Science.gov

Sample records for scroll pumps fabricated

  1. Miniature Scroll Pumps Fabricated by LIGA

    NASA Technical Reports Server (NTRS)

    Wiberg, Dean; Shcheglov, Kirill; White, Victor; Bae, Sam

    2009-01-01

    Miniature scroll pumps have been proposed as roughing pumps (low - vacuum pumps) for miniature scientific instruments (e.g., portable mass spectrometers and gas analyzers) that depend on vacuum. The larger scroll pumps used as roughing pumps in some older vacuum systems are fabricated by conventional machining. Typically, such an older scroll pump includes (1) an electric motor with an eccentric shaft to generate orbital motion of a scroll and (2) conventional bearings to restrict the orbital motion to a circle. The proposed miniature scroll pumps would differ from the prior, larger ones in both design and fabrication. A miniature scroll pump would include two scrolls: one mounted on a stationary baseplate and one on a flexure stage (see figure). An electromagnetic actuator in the form of two pairs of voice coils in a push-pull configuration would make the flexure stage move in the desired circular orbit. The capacitance between the scrolls would be monitored to provide position (gap) feedback to a control system that would adjust the drive signals applied to the voice coils to maintain the circular orbit as needed for precise sealing of the scrolls. To minimize power consumption and maximize precision of control, the flexure stage would be driven at the frequency of its mechanical resonance. The miniaturization of these pumps would entail both operational and manufacturing tolerances of <1 m. Such tight tolerances cannot be achieved easily by conventional machining of high-aspect-ratio structures like those of scroll-pump components. In addition, the vibrations of conventional motors and ball bearings exceed these tight tolerances by an order of magnitude. Therefore, the proposed pumps would be fabricated by the microfabrication method known by the German acronym LIGA ( lithographie, galvanoformung, abformung, which means lithography, electroforming, molding) because LIGA has been shown to be capable of providing the required tolerances at large aspect ratios.

  2. Scroll Compressor Oil Pump Analysis

    NASA Astrophysics Data System (ADS)

    Branch, S.

    2015-08-01

    Scroll compressors utilize three journal bearings to absorb gas, friction and inertial loads exerted on the crankshaft. To function properly, these bearings must be lubricated with a certain amount of oil. The focus of this paper will be to discuss how computational fluid dynamics can be used to predict oil flow out of a single-stage oil pump. The effects of speed and lubricant viscosity on pump output will also be presented. The comparisons will look at mass flow rates, differences in pressure, and torque at various speeds and dynamic viscosities. The computational fluid dynamic analysis results will be compared with actual lab testing where a crankshaft bench tester was built.

  3. Fabrication of scrolled magnetic thin film patterns

    NASA Astrophysics Data System (ADS)

    Min, Seonggi; Lim, Jin-Hee; Gaffney, John; Kinttle, Kristofer; Wiley, John B.; Malkinski, Leszek

    2012-04-01

    Magnetic film scrolls have been fabricated via a deterministic release of rectangular patterns of bimetallic Ti (20 nm)/Ni (20 , 30 or 40 nm) films from a sacrificial Cu underlayer. The diameter of the scrolls varied from 2.64 μm to 4.28 μm with increasing thickness of the Ni layer from 20 to 40 nm. This behavior was found to be consistent with the model of bilayered film with interfacial strain between the Ti and Ni layers of about Δɛ = 0.01. Changing the geometry of the patterns from flat patterns to scrolls led to changes in their magnetic properties.

  4. Fluctuating pressures in pump diffuser and collector scrolls, part 1

    NASA Technical Reports Server (NTRS)

    Sloteman, Donald P.

    1989-01-01

    The cracking of scroll liners on the SSME High Pressure Fuel Turbo Pump (HPFTP) on hot gas engine test firings has prompted a study into the nature of pressure fluctuations in centrifugal pump states. The amplitudes of these fluctuations and where they originate in the pump stage are quantified. To accomplish this, a test program was conducted to map the pressure pulsation activity in a centrifugal pump stage. This stage is based on typical commercial (or generic) pump design practice and not the specialized design of the HPFTP. Measurements made in the various elements comprising the stage indicate that pulsation activity is dominated by synchronous related phenomena. Pulsation amplitudes measured in the scroll are low, on the order of 2 to 7 percent of the impeller exit tip speed velocity head. Significant non-sychronous pressure fluctuations occur at low flow, and while of interest to commercial pump designers, have little meaning to the HPFTP experience. Results obtained with the generic components do provide insights into possible pulsation related scroll failures on the HPFTP, and provide a basis for further study.

  5. Theoretical Prediction of the Pumping Performance of Dry Pumps
    (Taking the Scroll Pump and the Screw Pump by Way of Example)

    NASA Astrophysics Data System (ADS)

    Sawada, Tadashi; Ohbayashi, Tetsuro

    Since almost all commercially provided dry pumps are of the positive displacement type, the leak flow through clearance between displacement chambers in the pump is a dominant factor which determines pumping performance. Prediction methods for the pumping performance of dry pumps are explained by comparing it to the scroll pump and the screw pump. The scroll pump has long clearances, but the screw pump has relatively short ones, and the volume of the chambers reduces from the inlet toward the outlet in the scroll pump, but that in the screw pump is kept constant throughout the pumping process. Such a structural difference produces a small difference in the way of treating leak flow. These two methods can be applied to the other dry pumps requiring only minor modification.

  6. Graphene oxide scrolls on hydrophobic substrates fabricated by molecular combing and their application in gas sensing.

    PubMed

    Li, Hai; Wu, Jumiati; Qi, Xiaoying; He, Qiyuan; Liusman, Cipto; Lu, Gang; Zhou, Xiaozhu; Zhang, Hua

    2013-02-11

    Well-aligned graphene oxide (GO) scrolls are prepared through the controlled folding/scrolling of single-layer GO sheets using molecular combing on hydrophobic substrates, such as aged gold substrate, polydimethylsiloxane film, poly(L-lactic acid) film, and octadecyltrimethoxysilane-modified silicon dioxide. As a proof of concept, the gas sensor fabricated with a single reduced GO scroll is used to detect NO(2) gas with a concentration as low as 0.4 ppm. PMID:23065912

  7. Numerical analysis on the cavitation and unsteady flow in a scroll hydraulic pump

    NASA Astrophysics Data System (ADS)

    Sun, S. H.; Guo, P. C.; Huang, Y.; Zuo, J. L.; Luo, X. Q.

    2016-05-01

    This paper presents numerical analysis of unsteady flow in a scroll hydraulic pump to discover its flow mechanism. The dynamic mesh model has to be used to simulate the flow field unsteadily. The unsteady flow patterns and pressure distributions in the suction, squeezing and discharge chamber are analysed. The suction process continues until the crank angle reaches the 320 degree. Then the pressure in the chamber rises instantaneously, and the fluid begins to flow out from the chamber. Because of the high pressure difference at the clearance, the jet flow and the vortex appear, and the large flow losses generates with them. In addition, the velocity and static pressure distribution in the two symmetry crescent suction chamber is different remarkably. One reason is that the location of suction port cannot be set symmetrically for the simplification of the pump structure. Another reason for that is the fluid is impelled by different part of the orbiting scroll. The asymmetric pressure distribution will result in the extra force on the scroll. The cavitation generates at the negative pressure region. Therefore, the unsteady simulation shows some important phenomena. The structure of the scroll pump need to be optimized to reduce the maximum pressure, weaken the jet flow, vortex and the uneven pressure distribution to ensure the pump working safely and efficiently.

  8. Testing of Performance of a Scroll Pump in Support of Improved Vapor Phase Catalytic Ammonia Removal (VPCAR) Mass Reduction

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kraft, Thomas G.; Yee, Glenda F.; Jankovsky, Amy L.; Flynn, Michael

    2006-01-01

    This paper describes the results of ground testing of a scroll pump with a potential of being a substitute for the current vacuum pump of the Vapor Phase Catalytic Ammonia Reduction (VPCAR). Assessments of the pressure-time, pump-down time, pump power and the pump noise were made for three configurations of the pump the first of which was without the gas ballast, the second with the gas ballast installed but not operating and the third with the gas ballast operating. The tested scroll pump exhibited optimum characteristics given its mass and power requirements. The pump down time required to reach a pressure of 50 Torr ranged from 60 minutes without the ballast to about 120 minutes with the gas ballast operational. The noise emission and the pump power were assessed in this paper as well.

  9. Novel scroll peapod produced by spontaneous scrolling of graphene onto fullerene string.

    PubMed

    Xu, Shuqiong; Fu, Hongjin; Li, Yunfang; Zhang, Chengmao; Gu, Zonglei; Zhang, Danhui

    2016-04-21

    Novel scroll peapods are fabricated simply by utilizing the spontaneous scrolling mechanism of graphene onto fullerene string. The basic interaction between the graphene and the fullerene string is investigated, and the mechanism of the formation of the scroll peapod is explained in particular. The formation of the scroll peapod and its formation time are influenced by the combined effects of fullerene number, diameter and graphene size. It is also worth noting that narrow graphene nanoribbon wrapped onto a C720 bean can form a particular helical peapod. Higher temperature slows the scrolling dynamics, and even hinders the formation of the scroll peapod. This study provides a scientific basis for producing scroll peapods simply, and eventually their applications in various areas.

  10. Scrolls and Designs

    ERIC Educational Resources Information Center

    Skelton, Mary Lou

    1972-01-01

    Third-graders wrote stories, then made them into books using adapted early Egyptian technique of scrolls. Scroll backs were covered with designs made from melted wax crayons and oil pastels. Article details materials and technique used. (PD)

  11. Mounting for ceramic scroll

    DOEpatents

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  12. Japanese and American competition in the development of scroll compressors and its impact on the American air conditioning industry

    SciTech Connect

    Ushimaru, Kenji )

    1990-02-01

    This report examines the technological development of scroll compressors and its impact on the air conditioning equipment industry. Scroll compressors, although considered to be the compressors of the future for energy-efficient residential heat pumps and possibly for many other applications, are difficult to manufacture on a volume-production base. The manufacturing process requires computer-aided, numerically controlled tools for high-precision fabrication of major parts. Japan implemented a global strategy for dominating the technological world market in the 1970s, and scroll compressor technology benefited from the advent of new-generation machine tools. As a result, if American manufacturers of scroll compressors purchase or are essentially forced to purchase numerically controlled tools from Japan in the future, they will then become dependent on their own competitors because the same Japanese conglomerates that make numerically controlled tools also make scroll compressors. This study illustrates the importance of the basic machine tool industry to the health of the US economy. Without a strong machine tool industry, it is difficult for American manufacturers to put innovations, whether patented or not, into production. As we experience transformation in the air conditioning and refrigeration market, it will be critical to establish a consistent national policy to provide healthy competition among producers, to promote innovation within the industry, to enhance assimilation of new technology, and to eliminate practices that are incompatible with these goals. 72 refs., 8 figs., 1 tab.

  13. Dead Sea Scrolls

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A consortium of researchers from Jet Propulsion Laboratory and three other organizations used charged coupled devices (CCDs) and other imaging enhancement technology to decipher previously unreadable portions of the Dead Sea Scrolls. The technique has potentially important implications for archeology.

  14. Fabrication of Out-of-Plane Electrodes for ACEO Pumps

    NASA Astrophysics Data System (ADS)

    Senousy, Yehya; Harnett, Cindy

    2012-02-01

    This abstract reports the fabrication process of a novel AC Electrosmosis (ACEO) pump with out of plane asymmetric interdigitated electrodes. A self-folding technique is used to fabricate the electrodes, that depends on the strain mismatch between the tensile stressed film (metal layer) and the compressive stress film (oxidized silicon layer). The electrodes roll up with a well-defined radius of curvature in the range of 100-200 microns. Two different electrical signals are connected to alternating electrodes using an insulating silicon nitride barrier that allows circuits to cross over each other without shorting. Electroosmotic micropumps are essential for low-cost, power-efficient microfluidic lab-on-chip devices used in diverse application such as analytical probes, drug delivery systems and surgical tools. ACEO pumps have been developed to address the drawbacks of the DCEO pumps such as the faradic reaction and gas bubbles. The original ACEO microfluidic pump was created with planar arrays of asymmetric interdigitated electrodes at the bottom of the channel. This rolled-up tube design improves on the planar design by including the channel walls and ceiling in the active pumping surface area of the device.

  15. Fabrication of an implantable stretchable electro-osmosis pump

    NASA Astrophysics Data System (ADS)

    Jahanshahi, A.; Axisa, F.; Vanfleteren, J.

    2011-02-01

    The aim of this paper is to demonstrate the feasibility of an implantable, low voltage driven microfluidic pump to deliver drugs. The micro pump has a high degree of biocompatibility and mechanical deformation capability, thanks to the use of elastic silicone elastomers (PDMS) for integration and embedding of the pump. We are using the new method of transverse DC electro-osmosis, which is demonstrated already in the literature. The method uses the fabrication of periodic grooves on top of the micro channel and the application of a DC voltage across the channel. In this contribution, for the first time the production and operation of soft elastic versions of such a pump, compatible with body tissue, is demonstrated. For the interconnects, gold is selectively electro-deposited on Cu-foil and is transferred to PDMS layer. Having only gold as the interconnect ascertains the high degree of bio-compatibility of the device. This pump works with voltages about 10V and produces mean flow speeds of about 60μm/s. The flow has also a helical profile which is a very good advantage to use this pump as a mixer for micro fluidic applications. Flow rate is measured by introducing dyed micro particles along with the liquid inside the channel.

  16. Seals and Scrolls.

    ERIC Educational Resources Information Center

    Macaulay, Sara Grove

    2000-01-01

    Describes an art unit in which students sculpt a signature seal out of clay and use Chinese brush painting techniques to paint a scroll. Discusses the seal and its historical use in China. Lists materials needed and explains the procedure. (CMK)

  17. Artificial heartbeat: design and fabrication of a biologically inspired pump.

    PubMed

    Walters, Peter; Lewis, Amy; Stinchcombe, Andrew; Stephenson, Robert; Ieropoulos, Ioannis

    2013-12-01

    We present a biologically inspired actuator exhibiting a novel pumping action. The design of the 'artificial heartbeat' actuator is inspired by physical principles derived from the structure and function of the human heart. The actuator employs NiTi artificial muscles and is powered by electrical energy generated by microbial fuel cells (MFCs). We describe the design and fabrication of the actuator and report the results of tests conducted to characterize its performance. This is the first artificial muscle-driven pump to be powered by MFCs fed on human urine. Results are presented in terms of the peak pumping pressure generated by the actuator, as well as for the volume of fluid transferred, when the actuator was powered by energy stored in a capacitor bank, which was charged by 24 MFCs fed on urine. The results demonstrate the potential for the artificial heartbeat actuator to be employed as a fluid circulation pump in future generations of MFC-powered robots ('EcoBots') that extract energy from organic waste. We also envisage that the actuator could in the future form part of a bio-robotic artwork or 'bio-automaton' that could help increase public awareness of research in robotics, bio-energy and biologically inspired design. PMID:24200747

  18. Compact cladding-pumped planar waveguide amplifier and fabrication method

    DOEpatents

    Bayramian, Andy J.; Beach, Raymond J.; Honea, Eric; Murray, James E.; Payne, Stephen A.

    2003-10-28

    A low-cost, high performance cladding-pumped planar waveguide amplifier and fabrication method, for deployment in metro and access networks. The waveguide amplifier has a compact monolithic slab architecture preferably formed by first sandwich bonding an erbium-doped core glass slab between two cladding glass slabs to form a multi-layer planar construction, and then slicing the construction into multiple unit constructions. Using lithographic techniques, a silver stripe is deposited and formed at a top or bottom surface of each unit construction and over a cross section of the bonds. By heating the unit construction in an oven and applying an electric field, the silver stripe is then ion diffused to increase the refractive indices of the core and cladding regions, with the diffusion region of the core forming a single mode waveguide, and the silver diffusion cladding region forming a second larger waveguide amenable to cladding pumping with broad area diodes.

  19. Fabricating PFPE Membranes for Microfluidic Valves and Pumps

    NASA Technical Reports Server (NTRS)

    Greer, Frank; White, Victor E.; Lee, Michael C.; Willis, Peter A.; Grunthaner, Frank J.; Rolland, Jason; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating membranes of a perfluoropolyether (PFPE) and integrating them into valves and pumps in laboratory-on-achip microfluidic devices. Membranes of poly(tetrafluoroethylene) [PTFE] and poly(dimethylsilane) [PDMS] have been considered for this purpose and found wanting. By making it possible to use PFPE instead of PTFE or PDMS, the present process expands the array of options for further development of microfluidic devices for diverse applications that could include detection of biochemicals of interest, detection of toxins and biowarfare agents, synthesis and analysis of proteins, medical diagnosis, and synthesis of fuels.

  20. A Strip-Type Microthrottle Pump: Modeling, Design and Fabrication

    PubMed Central

    Pečar, Borut; Vrtačnik, Danilo; Resnik, Drago; Možek, Matej; Aljančič, Uroš; Dolžan, Tine; Amon, Slavko; Križaj, Dejan

    2013-01-01

    A novel design for a strip-type microthrottle pump with a rectangular actuator geometry is proposed, with more efficient chip surface consumption compared to existing micropumps with circular actuators. Due to the complex structure and operation of the proposed device, determination of detailed structural parameters is essential. Therefore, we developed an advanced, fully coupled 3D electro-fluid-solid mechanics simulation model in COMSOL that includes fluid inertial effects and a hyperelastic model for PDMS and no-slip boundary condition in fluid-wall interface. Numerical simulation resulted in accurate virtual prototyping of the proposed device only after inclusion of all mentioned effects. Here, we provide analysis of device operation at various frequencies which describes the basic pumping effects, role of excitation amplitude and backpressure and provides optimization of critical design parameters such as optimal position and height of the microthrottles. Micropump prototypes were then fabricated and characterized. Measured characteristics proved expected micropump operation, achieving maximal flow-rate 0.43 mL·min−1 and maximal backpressure 12.4 kPa at 300 V excitation. Good agreement between simulation and measurements on fabricated devices confirmed the correctness of the developed simulation model. PMID:23459391

  1. The Star Wars Scroll Illusion.

    PubMed

    Shapiro, Arthur G

    2015-10-01

    The Star Wars Scroll Illusion is a dynamic version of the Leaning Tower Illusion. When two copies of a Star-Wars-like scrolling text are placed side by side (with separate vanishing points), the two scrolls appear to head in different directions even though they are physically parallel in the picture plane. Variations of the illusion are shown with one vanishing point, as well as from an inverted perspective where the scrolls appear to originate in the distance. The demos highlight the conflict between the physical lines in the picture plane and perspective interpretation: With two perspective points, the scrolling texts are parallel to each other in the picture plane but not in perspective interpretation; with one perspective point, the texts are not parallel to each other in the picture plane but are parallel to each other in perspective interpretation. The size of the effect is linearly related to the angle of rotation of the scrolls into the third dimension; the Scroll Illusion is stronger than the Leaning Tower Illusion for rotation angles between 35° and 90°. There is no effect of motion per se on the strength of the illusion.

  2. The Star Wars Scroll Illusion

    PubMed Central

    2015-01-01

    The Star Wars Scroll Illusion is a dynamic version of the Leaning Tower Illusion. When two copies of a Star-Wars-like scrolling text are placed side by side (with separate vanishing points), the two scrolls appear to head in different directions even though they are physically parallel in the picture plane. Variations of the illusion are shown with one vanishing point, as well as from an inverted perspective where the scrolls appear to originate in the distance. The demos highlight the conflict between the physical lines in the picture plane and perspective interpretation: With two perspective points, the scrolling texts are parallel to each other in the picture plane but not in perspective interpretation; with one perspective point, the texts are not parallel to each other in the picture plane but are parallel to each other in perspective interpretation. The size of the effect is linearly related to the angle of rotation of the scrolls into the third dimension; the Scroll Illusion is stronger than the Leaning Tower Illusion for rotation angles between 35° and 90°. There is no effect of motion per se on the strength of the illusion.

  3. The Star Wars Scroll Illusion

    PubMed Central

    2015-01-01

    The Star Wars Scroll Illusion is a dynamic version of the Leaning Tower Illusion. When two copies of a Star-Wars-like scrolling text are placed side by side (with separate vanishing points), the two scrolls appear to head in different directions even though they are physically parallel in the picture plane. Variations of the illusion are shown with one vanishing point, as well as from an inverted perspective where the scrolls appear to originate in the distance. The demos highlight the conflict between the physical lines in the picture plane and perspective interpretation: With two perspective points, the scrolling texts are parallel to each other in the picture plane but not in perspective interpretation; with one perspective point, the texts are not parallel to each other in the picture plane but are parallel to each other in perspective interpretation. The size of the effect is linearly related to the angle of rotation of the scrolls into the third dimension; the Scroll Illusion is stronger than the Leaning Tower Illusion for rotation angles between 35° and 90°. There is no effect of motion per se on the strength of the illusion. PMID:27648216

  4. The Star Wars Scroll Illusion.

    PubMed

    Shapiro, Arthur G

    2015-10-01

    The Star Wars Scroll Illusion is a dynamic version of the Leaning Tower Illusion. When two copies of a Star-Wars-like scrolling text are placed side by side (with separate vanishing points), the two scrolls appear to head in different directions even though they are physically parallel in the picture plane. Variations of the illusion are shown with one vanishing point, as well as from an inverted perspective where the scrolls appear to originate in the distance. The demos highlight the conflict between the physical lines in the picture plane and perspective interpretation: With two perspective points, the scrolling texts are parallel to each other in the picture plane but not in perspective interpretation; with one perspective point, the texts are not parallel to each other in the picture plane but are parallel to each other in perspective interpretation. The size of the effect is linearly related to the angle of rotation of the scrolls into the third dimension; the Scroll Illusion is stronger than the Leaning Tower Illusion for rotation angles between 35° and 90°. There is no effect of motion per se on the strength of the illusion. PMID:27648216

  5. Chaotic attractors with separated scrolls

    NASA Astrophysics Data System (ADS)

    Bouallegue, Kais

    2015-07-01

    This paper proposes a new behavior of chaotic attractors with separated scrolls while combining Julia's process with Chua's attractor and Lorenz's attractor. The main motivation of this work is the ability to generate a set of separated scrolls with different behaviors, which in turn allows us to choose one or many scrolls combined with modulation (amplitude and frequency) for secure communication or synchronization. This set seems a new class of hyperchaos because each element of this set looks like a simple chaotic attractor with one positive Lyapunov exponent, so the cardinal of this set is greater than one. This new approach could be used to generate more general higher-dimensional hyperchaotic attractor for more potential application. Numerical simulations are given to show the effectiveness of the proposed theoretical results.

  6. Chaotic attractors with separated scrolls

    SciTech Connect

    Bouallegue, Kais

    2015-07-15

    This paper proposes a new behavior of chaotic attractors with separated scrolls while combining Julia's process with Chua's attractor and Lorenz's attractor. The main motivation of this work is the ability to generate a set of separated scrolls with different behaviors, which in turn allows us to choose one or many scrolls combined with modulation (amplitude and frequency) for secure communication or synchronization. This set seems a new class of hyperchaos because each element of this set looks like a simple chaotic attractor with one positive Lyapunov exponent, so the cardinal of this set is greater than one. This new approach could be used to generate more general higher-dimensional hyperchaotic attractor for more potential application. Numerical simulations are given to show the effectiveness of the proposed theoretical results.

  7. Unpinning of scroll waves under the influence of a thermal gradient

    NASA Astrophysics Data System (ADS)

    Das, Nirmali Prabha; Mahanta, Dhriti; Dutta, Sumana

    2014-08-01

    Three-dimensional scroll waves of electrical activity are among the mechanisms believed to be responsible for the rapid, unsynchronized contraction of cardiac ventricles, thereby reducing the heart's ability to pump blood. Scroll waves can attach themselves to unexcitable obstacles, and this sometimes highly elongates their life span. Hence, the unpinning and annihilation of these vortices has attracted much attention in recent decades. In this work, we study the influence of a thermal gradient on scroll waves pinned to inert obstacles, in the Belousov-Zhabotinsky reaction. Under a temperature gradient, scroll rings were seen to unpin from these obstacles, thus strikingly reducing their lifetimes. These results were also reproduced by numerical simulations using the Barkley model.

  8. Scrolling and Strolling, Asian Style

    ERIC Educational Resources Information Center

    Sterling, Joan

    2012-01-01

    In this article, the author describes a lesson on Asian cultures. Asian cultures demonstrate respect for nature through their art. Students learned how to use Asian brush techniques and designs to create scrolls. They also learned how to write Haiku, a three-line form of poetry that uses a pattern of syllables.

  9. Symmetric scrolled packings of multilayered carbon nanoribbons

    NASA Astrophysics Data System (ADS)

    Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.

    2016-06-01

    Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.

  10. Tritium gas transfer pump development

    SciTech Connect

    Sharpe, C.L.

    1985-01-01

    Non-lubricated, hermetically sealed pumps for tritium service have been selected to replace Sprengel pumps in the existing Tritium Facility. These pumps will be the primary gas-transfer pumps in the planned Replacement Tritium Facility. The selected pumps are Metal Bellows Corporation's bellows pumps and Normetex scroll pumps. Pumping range for a Normetex/Metal Bellows system is from 0.01 torr suction to 2300 torr discharge. Performance characteristics of both pumps are presented. 10 figs.

  11. Electro-magnetically Actuated Minute Polymer Pump Fabricated using Packaging Technology

    NASA Astrophysics Data System (ADS)

    Balaji, G.; Singh, A.; Ananthasuresh, G. K.

    2006-04-01

    Design, fabrication and preliminary testing of a flat pump with millimetre thickness are described in this paper. The pump is entirely made of polymer materials barring the magnet and copper coils used for electromagnetic actuation. The fabrication is carried out using widely available microelectronic packaging machinery and techniques. Therefore, the fabrication of the pump is straightforward and inexpensive. Two types of prototypes are designed and built. One consists of copper coils that are etched on an epoxy plate and the other has wound insulated wire of 90 µm diameter to serve as a coil. The overall size of the first pump is 25 mm × 25 mm × 3.6 mm including the 3.1 mm-thick NdFeB magnet of diameter 12 mm. It consists of a pump chamber of 20 mm × 20 mm × 0.8 mm with copper coils etched from a copper-clad epoxy plate using dry-film lithography and milled using a CNC milling machine, two passive valves and the pump-diaphragm made of Kapton film of 0.089 mm thickness. The second pump has an overall size of 35 mm × 35 mm × 4.4 mm including the magnet and the windings. A breadboard circuit and DC power supply are used to test the pump by applying an alternating square-wave voltage pulse. A water slug in a tube attached to the inlet is used to observe and measure the air-flow induced by the pump against atmospheric pressure. The maximum flow rate was found to be 15 ml/min for a voltage of 2.5 V and a current of 19 mA at 68 Hz.

  12. Scroll Waves in Myocardium: Dynamics and Control

    NASA Astrophysics Data System (ADS)

    Pertsov, Arkady

    2000-03-01

    Excitable media, ranging from autocatalytic chemical reactions to a wide variety of biological systems, can maintain self-sustained vortices in the form of rotating spiral waves (or scroll waves, in 3-dimensions). Similar to hurricanes and tornadoes, scroll waves evolve in time, changing their location in space and the shape of their organizing center (filament). Recently, direct evidence has been obtained that scroll waves can occur in cardiac muscle leading to severe cardiac rhythm disturbances and sudden cardiac death in humans. We will review computational and experimental data on the dynamics of scroll waves in chemical and biological excitable systems. We will discuss the possibility of controlling scroll waves by externally applied fields. We will present new data on scroll waves in the heart muscle and new methods for their visualization based on using voltage sensitive fluorescent dyes and computer imaging technology. Specifically, we will present experimental observations of concealed stationary filaments during ventricular fibrillation using transillumination technique."

  13. Synthetic Micro/Nanomotors and Pumps: Fabrication and Applications

    NASA Astrophysics Data System (ADS)

    Wong, Flory; Dey, Krishna Kanti; Sen, Ayusman

    2016-07-01

    Synthetic active systems capable of autonomous motion or driving fluid flow are of great current interest owing to their potential applications in nanomachinery, cargo capture and delivery, reversible assemblies, and chemical/biochemical sensing. Designing self-powered micro/nanomotors and understanding their propulsion mechanisms and ensemble behavior are now areas of great interest in low-Reynolds-number mechanics. In this article, we classify prototypes of existing small-scale motors on the basis of the materials used in synthesis and fabrication, with the aim of understanding the importance of material selection in designing functional motors for futuristic applications.

  14. PIXE ANALYSIS ON AN ANCIENT SCROLL SAMPLE

    SciTech Connect

    Shutthanandan, V.; Thevuthasan, Suntharampillai; Iuliano, Edward M.; Seales, William B.

    2008-12-01

    For years, scientists have developed several new techniques to read texts of Herculaneum scrolls without destroying them. Recently, the use of a custom built high-resolution CT scanner was proposed to scan and then virtually unroll the scrolls for reading. Identification of any unique chemical signatures in the ancient ink would allow better calibration of the CT scanner to improve the chances of resolving the ink from the burned papyrus background. To support this effort, we carried out one pilot study to see whether the composition of the ink can be obtained from an ancient scroll sample using PIXE technique. PIXE data were collected and analyzed in two different regions of the ancient scroll sample (ink and blank regions). This preliminary work shows that elemental distributions from the ink used in this scroll mainly contained Al, Fe and Ti as well as minor trace amounts of Cr, Cu and Zn.

  15. Low-voltage electroosmotic pumps fabricated from track-etched polymer membranes.

    PubMed

    Wang, Ceming; Wang, Lin; Zhu, Xiaorui; Wang, Yugang; Xue, Jianming

    2012-05-01

    Track-etched polymer membranes are used to realize low-voltage electroosmotic (EO) pumps. The nanopores in polycarbonate (PC) and polyethylene terephthalate (PET) membranes were fabricated by the track-etching technique, the pore diameter was controlled in the range of 100 to 250 nm by adjusting the etching time. The results show that these EO pumps can provide high flow rates at low applied voltages (2-5 V). The maximum normalized flow rate is as high as 0.12 ml min(-1) V(-1) cm(-2), which is comparable to the best values of previously demonstrated EO pumps. We attribute this high performance to the unique properties of the track-etched nanopores in the membranes. PMID:22441654

  16. Rotating and positive-displacement pumps for low-thrust rocket engines. Volume 2: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Csomor, A.

    1974-01-01

    Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low thrust high performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm and helirotor pump concepts. The centrifugal and gear pumps were carried through detail design and fabrication. After preliminary testing in Freon 12, the centrifugal pump was selected for further testing and development. It was tested in Freon 12 to obtain the hydrodynamic performance. Tests were also conducted in liquid fluorine to demonstrate chemical compatibility.

  17. Scrolling of Suspended CVD Graphene Sheets

    NASA Astrophysics Data System (ADS)

    Martynov, Oleg; Yeom, Sinchul; Bockrath, Marc; UC: Riverside Team

    Carbon Nanoscrolls, one dimensional spiral forms of graphitic carbon, have attracted recent interest due to their novel proposed properties. Although various production methods and studies of carbon nanoscrolls have been performed, low yield and poor controllability of their synthesis have slowed progress in this field. Suspended graphene membranes and carbon nanotubes have been predicted as promising systems for the formation of graphene scrolls. We have suspended chemical vapor deposition (CVD)-grown graphene over large holes in a Si/SiO2 substrate to make suspended membranes upon which nanotubes are placed. Initial experiments have been performed showing that tears or cuts of the suspended sheet can initiate scrolling. Our latest progress towards carbon nanotube initiated formation of graphene scrolls and suspended CVD graphene scrolling, along with measurements of these novel structures will be presented.

  18. 18. ROSS POWERHOUSE: BUTTERFLY VALVE FROM BELOW AND SCROLL CASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. ROSS POWERHOUSE: BUTTERFLY VALVE FROM BELOW AND SCROLL CASE DRAIN. TAG INDICATES THE SCROLL CASE DRAIN WAS OPEN, 1989. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  19. [Discussion on the date of Dunhuang medical scrolls].

    PubMed

    Fan, Chongfeng

    2015-09-01

    The latest closing time of the Dunhuang cave for preserving Buddhist sutra should be considered firstly in the textual research on the date of Dunhuang medical scrolls. Based on the word "Shanyao" recorded in the scroll P. 3810, it is very likely that this scroll was copied after the reign of Emperor Yingzong of the Song Dynasty, and the sealing time of Dunhuang cave for preserving Buddhist sutra was, most probably, later than 1064. The specific writing or/and copying date of each scroll could be identified by its preface, external characteristics, contents, special characters, symbols and typeface, and language feature of the scrolls.

  20. Spinners, Scroll Bars and Simpson's Rule

    ERIC Educational Resources Information Center

    Staples, Ed

    2005-01-01

    One of the most remarkable devices embedded in a Microsoft Excel spreadsheet is known as the spinner. Its staggering simplicity is undoubtedly its strength. As an incrementing device that allows graphs to dance across the screen, it gives the concept of variability a whole new meaning. Spinners and their close cousins scroll bars can be grabbed…

  1. Evaluation of Dry, Rough Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Hunter, Brian

    2006-01-01

    This document provides information on the testing and evaluation of thirteen dry rough vacuum pumps of various designs and from various manufacturers. Several types of rough vacuum pumps were evaluated, including scroll, roots, and diaphragm pumps. Tests included long term testing, speed curve generation, voltage variance, vibrations emissions and susceptibility, electromagnetic interference emissions and susceptibility, static leak rate, exhaust restriction, response/recovery time tests, and a contamination analysis for scroll pumps. Parameters were found for operation with helium, which often is not provided from the manufacturer

  2. Development of a nonazeotropic heat pump for crew hygiene water heating

    NASA Technical Reports Server (NTRS)

    Walker, David H.; Deming, Glenn I.

    1991-01-01

    A Phase 2 SBIR Program funded by the NASA Marshall Space Flight Center to develop a Nonazeotropic Heat Pump is described. The heat pump system which was designed, fabricated, and tested in the Foster-Miller laboratory, is capable of providing crew hygiene water heating for future manned missions. The heat pump utilizes a nonazeotropic refrigerant mixture which, in this application, provides a significant Coefficient of Performance improvement over a single-constituent working fluid. In order to take full advantage of the refrigerant mixture, compact tube-in-tube heat exchangers were designed. A high efficiency scroll compressor with a proprietary lubrication system was developed to meet the requirements of operation in zero-gravity. The prototype heat pump system consumes less than 200W of power compared to the alternative of electric cartridge heaters which would require 2 to 5 kW.

  3. Scroll wave dynamics in a model of the heterogeneous heart

    NASA Astrophysics Data System (ADS)

    Konovalov, P. V.; Pravdin, S. F.; Solovyova, O. E.; Panfilov, A. V.

    2016-07-01

    Scroll waves are found in physical, chemical and biological systems and underlie many significant processes including life-threatening cardiac arrhythmias. The theory of scroll waves predicts scroll wave dynamics should be substantially affected by heterogeneity of cardiac tissue together with other factors including shape and anisotropy. In this study, we used our recently developed analytical model of the human ventricle to identify effects of shape, anisotropy, and regional heterogeneity of myocardium on scroll wave dynamics. We found that the main effects of apical-base heterogeneity were an increased scroll wave drift velocity and a shift towards the region of maximum action potential duration. We also found that transmural heterogeneity does not substantially affect scroll wave dynamics and only in extreme cases changes the attractor position.

  4. Scroll wave dynamics in a model of the heterogeneous heart

    NASA Astrophysics Data System (ADS)

    Konovalov, P. V.; Pravdin, S. F.; Solovyova, O.; Panfilov, A. V.

    2016-07-01

    Scroll waves are found in physical, chemical and biological systems and underlie many significant processes including life-threatening cardiac arrhythmias. The theory of scroll waves predicts scroll wave dynamics should be substantially affected by heterogeneity of cardiac tissue together with other factors including shape and anisotropy. In the study described in this paper we used our recently developed analytical model of the human ventricle to identify effects of shape, anisotropy, and regional heterogeneity of myocardium on scroll wave dynamics. We found that the main effects of apical-base heterogeneity were an increased scroll wave drift velocity and a shift towards the region of maximum action potential duration. We also found that transmural heterogeneity does not substantially affect scroll wave dynamics and only in extreme cases changes the attractor position.

  5. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  6. A self-priming microfluidic diaphragm pump capable of recirculation fabricated by combining soft lithography and traditional machining.

    PubMed

    Sin, Aaron; Reardon, Christopher F; Shuler, Michael L

    2004-02-01

    Fluid transport is crucial in the development of microanalytical devices. While there are many micropump designs available, most are incapable of sustaining recirculation of fluid at microL/min to mL/min levels. We have designed and fabricated a positive displacement micropump by combining soft lithography with traditional bulk machining. The micropump is actuated through pneumatic pressure. The pump is self-priming and is suitable for recirculating fluid through a microfluidic device containing mammalian cell culture. By custom designing the volume of the pumping chamber, tight control of the output flow rate can be obtained by changing the actuation frequency. It can also be fabricated easily on plastic substrates without access to expensive microfabrication equipment. PMID:14748092

  7. Paging and Scrolling: Cognitive Styles in Learning from Hypermedia

    ERIC Educational Resources Information Center

    Eyuboglu, Filiz; Orhan, Feza

    2011-01-01

    This study investigates the navigational patterns and learning achievement of university students with different cognitive styles, on hypermedia learning environments using paging or scrolling. The global-local subscales of Sternberg's Thinking Styles Inventory, two hypermedia, one using paging, the other using scrolling, a multiple choice…

  8. Basic Study on Engine with Scroll Compressor and Expander

    NASA Astrophysics Data System (ADS)

    Morishita, Etsuo; Kitora, Yoshihisa; Nishida, Mitsuhiro

    Scroll compressors are becoming popular in air conditioning and refrigeration. This is primarily due to their higher efficiency and low noise/vibration characteristics. The scroll principle can be applied also to the steam expander and the Brayton cycle engine,as shown in the past literature. The Otto cycle spark-ignition engine with a scroll compressor and expander is studied in this report. The principle and basic structure of the scroll engine are explained,and the engine characteristic are calculated based on the idealized cycles and processes. A prototype model has been proposed and constructed. The rotary type engine has always had a problem with sealing. The scroll engine might overcome this shortcoming with its much lower rubbing speed compared to its previous counterparts,and is therefore worth investigating.

  9. Turbopumps for cryogenic upper stage engines. [fabrication and evaluation of turbine pumps for liquid hydrogen and liquid oxygen

    NASA Technical Reports Server (NTRS)

    Zachary, A. T.; Csomor, A.; Tignac, L. L.

    1973-01-01

    Small, high-performance LO2 and LH2 turbopump assembly configurations were selected, detail designs were prepared and two of each unit were fabricated with each unit consisting of pump, turbine gas generator, and appropriate controls. Following fabrication, development testing was conducted on each type to demonstrate performance, durability, transient characteristics, and heat transfer under simulated altitude conditions. Following successful completion of development effort, the two LO2 turbopump units and one LH2 turbopump unit were acceptance tested as specified. Inspection of the units following development testing revealed no deleterious effects of testing. The test results of LO2 turbopump assembly testing correlated well with predicted performance while the LH2 turbopump test results, though generally consistent with predicted values, did show lower than anticipated developed head at the design point and in the high flow range of operation.

  10. Scroll waves pinned to moving heterogeneities

    NASA Astrophysics Data System (ADS)

    Ke, Hua; Zhang, Zhihui; Steinbock, Oliver

    2015-03-01

    Three-dimensional excitable systems can self-organize vortex patterns that rotate around one-dimensional phase singularities called filaments. In experiments with the Belousov-Zhabotinsky reaction and numerical simulations, we pin these scroll waves to translating inert cylinders and demonstrate the controlled repositioning of their rotation centers. If the pinning site extends only along a portion of the filament, the phase singularity is stretched out along the trajectory of the heterogeneity, which effectively writes the singularity into the system. Its trailing end point follows the heterogeneity with a lower velocity. This velocity, its dependence on the placement of the anchor, and the shape of the filament are explained by a curvature flow model.

  11. Deformation Control of Scroll Compressor for CO2 Refrigerant

    NASA Astrophysics Data System (ADS)

    Hiwata, Akira; Sawai, Kiyoshi; Morimoto, Takashi; Murakami, Hideki

    The compressors for CO2 refrigerant have a lot of difficulties to achieve high efficiency and reliability because of its very high operating pressure, which causes the deformation for scroll element. The deformations of the fixed scroll during operation fall into the following four categories: (1) pressure deformation due to pressure differences; (2) thermal deformation due to temperature difference; (3) deformation caused by welding for fixing the frame to the shell; and (4) bolt tightening deformation of the compression mechanism. In this study, in order to minimize the deformation during operation, deformations (1) and (2) are grasped by numerical calculations and deformations (3) and (4) are controlled to cancel the deformations (1) and (2) by adjusting the stiffness of fixed scroll. In addition, we measured the deformation under the operation by using the strain gauge in order to confirm that the proper stiffness of fixed scroll can minimize its total amount of deformation.

  12. 11. DETAIL OF TERRACOTTA DECORATION, SHOWING SCROLL CONSOLE, WAVE ORNAMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL OF TERRACOTTA DECORATION, SHOWING SCROLL CONSOLE, WAVE ORNAMENT, EGG-AND-DART, NYMPH HEADS AND FOLIATE PATTERN AROUND WINDOWS - City Hall, Atlantic & Tennessee Avenues, Atlantic City, Atlantic County, NJ

  13. Generating multi-double-scroll attractors via nonautonomous approach

    NASA Astrophysics Data System (ADS)

    Hong, Qinghui; Xie, Qingguo; Shen, Yi; Wang, Xiaoping

    2016-08-01

    It is a common phenomenon that multi-scroll attractors are realized by introducing the various nonlinear functions with multiple breakpoints in double scroll chaotic systems. Differently, we present a nonautonomous approach for generating multi-double-scroll attractors (MDSA) without changing the original nonlinear functions. By using the multi-level-logic pulse excitation technique in double scroll chaotic systems, MDSA can be generated. A Chua's circuit, a Jerk circuit, and a modified Lorenz system are given as designed example and the Matlab simulation results are presented. Furthermore, the corresponding realization circuits are designed. The Pspice results are in agreement with numerical simulation results, which verify the availability and feasibility of this method.

  14. Detail of exciter turbine showing shaft, scroll case, servomotor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of exciter turbine showing shaft, scroll case, servo-motor and operating ring (left foreground) and hand wheel for butterfly valve (right background) - Morony Hydroelectric Facility, Dam and Powerhouse, Morony Dam Road, Great Falls, Cascade County, MT

  15. Generating multi-double-scroll attractors via nonautonomous approach.

    PubMed

    Hong, Qinghui; Xie, Qingguo; Shen, Yi; Wang, Xiaoping

    2016-08-01

    It is a common phenomenon that multi-scroll attractors are realized by introducing the various nonlinear functions with multiple breakpoints in double scroll chaotic systems. Differently, we present a nonautonomous approach for generating multi-double-scroll attractors (MDSA) without changing the original nonlinear functions. By using the multi-level-logic pulse excitation technique in double scroll chaotic systems, MDSA can be generated. A Chua's circuit, a Jerk circuit, and a modified Lorenz system are given as designed example and the Matlab simulation results are presented. Furthermore, the corresponding realization circuits are designed. The Pspice results are in agreement with numerical simulation results, which verify the availability and feasibility of this method. PMID:27586606

  16. Towards Photonic-Plasmonic Integrated Circuits: Study and Fabrication Of Electrically-Pumped Plasmonic Nano-Laser

    NASA Astrophysics Data System (ADS)

    Hseih, Chunhan Michael

    (IAD) have been studied for their material physical, optical, and electrical properties, over a wide range of conductivity and transparency at the optical communication wavelength range. In particular, their electrical contact properties to n-type and p-type InP have been examined, and Ohmic contact to n-InP have been achieved. The contact resistance is as low as 10-6Ocm2. Based on the abovementioned technological developments, electrically-pumped plasmonic semiconductor nanolasers have been designed and fabricated, and their structures have been optimized via minimizing their optical modal losses. The fabrication process has been calibrated and initial device measurement results have been studied. The results show various challenges for the realization of electrically pumped nanoscale Plasmonic laser devices that can be improved in the future, which are discussed in detail.

  17. Three dimensional flow computations in a turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Ghantous, C. A.

    1982-01-01

    The compressible three dimensional inviscid flow in the scroll and vaneless nozzle of radial inflow turbines is analyzed. A FORTRAN computer program for the numerical solution of this complex flow field using the finite element method is presented. The program input consists of the mass flow rate and stagnation conditions at the scroll inlet and of the finite element discretization parameters and nodal coordinates. The output includes the pressure, Mach number and velocity magnitude and direction at all the nodal points.

  18. Alternative stable scroll waves and conversion of autowave turbulence

    NASA Astrophysics Data System (ADS)

    Foulkes, A. J.; Barkley, D.; Biktashev, V. N.; Biktasheva, I. V.

    2010-12-01

    Rotating spiral and scroll waves (vortices) are investigated in the FitzHugh-Nagumo model of excitable media. The focus is on a parameter region in which there exists bistability between alternative stable vortices with distinct periods. Response functions are used to predict the filament tension of the alternative scrolls and it is shown that the slow-period scroll has negative filament tension, while the filament tension of the fast-period scroll changes sign within a hysteresis loop. The predictions are confirmed by direct simulations. Further investigations show that the slow-period scrolls display features similar to delayed after-depolarization and tend to develop into turbulence similar to ventricular fibrillation (VF). Scrolls with positive filament tension collapse or stabilize, similar to monomorphic ventricular tachycardia (VT). Perturbations, such as boundary interaction or shock stimulus, can convert the vortex with negative filament tension into the vortex with positive filament tension. This may correspond to transition from VF to VT unrelated to pinning.

  19. Fabrication and characterization of a microfluidic module for chemical gradient generation utilizing passive pumping.

    PubMed

    Kuo, Jonathan T W; Li, Connie; Meng, Ellis

    2014-01-01

    We introduce a micro-biochemical administration module (μBAM) for generating chemical gradients for use in axonal guidance studies. The device is designed to be simple to use, require minimal packaging, and be operated using only a pipette. A passive pumping mechanism is utilized to pump liquid through a SU-8 microchannel and then the micropore on the Parylene cap of the microchannel. The achievable flow rate delivery through the micropore was characterized and manipulated by varying the drop volumes used to passively drive fluid flow into the device. Biochemicals controllably delivered using this module can be combined with neuronal cell cultures to form chemical gradients for axonal guidance studies. PMID:25570971

  20. A continuous roll-pulling approach for the fabrication of magnetic artificial cilia with microfluidic pumping capability.

    PubMed

    Wang, Ye; den Toonder, Jaap; Cardinaels, Ruth; Anderson, Patrick

    2016-06-21

    Magnetic artificial cilia are micro-hairs covering a surface that can be actuated using a time-dependent magnetic field to pump or mix fluids in microfluidic devices. This paper presents a novel fabrication method to realize magnetic artificial cilia using a roll-pulling process, in which a cylinder decorated with micro-pillars rolls over a liquid precursor film that contains magnetic particles at a speed up to 1 m s(-1), while a magnetic field is applied. Due to the interaction between the pillars and the liquid film, micro-hairs are pulled out of the film. In this way, surfaces with slender cone-shaped magnetic artificial cilia were produced. When integrated in a closed-loop channel, the artificial cilia were shown to be capable of generating substantial microfluidic pumping using external magnetic actuation. The spatial arrangement of the cilia can be varied by altering the layout of the micro-pillars on the roll surface. In addition, the final geometry of the individual cilia depends on the rheological properties of the precursor material in combination with the processing parameters of the roll-pulling process. A rheological study and fabrication tests were carried out for a range of precursor material compositions to obtain insight into the relation between precursor rheology and processing conditions on the one hand, and cilia geometry on the other hand. The development of this cleanroom-free, high speed and potentially large area method of production of artificial cilia is another step towards their implementation in real-life applications. PMID:27210071

  1. A continuous roll-pulling approach for the fabrication of magnetic artificial cilia with microfluidic pumping capability.

    PubMed

    Wang, Ye; den Toonder, Jaap; Cardinaels, Ruth; Anderson, Patrick

    2016-06-21

    Magnetic artificial cilia are micro-hairs covering a surface that can be actuated using a time-dependent magnetic field to pump or mix fluids in microfluidic devices. This paper presents a novel fabrication method to realize magnetic artificial cilia using a roll-pulling process, in which a cylinder decorated with micro-pillars rolls over a liquid precursor film that contains magnetic particles at a speed up to 1 m s(-1), while a magnetic field is applied. Due to the interaction between the pillars and the liquid film, micro-hairs are pulled out of the film. In this way, surfaces with slender cone-shaped magnetic artificial cilia were produced. When integrated in a closed-loop channel, the artificial cilia were shown to be capable of generating substantial microfluidic pumping using external magnetic actuation. The spatial arrangement of the cilia can be varied by altering the layout of the micro-pillars on the roll surface. In addition, the final geometry of the individual cilia depends on the rheological properties of the precursor material in combination with the processing parameters of the roll-pulling process. A rheological study and fabrication tests were carried out for a range of precursor material compositions to obtain insight into the relation between precursor rheology and processing conditions on the one hand, and cilia geometry on the other hand. The development of this cleanroom-free, high speed and potentially large area method of production of artificial cilia is another step towards their implementation in real-life applications.

  2. 78 FR 24462 - Culturally Significant Objects Imported for Exhibition; Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... Faith in Ancient Times'' Formerly Titled ``The Dead Sea Scrolls: Life and Faith in Biblical Times... the exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times.'' The referenced notice...

  3. 78 FR 62354 - Culturally Significant Objects Imported for Exhibition Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-18

    ... in Ancient Times'' Formerly Titled ``The Dead Sea Scrolls: Life and Faith in Biblical Times'' ACTION... exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times.'' The referenced notice was corrected...

  4. 78 FR 16565 - Culturally Significant Objects Imported for Exhibition Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... in Ancient Times'' Formerly Titled ``The Dead Sea Scrolls: Life and Faith in Biblical Times'' ACTION... exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times.'' The referenced notice was corrected...

  5. Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells.

    PubMed

    Yu, Linwei; Fortuna, Franck; O'Donnell, Benedict; Jeon, Taewoo; Foldyna, Martin; Picardi, Gennaro; Roca i Cabarrocas, Pere

    2012-08-01

    Silicon nanowires (SiNWs) are becoming a popular choice to develop a new generation of radial junction solar cells. We here explore a bismuth- (Bi-) catalyzed growth and doping of SiNWs, via vapor-liquid-solid (VLS) mode, to fabricate amorphous Si radial n-i-p junction solar cells in a one-pump-down and low-temperature process in a single chamber plasma deposition system. We provide the first evidence that catalyst doping in the SiNW cores, caused by incorporating Bi catalyst atoms as n-type dopant, can be utilized to fabricate radial junction solar cells, with a record open circuit voltage of V(oc) = 0.76 V and an enhanced light trapping effect that boosts the short circuit current to J(sc) = 11.23 mA/cm(2). More importantly, this bi-catalyzed SiNW growth and doping strategy exempts the use of extremely toxic phosphine gas, leading to significant procedure simplification and cost reduction for building radial junction thin film solar cells. PMID:22822909

  6. 77 FR 64373 - Culturally Significant Objects Imported for Exhibition Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... in Ancient Times,'' Formerly Titled ``The Dead Sea Scrolls: Life and Faith in Biblical Times... corrected here to change the exhibition name to ``The Dead Sea Scrolls: Life and Faith in Ancient Times... exhibition ``The Dead Sea Scrolls: Life and Faith in Ancient Times,'' imported from abroad for...

  7. Structure of ordered coaxial and scroll nanotubes: general approach.

    PubMed

    Khalitov, Zufar; Khadiev, Azat; Valeeva, Diana; Pashin, Dmitry

    2016-01-01

    The explicit formulas for atomic coordinates of multiwalled coaxial and cylindrical scroll nanotubes with ordered structure are developed on the basis of a common oblique lattice. According to this approach, a nanotube is formed by transfer of its bulk analogue structure onto a cylindrical surface (with a circular or spiral cross section) and the chirality indexes of the tube are expressed in the number of unit cells. The monoclinic polytypic modifications of ordered coaxial and scroll nanotubes are also discussed and geometrical conditions of their formation are analysed. It is shown that tube radii of ordered multiwalled coaxial nanotubes are multiples of the layer thickness, and the initial turn radius of the orthogonal scroll nanotube is a multiple of the same parameter or its half. PMID:26697865

  8. Using a Spreadsheet Scroll Bar to Solve Equilibrium Concentrations

    ERIC Educational Resources Information Center

    Raviolo, Andres

    2012-01-01

    A simple, conceptual method is described for using the spreadsheet scroll bar to find the composition of a system at chemical equilibrium. Simulation of any kind of chemical equilibrium can be carried out using this method, and the effects of different disturbances can be predicted. This simulation, which can be used in general chemistry…

  9. Fabrication

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-08-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  10. Fabrication

    NASA Technical Reports Server (NTRS)

    Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville

    1992-01-01

    What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is

  11. Normetex Pump Alternatives Study

    SciTech Connect

    Clark, Elliot A.

    2013-04-25

    A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine, chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying

  12. Structure of multilayered Cr(Al)N/SiOx nanocomposite coatings fabricated by differential pumping co-sputtering

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Nose, Masateru; Onishi, Ichiro; Shiojiri, Makoto

    2013-11-01

    A Cr(Al)N/38 vol. % SiOx hard coating was prepared on a (001) Si substrate at 250 °C in a differential pumping co-sputtering system, which has two chambers for radio frequency (RF) sputtering and a substrate holder rotating on the chambers. The composite coating was grown by alternate sputter-depositions from CrAl and SiO2 targets with flows of N2+Ar and Ar at RF powers of 200 and 75 W, respectively, on transition layers grown on the substrate. Analytical electron microscopy reveled that the Cr(Al)N/SiOx coating had a multilayered structure of Cr(Al)N crystal layers ˜1.6 nm thick and two-dimensionally dispersed amorphous silicon oxide (a-SiOx) particles with sizes of ˜1 nm or less. The a-SiOx particles were enclosed with the Cr(Al)N layers. The coating had a low indentation hardness of ˜25 GPa at room temperature, due to a high oxide fraction of 38 vol. % and a low substrate rotational speed of 1 rpm. Faster rotation and lower oxide fraction would make a-SiOx particles smaller, resulting in the formation of Cr(Al)N crystal including the very fine a-SiOx particles with small number density. They would work as obstacles for the lattice deformation of the Cr(Al)N crystals. We have fabricated a superhard coating of Cr(Al)N/17 vol. % SiOx with a hardness of 46 GPa prepared at 12 rpm.

  13. Structure of multilayered Cr(Al)N/SiO{sub x} nanocomposite coatings fabricated by differential pumping co-sputtering

    SciTech Connect

    Kawasaki, Masahiro; Nose, Masateru; Onishi, Ichiro; Shiojiri, Makoto

    2013-11-11

    A Cr(Al)N/38 vol. % SiO{sub x} hard coating was prepared on a (001) Si substrate at 250 °C in a differential pumping co-sputtering system, which has two chambers for radio frequency (RF) sputtering and a substrate holder rotating on the chambers. The composite coating was grown by alternate sputter-depositions from CrAl and SiO{sub 2} targets with flows of N{sub 2}+Ar and Ar at RF powers of 200 and 75 W, respectively, on transition layers grown on the substrate. Analytical electron microscopy reveled that the Cr(Al)N/SiO{sub x} coating had a multilayered structure of Cr(Al)N crystal layers ∼1.6 nm thick and two-dimensionally dispersed amorphous silicon oxide (a-SiO{sub x}) particles with sizes of ∼1 nm or less. The a-SiO{sub x} particles were enclosed with the Cr(Al)N layers. The coating had a low indentation hardness of ∼25 GPa at room temperature, due to a high oxide fraction of 38 vol. % and a low substrate rotational speed of 1 rpm. Faster rotation and lower oxide fraction would make a-SiO{sub x} particles smaller, resulting in the formation of Cr(Al)N crystal including the very fine a-SiO{sub x} particles with small number density. They would work as obstacles for the lattice deformation of the Cr(Al)N crystals. We have fabricated a superhard coating of Cr(Al)N/17 vol. % SiO{sub x} with a hardness of 46 GPa prepared at 12 rpm.

  14. SHINE Vacuum Pump Test Verification

    SciTech Connect

    Morgan, Gregg A; Peters, Brent

    2013-09-30

    Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In this

  15. Modification in amino acids of Dead Sea Scroll Parchments.

    PubMed

    Sobel, H; Ajie, H

    1992-12-01

    Fragments of Dead Sea Scroll Parchments were extracted for collagen and subjected to amino acid analysis. In modern parchment samples, 90% or more of the protein could be extracted in hot aqueous solution as collagen. In the ancient specimens, 70% or less was extractable. The hot-solution insoluble material was analyzed for collagen. In the soluble extract, the quantity of tyrosine, histidine, and methionine was reduced. Dityrosine was detected. The need to extend such studies is discussed.

  16. Pattern Selection in Network of Coupled Multi-Scroll Attractors

    PubMed Central

    Li, Fan

    2016-01-01

    Multi-scroll chaotic attractor makes the oscillator become more complex in dynamic behaviors. The collective behaviors of coupled oscillators with multi-scroll attractors are investigated in the regular network in two-dimensional array, which the local kinetics is described by an improved Chua circuit. A feasible scheme of negative feedback with diversity is imposed on the network to stabilize the spatial patterns. Firstly, the Chua circuit is improved by replacing the nonlinear term with Sine function to generate infinite aquariums so that multi-scroll chaotic attractors could be generated under appropriate parameters, which could be detected by calculating the Lyapunov exponent in the parameter region. Furthermore, negative feedback with different gains (D1, D2) is imposed on the local square center area A2 and outer area A1 of the network, it is found that spiral wave, target wave could be developed in the network under appropriate feedback gain with diversity and size of controlled area. Particularly, homogeneous state could be reached after synchronization by selecting appropriate feedback gain and controlled size in the network. Finally, the distribution for statistical factors of synchronization is calculated in the two-parameter space to understand the transition of pattern region. It is found that developed spiral waves, target waves often are associated with smaller factor of synchronization. These results show that emergence of sustained spiral wave and continuous target wave could be effective for further suppression of spatiotemporal chaos in network by generating stable pacemaker completely. PMID:27119986

  17. Scroll wave drift along steps, troughs, and corners.

    PubMed

    Ke, Hua; Zhang, Zhihui; Steinbock, Oliver

    2015-06-01

    Three-dimensional excitable systems can create nonlinear scroll waves that rotate around one-dimensional phase singularities. Recent theoretical work predicts that these filaments drift along step-like height variations. Here, we test this prediction using experiments with thin layers of the Belousov-Zhabotinsky reaction. We observe that over short distances scroll waves are attracted towards the step and then rapidly commence a steady drift along the step line. The translating filaments always reside on the shallow side of the step near the edge. Accordingly, filaments in the deep domain initially collide with and shorten at the step wall. The drift speeds obey the predicted proportional dependence on the logarithm of the height ratio and the direction depends on the vortex chirality. We also observe drift along the perimeter of rectangular plateaus and find that the filaments perform sharp turns at the corners. In addition, we investigate rectangular troughs for which vortices of equal chirality can drift in different directions. The latter two effects are reproduced in numerical simulations with the Barkley model. The simulations show that narrow troughs instigate scroll wave encounters that induce repulsive interaction and symmetry breaking. Similar phenomena could exist in the geometrically complicated ventricles of the human heart where reentrant vortex waves cause tachycardia and fibrillation. PMID:26117114

  18. Pattern Selection in Network of Coupled Multi-Scroll Attractors.

    PubMed

    Li, Fan; Ma, Jun

    2016-01-01

    Multi-scroll chaotic attractor makes the oscillator become more complex in dynamic behaviors. The collective behaviors of coupled oscillators with multi-scroll attractors are investigated in the regular network in two-dimensional array, which the local kinetics is described by an improved Chua circuit. A feasible scheme of negative feedback with diversity is imposed on the network to stabilize the spatial patterns. Firstly, the Chua circuit is improved by replacing the nonlinear term with Sine function to generate infinite aquariums so that multi-scroll chaotic attractors could be generated under appropriate parameters, which could be detected by calculating the Lyapunov exponent in the parameter region. Furthermore, negative feedback with different gains (D1, D2) is imposed on the local square center area A2 and outer area A1 of the network, it is found that spiral wave, target wave could be developed in the network under appropriate feedback gain with diversity and size of controlled area. Particularly, homogeneous state could be reached after synchronization by selecting appropriate feedback gain and controlled size in the network. Finally, the distribution for statistical factors of synchronization is calculated in the two-parameter space to understand the transition of pattern region. It is found that developed spiral waves, target waves often are associated with smaller factor of synchronization. These results show that emergence of sustained spiral wave and continuous target wave could be effective for further suppression of spatiotemporal chaos in network by generating stable pacemaker completely.

  19. Pattern Selection in Network of Coupled Multi-Scroll Attractors.

    PubMed

    Li, Fan; Ma, Jun

    2016-01-01

    Multi-scroll chaotic attractor makes the oscillator become more complex in dynamic behaviors. The collective behaviors of coupled oscillators with multi-scroll attractors are investigated in the regular network in two-dimensional array, which the local kinetics is described by an improved Chua circuit. A feasible scheme of negative feedback with diversity is imposed on the network to stabilize the spatial patterns. Firstly, the Chua circuit is improved by replacing the nonlinear term with Sine function to generate infinite aquariums so that multi-scroll chaotic attractors could be generated under appropriate parameters, which could be detected by calculating the Lyapunov exponent in the parameter region. Furthermore, negative feedback with different gains (D1, D2) is imposed on the local square center area A2 and outer area A1 of the network, it is found that spiral wave, target wave could be developed in the network under appropriate feedback gain with diversity and size of controlled area. Particularly, homogeneous state could be reached after synchronization by selecting appropriate feedback gain and controlled size in the network. Finally, the distribution for statistical factors of synchronization is calculated in the two-parameter space to understand the transition of pattern region. It is found that developed spiral waves, target waves often are associated with smaller factor of synchronization. These results show that emergence of sustained spiral wave and continuous target wave could be effective for further suppression of spatiotemporal chaos in network by generating stable pacemaker completely. PMID:27119986

  20. Advanced high-temperature electromagnetic pump

    NASA Technical Reports Server (NTRS)

    Gahan, J. W.; Powell, A. H.

    1972-01-01

    Three phase helical, electromagnetic induction pump for use as boiler feed pump in potassium Rankine-cycle power system is described. Techniques for fabricating components of pump are discussed. Specifications of pump are analyzed.

  1. Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method.

    PubMed

    Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu

    2016-08-10

    Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels.

  2. Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method.

    PubMed

    Ding, Bin; Gao, Lili; Liang, Lusheng; Chu, Qianqian; Song, Xiaoxuan; Li, Yan; Yang, Guanjun; Fan, Bin; Wang, Mingkui; Li, Chengxin; Li, Changjiu

    2016-08-10

    Control of the perovskite film formation process to produce high-quality organic-inorganic metal halide perovskite thin films with uniform morphology, high surface coverage, and minimum pinholes is of great importance to highly efficient solar cells. Herein, we report on large-area light-absorbing perovskite films fabrication with a new facile and scalable gas pump method. By decreasing the total pressure in the evaporation environment, the gas pump method can significantly enhance the solvent evaporation rate by 8 times faster and thereby produce an extremely dense, uniform, and full-coverage perovskite thin film. The resulting planar perovskite solar cells can achieve an impressive power conversion efficiency up to 19.00% with an average efficiency of 17.38 ± 0.70% for 32 devices with an area of 5 × 2 mm, 13.91% for devices with a large area up to 1.13 cm(2). The perovskite films can be easily fabricated in air conditions with a relative humidity of 45-55%, which definitely has a promising prospect in industrial application of large-area perovskite solar panels. PMID:27428311

  3. Curling Edges: A Problem that Has Plagued Scrolls for Millennia

    NASA Astrophysics Data System (ADS)

    Chou, Ming-Han; Shen, Wei-Chao; Wang, Yi-Ping; Hung, Sun-Hsin; Hong, Tzay-Ming

    2014-01-01

    Qi-Wa refers to the up curl on the lengths of hand scrolls and hanging scrolls, which has troubled Chinese artisans and emperors for as long as the art of painting and calligraphy has existed. This warp is unwelcome not only for aesthetic reasons, but its potential damage to the fiber and ink. Although it is generally treated as a part of the cockling and curling due to moisture, consistency of paste, and defects from the mounting procedures, we demonstrate that the spontaneous extrinsic curvature incurred from the storage is in fact more essential to understanding and curing Qi-Wa. In contrast to the former factors whose effects are less predictable, the plastic deformation and strain distribution on a membrane are a well-defined mechanical problem. We study this phenomenon by experiments, theoretical models, and molecular dynamics simulation, and obtain consistent scaling relations for the Qi-Wa height. This knowledge enables us to propose modifications on the traditional mounting techniques that are tested on real mounted paper to be effective at mitigating Qi-Wa. By experimenting on polymer-based films, we demonstrate the possible relevance of our study to the modern development of flexible electronic paper.

  4. Curling edges: a problem that has plagued scrolls for millennia.

    PubMed

    Chou, Ming-Han; Shen, Wei-Chao; Wang, Yi-Ping; Hung, Sun-Hsin; Hong, Tzay-Ming

    2014-01-24

    Qi-Wa refers to the up curl on the lengths of hand scrolls and hanging scrolls, which has troubled Chinese artisans and emperors for as long as the art of painting and calligraphy has existed. This warp is unwelcome not only for aesthetic reasons, but its potential damage to the fiber and ink. Although it is generally treated as a part of the cockling and curling due to moisture, consistency of paste, and defects from the mounting procedures, we demonstrate that the spontaneous extrinsic curvature incurred from the storage is in fact more essential to understanding and curing Qi-Wa. In contrast to the former factors whose effects are less predictable, the plastic deformation and strain distribution on a membrane are a well-defined mechanical problem. We study this phenomenon by experiments, theoretical models, and molecular dynamics simulation, and obtain consistent scaling relations for the Qi-Wa height. This knowledge enables us to propose modifications on the traditional mounting techniques that are tested on real mounted paper to be effective at mitigating Qi-Wa. By experimenting on polymer-based films, we demonstrate the possible relevance of our study to the modern development of flexible electronic paper. PMID:24484142

  5. Scroll wave meandering induced by phase difference in a three-dimensional excitable medium.

    PubMed

    Yang, Zhao; Gao, Shiyuan; Ouyang, Qi; Wang, Hongli

    2012-11-01

    We investigated scroll waves in an inhomogeneous excitable 3D system with gradient of excitability. The gradient promotes twisting of the scroll waves. Sufficiently large excitability gradient enhances the twisting and causes simple scroll waves to transition to meandering scroll waves. For the twist-induced instability of scroll waves, we analyzed the stability of 2D spiral waves sliced from the twisted scroll in the vertical direction. The 3D problem is simplified by taking into account the diffusive coupling in the third direction as a time-delayed perturbation to the 2D spiral wave. An additional "negative mass" term measuring the twist thus arises in the 2D system and induces the transition from simple rotation to meandering. A further increase in the gradient ruins partially the unity of the meandering scrolls and generates semiturbulence, the analogs of which were observed in the Belousov-Zhabotinski reaction. We also generated the phase diagram in the parameter space by adjusting the threshold for excitation of the media.

  6. Visualization of Mobile Mapping Data via Parallax Scrolling

    NASA Astrophysics Data System (ADS)

    Eggert, D.; Schulze, E. C.

    2014-08-01

    Visualizing big point-clouds, such as those derived from mobile mapping data, is not an easy task. Therefore many approaches have been proposed, based on either reducing the overall amount of data or the amount of data that is currently displayed to the user. Furthermore, an entirely free navigation within such a point-cloud is also not always intuitive using the usual input devices. This work proposes a visualization scheme for massive mobile mapping data inspired by a multiplane camera model also known as parallax scrolling. This technique, albeit entirely two-dimensional, creates a depth illusion by moving a number of overlapping partially transparent image layers at various speeds. The generation of such layered models from mobile mapping data greatly reduces the amount of data up to about 98 % depending on the used image resolution. Finally, it is well suited for the panoramic-fashioned visualization of the environment of a moving car.

  7. Packing with a twist: from Wrinkles to Scrolls

    NASA Astrophysics Data System (ADS)

    Kudrolli, Arshad; Chopin, Julien

    2012-02-01

    We discuss an experimental investigation of a thin elastic sheet in the form of a ribbon with clamped boundary conditions at both ends which is then subjected to a twist by rotating the ends through a prescribed angle. We find that a wrinkling instability appears even at a small twist angle which depends on the aspect ratio of the ribbon, its bending modulus and initial tension. Using x-ray tomography, we show that the pattern of this first instability has an impact on the folding at larger twist angles which can result in ordered configurations including Fermat scrolls. Still further twisting results in a highly compressive packing as in wringing a towel without application of direct radial compression. Implications for developing yarns with novel mechanical and transport properties [Lima, et al., Science 331, 51 (2011)] will be discussed.

  8. Computer program for the analysis of the cross flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    A computer program was used to solve the governing of the potential flow in the cross sectional planes of a radial inflow turbine scroll. A list of the main program, the subroutines, and typical output example are included.

  9. Maximal Unstable Dissipative Interval to Preserve Multi-scroll Attractors via Multi-saturated Functions

    NASA Astrophysics Data System (ADS)

    Díaz-González, Edgar C.; López-Rentería, Jorge-Antonio; Campos-Cantón, Eric; Aguirre-Hernández, Baltazar

    2016-07-01

    In this paper, we present families of piecewise linear systems which are controlled by a continuous piecewise monoparametric control function for the generation of monoparametric families of multi-scroll attractors. Thus, the maximum range of values that the parameter set can take in order to preserve the useful dynamics for generating of multi-scroll attractors is found and it will be called maximal robust dynamics interval. This class of dynamical systems is the result of combining two or more unstable "one-spiral" trajectories. We give necessary and sufficient conditions in order to preserve multi-scroll attractors in terms of a parameter, i.e., a family of multi-scroll attractors is generated by means of a family of switching systems with multiple monoparametric companion matrices. Lastly, we provide an example to show how the developed theory works.

  10. Generation of 2N + 1-scroll existence in new three-dimensional chaos systems

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Guan, Jian; Ma, Chunyang; Guo, Shuxu

    2016-08-01

    We propose a systematic methodology for creating 2N + 1-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition a12a21 = 0, while the Chua system satisfies a12a21 > 0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 2N + 1-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 2N + 1-scroll attractors. Finally, to explore the potential use in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1-, 3-, 5-, and 7-scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design.

  11. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system.

    PubMed

    Yuan, Fang; Wang, Guangyi; Wang, Xiaowei

    2016-07-01

    In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numerical simulations.

  12. Phase-locked scroll waves defy turbulence induced by negative filament tension.

    PubMed

    Li, Teng-Chao; Gao, Xiang; Zheng, Fei-Fei; Cai, Mei-Chun; Li, Bing-Wei; Zhang, Hong; Dierckx, Hans

    2016-01-01

    Scroll waves in a three-dimensional media may develop into turbulence due to negative tension of the filament. Such negative tension-induced instability of scroll waves has been observed in the Belousov-Zhabotinsky reaction systems. Here we propose a method to restabilize scroll wave turbulence caused by negative tension in three-dimensional chemical excitable media using a circularly polarized (rotating) external field. The stabilization mechanism is analyzed in terms of phase-locking caused by the external field, which makes the effective filament tension positive. The phase-locked scroll waves that have positive tension and higher frequency defy the turbulence and finally restore order. A linear theory for the change of filament tension caused by a generic rotating external field is presented and its predictions closely agree with numerical simulations. PMID:26871082

  13. Phase-locked scroll waves defy turbulence induced by negative filament tension.

    PubMed

    Li, Teng-Chao; Gao, Xiang; Zheng, Fei-Fei; Cai, Mei-Chun; Li, Bing-Wei; Zhang, Hong; Dierckx, Hans

    2016-01-01

    Scroll waves in a three-dimensional media may develop into turbulence due to negative tension of the filament. Such negative tension-induced instability of scroll waves has been observed in the Belousov-Zhabotinsky reaction systems. Here we propose a method to restabilize scroll wave turbulence caused by negative tension in three-dimensional chemical excitable media using a circularly polarized (rotating) external field. The stabilization mechanism is analyzed in terms of phase-locking caused by the external field, which makes the effective filament tension positive. The phase-locked scroll waves that have positive tension and higher frequency defy the turbulence and finally restore order. A linear theory for the change of filament tension caused by a generic rotating external field is presented and its predictions closely agree with numerical simulations.

  14. Phase-locked scroll waves defy turbulence induced by negative filament tension

    NASA Astrophysics Data System (ADS)

    Li, Teng-Chao; Gao, Xiang; Zheng, Fei-Fei; Cai, Mei-Chun; Li, Bing-Wei; Zhang, Hong; Dierckx, Hans

    2016-01-01

    Scroll waves in a three-dimensional media may develop into turbulence due to negative tension of the filament. Such negative tension-induced instability of scroll waves has been observed in the Belousov-Zhabotinsky reaction systems. Here we propose a method to restabilize scroll wave turbulence caused by negative tension in three-dimensional chemical excitable media using a circularly polarized (rotating) external field. The stabilization mechanism is analyzed in terms of phase-locking caused by the external field, which makes the effective filament tension positive. The phase-locked scroll waves that have positive tension and higher frequency defy the turbulence and finally restore order. A linear theory for the change of filament tension caused by a generic rotating external field is presented and its predictions closely agree with numerical simulations.

  15. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  16. Study on Mechanism Analysis and Motion Simulation of the Scroll Compressor

    NASA Astrophysics Data System (ADS)

    Su, Donghai; Wang, Zhijun

    In this paper, according to the application practice of scroll compressor for refrigeration and air-conditioning, various factors affecting the whole refrigeration effect of the compressor are studied, the influence of scroll wrap's different forms on compressor exhaust angle and the compression ratio is stated, and it establishes the working principle simulation of the compressor's main parts, and further corrects the form of vortex lines according to simulation results.

  17. Understanding and Controlling Scrolled Polymer Single Crystal Habits in Isotactic Polybutene-1

    NASA Astrophysics Data System (ADS)

    Sun, Hao-Jan; Lotz, Bernard; Cheng, Stephen

    2010-03-01

    The origin of non-planar polymer crystal habit, lamellar twisting and scrolling, still remains unclear. In this study, isotactic polybutene-1 (iPBu-1) was chosen as a model compound to investigate the precise relationship between the building molecules and the scrolled morphology. The scrolled micro-tubular iPBu-1 Form III single crystals have been successfully produced through dilute solution crystallization. TEM observation confirmed the edges are the (110) growth faces and that the scroll axis is along (320) plane. Polyethylene decoration experiments showed the lozenge shape crystal has four sectors with fold direction in each sector along the (110) growth surface. TEM and AFM studies also showed that the micro-tube size can be controlled by lamellar thickness which is dependent on crystallization temperature. Based upon these observations, a mechanism for lamellar scrolling is proposed where the asymmetric chain folds on opposite fold surfaces could be introduced by the isochiral 41 helical packing scheme in the unit cell. These asymmetric chain folds along the growth direction can generate unbalanced surface stresses to make the lamellar scrolling.

  18. Polynomial law for controlling the generation of n-scroll chaotic attractors in an optoelectronic delayed oscillator

    SciTech Connect

    Márquez, Bicky A. Suárez-Vargas, José J. Ramírez, Javier A.

    2014-09-01

    Controlled transitions between a hierarchy of n-scroll attractors are investigated in a nonlinear optoelectronic oscillator. Using the system's feedback strength as a control parameter, it is shown experimentally the transition from Van der Pol-like attractors to 6-scroll, but in general, this scheme can produce an arbitrary number of scrolls. The complexity of every state is characterized by Lyapunov exponents and autocorrelation coefficients.

  19. Demonstration of motionless Knudsen pump based micro-gas chromatography featuring micro-fabricated columns and on-column detectors.

    PubMed

    Liu, Jing; Gupta, Naveen K; Wise, Kensall D; Gianchandani, Yogesh B; Fan, Xudong

    2011-10-21

    This paper reports the investigation of a micro-gas chromatography (μGC) system that utilizes an array of miniaturized motionless Knudsen pumps (KPs) as well as microfabricated separation columns and optical detectors. A prototype system was built to achieve a flow rate of 1 mL min(-1) and 0.26 mL min(-1) for helium and dry air, respectively, when they were used as carrier gas. This system was then employed to evaluate GC performance compromises and demonstrate the ability to separate and detect gas mixtures containing analytes of different volatilities and polarities. Furthermore, the use of pressure programming of the KP array was demonstrated to significantly shorten the analysis time while maintaining a high detection resolution. Using this method, we obtained a high resolution detection of 5 alkanes of different volatilities within 5 min. Finally, we successfully detected gas mixtures of various polarities using a tandem-column μGC configuration by installing two on-column optical detectors to obtain complementary chromatograms.

  20. Edge curling that has plagued scrolls for millenniums

    NASA Astrophysics Data System (ADS)

    Chou, Ming-Han; Shen, Wei-Chao; Wang, Yi-Ping; Hung, Sun-Hsin; Hong, Tzay-Ming; Department of Registration and Conservation, National Palace Museum Collaboration; Department of Physics, National Tsing Hua University Team

    2014-03-01

    Qi-Wa refers to the up curl on the lengths of handscrolls and hanging scrolls, which has troubled Chinese artisans and emperors for as long as the art of painting and calligraphy exists. This warp is unwelcome not only for aesthetic reasons, but its potential damage to the fiber and ink. Although it is generally treated as a part of the cockling and curling due to moisture, consistency of paste, and defects from the mounting procedures, we demonstrate that the spontaneous extrinsic curvature incurred from the storage is in fact more essential to understanding and curing Qi-Wa. In contrast to the former factors whose effects are less predictable, the plastic deformation and strain distribution on a membrane are a well-defined mechanical problem. We study this phenomenon by experiments, theoretical models, and Molecular Dynamics Simulation, and obtain consistent scaling relations for the Qi-Wa height. This knowledge enables us to propose modifications on the traditional mounting techniques, that are tested on real mounted paper to be effective at mitigating Qi-Wa. By experimenting on polymer-based films, we demonstrate possible relevance of our study to the modern development of flexible electronic paper.

  1. Geometry controls conformation of graphene sheets: membranes, ribbons, and scrolls.

    PubMed

    Xu, Zhiping; Buehler, Markus J

    2010-07-27

    Graphene features a two-dimensional structure, where applications from electronic building blocks to reinforced composites are emerging, enabled through the utilization of its intriguing electrical, mechanical, and thermal properties. These properties are controlled by the structural makeup of graphene, which is known to display multiple morphologies that change under thermal fluctuations and variations of its geometry. However, as of now, a systematic understanding of the relationship between the conformation of graphene and its geometry remains unknown, preventing rational bottom-up design of materials, structures, and devices. Here, we present a conformational phase diagram for rectangular graphene sheets, defined by their geometry (size and aspect ratio), boundary conditions, and the environmental conditions such as supporting substrates and chemical modifications, as well as changes in temperature. We discover the occurrence of three major structural arrangements in membrane, ribbon, and scroll phases as the aspect ratio of the graphene nanoribbon increases. A theoretical and computational analysis of governing mechanisms for each conformation is provided. PMID:20597529

  2. Dynamics of Scroll Wave in a Three-Dimensional System with Changing Gradient.

    PubMed

    Yuan, Xiao-Ping; Chen, Jiang-Xing; Zhao, Ye-Hua; Liu, Gui-Quan; Ying, He-Ping

    2016-01-01

    The dynamics of a scroll wave in an excitable medium with gradient excitability is studied in detail. Three parameter regimes can be distinguished by the degree of gradient. For a small gradient, the system reaches a simple rotating synchronization. In this regime, the rigid rotating velocity of spiral waves is maximal in the layers with the highest filament twist. As the excitability gradient increases, the scroll wave evolutes into a meandering synchronous state. This transition is accompanied by a variation in twisting rate. Filament twisting may prevent the breakup of spiral waves in the bottom layers with a low excitability with which a spiral breaks in a 2D medium. When the gradient is large enough, the twisted filament breaks up, which results in a semi-turbulent state where the lower part is turbulent while the upper part contains a scroll wave with a low twisting filament. PMID:27031956

  3. From damage to discovery via virtual unwrapping: Reading the scroll from En-Gedi

    PubMed Central

    Seales, William Brent; Parker, Clifford Seth; Segal, Michael; Tov, Emanuel; Shor, Pnina; Porath, Yosef

    2016-01-01

    Computer imaging techniques are commonly used to preserve and share readable manuscripts, but capturing writing locked away in ancient, deteriorated documents poses an entirely different challenge. This software pipeline—referred to as “virtual unwrapping”—allows textual artifacts to be read completely and noninvasively. The systematic digital analysis of the extremely fragile En-Gedi scroll (the oldest Pentateuchal scroll in Hebrew outside of the Dead Sea Scrolls) reveals the writing hidden on its untouchable, disintegrating sheets. Our approach for recovering substantial ink-based text from a damaged object results in readable columns at such high quality that serious critical textual analysis can occur. Hence, this work creates a new pathway for subsequent textual discoveries buried within the confines of damaged materials. PMID:27679821

  4. The thermal-flow behavior of the working chamber in an oil-free scroll compressor

    NASA Astrophysics Data System (ADS)

    Rak, Józef

    2013-09-01

    The paper presents the full transient, two-dimensional finite volume method numerical calculations of the classical involute scroll compressor geometry. The purpose of the study was to develop and evaluate an adaptable implementation of numerical fluid mechanics and thermodynamics modeling procedure with a mesh deformation. The methodology consisting in the compression chamber geometry preparation, mesh generation and governing equations solving was described. The evaluation was carried by simulating an adiabatic compression process and the results were compared with the theoretical zero-dimensional model and the existing research concerning the scroll chamber computational fluid dynamics modeling. It has been shown that the proposed modeling routine results in good accuracy for the scroll compressors study applications.

  5. Dynamics of Scroll Wave in a Three-Dimensional System with Changing Gradient

    PubMed Central

    Yuan, Xiao-Ping; Chen, Jiang-Xing; Zhao, Ye-Hua; Liu, Gui-Quan; Ying, He-Ping

    2016-01-01

    The dynamics of a scroll wave in an excitable medium with gradient excitability is studied in detail. Three parameter regimes can be distinguished by the degree of gradient. For a small gradient, the system reaches a simple rotating synchronization. In this regime, the rigid rotating velocity of spiral waves is maximal in the layers with the highest filament twist. As the excitability gradient increases, the scroll wave evolutes into a meandering synchronous state. This transition is accompanied by a variation in twisting rate. Filament twisting may prevent the breakup of spiral waves in the bottom layers with a low excitability with which a spiral breaks in a 2D medium. When the gradient is large enough, the twisted filament breaks up, which results in a semi-turbulent state where the lower part is turbulent while the upper part contains a scroll wave with a low twisting filament. PMID:27031956

  6. From damage to discovery via virtual unwrapping: Reading the scroll from En-Gedi

    PubMed Central

    Seales, William Brent; Parker, Clifford Seth; Segal, Michael; Tov, Emanuel; Shor, Pnina; Porath, Yosef

    2016-01-01

    Computer imaging techniques are commonly used to preserve and share readable manuscripts, but capturing writing locked away in ancient, deteriorated documents poses an entirely different challenge. This software pipeline—referred to as “virtual unwrapping”—allows textual artifacts to be read completely and noninvasively. The systematic digital analysis of the extremely fragile En-Gedi scroll (the oldest Pentateuchal scroll in Hebrew outside of the Dead Sea Scrolls) reveals the writing hidden on its untouchable, disintegrating sheets. Our approach for recovering substantial ink-based text from a damaged object results in readable columns at such high quality that serious critical textual analysis can occur. Hence, this work creates a new pathway for subsequent textual discoveries buried within the confines of damaged materials.

  7. Reading with peripheral vision: a comparison of reading dynamic scrolling and static text with a simulated central scotoma.

    PubMed

    Harvey, Hannah; Walker, Robin

    2014-05-01

    Horizontally scrolling text is, in theory, ideally suited to enhance viewing strategies recommended to improve reading performance under conditions of central vision loss such as macular disease, although it is largely unproven in this regard. This study investigated if the use of scrolling text produced an observable improvement in reading performed under conditions of eccentric viewing in an artificial scotoma paradigm. Participants (n=17) read scrolling and static text with a central artificial scotoma controlled by an eye-tracker. There was an improvement in measures of reading accuracy, and adherence to eccentric viewing strategies with scrolling, compared to static, text. These findings illustrate the potential benefits of scrolling text as a potential reading aid for those with central vision loss.

  8. Drift of scroll waves in thin layers caused by thickness features: asymptotic theory and numerical simulations.

    PubMed

    Biktasheva, I V; Dierckx, H; Biktashev, V N

    2015-02-13

    A scroll wave in a very thin layer of excitable medium is similar to a spiral wave, but its behavior is affected by the layer geometry. We identify the effect of sharp variations of the layer thickness, which is separate from filament tension and curvature-induced drifts described earlier. We outline a two-step asymptotic theory describing this effect, including asymptotics in the layer thickness and calculation of the drift of so-perturbed spiral waves using response functions. As specific examples, we consider drift of scrolls along thickness steps, ridges, ditches, and disk-shaped thickness variations. Asymptotic predictions agree with numerical simulations.

  9. Compressor Calorimeter Test of R-410A Alternative: R-32/134a Mixture Using a Scroll Compressor

    SciTech Connect

    Shrestha, Som S; Sharma, Vishaldeep; Abdelaziz, Omar

    2014-02-01

    As a contribution to the AHRI Low-GWP Alternative Refrigerants Evaluation Program (AREP), this study compares the performance of lower-GWP alternative refrigerant R-32 + R-134a mixture, to that of refrigerant R-410A (baseline) in a scroll compressor designed for air-conditioning and heat pump applications. These comparisons were carried out via compressor calorimeter tests performed on a compressor designed for refrigerant R-410A and having a nominal rated capacity of 21,300 Btu/hr. Tests were conducted over a suction dew point temperature range of 10 F to 55 F in 5 F increments and a discharge dew point temperature range of 70 F to 140 F in 10 F increments. All the tests were performed with 20 F superheat, 40 F superheat, and 65 F suction temperature. A liquid subcooling level of 15 F was maintained for all the test conditions. The tests showed that the discharge temperature of the alternative refrigerant was higher than that of R-410A at all test conditions. Also, the energy efficiency ratio (EER) and cooling capacity of compressor using the alternative refrigerant were slightly lower in comparison to that of R-410A.

  10. Why Transcripts of the Dead Sea Scrolls Had to Be Released.

    ERIC Educational Resources Information Center

    Shanks, Hershel

    1991-01-01

    The editor of the "Biblical Archaeology Review" defends publication of an unauthorized copy of the Dead Sea Scrolls transcripts, which used the reconstructive work of others. The ethics of publishing reconstructed transcripts, the history of the documents since their discovery, and the rights and responsibilities of scholars are discussed. (MSE)

  11. 77 FR 36329 - Culturally Significant Objects Imported for Exhibition Determinations: “Dead Sea Scrolls & The...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... Culturally Significant Objects Imported for Exhibition Determinations: ``Dead Sea Scrolls & The Bible Ancient Artifacts-- Timeless Treasures'' SUMMARY: Notice is hereby given of the following determinations: Pursuant... April 15, 2003), I hereby determine that the objects to be included in the exhibition ``Dead Sea...

  12. Opening of Dead Sea Scrolls Archive Underlines Problems That Can Complicate Access to Research Materials.

    ERIC Educational Resources Information Center

    Coughlin, Ellen K.

    1991-01-01

    The Huntington Library (California) decision to make generally accessible, for the first time, copies of photographs of the Dead Sea Scrolls, previously tightly controlled by a small group of editors, is hailed as breaking a scholarly monopoly over an important intellectual resource, reaffirming the mission of the research library and the…

  13. Quantifying degradation of collagen in ancient manuscripts: the case of the Dead Sea Temple Scroll.

    PubMed

    Schütz, R; Bertinetti, L; Rabin, I; Fratzl, P; Masic, A

    2013-10-01

    Since their discovery in the late 1940s, the Dead Sea Scrolls, some 900 ancient Jewish texts, have never stopped attracting the attention of scholars and the broad public alike, because they were created towards the end of the Second Temple period and the "time of Christ". Most of the work on them has been dedicated to the information contained in the scrolls' text, leaving physical aspects of the writing materials unexamined. They are, however, crucial for both historical insight and preservation of the scrolls. Although scientific analysis requires handling, it is essential to establish the state of degradation of these valued documents. Polarized Raman Spectroscopy (PRS) is a powerful tool for obtaining information on both the composition and the level of disorder of molecular units. In this study, we developed a non-invasive and non-destructive methodology that allows a quantification of the disorder (that can be related to the degradation) of protein molecular units in collagen fibers. Not restricted to collagen, this method can be applied also to other protein-based fibrous materials such as ancient silk, wool or hair. We used PRS to quantify the degradation of the collagen fibers in a number of fragments of the Temple Scroll (11Q19a). We found that collagen fibers degrade heterogeneously, with the ones on the surface more degraded than those in the core.

  14. Rating the Raters: Some Characteristics of Quill and Scroll's Newspaper and Newsmagazine Judges.

    ERIC Educational Resources Information Center

    Dvorak, Jack

    To prepare a profile of Quill and Scroll's newspaper and newsmagazine judges, questionnaires were sent to all 57 judges involved in the 1982 competition. Analysis of the 39 responses indicated that the typical judge (1) is female and has judged for two or more years, (2) has taught high school for five or more years, (3) holds certification to…

  15. Generation of 2N + 1-scroll existence in new three-dimensional chaos systems.

    PubMed

    Liu, Yue; Guan, Jian; Ma, Chunyang; Guo, Shuxu

    2016-08-01

    We propose a systematic methodology for creating 2N + 1-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition a12a21 = 0, while the Chua system satisfies a12a21 > 0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 2N + 1-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 2N + 1-scroll attractors. Finally, to explore the potential use in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1-, 3-, 5-, and 7-scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design. PMID:27586624

  16. The Relationship between Scrolling, Negotiation, and Self-Initiated Self-Repair in an SCMC Environment

    ERIC Educational Resources Information Center

    Smith, Bryan

    2009-01-01

    This study explores the relationship between scrolling, negotiated interaction, and self-initiated self-repair (SISR) in a task-based synchronous computer-mediated communication (SCMC) foreign language learning environment. Pairs of adult learners of German engaged in four jigsaw tasks over the course of one university semester. Video screen…

  17. Scrolled and rapid serial visual presentation texts are read at similar rates by the visually impaired.

    PubMed

    Fine, E M; Peli, E

    1995-10-01

    Visually impaired observers read dynamically displayed text faster than text displayed in a normal page view. The goal of this study was to compare reading rates from two dynamic-presentation methods that have been proposed to facilitate reading from computer-based displays. Prior research has shown that both normally sighted and low-vision observers read text displayed to the same location, one word at a time [known as rapid serial visual presentation (RSVP)], faster than a page of text. A similar comparison with text scrolled continuously across the screen also shows faster reading for low-vision patients, but the relative change from a standard page view is substantially less (15% faster for the scroll display versus 80% faster for RSVP). In this study we directly compared these techniques. For those with normal vision, reading from the RSVP display was 1.3 times faster than reading from the scroll display [t(9) = 3.32, P = 0.009]. Although the difference in reading rates for the visually impaired group did not reach statistical significance, as a group they read 13% slower from the RSVP than from the scroll display.

  18. Evolution of Spiral and Scroll Waves of Excitation in a Mathematical Model of Ischaemic Border Zone

    PubMed Central

    Biktashev, Vadim N.; Biktasheva, Irina V.; Sarvazyan, Narine A.

    2011-01-01

    Abnormal electrical activity from the boundaries of ischemic cardiac tissue is recognized as one of the major causes in generation of ischemia-reperfusion arrhythmias. Here we present theoretical analysis of the waves of electrical activity that can rise on the boundary of cardiac cell network upon its recovery from ischaemia-like conditions. The main factors included in our analysis are macroscopic gradients of the cell-to-cell coupling and cell excitability and microscopic heterogeneity of individual cells. The interplay between these factors allows one to explain how spirals form, drift together with the moving boundary, get transiently pinned to local inhomogeneities, and finally penetrate into the bulk of the well-coupled tissue where they reach macroscopic scale. The asymptotic theory of the drift of spiral and scroll waves based on response functions provides explanation of the drifts involved in this mechanism, with the exception of effects due to the discreteness of cardiac tissue. In particular, this asymptotic theory allows an extrapolation of 2D events into 3D, which has shown that cells within the border zone can give rise to 3D analogues of spirals, the scroll waves. When and if such scroll waves escape into a better coupled tissue, they are likely to collapse due to the positive filament tension. However, our simulations have shown that such collapse of newly generated scrolls is not inevitable and that under certain conditions filament tension becomes negative, leading to scroll filaments to expand and multiply leading to a fibrillation-like state within small areas of cardiac tissue. PMID:21935402

  19. Revealing text in a complexly rolled silver scroll from Jerash with computed tomography and advanced imaging software

    NASA Astrophysics Data System (ADS)

    Hoffmann Barfod, Gry; Larsen, John Møller; Lichtenberger, Achim; Raja, Rubina

    2015-12-01

    Throughout Antiquity magical amulets written on papyri, lead and silver were used for apotropaic reasons. While papyri often can be unrolled and deciphered, metal scrolls, usually very thin and tightly rolled up, cannot easily be unrolled without damaging the metal. This leaves us with unreadable results due to the damage done or with the decision not to unroll the scroll. The texts vary greatly and tell us about the cultural environment and local as well as individual practices at a variety of locations across the Mediterranean. Here we present the methodology and the results of the digital unfolding of a silver sheet from Jerash in Jordan from the mid-8th century CE. The scroll was inscribed with 17 lines in presumed pseudo-Arabic as well as some magical signs. The successful unfolding shows that it is possible to digitally unfold complexly folded scrolls, but that it requires a combination of the know-how of the software and linguistic knowledge.

  20. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    PubMed Central

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2014-01-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130g drag pump and Creare 350g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10ng TNT (2,4,6-trinitrotoluene) with Creare 550g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130g drag pump. PMID:25404157

  1. Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R. Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  2. Design of portable mass spectrometers with handheld probes: aspects of the sampling and miniature pumping systems.

    PubMed

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump. PMID:25404157

  3. Design of portable mass spectrometers with handheld probes: aspects of the sampling and miniature pumping systems.

    PubMed

    Chen, Chien-Hsun; Chen, Tsung-Chi; Zhou, Xiaoyu; Kline-Schoder, Robert; Sorensen, Paul; Cooks, R Graham; Ouyang, Zheng

    2015-02-01

    Miniature mass spectrometry analytical systems of backpack configuration fitted with sampling probes could potentially be of significant interest for in-field, real-time chemical analysis. In this study, various configurations were explored in which a long narrow tube was used to connect the turbo and backing pumps used to create and maintain vacuum. Also, for the first time we introduced two new types of pumps for miniature mass spectrometers, the Creare 130 g drag pump and Creare 350 g scroll backing pump. These pumps, along with another Creare 550 turbo pump and the commercially available Pfeiffer HiPace 10 turbo and KnF diaphragm backing pumps, were tested with the backpack configurations. The system performance, especially the scan time, was characterized when used with a discontinuous atmospheric pressure interface (DAPI) for ion introduction. The pumping performance in the pressure region above 1 mtorr is critical for DAPI operation. The 550 g turbo pump was shown to have a relatively higher pumping speed above 1 mtorr and gave a scan time of 300 ms, almost half the value obtained with the larger, heavier HiPace 10 often used with miniature mass spectrometers. The 350 g scroll pump was also found to be an improvement over the diaphragm pumps generally used as backing pumps. With a coaxial low temperature plasma ion source, direct analysis of low volatility compounds glass slides was demonstrated, including 1 ng DNP (2,4-Dinitrophenol) and 10 ng TNT (2,4,6-trinitrotoluene) with Creare 550 g turbo pump as well as 10 ng cocaine and 20 ng DNP with Creare 130 g drag pump.

  4. Progress in net shape fabrication of alpha sic turbine components

    NASA Technical Reports Server (NTRS)

    Sweeting, T. B.; Frechette, F. J.; Macbeth, J. W.

    1984-01-01

    An update of the status of ceramic component development of the AGT Programs is presented. Activity on AGTO Program focussed on the following: successful transition from the prototype to engine configuration rotor, investigation of alternate rotor molding techniques, and completion of scroll assemblies. Progress on the Garrett AGT Program was highlighted by the introduction of plastic molding and extrusion to parts which were previously fabricated by slip casting and isopressing respectively.

  5. Experimental investigation of the ORC system in a cogenerative domestic power plant with a scroll expanders

    NASA Astrophysics Data System (ADS)

    Kaczmarczyk, Tomasz Z.; Ihnatowicz, Eugeniusz; Żywica, Grzegorz; Kiciński, Jan

    2015-11-01

    The paper presents the results of experimental investigations of the ORC system with two scroll expanders which have been used as a source of electricity. Theworking fluidwas HFE7100 - a newly engineered fluid with a unique heat transfer and favourable environmental properties. In the ORC system three heat exchangers were used (evaporator, regenerator, condenser) and before expanders the droplet separator was installed. As a source of heat an innovative biomass boiler was used. Studies have been carried out for the expanders worked in series and in parallel. The paper presents the thermal and fluidflow properties of the ORC installation for the selected flow rates and different temperatures of the working medium. The characteristics of output electrical power, operating speed and vibrations for scroll expanders were also presented.

  6. Study on Variable Capacity Control Mechanism of Scroll Compressor for Automotive Air Conditioner

    NASA Astrophysics Data System (ADS)

    Hirano, Takahisa; Shigeoka, Tetsuo

    As for the automotive air conditioner, (1) to keep the automotive cabin temperature in a comfortable region, (2) to improve driving feeling, (3) to drive the air conditioning system economically through all seasons, are universally required. Recently, from these points, compressors with variable capacity control mechanism for automotive air conditioners have been remarkably requested. We have developed a scroll comoressor with variable capacity control mechanism. The capacity control mechanism, which changes the channel area of the bypass hole continuously, according to the suction gas pressure and the discharge gas pressure, has been developed. In this report, we describe the mechanism of variable capacity control and the performance simulation program that has been developed for the scroll compressor. Further, we describe the measuring results of cylinder pressure behavior, the results of energy loss analysis and the effect of comfort, drivability, power saving in the refrigerating cycle using the developed capacity control compressor.

  7. Benefits of rapid serial visual presentation (RSVP) over scrolled text vary with letter size.

    PubMed

    Fine, E M; Peli, E

    1998-03-01

    We previously reported that low vision readers do not benefit from a rapid serial visual presentation (RSVP) display relative to a scroll display. Each reader in those studies was presented with only one letter size, and it was the same for both displays. In the current study, we systematically varied the size of the letters and compared reading rates from the 2 displays for letters that were 2, 4, 6, 8, and 10 times each reader's acuity threshold. Using this paradigm, we found that subjects with normal vision (n = 12) read faster with RSVP for all text sizes. Low vision subjects (N = 20) showed no benefit of RSVP until the text was at least 8x their acuity threshold. As in our prior studies, there was a great deal of variability within the low vision group, and for a small number of subjects (25%), reading was faster from the scroll than from the RSVP display.

  8. Covariant stringlike dynamics of scroll wave filaments in anisotropic cardiac tissue.

    PubMed

    Verschelde, Henri; Dierckx, Hans; Bernus, Olivier

    2007-10-19

    It has been hypothesized that stationary scroll wave filaments in cardiac tissue describe a geodesic in a curved space whose metric is the inverse diffusion tensor. Several numerical studies support this hypothesis, but no analytical proof has been provided yet for general anisotropy. In this Letter, we derive dynamic equations for the filament in the case of general anisotropy. These equations are covariant under general spatial coordinate transformations and describe the motion of a stringlike object in a curved space whose metric tensor is the inverse diffusion tensor. Therefore the behavior of scroll wave filaments in excitable media with anisotropy is similar to the one of cosmic strings in a curved universe. Our dynamic equations are valid for thin filaments and for general anisotropy. We show that stationary filaments obey the geodesic equation. PMID:17995301

  9. Effects of Word Width and Word Length on Optimal Character Size for Reading of Horizontally Scrolling Japanese Words

    PubMed Central

    Teramoto, Wataru; Nakazaki, Takuyuki; Sekiyama, Kaoru; Mori, Shuji

    2016-01-01

    The present study investigated, whether word width and length affect the optimal character size for reading of horizontally scrolling Japanese words, using reading speed as a measure. In Experiment 1, three Japanese words, each consisting of four Hiragana characters, sequentially scrolled on a display screen from right to left. Participants, all Japanese native speakers, were instructed to read the words aloud as accurately as possible, irrespective of their order within the sequence. To quantitatively measure their reading performance, we used rapid serial visual presentation paradigm, where the scrolling rate was increased until the participants began to make mistakes. Thus, the highest scrolling rate at which the participants’ performance exceeded 88.9% correct rate was calculated for each character size (0.3°, 0.6°, 1.0°, and 3.0°) and scroll window size (5 or 10 character spaces). Results showed that the reading performance was highest in the range of 0.6° to 1.0°, irrespective of the scroll window size. Experiment 2 investigated whether the optimal character size observed in Experiment 1 was applicable for any word width and word length (i.e., the number of characters in a word). Results showed that reading speeds were slower for longer than shorter words and the word width of 3.6° was optimal among the word lengths tested (three, four, and six character words). Considering that character size varied depending on word width and word length in the present study, this means that the optimal character size can be changed by word width and word length in scrolling Japanese words. PMID:26909052

  10. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  11. Radiocarbon analysis of the Torah scrolls from the National Museum of Brazil collection

    NASA Astrophysics Data System (ADS)

    Oliveira, Fabiana M.; Araujo, Carlos A. R.; Macario, Kita D.; Cid, Alberto S.

    2015-10-01

    This radiocarbon study aims to physically verify the critical analysis of the Torah scrolls from the National Museum of Brazil collection. Although the manuscript was formerly believed to be as old as the 10th century, the paleographic and stylistic study of the books of Genesis and Deuteronomy revealed features that could be associated to the year 1560 AD. Radiocarbon analysis was performed and a phase model limited by a Historical boundary was applied. The results are in agreement with the critical analysis of the manuscript that it is not older than the 16th century.

  12. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  13. Casing pump

    SciTech Connect

    Bass, H.E.; Bass, R.E.

    1987-09-29

    A natural gas operated pump is described for use in the casing of an oil well, comprising: a tubular pump body having an open lower end for admitting well fluids to the interior of the pump body and an open upper end, wherein a downwardly facing seating surface is formed on the inner periphery of the pump body adjacent the upper end thereof; means for forming a seal between the pump body and the casing of the well; a rod extending longitudinally through the seating surface formed in the pump body and protruding from the upper end of the pump body; a valve member mounted on the rod below the seating surface and shaped to mate with the seating surface; and means for vertically positioning the rod in proportion to fluid pressure within the pump body.

  14. Solid-state and unilateral NMR study of deterioration of a Dead Sea Scroll fragment.

    PubMed

    Masic, A; Chierotti, M R; Gobetto, R; Martra, G; Rabin, I; Coluccia, S

    2012-02-01

    Unilateral and solid-state nuclear magnetic resonance (NMR) analyses were performed on a parchment fragment of the Dead Sea Scroll (DSS). The analyzed sample belongs to the collection of non-inscribed and nontreated fragments of known archaeological provenance from the John Rylands University Library in Manchester. Therefore, it can be considered as original DSS material free from any contamination related to the post-discovery period. Considering the paramount significance of the DSS, noninvasive approaches and portable in situ nondestructive methods are of fundamental importance for the determination of composition, structure, and chemical-physical properties of the materials under study. NMR studies reveal low amounts of water content associated with very short proton relaxation times, T(1), indicating a high level of deterioration of collagen molecules within scroll fragments. In addition, (13)C cross-polarization magic-angle-spinning (CPMAS) NMR spectroscopy shows characteristic peaks of lipids whose presence we attribute to the production technology that did not involve liming. Extraction with chloroform led to the reduction of both lipid and protein signals in the (13)C CPMAS spectrum indicating probable involvement of lipids in parchment degradation processes. NMR absorption and relaxation measurements provide nondestructive, discriminative, and sensitive tools for studying the deterioration effects on the organization and properties of water and collagen within ancient manuscripts.

  15. Provenance studies on Dead Sea scrolls parchment by means of quantitative micro-XRF.

    PubMed

    Wolff, Timo; Rabin, Ira; Mantouvalou, Ioanna; Kanngiesser, Birgit; Malzer, Wolfgang; Kindzorra, Emanuel; Hahn, Oliver

    2012-02-01

    In this study, we address the question of the provenance and origin of the Dead Sea Scrolls manuscripts. A characteristic low ratio of chlorine to bromine, corresponding to that of the Dead Sea water, may serve as an indicator for local production. For this aim we developed a non-destructive procedure to determine the Cl/Br ratio in the parchment of these manuscripts. Micro-X-ray fluorescence (μ-XRF) measurements of a large number of parchment and leather fragments from the Dead Sea Scrolls were analyzed with a routine we developed based on fundamental parameter quantification. This routine takes into account the absorption of the collagen matrix and the influence of the different sample thicknesses. To calculate the representative Cl/Br ratio for each fragment, we investigated the lateral homogeneity and determined the total mass deposition using the intensity of the inelastically scattered, characteristic tube radiation. The distribution of the Cl/Br ratios thus obtained from the μ-XRF measurements make it possible to distinguish fragments whose origin lies within the Dead Sea region from those produced in other locations.

  16. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  17. Rotating and positive-displacement pumps for low-thrust rocket engines. Volume 1: Pump Evaluation and design. [of centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Macgregor, C.; Csomor, A.

    1974-01-01

    Rotating and positive displacement pumps of various types were studied for pumping liquid fluorine for low-thrust, high-performance rocket engines. Included in the analysis were: centrifugal, pitot, Barske, Tesla, drag, gear, vane, axial piston, radial piston, diaphragm, and helirotor pump concepts. The centrifugal pump and the gear pump were selected and these were carried through detailed design and fabrication. Mechanical difficulties were encountered with the gear pump during the preliminary tests in Freon-12. Further testing and development was therefore limited to the centrifugal pump. Tests on the centrifugal pump were conducted in Freon-12 to determine the hydrodynamic performance and in liquid fluorine to demonstrate chemical compatibility.

  18. Satellite Propellant Pump Research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan

    2005-01-01

    NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.

  19. Removal of pinned scroll waves in cardiac tissues by electric fields in a generic model of three-dimensional excitable media.

    PubMed

    Pan, De-Bei; Gao, Xiang; Feng, Xia; Pan, Jun-Ting; Zhang, Hong

    2016-02-24

    Spirals or scroll waves pinned to heterogeneities in cardiac tissues may cause lethal arrhythmias. To unpin these life-threatening spiral waves, methods of wave emission from heterogeneities (WEH) induced by low-voltage pulsed DC electric fields (PDCEFs) and circularly polarized electric fields (CPEFs) have been used in two-dimensional (2D) cardiac tissues. Nevertheless, the unpinning of scroll waves in three-dimensional (3D) cardiac systems is much more difficult than that of spiral waves in 2D cardiac systems, and there are few reports on the removal of pinned scroll waves in 3D cardiac tissues by electric fields. In this article, we investigate in detail the removal of pinned scroll waves in a generic model of 3D excitable media using PDCEF, AC electric field (ACEF) and CPEF, respectively. We find that spherical waves can be induced from the heterogeneities by these electric fields in initially quiescent excitable media. However, only CPEF can induce spherical waves with frequencies higher than that of the pinned scroll wave. Such higher-frequency spherical waves induced by CPEF can be used to drive the pinned scroll wave out of the cardiac systems. We hope this remarkable ability of CPEF can provide a better alternative to terminate arrhythmias caused by pinned scroll waves.

  20. Solid-state scrolls from hierarchical self-assembly of T-shaped rod-coil molecules.

    PubMed

    Hong, Dong-Je; Lee, Eunji; Jeong, Haemi; Lee, Jeong-kyu; Zin, Wang-Cheol; Nguyen, Trung Dac; Glotzer, Sharon C; Lee, Myongsoo

    2009-01-01

    On a roll: Attachment of flexible coils to the middle of a rigid rod generates T-shaped rod-coil molecules that self-assemble into layers that roll up to form filled cylindrical and hollow tubular scrolls, depending on the coil length, in the solid state (see picture); the rods are arranged parallel to the layer plane.

  1. Revealing text in a complexly rolled silver scroll from Jerash with computed tomography and advanced imaging software

    PubMed Central

    Hoffmann Barfod, Gry; Larsen, John Møller; Raja, Rubina

    2015-01-01

    Throughout Antiquity magical amulets written on papyri, lead and silver were used for apotropaic reasons. While papyri often can be unrolled and deciphered, metal scrolls, usually very thin and tightly rolled up, cannot easily be unrolled without damaging the metal. This leaves us with unreadable results due to the damage done or with the decision not to unroll the scroll. The texts vary greatly and tell us about the cultural environment and local as well as individual practices at a variety of locations across the Mediterranean. Here we present the methodology and the results of the digital unfolding of a silver sheet from Jerash in Jordan from the mid-8th century CE. The scroll was inscribed with 17 lines in presumed pseudo-Arabic as well as some magical signs. The successful unfolding shows that it is possible to digitally unfold complexly folded scrolls, but that it requires a combination of the know-how of the software and linguistic knowledge. PMID:26648504

  2. A novel technique to initiate and investigate scroll waves in thin layers of the photosensitive Belousov-Zhabotinsky reaction.

    PubMed

    Azhand, Arash; Buchholz, Rico; Totz, Jan F; Engel, Harald

    2016-06-01

    While free scroll rings are non-stationary objects that either grow or contract with time, spatial confinement can have a large impact on their evolution reaching from significant lifetime extension (J.F. Totz, H. Engel, O. Steinbock, New J. Phys. 17, 093043 (2015)) up to formation of stable stationary and breathing pacemakers (A. Azhand, J.F. Totz, H. Engel, EPL 108, 10004 (2014)). Here, we explore the parameter range in which the interaction between an axis-symmetric scroll ring and a confining planar no-flux boundary can be studied experimentally in transparent gel layers supporting chemical wave propagation in the photosensitive variant of the Belousov-Zhabotinsky medium. Based on full three-dimensional simulations of the underlying modified complete Oregonator model for experimentally realistic parameters, we determine the conditions for successful initiation of scroll rings in a phase diagram spanned by the layer thickness and the applied light intensity. Furthermore, we discuss whether the illumination-induced excitability gradient due to Lambert-Beer's law as well as a possible inclination of the filament plane with respect to the no-flux boundary can destabilize the scroll ring.

  3. A novel technique to initiate and investigate scroll waves in thin layers of the photosensitive Belousov-Zhabotinsky reaction.

    PubMed

    Azhand, Arash; Buchholz, Rico; Totz, Jan F; Engel, Harald

    2016-06-01

    While free scroll rings are non-stationary objects that either grow or contract with time, spatial confinement can have a large impact on their evolution reaching from significant lifetime extension (J.F. Totz, H. Engel, O. Steinbock, New J. Phys. 17, 093043 (2015)) up to formation of stable stationary and breathing pacemakers (A. Azhand, J.F. Totz, H. Engel, EPL 108, 10004 (2014)). Here, we explore the parameter range in which the interaction between an axis-symmetric scroll ring and a confining planar no-flux boundary can be studied experimentally in transparent gel layers supporting chemical wave propagation in the photosensitive variant of the Belousov-Zhabotinsky medium. Based on full three-dimensional simulations of the underlying modified complete Oregonator model for experimentally realistic parameters, we determine the conditions for successful initiation of scroll rings in a phase diagram spanned by the layer thickness and the applied light intensity. Furthermore, we discuss whether the illumination-induced excitability gradient due to Lambert-Beer's law as well as a possible inclination of the filament plane with respect to the no-flux boundary can destabilize the scroll ring. PMID:27329535

  4. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  5. Carbon nanoscrolls fabricated from graphene nanoribbons using Ni nanowire templates: A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Huang, Senpeng; Wang, Bin; Feng, Min; Xu, Xiaoxuan; Cao, Xuewei; Wang, Yufang

    2015-04-01

    Carbon nanoscroll (CNS) has aroused the great interest of research in many fields, due to its unique properties and potential industrial applications. However, there exists a number of challenges in the fabrication of CNSs. A molecular dynamics simulation on the fabrication of a CNS from a graphene nanoribbon (GNR) initiated by a nickel nanowire (Ni NW) has been carried out. The GNR twines around the Ni NW and spontaneously scrolls into a CNS with an interlayer distance of 3.417 Å, forming a stable multi-layer core-shell construction. The Ni NW plays a role of activator in the process, resulting in the structural transition of the GNR from 2D to 3D phase. An irreversible deformation of the Ni NW occurs during the self-scrolling process, which induces the nanowire to be more stable.

  6. [On the etiological concept in the literature from unearthed documents of bamboo slips and silk scrolls].

    PubMed

    Ding, Yuan; Zhang, Ruqing

    2014-03-01

    There is a substantial number of medical literature in the unearthed bamboo slips and silk scroll literature, the vast majority of which came into being earlier than medical books handed down from the ancient time, and are the documents of the origin of Chinese medicine dated back to the earliest time known thus far. In these documents, the contents of not a few of them deals with the etiology of disease which, by textual criticism and analysis, can be classified into seven different aspects, namely, six climatic pathogenic factors, emotional factors, injury caused by falling, traumatic damage; frostbite and burns, insect or animal bites, drug poisoning, evil spirit haunting, and constitutional factors, reflecting the contemporary etiological concept truthfully.

  7. Design and implementation of grid multi-scroll fractional-order chaotic attractors

    NASA Astrophysics Data System (ADS)

    Chen, Liping; Pan, Wei; Wu, Ranchao; Tenreiro Machado, J. A.; Lopes, António M.

    2016-08-01

    This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9 × 9 grid FO attractors are observed at most. Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct.

  8. Design and implementation of grid multi-scroll fractional-order chaotic attractors.

    PubMed

    Chen, Liping; Pan, Wei; Wu, Ranchao; Tenreiro Machado, J A; Lopes, António M

    2016-08-01

    This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9 × 9 grid FO attractors are observed at most. Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct. PMID:27586620

  9. Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit.

    PubMed

    Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D; Taggart-Scarff, Joshua K; Qing, Bo; Van Vliet, Krystyn J; Li, Richard; Wardle, Brian L; Strano, Michael S

    2016-07-22

    Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction.

  10. Design and implementation of grid multi-scroll fractional-order chaotic attractors.

    PubMed

    Chen, Liping; Pan, Wei; Wu, Ranchao; Tenreiro Machado, J A; Lopes, António M

    2016-08-01

    This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9 × 9 grid FO attractors are observed at most. Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct.

  11. [On the etiological concept in the literature from unearthed documents of bamboo slips and silk scrolls].

    PubMed

    Ding, Yuan; Zhang, Ruqing

    2014-03-01

    There is a substantial number of medical literature in the unearthed bamboo slips and silk scroll literature, the vast majority of which came into being earlier than medical books handed down from the ancient time, and are the documents of the origin of Chinese medicine dated back to the earliest time known thus far. In these documents, the contents of not a few of them deals with the etiology of disease which, by textual criticism and analysis, can be classified into seven different aspects, namely, six climatic pathogenic factors, emotional factors, injury caused by falling, traumatic damage; frostbite and burns, insect or animal bites, drug poisoning, evil spirit haunting, and constitutional factors, reflecting the contemporary etiological concept truthfully. PMID:24989802

  12. Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit.

    PubMed

    Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D; Taggart-Scarff, Joshua K; Qing, Bo; Van Vliet, Krystyn J; Li, Richard; Wardle, Brian L; Strano, Michael S

    2016-07-22

    Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction. PMID:27463667

  13. Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit

    NASA Astrophysics Data System (ADS)

    Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D.; Taggart-Scarff, Joshua K.; Qing, Bo; Van Vliet, Krystyn J.; Li, Richard; Wardle, Brian L.; Strano, Michael S.

    2016-07-01

    Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction.

  14. Insulin pumps.

    PubMed

    Pickup, J

    2010-02-01

    Insulin pump therapy is now more than 30 years old, and is an established part of the routine care of selected people with type 1 diabetes. Nevertheless, there are still significant areas of concern, particularly how pumps compare with modern injection therapy, whether the increasingly sophisticated pump technologies like onboard calculators and facility for computer download offer any real benefit, and whether we have a consensus on the clinical indications. The following papers offer some insight into these and other current questions.

  15. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  16. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  17. Numerical simulation of three-dimensional unsteady flow in a scroll expander applied in waste heat recovery

    NASA Astrophysics Data System (ADS)

    Song, P. P.; Wei, M. S.; Shi, L.; Ma, C. C.

    2013-12-01

    Three-dimensional numerical simulations of a scroll expander were performed with dynamic mesh technology. R245fa was selected as the working fluid in the simulations. The PISO algorithm was applied to solve the governing equations with RNG k-ε turbulent model. The distribution and variation of three-dimensional flow field inside the scroll expander were obtained. The research indicates that the flow field is nonuniform and asymmetrical distributions exist inside the expander. Vortex flows also exist in some working chambers. Dynamic clearance leakage flows and inlet orifice throttling have great effects on the flow field distribution. Transient output torque and the mass flux have periodic fluctuations during the working cycles.

  18. Use of scrolled text in a scanning laser ophthalmoscope to assess reading performance at different retinal locations.

    PubMed

    Culham, L E; Fitzke, F W; Timberlake, G T; Marshall, J

    1992-07-01

    A new technique is described for assessing reading performance using a scanning laser ophthalmoscope. Letters of different sizes and contrasts were projected onto specific retinal locations of normal and low vision observers. Successive letters were scrolled in a horizontal direction at different speeds through a 'window'. Throughout the experiments the subjects' fundus and the retinal location of the stimuli could be visualized. With this scanning laser ophthalmoscope text-scrolling computer program the subject does not search for adjacent letters, and because the eye is held relatively stationary the tedious eye movement analysis incurred in other studies is reduced. Five retinal areas were investigated in two normal observers. The percentage of letters correctly identified decreased with eccentricity, increased velocity of the text and reduced text contrast. The reading performance of two patients, one with age-related macular degeneration and the other with juvenile macular disease, was investigated. Decrements in performance were related to morphology of the lesions.

  19. Miniature Lightweight Ion Pump

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.

    2010-01-01

    This design offers a larger surface area for pumping of active gases and reduces the mass of the pump by eliminating the additional vacuum enclosure. There are three main components to this ion pump: the cathode and anode pumping elements assembly, the vacuum enclosure (made completely of titanium and used as the cathode and maintained at ground potential) containing the assembly, and the external magnet. These components are generally put in a noble diode (or differential) configuration of the ion pump technology. In the present state of the art, there are two cathodes, one made of titanium and the other of tantalum. The anodes are made up of an array of stainless steel cylinders positioned between the two cathodes. All the elements of the pump are in a vacuum enclosure. After the reduction of pressure in this enclosure to a few microns, a voltage is applied between the cathode and the anode elements. Electrons generated by the ionization are accelerated toward the anodes that are confined in the anode space by the axial magnetic field. For the generation of the axial field along the anode elements, the magnet is designed in a C-configuration and is fabricated from rare earth magnetic materials (Nd-B-Fe or Sm-Co) possessing high energy product values, and the yoke is fabricated from the high permeability material (Hiperco-50A composed of Fe-Co-V). The electrons in this region collide with the gas molecules and generate their positive ions. These ions are accelerated into the cathode and eject cathode material (Ti). The neutral atoms deposit on the anode surfaces. Because of the chemical activity of Ti, the atoms combine with chemically active gas molecules (e.g. N2, O2, etc.) and remove them. New layers of Ti are continually deposited, and the pumping of active gases is thus accomplished. Pumping of the inert gases is accomplished by their burial several atomic layers deep into the cathode. However, they tend to re-emit if the entrapping lattice atoms are

  20. Submersible pump

    SciTech Connect

    Todd, D. B.

    1985-08-27

    A method and apparatus for using a submersible pump to lift reservoir fluids in a well while having the tubing/casing annulus isolated from the produced fluids. The apparatus allows the submersible pump to be positioned above the annular packoff device. The apparatus comprises an outer shield that encloses the pump and can be attached to the production tubing. The lower end of the shield attaches to a short tubing section that seals with the annular packoff device or a receptacle above the annular packoff device.

  1. Modelling, sizing and testing a scroll expander for a waste heat recovery application on a gasoline engine

    NASA Astrophysics Data System (ADS)

    Legros, Arnaud; Guillaume, Ludovic; Diny, Mouad; Lemort, Vincent

    2015-08-01

    Waste heat recovery technologies in a mobile application emerge every time energy becomes a valuable resource. It has been the case in the 70s with oil crisis and it is starting to regain some interests now due to the continuously rising price of oil and due to the restrictive standards imposed by the different governments. This paper deals with the recovery on the exhaust gases of an internal combustion engine by using a Rankine system. The study focuses on the expander, which is one of the most important components of the system. The use of a scroll expander operating with steam is currently investigated through simulation and experimentation. This paper presents the modelling of a scroll expander. The model is a detailed model including various losses such as leakage, friction or under or over expansion. This model has been used to design and size a tailor-made scroll expander. This was necessary due to the small amount of expanders on the market and also to have a machine that fits our application. After designing the machine, a prototype has been built. It has also been tested on our prototype bench of waste heat recovery on a gasoline engine, by means of a Rankine cycle. Measured performance will be presented, analysed and compared to predictions by the model. The first results will be presented here and discussed in order to give recommendations for the design of next prototypes.

  2. Drift of Scroll Wave Filaments in an Anisotropic Model of the Left Ventricle of the Human Heart

    PubMed Central

    Pravdin, Sergei; Dierckx, Hans; Markhasin, Vladimir S.; Panfilov, Alexander V.

    2015-01-01

    Scroll waves are three-dimensional vortices which occur in excitable media. Their formation in the heart results in the onset of cardiac arrhythmias, and the dynamics of their filaments determine the arrhythmia type. Most studies of filament dynamics were performed in domains with simple geometries and generic description of the anisotropy of cardiac tissue. Recently, we developed an analytical model of fibre structure and anatomy of the left ventricle (LV) of the human heart. Here, we perform a systematic study of the dynamics of scroll wave filaments for the cases of positive and negative tension in this anatomical model. We study the various possible shapes of LV and different degree of anisotropy of cardiac tissue. We show that, for positive filament tension, the final position of scroll wave filament is mainly determined by the thickness of the myocardial wall but, however, anisotropy attracts the filament to the LV apex. For negative filament tension, the filament buckles, and for most cases, tends to the apex of the heart with no or slight dependency on the thickness of the LV. We discuss the mechanisms of the observed phenomena and their implications for cardiac arrhythmias. PMID:26539486

  3. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  4. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  5. Toddlers’ Fine Motor Milestone Achievement Is Associated with Early Touchscreen Scrolling

    PubMed Central

    Bedford, Rachael; Saez de Urabain, Irati R.; Cheung, Celeste H. M.; Karmiloff-Smith, Annette; Smith, Tim J.

    2016-01-01

    Touchscreen technologies provide an intuitive and attractive source of sensory/cognitive stimulation for young children. Despite fears that usage may have a negative impact on toddlers’ cognitive development, empirical evidence is lacking. The current study presents results from the UK Toddler Attentional Behaviours and LEarning with Touchscreens (TABLET) project, examining the association between toddlers’ touchscreen use and the attainment of developmental milestones. Data were gathered in an online survey of 715 parents of 6- to 36-month-olds to address two research questions: (1) How does touchscreen use change from 6 to 36 months? (2) In toddlers (19–36 months, i.e., above the median age, n = 366), how does retrospectively reported age of first touchscreen usage relate to gross motor (i.e., walking), fine motor (i.e., stacking blocks), and language (i.e., producing two-word utterances) milestones? In our sample, the proportion of children using touchscreens, as well as the average daily usage time, increased with age (youngest quartile, 6–11 months: 51.22% users, 8.53 min per day; oldest quartile, 26–36 months: 92.05% users, average use of 43.95 min per day). In toddlers, aged 19–36 months, age of first touchscreen use was significantly associated with fine motor (stacking blocks), p = 0.03, after controlling for covariates age, sex, mother’s education (a proxy for socioeconomic status) as well as age of early fine motor milestone achievement (pincer grip). This effect was only present for active scrolling of the touchscreen p = 0.04, not for video watching. No significant relationships were found between touchscreen use and either gross motor or language milestones. Touchscreen use increases rapidly over the first 3 years of life. In the current study, we find no evidence to support a negative association between the age of first touchscreen usage and developmental milestones. Indeed, earlier touchscreen use, specifically scrolling of the screen

  6. Toddlers' Fine Motor Milestone Achievement Is Associated with Early Touchscreen Scrolling.

    PubMed

    Bedford, Rachael; Saez de Urabain, Irati R; Cheung, Celeste H M; Karmiloff-Smith, Annette; Smith, Tim J

    2016-01-01

    Touchscreen technologies provide an intuitive and attractive source of sensory/cognitive stimulation for young children. Despite fears that usage may have a negative impact on toddlers' cognitive development, empirical evidence is lacking. The current study presents results from the UK Toddler Attentional Behaviours and LEarning with Touchscreens (TABLET) project, examining the association between toddlers' touchscreen use and the attainment of developmental milestones. Data were gathered in an online survey of 715 parents of 6- to 36-month-olds to address two research questions: (1) How does touchscreen use change from 6 to 36 months? (2) In toddlers (19-36 months, i.e., above the median age, n = 366), how does retrospectively reported age of first touchscreen usage relate to gross motor (i.e., walking), fine motor (i.e., stacking blocks), and language (i.e., producing two-word utterances) milestones? In our sample, the proportion of children using touchscreens, as well as the average daily usage time, increased with age (youngest quartile, 6-11 months: 51.22% users, 8.53 min per day; oldest quartile, 26-36 months: 92.05% users, average use of 43.95 min per day). In toddlers, aged 19-36 months, age of first touchscreen use was significantly associated with fine motor (stacking blocks), p = 0.03, after controlling for covariates age, sex, mother's education (a proxy for socioeconomic status) as well as age of early fine motor milestone achievement (pincer grip). This effect was only present for active scrolling of the touchscreen p = 0.04, not for video watching. No significant relationships were found between touchscreen use and either gross motor or language milestones. Touchscreen use increases rapidly over the first 3 years of life. In the current study, we find no evidence to support a negative association between the age of first touchscreen usage and developmental milestones. Indeed, earlier touchscreen use, specifically scrolling of the screen, was

  7. Toddlers' Fine Motor Milestone Achievement Is Associated with Early Touchscreen Scrolling.

    PubMed

    Bedford, Rachael; Saez de Urabain, Irati R; Cheung, Celeste H M; Karmiloff-Smith, Annette; Smith, Tim J

    2016-01-01

    Touchscreen technologies provide an intuitive and attractive source of sensory/cognitive stimulation for young children. Despite fears that usage may have a negative impact on toddlers' cognitive development, empirical evidence is lacking. The current study presents results from the UK Toddler Attentional Behaviours and LEarning with Touchscreens (TABLET) project, examining the association between toddlers' touchscreen use and the attainment of developmental milestones. Data were gathered in an online survey of 715 parents of 6- to 36-month-olds to address two research questions: (1) How does touchscreen use change from 6 to 36 months? (2) In toddlers (19-36 months, i.e., above the median age, n = 366), how does retrospectively reported age of first touchscreen usage relate to gross motor (i.e., walking), fine motor (i.e., stacking blocks), and language (i.e., producing two-word utterances) milestones? In our sample, the proportion of children using touchscreens, as well as the average daily usage time, increased with age (youngest quartile, 6-11 months: 51.22% users, 8.53 min per day; oldest quartile, 26-36 months: 92.05% users, average use of 43.95 min per day). In toddlers, aged 19-36 months, age of first touchscreen use was significantly associated with fine motor (stacking blocks), p = 0.03, after controlling for covariates age, sex, mother's education (a proxy for socioeconomic status) as well as age of early fine motor milestone achievement (pincer grip). This effect was only present for active scrolling of the touchscreen p = 0.04, not for video watching. No significant relationships were found between touchscreen use and either gross motor or language milestones. Touchscreen use increases rapidly over the first 3 years of life. In the current study, we find no evidence to support a negative association between the age of first touchscreen usage and developmental milestones. Indeed, earlier touchscreen use, specifically scrolling of the screen, was

  8. Time-programmed release of fluoroscein isocyanate dextran from micro-pattern-designed polymer scrolls.

    PubMed

    Egunov, Aleksandr I; Inaba, Ayano; Gree, Simon; Malval, Jean-Pierre; Tamura, Katsuhiro; Saito, Yukie; Luchnikov, Valeriy A

    2016-07-10

    In this article we present a relevant strategy for a non-trivial time-programmed release of water-soluble macromolecules from biocompatible μ-containers. The system is based on self-scrolled chitosan acetate (CA) fibers, encapsulated in a poly(dimethylsiloxane) matrix. Mass transfer between a fiber and the external environment takes place via the only opened extremity of the fiber. Fluoroscein isocyanate dextran (FID) is initially deposited at the inner surface of the CA fiber according to a programmed pattern. The FID molecules became mobile after the arriving of the swelling front, which propagates along the fiber's axis upon the immersion of the system in aqueous solution. Diffusion of the macromolecules into the environment is enabled by the open-tube geometry of the swollen part of the fiber, while a programmed kinetics of the drug release is due to patterning of the polymer film prior to rolling. The release of the macromolecules can be retarded by a few hours according to the placement of the FID spot with respect to the fibers orifice. A pulsatile release kinetics is demonstrated for a discrete pattern. A few millimeter spacing of the FID spots results in a few hours time interval between the release impulses. Random walk model is plugged in the effective diffusion coefficient for Fick's law and the release kinetics are simulated. PMID:27179634

  9. Time-programmed release of fluoroscein isocyanate dextran from micro-pattern-designed polymer scrolls.

    PubMed

    Egunov, Aleksandr I; Inaba, Ayano; Gree, Simon; Malval, Jean-Pierre; Tamura, Katsuhiro; Saito, Yukie; Luchnikov, Valeriy A

    2016-07-10

    In this article we present a relevant strategy for a non-trivial time-programmed release of water-soluble macromolecules from biocompatible μ-containers. The system is based on self-scrolled chitosan acetate (CA) fibers, encapsulated in a poly(dimethylsiloxane) matrix. Mass transfer between a fiber and the external environment takes place via the only opened extremity of the fiber. Fluoroscein isocyanate dextran (FID) is initially deposited at the inner surface of the CA fiber according to a programmed pattern. The FID molecules became mobile after the arriving of the swelling front, which propagates along the fiber's axis upon the immersion of the system in aqueous solution. Diffusion of the macromolecules into the environment is enabled by the open-tube geometry of the swollen part of the fiber, while a programmed kinetics of the drug release is due to patterning of the polymer film prior to rolling. The release of the macromolecules can be retarded by a few hours according to the placement of the FID spot with respect to the fibers orifice. A pulsatile release kinetics is demonstrated for a discrete pattern. A few millimeter spacing of the FID spots results in a few hours time interval between the release impulses. Random walk model is plugged in the effective diffusion coefficient for Fick's law and the release kinetics are simulated.

  10. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  11. Pump jack

    SciTech Connect

    Stanton, G. E.

    1985-02-26

    A pump jack of the type comprising a rocker arm pivotably mounted intermediate its ends on a support member, said rocker arm being divided by said pivot mounting into a sucker-rod limb and a drive limb wherein the improvement comprises a pneumatic motor pivotably attached to the drive support member and further pivotably attached to the mounting base of the pump jack to provide the power to reciprocate the pump jack. The working fluid of said pneumatic motor being natural gas which is available from the well casing of the well without any interference with the flow of the oil in the oil tube of the well thereby making use of an energy source available at any oil well without having to provide gasoline to drive a rotating type gasoline engine or electricity to drive an electric motor usually of the rotating variety. Also the stroke of a pneumatic cylinder inherently smooths out and eliminates the shock loading at the extremes of motion at the piston mounted to the sucker rods of such pump jack at the bottom of the well.

  12. Water Pump Development for the EVA PLSS

    NASA Technical Reports Server (NTRS)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis

    2009-01-01

    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently

  13. Tracking ink composition on Herculaneum papyrus scrolls: quantification and speciation of lead by X-ray based techniques and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Tack, Pieter; Cotte, Marine; Bauters, Stephen; Brun, Emmanuel; Banerjee, Dipanjan; Bras, Wim; Ferrero, Claudio; Delattre, Daniel; Mocella, Vito; Vincze, Laszlo

    2016-02-01

    The writing in carbonized Herculaneum scrolls, covered and preserved by the pyroclastic events of the Vesuvius in 79 AD, was recently revealed using X-ray phase-contrast tomography, without the need of unrolling the sensitive scrolls. Unfortunately, some of the text is difficult to read due to the interference of the papyrus fibers crossing the written text vertically and horizontally. Recently, lead was found as an elemental constituent in the writing, rendering the text more clearly readable when monitoring the lead X-ray fluorescence signal. Here, several hypotheses are postulated for the origin and state of lead in the papyrus writing. Multi-scale X-ray fluorescence micro-imaging, Monte Carlo quantification and X-ray absorption microspectroscopy experiments are used to provide additional information on the ink composition, in an attempt to determine the origin of the lead in the Herculaneum scrolls and validate the postulated hypotheses.

  14. Tracking ink composition on Herculaneum papyrus scrolls: quantification and speciation of lead by X-ray based techniques and Monte Carlo simulations.

    PubMed

    Tack, Pieter; Cotte, Marine; Bauters, Stephen; Brun, Emmanuel; Banerjee, Dipanjan; Bras, Wim; Ferrero, Claudio; Delattre, Daniel; Mocella, Vito; Vincze, Laszlo

    2016-01-01

    The writing in carbonized Herculaneum scrolls, covered and preserved by the pyroclastic events of the Vesuvius in 79 AD, was recently revealed using X-ray phase-contrast tomography, without the need of unrolling the sensitive scrolls. Unfortunately, some of the text is difficult to read due to the interference of the papyrus fibers crossing the written text vertically and horizontally. Recently, lead was found as an elemental constituent in the writing, rendering the text more clearly readable when monitoring the lead X-ray fluorescence signal. Here, several hypotheses are postulated for the origin and state of lead in the papyrus writing. Multi-scale X-ray fluorescence micro-imaging, Monte Carlo quantification and X-ray absorption microspectroscopy experiments are used to provide additional information on the ink composition, in an attempt to determine the origin of the lead in the Herculaneum scrolls and validate the postulated hypotheses.

  15. Tracking ink composition on Herculaneum papyrus scrolls: quantification and speciation of lead by X-ray based techniques and Monte Carlo simulations.

    PubMed

    Tack, Pieter; Cotte, Marine; Bauters, Stephen; Brun, Emmanuel; Banerjee, Dipanjan; Bras, Wim; Ferrero, Claudio; Delattre, Daniel; Mocella, Vito; Vincze, Laszlo

    2016-01-01

    The writing in carbonized Herculaneum scrolls, covered and preserved by the pyroclastic events of the Vesuvius in 79 AD, was recently revealed using X-ray phase-contrast tomography, without the need of unrolling the sensitive scrolls. Unfortunately, some of the text is difficult to read due to the interference of the papyrus fibers crossing the written text vertically and horizontally. Recently, lead was found as an elemental constituent in the writing, rendering the text more clearly readable when monitoring the lead X-ray fluorescence signal. Here, several hypotheses are postulated for the origin and state of lead in the papyrus writing. Multi-scale X-ray fluorescence micro-imaging, Monte Carlo quantification and X-ray absorption microspectroscopy experiments are used to provide additional information on the ink composition, in an attempt to determine the origin of the lead in the Herculaneum scrolls and validate the postulated hypotheses. PMID:26854067

  16. Tracking ink composition on Herculaneum papyrus scrolls: quantification and speciation of lead by X-ray based techniques and Monte Carlo simulations

    PubMed Central

    Tack, Pieter; Cotte, Marine; Bauters, Stephen; Brun, Emmanuel; Banerjee, Dipanjan; Bras, Wim; Ferrero, Claudio; Delattre, Daniel; Mocella, Vito; Vincze, Laszlo

    2016-01-01

    The writing in carbonized Herculaneum scrolls, covered and preserved by the pyroclastic events of the Vesuvius in 79 AD, was recently revealed using X-ray phase-contrast tomography, without the need of unrolling the sensitive scrolls. Unfortunately, some of the text is difficult to read due to the interference of the papyrus fibers crossing the written text vertically and horizontally. Recently, lead was found as an elemental constituent in the writing, rendering the text more clearly readable when monitoring the lead X-ray fluorescence signal. Here, several hypotheses are postulated for the origin and state of lead in the papyrus writing. Multi-scale X-ray fluorescence micro-imaging, Monte Carlo quantification and X-ray absorption microspectroscopy experiments are used to provide additional information on the ink composition, in an attempt to determine the origin of the lead in the Herculaneum scrolls and validate the postulated hypotheses. PMID:26854067

  17. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  18. A handy liquid metal based electroosmotic flow pump.

    PubMed

    Gao, Meng; Gui, Lin

    2014-06-01

    A room temperature liquid metal based electroosmotic flow (EOF) pump has been proposed in this work. This low-cost EOF pump is convenient for both fabrication and integration. It utilizes polydimethylsiloxane (PDMS) microchannels filled with the liquid-metal as non-contact pump electrodes. The electrode channels are fabricated symmetrically to both sides of the pumping channel, having no contact with the pumping channel. To test the pumping performance of the EOF pump, the mean flow velocities of the fluid (DI water) in the EOF pumps were experimentally measured by tracing the fluorescent microparticles in the flow. To provide guidance for designing a low voltage EOF pump, parametric studies on dimensions of the electrode and pumping channels were performed in this work. According to the experimental results, the pumping speed can reach 5.93 μm s(-1) at a driving voltage of only 1.6 V, when the gap between the electrode and the pumping channel is 20 μm. Injecting a room temperature liquid metal into microchannels can provide a simple, rapid, low-cost but accurately self-aligned way to fabricate microelectrodes for EOF pumps, which is a promising method to achieve the miniaturization and integration of the EOF pump in microfluidic systems. The non-contact liquid electrodes have no influence on the fluid in the pumping channel when pumping, reducing Joule heat generation and preventing gas bubble formation at the surface of electrodes. The pump has great potential to drive a wide range of fluids, such as drug reagents, cell suspensions and biological macromolecule solutions.

  19. A handy liquid metal based electroosmotic flow pump.

    PubMed

    Gao, Meng; Gui, Lin

    2014-06-01

    A room temperature liquid metal based electroosmotic flow (EOF) pump has been proposed in this work. This low-cost EOF pump is convenient for both fabrication and integration. It utilizes polydimethylsiloxane (PDMS) microchannels filled with the liquid-metal as non-contact pump electrodes. The electrode channels are fabricated symmetrically to both sides of the pumping channel, having no contact with the pumping channel. To test the pumping performance of the EOF pump, the mean flow velocities of the fluid (DI water) in the EOF pumps were experimentally measured by tracing the fluorescent microparticles in the flow. To provide guidance for designing a low voltage EOF pump, parametric studies on dimensions of the electrode and pumping channels were performed in this work. According to the experimental results, the pumping speed can reach 5.93 μm s(-1) at a driving voltage of only 1.6 V, when the gap between the electrode and the pumping channel is 20 μm. Injecting a room temperature liquid metal into microchannels can provide a simple, rapid, low-cost but accurately self-aligned way to fabricate microelectrodes for EOF pumps, which is a promising method to achieve the miniaturization and integration of the EOF pump in microfluidic systems. The non-contact liquid electrodes have no influence on the fluid in the pumping channel when pumping, reducing Joule heat generation and preventing gas bubble formation at the surface of electrodes. The pump has great potential to drive a wide range of fluids, such as drug reagents, cell suspensions and biological macromolecule solutions. PMID:24706096

  20. Acceptance for Beneficial Use Pumping Instrumentation and Control Skid N

    SciTech Connect

    KOCH, M.R.

    2000-03-13

    This is a final Acceptance for Beneficial Use (ABU) for Pumping and Instrumentation Control (PIC) skid ''N''. PIC skid ''N'' is ready for pumping tank U-109. All the testing and documentation has been completed as required on the AE3U checklist. This AE3U covers only the readiness of the PIC skid ''N''. Other U-farm preparations including dilution tank fabrication, portable exhauster readiness, leak detection, valve pit preparation, and the Operation Control Station readiness are not part of this ABU. PIC skid ''N'' is a new skid fabricated and tested at Site Fabrication Services. The skid controls the jet pump and monitors various instruments associated with the pumping operation. This monitoring includes leak detection along the waste transfer route and flammable gases in the pump pit. This Acceptance for Beneficial Use documents that Pumping Instrumentation and Control (PIC) skid ''N'' is ready for field use. This document does not cover the field installation or operational testing.

  1. Fabric space radiators

    SciTech Connect

    Antoniak, Z.I.; Krotiuk, W.J.; Webb, B.J.; Prater, J.T.; Bates, J.M.

    1988-01-01

    Future Air Force space missions will require thermal radiators that both survive in the hostile space environment and stow away for minimal bulk during launch. Advances in all aspects of radiator design, construction, and analysis will be necessary to enable such future missions. Currently, the best means for obtaining high strength along with flexibility is through structures known as fabrics. The development of new materials and bonding techniques has extended the application range of fabrics into areas traditionally dominated by monolithic and/or metallic structures. Given that even current spacecraft heat rejection considerations tend to dominate spacecraft design and mass, the larger and more complex designs of the future face daunting challenges in thermal control. Ceramic fabrics bonded to ultra-thin metal liners (foils) have the potential of achieving radiator performance levels heretofore unattainable, and of readily matching the advances made in other branches of spacecraft design. The research effort documented here indicates that both pumped loops and heat pipes constructed in ceramic fabrics stand to benefit in multiple ways. Flexibility and low mass are the main advantages exhibited by fabric radiators over conventional metal ones. We feel that fabric radiators have intrinsic merits not possessed by any other radiator design and need to be researched further. 26 refs., 16 figs., 17 tabs.

  2. Microscale Thermal-Transpiration Gas Pump

    NASA Technical Reports Server (NTRS)

    Vargo, Stephen; Muntz, Phillip; Shiflett, Geoff

    2003-01-01

    A recent addition to the growing class of microelectromechanical systems (MEMS) is a single stage of a Knudsen compressor. This device was fabricated and tested to demonstrate the feasibility of Knudsen compressors as miniature vacuum pumps for future portable scientific instruments. The attributes of Knudsen compressors that make them attractive as miniature vacuum pumps are that they contain no moving parts and operate without need for lubricants or working fluids.

  3. Well pump

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  4. Well pump

    SciTech Connect

    Page, J.S.

    1983-03-08

    Well fluid pumping apparatus comprises: (A) body structure defining an upright plunger bore, (B) a plunger reciprocable in that bore, (C) the body structure also defining a chamber sidewardly offset from an axis defined by the plunger bore and communicating with the bore, and (D) valving carried by the body structure to pass intake fluid via the chamber into the plunger bore in response to stroking of the plunger in one direction in the bore, and to pass discharge fluid from the plunger bore into and from the chamber in response to stroking of the plunger in the opposite direction in the bore.

  5. Earth-coupled heat pump

    NASA Astrophysics Data System (ADS)

    Edwards, J. A.

    1981-08-01

    The object of the research work was to demonstrate that a water source heat pump could be used with an earth-coupled heat exchanger which was buried in an absorption field of a domestic sewage disposal system to provide the heating and cooling requirements for residential use in an energy efficient fashion. The system consists of a 3 ton heat pump (nominal rating of 34,000 Btu/hr), a closed-loop heat exchanger which was fabricated from 200 feet of 2 inch diameter cast iron soil pipe, and a calorimeter house which had heat transmission characteristics similar to a 100 sq ft house. The earth-coupled heat exchanger was connected to the water side heat exchanger of the heat pump. Water was circulated through the heat exchanger coil in the earth and through the water side heat exchanger of the heat pump. The earth served as the energy source (for heating) or sink (for cooling) for the heat pump.

  6. Pump apparatus

    SciTech Connect

    Kime, J.A.

    1987-02-17

    This patent describes a gas-oil well production system for pumping formation fluid wherein a down hole pump is provided having a barrel including a barrel fluid inlet, a barrel fluid outlet, a barrel chamber, and a plunger mounted in the barrel chamber having a plunger chamber. The plunger is reciprocally driven between an upper terminal position at the end of the plunger upstroke and a lower terminal position at the end of the plunger downstroke. The method for removing developed gaseous fluids in the formation fluid from the barrel chamber comprises: drawing formation fluid into the barrel chamber during the plunger upstroke; providing gas port means in the barrel; expelling the developed gaseous fluids from the barrel chamber through the gas port means during the occurrence of that portion of the plunger downstroke from the upper terminal position of the gas port means; and substantially blocking the gas port means and moving formation fluid into the plunger chamber during the occurrence of that portion of the plunger downstroke from below the gas port means to the lower terminal position.

  7. Surface micromachined electrostatically actuated micro peristaltic pump.

    PubMed

    Xie, Jun; Shih, Jason; Lin, Qiao; Yang, Bozhi; Tai, Yu-Chong

    2004-10-01

    An electrostatically actuated micro peristaltic pump is reported. The micro pump is entirely surface micromachined using a multilayer parylene technology. Taking advantage of the multilayer technology, the micro pump design enables the pumped fluid to be isolated from the electric field. Electrostatic actuation of the parylene membrane using both DC and AC voltages was demonstrated and applied to fluid pumping based on a 3-phase peristaltic sequence. A maximum flow rate of 1.7 nL min(-1) and an estimated pumping pressure of 1.6 kPa were achieved at 20 Hz phase frequency. A dynamic analysis was also performed with a lumped-parameter model for the peristaltic pump. The analysis results allow a quantitative understanding of the peristaltic pumping operation, and correctly predict the trends exhibited by the experimental data. The small footprint of the micro pump is well suited for large-scale integration of microfluidics. Moreover, because the same platform technology has also been used to fabricate other devices (e.g. valves, electrospray ionization nozzles, filters and flow sensors), the integration of these different devices can potentially lead to versatile and functional micro total analysis systems (microTAS).

  8. Replacement Saltwell Pumping System Document Bibliography

    SciTech Connect

    BELLOMY, J.R.

    2000-12-07

    This document bibliography is prepared to identify engineering documentation developed during the design of the Replacement Saltwell Pumping System. The bibliography includes all engineering supporting documents and correspondence prepared prior to the deployment of the system in the field. All documents referenced are available electronically through the Records Management Information System (RMIS). Major components of the Replacement Saltwell Pumping System include the Sundyne Canned Motor Pump, the Water Filter Skid, the Injection Water Skid and the Backflow Preventer Assembly. Drawing H-14-104498 provides an index of drawings (fabrication details, P&IDs, etc.) prepared to support development of the Replacement Saltwell Pumping System. Specific information pertaining to new equipment can be found in Certified Vendor Information (CVI) File 50124. This CVI file has been established specifically for new equipment associated with the Replacement Saltwell Pumping System.

  9. Acceptance for Beneficial Use Pumping Instrumentation and Control Skid L

    SciTech Connect

    KOCH, M.R.

    1999-11-17

    This is a final Acceptance for Beneficial Use (ABU) for Pumping and Instrumentation Control (PIC) skid ''L''. PIC skid ''L'' is ready for pumping tank U-105. All the testing and documentation has been completed as required on the ABU checklist. This ABU covers only the readiness of the PIC skid ''L''. Other U-farm preparations including dilution tank fabrication, portable exhauster readiness, leak detection, valve pit preparation, and the Operation Control Station readiness are not part of this ABU. PIC skid ''L'' is a new skid fabricated and tested at Site Fabrication Services. The skid controls the jet pump and monitors various instruments associated with the pumping operation. This monitoring includes leak detection along the waste transfer route and flammable gases in the pump pit.

  10. Acceptance Test Procedure for New Pumping Instrumentation & Control Skid V

    SciTech Connect

    KOCH, M.R.

    2000-08-14

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designated as ''V''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  11. Microgravity heat pump for space station thermal management.

    PubMed

    Domitrovic, R E; Chen, F C; Mei, V C; Spezia, A L

    2003-01-01

    A highly efficient recuperative vapor compression heat pump was developed and tested for its ability to operate independent of orientation with respect to gravity while maximizing temperature lift. The objective of such a heat pump is to increase the temperature of, and thus reduce the size of, the radiative heat rejection panels on spacecrafts such as the International Space Station. Heat pump operation under microgravity was approximated by gravitational-independent experiments. Test evaluations include functionality, efficiency, and temperature lift. Commercially available components were used to minimize costs of new hardware development. Testing was completed on two heat pump design iterations--LBU-I and LBU--II, for a variety of operating conditions under the variation of several system parameters, including: orientation, evaporator water inlet temperature (EWIT), condenser water inlet temperature (CWIT), and compressor speed. The LBU-I system employed an ac motor, belt-driven scroll compressor, and tube-in-tube heat exchangers. The LBU-II system used a direct-drive AC motor compressor assembly and plate heat exchangers. The LBU-II system in general outperformed the LBU-I system on all accounts. Results are presented for all systems, showing particular attention to those states that perform with a COP of 4.5 +/- 10% and can maintain a temperature lift of 55 degrees F (30.6 degrees C) +/- 10%. A calculation of potential radiator area reduction shows that points with maximum temperature lift give the greatest potential for reduction, and that area reduction is a function of heat pump efficiency and a stronger function of temperature lift. PMID:14632004

  12. A new parameter determination method for some double-scroll chaotic systems and its applications to chaotic cryptanalysis

    NASA Astrophysics Data System (ADS)

    Orue, A. B.; Alvarez, G.; Pastor, G.; Romera, M.; Montoya, F.; Li, Shujun

    2010-11-01

    This paper describes a method about how to determine parameters of some double-scroll chaotic systems, including the Lorenz system and the Chua's circuit, from one of its variables. The geometric properties of the system are exploited firstly to reduce the parameter search space. Then, a synchronization-based approach, with the help of the same geometric properties as coincidence criteria, is implemented to determine the parameter values with the wanted accuracy. The method is not affected by a moderate amount of noise in the waveform. As an example of its effectiveness, the method is applied to cryptanalyze two two-channel chaotic cryptosystems, figuring out how the secret keys can be directly derived from the driving signal z(t).

  13. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  14. Winding for linear pump

    DOEpatents

    Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.

    1989-01-01

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  15. Winding for linear pump

    DOEpatents

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  16. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  17. Ultra scale-down device to predict dewatering levels of solids recovered in a continuous scroll decanter centrifuge.

    PubMed

    Lopes, A G; Keshavarz-Moore, E

    2013-01-01

    During centrifugation operation, the major challenge in the recovery of extracellular proteins is the removal of the maximum liquid entrapped within the spaces between the settled solids-dewatering level. The ability of the scroll decanter centrifuge (SDC) to process continuously large amounts of feed material with high concentration of solids without the need for resuspension of feeds, and also to achieve relatively high dewatering, could be of great benefit for future use in the biopharmaceutical industry. However, for reliable prediction of dewatering in such a centrifuge, tests using the same kind of equipment at pilot-scale are required, which are time consuming and costly. To alleviate the need of pilot-scale trials, a novel USD device, with reduced amounts of feed (2 mL) and to be used in the laboratory, was developed to predict the dewatering levels of a SDC. To verify USD device, dewatering levels achieved were plotted against equivalent compression (Gtcomp ) and decanting (Gtdec ) times, obtained from scroll rates and feed flow rates operated at pilot-scale, respectively. The USD device was able to successfully match dewatering trends of the pilot-scale as a function of both Gtcomp and Gtdec , particularly for high cell density feeds, hence accounting for all key variables that influenced dewatering in a SDC. In addition, it accurately mimicked the maximum dewatering performance of the pilot-scale equipment. Therefore the USD device has the potential to be a useful tool at early stages of process development to gather performance data in the laboratory thus minimizing lengthy and costly runs with pilot-scale SDC.

  18. Characterization of a new class of surface micromachined pumps.

    SciTech Connect

    Galambos, Paul C.

    2004-12-01

    This is the latest in a series of LDRD's that we have been conducting with Florida State University/Florida A&M University (FSU/FAMU) under the campus executive program. This research builds on the earlier projects; ''Development of Highly Integrated Magnetically and Electrostatically Actuated Micropumps'' (SAND2003-4674) and ''Development of Magnetically and Electrostatically Driven Surface Micromachined Pumps'' (SAND2002-0704P). In this year's LDRD we designed 2nd generation of surface micromachined (SMM) gear and viscous pumps. Two SUMMiT{trademark} modules full of design variations of these pumps were fabricated and one SwIFT{trademark} module is still in fabrication. The SwIFT{trademark} fabrication process results in a transparent pump housing cover that will enable visualization inside the pumps. Since the SwIFT{trademark} pumps have not been tested as they are still in fabrication, this report will focus on the 2nd generation SUMMiT{trademark} designs. Pump testing (pressure vs. flow) was conducted on several of the SUMMiT{trademark} designs resulting in the first pump curve for this class of SMM pumps. A pump curve was generated for the higher torque 2nd generation gear pump designed by Jason Hendrix of FSU. The pump maximum flow rate at zero head was 6.5 nl/s for a 30V, 30 Hz square wave signal. This level of flow rate would be more than adequate for our typical SMM SUMMiT{trademark} or SwIFT{trademark} channels which have typical volumes on the order of 50 pl.

  19. DSMC Simulation of thermal transpiration and accomodation pumps

    SciTech Connect

    Hudson, M.L.; Bartel, T.J.

    1998-11-01

    The Direct Simulation Monte Carlo (DSMC) technique is employed to evaluate several configurations of thermal transpiration and accommodation pumps. There is renewed interest in these rarefied flow pumping concepts for Micro-Electro-Mechanical Systems (MEMS) due to advances in micro-fabrication. The simulation results are compared with existing data to understand gas-surface interaction uncertainties in the experiments. Parametric studies are performed to determine the effects of Knudsen number and surface temperature and roughness on the maximum pump pressure ratio.

  20. Fabric fastenings

    NASA Technical Reports Server (NTRS)

    Walen, E D; Fisher, R T

    1920-01-01

    The study of aeronautical fabrics has led to a consideration of the best methods of attaching and fastening together such materials. This report presents the results of an investigation upon the proper methods of attaching fabrics to airplane wings. The methods recommended in this report have been adopted by the military services.

  1. Hydraulic pump

    SciTech Connect

    Polak, P.R.; Jantzen, D.E.

    1984-05-15

    This invention relates to an improved pump jack characterized by a hollow piston rod which telescopes down over the sucker rod to which it is clamped for reciprocating motion. The cylinder, in turn, is fastened in fixed position directly to the upper exposed end of the well casing. As fluid is introduced into the lower end of the cylinder it raises the piston into engagement with a pushrod housed in the upper cylinder head that lifts switch-actuating means associated therewith into a position operative to actuate a switch located adjacent thereto thereby causing the latter to change state and actuate a multi-function solenoid valve so as to cut off fluid flow to the cylinder. As gravity lowers the sucker rod and piston exhausting the hydraulic fluid therebeneath, an adjustable stop engages the pushrod from above so as to return it together with the switch-actuating means associated therewith to their original positions thereby resetting the switch to complete the operating cycle.

  2. Multiple pump housing

    DOEpatents

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  3. A photolithographic fabrication technique for magnetohydrodynamic micropumps

    NASA Astrophysics Data System (ADS)

    Kuenstner, Stephen; Baylor, Martha-Elizabeth

    2014-03-01

    Magnetohydrodynamic (MHD) devices use perpendicular electric and magnetic fields to exert a Lorentz body force on a conducting fluid. Miniaturized MHD devices have been used to create pumps, stirrers, heat exchangers, and microfluidic networks. Compared to mechanical micropumps, MHD micropumps are appealing because they require no moving parts, which simplifies fabrication, and because they are amenable to electronic control. This abstract reports the fabrication and testing of a centimeter-scale MHD pump using a thiol-ene/methacrylate-based photopolymer and mask-based photolithographic technique. Pumps like this one could simplify the fabrication of sophisticated optofluidic devices, including liquid-core, liquid cladding (L2) waveguides, which are usually created with PDMS using stamps, or etched into silicon wafers. The photolithographic technique demonstrated here requires only one masking step to create fluid channels with complex geometries.

  4. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Branch Processes of Vortex Filaments and Hopf Invariant Constraint on Scroll Wave

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Ren, Ji-Rong; Mo, Shu-Fan

    2009-12-01

    In this paper, by making use of Duan's topological current theory, the evolution of the vortex filaments in excitable media is discussed in detail. The vortex filaments are found generating or annihilating at the limit points and encountering, splitting, or merging at the bifurcation points of a complex function Z(vec x, t). It is also shown that the Hopf invariant of knotted scroll wave filaments is preserved in the branch processes (splitting, merging, or encountering) during the evolution of these knotted scroll wave filaments. Furthermore, it also revealed that the “exclusion principle" in some chemical media is just the special case of the Hopf invariant constraint, and during the branch processes the “exclusion principle" is also protected by topology.

  5. Performance of a New Lightweight Reciprocating Pump

    SciTech Connect

    Whitehead, J C

    2005-06-09

    A new four-chamber piston pump design has been fabricated and tested. The small-scale propellant pump is intended to be powered by gas at elevated temperatures, e.g. in a gas-generator cycle rocket propulsion system. Two key features are combined for the first time: leak-tight liquid-cooled seals, and a high throughput per unit hardware mass. Measured performance curves quantify flows, pressures, leakage, volumetric efficiency, and tank pressure requirements. A pair of 300-gram pumps operating with significant margin could deliver fuel and oxidizer at 5 MPa to a compact lightweight 1000-N engine, while tank pressure remains at 0.35 MPa. Pump weight is well below one percent of thrust, as is typical for launch vehicle engines. Applications include small upper stages, aggressive maneuvers in space, and miniature launch vehicles for Mars ascent.

  6. Tuning laser output characteristics of a pyrotechnically pumped free-running Nd:YAG laser in terms of pumping kinetics

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoli; Yang, Fan; Luo, Jiangshan; Tang, Yongjian

    2015-02-01

    Using light radiation directly produced by combustion of some pyrotechnics as pumping sources of solid state lasers is a potentially effective way to obtain compact and high energy lasers. Kinetics of this kind of pumping is studied in terms of pulse energy and pulse time characteristics as well as laser output energy. Pumping kinetics is turned through changing fabrication methods of the pumping modules. It was found that the useful light energy and pulse time for the pyrotechnic pumping light showed opposite changing trend. Compressing pulse duration from 45 ms to about 10 ms would simultaneously cause 20%~ 50% decreases in useful light radiation energy. However, the laser output energy produced by these pumping sources only had a variation 9%, ranging from 427 mJ to 468 mJ. Reasons were related to the decrease in fluorescence loss in pumping energy below the threshold for the pyrotechnic modules having shorter pulse duration but higher radiation power.

  7. Design of a Bearingless Blood Pump

    NASA Technical Reports Server (NTRS)

    Barletta, Natale; Schoeb, Reto

    1996-01-01

    In the field of open heart surgery, centrifugal blood pumps have major advantages over roller pumps. The main drawbacks to centrifugal pumps are however problems with the bearings and with the sealing of the rotor shaft. In this paper we present a concept for a simple, compact and cost effective solution for a blood pump with a totally magnetically suspended impeller. It is based on the new technology of the 'Bearingless Motor' and is therefore called the 'Bearingless Blood Pump.' A single bearingless slice motor is at the same time a motor and a bearing system and is able to stabilize the six degrees of freedom of the pump impeller in a very simple way. Three degrees of freedom are stabilized actively (the rotation and the radial displacement of the motor slice). The axial and the angular displacement are stabilized passively. The pump itself (without the motor-stator and the control electronics) is built very simply. It consists of two parts only: the impeller with the integrated machine rotor and the housing. So the part which gets in contact with blood and has therefore to be disposable, is cheap. Fabricated in quantities, it will cost less than $10 and will therefore be affordable for the use in a heart-lung-machine.

  8. Fabrication of a fluidic membrane lens system

    NASA Astrophysics Data System (ADS)

    Draheim, J.; Schneider, F.; Kamberger, R.; Mueller, C.; Wallrabe, U.

    2009-09-01

    We present the fabrication process of a fluidic membrane lens system with an integrated piezoelectric pumping actuator. The optical unit and the pumping unit are fabricated through casting using a hot embossing machine. Two different systems, one with a homogeneous membrane thickness, and one with an inhomogeneous membrane thickness distribution, are manufactured. The influence of the volume shrinkage of the silicone during curing on the membrane shape and on the focal length is analyzed. The assembled system achieves a focal length between +52.4 mm and -70.9 mm at a piezovoltage of ±40 V. The full-scale response time of the system is below 24 ms.

  9. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  10. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, T.H.; Call, W.R.

    Apparatus for continuous pumping using cycling cryopumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels that alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independant pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  11. Alternative backing up pump for turbomolecular pumps

    DOEpatents

    Myneni, Ganapati Rao

    2003-04-22

    As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

  12. Poroelastic Foams for Simple Fabrication of Complex Soft Robots.

    PubMed

    Mac Murray, Benjamin C; An, Xintong; Robinson, Sanlin S; van Meerbeek, Ilse M; O'Brien, Kevin W; Zhao, Huichan; Shepherd, Robert F

    2015-11-01

    Open-celled, elastomeric foams allow the simple design of fully 3D pneumatic soft machines using common forming techniques. This is demonstrated through the fabrication of simple actuators and an entirely soft, functional fluid pump formed in the shape of the human heart. The device pumps at physiologically relevant frequencies and pressures and attains a flow rate higher than all previously reported soft pumps.

  13. Poroelastic Foams for Simple Fabrication of Complex Soft Robots.

    PubMed

    Mac Murray, Benjamin C; An, Xintong; Robinson, Sanlin S; van Meerbeek, Ilse M; O'Brien, Kevin W; Zhao, Huichan; Shepherd, Robert F

    2015-11-01

    Open-celled, elastomeric foams allow the simple design of fully 3D pneumatic soft machines using common forming techniques. This is demonstrated through the fabrication of simple actuators and an entirely soft, functional fluid pump formed in the shape of the human heart. The device pumps at physiologically relevant frequencies and pressures and attains a flow rate higher than all previously reported soft pumps. PMID:26384472

  14. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, J.L.

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  15. Development of the sonic pump levitator

    NASA Technical Reports Server (NTRS)

    Dunn, S. A.

    1985-01-01

    The process and mechanism involved in producing glass microballoons (GMBs) of acceptable quality for laser triggered inertial fusion through use of glass jet levitation and manipulation are considered. The gas jet levitation device, called sonic pumps, provides positioning by timely and appropriate application of gas mementum from one or more of six sonic pumps which are arranged orthogonally in opposed pairs about the levitation region and are activated by an electrooptical, computer controlled, feedback system. The levitation device was fabricated and its associated control systems were assembled into a package and tested in reduced gravity flight regime of the NASA KC-135 aircraft.

  16. 3D micro-XRF for cultural heritage objects: new analysis strategies for the investigation of the Dead Sea Scrolls.

    PubMed

    Mantouvalou, Ioanna; Wolff, Timo; Hahn, Oliver; Rabin, Ira; Lühl, Lars; Pagels, Marcel; Malzer, Wolfgang; Kanngiesser, Birgit

    2011-08-15

    A combination of 3D micro X-ray fluorescence spectroscopy (3D micro-XRF) and micro-XRF was utilized for the investigation of a small collection of highly heterogeneous, partly degraded Dead Sea Scroll parchment samples from known excavation sites. The quantitative combination of the two techniques proves to be suitable for the identification of reliable marker elements which may be used for classification and provenance studies. With 3D micro-XRF, the three-dimensional nature, i.e. the depth-resolved elemental composition as well as density variations, of the samples was investigated and bromine could be identified as a suitable marker element. It is shown through a comparison of quantitative and semiquantitative values for the bromine content derived using both techniques that, for elements which are homogeneously distributed in the sample matrix, quantification with micro-XRF using a one-layer model is feasible. Thus, the possibility for routine provenance studies using portable micro-XRF instrumentation on a vast amount of samples, even on site, is obtained through this work.

  17. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  18. Insulin pump (image)

    MedlinePlus

    The catheter at the end of the insulin pump is inserted through a needle into the abdominal ... with diabetes. Dosage instructions are entered into the pump's small computer and the appropriate amount of insulin ...

  19. Photovoltaic pump systems

    NASA Astrophysics Data System (ADS)

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  20. Pneumatically Actuated Miniature Peristaltic Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Feldman, Sabrina; Feldman, Jason; Svehla, Danielle

    2003-01-01

    Pneumatically actuated miniature peristaltic vacuum pumps have been proposed for incorporation into advanced miniature versions of scientific instruments that depend on vacuum for proper operation. These pumps are expected to be capable of reaching vacuum-side pressures in the torr to millitorr range (from .133 down to .0.13 Pa). Vacuum pumps that operate in this range are often denoted roughing pumps. In comparison with previously available roughing pumps, these pumps are expected to be an order of magnitude less massive and less power-hungry. In addition, they would be extremely robust, and would operate with little or no maintenance and without need for oil or other lubricants. Portable mass spectrometers are typical examples of instruments that could incorporate the proposed pumps. In addition, the proposed pumps could be used as roughing pumps in general laboratory applications in which low pumping rates could be tolerated. The proposed pumps could be designed and fabricated in conventionally machined and micromachined versions. A typical micromachined version (see figure) would include a rigid glass, metal, or plastic substrate and two layers of silicone rubber. The bottom silicone layer would contain shallow pump channels covered by silicone arches that could be pushed down pneumatically to block the channels. The bottom silicone layer would be covered with a thin layer of material with very low gas permeability, and would be bonded to the substrate everywhere except in the channel areas. The top silicone layer would be attached to the bottom silicone layer and would contain pneumatic- actuation channels that would lie crosswise to the pump channels. This version is said to be micromachined because the two silicone layers containing the channels would be fabricated by casting silicone rubber on micromachined silicon molds. The pneumatic-actuation channels would be alternately connected to a compressed gas and (depending on pump design) either to atmospheric

  1. Rotary magnetic heat pump

    DOEpatents

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  2. Multiwell pumping device

    SciTech Connect

    Dysarz, E.D.

    1987-06-30

    This patent describes a balanced pumping apparatus for pumping two laterally spaced wells comprising: a left conductor on a left well; a right conductor on a right the well; a left pump casing inside the well conductor; a right pump casing inside the right well conductor; a left sucker rod inside the left pump casing; a right sucker rod inside the right pump casing; flexible linkage means for attachment to the top ends of the right sucker rod and left sucker rod; a drive motor with a rotating shaft; a drive sprocket rotatably engaging the flexible linkage means; a separate pump casing flange attached to the upper section of each well conductors; a separate upper flange attached to the upper section of each pump casing and positioned at an axial location above the point attached to the pump casing; a separate transition piece attached to the top of each pump casing flange; a separate pump support attached to the top of each transition piece; a plate-like structural support means placed in a vertical plane above the well conductors and supporting the drive motor, the drive sprocket, the flexible linkage means, and the sucker rods; a structural load transfer means connecting the plate-like structural support means to the well conductors; a motor control unit for supporting itself and controlling the drive motor; and a separate shaft extending across each pump support.

  3. Types of Breast Pumps

    MedlinePlus

    ... uses batteries or a cord plugged into an electrical outlet to power a small motorized pump that creates suction to ... pumping. Because these breast pumps rely on a power source, women who use ... situations when electricity or extra batteries may not be available. If ...

  4. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  5. Pump for Saturated Liquids

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  6. Green pumped Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Kuper, Jerry W.; Brown, David C.

    2005-04-01

    Initial experiments with pulsed and CW pumping an alexandrite laser rod at 532 nm are presented. This pumping architecture holds promise for the production of scalable diode-pumped, tunable alexandrite laser systems operating in the near infrared (750 nm), and the ultraviolet (375 and 250 nm) spectral regions.

  7. Teflon films for chemically-inert microfluidic valves and pumps.

    PubMed

    Grover, William H; von Muhlen, Marcio G; Manalis, Scott R

    2008-06-01

    We present a simple method for fabricating chemically-inert Teflon microfluidic valves and pumps in glass microfluidic devices. These structures are modeled after monolithic membrane valves and pumps that utilize a featureless polydimethylsiloxane (PDMS) membrane bonded between two etched glass wafers. The limited chemical compatibility of PDMS has necessitated research into alternative materials for microfluidic devices. Previous work has shown that spin-coated amorphous fluoropolymers and Teflon-fluoropolymer laminates can be fabricated and substituted for PDMS in monolithic membrane valves and pumps for space flight applications. However, the complex process for fabricating these spin-coated Teflon films and laminates may preclude their use in many research and manufacturing contexts. As an alternative, we show that commercially-available fluorinated ethylene-propylene (FEP) Teflon films can be used to fabricate chemically-inert monolithic membrane valves and pumps in glass microfluidic devices. The FEP Teflon valves and pumps presented here are simple to fabricate, function similarly to their PDMS counterparts, maintain their performance over extended use, and are resistant to virtually all chemicals. These structures should facilitate lab-on-a-chip research involving a vast array of chemistries that are incompatible with native PDMS microfluidic devices. PMID:18497911

  8. PMMA/PDMS valves and pumps for disposable microfluidics.

    PubMed

    Zhang, Wenhua; Lin, Shuichao; Wang, Chunming; Hu, Jia; Li, Cong; Zhuang, Zhixia; Zhou, Yongliang; Mathies, Richard A; Yang, Chaoyong James

    2009-11-01

    Poly(methyl methacrylate) (PMMA) is gaining in popularity in microfluidic devices because of its low cost, excellent optical transparency, attractive mechanical/chemical properties, and simple fabrication procedures. It has been used to fabricate micromixers, PCR reactors, CE and many other microdevices. Here we present the design, fabrication, characterization and application of pneumatic microvalves and micropumps based on PMMA. Valves and pumps are fabricated by sandwiching a PDMS membrane between PMMA fluidic channel and manifold wafers. Valve closing or opening can be controlled by adjusting the pressure in a displacement chamber on the pneumatic layer via a computer regulated solenoid. The valve provides up to 15.4 microL s(-1) at 60 kPa fluid pressure and seals reliably against forward fluid pressure as high as 60 kPa. A PMMA diaphragm pump can be assembled by simply connecting three valves in series. By varying valve volume or opening time, pumping rates ranging from nL to microL per second can be accurately achieved. The PMMA based valves and pumps were further tested in a disposable automatic nucleic acid extraction microchip to extract DNA from human whole blood. The DNA extraction efficiency was about 25% and the 260 nm/280 nm UV absorption ratio for extracted DNA was 1.72. Because of its advantages of inexpensive, facile fabrication, robust and easy integration, the PMMA valve and pump will find their wide application for fluidic manipulation in portable and disposable microfluidic devices.

  9. Jet pump assisted artery

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  10. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  11. APT/LEDA RFQ vacuum pumping system

    SciTech Connect

    Shen, S., LLNL

    1997-07-21

    This paper describes the design and fabrication of a vacuum pumping system for the ATP/LEDA (Low Energy Demonstration Accelerator) RFQ (Radio Frequency Quadrupole) linac. Resulted from the lost proton beam, gas streaming from the LEBT (Low Energy Beam Transport) and out-gassing from the surfaces of the RFQ cavity and vacuum plumbing, the total gas load will be on the order of 7.2 x 10{sup -4} Torr-liters/sec, consisting mainly of hydrogen. The system is designed to pump on a continual basis with redundancy to ensure that the minimal operating vacuum level of 1 x 10{sup -6} Torr is maintained even under abnormal conditions. Details of the design, performance analysis and the preliminary test results of the cryogenic pumps are presented.

  12. Fabrication Technology

    SciTech Connect

    Blaedel, K.L.

    1993-03-01

    The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

  13. Pump isolation valve

    DOEpatents

    Kinney, Calvin L.; Wetherill, Todd M.

    1983-08-02

    The pump isolation valve provides a means by which the pump may be selectively isolated from the remainder of the coolant system while being compatible with the internal hydraulic arrangement of the pump during normal operation of the pump. The valve comprises a valve cylinder disposed around the pump and adjacent to the last pump diffuser with a turning vane attached to the lower end of the valve cylinder in a manner so as to hydraulically match with the discharge diffuser. The valve cylinder is connected to a drive means for sliding the valve cylinder relative to the diffuser support cylinder so as to block flow in either direction through the discharge diffuser when the valve is in the closed position and to aid in the flow of the coolant from the discharge diffuser by means of the turning vane when the valve is in the open position.

  14. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1993-01-01

    A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  15. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  16. Electrokinetic pumps and actuators

    SciTech Connect

    Phillip M. Paul

    2000-03-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

  17. Detection of pump degradation

    SciTech Connect

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  18. Submersible sodium pump

    DOEpatents

    Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.

    1989-11-21

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.

  19. Submersible sodium pump

    DOEpatents

    Brynsvold, Glen V.; Lopez, John T.; Olich, Eugene E.; West, Calvin W.

    1989-01-01

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates.

  20. Champagne Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  1. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1995-04-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  2. Wind pumping: A handbook

    SciTech Connect

    van Meel, J.; Smulders, P.

    1989-01-01

    The handbook is meant to provide energy and water-supply professionals and economists as well as field officers with an easily accessible source of information on wind pumping. It consolidates information acquired by institutions, professionals, and research centers in an easily extractable form. An overview of the characteristics of the technology is provided. The techniques for sizing of wind pumps and the sizing of alternative small pumps is discussed. Guidelines for financial and economic assessment of wind pumping are given. Particulars on installation, maintenance, and other logistical matters are also given. Several annexes provide supporting details and examples.

  3. Mixing and Pumping in Microfluidic Systems using Motile Bacteria

    NASA Astrophysics Data System (ADS)

    Kim, Min Jun; Breuer, Kenneth

    2003-11-01

    Experimental results are presented showing the use of bacterial carpets to achieve enhanced mixing and pumping in microfluidic channels. Bacterial carpets are formed by flowing high concentration of Serratia marcescens (2 5 × 10^9/ml) into a microfluidic network, fabricated using PDMS molding technologies. The bacteria cells stick to the surface while most of their flagella remain free to rotate in the fluid. The mixing of two streams of a Dextran solution brought together at a Y-junction in a microfluidic network is recorded using video microscopy. Significant enhancement of diffusion due to the carpet flagella motion is observed. The bacterial carpet is also observed to act as a microfluidic pump. The motion of fluorescent particles (500 nm) as they are pumped by the bacterial carpet around a circular "racetrack" is analysed using Particle Tracking Velocimetry (PTV). Significant pumping is observed. The physical mechanisms for the enhanced diffusion and the pumping generated by bacterial carpet are also discussed.

  4. Liquid pump for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1972-01-01

    The Apollo portable life support system water-recirculation pump used for astronaut cooling is described. The problems associated with an early centrifugal pump and how these problems were overcome by the use of a new diaphragm pump are discussed. Performance comparisons of the two pump designs are given. Developmental problems and flight results with the diaphragm pump are discussed.

  5. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  6. Gastrostomy feeding tube - pump - child

    MedlinePlus

    Feeding - gastrostomy tube - pump; G-tube - pump; Gastrostomy button - pump; Bard Button - pump; MIC-KEY - pump ... Your child has a gastrostomy tube (G-tube). This is a soft, plastic tube placed into your child's stomach. It delivers nutrition (food) and medicines until your ...

  7. 33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLAN AND LOCATION OF PROPOSED ADDITIONS, METROPOLITAN WATER AND SEWERAGE BOARD, METROPOLITAN SEWERAGE WORKS, JULY 1908. Aperture card 6417. - Deer Island Pumping Station, Boston, Suffolk County, MA

  8. 32. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLANT AND LOCATION OF PROPOSED ADDITIONS, JULY 1898 SHEET NO. 1. Aperture card 4966-1 - Deer Island Pumping Station, Boston, Suffolk County, MA

  9. Looking south at boiler feedwater pumps (steam turbine pump on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking south at boiler feedwater pumps (steam turbine pump on left, electric motor pump on right). - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  10. NEUTRONIC REACTOR FUEL PUMP

    DOEpatents

    Cobb, W.G.

    1959-06-01

    A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)

  11. Pump apparatus including deconsolidator

    SciTech Connect

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  12. Cryogenic Vacuum Pump

    NASA Technical Reports Server (NTRS)

    Zachman, C. A.

    1983-01-01

    System provides high pumping capacity even for noble gases. First stage, removes water and CO2 from input gas. Second stage, removes noble gases except helium and some lighter gases not trapped by first stage. Third stage, traps all remaining gases. All three stages mounted inside liquid-nitrogen Dewar that cools first stage. Pump small enough for general laboratory use.

  13. Water Treatment Technology - Pumps.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  14. Micromachined peristaltic pumps

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    1999-01-01

    Micromachined pumps including a channel formed between a first membrane and a substrate or between first and second flexible membranes. A series of electrically conductive strips is applied to a surface of the substrate or one of the membranes. Application of a sequential voltage to the series of strips causes a region of closure to progress down the channel to achieve a pumping action.

  15. A Shocking New Pump

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Hydro Dynamics, Inc. received a technical helping hand from NASA that made their Hydrosonic Pump (HPump) a reality. Marshall engineers resolved a bearing problem in the rotor of the pump and recommended new bearings, housings and mounting hardware as a solution. The resulting HPump is able to heat liquids with greater energy efficiency using shock waves to generate heat.

  16. Magnetic heat pump design

    NASA Astrophysics Data System (ADS)

    Kirol, L. D.; Dacus, M. W.

    1988-03-01

    Heat pumps utilizing the magnetocaloric effect offer a potentially attractive alternative to conventional heat pumps and refrigerators. Many physical configurations of magnetic heat pumps are possible. Major classes include those requiring electrical energy input and those with mechanical energy input. Mechanical energy is used to move magnets, working material, or magnetic shielding. Each type of mechanical magnetic heat pump can be built in a rotary (recuperative) or reciprocal (regenerative) configuration. Machines with electrical energy input utilize modulation of the magnetic field to cause working material to execute the desired thermodynamic cycle, and can also be recuperative or regenerative. Recuperative rotary heat pumps in which working material is moved past stationary magnets is the preferred configuration. Regenerative devices suffer performance degradation from temperature change of regenerator material and mixing and conduction in the regenerator. Field modulated cycles are not practical due to ac losses in superconducting magnets. Development of methods for recuperator fluid pumping is the major challenge in design of rotary recuperative devices. Several pumping options are presented, and the design of a bench scale heat pump described.

  17. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1994-12-31

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  18. Development, testing, and certification of Calmac Mfg. Corp. solar collector and solar operated pump

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1979-01-01

    Development of a rubber tube solar collector and solar operated pump for use with solar heating and cooling systems is discussed. The development hardware, problems encountered during fabrication and testing, and certification statements of performance are included.

  19. Vacuum hand pump apparatus for collecting water samples from a horizontal intragravel pipe

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.

    1996-01-01

    We describe a lightweight, portable vacuum hand pump apparatus for use in collecting water samples from horizontal intragravel pipe samplers buried in the stream bottom. The apparatus is easily fabricated from relatively inexpensive materials available at many laboratory supply houses.

  20. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid V

    SciTech Connect

    KOCH, M.R.

    2000-05-18

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control. (PIC) skid designed as ''V''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  1. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid Q

    SciTech Connect

    KOCH, M.R.

    2000-03-27

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''Q''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  2. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid U

    SciTech Connect

    KOCH, M.R.

    2000-12-05

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''U''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  3. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid T

    SciTech Connect

    KOCH, M.R.

    2000-05-18

    This Acceptance Test Procedure (ATP) provides for the inspection and testing Of the new Pumping Instrumentation and Control (PIC) skid designed as ''T''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  4. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid P

    SciTech Connect

    KOCH, M.R.

    2000-03-01

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''P''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  5. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid T

    SciTech Connect

    KOCH, M.R.

    2000-06-20

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designated as ''T''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  6. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid W

    SciTech Connect

    KOCH, M.R.

    2000-05-18

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''W''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  7. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid R

    SciTech Connect

    KOCH, M.R.

    2000-05-11

    This Acceptance Test Procedure (ATP) provides for the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''R''. The ATP will be performed after the construction of the PIC skid in the fabrication shop.

  8. Deep well solar pump

    SciTech Connect

    Vanek, J.

    1990-02-06

    This patent describes, in a pump having a source of gas under pressure, and a gas operated pump, a mechanism periodically injecting gas from the source of gas into the gas operated pump. It comprises: a long period pendulum turning towards a first position by gravity, an injection valve connected between the source of gas under pressure and the gas operated pump, a linkage between the pendulum and the injection valve. The linkage opening the injection valve when the pendulum is in the first position, an impulse tube connected between the injection valve and the gas operated pump, a member having a surface adjacent to the first position of the pendulum, and an elastic impulse bladder connected to the impulse tube adjacent to the surface so that inflation of the impulse bladder on the opening of the injection valve forces the impulse bladder against the pendulum urging the pendulum against the force of gravity toward a second position.

  9. Rotary Blood Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1996-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  10. Heart Pump Design for Cleveland Clinic Foundation

    NASA Technical Reports Server (NTRS)

    2005-01-01

    thermal and structural effects. Lewis-developed flow-modeling codes to be used in the pump simulations will include a one-dimensional code and an incompressible three-dimensional Navier-Stokes flow code. These codes will analyze the prototype pump designed by the Cleveland Clinic Foundation. With an improved understanding of the flow phenomena within the prototype pump, design changes to improve the performance of the pump system can be verified by computer prior to fabrication in order to reduce risks. The use of Lewis flow modeling codes during the design and development process will improve pump system performance and reduce the number of prototypes built in the development phase. The first phase of the IVAS project is to fully develop the prototype in a laboratory environment that uses a water/glycerin mixture as the surrogate fluid to simulate blood. A later phase of the project will include testing in animals for final validation. Lewis will be involved in the IVAS project for 3 to 5 years.

  11. Apparatus for Pumping a Fluid

    NASA Technical Reports Server (NTRS)

    Boeyen, Robert Van; Reeh, Jonathan

    2013-01-01

    A fluid pump has been developed for mechanically pumped fluid loops for spacecraft thermal control. Lynntech's technology utilizes a proprietary electrochemically driven pumping mechanism. Conventional rotodynamic and displacement pumps typically do not meet the stringent power and operational reliability requirements of space applications. Lynntech's developmental pump is a highly efficient solid-state pump with essentially no rotating or moving components (apart from metal bellows).

  12. Pressure charged airlift pump

    DOEpatents

    Campbell, Gene K.

    1983-01-01

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  13. Deep well pump

    SciTech Connect

    Downen, J.L.; Sutliff, W.N.

    1981-06-16

    A pump barrel open at its lower end is coupled at its upper end by a tubular adapter assembly to the lower end of a pump tubing string. This assembly presents an internal bevelled sealing latching annulus, an axially bored pump head being radially expansively spring latched in a fixed axial sealed relation with the annulus to seal the upper end of the pump barrel from the adapter assembly to form a pump compression chamber surrounding a hollow polish rod extending upwardly from a plunger mounted on the lower end of the polish rod for reciprocation in the pump barrel. The plunger carries tandem travelling valves close beneath its connection with the polish rod. The lower valve opening to receive oil through the barrel and plunger on the down stroke and concurrently delivering such oil into the compression chamber. The upper valve closes on the down stroke and opening on the up stroke during which the lower valve closes to expel oil trapped in the compression chamber upward through the upper valve into the lower end of the hollow polish rod which oil is discharged at the upper end thereof into the pump tubing string through the fitting adapting the polish rod to the lower end of the sucker rod.

  14. Performance of mosquito's pump

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kenji

    2005-11-01

    The flow of human blood in Mosquito's proboscis on Hagen-Poiseuille flow is investigated by using micro PIV system to apply mosquito's sucking system for micro-TAS devises. We want to know how high the power of Mosquito's pump is and how small the resistance in a proboscis is, a structure of Mosquito's sucking pump, and its characteristics as mechanical pump. We made the mosquito suck blood of our arm to obtain the average value, made many slices of a mosquito with 2μm thickness after fixed by wax. We anatomized the mosquito's head and picked up the sucking pump under the microscope to know its volume. Mosquito's pump shows high performance compared with the artificial pumps. The surfaces of proboscis were taken by using SEM, AFM because it is important factor for interaction between flow and its wall. Visualization of the blood flows near the tip of and inside proboscis are taken by micro PIV system to know the flow rate. We estimate the power of pump and the friction drag of proboscis by using these data.

  15. Fuel injection pump

    SciTech Connect

    Iiyama, A.; Nishimura, T.

    1988-12-06

    This patent describes a fuel injection pump comprising: (a) engageable first and second cam members, the first cam member reciprocating axially as the first cam member moves angularly relative to the second cam member when the first and second cam members are in engagement; (b) means for urging the first cam member toward the second cam member to engage the first and second cam members; (c) a plunger connected to the first cam member for reciprocation with the first cam member, the plunger defining at least a part of a pumping chamber, the pumping chamber contracting and expanding as the plunger reciprocates; (d) means for allowing fuel to move into the pumping chamber as the pumping chamber expands in a fuel intake stroke; (e) means for allowing the fuel to move out of the pumping chamber as the pumping chamber contracts in a fuel compression stroke; and (f) means for resisting movement of the plunger in at least part of the fuel compression stroke and relieving resistance to the movement of the plunger in the fuel intake stroke wherein the resisting means comprises a piston slidably mounted on the plunger, a spring urging the piston to seat the piston on a shoulder on the plunger so that the piston reciprocates as the plunger reciprocates, wherein the piston is seated on the shoulder in the fuel compression stroke and separates from the shoulder against the force of the spring in the fuel intake stroke, a second fluid chamber at least partially defined by the piston.

  16. A micro surface tension pump (MISPU) in a glass microchip.

    PubMed

    Peng, Xing Yue Larry

    2011-01-01

    A non-membrane micro surface tension pump (MISPU) was fabricated on a glass microchip by one-step glass etching. It needs no material other than glass and is driven by digital gas pressure. The MISPU can be seen working like a piston pump inside the glass microchip under a microscope. The design of the valves (MISVA) and pistons (MISTON) was based on the surface tension theory of the micro surface tension alveolus (MISTA). The digital gas pressure controls the moving gas-liquid interface to open or close the input and output MISVAs to refill or drive the MISTON for pumping a liquid. Without any moving parts, a MISPU is a kind of long-lasting micro pump for micro chips that does not lose its water pumping efficiency over a 20-day period. The volumetric pump output varied from 0 to 10 nl s(-1) when the pump cycle time decreased from 5 min to 15 s. The pump head pressure was 1 kPa.

  17. RENEWABLE LIQUID GETTERING PUMP

    DOEpatents

    Batzer, T.H.

    1962-08-21

    A method and structure were developed for pumping gases by simple absorption into a liquid gettering material. The invention comprises means ror continuously pumping a liquid getterrng material from a reservoir to the top of a generally vertical surface disposed in a vacuum pumping chamber to receive gaseous and other particles in the liquid gettering material which continuously flows downward over the vertical suiface. Means are provided for continuous removal, degassing, and return of a portion of the liquid gettering material from the reservoir connected with collectrng means at the base of the generally vertical plate. (AEC)

  18. Focused-ion-beam-assisted fabrication of polymer rolled-up microtubes

    NASA Astrophysics Data System (ADS)

    Luchnikov, V.; Stamm, M.; Akhmadaliev, Ch; Bischoff, L.; Schmidt, B.

    2006-08-01

    A focused ion beam (FIB) has been applied to the fabrication of polymer microtubes via the rolling-up technique from poly(4-vinyl pyridine)/polystyrene bilayer films deposited on the top of a sacrificial aluminum layer covering a silicon wafer. The bending forces in the film arise due to different swelling of the bilayer components in acidic water and lead to rolling of the film. The dimensions and position of the rolled-up tubes can be controlled by FIB milling (sputtering) of geometrically well-adjusted openings in the polymer films. This technique can be applied to the structuring of scrolled films formed from different materials without the use of lithographically patterned photoresists. The geometrical patterning of the tube interior can also be done by FIB irradiation.

  19. Development of nonmetallic solar collector and solar-powered pump

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1979-01-01

    Design and building of two unique components for solar heating (1. flatplate solar collector using no metal components, and 2. solar powered pump for heating and cooling systems are outlined in report. Report also discusses hardware, deliverable end items, problems encountered during fabrication and testing, and performance certification.

  20. Electroosmotic pumps and their applications in microfluidic systems

    PubMed Central

    Wang, Xiayan; Cheng, Chang; Wang, Shili; Liu, Shaorong

    2009-01-01

    Electroosmotic pumping is receiving increasing attention in recent years owing to the rapid development in micro total analytical systems. Compared with other micropumps, electroosmotic pumps (EOPs) offer a number of advantages such as creation of constant pulse-free flows and elimination of moving parts. The flow rates and pumping pressures of EOPs matches well with micro analysis systems. The common materials and fabrication technologies make it readily integrateable with lab-on-a-chip devices. This paper reviews the recent progress on EOP fabrications and applications in order to promote the awareness of EOPs to researchers interested in using micro- and nano-fluidic devices. The pros and cons of EOPs are also discussed, which helps these researchers in designing and constructing their micro platforms. PMID:20126306

  1. Pressurized Vessel Slurry Pumping

    SciTech Connect

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  2. Regenerative Hydride Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  3. Keeping Hearts Pumping

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A collaboration between NASA, Dr. Michael DeBakey, Dr. George Noon, and MicroMed Technology, Inc., resulted in a life-saving heart pump for patients awaiting heart transplants. The MicroMed DeBakey VAD functions as a "bridge to heart transplant" by pumping blood throughout the body to keep critically ill patients alive until a donor heart is available. Weighing less than 4 ounces and measuring 1 inch by 3 inches, the pump is approximately one-tenth the size of other currently marketed pulsatile VADs. This makes it less invasive and ideal for smaller adults and children. Because of the pump's small size, less than 5 percent of the patients implanted developed device-related infections. It can operate up to 8 hours on batteries, giving patients the mobility to do normal, everyday activities.The MicroMed DeBakey VAD is a registered trademark of MicroMed Technology, Inc.

  4. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  5. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  6. GAS METERING PUMP

    DOEpatents

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  7. Direct nuclear pumped laser

    DOEpatents

    Miley, George H.; Wells, William E.; DeYoung, Russell J.

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  8. Lunar Base Heat Pump

    NASA Technical Reports Server (NTRS)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  9. Remotely Adjustable Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  10. Design, Analysis, Fabrication, and Testing of a Novel Piezoelectric Pump

    SciTech Connect

    Jansen, J.F.

    2003-10-16

    While there is a wide range of actuation technologies, none currently rivals the overall performance (power density, bandwidth, stress, stroke) of conventional hydraulic actuation. It is well known in the actuation community that the power-to-weight ratios and the power-to-volume ratios of hydraulic actuators are, respectively, around 5 times and 10 to 20 times larger than comparable electric motors. Due to fundamental limitations in the magnetic flux density in the supporting structures and limitations in the heat transfer out of electric actuators, significant changes in these ratios are not likely in the near future. Thermal limitations associated with electric motors do no apply to hydraulic actuators since the hydraulic fluid cools and lubricates the system. Hydraulic actuators are capable of holding a load without any energy expenditure, resilient to high impact loads, and typically do no need a transmission system. However, with all of these virtues, hydraulic actuators have serious practical implementation problems. Typically, hydraulic actuators have moderate to poor reliability when compared to electric actuators, leaky (at least in reputation), poor energy efficiencies and poor controllability due to either overlapping or underlapping in the spool of the control valves. This work addresses a new type of electric actuator that attempts to combine the best of both the electric and hydraulic mediums. Easy controllability as with electric actuators, scalability, and high power densities associated with hydraulics were the goals of this work.

  11. Miniature reciprocating heat pumps and engines

    NASA Technical Reports Server (NTRS)

    Thiesen, Jack H. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2003-01-01

    The present invention discloses a miniature thermodynamic device that can be constructed using standard micro-fabrication techniques. The device can be used to provide cooling, generate power, compress gases, pump fluids and reduce pressure below ambient (operate as a vacuum pump). Embodiments of the invention relating to the production of a cooling effect and the generation of electrical power, change the thermodynamic state of the system by extracting energy from a pressurized fluid. Energy extraction is attained using an expansion process, which is as nearly isentropic as possible for the appropriately chosen fluid. An isentropic expansion occurs when a compressed gas does work to expand, and in the disclosed embodiments, the gas does work by overcoming either an electrostatic or a magnetic force.

  12. Lunar base heat pump

    NASA Technical Reports Server (NTRS)

    Goldman, Jeffrey H.; Tetreault, R.; Fischbach, D.; Walker, D.

    1994-01-01

    A heat pump is a device which elevates the temperature of a heat flow by a means of an energy input. By doing this, the heat pump can cause heat to transfer faster from a warm region to a cool region, or it can cause heat to flow from a cool region to a warmer region. The second case is the one which finds vast commercial applications such as air conditioning, heating, and refrigeration. Aerospace applications of heat pumps include both cases. The NASA Johnson Space Center is currently developing a Life Support Systems Integration Facility (LSSIF, previously SIRF) to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions. A high lift heat pump is a significant part of the TCS hardware development associated with the LSSIF. The high lift heat pump program discussed here is being performed in three phases. In Phase 1, the objective is to develop heat pump concepts for a lunar base, a lunar lander, and for a ground development unit for the SIRF. In Phase 2, the design of the SIRF ground test unit is being performed, including identification and evaluation of safety and reliability issues. In Phase 3, the SIRF unit will be manufactured, tested, and delivered to the NASA Johnson Space Center.

  13. Hydraulic well pump

    SciTech Connect

    Dollison, W.W.

    1987-09-08

    This patent describes a system for operating a sucker rod string connected with a well pump comprising: a double-acting fluid cylinder having opposing power ends; means for connecting the cylinder with the sucker rod string for raising and lowering the string to operate the pump; hydraulic pump means for supplying pressurized fluid alternately to the cylinder ends including a direction control movable between extend and retract conditions to extend and retract the cylinder; drive means for shifting the direction control; control means for operating the drive means responsive to the extend and retract movements of the cylinder; and means for applying a fluid counterbalancing force into the cylinder for offsetting the combined weights of the sucker rod string. A production fluid column in a well bore above the pump, and movable surface equipment supported on the cylinder include an accumulator connected with the hydraulic pump means and the direction control for supercharging the intake of the pump during the extend movement of the cylinder and for applying an opposing hydraulic force to the cylinder during the retract movement.

  14. Smart'' pump and treat

    SciTech Connect

    Isherwood, W.; Rice, D. Jr.; Ziagos, J. ); Nichols, E. )

    1991-09-01

    Lawrence Livermore National Laboratory (LLNL) is approaching the final phase of the Superfund decision-making process for site restoration and will soon initiate full scale cleanup. Despite some well-publicized failings of the pump and treat approach, we have concluded that intelligent application of this strategy if the best choice for ground water restoration at LLNL. Our proposed approach differs sufficiently from the pump and treat methods implemented at other sites that we call it smart'' pump and treat. Smart pump and treat consists of four distinct, but interrelated, elements: three preremediation strategies and one modification to pump and treat itself. Together, these techniques are an integrated program that utilizes an understanding of crucial aspects of contaminant flow and transport to speed up the remediation of contaminated aquifers. The four elements are: (1) a spatially detailed site characterization, linked with regional hydrogeologic models; (2) directed extraction, where the extraction and recharge locations are controlled by field-determined hydrogeologic parameters; (3) field-validated modeling that the matches the complexity of the collected data; and (4) adaptive pumping, whose pattern varies with time. Together, these techniques minimize the cost and the time to reach regulatory directed cleanup goals and maximize the rate of contaminant removal. 8 refs.

  15. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Benkowski, Robert J. (Inventor); Kiris, Cetin (Inventor); Kwak, Dochan (Inventor); Rosenbaum, Bernard J. (Inventor); Bacak, James W. (Inventor); DeBakey, Michael E. (Inventor)

    1999-01-01

    A blood pump that comprises a pump housing having a blood flow path therethrough, a blood inlet, and a blood outlet; a stator mounted to the pump housing, the stator having a stator field winding for producing a stator magnetic field; a flow straightener located within the pump housing, and comprising a flow straightener hub and at least one flow straightener blade attached to the flow straightener hub; a rotor mounted within the pump housing for rotation in response to the stator magnetic field, the rotor comprising an inducer and an impeller; the inducer being located downstream of the flow straightener, and comprising an inducer hub and at least one inducer blade attached to the inducer hub; the impeller being located downstream of the inducer, and comprising an impeller hub and at least one impeller blade attached to the impeller hub; and preferably also comprising a diffuser downstream of the impeller, the diffuser comprising a diffuser hub and at least one diffuser blade. Blood flow stagnation and clot formation within the pump are minimized by, among other things, providing the inducer hub with a diameter greater than the diameter of the flow straightener hub; by optimizing the axial spacing between the flow straightener hub and the inducer hub, and between the impeller hub and the diffuser hub; by optimizing the inlet angle of the diffuser blades; and by providing fillets or curved transitions between the upstream end of the inducer hub and the shaft mounted therein, and between the impeller hub and the shaft mounted therein.

  16. Auxiliary lubrication pump apparatus

    SciTech Connect

    Glesmann, H.C.; Thomas, R.G.

    1987-02-10

    This patent describes an auxiliary lubrication pump apparatus for use with a towing vehicle having an engine switch, a battery, and an interior compartment, and a towed vehicle having an automatic transmission which requires forced lubrication while being towed. The apparatus comprises: (a) a lubrication pump; (b) a transmission to pump hose connected between the automatic transmission and the lubrication pump; (c) a valve having at least one signal output and two inputs: (d) a hose means for connecting an output of the lubrication pump to one of the inputs of the valve; (e) a first outflow hose for connecting the automatic transmission to another input of the valve; (f) a second output hose for connecting the output of the valve to the automatic transmission; (g) pressure sensing means positioned to sense pressure as regards the second outflow hose; and (h) control means responsive to the pressure sensing means and having switch means for providing electricity to the lubrication pump and to provide an alarm whenever the control means detects through the pressure sensing means that inadequate pressure exists.

  17. The Evolution of Ion Pumps.

    ERIC Educational Resources Information Center

    Maloney, Peter C.; Wilson, T. Hastings

    1985-01-01

    Constructs an evolutionary sequence to account for the diversity of ion pumps found today. Explanations include primary ion pumps in bacteria, features and distribution of ATP-driven pumps, preference for cation transport, and proton pump reversal. The integrated evolutionary hypothesis should encourage new experimental approaches. (DH)

  18. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  19. Tokamak pump limiters

    NASA Astrophysics Data System (ADS)

    Conn, Robert W.

    1984-12-01

    Experiments with pump limiters on several operating tokamaks have established them as efficient collectors of particles. The gas pressure rise within the chamber behind the limiters has been as high as 50 mTorr when there is no internal chamber pumping. Observations of the plasma power distribution over the front face of these limiter modules yield estimates for the scale length of radial power decay consistent with predictions of relatively simple theory. Interaction of the in-flowing plasma with recycling neutral gas near the limiter deflector plate is predicted to become important when the effective ionization mean free path is comparable to or less than the neutral atom mean path length within the throat structure of the limiter. Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6 MW of auxiliary neutral beam heating. Experiments have also been performed with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a regime may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased

  20. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    SciTech Connect

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  1. Well-pump alignment system

    DOEpatents

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  2. Fabrication of plastic microfluidic components

    NASA Astrophysics Data System (ADS)

    Martin, Peter M.; Matson, Dean W.; Bennett, Wendy D.; Hammerstrom, D. J.

    1998-09-01

    Plastic components have many advantages, including ease of fabrication, low cost, chemical inertness, lightweight, and disposability. We report on the fabrication of three plastics-based microfluidic components: a motherboard, a dialysis unit, and a metal sensor. Microchannels, headers, and interconnects were produced in thin sheets (>=50 microns) of polyimide, PMMA, polyethylene, and polycarbonate using a direct-write excimer laser micromachining system. Machined sheets were laminated by thermal and adhesive bonding to form leak-tight microfluidic components. The microfluidic motherboard borrowed the `functionality on a chip' concept from the electronics industry and was the heart of a complex microfluidic analytical device. The motherboard platform was designed to be tightly integrated and self-contained (i.e., liquid flows are all confined within machined microchannels), reducing the need for tubing with fluid distribution and connectivity. This concept greatly facilitated system integration and miniaturization. As fabricated, the motherboard consisted of three fluid reservoirs connected to micropumps by microchannels. The fluids could either be pumped independently or mixed in microchannels prior to being directed to exterior analytical components via outlet ports. The microdialysis device was intended to separate electrolytic solutes from low volume samples prior to mass spectrometric analysis. The device consisted of a dialysis membrane laminated between opposed serpentine microchannels containing the sample fluid and a buffer solution. The laminated metal sensor consisted of fluid reservoirs, micro-flow channels, micropumps, mixing channels, reaction channels, and detector circuitry.

  3. Methods of increasing net work output of organic Rankine cycles for low-grade waste heat recovery with a detailed analysis using a zeotropic working fluid mixture and scroll expander

    NASA Astrophysics Data System (ADS)

    Woodland, Brandon Jay

    An organic Rankine cycle (ORC) is a thermodynamic cycle that is well-suited for waste heat recovery. It is generally employed for waste heat with temperatures in the range of 80 °C -- 300 °C. When the application is strictly to convert waste heat into work, thermal efficiency is not recommended as a key performance metric. In such an application, maximization of the net power output should be the objective rather than maximization of the thermal efficiency. Two alternative cycle configurations that can increase the net power produced from a heat source with a given temperature and flow rate are proposed and analyzed. These cycle configurations are 1) an ORC with two-phase flash expansion and 2) an ORC with a zeotropic working fluid mixture (ZRC). A design-stage ORC model is presented for consistent comparison of multiple ORC configurations. The finite capacity of the heat source and heat sink fluids is a key consideration in this model. Of all working fluids studied for the baseline ORC, R134a and R245fa yield the highest net power output from a given heat source. Results of the design-stage model indicate that the ORC with two-phase flash expansion offers the most improvement over the baseline ORC. However, the level of improvement that could be achieved in practice is highly uncertain due to the requirement of highly efficient two-phase expansion. The ZRC shows improvement over the baseline as long as the condenser fan power requirement is not negligible. At the highest estimated condenser fan power, the ZRC shows the most improvement, while the ORC with flash expansion is no longer beneficial. The ZRC was selected for detailed study because it does not require two-phase expansion. An experimental test rig was used to evaluate baseline ORC performance with R134a and with R245fa. The ZRC was tested on the same rig with a mixture of 62.5% R134a and 37.5% R245fa. The tested expander is a minimally-modified, of-the-shelf automotive scroll compressor. The high

  4. Development of a windmill for water pumping for developing countries

    SciTech Connect

    Gupta, R.P.; Chandra, S.K.; Mantrawadi, S.C.

    1983-12-01

    Development of an all-metal windmill with 5 meter wheel diameter and 12 blades is described. Sound methods of mechanical and aerodynamic design are used, even though the windmill is simple enough to be fabricated in a small workshop using commonly available mild steel sections. The windmill is connected to a single acting reciprocating pump which can be inserted in a tubewell. Stroke of the pump as well as pump diameter can be varied to suit the site conditions as the water table and wind velocity vary. The designed windspeed is kept low at 14 KMPH so that the windmill is suitable for low wind regimes and the cut-in wind speed is as low as 6 KMPH. The overall efficiency of the wind pump is found to be about 12-15 percent. The cost of the wind pump together with all metallic 7 meter high tower is about US $1,200, with a life expectancy of 20 years. Few of the windmills are already working and cost of water pumping is comparable to diesel or electric pumping.

  5. New methods for the development of pneumatic displacement pumps for cardiac assist.

    PubMed

    Knierbein, B; Rosarius, N; Reul, H; Rau, G

    1990-11-01

    The primary goal of the presented project was to develop a pump family with stroke volumes of 20, 50, 70 and 90 ml, which could be produced at low cost but with sufficient quality. The housing parts of the pump were thermoformed from technical semifinished materials. All blood contacting surfaces of the pump were coated with biomaterials in a controlled dipping process. During the design and fabrication process a professional CAD-system was used. This facilitated spatial presentations of pump components for first evaluations at the initial draft stages. The CAD-design data were then transformed to CNC-controlled lathes and mill's for the fabrication of pump tools. The stresses and strains of the moving blood pump components, such as membranes and valves, were precalculated by means of Finite-Element-Analysis (FEM). After completion of the pump, the internal flow fields were investigated by flow-visualization techniques using non-Newtonian test fluids, and the pump characteristics (function curves) were investigated in appropriate circulatory mock loops. The paper covers all above aspects from first draft to final fabrication and testing.

  6. Heat driven pulse pump

    NASA Technical Reports Server (NTRS)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  7. Pump tank divider plate for sump suction sodium pumps

    DOEpatents

    George, John A.; Nixon, Donald R.

    1977-01-01

    A circular plate extends across the diameter of "sump suction" pump, with a close clearance between the edge of the plate and the wall of the pump tank. The plate is located above the pump impeller, inlet and outlet flow nozzles but below the sodium free surface and effectively divides the pump tank into two separate chambers. On change of pump speed, the close fitting flow restriction plate limits the rate of flow into or out of the upper chamber, thereby minimizing the rate of level change in the tank and permitting time for the pump cover gas pressure to be varied to maintain an essentially constant level.

  8. 20. Station Unwatering Pumps and Sump Pump, view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Station Unwatering Pumps and Sump Pump, view to the north. The station unwatering pumps are the two large units in the center and right foreground of photograph and are marked with the numbers 1 and 2. The sump pump is the smaller unit in left foreground of photograph. These pumps are used for unwatering the draft chests for maintenance. Note the draft tube unwatering valve visible in background between the two unwatering pumps. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  9. Design, manufacture, and test of coolant pump-motor assembly for Brayton power conversion system

    NASA Technical Reports Server (NTRS)

    Gabacz, L. E.

    1973-01-01

    The design, development, fabrication, and testing of seven coolant circulating pump-motor assemblies are discussed. The pump-motor assembly is driven by the nominal 44.4-volt, 400-Hz, 3-phase output of a nominal 56-volt dc input inverter. The pump-motor assembly will be used to circulate Dow Corning 200 liquid coolant for use in a Brayton cycle space power system. The pump-motor assembly develops a nominal head of 70 psi at 3.7 gpm with an over-all efficiency of 26 percent. The design description, drawings, photographs, reliability results, and developmental and acceptance test results are included.

  10. Circulating pump for high-pressure and high-temperature applications

    NASA Astrophysics Data System (ADS)

    Peleties, Fotos; Martin Trusler, J. P.; Goodwin, Anthony R. H.; Maitland, Geoffrey C.

    2005-10-01

    A high-pressure high-temperature magnetic circulating pump is described. The design is based on the concept of contactless bidirectional pumping action. This pump can deliver a continuous flow at temperatures up to 175°C and pressures up to 2000bars. Wetted parts are fabricated from stainless steels, there are no elastomeric seals or lubricants required, and the pump can be physically mobile during operation. Tests with toluene at ambient temperature and pressure showed that volumetric flow rates of up to 320cm3 min-1 and pressure heads of up to 2.2bars could be achieved.

  11. Pumping of helium and hydrogen by sputter-ion pumps. II. Hydrogen pumping

    SciTech Connect

    Welch, K.M.; Pate, D.J.; Todd, R.J. )

    1994-05-01

    The pumping of helium by various forms of sputter-ion pumps (i.e., SIPs) is given in part I [K. M. Welch, D. J. Pate, and R. J. Todd, J. Vac. Sci. Technol. A [bold 11], 1607 (1993)]. The pumping of hydrogen in diode and triode SIPs is herein discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum, titanium, and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium anodes and titanium [ital shielding] of a pump body is also shown to impact measurably the speed of a pump at very low pressures. This stems from the fact that hydrogen is [times]10[sup 6] more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Ions and fast neutrals of hydrogen are also buried in the walls of pump bodies. Outgassing of this hydrogen from the anodes and pump bodies results in a gradual increase in pump base pressure and consequential decrease in hydrogen pump speed at very low base pressures.

  12. Polymorphous computing fabric

    DOEpatents

    Wolinski, Christophe Czeslaw; Gokhale, Maya B.; McCabe, Kevin Peter

    2011-01-18

    Fabric-based computing systems and methods are disclosed. A fabric-based computing system can include a polymorphous computing fabric that can be customized on a per application basis and a host processor in communication with said polymorphous computing fabric. The polymorphous computing fabric includes a cellular architecture that can be highly parameterized to enable a customized synthesis of fabric instances for a variety of enhanced application performances thereof. A global memory concept can also be included that provides the host processor random access to all variables and instructions associated with the polymorphous computing fabric.

  13. Optimizing the pumping configuration for the power scaling of in-band pumped erbium doped fiber amplifiers.

    PubMed

    Lim, Ee-Leong; Alam, Shaif-ul; Richardson, David J

    2012-06-18

    A highly efficient (~80%), high power (18.45 W) in-band, core pumped erbium/ytterbium co-doped fiber laser is demonstrated. To the best of our knowledge, this is the highest reported efficiency from an in-band pumped 1.5 µm fiber laser operating in the tens of watts regime. Using a fitted simulation model, we show that the significantly sub-quantum limit conversion efficiency of in-band pumped erbium doped fiber amplifiers observed experimentally can be explained by concentration quenching. We then numerically study and experimentally validate the optimum pumping configuration for power scaling of in-band, cladding pumped erbium doped fiber amplifiers. Our simulation results indicate that a ~77% power conversion efficiency with high output power should be possible through cladding pumping of current commercially available pure Erbium doped active fibers providing the loss experienced by the cladding guided 1535 nm pump due to the coating absorption can be reduced to an acceptable level by better coating material choice. The power conversion efficiency has the potential to exceed 90% if concentration quenching of erbium ions can be reduced via improvements in fiber design and fabrication.

  14. Fuel injection pump

    SciTech Connect

    Hishinuma, O.; Masuda, A.; Ohmori, T.; Miyaki, M.; Takemoto, E.

    1987-06-09

    This patent describes a fuel injection pump for an internal combustion engine comprising: a housing having a cylindrical inner surface; a shaft having a portion disposed in rotatably sliding engagement with the cylindrical inner surface and having a first axial bore and a second radial bore therein; at least one pumping plunger slidably disposed in the second radial bore to cooperate therewith to define a compression chamber; a pumping plunger is adapted to be moved in the second radial bore to vary the volume of the compression chamber; an injection plunger slidably disposed in the first axial, bore to cooperate in defining the first and second pressure chambers separated from each other by the injection plunger.

  15. Fluid pumping apparatus

    DOEpatents

    West, Phillip B.

    2006-01-17

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  16. A study of the feasibility of mechanical pumps for use with the Pioneer-Venus probe mass spectrometer inlet system

    NASA Technical Reports Server (NTRS)

    Thomas, N. C.; Crosmer, W. E.; Nowak, D.

    1973-01-01

    A survey of mechanical vacuum pumps was completed. A small Roots blower for flight mass spectrometer applications was evaluated with respect to system operating parameters in a number of different modes of operation. The survey indicated that a metal bellows pump might be a viable alternative for the systems requirements. The results of the study are given, including current status of possible flight-type pumps, a systems analysis using available pumps, and recommendations for fabrication and tests of a potential flight-type pump.

  17. Air-Operated Sump Pump

    NASA Technical Reports Server (NTRS)

    Nolt, Gary D.

    1988-01-01

    Pump removes liquid seepage from small, restricted area and against large pressure head. Developed for moving small amounts of water and oil from sump pit 85 ft (25.91 m) deep. Fits in space only 6 1/2 in. (16.5 cm) in diameter and 18 in. (45.7 cm) long. In discharge part of pumping cycle, air forces liquid out of pump chamber through pipe. During filling part of pumping cycle, water enters pump chamber from sump pit. Float in chamber next to pump chamber controls pressurization through timer and solenoid valve.

  18. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  19. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  20. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  1. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  2. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  3. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  4. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  5. High pressure reciprocating pump

    SciTech Connect

    Besic, D.

    1990-05-01

    This patent describes an improvement in a reciprocating pump having a plunger and a pumping chamber. It comprises: the plunger having a bore communicating with an intersection opening and wherein the plunger incudes a central axis; a suction valve and a discharge valve, each having an axis of actuation parallel to a central axis of the plunger; the suction valve comprising a cylindrical core having a central passageway, and the core is slidably received by a seating member and resiliently biased to the seating member.

  6. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  7. Reactor coolant pump flywheel

    SciTech Connect

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  8. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  9. 12. Sewage Ejector Pumps, view to the southwest. These pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Sewage Ejector Pumps, view to the southwest. These pumps are connected to sewage treatment tanks. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  10. Portable engine-pump assembly

    SciTech Connect

    Eberhardt, H.A.

    1987-02-17

    This patent describes a portable engine-pump assembly that is compact and light in weight comprising: an internal combustion engine mounted with its crankshaft extending vertically, a centrifugal pump having an impeller mounted for rotation on a pump shaft within a volute chamber, means mounting the pump on and immediately beneath the engine with the pump shaft extending vertically in accurate alignment and concentricity with the engine crankshaft, means coupling the engine crankshaft and the pump shaft together so that the engine crankshaft drives the pump shaft, the pump comprising a pump body defining the volute chamber and providing a pump inlet passage and a pump discharge passage oriented in generally horizontal directions, the pump body defining an inlet chamber providing passages for the flow of liquid from the pump inlet passage into the impeller from both above and below same and including an upper body portion and a lower body portion, and an exhaust system for the engine including an exhaust passage contained in the upper body portion, a muffler having an inlet, and means providing flow communication between the exhaust passage and the inlet of the muffler.

  11. Highly efficient cladding-pumped fibre laser based on an ytterbium-doped optical fibre and a fibre Bragg grating

    SciTech Connect

    Kurkov, Andrei S; Karpov, V I; Medvedkov, O I; Dianov, Evgenii M; Vasil'ev, Sergei A; Paramonov, Vladimir M; Protopopov, V N; Laptev, A Yu; Gur'yanov, A N; Umnikov, A A; Vechkanov, N I; Artyushenko, V G; Frahm, J

    1999-06-30

    Ytterbium-ion-doped double-clad optical fibres were developed. The differential quantum efficiency of a diode-pumped fibre laser, fabricated on the basis of such optical fibres with a fibre Bragg grating, was 90%. (lasers)

  12. Liquid flat plate collector and pump for solar heating and cooling systems: A collection of quarterly reports

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress in the development, fabrication, and delivery of solar subsystems consisting of a solar operated pump, and solar collectors which can be used in solar heating and cooling, or hot water, for single family, multifamily, or commercial applications is reported.

  13. A cryocondensation pump for the DIII-D Advanced Divertor Program

    SciTech Connect

    Smith, J.P.; Baxi, C.; Reis, E.; Sevier, L.

    1992-03-01

    A cryocondensation pump was designed for the baffle chamber of General Atomics DIII-D tokamak and will be installed in the fall of 1992. The purpose of the pump is to study plasma density control by pumping the divertor. The pump is toroidally continuous, approximately 10 m long and located in the lower outer corner of the vacuum chamber of the machine. It consists of a 1 m{sup 2} liquid helium-cooled surface surrounded by a liquid nitrogen-cooled shield to limit the heat load on the helium-cooled surface. The liquid nitrogen-cooled surface is surrounded by a radiation/particle shield to prevent energetic particles from impacting and releasing condensed water molecules. A thermal enhancement coating was applied to the nitrogen shell to lower the maximum temperature of the shell. The coating is non-continuous to keep the toroidal electrical resistance high. The whole pump is supported off the water-cooled vacuum vessel wall. Supports for the pump were designed to accommodate the thermal differences between the 4 K helium surface, the 77 K nitrogen shells, and the 300 K vacuum vessel supporting the pump and to provide a low heat leak structural support. Disruption loading on the pump was analyzed and a finite element structural analysis of the pump was completed. A testing program was completed to evaluate coating techniques to enhance heat transfer and emissivity of the various surfaces. Fabrication tests were performed to determine the best method of attaching the liquid nitrogen flow tubes to their shield surfaces and to determine the best alternative to fabricating the different shells of the pump. A prototype sector of the pump was built to verify fabrication and assembly techniques.

  14. 13. The River Pump House pump room, in this case ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. The River Pump House pump room, in this case in the 100-F Area in January 1945. In the 100 Area, the pumps supplied water to the 100 Area and to the export water system that ran to D and F reactors and the 200 areas. D-8248 - B Reactor, Richland, Benton County, WA

  15. Overview of Pump Room, showing pumps at right and power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of Pump Room, showing pumps at right and power distribution cabinets for valve motors along north wall at left. View to east - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  16. PUMP SETS NO. 5 AND NO. 4. Each pump set ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PUMP SETS NO. 5 AND NO. 4. Each pump set consists of a Worthington Pump and a General Electric motor - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  17. 24. Pump Room interiordewatering pump motor on upper level. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Pump Room interior-dewatering pump motor on upper level. Note the removable roof hatch (steel frame) directly above motor. Dewatering pumps motor control center at left - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  18. 29. WORTHINGTON FIRE PUMP WITH TURBINE HIDDEN BEHIND. PUMP HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. WORTHINGTON FIRE PUMP WITH TURBINE HIDDEN BEHIND. PUMP HOUSE IS LOCATED AT HEAD OF OLD TRASH GATES. PUMP ENTERS WATER ON EXTERIOR OF WALL IN FAR SIDE OF PHOTO. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  19. 39. THREECYLINDER HYDRAULIC OIL PUMP (MANUFACTURED BY WORTHINGTON: PUMP AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. THREE-CYLINDER HYDRAULIC OIL PUMP (MANUFACTURED BY WORTHINGTON: PUMP AND MACHINERY COMPANY, HOLYOKE MASSACHUSETTS) IN MACHINERY CHAMBER FOR SLUICE GATE WORKS ON GALLERY 1. NOTE OIL TANK ABOVE PUMP MOTOR. VIEW TO NORTHWEST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  20. Graphite composite tape in beam-pumped oil wells

    SciTech Connect

    Hensley, H.N.; Tanner, C.J.

    1984-09-01

    A continuous, reelable graphite composite tape is being developed as an alternative to jointed sucker rods for use in beam pumped oil wells. Four units have been tested in wells. The composite tape is composed of graphite fibers, glass fabric, Kevlar fibers and vinylester resin. Graphite fibers have a high modulus of elasticity and provide the longitudinal stiffness needed to operate the downhole pump, while allowing a thin cross section flexible enough to be wound onto small diameter reels. This advanced graphite composite is the first practical, lightweight, reelable alternative to jointed sucker rods.

  1. Magnetic-flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  2. Pump Flow Analysis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Ingersoll-Rand Research, Inc.'s use of COSMIC's computer program MERIDL permits designers to evaluate performance and efficiency characteristics to be expected from the pump's impeller. It also provides information that enables a trained hydraulic engineer to make design improvements. Company was able to avoid the cost of developing new software and to improve some product design features.

  3. Well pumping apparatus

    SciTech Connect

    Meyer, E.D.

    1981-12-15

    A pumping apparatus that may be used with a well in which a sucker rod is connected with the well so as to remain in axial alignment with the same during shifting of the well and the sucker rod is supported clear of the well and the structure for operating the same.

  4. Hydraulic well pump

    SciTech Connect

    Dollison, W.W.

    1986-02-25

    This patent describes a system for operating a sucker rod string connected with a well pump. This pump consists of: a double-acting fluid cylinder having opposing power ends; means for connecting the cylinder with the sucker rod string for raising and lowering the string to operate the pump; means for supplying pressurized fluid alternately to the cylinder ends including a direction control movable between extend and retract conditions to extend and retract the cylinder; drive means for shifting the direction control; control means for operating the drive means responsive to the extend and retract movements of the cylinder; including limit valves positioned to simulate the hydraulic cylinder extend and retract stroke end locations, the limit valves being movably mounted for changing the location of each limit valve and the distance between the limit valves for selectively adjusting the length of the strokes of the hydraulic cylinder and the end limit of the extend and retract strokes of the cylinder. A cam operator is for opening and closing each of the limit valves at the end locations and means connecting the cam operator means with the hydraulic cylinder. Cable is reeved over the movable and fixed sheave means and secured along the second end thereof at a fixed location; and means for applying a fluid counterbalancing force into the cylinder for offsetting the combined weights of the sucker rods string, a production fluid column in a well core above the pump, and movable surface equipment supported on the cylinder.

  5. Heat pumps for industry

    NASA Astrophysics Data System (ADS)

    1991-09-01

    Research activities, both in the laboratory and in the field, confirm that heat pumps can improve energy efficiency and productivity for a multitude of process types. By using heat pumps, process industries can save significant amounts of energy and money and successfully control emissions. Those industries with special needs, such as recovering solvents, can meet them more energy efficiently and cost effectively with heat pumps. Through the years, the Office of Industrial Technologies (OIT) has helped industry solve its energy problems by joining in cooperative agreements with companies willing to do the research. The companies involved in these agreements share the costs of the research and benefit directly from the technology developed. OIT then has information from demonstration projects that it can pass on to others within industry. All the projects described in this brochure were joint ventures between DOE and industry participants. OIT will assist in accelerating the use of heat pumps in the industrial marketplace by continuing to work with industry on research and demonstration projects and to transfer research results and project performance information to the rest of industry. Successfully transferring this technology could conserve as much as 1.5 quads of energy annually at a savings of more than $4 billion at today's prices.

  6. Linear induction pump

    DOEpatents

    Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.

    1985-03-19

    Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.

  7. An Improved Archimedes Pump

    NASA Astrophysics Data System (ADS)

    Akoglu, Resat

    2002-12-01

    In this note we propose a slightly improved version of the Archimedes pump which was advertised as a toy model in The Physics Teacher. It consists of a hose wound densely around a tube (or pipe made of metallic or plastic material) which can be rotated mechanically (a hand driven one is the most primitive case as shown in the Picture 1) or electrically.

  8. Explosively pumped laser light

    DOEpatents

    Piltch, Martin S.; Michelotti, Roy A.

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  9. Progressive cavity pump

    SciTech Connect

    Mueller, J.W.

    1989-04-04

    A progressive cavity pump is described, comprising: a first housing portion defining an inlet; a second housing portion attachable to the first housing portion and defining an outlet; a substantially elastomeric stator comprising an outer portion removably attached to the first and second housing portions, having a first end and a second end spaced from the first end, an inner portion defining a pumping chamber and spaced an annular end portion interconnecting the first ends of the outer and inner portions; a rotor disposed in the inner portion of the stator and extending through the pumping chamber for pumping fluid from the inlet to the outlet in response to rotation of the rotor; and an elongated member disposed in the housing portions and generally annularly between the inner and outer portions of the stator and longitudinally between the annular end portion of the stator and a portion of the second housing portion, the member being removable from the housing portions and separable from the stator.

  10. Downhold hydraulic actuated pump

    SciTech Connect

    Roeder, G.K.

    1987-05-12

    This patent describes a downhole pump of the type having a main housing within which there is formed an engine chamber and a production chamber. A piston is reciprocatingly received within the engine chamber, a plunger reciprocatingly received within the production chamber, a connecting rod by which the piston and plunger are connected together; the combination with the main housing, piston, plunger.

  11. Downhole hydraulic actuated pump

    SciTech Connect

    Roeder, G.K.

    1988-09-06

    This patent describes a downhole hydraulically actuated pump assembly of the type having a main housing within which an engine and pump is enclosed; a connecting rod, an engine piston, a pump plunger, means by which the engine and connecting rod reciprocate the pump plunger and thereby produces fluid; the main housing has a lower end having a formation fluid inlet; and upper end having a power fluid inlet; and, a produced fluid outlet; the plunger divides one marginal end of the housing into upper and lower production chambers; the lower end of the connecting rod is hollow and extends through the plunger into fluid communication with the formation fluid inlet to provide a source of formation fluid for the upper and lower production chambers; a traveling value assembly contained within the plunger and arranged to transfer formation fluid from the hollow rod, through the plunger, and into the upper and lower production chambers, respectively, as the plunger upstrokes and downstrokes; produced fluid valve means by which fluid flows from the upper and lower production chambers and through the produced fluid outlet.

  12. Piezohydraulic Pump Development

    NASA Technical Reports Server (NTRS)

    Lynch, Christopher S.

    2005-01-01

    Reciprocating piston piezohydraulic pumps were developed originally under the Smart Wing Phase II program (Lynch) and later under the CHAP program (CSA, Kinetic Ceramics). These pumps focused on 10 cm scale stack actuators operating below resonance and, more recently, at resonance. A survey of commercially available linear actuators indicates that obtaining power density and specific power greater than electromagnetic linear actuators requires driving the stacks at frequencies greater than 1 KHz at high fields. In the case of 10 cm scale actuators the power supply signal conditioning becomes large and heavy and the soft PZT stack actuators generate a lot of heat due to internal losses. Reciprocation frequencies can be increased and material losses significantly decreased through use of millimeter scale single crystal stack actuators. We are presently targeting the design of pumps that utilize stacks at the 1-10 mm length scale and run at reciprocating frequencies of 20kHz or greater. This offers significant advantages over current approaches including eliminating audible noise and significantly increasing the power density and specific power of the system (including electronics). The pump currently under development will comprise an LC resonant drive of a resonant crystal and head mass operating against a resonant fluid column. Each of these resonant systems are high Q and together should produce a single high Q second order system.

  13. Shrouded inducer pump

    DOEpatents

    Meng, Sen Y.

    1989-01-01

    An improvement in a pump including a shrouded inducer, the improvement comprising first and second sealing means 32,36 which cooperate with a first vortex cell 38 and a series of secondary vortex cells 40 to remove any tangential velocity components from the recirculation flow.

  14. RSES heat pump technician certification

    SciTech Connect

    Zeiner, J.

    1996-06-01

    In 1987 the National Heat Pump certification test was developed by the Refrigeration Service Engineers Society (RSES), and in 1994, the program was more specifically named Heat Pump Service Technician Certification. This report describes the benefits of certification.

  15. Fuel Pumping System And Method

    DOEpatents

    Shafer, Scott F.; Wang, Lifeng

    2005-12-13

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  16. Fuel pumping system and method

    DOEpatents

    Shafer, Scott F.; Wang, Lifeng ,

    2006-12-19

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  17. High density 3D printed microfluidic valves, pumps, and multiplexers.

    PubMed

    Gong, Hua; Woolley, Adam T; Nordin, Gregory P

    2016-07-01

    In this paper we demonstrate that 3D printing with a digital light processor stereolithographic (DLP-SLA) 3D printer can be used to create high density microfluidic devices with active components such as valves and pumps. Leveraging our previous work on optical formulation of inexpensive resins (RSC Adv., 2015, 5, 106621), we demonstrate valves with only 10% of the volume of our original 3D printed valves (Biomicrofluidics, 2015, 9, 016501), which were already the smallest that have been reported. Moreover, we show that incorporation of a thermal initiator in the resin formulation along with a post-print bake can dramatically improve the durability of 3D printed valves up to 1 million actuations. Using two valves and a valve-like displacement chamber (DC), we also create compact 3D printed pumps. With 5-phase actuation and a 15 ms phase interval, we obtain pump flow rates as high as 40 μL min(-1). We also characterize maximum pump back pressure (i.e., maximum pressure the pump can work against), maximum flow rate (flow rate when there is zero back pressure), and flow rate as a function of the height of the pump outlet. We further demonstrate combining 5 valves and one DC to create a 3-to-2 multiplexer with integrated pump. In addition to serial multiplexing, we also show that the device can operate as a mixer. Importantly, we illustrate the rapid fabrication and test cycles that 3D printing makes possible by implementing a new multiplexer design to improve mixing, and fabricate and test it within one day.

  18. High density 3D printed microfluidic valves, pumps, and multiplexers.

    PubMed

    Gong, Hua; Woolley, Adam T; Nordin, Gregory P

    2016-07-01

    In this paper we demonstrate that 3D printing with a digital light processor stereolithographic (DLP-SLA) 3D printer can be used to create high density microfluidic devices with active components such as valves and pumps. Leveraging our previous work on optical formulation of inexpensive resins (RSC Adv., 2015, 5, 106621), we demonstrate valves with only 10% of the volume of our original 3D printed valves (Biomicrofluidics, 2015, 9, 016501), which were already the smallest that have been reported. Moreover, we show that incorporation of a thermal initiator in the resin formulation along with a post-print bake can dramatically improve the durability of 3D printed valves up to 1 million actuations. Using two valves and a valve-like displacement chamber (DC), we also create compact 3D printed pumps. With 5-phase actuation and a 15 ms phase interval, we obtain pump flow rates as high as 40 μL min(-1). We also characterize maximum pump back pressure (i.e., maximum pressure the pump can work against), maximum flow rate (flow rate when there is zero back pressure), and flow rate as a function of the height of the pump outlet. We further demonstrate combining 5 valves and one DC to create a 3-to-2 multiplexer with integrated pump. In addition to serial multiplexing, we also show that the device can operate as a mixer. Importantly, we illustrate the rapid fabrication and test cycles that 3D printing makes possible by implementing a new multiplexer design to improve mixing, and fabricate and test it within one day. PMID:27242064

  19. Oil well pumping apparatus

    SciTech Connect

    Whatley, D. L.; Chaviers, W. M.

    1985-07-23

    The present system and apparatus for pumping an oil well damps out the stretch and over travel in sucker rod over travel particularly when the rod string approaches its point of reversal of direction either up or down. This is accomplished by decelerating the rate of travel of the rod string and at its end of travel pausing for a time period sufficient to allow rod string oscillations to damp out prior to reversal of rod string direction which due to the long length of the rod string, its weight and the weight of the trapped oil avoids breaking the rod string and the time loss occasioned thereby in both loss of well production and costly replacement of equipment and the time loss resulting therefrom. The present invention also achieves substantial recovery of hi-viscosity oil not recoverable at present by standard recovery procedures. This is accomplished with a sensor positioned to be actuated by the ram of the hydraulic drive. When the sensor is actuated, it energizes a time delay relay which holds the sucker rod string in the upper most raised position allowing the suction to be maintained on the bottom hole pump with the standing valve open. This allows the hi-viscus oil to enter the bottom hole pump barrel. When the time delay relay is released, the sucker rod string starts its downward movement closing the bottom hole standing valve. This traps the hi-viscus oil in the pump barrel which is then displaced by the downward-movement of the plunger in the bottom hole pump.

  20. Absorption heat pumps

    NASA Astrophysics Data System (ADS)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  1. Shoring pumping station excavation

    SciTech Connect

    Glover, J.B.; Reardon, D.J. )

    1991-11-01

    The city of San Mateo, Calif., operates three 12- to 50-year old wastewater pumping stations on a 24-m (80-ft) wide lot located in a residential area near San Francisco Bay. Because the aging stations have difficulty pumping peak 2.19-m{sup 3}/s (50-mgd) wet-weather flows and have structural and maintenance problems, a new 2.62-m{sup 3}/s (60-mgd) station was proposed - the Dale Avenue Pumping Station - to replace the existing ones. To prevent potential damage to adjacent homes, the new station was originally conceived as a circular caisson type; however, a geotechnical investigation recommended against this type of structure because the stiff soils could make sinking the structure difficult. This prompted an investigation of possible shoring methods for the proposed structure. Several shoring systems were investigated, including steel sheeting, soldier beams and lagging, tieback systems, open excavation, and others; however, each had disadvantages that prevented its use. Because these conventional techniques were unacceptable, attention was turned to using deep soil mixing (DSM) to create a diaphragm wall around the area to be excavated before constructing the pumping station. Although this method has been used extensively in Japan since 1983, the Dale Avenue Pumping Station would be the technology's first US application. The technology's anticipated advantages were its impermeability, its fast and efficient installation that did not require tiebacks under existing homes, its adaptability to subsurface conditions ranging from soft ground to stiff clay to gravels, and its lack of pile-driving requirements that would cause high vibration levels during installation.

  2. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    2000-01-01

    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  3. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    1999-01-01

    Methods and apparatus are provided for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  4. Prediction of pump cavitation performance

    NASA Technical Reports Server (NTRS)

    Moore, R. D.

    1974-01-01

    A method for predicting pump cavitation performance with various liquids, liquid temperatures, and rotative speeds is presented. Use of the method requires that two sets of test data be available for the pump of interest. Good agreement between predicted and experimental results of cavitation performance was obtained for several pumps operated in liquids which exhibit a wide range of properties. Two cavitation parameters which qualitatively evaluate pump cavitation performance are also presented.

  5. Development of a mercury electromagnetic centrifugal pump for the SNAP-8 refractory boiler development program

    NASA Technical Reports Server (NTRS)

    Fuller, R. A.; Schnacke, A. W.

    1974-01-01

    An electromagnetic pump, in which pressure is developed in mercury because of the interaction of the magnetic field and current which flows as a result of the voltage induced in the mercury contained in the pump duct, was developed for the SNAP-8 refractory boiler test facility. Pump performance results are presented for ten duct configurations and two stator sizes. These test results were used to design and fabricate a pump which met the SNAP-8 criteria of 530 psi developed pressure at 12,500 lb/hr. The pump operated continuously for over 13,000 hours without failure or performance degradation. Included in this report are descriptions of the experimental equipment, measurement techniques, all experimental data, and an analysis of the electrical losses in the pump.

  6. 5. Station Unwatering Pumps and Sump Pump for Units 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Station Unwatering Pumps and Sump Pump for Units 1 and 2, view to the west. The unwatering pumps are the two larger items toward the right side of the photograph (one in foreground and one in background. The smaller item toward the left of the photograph is the sump pump. These pumps are used for draining water from the draft chest for maintenance. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  7. Guide to Geothermal Heat Pumps

    SciTech Connect

    2011-02-01

    Geothermal heat pumps, also known as ground source heat pumps, geoexchange, water-source, earth-coupled, and earth energy heat pumps, take advantage of this resource and represent one of the most efficient and durable options on the market to heat and cool your home.

  8. Rotating magnetic poles used to pump mercury

    NASA Technical Reports Server (NTRS)

    Ebihara, B. T.; Lowdermilk, W. H.; Vary, A.

    1966-01-01

    Rotating magnetic pump with redesigned pump cell is used for pumping mercury. The modified pump has better electrical continuity, more efficient heat removal, and good wetting characteristics in the mercury flow channel.

  9. Rapid prototyping of a micro pump with laser micromaching

    SciTech Connect

    Wong, C.C.; Chu, D.; Liu, S.L.; Tuck, M.R.; Mahmud, Z.; Amatucci, V.

    1995-08-01

    A micro electrohydrodynamic (EHD) injection pump has been developed using laser micromaching technology. Two designs have been fabricated, tested, and evaluated. The first design has two silicon pieces with KOH-etched wells which are stacked on the top of each other. The wells am etched on one side of the wafer and gold is deposited on the other side to serve as the pump electrodes. A ND:YAG laser is used to drill an array holes in the well region of both silicon die. This creates a grid distribution with a rectangular pattern. Next the well regions of the die are aligned, and the parts are bonded together using a Staystik thermoplastic. The pump unit is then mounted into a ceramic package over the hole drilled to permit fluid flow. Aluminum ribbon wire bonds are used to connect the pump electrodes to the package leads. Isolation of metallization and wires is achieved by filling the package well and coating the wires with polyimide.When a voltage is applied at the electrodes, ions are injected into the working fluid, such as an organic solvent, thus inducing flow. The second design has the die oriented ``back-to-back`` and bonded together with stayform. A ``back-to-back`` design will decrease the grid distance so that a smaller voltage is required for pumping. Preliminary results have demonstrated that this micro pump can achieved a pressure head of about 287 Pa with an applied voltage of 120 volts.

  10. Solid Rocket Booster Hydraulic Pump Port Cap Joint Load Testing

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; Murphy, N. C.

    2004-01-01

    The solid rocket booster uses hydraulic pumps fabricated from cast C355 aluminum alloy, with 17-4 PH stainless steel pump port caps. Corrosion-resistant steel, MS51830 CA204L self-locking screw thread inserts are installed into C355 pump housings, with A286 stainless steel fasteners installed into the insert to secure the pump port cap to the housing. In the past, pump port cap fasteners were installed to a torque of 33 Nm (300 in-lb). However, the structural analyses used a significantly higher nut factor than indicated during tests conducted by Boeing Space Systems. When the torque values were reassessed using Boeing's nut factor, the fastener preload had a factor of safety of less than 1, with potential for overloading the joint. This paper describes how behavior was determined for a preloaded joint with a steel bolt threaded into steel inserts in aluminum parts. Finite element models were compared with test results. For all initial bolt preloads, bolt loads increased as external applied loads increased. For higher initial bolt preloads, less load was transferred into the bolt, due to external applied loading. Lower torque limits were established for pump port cap fasteners and additional limits were placed on insert axial deformation under operating conditions after seating the insert with an initial preload.

  11. Bearing for liquid metal pump

    DOEpatents

    Dickinson, Robert J.; Wasko, John; Pennell, William E.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance.

  12. 21 CFR 880.5725 - Infusion pump.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or...

  13. 21 CFR 880.5725 - Infusion pump.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or...

  14. 21 CFR 880.5725 - Infusion pump.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or...

  15. Molecular water pumps.

    PubMed

    Zeuthen, T

    2000-01-01

    There is good evidence that cotransporters of the symport type behave as molecular water pumps, in which a water flux is coupled to the substrate fluxes. The free energy stored in the substrate gradients is utilized, by a mechanism within the protein, for the transport of water. Accordingly, the water flux is secondary active and can proceed uphill against the water chemical potential difference. The effect has been recognized in all symports studied so far (Table 1). It has been studied in details for the K+/Cl- cotransporter in the choroid plexus epithelium, the H+/lactate cotransporter in the retinal pigment epithelium, the intestinal Na+/glucose cotransporter (SGLT1) and the renal Na+/dicarboxylate cotransporter both expressed in Xenopus oocytes. The generality of the phenomenon among symports with widely different primary structures suggests that the property of molecular water pumps derives from a pattern of conformational changes common for this type of membrane proteins. Most of the data on molecular water pumps are derived from fluxes initiated by rapid changes in the composition of the external solution. There was no experimental evidence for unstirred layers in such experiments, in accordance with theoretical evaluations. Even the experimental introduction of unstirred layers did not lead to any measurable water fluxes. The majority of the experimental data supports a molecular model where water is cotransported: A well defined number of water molecules act as a substrate on equal footing with the non-aqueous substrates. The ratio of any two of the fluxes is constant, given by the properties of the protein, and is independent of the driving forces or other external parameters. The detailed mechanism behind the molecular water pumps is as yet unknown. It is, however, possible to combine well established phenomena for enzymes into a working model. For example, uptake and release of water is associated with conformational changes during enzymatic action; a

  16. Multiple source heat pump

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  17. Solar-powered pump

    NASA Technical Reports Server (NTRS)

    Kirsten, C. C. (Inventor)

    1976-01-01

    A solar powered pump particularly suited for intermittently delivering a stream of water is reported. The pump is characterized by a housing adapted to be seated in a source of water having a water discharge port disposed above the water line of the source, a sump including a valved inlet port through which water is introduced to the sump, disposed beneath the water line, a displacer supported for vertical reciprocation in said housing, an air passageway extended between the vertically spaced faces of the displacer, and a tipple disposed adjacent to the water discharge port adapted to be filled in response to a discharge of water from the housing. Air above a displacer is expanded in response to solar energy impinging on the housing and transferred into pressurizing relation with the sump for forcing water from the sump.

  18. Oil well pump

    SciTech Connect

    Turner, R.L.

    1980-10-21

    An oil well subsurface pump comprising a housing having one end thereof adapted to be secured to the lowermost end of a sucker rod, or the like, and the opposite end thereof in open communication with the fluid reservoir in a well bore, a ball check valve carried by the housing, a ball stop member disposed within the housing for limiting the movement of the ball member in one direction and having ports therein for passage of fluid upwardly through the housing, resilient sealing assembly interposed between the outer periphery of the housing and the inner periphery of the barrel and slidable with respect to the barrel during a pumping operation, and discharge ports provided in the housing in spaced relation to the sealing assembly for directing well fluid from the interior of the housing to the annulus between the housing and the working barrel for transportation of the fluid to the surface of the well bore.

  19. Sucker rod pump

    SciTech Connect

    Brewer, J.R.

    1992-04-14

    This patent describes a subsurface well pump, it comprises: a working barrel; a plunger which reciprocates along the vertical axis within the working barrel between an upper and lower position; a rod connected to the plunger and extending to a means for providing reciprocating force; a well string extending from the top of the working barrel to the surface; an outlet check valve which permits flow to exit the working barrel into the well string and does not permit flow to exit the well string into the working barrel; and an inlet check valve which permits flow into the working barrel from outside of the subsurface pump, the inlet check valve being above the top position of the plunger, the inlet check valve having a cross sectional flow area about equal to or greater than the horizontal cross sectional area of the working barrel, and the inlet check valve being a hinged flapper valve.

  20. Fusion reactor pumped laser

    DOEpatents

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  1. Vacuum pump aids ejectors

    SciTech Connect

    Nelson, R.E.

    1982-12-01

    The steam ejector/vacuum pump hybrid system has been operating satisfactorily since the summer of 1981. This system has essentially been as troublefree as the all-ejector system and, of course, has provided a substantial cost savings. Construction is currently under way to convert the vacuum system of another crude still which is equipped with steam ejectors and barometric condensers to the hybrid system of steam ejectors, surface condensers, and vacuum pumps. This current project is even more financially attractive because it allows a dirty water cooling tower which serves the barometric condensers to be shut down. Providing a vacuum for crude distillation vacuum towers with this hybrid system is by no means the only application of this technique. Any vacuum system consisting of all steam ejectors would be a candidate for this hybrid system and the resulting savings in energy.

  2. Fuel injection pumping apparatus

    SciTech Connect

    Rouse, J.A.; Mowbray, D.F.

    1987-10-13

    A liquid fuel injection pumping apparatus is described comprising a rotary and axially movable fuel distributor member housed within a body, a reciprocable pumping plunger housed within a bore formed in the distributor member, cam means mounted in the body for effecting inward movement of the plunger as the distributor member rotates, passage means in the body and distributor member and stop means for limiting the extent of outward movement of the plunger. The extent of outward movement depends on the axial setting of the distributor member in the body, resilient means biasing the distributor member in one axial direction, a chamber defined in the body, means for controlling the fluid pressure in the chamber to control the axial setting of the distributor member.

  3. Micromachined peristaltic pump

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    1998-01-01

    A micromachined pump including a channel formed in a semiconductor substrate by conventional processes such as chemical etching. A number of insulating barriers are established in the substrate parallel to one another and transverse to the channel. The barriers separate a series of electrically conductive strips. An overlying flexible conductive membrane is applied over the channel and conductive strips with an insulating layer separating the conductive strips from the conductive membrane. Application of a sequential voltage to the series of strips pulls the membrane into the channel portion of each successive strip to achieve a pumping action. A particularly desirable arrangement employs a micromachined push-pull dual channel cavity employing two substrates with a single membrane sandwiched between them.

  4. Water displacement mercury pump

    DOEpatents

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  5. Water displacement mercury pump

    DOEpatents

    Nielsen, Marshall G.

    1985-01-01

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  6. Nonazeotropic Heat Pump

    NASA Technical Reports Server (NTRS)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  7. Pioneering Heat Pump Project

    SciTech Connect

    Aschliman, Dave; Lubbehusen, Mike

    2015-06-30

    This project was initiated at a time when ground coupled heat pump systems in this region were limited in size and quantity. There were economic pressures with costs for natural gas and electric utilities that had many organizations considering ground coupled heat pumps; The research has added to the understanding of how ground temperatures fluctuate seasonally and how this affects the performance and operation of the heat pumps. This was done by using a series of temperature sensors buried within the middle of one of the vertical bore fields with sensors located at various depths below grade. Trending of the data showed that there is a lag in ground temperature with respect to air temperatures in the shoulder months, however as full cooling and heating season arrives, the heat rejection and heat extraction from the ground has a significant effect on the ground temps; Additionally it is better understood that while a large community geothermal bore field serving multiple buildings does provide a convenient central plant to use, it introduces complexity of not being able to easily model and predict how each building will contribute to the loads in real time. Additional controllers and programming were added to provide more insight into this real time load profile and allow for intelligent shedding of load via a dry cooler during cool nights in lieu of rejecting to the ground loop. This serves as a means to ‘condition’ the ground loop and mitigate thermal creep of the field, as is typically observed; and It has been observed when compared to traditional heating and cooling equipment, there is still a cost premium to use ground source heat pumps that is driven mostly by the cost for vertical bore holes. Horizontal loop systems are less costly to install, but do not perform as well in this climate zone for heating mode

  8. Spreadsheet pump circuit design

    SciTech Connect

    Kerlin, M. )

    1989-12-01

    Computer spreadsheet software can be a valuable tool to the process design engineer. Interrelated calculations describing a single system can be executed as rapidly as one can enter a different input variable. Spreadsheets are also adept at evaluating numerous cases simultaneously. This paper discusses the pump calculation template which combines both of these features: the interrelation of fixed and variable resistances (systems loss and control values) and the relationship from case to case of differential head versus flowrate.

  9. Magnetic heat pumps

    SciTech Connect

    Hull, J.R.; Uherka, K.L.

    1988-01-01

    Magnetic heat pumps and refrigerators are potential replacements for vapor-compression devices that use chlorofluorocarbon refrigerants. Several room-temperature designs, using low-temperature superconducting magnets, have reached the experimental device stage. High-temperature superconducting materials may significantly increase the viability of the technology, both by enhancing existing design concepts and by enabling new major design types such as field switching of the superconducting magnets.

  10. MOLECULAR VACUUM PUMP

    DOEpatents

    Eckberg, E.E.

    1960-09-27

    A multiple molecular vacuum pump capable of producing a vacuum of the order of 10/sup -9/ mm Hg is described. The pump comprises a casing of an aggregate of paired and matched cylindrical plates, a recessed portion on one face of each plate concentrically positioned formed by a radially extending wall and matching the similarly recessed portion of its twin plate of that pair of plates and for all paired and matched plates; a plurality of grooves formed in the radially extending walls of each and all recesses progressing in a spiral manner from their respective starting points out at the periphery of the recess inwardly to the central area; a plurality of rotors rotatably mounted to closely occupy the spaces as presented by the paired and matched recesses between all paired plates; a hollowed drive-shaft perforated at points adjacent to the termini of all spiral grooves; inlet ports at the starting points of all grooves and through all plates at common points to each respectively; and a common outlet passage presented by the hollow portion of the perforated hollowed drive-shaft of the molecular pump. (AEC)

  11. Stirling Engine Heat Pump

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.

  12. Pumping potential wells

    NASA Technical Reports Server (NTRS)

    Hershkowitz, N.; Forest, C.; Wang, E. Y.; Intrator, T.

    1987-01-01

    Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady state plasma potential wells separating regions having different plasma potentials are often found in laboratory experiments. In order to exist, all such structures must find a solution to a common problem. Ions created by charge exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and fill up the potential well. The increase in positive charge should eliminate the well. Nevertheless, steady state structures are found in which the wells do not fill up. This means that it is important to take into account processes which pump ions from the well. As examples of ion pumping of plasma wells, potential dips in front of a positively biased electron collecting anode in a relatively cold, low density, multidipole plasma are considered. Pumping is provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case the two-dimensional character of the problem is shown to be important.

  13. A Magnetically Coupled Cryogenic Pump

    NASA Technical Reports Server (NTRS)

    Hatfield, Walter; Jumper, Kevin

    2011-01-01

    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into

  14. Study of blade clearance effects on centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Hoshide, R. K.; Nielson, C. E.

    1972-01-01

    A program of analysis, design, fabrication, and testing has been conducted to develop and experimentally verify analytical models to predict the effects of impeller blade clearance on centrifugal pumps. The effect of tip clearance on pump efficiency, and the relationship between the head coefficient and torque loss with tip clearance was established. Analysis were performed to determine the cost variation in design, manufacture, and test that would occur between unshrouded and shrouded impellers. An impeller, representative of typical rocket engine impellers, was modified by removing its front shroud to permit variation of its blade clearances. It was tested in water with special instrumentation to provide measurements of blade surface pressures during operation. Pump performance data were obtained from tests at various impeller tip clearances. Blade pressure data were obtained at the nominal tip clearance. Comparisons of predicted and measured data are given.

  15. Electroosmotic Pumps with Frits Synthesized from Potassium Silicate

    PubMed Central

    Robinson, Nathaniel D.

    2015-01-01

    Electroosmotic pumps employing silica frits synthesized from potassium silicate as a stationary phase show strong electroosmotic flow velocity and resistance to pressure-driven flow. We characterize these pumps and measure an electroosmotic mobility of 2.5×10-8 m2/V s and hydrodynamic resistance per unit length of 70 ×1017 Pa s/m4 with a standard deviation of less than 2% even when varying the amount of water used in the potassium silicate mixture. Furthermore, we demonstrate the simple integration of these pumps into a proof-of-concept PDMS lab-on-a-chip device fabricated from a 3D-printed template. PMID:26629907

  16. Electroosmotic Pumps with Frits Synthesized from Potassium Silicate.

    PubMed

    Nilsson, Sara; Erlandsson, Per G; Robinson, Nathaniel D

    2015-01-01

    Electroosmotic pumps employing silica frits synthesized from potassium silicate as a stationary phase show strong electroosmotic flow velocity and resistance to pressure-driven flow. We characterize these pumps and measure an electroosmotic mobility of 2.5 × 10(-8) m(2)/V s and hydrodynamic resistance per unit length of 70 × 10(17) Pa s/m(4) with a standard deviation of less than 2% even when varying the amount of water used in the potassium silicate mixture. Furthermore, we demonstrate the simple integration of these pumps into a proof-of-concept PDMS lab-on-a-chip device fabricated from a 3D-printed template. PMID:26629907

  17. Compressor Calorimeter Test of R-404A Alternatives ARM-31a, D2Y-65, L-40, and R32 + R-134a Mixture using a Scroll Compressor

    SciTech Connect

    Shrestha, Som S; Sharma, Vishaldeep; Abdelaziz, Omar

    2013-08-01

    As a contribution to the AHRI Low-GWP Alternative Refrigerants Evaluation Program (AREP), this study compares the performance of four lower-GWP alternative refrigerants, ARM-31a, D2Y-65, L-40, and R-32 + R-134a mixture, to that of refrigerant R-404A (baseline) in a scroll compressor designed for medium temperature refrigeration applications. These comparisons were carried out via compressor calorimeter tests performed on a compressor designed for refrigerant R-404A and having a nominal rated capacity of 23,500 Btu/hr. Tests were conducted over a suction dew point temperature range of -10 F to 35 F in 5 F increments and a discharge dew point temperature range of 70 F to 140 F in 10 F increments. All the tests were performed with 20 F superheat, 40 F superheat, and 65 F suction temperature. A liquid subcooling level of 10 F to 15 F was maintained for all the test conditions. However, the cooling capacities reported in this study are normalized for 0 F subcooling. The tests showed that the compressor energy efficiency ratio (EER) and cooling capacity with all four alternative refrigerants tested are higher at higher saturation suction and saturation discharge temperature and lower at lower saturation suction and saturation discharge temperature, compared to that of R-404A. Discharge temperatures of all the alternative refrigerants were higher than that of R-404A at all test conditions.

  18. Photochemical cutting of fabrics

    DOEpatents

    Piltch, Martin S.

    1994-01-01

    Apparatus for the cutting of garment patterns from one or more layers of fabric. A laser capable of producing laser light at an ultraviolet wavelength is utilized to shine light through a pattern, such as a holographic phase filter, and through a lens onto the one or more layers of fabric. The ultraviolet laser light causes rapid photochemical decomposition of the one or more layers of fabric, but only along the pattern. The balance of the fabric of the one or more layers of fabric is undamaged.

  19. Supercritical waste oxidation pump investigation

    SciTech Connect

    Thurston, G.; Garcia, K.

    1993-02-01

    This report investigates the pumping techniques and pumping equipment that would be appropriate for a 5,000 gallon per day supercritical water oxidation waste disposal facility. The pumps must boost water, waste, and additives from atmospheric pressure to approximately 27.6 MPa (4,000 psia). The required flow ranges from 10 gpm to less than 0.1 gpm. For the higher flows, many commercial piston pumps are available. These pumps have packing and check-valves that will require periodic maintenance; probably at 2 to 6 month intervals. Several commercial diaphragm pumps were also discovered that could pump the higher flow rates. Diaphragm pumps have the advantage of not requiring dynamic seals. For the lower flows associated with the waste and additive materials, commercial diaphragm pumps. are available. Difficult to pump materials that are sticky, radioactive, or contain solids, could be injected with an accumulator using an inert gas as the driving mechanism. The information presented in this report serves as a spring board for trade studies and the development of equipment specifications.

  20. Rotating-Pump Design Code

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Chen, Shu-Cheng; Scheer, Dean D.

    2006-01-01

    Pump Design (PUMPDES) is a computer program for designing a rotating pump for liquid hydrogen, liquid oxygen, liquid nitrogen, water, methane, or ethane. Using realistic properties of these fluids provided by another program called GASPAK, this code performs a station-by-station, mean-line analysis along the pump flow path, obtaining thermodynamic properties of the pumped fluid at each station and evaluating hydraulic losses along the flow path. The variables at each station are obtained under constraints that are consistent with the underlying physical principles. The code evaluates the performance of each stage and the overall pump. In addition, by judiciously choosing the givens and the unknowns, the code can perform a geometric inverse design function: that is, it can compute a pump geometry that yields a closest approximation of given design point. The code contains two major parts: one for an axial-rotor/inducer and one for a multistage centrifugal pump. The inducer and the centrifugal pump are functionally integrated. The code can be used in designing and/or evaluating the inducer/centrifugal-pump combination or the centrifugal pump alone. The code is written in standard Fortran 77.

  1. At 1050 Gallery, Block 12, two centrifugal pumps, Buffalo Pumps, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    At 1050 Gallery, Block 12, two centrifugal pumps, Buffalo Pumps, Buffalo, NY, driven by Allis Chalmers motors (size 3 HSO, head 230, 120 cpm, 1750, rpm, Impulse dia. 15) installed in the 1960s and used for water-cooling system for 230-kv cable; the cables have been removed and the pumps are not currently used. - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  2. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  3. The Biological Pump

    NASA Astrophysics Data System (ADS)

    de La Rocha, C. L.

    2003-12-01

    Despite having residence times (τ) that exceed the ˜1,000yr mixing time of the ocean (Broecker and Peng, 1982), many dissolved constituents of seawater have distributions that vary with depth and from place to place. For instance, silicic acid (τ=1.5×104 yr), nitrate (τ=3,000 yr), phosphate (τ=(1-5)×104 yr), and dissolved inorganic carbon (DIC; τ=8.3×104 yr) are generally present in low concentrations in surface waters and at much higher concentrations below the thermocline (Figure 1). Additionally, their concentrations are higher in older deep waters than they are in the younger waters of the deep sea (Figure 2). This is the general distribution exhibited by elements and compounds taking part in biological processes in the ocean and is generally referred to as a "nutrient-type" distribution. (16K)Figure 1. Depth profiles of: (a) ∑CO2, (b) dissolved CO2, (c) silicic acid, (d) nitrate, and (e) phosphate from the Indian Ocean (27° 4' S, 56° 58' E; GEOSECS Station 427) (source Weiss et al., 1983). (22K)Figure 2. Nitrate concentrations along the great ocean conveyor at 2,000 m depth (source Levitus et al., 1994, by way of the LDEO/IRI Data Library). Both the lateral and vertical gradients in the concentrations of nutrients result from "the biological pump" (Figure 3). Dissolved inorganic materials (e.g., CO2, NO3-, PO43-, Si(OH)4) are fixed into particulate organic matter (carbohydrates, lipids, proteins) and biominerals (silica and calcium carbonate) by phytoplankton in surface waters. Some of these particles are subsequently transported, by sinking, into the deep. The bulk of the organic material and biominerals decomposes in the upper ocean via dissolution, zooplankton grazing, and microbial hydrolysis, but a significant supply of material does survive to reach the deep sea and sediments. Thus, just as biological uptake removes certain dissolved inorganic materials in surface waters, the decomposition of sinking biogenic particles provides a source of

  4. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  5. Electromagnetic pump stator coil

    DOEpatents

    Fanning, Alan W.; Dahl, Leslie R.

    1996-01-01

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.

  6. Electromagnetic pump stator coil

    DOEpatents

    Fanning, A.W.; Dahl, L.R.

    1996-06-25

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

  7. Novel limiter pump topologies

    SciTech Connect

    Schultz, J.H.

    1981-01-01

    The use of limiter pumps as the principle plasma exhaust system of a magnetic confinement fusion device promises significant simplification, when compared to previously investigating divertor based systems. Further simplifications, such as the integration of the exhaust system with a radio frequency heating system and with the main reactor shield and structure are investigated below. The integrity of limiters in a reactor environment is threatened by many mechanisms, the most severe of which may be erosion by sputtering. Two novel topolgies are suggested which allow high erosion without limiter failure.

  8. Heat pump arrangement

    SciTech Connect

    Abrahamsson, T.; Hansson, K.

    1981-03-03

    The invention concerns a heat pump arrangement for heating of houses. The arrangement comprises a compressor, a condensor and a vaporizer, which is a part of an icing machine. The vaporizer is designed as a heat exchanger and is connected to a circulation system comprising an accumulator, to which the ice slush from the icing machine is delivered. Water from the accumulator is delivered to the icing machine. The water in the accumulator can be heated E.G. By means of a solar energy collector, the outdoor air etc. Surface water or waste water from the household can be delivered to the accumulator and replace the ice slush therein.

  9. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge.

    PubMed

    Cha, Kyoung Je; Kim, Dong Sung

    2011-10-01

    In this paper, we propose a novel portable and disposable pressure pump using a porous polydimethylsiloxane (PDMS) sponge and demonstrate its application to a microfluidic lab-on-a-chip. The porous PDMS sponge was simply fabricated by a sugar leaching technique based on capillary suction of pre-cured PDMS into lumps of sugar, thereby enabling us to achieve the porous PDMS sponge composed of interconnected micropores. To indicate the characteristics of the porous PDMS sponge and pump, we measured the average porosities of them whose values were 0.64 and 0.34, respectively. A stress-strain relationship of the fabricated portable pressure pump represented a linear behavior in the compressive strain range of 0 to 20%. Within this range, a pumping volume of the pressure pump could be linearly controlled by the compressed strain. Finally, the fabricated porous PDMS pump was successfully demonstrated as a portable pressure pump for a disposable microfluidic lab-on-a-chip for efficient detection of agglutination. The proposed portable pressure pump can be potentially applicable to various disposable microfluidic lab-on-a-chip systems.

  10. Bioinspired artificial single ion pump.

    PubMed

    Zhang, Huacheng; Hou, Xu; Zeng, Lu; Yang, Fu; Li, Lin; Yan, Dadong; Tian, Ye; Jiang, Lei

    2013-10-30

    Bioinspired artificial functional nanochannels for intelligent molecular and ionic transport control at the nanoscale have wide potential applications in nanofluidics, energy conversion, and biosensors. Although various smart passive ion transport properties of ion channels have been artificially realized, it is still hugely challenging to achieve high level intelligent ion transport features in biological ion pumps. Here we show a unique bioinspired single ion pump based on a cooperative pH response double-gate nanochannel, whose gates could be opened and closed alternately/simultaneously under symmetric/asymmetric pH environments. With the stimulation of the double-gate nanochannel by continuous switching of the symmetric/asymmetric pH stimuli, the bioinspired system systematically realized three key ionic transport features of biological ion pumps, including an alternating gates ion pumping process under symmetric pH stimuli, transformation of the ion pump into an ion channel under asymmetric pH stimuli, and a fail-safe ion pumping feature under both symmetric and asymmetric pH stimuli. The ion pumping processes could well be reproduced under a concentration gradient. With the advantages of the extraordinary ionic transport functions of biological ion pumps, the bioinspired ion pump should find widespread applicability in active transportation-controlling smart nanofluidic devices, efficient energy conversions, and seawater desalinization, and open the way to design and develop novel bioinspired intelligent artificial nanochannel materials.

  11. Autonomous pump against concentration gradient

    PubMed Central

    Xu, Zhi-cheng; Zheng, Dong-qin; Ai, Bao-quan; Zhong, Wei-rong

    2016-01-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the molecular transport in asymmetric nanochannels. The efficiency of the molecular pump depends on the angle and apertures of the asymmetric channel, the environmental temperature and average concentration of the particles. The pumping effect can be explained as the competition between the molecular force field and the thermal disturbance. Our results provide a green approach for pumping fluid particles against the concentration gradient through asymmetric nanoscale thin films without any external forces. It indicates that pumping vacuum can be a spontaneous process. PMID:26996204

  12. Prolift pumping unit makes debut

    SciTech Connect

    Rintoul, B.

    1983-03-01

    The ProLift is a long stroke unit designed to pump wells more efficiently and at less cost than existing walking beam type pumps. The price is competitive with other pumps on the market. The basic component of the pump unit is the yo-yo, a 30-in. diam steel drum slotted for a special belt that connects via an idler drum and a crown shiv with the rod string. The yo-yo rotates in both directions, playing out the belt on the down cycle, winding it in on the upward cycle. On the down stroke, the yo-yo generates electricity. A counterweight box travels inside the mast.

  13. Long life coolant pump technology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design concepts were investigated to improve space system coolant pump technology to be suitable for mission durations of two years and greater. These design concepts included an improved bearing system for the pump rotating elements, consisting of pressurized conical bearings. This design was satisfactorily endurance tested as was a new prototype pump built using various other improved design concepts. Based upon an overall assessment of the results of the program it is concluded that reliable coolant pumps can be designed for three year space missions.

  14. Fan and pump noise control

    NASA Technical Reports Server (NTRS)

    Misoda, J.; Magliozzi, B.

    1973-01-01

    The development is described of improved, low noise level fan and pump concepts for the space shuttle. In addition, a set of noise design criteria for small fans and pumps was derived. The concepts and criteria were created by obtaining Apollo hardware test data to correlate and modify existing noise estimating procedures. A set of space shuttle selection criteria was used to determine preliminary fan and pump concepts. These concepts were tested and modified to obtain noise sources and characteristics which yield the design criteria and quiet, efficient space shuttle fan and pump concepts.

  15. Bioinspired artificial single ion pump.

    PubMed

    Zhang, Huacheng; Hou, Xu; Zeng, Lu; Yang, Fu; Li, Lin; Yan, Dadong; Tian, Ye; Jiang, Lei

    2013-10-30

    Bioinspired artificial functional nanochannels for intelligent molecular and ionic transport control at the nanoscale have wide potential applications in nanofluidics, energy conversion, and biosensors. Although various smart passive ion transport properties of ion channels have been artificially realized, it is still hugely challenging to achieve high level intelligent ion transport features in biological ion pumps. Here we show a unique bioinspired single ion pump based on a cooperative pH response double-gate nanochannel, whose gates could be opened and closed alternately/simultaneously under symmetric/asymmetric pH environments. With the stimulation of the double-gate nanochannel by continuous switching of the symmetric/asymmetric pH stimuli, the bioinspired system systematically realized three key ionic transport features of biological ion pumps, including an alternating gates ion pumping process under symmetric pH stimuli, transformation of the ion pump into an ion channel under asymmetric pH stimuli, and a fail-safe ion pumping feature under both symmetric and asymmetric pH stimuli. The ion pumping processes could well be reproduced under a concentration gradient. With the advantages of the extraordinary ionic transport functions of biological ion pumps, the bioinspired ion pump should find widespread applicability in active transportation-controlling smart nanofluidic devices, efficient energy conversions, and seawater desalinization, and open the way to design and develop novel bioinspired intelligent artificial nanochannel materials. PMID:23773031

  16. Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical M(x) magnetometer.

    PubMed

    Schultze, Volkmar; Ijsselsteijn, Rob; Scholtes, Theo; Woetzel, Stefan; Meyer, Hans-Georg

    2012-06-18

    We compare the performance of two methods for the synchronization of the atomic spins in optically pumped magnetometers: intensity modulation of the pump light and the classical M(x) method using B(1) field modulation. Both techniques use the same set-up and measure the resulting features of the light after passing a micro-fabricated Cs cell. The intensity-modulated pumping shows several advantages: better noise-limited magnetic field sensitivity, misalignment between pumping and spin synchronization is excluded, and magnetometer arrays without any cross-talk can be easily set up.

  17. The LASL program in nuclear pumped liquid lasers

    NASA Technical Reports Server (NTRS)

    Mansfield, C. R.; Bird, P. F.; Davis, J. F.

    1979-01-01

    The development of nuclear-pumped, liquid-based lanthanide ion lasers is discussed. Early investigations of lanthanide ion lasers have lead to solid-state and gaseous neodymium lasers, and a demonstration of lasing in the liquid state. Solvents containing organic chelating agents have been employed in liquid Eu(+3) and Tb(+3) lasers to extend fluorescence lifetimes, however aprotic solvents have been found to enable the development of large-scale liquid lasers. The advantages to be gained from high-power nuclear-pumped lasers based on lanthanide solutions include the high density of fissile materials possible, and a nuclear pumping cell which can operate in either a nuclear or optical pumping mode is being fabricated at the Los Alamos Scientific Laboratory to investigate the nuclear pumping of liquid lanthanide ion lasers. Areas that need exploration before specific laser design features can be considered include energy channeling within the liquid upon excitation, radiation damage due to solvent dissociation, and reactor technology for the development of a self-critical liquid reactor.

  18. Fabrics for aeronautic construction

    NASA Technical Reports Server (NTRS)

    Walen, E D

    1918-01-01

    The Bureau of Standards undertook the investigation of airplane fabrics with the view of finding suitable substitutes for the linen fabrics, and it was decided that the fibers to be considered were cotton, ramie, silk, and hemp. Of these, the cotton fiber was the logical one to be given primary consideration. Report presents the suitability, tensibility and stretching properties of cotton fabric obtained by laboratory tests.

  19. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  20. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1981-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  1. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  2. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  3. Heat pump apparatus

    DOEpatents

    Nelson, Paul A.; Horowitz, Jeffrey S.

    1983-01-01

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  4. Oil well pump

    SciTech Connect

    Turner, R.L.

    1983-07-26

    An oil well subsurface pump is disclosed comprising a housing for reciprocal disposition within a working barrel and havone end thereof adapted to be secured to the lowermost end of a sucker rod, or the like, and the opposite end thereof in open communication with the fluid reservoir in a well bore, a ball check valve carried by the housing and disposed within a ball chamber having one end closed for limiting the movement of the ball member in one direction and the opposite end open to the well fluid, resilient sealing assembly interposed between the outer periphery of the housing and the inner periphery of the working barrel and slidable with respect to the barrel during a pumping operation, longitudinally disposed passageways provided in the housing and extending from the ball chamber to a position beyond the upper limit of the sealing assembly to provide communication through the housing to the annulus between the housing and the working barrel for passage of the well fluid from the fluid reservoir to the annulus for transportation of the fluid to the surface of the well bore, the sealing assembly comprising a plurality of superimposed flanged rings having sealing members secured around the outer periphery thereof and a locking ring outboard of the flanged rings for securing the flanged rings in position around the outer periphery of the housing.

  5. Hydraulic well pumping apparatus

    SciTech Connect

    Wright, C.P.

    1987-03-03

    This patent describes a hydraulic powered well pumping apparatus for operation of a sucker rod well pump in a well borehole, the apparatus comprising: (a) an elongate polished rod having upper and lower ends, the rod being aligned above and adapted to connect to a string of sucker rods in a well borehole therebelow; (b) an adjustably positioned sleeve means aligned above and enclosing a portion of the polished rod and having a shorter length than the polished rod to enable the polished rod to extend above the sleeve means and below the sleeve means for connection to the string of sucker rods in the well borehole; (c) an axially hollow upstanding cylinder slideably receiving the sleeve means therethrough and enclosing a piston therein, the piston being: (1) moved on admitting hydraulic oil to the cylinder, and (2) joined to the sleeve means for moving the sleeve means and thereby moving the polished rod; (d) means for mounting the upstanding cylinder directly aligned with and above a casing at the top of a well adapted to have a sucker rod string positioned therein; (e) means for adjusting the stroke length imparted to the sucker rod string between minimum and maximum stroke lengths; and (f) means for adjusting the location of the sleeve means relative to the polished rod to vary the relative length of polished rod below the sleeve means and wherein a portion of the polished rod extends above the sleeve means dependent on the relative respective portions thereof.

  6. The terrestrial silica pump.

    PubMed

    Carey, Joanna C; Fulweiler, Robinson W

    2012-01-01

    Silicon (Si) cycling controls atmospheric CO(2) concentrations and thus, the global climate, through three well-recognized means: chemical weathering of mineral silicates, occlusion of carbon (C) to soil phytoliths, and the oceanic biological Si pump. In the latter, oceanic diatoms directly sequester 25.8 Gton C yr(-1), accounting for 43% of the total oceanic net primary production (NPP). However, another important link between C and Si cycling remains largely ignored, specifically the role of Si in terrestrial NPP. Here we show that 55% of terrestrial NPP (33 Gton C yr(-1)) is due to active Si-accumulating vegetation, on par with the amount of C sequestered annually via marine diatoms. Our results suggest that similar to oceanic diatoms, the biological Si cycle of land plants also controls atmospheric CO(2) levels. In addition, we provide the first estimates of Si fixed in terrestrial vegetation by major global biome type, highlighting the ecosystems of most dynamic Si fixation. Projected global land use change will convert forests to agricultural lands, increasing the fixation of Si by land plants, and the magnitude of the terrestrial Si pump.

  7. Resonant Tunneling Spin Pump

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  8. Wind driven air pump

    SciTech Connect

    Beisel, V.A.

    1983-05-31

    An improved pump for lifting water from an underground source utilizes a wind motor for driving an oil-less air compressor eliminating oil contamination of ground water which is forced to the surface. The wind motor is movable to face the wind by means of a novel swivel assembly which also eliminates the formation and freezing of condensate within the airline from the compressor. The propeller blades of the wind motor and the tail section are formed from a pair of opposed convex air foil shaped surfaces which provide the propeller blades and the tail section with fast sensitivity to slight changes in wind direction and speed. A novel well tower for supporting the wind motor and compressor and for lifting the water from the underground source is an optional modification which requires no welding and eliminates the problem of condensate freezing in the airline going to the well. The wind driven air pump disclosed is lightweight, can be easily installed, is relatively inexpensive to produce and is virtually maintenance-free and capable of operating in winds exceeding 100 miles per hour.

  9. An opto-isolator based linearization technique of a typical thyristor driven pump.

    PubMed

    Bera, S C; Sarkar, R; Mandal, N

    2012-01-01

    A thyristor driven pump is operated by varying the DC input signal in the firing circuit of thyristor drive. This operation suffers from difficulties due to the nonlinear relation between thyristor output and DC input. In the present paper, an opto-isolator based linearization technique of a typical thyristor driven pump has been proposed. The design, fabrication and the necessary circuit diagram along with theoretical explanations of the resultant output has been described. The operation of the linearized thyristor driven pump has been studied experimentally and the experimental data before and after linearization are reported. The characteristic graphs are found to have very good linearity.

  10. Simulation and experimental studies on a micro diaphragm air pump actuated by PZT

    NASA Astrophysics Data System (ADS)

    Yang, Xing; Zhou, Zhaoying; Ye, Xiongying

    2005-01-01

    Micro gas pump is one of the important micro fluidic components, which can be used for gas analysis in chemical, air supply of micro fuel cell and micro fluid cooling systems. Pumping gases requires a strong compression ratio inside the pump chamber for gas could be compressed. This paper presents a micro diaphragm air pump actuated by PZT bimorphs, which characterizes thin structure, large air flow and low power consumption. The diaphragm air pump is made up of a cavity and an actuating structure. The actuating structure consists of two PZT bimorphs and a diaphragm with check valves, which could produce large volumetric change ratio. Then, a prototype of the pump whose cavity's dimension is 60×16×2mm was fabricated by precise manufacture. The mathematical models were established and simulation had been carried out, in which the parameters, such as flow rate, diaphragm's vibrating amplitude and resonant frequency are calculated and analyzed. Furthermore, experiments on the pump were carried out. The experimental data are basically agreement with the simulation results. With a voltage of 20V, the air pump's flow is 85.3ml/min in resonance and its power consumption is only 3.18mW. Simulations and experiments show that the diaphragm air pump has high efficiency and good performance. It also shows good application prospects in air supply for micro fuel cell and micro electronic devices' cooling.

  11. Evaluation of Manufacturability of Embedded Sensors and Controls with Canned Rotor Pump System

    SciTech Connect

    Kisner, Roger A; Fugate, David L; Melin, Alexander M; Holcomb, David Eugene; Wilson, Dane F; Silva, Pamela C; Cruz Molina, Carola

    2013-07-01

    This report documents the current status of fabrication and assembly planning for the magnetic bearing, canned rotor pump being used as a demonstration platform for deeply integrating I&C into nuclear power plant components. The report identifies material choices and fabrication sequences for all of the required parts and the issues that need to be either resolved or accommodated during the manufacturing process. Down selection between material options has not yet been performed. Potential suppliers for all of the necessary materials have also been identified. The assembly evaluation begins by logically subdividing the pump into modules, which are themselves decomposed into individual parts. Potential materials and fabrication processes for each part in turn are then evaluated. The evaluation process includes assessment of the environmental compatibility requirements and the tolerances available for the selected fabrication processes. A description of the pump power/control electronics is also provided. The report also includes exploded views of the modules that show the integration of the various parts into modules that are then assembled to form the pump. Emphasis has been placed on thermal environment compatibility and the part dimensional changes during heat-up. No insurmountable fabrication or assembly challenges have been identified.

  12. Analysis and design of optically pumped far infrared oscillators and amplifiers

    NASA Technical Reports Server (NTRS)

    Galantowicz, T. A.

    1978-01-01

    A waveguide laser oscillator was designed and experimental measurements made of relationships among output power, pressure, pump power, pump frequency, cavity tuning, output beam pattern, and cavity mirror properties for various active gases. A waveguide regenerative amplifier was designed and gain measurements were made for various active gases. An external Fabry-Perot interferometer was fabricated and used for accurate wavelength determination and for measurements of the refractive indices of solids transparent in the far infrared. An electronic system was designed and constructed to provide an appropriate error signal for use in feedback control of pump frequency. Pump feedback from the FIR laser was decoupled using a vibrating mirror to phase modulate the pump signal.

  13. Rapid prototyping of a micro pump for microelectronic applications

    SciTech Connect

    Wong, C.Channy; Chu, Dahwey; Liu, S.L.

    1997-05-01

    A micro electro-hydrodynamic (EHD) injection pump has been developed using laser micromachining technology. Two designs have been fabricated, tested, and evaluated. The first design has two silicon parts with KOH-etched wells which are stacked on the top of each other. The wells are etched into one side of the wafer, and gold is deposited on the other side to serve as the pump electrodes. A Nd:YAG laser is used to drill an array of circular holes in the well region of both silicon parts. This creates a grid distribution with a square pattern. Next the well regions of the silicon parts are aligned, and the parts are bonded together using a Staystik thermoplastic. Together, the bonded siliconpart form the pump. The pump unit is then mounted into a ceramic package with a large hole drilled in the bottom of the package to permit fluid flow. Aluminum ribbon wire bonds are used to connect the pump electrodes to the package leads. Isolation of the metallization and wires is achieved by filling the package cavity and coating the wires with polyimide. When a voltage is applied to the electrodes, ions are injected into the working fluid, such as an organic solvent, thus inducing flow. The second design has the silicon parts oriented {open_quote}back-to-back{close_quote} and bonded together with Stayform. A {open_quote}back-to-back{close_quote} design will decrease the grid distance so that a smaller voltage is required for pumping. Experimental results have demonstrated that this micro pump can achieved a pressure head of about 287 Pa with an applied voltage of 120 V.

  14. 123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    123. UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751). PUMP ON LEFT; HYDRAULIC CONTROL PANEL FOR UMBILICAL MAST AND TRENCH DOORS IN CENTER OF ROOM, FACING WEST. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. Work plan, AP-102 mixer pump removal and pump replacement

    SciTech Connect

    Jimenez, R.F.

    1994-09-01

    The objective of this work plan is to plan the steps and estimate the costs required to remove the failed AP-102 mixer pump, and to plan and estimate the cost of the necessary design and specification work required to order a new, but modified, mixer pump including the pump and pump pit energy absorbing design. The main hardware required for the removal of the mixer is as follows: a flexible receiver and blast shield; a metal container for the pulled mixer pump; and a trailer and strongback to haul and manipulate the container. Additionally: a gamma scanning device will be needed to detect the radioactivity emanating from the mixer as it is pulled from the tank; a water spray system will be required to remove tank waste from the surface of the mixer as it is pulled from the AP-102 tank; and a lifting yoke to lift the mixer from the pump pit (the SY-101 Mixer Lifting Yoke will be used). A ``green house`` will have to be erected over the AP-102 pump pit and an experienced Hoisting and Rigging crew must be assembled and trained in mixer pump removal methods before the actual removal is undertaken.

  16. Diode-pumped laser with improved pumping system

    DOEpatents

    Chang, Jim J.

    2004-03-09

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  17. Polymer laser fabricated by a simple micromolding process

    NASA Astrophysics Data System (ADS)

    Lawrence, Justin R.; Turnbull, Graham A.; Samuel, Ifor D. W.

    2003-06-01

    We report polymer distributed feedback lasers fabricated using solvent-assisted microcontact molding. The poly[2-methoxy-5-(3,7-dimethyloctyloxy) paraphenylenevinylene] film is patterned by placing it in conformal contact with an elastomeric mould inked with a suitable solvent. When the resulting microstructured film is pumped with the 532 nm pulsed output of a microchip laser, we observe lasing above a threshold pump energy of 225 nJ. Above threshold the emission narrows to a linewidth of less than 0.6 nm at a wavelength of 638 nm. This micromolding technique may find application to a wide range of wavelength-scale microstructured organic photonic devices.

  18. Pump Operation Workshop. Third Edition (Revised).

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    Presented is the learner's manual for a five-day workshop designed to supplement the skills of water and wastewater treatment personnel. The program consists of lecture-discussions and hands-on sessions covering the operation of water and wastewater pumps. Areas addressed include: material pumped, pump systems, types of pumps, pump controls,…

  19. 46 CFR 64.93 - Pump controls.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Pump controls. 64.93 Section 64.93 Shipping COAST GUARD... SYSTEMS Cargo Handling System § 64.93 Pump controls. (a) A pressure gauge must be installed— (1) On the pump discharge; (2) Near the pump controls; and (3) Visible to the operator. (b) A pump must have...

  20. 46 CFR 64.93 - Pump controls.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Pump controls. 64.93 Section 64.93 Shipping COAST GUARD... SYSTEMS Cargo Handling System § 64.93 Pump controls. (a) A pressure gauge must be installed— (1) On the pump discharge; (2) Near the pump controls; and (3) Visible to the operator. (b) A pump must have...

  1. 46 CFR 64.93 - Pump controls.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Pump controls. 64.93 Section 64.93 Shipping COAST GUARD... SYSTEMS Cargo Handling System § 64.93 Pump controls. (a) A pressure gauge must be installed— (1) On the pump discharge; (2) Near the pump controls; and (3) Visible to the operator. (b) A pump must have...

  2. 46 CFR 64.93 - Pump controls.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Pump controls. 64.93 Section 64.93 Shipping COAST GUARD... SYSTEMS Cargo Handling System § 64.93 Pump controls. (a) A pressure gauge must be installed— (1) On the pump discharge; (2) Near the pump controls; and (3) Visible to the operator. (b) A pump must have...

  3. Fuel injection pump with adjustable timing

    SciTech Connect

    Nakamura, H.; Abe, N.

    1987-04-28

    A fuel injection pump is described comprising: a pump body; a plunger disposed in the pump body for reciprocating within the pump body; and a pre-stroke adjusting mechanism disposed in the pump body and operatively connected with the plunger for adjusting an effective pre-stroke of the plunger.

  4. 33 CFR 157.126 - Pumps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Pumps. 157.126 Section 157.126... Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.126 Pumps. (a) Crude oil must be supplied to the COW machines by COW system pumps or cargo pumps. (b) The pumps under...

  5. 46 CFR 154.1135 - Pumps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pumps. 154.1135 Section 154.1135 Shipping COAST GUARD... Pumps. (a) Water to the water spray system must be supplied by: (1) A pump that is only for the use of the system; (2) A fire pump; or (3) A pump specially approved by the Commandant (CG-OES)....

  6. 46 CFR 154.1135 - Pumps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Pumps. 154.1135 Section 154.1135 Shipping COAST GUARD... Pumps. (a) Water to the water spray system must be supplied by: (1) A pump that is only for the use of the system; (2) A fire pump; or (3) A pump specially approved by the Commandant (CG-522)....

  7. 33 CFR 157.126 - Pumps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Pumps. 157.126 Section 157.126... Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.126 Pumps. (a) Crude oil must be supplied to the COW machines by COW system pumps or cargo pumps. (b) The pumps under...

  8. 33 CFR 157.126 - Pumps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Pumps. 157.126 Section 157.126... Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.126 Pumps. (a) Crude oil must be supplied to the COW machines by COW system pumps or cargo pumps. (b) The pumps under...

  9. 46 CFR 154.1135 - Pumps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Pumps. 154.1135 Section 154.1135 Shipping COAST GUARD... Pumps. (a) Water to the water spray system must be supplied by: (1) A pump that is only for the use of the system; (2) A fire pump; or (3) A pump specially approved by the Commandant (CG-OES)....

  10. Heat-Powered Pump for Liquid Metals

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  11. The MEMS Knudsen Compressor as a Vacuum Pump for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Vargo, S. E.; Muntz, E. P.; Tang, W. C.

    2000-01-01

    Several lander, probe and rover missions currently under study at the Jet Propulsion Laboratory (JPL) and especially in the Microdevices Laboratory (MDL) Center for Space Microelectronics Technology, focus on utilizing microelectromechanical systems (MEMS) based instruments for science data gathering. These small instruments and NASA's commitment to "faster, better, cheaper" type missions has brought about the need for novel approaches to satisfying mission requirements. Existing in-situ instrument systems clearly lack novel and integrated methods for satisfying their vacuum needs. One attractive candidate for a MEMS vacuum pump is the Knudsen Compressor, which operates based on thermal transpiration. Thermal transpiration describes gas flows induced by temperature differences maintained across orifices, porous membranes or capillary tubes under rarefied conditions. This device has two overwhelmingly attractive features as a MEMS vacuum pump - no moving parts and no fluids. An initial estimate of a Knudsen Compressor's pumping power requirements for a surface atmospheric sampling task on Mars is less than 80 mW, significantly below than alternative pumps. Due to the relatively low energy use for this task and the applicability of the Knudsen Compressor to other applications, the development of a Knudsen Compressor utilizing MEMS fabrication techniques has been initiated. This paper discusses the initial fabrication of a single-stage MEMS Knudsen Compressor vacuum pump, provides performance criteria such as pumping speed, size, energy use and ultimate pressure and details vacuum pump applications in several MDL related in-situ instruments.

  12. A micro-spherical heart pump powered by cultured cardiomyocytes.

    PubMed

    Tanaka, Yo; Sato, Kae; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo; Kitamori, Takehiko

    2007-02-01

    Miniaturization of chemical or biochemical systems creates extremely efficient devices exploiting the advantages of microspaces. Although they are often targeted for implanted tissue engineered organs or drug-delivery devices because of their highly integrated systems, microfluidic devices are usually powered by external energy sources and therefore difficult to be used in vivo. A microfluidic device powered without the need for external energy sources or stimuli is needed. Previously, we demonstrated the concept of a cardiomyocyte pump using only chemical energy input to cells as a driver (Yo Tanaka, Keisuke Morishima, Tatsuya Shimizu, Akihiko Kikuchi, Masayuki Yamato, Teruo Okano and Takehiko Kitamori, Lab Chip, 6(3), pp. 362-368). However, the structure of this prototype pump described there included complicated mechanical components and fabricated compartments. Here, we have created a micro-spherical heart-like pump powered by spontaneously contracting cardiomyocyte sheets driven without a need for external energy sources or coupled stimuli. This device was fabricated by wrapping a beating cardiomyocyte sheet exhibiting large contractile forces around a fabricated hollow elastomeric sphere (5 mm diameter, 250 microm polymer thickness) fixed with inlet and outlet ports. Fluid oscillations in a capillary connected to the hollow sphere induced by the synchronously pulsating cardiomyocyte sheet were confirmed, and the device continually worked for at least 5 days in this system. This bio/artificial hybrid fluidic pump device is innovative not only because it is driven by cells using only chemical energy input, but also because the design is an optimum structure (sphere). We anticipate that this device might be applied for various purposes including a bio-actuator for medical implant devices that relies on biochemical energy, not electrical interfacing. PMID:17268623

  13. Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation: SIMPLE.

    PubMed

    Kokalj, Tadej; Park, Younggeun; Vencelj, Matjaž; Jenko, Monika; Lee, Luke P

    2014-11-21

    Reliable, autonomous, internally self-powered microfluidic pumps are in critical demand for rapid point-of-care (POC) devices, integrated molecular-diagnostic platforms, and drug delivery systems. Here we report on a Self-powered Imbibing Microfluidic Pump by Liquid Encapsulation (SIMPLE), which is disposable, autonomous, easy to use and fabricate, robust, and cost efficient, as a solution for self-powered microfluidic POC devices. The imbibition pump introduces the working liquid which is sucked into a porous material (paper) upon activation. The suction of the working liquid creates a reduced pressure in the analytical channel and induces the sequential sample flow into the microfluidic circuits. It requires no external power or control and can be simply activated by a fingertip press. The flow rate can be programmed by defining the shape of utilized porous material: by using three different paper shapes with circular section angles 20°, 40° and 60°, three different volume flow rates of 0.07 μL s(-1), 0.12 μL s(-1) and 0.17 μL s(-1) are demonstrated at 200 μm × 600 μm channel cross-section. We established the SIMPLE pumping of 17 μL of sample; however, the sample volume can be increased to several hundreds of μL. To demonstrate the design, fabrication, and characterization of SIMPLE, we used a simple, robust and cheap foil-laminating fabrication technique. The SIMPLE can be integrated into hydrophilic or hydrophobic materials-based microfluidic POC devices. Since it is also applicable to large-scale manufacturing processes, we anticipate that a new chapter of a cost effective, disposable, autonomous POC diagnostic chip is addressed with this technical innovation. PMID:25231831

  14. A micro-spherical heart pump powered by cultured cardiomyocytes.

    PubMed

    Tanaka, Yo; Sato, Kae; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo; Kitamori, Takehiko

    2007-02-01

    Miniaturization of chemical or biochemical systems creates extremely efficient devices exploiting the advantages of microspaces. Although they are often targeted for implanted tissue engineered organs or drug-delivery devices because of their highly integrated systems, microfluidic devices are usually powered by external energy sources and therefore difficult to be used in vivo. A microfluidic device powered without the need for external energy sources or stimuli is needed. Previously, we demonstrated the concept of a cardiomyocyte pump using only chemical energy input to cells as a driver (Yo Tanaka, Keisuke Morishima, Tatsuya Shimizu, Akihiko Kikuchi, Masayuki Yamato, Teruo Okano and Takehiko Kitamori, Lab Chip, 6(3), pp. 362-368). However, the structure of this prototype pump described there included complicated mechanical components and fabricated compartments. Here, we have created a micro-spherical heart-like pump powered by spontaneously contracting cardiomyocyte sheets driven without a need for external energy sources or coupled stimuli. This device was fabricated by wrapping a beating cardiomyocyte sheet exhibiting large contractile forces around a fabricated hollow elastomeric sphere (5 mm diameter, 250 microm polymer thickness) fixed with inlet and outlet ports. Fluid oscillations in a capillary connected to the hollow sphere induced by the synchronously pulsating cardiomyocyte sheet were confirmed, and the device continually worked for at least 5 days in this system. This bio/artificial hybrid fluidic pump device is innovative not only because it is driven by cells using only chemical energy input, but also because the design is an optimum structure (sphere). We anticipate that this device might be applied for various purposes including a bio-actuator for medical implant devices that relies on biochemical energy, not electrical interfacing.

  15. The Plasma Membrane Calcium Pump

    NASA Technical Reports Server (NTRS)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  16. Heat Pumping in Nanomechanical Systems

    NASA Astrophysics Data System (ADS)

    Chamon, Claudio; Mucciolo, Eduardo R.; Arrachea, Liliana; Capaz, Rodrigo B.

    2011-04-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve.

  17. Generalized Pump-restriction Theorem

    SciTech Connect

    Sinitsyn, Nikolai A; Chernyak, Vladimir Y

    2008-01-01

    We formulate conditions under which periodic modulations of parameters on a finite graph with stochastic transitions among its nodes do not lead to overall pump currents through any given link. Our theorem unifies previously known results with the new ones and provides a universal approach to explore futher restrictions on stochastic pump effect in non-adiabatically driven systems with detailed balance.

  18. Constant-Pressure Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Galloway, C. W.

    1982-01-01

    Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.

  19. Multi-path peristaltic pump

    NASA Technical Reports Server (NTRS)

    Chandler, Joseph A. (Inventor)

    1986-01-01

    The instant invention is directed to a peristaltic pump for critical laboratory or hospital applications requiring precise flow rates over an extended period of time. Within the cylindrical barrel pump housing is a single-piece, molded, elastometric, cylindrical liner with a multiplicity of flattened helical channels created therein from one end of the liner to the other. Three cylindrical rollers rotate about the center axis of the pump around the inside surface of the liner selectively compressing the liner, and hence the helical channels between the rollers and the barrel housing, creating a pumping action by forcing trapped fluid in the helical channels axially from one end of the liner to the opposite end. The novelty of the invention appears to lie in the provision of the special liner with multiple helical channels as the pumping chamber, rather than the standard single elastomeric tubing which is squeezed repeatedly by rollers to move the liquid through a typical peristaltic pump. Large, repeated deflections on the standard tubing causes a permanent set in the tubing, thus either changing the flow rate, or requiring a new section of tubing to be positioned in the pump head. Further, this configuration minimizes the amount of outflow pulsation which is characteristic of a typical single tubing peristaltic pump.

  20. Smart Fabrics Technology Development

    NASA Technical Reports Server (NTRS)

    Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint

    2010-01-01

    Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.

  1. Fabric Fact & Fiction.

    ERIC Educational Resources Information Center

    Cohen, Andrew

    2001-01-01

    Examines the positive and negative attributes of fabric structures in providing affordable shelter for a variety of multipurpose applications, including temporary or seasonal use. Describes the three basic types of fabric structures: air-supported, frame-supported, and mast-supported. This article focuses on smaller structures of the air- and…

  2. Avoid self-priming centrifugal pump

    SciTech Connect

    Reeves, G.G.

    1987-01-01

    The self-priming horizontal centrifugal pump becomes known to its operator either as a good pump or a bad pump. The latter is usually replaced by another type of pump, even though a properly specified self-priming centrifugal pump might have been a good choice. Use of the guidelines described in this article are intended to help in the purchase and installation of a good pump. Self-priming centrifugal pumps are used for removing liquids from below grade sumps or pits that may also contain solids, fibers and/or muck. Alternate pumps for this service include submersible pumps, vertical turbine pumps and positive displacement pumps. These alternate pumps do not pass solid particles as large as self-priming pumps do without damage. Positive displacement pumps are not normally cost-effective when pumping liquid at rates in excess of 500 gallons per minute in low-head applications. Vertical and submersible pumps must be removed when cleaning of the pump is required. Self-priming pumps are easily cleaned by opening the access plates without moving the pump; and they cost less than the other types.

  3. Electric fluid pump

    SciTech Connect

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  4. Dual source heat pump

    DOEpatents

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  5. Ammoniated salt heat pump

    NASA Astrophysics Data System (ADS)

    Haas, W. R.; Jaeger, F. J.; Giordano, T. J.

    A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat. Several liquid ammoniates are identified and the critical properties of three of the most promising are presented. Results of small scale (5000 Btu) system tests are discussed and a design concept for a prototype system is given. This system represents a significant improvement over the system using solid ammoniates investigated previously because of the increase in heat transfer rates (5 to 60 Btu/hr sq ft F) and the resulting reduction in heat exchanger size. As a result the concept shows promise of being cost competitive with conventional systems.

  6. Nanowire liquid pumps

    NASA Astrophysics Data System (ADS)

    Huang, Jian Yu; Lo, Yu-Chieh; Niu, Jun Jie; Kushima, Akihiro; Qian, Xiaofeng; Zhong, Li; Mao, Scott X.; Li, Ju

    2013-04-01

    The ability to form tiny droplets of liquids and control their movements is important in printing or patterning, chemical reactions and biological assays. So far, such nanofluidic capabilities have principally used components such as channels, nozzles or tubes, where a solid encloses the transported liquid. Here, we show that liquids can flow along the outer surface of solid nanowires at a scale of attolitres per second and the process can be directly imaged with in situ transmission electron microscopy. Microscopy videos show that an ionic liquid can be pumped along tin dioxide, silicon or zinc oxide nanowires as a thin precursor film or as beads riding on the precursor film. Theoretical analysis suggests there is a critical film thickness of ~10 nm below which the liquid flows as a flat film and above which it flows as discrete beads. This critical thickness is the result of intermolecular forces between solid and liquid, which compete with liquid surface energy and Rayleigh-Plateau instability.

  7. PLT rotating pumped limiter

    SciTech Connect

    Cohen, S.A.; Budny, R.V.; Corso, V.; Boychuck, J.; Grisham, L.; Heifetz, D.; Hosea, J.; Luyber, S.; Loprest, P.; Manos, D.

    1984-07-01

    A limiter with a specially contoured front face and the ability to rotate during tokamak discharges has been installed in a PLT pump duct. These features have been selected to handle the unique particle removal and heat load requirements of ICRF heating and lower-hybrid current-drive experiments. The limiter has been conditioned and commissioned in an ion-beam test stand by irradiation with 1 MW power, 200 ms duration beams of 40 keV hydrogen ions. Operation in PLT during ohmic discharges has proven the ability of the limiter to reduce localized heating caused by energetic electron bombardment and to remove about 2% of the ions lost to the PLT walls and limiters.

  8. Pump it up

    NASA Astrophysics Data System (ADS)

    Maffli, Luc; O'Brien, Benjamin; Rosset, Samuel; Shea, Herbert

    2012-04-01

    We report on the use of zipping actuation applied to dielectric elastomer actuators to microfabricate mm-sized pumps. The zipping actuators presented here use electrostatic attraction to deform an elastomeric membrane by pulling it into contact with a rigid counter electrode. We present several actuation schemes using either conventional DEA actuation, zipping, or a combination of both in order to realize microfluidic devices. A zipping design in which the electric field is applied across the elastomer membrane was explored theoretically and experimentally. Single zipping chambers and a micropump body made of a three chambers connected by an embedded channel were wet-etched into a silicon wafer and subsequently covered by a gold-implanted silicone membrane. We measured static deflections of up to 300 μm on chambers with square openings of 1.8 and 2.6 mm side, in very good agreement with our model.

  9. Dimerization, trimerization and quantum pumping

    NASA Astrophysics Data System (ADS)

    Guo, Huaiming

    2014-03-01

    We study one-dimensional topological models with dimerization and trimerization and show that these models can be generated using interaction or optical superlattice. The topological properties of these models are demonstrated by the appearance of edge states and the mechanism of dimerization and trimerization is analyzed. Then we show that a quantum pumping process can be constructed based on each one-dimensional topological model. The quantum pumping process is explicitly demonstrated by the instantaneous energy spectrum and local current. The result shows that the pumping is assisted by the gapless states connecting the bands and one charge is pumped during a cycle, which also defines a nonzero Chern number. Our study systematically shows the connection of one-dimensional topological models and quantum pumping, and is useful for the experimental studies on topological phases in optical lattices and photonic quasicrystals.

  10. Stochastic thermodynamics of hidden pumps

    NASA Astrophysics Data System (ADS)

    Esposito, Massimiliano; Parrondo, Juan M. R.

    2015-05-01

    We show that a reversible pumping mechanism operating between two states of a kinetic network can give rise to Poisson transitions between these two states. An external observer, for whom the pumping mechanism is not accessible, will observe a Markov chain satisfying local detailed balance with an emerging effective force induced by the hidden pump. Due to the reversibility of the pump, the actual entropy production turns out to be lower than the coarse-grained entropy production estimated from the flows and affinities of the resulting Markov chain. Moreover, in presence of a large time scale separation between the fast-pumping dynamics and the slow-network dynamics, a finite current with zero dissipation may be produced. We make use of these general results to build a synthetase-like kinetic scheme able to reversibly produce high free-energy molecules at a finite rate and a rotatory motor achieving 100% efficiency at finite speed.

  11. Stochastic thermodynamics of hidden pumps.

    PubMed

    Esposito, Massimiliano; Parrondo, Juan M R

    2015-05-01

    We show that a reversible pumping mechanism operating between two states of a kinetic network can give rise to Poisson transitions between these two states. An external observer, for whom the pumping mechanism is not accessible, will observe a Markov chain satisfying local detailed balance with an emerging effective force induced by the hidden pump. Due to the reversibility of the pump, the actual entropy production turns out to be lower than the coarse-grained entropy production estimated from the flows and affinities of the resulting Markov chain. Moreover, in presence of a large time scale separation between the fast-pumping dynamics and the slow-network dynamics, a finite current with zero dissipation may be produced. We make use of these general results to build a synthetase-like kinetic scheme able to reversibly produce high free-energy molecules at a finite rate and a rotatory motor achieving 100% efficiency at finite speed. PMID:26066126

  12. Geothermal down well pumping system

    NASA Technical Reports Server (NTRS)

    Matthews, H. B.; Mcbee, W. D.

    1974-01-01

    A key technical problem in the exploitation of hot water geothermal energy resources is down-well pumping to inhibit mineral precipitation, improve thermal efficiency, and enhance flow. A novel approach to this problem involves the use of a small fraction of the thermal energy of the well water to boil and super-heat a clean feedwater flow in a down-hole exchanger adjacent to the pump. This steam powers a high-speed turbine-driven pump. The exhaust steam is brought to the surface through an exhaust pipe, condensed, and recirculated. A small fraction of the high-pressure clean feedwater is diverted to lubricate the turbine pump bearings and prevent leakage of brine into the turbine-pump unit. A project demonstrating the feasibility of this approach by means of both laboratory and down-well tests is discussed.

  13. Heat-powered water pump

    SciTech Connect

    Chadwick, D.G.

    1980-04-08

    A heat-powered water pump includes a flexible diaphragm as the pumping element with a volatile liquid as a working fluid. The flexible diaphragm is enclosed within a vessel and isolates the working fluid from the water to be pumped. One-way valves control the direction of water flow through the pump. A u-shaped siphon tube acts as a temporary reservoir for the pumped water and is siphoned empty after being filled. A portion of the water siphoned from the u-shaped siphon tube is recirculated through the vessel in heat exchange relationship with the working fluid to condense the working fluid. A reservoir of warm water is maintained in thermal contact with the flexible diaphragm to minimize condensation of the working fluid by thermal contact with the water through the diaphragm.

  14. Insulin pump therapy in pregnancy.

    PubMed

    Kesavadev, Jothydev

    2016-09-01

    Control of blood glucose during pregnancy is difficult because of wide variations, ongoing hormonal changes and mood swings. The need for multiple injections, pain at the injection site, regular monitoring and skillful handling of the syringes/pen further makes insulin therapy inconvenient. Insulin pump is gaining popularity in pregnancy because it mimics the insulin delivery of a healthy human pancreas. Multiple guidelines have also recommended the use of insulin pump in pregnancy to maintain the glycaemic control. The pump can release small doses of insulin continuously (basal), or a bolus dose close to mealtime to control the spike in blood glucose after a meal and the newer devices can shut down insulin delivery before the occurrence of hypoglycaemia. Pump insulin of choice is rapid acting analogue insulin. This review underscores the role of insulin pump in pregnancy, their usage, advantages and disadvantages in the light of existing literature and clinic experience. PMID:27582150

  15. Pump system characterization and reliability enhancement

    SciTech Connect

    Staunton, R.H.

    1997-09-01

    Pump characterization studies were performed at the Oak Ridge National Laboratory (ORNL) to review and analyze six years (1990 to 1995) of data from pump systems at domestic nuclear plants. The studies considered not only pumps and pump motors but also pump related circuit breakers and turbine drives (i.e., the pump system). One significant finding was that the number of significant failures of the pump circuit breaker exceeds the number of significant failures of the pump itself. The study also shows how regulatory code testing was designed for the pump only and therefore did not lead to the discovery of other significant pump system failures. Potential diagnostic technologies both experimental and mature, suitable for on-line and off-line pump testing were identified. The study does not select or recommend technologies but proposes diagnostic technologies and monitoring techniques that should be further evaluated/developed for making meaningful and critically needed improvements in the reliability of the pump system.

  16. Solar pumping installation for pumping liquid and solar collector construction

    SciTech Connect

    Seidel, A.; Wolf, D.

    1984-03-27

    A solar pumping system, comprises, a pumping housing which defines a pump chamber therein which is adapted to be positioned in the ground below ground water level. Displacer means in the form of, for example, a bladder, arranged within the pump chamber, is capable of displacing liquid out of the pump chamber in response to a pressurized medium acting thereon to expel the water out of the chamber and up to a level above the ground for use. A suction valve connected into the chamber permits the ground water to flow into the chamber and a discharge valve connected out of the chamber permits the outflow of the ground water during the action of the displacer means. The construction includes a solar collector having at least one hydride conduit which is adapted to be exposed to the sun for solar heating to act on the hydride to cause hydrogen to be formed, the pressure of which acts against the displacer means to displace the ground liquid out of the pump chamber. When the solar collector is shielded and the hydride is permitted to cool or is cooled rapidly by the circulation of water thereover, the pressure of the generated hydrogen decreases, permitting ground water to enter into the pumping chamber once again through the suction valves.

  17. [Continuous ambulatory chemotherapy with elastomer pump].

    PubMed

    Cabrera Figueroa, J; Arias Hernández, M

    2001-09-01

    Continuous perfusion administration of chemotherapy can be performed by means of various devices known as pumps. There are syringe pumps, elastomeric pumps, peristaltic pumps and pumps which can be implanted. In our hospital environment, the elastomeric pump enjoys a high degree of acceptance since it permits a cancer patient to maintain a large degree of autonomy while he/she carries on his/her activities. PMID:12150128

  18. New polymorphous computing fabric.

    SciTech Connect

    Wolinski, C.; Gokhale, M.; McCabe, K. P.

    2002-01-01

    This paper introduces a new polymorphous computing Fabric well suited to DSP and Image Processing and describes its implementation on a Configurable System on a Chip (CSOC). The architecture is highly parameterized and enables customization of the synthesized Fabric to achieve high performance for a specific class of application. For this reason it can be considered to be a generic model for hardware accelerator synthesis from a high level specification. Another important innovation is the Fabric uses a global memory concept, which gives the host processor random access to all the variables and instructions on the Fabric. The Fabric supports different computing models including MIMD, SPMD and systolic flow and permits dynamic reconfiguration. We present a specific implementation of a bank of FIR filters on a Fabric composed of 52 cells on the Altera Excalibur ARM running at 33 MHz. The theoretical performance of this Fabric is 1.8 GMACh. For the FIR application we obtain 1.6 GMAC/s real performance. Some automatic tools have been developed like the tool to provide a host access utility and assembler.

  19. Micro stereo lithography and fabrication of 3D microdevices

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1999-08-01

    Micro Stereo Lithography (MSL) is a poor man's LIGA for fabricating high aspect ratio MEMS devices in UV curable semiconducting polymers using either two computer-controlled low inertia galvanometric mirrors with the aid of focusing lens or an array of optical fibers. For 3D MEMS devices, the polymers need to have conductive and possibly piezoelectric or ferroelectric properties. Such polymers are being developed at Penn State resulting in microdevices for fluid and drug delivery. Applications may include implanted medical delivery systems, chemical and biological instruments, fluid delivery in engines, pump coolants and refrigerants for local cooling of electronic components. With the invention of organic thin film transistor, now it is possible to fabricate 3D polymeric MEMS devices with built-in-electronics similar to silicon based microelectronics. In this paper, a brief introduction of MSL system is presented followed by a detailed design and development of micro pumps using this approach.

  20. Experimental studies on pump limiters

    NASA Astrophysics Data System (ADS)

    Mioduszewski, P.

    1982-12-01

    Pump limiters are mechanical devices for He-ash removal, fuel particle control, and possibly impurity control. Different designs have been suggested by various authors over the past decade. However, the magnetic divertor concepts seemed to be more promising, mainly because of their remote plasma-material interactions. All of the characteristics of magnetic divertors have been proven experimentally, but the overall performance and complexity cause concern about their application to tokamak reactors. Consequently, it is now time to explore the potential of mechanical particle control devices, i.e. pump limiters. Because of the high recycling at the limiter, it is sufficient to exhaust only a small fraction, about 1-10%, of the limiter particle flux to remove e.g. He at its rate of production. Pump limiter experiments have been conducted so far on Alcator, PDX, Macrotor, and ISX. Depending on the experimental design, a pressure build-up of between 1 mTorr and 50 mTorr has been reported. The closed configuration pump limiters provide high collection efficiencies, but have to accomodate high power fluxes at the leading edge. An open configuration, on the other hand, avoids leading edges but provides only fairly low collection efficiencies. The pump limiter development program now calls for a full pump limiter to be implemented in a major tokamak device. Presently, full-size pump limiter experiments on PDX, ISX, and TEXTOR are in preparation.

  1. Small centrifugal pumps for low-thrust rocket engines

    NASA Technical Reports Server (NTRS)

    Furst, R. B.

    1986-01-01

    Six small, low specific speed centrifugal pump configurations were designed, fabricated, and tested. The configurations included shrouded, and 25 and 100% admission open face impellers with 2 inch tip diameters; 25, 50, and 100% emission vaned diffusers; and volutes with conical exits. Impeller tip widths varied from 0.030 inch to 0.052 inch. Design specific speeds (N sub s = RPM*GPM**0.5.FT**0.75) were 430 (four configurations) and 215 (two configurations). The six configurations were tested with water as the pumped fluid. Noncavitating performance results are presented for the design speed of 24,500 rpm over a flowrate range from 1 to 6 gpm for the N sub s = 430 configurations and test speeds up to 29,000 rpm over a flowrate range from 0.3 to 1.2 gpm for the N sub s = 215 configurations. Cavitating performance results are presented over a flowrate range from 60 to 120% of design flow. Fabrication of the small pump conponents is also discussed.

  2. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding.

    PubMed

    Dong, Liang; McKay, Hugh A; Fu, Libin; Ohta, Michiharu; Marcinkevicius, Andrius; Suzuki, Shigeru; Fermann, Martin E

    2009-05-25

    All glass leakage channel fibers have been demonstrated to be a potential practical solution for power scaling in fiber lasers beyond the nonlinear limits in conventional large mode area fibers. The all glass nature with absence of any air holes is especially useful for allowing the fibers to be used and fabricated much like conventional fibers. Previously, double clad active all glass leakage channel fibers used low index polymer as a pump guide with the drawbacks of being less reliable at high pump powers and not being able to change fiber outer diameter independent of pump guide dimension. In this work, we demonstrate, for the first time, ytterbium-doped double clad all glass leakage channel fibers with highly fluorine-doped silica as pump cladding. The new all glass leakage channel fibers have no polymer in the pump path and have independent control of fiber outer diameters and pump cladding dimension, and, therefore, enable designs with smaller pump guide for high pump absorption and, at the same time, with large fiber diameters to minimize micro and macro bending effects, a much desired features for large core fibers where intermodal coupling can be an issue due to a much increased mode density. An ytterbium-doped double clad PM fiber with core diameter of 80 microm is also reported, which can be coiled in 76 cm diameter coils.

  3. 11. PUMP HOUSE AND WEIGHING ROOM Fish were pumped from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. PUMP HOUSE AND WEIGHING ROOM Fish were pumped from floating hoppers, to the pump house (on the far right). From there they were either lifted by conveyor belt to the weighing room (top center) and thence to the holding tanks, or were washed through sealers, weighed and then sluiced to holding tanks. The process used depended upon the type and size of fish. The square cement vat (center) was to be a settling tank from which fish oil, reclaimed from the reduction process, was to be pumped into the round metal tank (above the vat). This process however, was never fully utilized before the sardines ran out. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  4. Oil well pump driving unit

    SciTech Connect

    Gilbertson, T.A.

    1984-02-21

    An oil well pump driving unit with a horizontally disposed hydraulic cylinder having a cylinder rod coupled to a drive rope extending into a pumping tee-stuffing box arrangement for driving the sucker rod string leading to a conventional oil well reciprocating pump. The drive rope extends over a first rotating sheave mounted near the wellhead and passes over a second rotating sheave mounted on a carriage which traverses a carriage channel in a draw works on which the hydraulic cylinder is mounted. A hydraulic drive/control system utilizing limit switches on the draw works provides control over the stroke position, the stroke length, and the stroke rate.

  5. Pumping of titanium sapphire laser

    NASA Astrophysics Data System (ADS)

    Jelínková, H.; Vaněk, P.; Valach, P.; Hamal, K.; Kubelka, J.; Škoda, V.; Jelínek, M.

    1993-02-01

    Two methods of Ti:Sapphire pumping for the generation of tunable laser radiation in the visible region were studied. For coherent pumping, the radiation of the second harmonic of a Nd:YAP laser was used and a maximum output energy of E out=4.5 mJ was reached from the Ti:Sapphire laser. For noncoherent pumping, two different lengths of flashlamp pulses were used and a maximum of E out=300 mJ was obtained. Preliminary estimations of the wavelength range of tunability were made.

  6. System analysis for sucker-rod pumping

    SciTech Connect

    Schmidt, Z.; Doty, D.R.

    1989-05-01

    Pumping free gas in an oil well can significantly decrease the efficiency of a sucker-rod-pumping installation. Pump placement depth and use of a downhole gas/liquid separator (gas anchor) were found to be significant variables in improving the overall efficiency. A procedure is presented that shows when and to what degree the use of a gas anchor improves the efficiency of a sucker-rod pumping system. It was found that at lower pump intake pressures, the gas anchor usually improves efficiency, but at higher pump intake pressures, use of a gas anchor produces no positive effect. Also, elevating the pump to the highest position that still allows proper pump loading was found to reduce the operating costs of a sucker-rod-pumping installation significantly. Finally, a procedure is presented to calculate directly the pump volumetric efficiency and required volumetric pump displacement rate.

  7. System analysis for sucker rod pumping

    SciTech Connect

    Schmidt, Z.; Doty, D.R.

    1986-01-01

    Pumping free gas in an oil well can significantly decrease the efficiency of a sucker rod pumping installation. Pump placement depth and the use of a down hole gas-liquid separator (gas anchor) found to be significant variables in improving the overall efficiency. A procedure is presented which shows when and by how much the use of a gas anchor improves the efficiency of a sucker rod pumping system. It was found that at lower pump intake pressures the gas anchor usually improves efficiency, while at higher pump intake pressures the use of a gas anchor will produce no positive effect. Also, it was found at elevating the pump to the highest position which still allows for proper pump loading can significantly reduce the operating costs for a sucker rod pumping installation. Finally, a procedure is presented for directly calculating pump volumetric efficiency as well as the required volumetric pump displacement rate.

  8. Fluid Dynamics in Sucker Rod Pumps

    SciTech Connect

    Cutler, R.P.; Mansure, A.J.

    1999-01-14

    Sucker rod pumps are installed in approximately 90% of all oil wells in the U.S. Although they have been widely used for decades, there are many issues regarding the fluid dynamics of the pump that have not been fully investigated. A project was conducted at Sandia National Laboratories to develop unimproved understanding of the fluid dynamics inside a sucker rod pump. A mathematical flow model was developed to predict pressures in any pump component or an entire pump under single-phase fluid and pumping conditions. Laboratory flow tests were conducted on instrumented individual pump components and on a complete pump to verify and refine the model. The mathematical model was then converted to a Visual Basic program to allow easy input of fluid, geometry and pump parameters and to generate output plots. Examples of issues affecting pump performance investigated with the model include the effects of viscosity, surface roughness, valve design details, plunger and valve pressure differentials, and pumping rate.

  9. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid P

    SciTech Connect

    KOCH, M.R.

    2000-02-14

    This Test Plan provides a test method to dedicate the leak detection relays used on the new Pumping Instrumentation and Control (PIC) skids. The new skids are fabricated on-site. The leak detection system is a safety class system per the Authorization Basis.

  10. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid Q

    SciTech Connect

    KOCH, M.R.

    2000-02-14

    This Test Plan provides a test method to dedicate the leak detection relays used on the new Pumping Instrumentation and Control (PIC) skids. The new skids are fabricated on-site. The leak detection system is a safety class system per the Authorization Basis.

  11. Acceptance Test Procedure for New Pumping Instrumentation and Control Skid V

    SciTech Connect

    KOCH, M.R.

    2000-07-25

    This Acceptance Test Procedure (ATP) verifies proper construction per the design drawings and tests for proper functioning of the Pumping Instrumentation and Control (PIC) skid ''V''. The scope section lists the systems and functions to be checked. This ATP will be performed at the Site Fabrication Services (SFS) shop upon completion of the construction of the PIC skid.

  12. Acceptance Test Procedure for New Pumping and Instrumentation Control Skid M

    SciTech Connect

    KOCH, M.R.

    1999-11-09

    This Acceptance Test Procedure (ATP) verifies proper construction per the design drawings and tests for proper functioning of the Pumping and Instrumentation Control (PIC) skid ''M''. The Scope section lists the systems and functions to be checked. This ATP will be performed at the Site Fabrication Service's (SFS) shop upon completion of construction of the PIC skid.

  13. Simulation analysis and experimental verification of spiral-tube-type valveless piezoelectric pump with gyroscopic effect

    NASA Astrophysics Data System (ADS)

    Leng, Xuefei; Zhang, Jianhui; Jiang, Yan; Wang, Shouyin; Zhao, Chunsheng

    2014-07-01

    The current research of the valveless piezoelectric pump focuses on increasing the flow rate and pressure differential. Compared with the valve piezoelectric pump, the valveless one has excellent performances in simple structure, low cost, and easy miniaturization. So, their important development trend is the mitigation of their weakness, and the multi-function integration. The flow in a spiral tube element is sensitive to the element attitude caused by the Coriolis force, and that a valveless piezoelectric pump is designed by applying this phenomenon. The pump has gyroscopic effect, and has both the actuator function of fluid transfer and the sensor function, which can obtain the angular velocity when its attitude changes. First, the present paper analyzes the flow characteristics in the tube, obtains the calculation formula for the pump flow, and identifies the relationship between pump attitude and flow, which clarifies the impact of flow and driving voltage, frequency, spiral line type and element attitude, and verifies the gyroscopic effect of the pump. Then, the finite element simulation is used to verify the theory. Finally, a pump is fabricated for experimental testing of the relationship between pump attitude and pressure differential. Experimental results show that when Archimedes spiral θ=4π is selected for the tube design, and the rotation speed of the plate is 70 r/min, the pressure differential is 88.2 Pa, which is 1.5 times that of 0 r/min rotation speed. The spiral-tube-type valveless piezoelectric pump proposed can turn the element attitude into a form of pressure output, which is important for the multi-function integration of the valveless piezoelectric pump and for the development of civil gyroscope in the future.

  14. Spin pumping by magnetopolaritons

    NASA Astrophysics Data System (ADS)

    Cao, Yunshan; Yan, Peng; Huebl, Hans; Goennenwein, Sebastian; Bauer, Gerrit

    2015-03-01

    Recent experiments report the strong coupling of microwaves to the magnetic insulator yttrium iron garnet with weakly damped magnetization dynamics. We developed a scattering approach to study the coupled magnetization and microwave cavities beyond the paramagnetic/macrospin and rotating wave approximations that are implicit in the Tavis-Cummings model. To this end we solve the coupled Landau-Lifshitz-Gilbert and Maxwell's equations for a thin film magnet in a microwave cavity, leading to rich ferromagnetic spin wave resonance spectra of the transmitted or absorbed microwaves. Our method is valid for the full parameter range spanning the weak to strong coupling limits. We demonstrate strong coupling achievement not only for the FMR mode but also for standing spin waves, although the lowest excitation has a decisive leading role for coupling strength. Spin pumping in FI|N bilayers as detected by inverse spin Hall voltages provides additional access to study strong coupling electrically. Funding from the European Union Seventh Framework Programme [FP7-People-2012-ITN] under Grant Agreement 316657 (SpinIcur).

  15. Electromagnetically driven peristaltic pump

    DOEpatents

    Marshall, Douglas W.

    2000-01-01

    An electromagnetic peristaltic pump apparatus may comprise a main body section having an inlet end and an outlet end and a flexible membrane which divides the main body section into a first cavity and a second cavity. The first cavity is in fluid communication with the inlet and outlet ends of the main body section. The second cavity is not in fluid communication with the first cavity and contains an electrically conductive fluid. The second cavity includes a plurality of electrodes which are positioned within the second cavity generally adjacent the flexible membrane. A magnetic field generator produces a magnetic field having a plurality of flux lines at least some of which are contained within the second cavity of the main body section and which are oriented generally parallel to a flow direction in which a material flows between the inlet and outlet ends of the main body section. A control system selectively places a voltage potential across selected ones of the plurality of electrodes to deflect the flexible membrane in a wave-like manner to move material contained in the first cavity between the inlet and outlet ends of the main body section.

  16. Electron Beam Freeform Fabrication

    NASA Video Gallery

    Electron Beam Freeform Fabrication (EBF3) is a process by which NASA hopes to build metal parts in zero gravity environments. It's a layer-additive process that uses an electron beam and a solid wi...

  17. Other Fabric Structures

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Architects, engineers and building owners are turning increasingly to fabric structures because of their aesthetic appeal, relatively low initial cost, low maintenance outlays, energy efficiency and good space utilization. Several examples are shown.

  18. Speedo Fabric Testing

    NASA Video Gallery

    Because the physical laws of motion for moving a body through water are the same as moving a vehicle through air, NASA aeronautics experts test the drag effects of different fabrics for Olympic-bou...

  19. Evaluation of left ventricular assist device pump bladders cast from ion-sputtered polytetrafluorethylene mandrels

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A highly thromboresistant blood contacting interface for use in implanatable blood pump is investigated. Biomaterials mechanics, dynamics, durability, surface morphology, and chemistry are among the critical consideration pertinent to the choice of an appropriate blood pump bladder material. The use of transfer cast biopolymers from ion beam textured surfaces is investigated to detect subtle variations in blood pump surface morphology using Biomer as the biomaterial of choice. The efficacy of ion beam sputtering as an acceptable method of fabricating textured blood interfaces is evaluated. Aortic grafts and left ventricular assist devices were implanted in claves; the blood interfaces were fabricated by transfer casting methods from ion beam textured polytetrafluorethylene mandrels. The mandrels were textured by superimposing a 15 micron screen mesh; ion sputtering conditions were 300 volts beam energy, 40 to 50 mA beam, and a mandrel to source distance of 25 microns.

  20. Superabsorbent Multilayer Fabric

    NASA Technical Reports Server (NTRS)

    Coreale, J. V.; Dawn, F. S.

    1982-01-01

    Material contains gel-forming polymer and copolymer that absorb from 70 to 200 times their weight of liquid. Superabsorbent Polymer and Copolymer form gels to bind and retain liquid in multiply fabric. Until reaction between liquid and absorbent masses forms gel, backing layer retains liquids within fabric; also allows material to "breathe." Possible applications include baby diapers, female hygiene napkins, and hospital bedpads. Might also have uses in improvement of dry soil.