friction coefficient is 0.3. A safe range of insertion forces has been shown to exist. The lower end of this range depends on the maximum pull-out force that may occur due to occlusion in the multiple tooth restorations and the efficiency of the system; and the upper end of this range depends on the plastic deformation of the abutment and the implant due to interference fit. It has been shown that using a small taper angle and a long contact length widens the safe range of insertion forces.
Urethral Foreign Bodies: Clinical Presentation and Management.
Palmer, Cristina J; Houlihan, Matthew; Psutka, Sarah P; Ellis, K Alexandria; Vidal, Patricia; Hollowell, Courtney M P
2016-11-01
To review a single institution's 15-year experience with urethral foreign bodies, including evaluation, clinical findings, and treatment. In total, 27 patients comprising 35 episodes of inserted urethral foreign bodies were reviewed at Cook County Hospital between 2000 and 2015. Retrospective chart review was performed to describe the clinical presentation, rationale for insertion, management, recidivism, and sequelae. Median patient age was 26 (range 12-60). Twenty-six patients (97 %) were male, 1 was female (3%). Items inserted included pieces of plastic forks, spoons, metal screws and aluminum, pieces of cardboard or paper, staples, writing utensils such as pens and pencils, as well as coaxial cable and spray foam sealant. Reported reasons for insertion were self-stimulation, erectile enhancement, and attention seeking. Presenting symptoms included dysuria, gross hematuria, urinary retention, urinary tract infection, and penile discharge. The most common technique for removal was manual extraction with extrinsic pressure (n = 19, 54%). Other methods include endoscopic retrieval (n = 8, 23%), open cystotomy (n = 1, 3%), and voiding to expel the foreign body (n = 7, 20%). Postremoval complications included urinary tract infection (n = 7), sepsis (n = 4), urethral false passage (n = 5), laceration (n = 5), and stricture (n = 1). We present the largest single-institutional series of urethral foreign bodies to date. Urethral foreign body insertion is a relatively rare occurrence and, commonly, is a recurrent behavior. Urethral trauma related to foreign body insertion is associated with significant risk of infection and urethral injury with long-term sequelae. Copyright © 2016 Elsevier Inc. All rights reserved.
Dea, Nicolas; Fisher, Charles G; Batke, Juliet; Strelzow, Jason; Mendelsohn, Daniel; Paquette, Scott J; Kwon, Brian K; Boyd, Michael D; Dvorak, Marcel F S; Street, John T
2016-01-01
Pedicle screws are routinely used in contemporary spinal surgery. Screw misplacement may be asymptomatic but is also correlated with potential adverse events. Computer-assisted surgery (CAS) has been associated with improved screw placement accuracy rates. However, this technology has substantial acquisition and maintenance costs. Despite its increasing usage, no rigorous full economic evaluation comparing this technology to current standard of care has been reported. Medical costs are exploding in an unsustainable way. Health economic theory requires that medical equipment costs be compared with expected benefits. To answer this question for computer-assisted spinal surgery, we present an economic evaluation looking specifically at symptomatic misplaced screws leading to reoperation secondary to neurologic deficits or biomechanical concerns. The study design was an observational case-control study from prospectively collected data of consecutive patients treated with the aid of CAS (treatment group) compared with a matched historical cohort of patients treated with conventional fluoroscopy (control group). The patient sample consisted of consecutive patients treated surgically at a quaternary academic center. The primary effectiveness measure studied was the number of reoperations for misplaced screws within 1 year of the index surgery. Secondary outcome measures included were total adverse event rate and postoperative computed tomography usage for pedicle screw examination. A patient-level data cost-effectiveness analysis from the hospital perspective was conducted to determine the value of a navigation system coupled with intraoperative 3-D imaging (O-arm Imaging and the StealthStation S7 Navigation Systems, Medtronic, Louisville, CO, USA) in adult spinal surgery. The capital costs for both alternatives were reported as equivalent annual costs based on the annuitization of capital expenditures method using a 3% discount rate and a 7-year amortization period. Annual maintenance costs were also added. Finally, reoperation costs using a micro-costing approach were calculated for both groups. An incremental cost-effectiveness ratio was calculated and reported as cost per reoperation avoided. Based on reoperation costs in Canada and in the United States, a minimal caseload was calculated for the more expensive alternative to be cost saving. Sensitivity analyses were also conducted. A total of 5,132 pedicle screws were inserted in 502 patients during the study period: 2,682 screws in 253 patients in the treatment group and 2,450 screws in 249 patients in the control group. Overall accuracy rates were 95.2% for the treatment group and 86.9% for the control group. Within 1 year post treatment, two patients (0.8%) required a revision surgery in the treatment group compared with 15 patients (6%) in the control group. An incremental cost-effectiveness ratio of $15,961 per reoperation avoided was calculated for the CAS group. Based on a reoperation cost of $12,618, this new technology becomes cost saving for centers performing more than 254 instrumented spinal procedures per year. Computer-assisted spinal surgery has the potential to reduce reoperation rates and thus to have serious cost-effectiveness and policy implications. High acquisition and maintenance costs of this technology can be offset by equally high reoperation costs. Our cost-effectiveness analysis showed that for high-volume centers with a similar case complexity to the studied population, this technology is economically justified. Copyright © 2015 Elsevier Inc. All rights reserved.
2008-07-01
Molecular Dynamics Simulations of Folding and Insertion of the Ebola Virus Fusion Peptide into a Membrane Bilayer Mark A. Olson1, In...presents replica-exchange molecular dynamics simulations of the folding and insertion of a 16- residue Ebola virus fusion peptide into a membrane...separate calculated structures into conformational basins. 2.1 Simulation models Molecular dynamics simulations were performed using the all-atom
Chen, Ling; Xu, Leilei; Qiu, Yong; Qiao, Jun; Wang, Fei; Liu, Zhen; Shi, Benglong; Qian, Bang-ping; Zhu, Zezhang
2015-07-01
To investigate the aorta movement following correction surgery for patients with thoracolumbar/lumbar scoliosis and to determine the subsequent risk of the aorta impingement for pedicle screw (PS) misplacement. Thirty-six AIS patients with a main thoracolumbar or lumbar curve were included in this study. According to the direction of the main curve, the patients were divided into Group R and Group L, with Group R comprising 16 patients with a right-sided curve and Group L comprising 20 patients with a left-sided curve. All patients underwent CT scans of the lower thoracic and lumbar spine before and after surgery. To identify the relative positions of the aorta to vertebral body, several parameters were measured from the CT images of the middle transverse planes of vertebrae from T11 to L4, including aorta-vertebra angle (α), vertebral rotation angle (β), left safety distance (LSD) and right safety distance (RSD). The risk of the aorta impingement from T11 to L4 was calculated. An intragroup comparison regarding the position of the aorta relative to the vertebral body before and after correction surgery was performed accordingly. After surgery, the aorta moved toward the vertebral body among all levels in both groups. Compared with that in Group L, the aorta in Group R was significantly closer to the entry point at all levels, especially at T11. Before surgery, the aorta in Group R was at a high risk of impingement from left PS placement regardless of the diameters of the simulated screws. While in Group L, the risk of aorta impingement was mainly caused by the right placement of 45 mm PS. After surgery, both groups had an increased risk of aorta impingement from PS insertion, especially at T11. The risk of aorta impingement from PS placement was significantly higher in Group R than in Group L. The risk of aorta impingement increased as the aorta shifted leftward after correction surgery, especially in right-sided Lenke 5C curve. Thus, preoperative risk evaluation could be insufficient for clinical practice due to aorta movement following correction surgery. Surgeons should be aware of the potential risk of aorta impingement, especially when placing PS in patients with right-sided curves.
Bartanusz, Viktor; Harris, Jonathan; Moldavsky, Mark; Cai, Yiwei; Bucklen, Brandon
2015-11-01
An in vitro, cadaveric biomechanical study. The aim of the present study was to compare single-segment posterior instrumentation and fracture-level screws with single/multilevel posterior fixation and corpectomy in a simulated, unstable burst fracture model. The optimal extent of instrumentation for surgical cases of non-neoplastic vertebral body pathologies remains uncertain. Although several clinical studies demonstrate advantages of short segment instrumentation with index-level screws over more extensive corpectomy and anterior-posterior techniques, a comprehensive biomechanical comparison of these techniques is currently lacking. Six bovine spines (T11-L5) were tested in flexion, extension, lateral bending (LB), and axial rotation (AR) following simulated burst fracture at L2. Posterior instrumentation included 1 level above/below (1LF) and 2 levels above/below fracture level (2LF), intermediate or index screws at fracture level (FF), and cross-connectors above/below fracture level (CC). Anterior corpectomy devices included expandable corpectomy spacers with/without integrated screws, ACDi and ACD, respectively FORTIFY-Integrated/FORTIFY; Globus Medical, Inc., PA. Constructs were tested in the following order: (1) Intact; (2) 1LF; (3) 1LF and CC; (4) 1LF and FF; (5) 1LF, CC, and FF; (6) 2LF; (7) 2LF and CC; (8) 2LF and FF; (9) 2LF, CC, and FF; (10) 2LF and ACD; (11) 2LF, ACD, and CC; (12) 1LF and ACDi; (13) 1LF, ACDi, and CC. During flexion, all constructs except 1LF reduced motion relative to intact (P ≤ 0.05). Anterior support was most stable, but no differences were found between constructs (P ≥ 0.05). Every construct reduced motion in extension, though no differences were found between constructs and intact (P ≥ 0.05). During LB, all constructs reduced motion relative to intact (P ≤ 0.05); 2LF constructs further reduced motion (P ≤ 0.05). No construct returned AR motion to intact, with significant increases in 1LF and ACDi, 2LF and ACD, and 2LF, ACD, and CC (P ≤ 0.05). Cross-connectors and fracture screws reinforced each other in posterior-only constructs, providing maximum stability (P ≥ 0.05). This biomechanical comparison study found no significant superiority of combined anterior-posterior constructs over short segment fracture screw fixation, only multilevel posterior instrumentation with and without anterior support, providing increased stability in LB. Biomechanical equivalency suggests that short segment fracture screw intervention may provide appropriate stabilization for non-neoplastic pathologies involving the anterior and middle vertebral columns. 2.
A simple customized surgical guide for orthodontic miniplates with tube.
Paek, Janghyun; Su, Ming-Jeaun; Kwon, Soon-Yong; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald
2012-09-01
This article reports the use of a customized surgical guide for simple and precise C-tube plate placement with minimized incision. Patients who were planning to have orthodontic miniplate treatment because of narrow interradicular space were recruited for this study. A combined silicone and stainless steel wire surgical guide for the C-tube was fabricated on the cast model. The taller wire of the positioning guide is used to accurately start the incision. The incision guide-wire position is verified by placing the miniplate on the coronal horizontal wire to confirm that the incision will coordinate with the screw holes. Because the miniplate is firmly held in place, there is no risk of the miniplate anchoring screws (diameter, 1.5 mm; length, 4 mm) sliding on the bone surface during placement with a manual hand driver. The surgical guide was placed on the clinical site, and it allowed precise placement of the miniplate with minimum incision and preventing from slippage or path-of-insertion angulation errors that might interfere with accurate placement. Customized surgical guide enables precise planning for miniplate positions in anatomically complex sites.
Computer-aided design and manufacture of hyrax devices: Can we really go digital?
Graf, Simon; Cornelis, Marie A; Hauber Gameiro, Gustavo; Cattaneo, Paolo M
2017-12-01
The aim of this pilot study was to illustrate the feasibility of a new digital procedure to fabricate metallic orthodontic appliances. Hyrax appliances for rapid palatal expansion were produced for 3 patients using a CAD/CAM procedure without physical impressions or printed models. The work flow consisted of intraoral scanning, digital design with incorporation of a scanned prefabricated expansion screw, direct 3-dimensional metal printing via laser melting, welding of an expansion screw, insertion, and finally activation in the patients' mouths. Finite element analyses of the actual hyrax appliances were performed to ensure that the printable material used in combination with the chosen design would withstand the stress generated during activation. The results of these analyses were positive. The clinical results showed that this procedure is an efficient and viable digital way for constructing metallic orthodontic appliances. The flexibility of the digital appliance design, together with the biocompatibility and strength of the chosen material, offers a huge potential for more advanced appliance design. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Repair of insertional achilles tendinosis with a bone-quadriceps tendon graft.
Philippot, Rémi; Wegrzyn, Julien; Grosclaude, Sophie; Besse, Jean Luc
2010-09-01
While conservative treatment may be successful in most cases, partial rupture at the calcaneal insertion point is a significant concern with insertional Achilles tendinopathy. We report on the outcomes of a surgical technique for Achilles tendon augmentation using a bone-tendon graft harvested from the knee extensor system. Our retrospective case series includes 25 surgical procedures performed in 24 patients, 19 males and five females, with a mean age of 47 (range, 30 to 59) years, 18 of whom were athletes. The mean followup period was 52 (range, 12 to 156) months. All patients underwent MRI examination prior to surgery which showed partial Achilles tendon rupture. The Achilles tendon was debrided through a posterolateral approach. The bone-quadriceps tendon graft was harvested, then the bone plug of the graft was inserted into a blind tunnel drilled into the calcaneus and fixed with an interference screw. The fibers of the quadriceps tendon were sutured to the residual part of the Achilles tendon with the foot at an angle of 90 degrees. Patients were able to resume their sporting activity after an average of 6.7 months. At last followup examination, physical activity was scored 5.2 on the 10-point Tegner Scale; the mean AOFAS score was 98.4. MRI examination showed good graft integration 1 year postoperatively. The bone-quadriceps tendon grafting technique was a good alternative for the insertional Achilles lesions with partial detachment which we felt required augmentation.
Hoffmann, Michael; Schröder, Malte; Lehmann, Wolfgang; Kammal, Michael; Rueger, Johannes Maria; Herrman Ruecker, Andreas
2012-07-01
Distal locking marks one challenging step during intramedullary nailing that can lead to an increased irradiation and prolonged operation times. The aim of this study was to evaluate the reliability and efficacy of an X-ray-radiation-free real-time navigation system for distal locking procedures. A prospective randomized cadaver study with 50 standard free-hand fluoroscopic-guided and 50 electromagnetic-guided distal locking procedures was performed. All procedures were timed using a stopwatch. Intraoperative fluoroscopy exposure time and absorbed radiation dose (mGy) readings were documented. All tibial nails were locked with two mediolateral and one anteroposterior screw. Successful distal locking was accomplished once correct placement of all three screws was confirmed. Successful distal locking was achieved in 98 cases. No complications were encountered using the electromagnetic navigation system. Eight complications arose during free-hand fluoroscopic distal locking. Undetected secondary drill slippage on the ipsilateral cortex accounted for most problems followed by undetected intradrilling misdirection causing a fissural fracture of the contralateral cortex while screw insertion in one case. Compared with the free-hand fluoroscopic technique, electromagnetically navigated distal locking provides a median time benefit of 244 seconds without using ionizing radiation. Compared with the standard free-hand fluoroscopic technique, the electromagnetic guidance system used in this study showed high reliability and was associated with less complications, took significantly less time, and used no radiation exposure for distal locking procedures. Therapeutic study, level II.
Elsayed, S A; Mohamed, F I; Khalifa, G A
2015-10-01
A retrospective study was conducted to compare the clinical outcomes of three different types of hardware that are used in mandibular angle fracture fixation. Thirty patients were selected from the hospital database. The patients were categorized into the following groups: group A, in which a single 2.0-mm locking miniplate was used; group B, in which a single rigid 2.3-mm plate was used; and group C, in which a single lag screw was inserted. All patients were followed for 6 months. With regard to intraoperative variables, significant differences were found among the groups in the duration of surgery and cost. Group C had the shortest surgical time, followed by group A and then group B. Two patients, one in group A and one in group B, suffered an occlusal discrepancy after surgery. Of the group A patients, two exhibited wound dehiscence and one had an infection. One patient in group B had an exposed plate. Sensory nerve involvement was noted in three group C patients and one group B patient. The lag screw was associated with the fewest complications and exhibited all of the advantages of plating systems in the treatment of angle fracture. The lag screw involved the least hardware and a short operating time, however the differences were not significant. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.