Sample records for scroll wave stability

  1. Phase-locked scroll waves defy turbulence induced by negative filament tension.

    PubMed

    Li, Teng-Chao; Gao, Xiang; Zheng, Fei-Fei; Cai, Mei-Chun; Li, Bing-Wei; Zhang, Hong; Dierckx, Hans

    2016-01-01

    Scroll waves in a three-dimensional media may develop into turbulence due to negative tension of the filament. Such negative tension-induced instability of scroll waves has been observed in the Belousov-Zhabotinsky reaction systems. Here we propose a method to restabilize scroll wave turbulence caused by negative tension in three-dimensional chemical excitable media using a circularly polarized (rotating) external field. The stabilization mechanism is analyzed in terms of phase-locking caused by the external field, which makes the effective filament tension positive. The phase-locked scroll waves that have positive tension and higher frequency defy the turbulence and finally restore order. A linear theory for the change of filament tension caused by a generic rotating external field is presented and its predictions closely agree with numerical simulations.

  2. Filament Tension and Phase Locking of Meandering Scroll Waves

    NASA Astrophysics Data System (ADS)

    Dierckx, Hans; Biktasheva, I. V.; Verschelde, H.; Panfilov, A. V.; Biktashev, V. N.

    2017-12-01

    Meandering spiral waves are often observed in excitable media such as the Belousov-Zhabotinsky reaction and cardiac tissue. We derive a theory for drift dynamics of meandering rotors in general reaction-diffusion systems and apply it to two types of external disturbances: an external field and curvature-induced drift in three dimensions. We find two distinct regimes: with small filament curvature, meandering scroll waves exhibit filament tension, whose sign determines the stability and drift direction. In the regimes of strong external fields or meandering motion close to resonance, however, phase locking of the meander pattern is predicted and observed.

  3. Filament Tension and Phase Locking of Meandering Scroll Waves.

    PubMed

    Dierckx, Hans; Biktasheva, I V; Verschelde, H; Panfilov, A V; Biktashev, V N

    2017-12-22

    Meandering spiral waves are often observed in excitable media such as the Belousov-Zhabotinsky reaction and cardiac tissue. We derive a theory for drift dynamics of meandering rotors in general reaction-diffusion systems and apply it to two types of external disturbances: an external field and curvature-induced drift in three dimensions. We find two distinct regimes: with small filament curvature, meandering scroll waves exhibit filament tension, whose sign determines the stability and drift direction. In the regimes of strong external fields or meandering motion close to resonance, however, phase locking of the meander pattern is predicted and observed.

  4. Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness, and fiber rotation.

    PubMed Central

    Qu, Z; Kil, J; Xie, F; Garfinkel, A; Weiss, J N

    2000-01-01

    Scroll wave (vortex) breakup is hypothesized to underlie ventricular fibrillation, the leading cause of sudden cardiac death. We simulated scroll wave behaviors in a three-dimensional cardiac tissue model, using phase I of the Luo-Rudy (LR1) action potential model. The effects of action potential duration (APD) restitution, tissue thickness, filament twist, and fiber rotation were studied. We found that APD restitution is the major determinant of scroll wave behavior and that instabilities arising from APD restitution are the main determinants of scroll wave breakup in this cardiac model. We did not see a "thickness-induced instability" in the LR1 model, but a minimum thickness is required for scroll breakup in the presence of fiber rotation. The major effect of fiber rotation is to maintain twist in a scroll wave, promoting filament bending and thus scroll breakup. In addition, fiber rotation induces curvature in the scroll wave, which weakens conduction and further facilitates wave break. PMID:10827961

  5. Dynamics of scroll waves with time-delay propagation in excitable media

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Xing; Xiao, Jie; Qiao, Li-Yan; Xu, Jiang-Rong

    2018-06-01

    Information transmission delay can be widely observed in various systems. Here, we study the dynamics of scroll waves with time-delay propagation among slices in excitable media. Weak time delay induces scroll waves to meander. Through increasing the time delay, we find a series of dynamical transitions. Firstly, the straight filament of a scroll wave becomes twisted. Then, the scroll wave breaks and forms interesting patterns. With long time delay, loosed scroll waves are maintained while their period are greatly decreased. Also, cylinder waves appears. The influences of diffusively coupling strength on the time-delay-induced scroll waves are studied. It is found that the critical time delay characterizing those transitions decreases as the coupling strength is increased. A phase diagram in the diffusive coupling-time delay plane is presented.

  6. Removal of pinned scroll waves in cardiac tissues by electric fields in a generic model of three-dimensional excitable media.

    PubMed

    Pan, De-Bei; Gao, Xiang; Feng, Xia; Pan, Jun-Ting; Zhang, Hong

    2016-02-24

    Spirals or scroll waves pinned to heterogeneities in cardiac tissues may cause lethal arrhythmias. To unpin these life-threatening spiral waves, methods of wave emission from heterogeneities (WEH) induced by low-voltage pulsed DC electric fields (PDCEFs) and circularly polarized electric fields (CPEFs) have been used in two-dimensional (2D) cardiac tissues. Nevertheless, the unpinning of scroll waves in three-dimensional (3D) cardiac systems is much more difficult than that of spiral waves in 2D cardiac systems, and there are few reports on the removal of pinned scroll waves in 3D cardiac tissues by electric fields. In this article, we investigate in detail the removal of pinned scroll waves in a generic model of 3D excitable media using PDCEF, AC electric field (ACEF) and CPEF, respectively. We find that spherical waves can be induced from the heterogeneities by these electric fields in initially quiescent excitable media. However, only CPEF can induce spherical waves with frequencies higher than that of the pinned scroll wave. Such higher-frequency spherical waves induced by CPEF can be used to drive the pinned scroll wave out of the cardiac systems. We hope this remarkable ability of CPEF can provide a better alternative to terminate arrhythmias caused by pinned scroll waves.

  7. Scroll-Wave Dynamics in Human Cardiac Tissue: Lessons from a Mathematical Model with Inhomogeneities and Fiber Architecture

    PubMed Central

    Majumder, Rupamanjari; Nayak, Alok Ranjan; Pandit, Rahul

    2011-01-01

    Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study. PMID:21483682

  8. Removal of pinned scroll waves in cardiac tissues by electric fields in a generic model of three-dimensional excitable media

    PubMed Central

    Pan, De-Bei; Gao, Xiang; Feng, Xia; Pan, Jun-Ting; Zhang, Hong

    2016-01-01

    Spirals or scroll waves pinned to heterogeneities in cardiac tissues may cause lethal arrhythmias. To unpin these life-threatening spiral waves, methods of wave emission from heterogeneities (WEH) induced by low-voltage pulsed DC electric fields (PDCEFs) and circularly polarized electric fields (CPEFs) have been used in two-dimensional (2D) cardiac tissues. Nevertheless, the unpinning of scroll waves in three-dimensional (3D) cardiac systems is much more difficult than that of spiral waves in 2D cardiac systems, and there are few reports on the removal of pinned scroll waves in 3D cardiac tissues by electric fields. In this article, we investigate in detail the removal of pinned scroll waves in a generic model of 3D excitable media using PDCEF, AC electric field (ACEF) and CPEF, respectively. We find that spherical waves can be induced from the heterogeneities by these electric fields in initially quiescent excitable media. However, only CPEF can induce spherical waves with frequencies higher than that of the pinned scroll wave. Such higher-frequency spherical waves induced by CPEF can be used to drive the pinned scroll wave out of the cardiac systems. We hope this remarkable ability of CPEF can provide a better alternative to terminate arrhythmias caused by pinned scroll waves. PMID:26905367

  9. Dynamics of Scroll Wave in a Three-Dimensional System with Changing Gradient.

    PubMed

    Yuan, Xiao-Ping; Chen, Jiang-Xing; Zhao, Ye-Hua; Liu, Gui-Quan; Ying, He-Ping

    2016-01-01

    The dynamics of a scroll wave in an excitable medium with gradient excitability is studied in detail. Three parameter regimes can be distinguished by the degree of gradient. For a small gradient, the system reaches a simple rotating synchronization. In this regime, the rigid rotating velocity of spiral waves is maximal in the layers with the highest filament twist. As the excitability gradient increases, the scroll wave evolutes into a meandering synchronous state. This transition is accompanied by a variation in twisting rate. Filament twisting may prevent the breakup of spiral waves in the bottom layers with a low excitability with which a spiral breaks in a 2D medium. When the gradient is large enough, the twisted filament breaks up, which results in a semi-turbulent state where the lower part is turbulent while the upper part contains a scroll wave with a low twisting filament.

  10. Multiple scroll wave chimera states

    NASA Astrophysics Data System (ADS)

    Maistrenko, Volodymyr; Sudakov, Oleksandr; Osiv, Oleksiy; Maistrenko, Yuri

    2017-06-01

    We report the appearance of three-dimensional (3D) multiheaded chimera states that display cascades of self-organized spatiotemporal patterns of coexisting coherence and incoherence. We demonstrate that the number of incoherent chimera domains can grow additively under appropriate variations of the system parameters generating thereby head-adding cascades of the scroll wave chimeras. The phenomenon is derived for the Kuramoto model of N 3 identical phase oscillators placed in the unit 3D cube with periodic boundary conditions, parameters being the coupling radius r and phase lag α. To obtain the multiheaded chimeras, we perform the so-called `cloning procedure' as follows: choose a sample single-headed 3D chimera state, make appropriate scale transformation, and put some number of copies of them into the unit cube. After that, start numerical simulations with slightly perturbed initial conditions and continue them for a sufficiently long time to confirm or reject the state existence and stability. In this way it is found, that multiple scroll wave chimeras including those with incoherent rolls, Hopf links and trefoil knots admit this sort of multiheaded regeneration. On the other hand, multiple 3D chimeras without spiral rotations, like coherent and incoherent balls, tubes, crosses, and layers appear to be unstable and are destroyed rather fast even for arbitrarily small initial perturbations.

  11. 11. DETAIL OF TERRACOTTA DECORATION, SHOWING SCROLL CONSOLE, WAVE ORNAMENT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL OF TERRACOTTA DECORATION, SHOWING SCROLL CONSOLE, WAVE ORNAMENT, EGG-AND-DART, NYMPH HEADS AND FOLIATE PATTERN AROUND WINDOWS - City Hall, Atlantic & Tennessee Avenues, Atlantic City, Atlantic County, NJ

  12. Evolution of Spiral and Scroll Waves of Excitation in a Mathematical Model of Ischaemic Border Zone

    PubMed Central

    Biktashev, Vadim N.; Biktasheva, Irina V.; Sarvazyan, Narine A.

    2011-01-01

    Abnormal electrical activity from the boundaries of ischemic cardiac tissue is recognized as one of the major causes in generation of ischemia-reperfusion arrhythmias. Here we present theoretical analysis of the waves of electrical activity that can rise on the boundary of cardiac cell network upon its recovery from ischaemia-like conditions. The main factors included in our analysis are macroscopic gradients of the cell-to-cell coupling and cell excitability and microscopic heterogeneity of individual cells. The interplay between these factors allows one to explain how spirals form, drift together with the moving boundary, get transiently pinned to local inhomogeneities, and finally penetrate into the bulk of the well-coupled tissue where they reach macroscopic scale. The asymptotic theory of the drift of spiral and scroll waves based on response functions provides explanation of the drifts involved in this mechanism, with the exception of effects due to the discreteness of cardiac tissue. In particular, this asymptotic theory allows an extrapolation of 2D events into 3D, which has shown that cells within the border zone can give rise to 3D analogues of spirals, the scroll waves. When and if such scroll waves escape into a better coupled tissue, they are likely to collapse due to the positive filament tension. However, our simulations have shown that such collapse of newly generated scrolls is not inevitable and that under certain conditions filament tension becomes negative, leading to scroll filaments to expand and multiply leading to a fibrillation-like state within small areas of cardiac tissue. PMID:21935402

  13. Electrical wave propagation in an anisotropic model of the left ventricle based on analytical description of cardiac architecture.

    PubMed

    Pravdin, Sergey F; Dierckx, Hans; Katsnelson, Leonid B; Solovyova, Olga; Markhasin, Vladimir S; Panfilov, Alexander V

    2014-01-01

    We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher-Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation.

  14. Controlling three-dimensional vortices using multiple and moving external fields

    NASA Astrophysics Data System (ADS)

    Das, Nirmali Prabha; Dutta, Sumana

    2017-08-01

    Spirals or scroll wave activities in cardiac tissues are the cause of lethal arrhythmias. The external control of these waves is thus of prime interest to scientists and physicians. In this article, we demonstrate the spatial control of scroll waves by using external electric fields and thermal gradients in experiments with the Belousov-Zhabotinsky reaction. We show that a scroll ring can be made to trace cyclic trajectories under a rotating electric field. Application of a thermal gradient in addition to the electric field deflects the motion and changes the nature of the trajectory. Our experimental results are analyzed and corroborated by numerical simulations based on an excitable reaction diffusion model.

  15. Electrical Wave Propagation in an Anisotropic Model of the Left Ventricle Based on Analytical Description of Cardiac Architecture

    PubMed Central

    Pravdin, Sergey F.; Dierckx, Hans; Katsnelson, Leonid B.; Solovyova, Olga; Markhasin, Vladimir S.; Panfilov, Alexander V.

    2014-01-01

    We develop a numerical approach based on our recent analytical model of fiber structure in the left ventricle of the human heart. A special curvilinear coordinate system is proposed to analytically include realistic ventricular shape and myofiber directions. With this anatomical model, electrophysiological simulations can be performed on a rectangular coordinate grid. We apply our method to study the effect of fiber rotation and electrical anisotropy of cardiac tissue (i.e., the ratio of the conductivity coefficients along and across the myocardial fibers) on wave propagation using the ten Tusscher–Panfilov (2006) ionic model for human ventricular cells. We show that fiber rotation increases the speed of cardiac activation and attenuates the effects of anisotropy. Our results show that the fiber rotation in the heart is an important factor underlying cardiac excitation. We also study scroll wave dynamics in our model and show the drift of a scroll wave filament whose velocity depends non-monotonically on the fiber rotation angle; the period of scroll wave rotation decreases with an increase of the fiber rotation angle; an increase in anisotropy may cause the breakup of a scroll wave, similar to the mother rotor mechanism of ventricular fibrillation. PMID:24817308

  16. Resonance of scroll rings with periodic external fields in excitable media

    NASA Astrophysics Data System (ADS)

    Pan, De-Bei; Li, Qi-Hao; Zhang, Hong

    2018-06-01

    By direct numerical simulations of a chemical reaction-diffusion system coupled to a periodic external AC electric field with frequency equal to double frequency of the scroll wave rotation, we find that scroll rings resonate with the electric field and exhibit various dynamical behaviors, for example, their reversals, collapses, or growths, depending both on the initial phase of AC electric fields and on the initial phase of scroll rings. A kinematical model characterizing the drift velocity of the scroll rings along their radial directions as well as that of the scroll rings along their symmetry axes is proposed, which can effectively account for the numerical observations and predict the behaviors of the scroll rings. Besides, the existence of the equilibrium state of a scroll ring under the AC electric fields is predicted by the kinematical model and the predictions agree well with the simulations.

  17. Nonlinear physics of electrical wave propagation in the heart: a review

    NASA Astrophysics Data System (ADS)

    Alonso, Sergio; Bär, Markus; Echebarria, Blas

    2016-09-01

    The beating of the heart is a synchronized contraction of muscle cells (myocytes) that is triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media with applications to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact for cardiac arrhythmias.

  18. Basic Research on Plasma Cathode for HPM Sources (NE - Luginsland)

    DTIC Science & Technology

    2011-11-30

    to NEPP Vacuum Pump for Mock Magnetron 12 (b) Borosilicate glass (Insulator)  Anode Cathode Vacuum chamber Ion gauge controller Charge...channeling may be one physical mechanism that can explain the stability of the pinch in the discharge. (a) Scroll Pump High Voltage Power Supply DC... vacuum and/or low vacuum slow wave devices and cross field devices) in burst mode? Here, burst mode effectively implies an impulse-like (short pulse

  19. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Branch Processes of Vortex Filaments and Hopf Invariant Constraint on Scroll Wave

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Ren, Ji-Rong; Mo, Shu-Fan

    2009-12-01

    In this paper, by making use of Duan's topological current theory, the evolution of the vortex filaments in excitable media is discussed in detail. The vortex filaments are found generating or annihilating at the limit points and encountering, splitting, or merging at the bifurcation points of a complex function Z(vec x, t). It is also shown that the Hopf invariant of knotted scroll wave filaments is preserved in the branch processes (splitting, merging, or encountering) during the evolution of these knotted scroll wave filaments. Furthermore, it also revealed that the “exclusion principle" in some chemical media is just the special case of the Hopf invariant constraint, and during the branch processes the “exclusion principle" is also protected by topology.

  20. Wave Phenomena in Reaction-Diffusion Systems

    NASA Astrophysics Data System (ADS)

    Steinbock, Oliver; Engel, Harald

    2013-12-01

    Pattern formation in excitable and oscillatory reaction-diffusion systems provides intriguing examples for the emergence of macroscopic order from molecular reaction events and Brownian motion. Here we review recent results on several aspects of excitation waves including anomalous dispersion, vortex pinning, and three-dimensional scroll waves. Anomalies in the speed-wavelength dependence of pulse trains include nonmonotonic behavior, bistability, and velocity gaps. We further report on the hysteresis effects during the pinning-depinning transition of twodimensional spiral waves. The pinning of three-dimensional scroll waves shows even richer dynamic complexity, partly due to the possibility of geometric and topological mismatches between the unexcitable, pinning heterogeneities and the one-dimensional rotation backbone of the vortex. As examples we present results on the pinning of scroll rings to spherical, C-shaped, and genus-2-type heterogeneities. We also review the main results of several experimental studies employing the Belousov-Zhabotinsky reaction and briefly discuss the biomedical relevance of this research especially in the context of cardiology.

  1. Hybrid Chaos Synchronization of Four-Scroll Systems via Active Control

    NASA Astrophysics Data System (ADS)

    Karthikeyan, Rajagopal; Sundarapandian, Vaidyanathan

    2014-03-01

    This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.

  2. Electromechanical vortex filaments during cardiac fibrillation

    NASA Astrophysics Data System (ADS)

    Christoph, J.; Chebbok, M.; Richter, C.; Schröder-Schetelig, J.; Bittihn, P.; Stein, S.; Uzelac, I.; Fenton, F. H.; Hasenfuß, G.; Gilmour, R. F., Jr.; Luther, S.

    2018-03-01

    The self-organized dynamics of vortex-like rotating waves, which are also known as scroll waves, are the basis of the formation of complex spatiotemporal patterns in many excitable chemical and biological systems. In the heart, filament-like phase singularities that are associated with three-dimensional scroll waves are considered to be the organizing centres of life-threatening cardiac arrhythmias. The mechanisms that underlie the onset, maintenance and control of electromechanical turbulence in the heart are inherently three-dimensional phenomena. However, it has not previously been possible to visualize the three-dimensional spatiotemporal dynamics of scroll waves inside cardiac tissues. Here we show that three-dimensional mechanical scroll waves and filament-like phase singularities can be observed deep inside the contracting heart wall using high-resolution four-dimensional ultrasound-based strain imaging. We found that mechanical phase singularities co-exist with electrical phase singularities during cardiac fibrillation. We investigated the dynamics of electrical and mechanical phase singularities by simultaneously measuring the membrane potential, intracellular calcium concentration and mechanical contractions of the heart. We show that cardiac fibrillation can be characterized using the three-dimensional spatiotemporal dynamics of mechanical phase singularities, which arise inside the fibrillating contracting ventricular wall. We demonstrate that electrical and mechanical phase singularities show complex interactions and we characterize their dynamics in terms of trajectories, topological charge and lifetime. We anticipate that our findings will provide novel perspectives for non-invasive diagnostic imaging and therapeutic applications.

  3. A new two-scroll chaotic attractor with three quadratic nonlinearities, its adaptive control and circuit design

    NASA Astrophysics Data System (ADS)

    Lien, C.-H.; Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Sanjaya, W. S. M.; Subiyanto

    2018-03-01

    A 3-D new two-scroll chaotic attractor with three quadratic nonlinearities is investigated in this paper. First, the qualitative and dynamical properties of the new two-scroll chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new two-scroll dissipative chaotic system has three unstable equilibrium points. As an engineering application, global chaos control of the new two-scroll chaotic system with unknown system parameters is designed via adaptive feedback control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic two-scroll attractor model.

  4. Features of Chaotic Transients in Excitable Media Governed by Spiral and Scroll Waves

    NASA Astrophysics Data System (ADS)

    Lilienkamp, Thomas; Christoph, Jan; Parlitz, Ulrich

    2017-08-01

    In excitable media, chaotic dynamics governed by spiral or scroll waves is often not persistent but transient. Using extensive simulations employing different mathematical models we identify a specific type-II supertransient by an exponential increase of transient lifetimes with the system size in 2D and an investigation of the dynamics (number and lifetime of spiral waves, Kaplan-Yorke dimension). In 3D, simulations exhibit an increase of transient lifetimes and filament lengths only above a critical thickness. Finally, potential implications for understanding cardiac arrhythmias are discussed.

  5. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system.

    PubMed

    Yuan, Fang; Wang, Guangyi; Wang, Xiaowei

    2016-07-01

    In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numerical simulations.

  6. Two-Dimensional Model of Scrolled Packings of Molecular Nanoribbons

    NASA Astrophysics Data System (ADS)

    Savin, A. V.; Mazo, M. A.

    2018-04-01

    A simplified model of the in-plane molecular chain, allowing the description of folded and scrolled packings of molecular nanoribbons of different structures, is proposed. Using this model, possible steady states of single-layer nanoribbons scrolls of graphene, graphane, fluorographene, and fluorographane (graphene hydrogenated on the one side and fluorinated on the other side) are obtained. Their stability is demonstrated and their energy is calculated as a function of the nanoribbon length. It is shown that the scrolled packing is the most energetically favorable nanoribbon conformation at long lengths. The existences of scrolled packings for fluorographene nanoribbons and the existence of two different scroll types corresponding to left- and right-hand Archimedean spirals for fluorographane nanoribbons in the chain model are shown for the first time. The simplicity of the proposed model makes it possible to consider the dynamics of scrolls of rather long molecular nanoribbons at long enough time intervals.

  7. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Fang, E-mail: yf210yf@163.com; Wang, Guangyi, E-mail: wanggyi@163.com; Wang, Xiaowei

    In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numericalmore » simulations.« less

  8. Using spiral chain models for study of nanoscroll structures

    NASA Astrophysics Data System (ADS)

    Savin, Alexander V.; Sakovich, Ruslan A.; Mazo, Mikhail A.

    2018-04-01

    Molecular nanoribbons with different chemical structures can form scrolled packings possessing outstanding properties and application perspectives due to their morphology. Here, we propose a simplified two-dimensional model of the molecular chain that allows us to describe the molecular nanoribbon's scrolled packings of various structures as a spiral packaging chain. The model allows us to obtain the possible stationary states of single-layer nanoribbon scrolls of graphene, graphane, fluorographene, fluorographane (graphene hydrogenated on one side and fluorinated on the other side), graphone C4H (graphene partially hydrogenated on one side), and fluorographone C4F . The obtained states and the states of the scrolls found through all-atomic models coincide with good accuracy. We show the stability of scrolled packings and calculate the dependence of energy, the number of coils, and the inner and outer radius of the scrolled packing on the nanoribbon length. It is shown that a scrolled packing is the most energetically favorable conformation for nanoribbons of graphene, graphane, fluorographene, and fluorographane at large lengths. A double-scrolled packing when the nanoribbon is symmetrically rolled into a scroll from opposite ends is more advantageous for longer length nanoribbons of graphone and fluorographone. We show the possibility of the existence of scrolled packings for nanoribbons of fluorographene and the existence of two different types of scrolls for nanoribbons of fluorographane, which correspond to the left and right Archimedean spirals of the chain model. The simplicity of the proposed model allows us to consider the dynamics of molecular nanoribbon scrolls of sufficiently large lengths and at sufficiently large time intervals.

  9. Visualization of spiral and scroll waves in simulated and experimental cardiac tissue

    NASA Astrophysics Data System (ADS)

    Cherry, E. M.; Fenton, F. H.

    2008-12-01

    The heart is a nonlinear biological system that can exhibit complex electrical dynamics, complete with period-doubling bifurcations and spiral and scroll waves that can lead to fibrillatory states that compromise the heart's ability to contract and pump blood efficiently. Despite the importance of understanding the range of cardiac dynamics, studying how spiral and scroll waves can initiate, evolve, and be terminated is challenging because of the complicated electrophysiology and anatomy of the heart. Nevertheless, over the last two decades advances in experimental techniques have improved access to experimental data and have made it possible to visualize the electrical state of the heart in more detail than ever before. During the same time, progress in mathematical modeling and computational techniques has facilitated using simulations as a tool for investigating cardiac dynamics. In this paper, we present data from experimental and simulated cardiac tissue and discuss visualization techniques that facilitate understanding of the behavior of electrical spiral and scroll waves in the context of the heart. The paper contains many interactive media, including movies and interactive two- and three-dimensional Java appletsDisclaimer: IOP Publishing was not involved in the programming of this software and does not accept any responsibility for it. You download and run the software at your own risk. If you experience any problems with the software, please contact the author directly. To the fullest extent permitted by law, IOP Publishing Ltd accepts no responsibility for any loss, damage and/or other adverse effect on your computer system caused by your downloading and running this software. IOP Publishing Ltd accepts no responsibility for consequential loss..

  10. Mechanics of the scrolling and folding of graphene.

    PubMed

    Li, Hao; Li, Ming; Kang, Zhan

    2018-06-15

    The competition between the out-of-plane rigidity and the van der Waals interaction leads to the scrolled and folded structural configurations of graphene. These configuration changes, as compared with the initially planar geometry, significantly affect the electronic, optical and mechanical properties of graphene, promising exciting applications in graphene-nanoelectronics. We propose a finite-deformation theoretical model, in which no presumed assumptions on the geometries of deformed configurations are required. Both the predicted deformed profiles and the critical conditions show great agreements with molecular dynamics simulations results when compared with existing studies with simple geometrical assumptions. Moreover, MD simulations are performed to explore the morphology transitions between different configurations. It is observed that the folded configuration is energetically favorable for a short graphene sheet, while a long graphene sheet tends to scroll. Of particular interest, we observe the morphology transition from a Fermat scroll to the Archimedean scroll for the bi-scrolled graphene. These findings are useful for understanding the stability of graphene and may provide guidance to the design of programmable graphene-nanoelectronics.

  11. Mechanics of the scrolling and folding of graphene

    NASA Astrophysics Data System (ADS)

    Li, Hao; Li, Ming; Kang, Zhan

    2018-06-01

    The competition between the out-of-plane rigidity and the van der Waals interaction leads to the scrolled and folded structural configurations of graphene. These configuration changes, as compared with the initially planar geometry, significantly affect the electronic, optical and mechanical properties of graphene, promising exciting applications in graphene-nanoelectronics. We propose a finite-deformation theoretical model, in which no presumed assumptions on the geometries of deformed configurations are required. Both the predicted deformed profiles and the critical conditions show great agreements with molecular dynamics simulations results when compared with existing studies with simple geometrical assumptions. Moreover, MD simulations are performed to explore the morphology transitions between different configurations. It is observed that the folded configuration is energetically favorable for a short graphene sheet, while a long graphene sheet tends to scroll. Of particular interest, we observe the morphology transition from a Fermat scroll to the Archimedean scroll for the bi-scrolled graphene. These findings are useful for understanding the stability of graphene and may provide guidance to the design of programmable graphene-nanoelectronics.

  12. Control of scroll wave turbulence in a three-dimensional reaction-diffusion system with gradient.

    PubMed

    Qiao, Chun; Wu, Yabi; Lu, Xiaochuan; Wang, Chunyan; Ouyang, Qi; Wang, Hongli

    2008-06-01

    In this paper, we summarize our recent experimental and theoretical works on observation and control of scroll wave (SW) turbulence. The experiments were conducted in a three-dimensional Belousov-Zhabotinsky reaction-diffusion system with chemical concentration gradients in one dimension. A spatially homogeneous external forcing was used in the experiments as a control; it was realized by illuminating white light on the light sensitive reaction medium. We observed that, in the oscillatory regime of the system, SW can appear automatically in the gradient system, which will be led to spatiotemporal chaos under certain conditions. A suitable periodic forcing may stabilize inherent turbulence of SW. The mechanism of the transition to SW turbulence is due to the phase twist of SW in the presence of chemical gradients, while modulating the phase twist with a proper periodic forcing can delay this transition. Using the FitzHugh-Nagumo model with an external periodic forcing, we confirmed the control mechanism with numerical simulation. Moreover, we also show in the simulation that adding temporal external noise to the system may have the same control effect. During this process, we observed a new state called "intermittent turbulence," which may undergo a transition into a new type of SW collapse when the noise intensity is further increased. The intermittent state and the collapse could be explained by a random process.

  13. Cookbook asymptotics for spiral and scroll waves in excitable media.

    PubMed

    Margerit, Daniel; Barkley, Dwight

    2002-09-01

    Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion. (c) 2002 American Institute of Physics.

  14. Cookbook asymptotics for spiral and scroll waves in excitable media

    NASA Astrophysics Data System (ADS)

    Margerit, Daniel; Barkley, Dwight

    2002-09-01

    Algebraic formulas predicting the frequencies and shapes of waves in a reaction-diffusion model of excitable media are presented in the form of four recipes. The formulas themselves are based on a detailed asymptotic analysis (published elsewhere) of the model equations at leading order and first order in the asymptotic parameter. The importance of the first order contribution is stressed throughout, beginning with a discussion of the Fife limit, Fife scaling, and Fife regime. Recipes are given for spiral waves and detailed comparisons are presented between the asymptotic predictions and the solutions of the full reaction-diffusion equations. Recipes for twisted scroll waves with straight filaments are given and again comparisons are shown. The connection between the asymptotic results and filament dynamics is discussed, and one of the previously unknown coefficients in the theory of filament dynamics is evaluated in terms of its asymptotic expansion.

  15. Supercapacitors based on high-quality graphene scrolls.

    PubMed

    Zeng, Fanyan; Kuang, Yafei; Liu, Gaoqin; Liu, Rui; Huang, Zhongyuan; Fu, Chaopeng; Zhou, Haihui

    2012-07-07

    High-quality graphene scrolls (GSS) with a unique scrolled topography are designed using a microexplosion method. Their capacitance properties are investigated by cyclic voltammetry, galvanostatic charge-discharge and electrical impedance spectroscopy. Compared with the specific capacity of 110 F g(-1) for graphene sheets, a remarkable capacity of 162.2 F g(-1) is obtained at the current density of 1.0 A g(-1) in 6 M KOH aqueous solution owing to the unique scrolled structure of GSS. The capacity value is increased by about 50% only because of the topological change of graphene sheets. Meanwhile, GSS exhibit excellent long-term cycling stability along with 96.8% retained after 1000 cycles at 1.0 A g(-1). These encouraging results indicate that GSS based on the topological structure of graphene sheets are a kind of promising material for supercapacitors.

  16. Supercapacitors based on high-quality graphene scrolls

    NASA Astrophysics Data System (ADS)

    Zeng, Fanyan; Kuang, Yafei; Liu, Gaoqin; Liu, Rui; Huang, Zhongyuan; Fu, Chaopeng; Zhou, Haihui

    2012-06-01

    High-quality graphene scrolls (GSS) with a unique scrolled topography are designed using a microexplosion method. Their capacitance properties are investigated by cyclic voltammetry, galvanostatic charge-discharge and electrical impedance spectroscopy. Compared with the specific capacity of 110 F g-1 for graphene sheets, a remarkable capacity of 162.2 F g-1 is obtained at the current density of 1.0 A g-1 in 6 M KOH aqueous solution owing to the unique scrolled structure of GSS. The capacity value is increased by about 50% only because of the topological change of graphene sheets. Meanwhile, GSS exhibit excellent long-term cycling stability along with 96.8% retained after 1000 cycles at 1.0 A g-1. These encouraging results indicate that GSS based on the topological structure of graphene sheets are a kind of promising material for supercapacitors.

  17. Scroll wave filaments self-wrap around unexcitable heterogeneities.

    PubMed

    Jiménez, Zulma A; Steinbock, Oliver

    2012-09-01

    Scroll waves are three-dimensional excitation vortices rotating around one-dimensional phase singularities called filaments. In experiments with a chemical reaction-diffusion system and in numerical simulations, we study the pinning of closed filament loops to inert cylindrical heterogeneities. We show that the filament wraps itself around the heterogeneity and thus avoids contraction and annihilation. This entwining steadily increases the total length of the pinned filament and reshapes the entire rotation backbone of the vortex. Self-pinning is fastest for thin cylinders with radii not much larger than the core of the unpinned rotor. The process ends when the filament is attached to the entire length of the cylinder. The possible importance of self-pinning in cardiac systems is discussed.

  18. Hydrothermal conversion of graphite to carbon nanotubes (CNTs) induced by bubble collapse

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Liu, Fang

    2016-11-01

    Cu-Fe-CNTs and Ni-Fe-CNTs coatings were deposited on gray cast iron by a hydrothermal approach. It was demonstrated that, the flaky graphite of gray cast iron was exfoliated to graphene nanosheets under hydrothermal reactions, and graphene nanosheets were scrolled to CNTs. After high temperature treatments, the volume losses of Cu-Fe-CNTs and Ni-Fe-CNTs coatings were 52.6 % and 40.0 % of gray cast iron substrate at 60 min wear tests, respectively, obviously increasing the wear properties of gray cast iron. During hydrothermal reactions, water jets and shock waves were produced by bubble collapse. Induced by the water jets and shock waves, exfoliation of flaky graphite was performed, producing exfoliated graphene nanosheets. Attacked by the radially distributed water jets and shock waves, graphene nanosheets were curved, shaped to semicircle morphology and eventually scrolled to tubular CNTs.

  19. Suppression of turbulence by heterogeneities in a cardiac model with fiber rotation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihui; Steinbock, Oliver

    2017-09-01

    Electrical scroll wave turbulence in human ventricles is associated with ventricular fibrillation and sudden cardiac death. We perform three-dimensional simulations on the basis of the anisotropic Fenton-Karma model and show that macroscopic, insulating heterogeneities (e.g., blood vessels) can cause the spontaneous formation of pinned scroll waves. The wave field of these vortices is periodic, and their frequencies are sufficiently high to push the free, turbulent vortices into the system boundaries where they annihilate. Our study considers cylindrical heterogeneities with radii in the range of 0.1 to 2 cm that extend either in the transmural or a perpendicular direction. Thick cylinders cause the spontaneous formation of multi-armed rotors according to a radius-dependence that is explained in terms of two-dimensional dynamics. For long cylinders, local pinning contacts spread along the heterogeneity by fast and complex self-wrapping.

  20. The determination of temperature stability of silver nanotubes by the molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Filatov, O.; Soldatenko, S.; Soldatenko, O.

    2018-04-01

    Molecular dynamics simulation using the embedded-atom method is applied to study thermal stability of silver nanotubes and its coefficient of linear thermal expansion. The correspondence of face centered cubic structure potential for this task is tested. Three types of nanotubes are modelled: scrolled from graphene-like plane, scrolled from plane with cubic structure and cut from cylinder. It is established that only the last two of them are stable. The last one describes in details. There is critical temperature when free ends of the nanotube close but the interior surface retains. At higher temperatures, the interior surface collapses and the nanotube is unstable.

  1. Generalized minimal principle for rotor filaments.

    PubMed

    Dierckx, Hans; Wellner, Marcel; Bernus, Olivier; Verschelde, Henri

    2015-05-01

    To a reaction-diffusion medium with an inhomogeneous anisotropic diffusion tensor D, we add a fourth spatial dimension such that the determinant of the diffusion tensor is constant in four dimensions. We propose a generalized minimal principle for rotor filaments, stating that the scroll wave filament strives to minimize its surface area in the higher-dimensional space. As a consequence, stationary scroll wave filaments in the original 3D medium are geodesic curves with respect to the metric tensor G=det(D)D(-1). The theory is confirmed by numerical simulations for positive and negative filament tension and a model with a non-stationary spiral core. We conclude that filaments in cardiac tissue with positive tension preferentially reside or anchor in regions where cardiac cells are less interconnected, such as portions of the cardiac wall with a large number of cleavage planes.

  2. The role of conductivity discontinuities in design of cardiac defibrillation

    NASA Astrophysics Data System (ADS)

    Lim, Hyunkyung; Cun, Wenjing; Wang, Yue; Gray, Richard A.; Glimm, James

    2018-01-01

    Fibrillation is an erratic electrical state of the heart, of rapid twitching rather than organized contractions. Ventricular fibrillation is fatal if not treated promptly. The standard treatment, defibrillation, is a strong electrical shock to reinitialize the electrical dynamics and allow a normal heart beat. Both the normal and the fibrillatory electrical dynamics of the heart are organized into moving wave fronts of changing electrical signals, especially in the transmembrane voltage, which is the potential difference between the cardiac cellular interior and the intracellular region of the heart. In a normal heart beat, the wave front motion is from bottom to top and is accompanied by the release of Ca ions to induce contractions and pump the blood. In a fibrillatory state, these wave fronts are organized into rotating scroll waves, with a centerline known as a filament. Treatment requires altering the electrical state of the heart through an externally applied electrical shock, in a manner that precludes the existence of the filaments and scroll waves. Detailed mechanisms for the success of this treatment are partially understood, and involve local shock-induced changes in the transmembrane potential, known as virtual electrode alterations. These transmembrane alterations are located at boundaries of the cardiac tissue, including blood vessels and the heart chamber wall, where discontinuities in electrical conductivity occur. The primary focus of this paper is the defibrillation shock and the subsequent electrical phenomena it induces. Six partially overlapping causal factors for defibrillation success are identified from the literature. We present evidence in favor of five of these and against one of them. A major conclusion is that a dynamically growing wave front starting at the heart surface appears to play a primary role during defibrillation by critically reducing the volume available to sustain the dynamic motion of scroll waves; in contrast, virtual electrodes occurring at the boundaries of small, isolated blood vessels only cause minor effects. As a consequence, we suggest that the size of the heart (specifically, the surface to volume ratio) is an important defibrillation variable.

  3. Design and implementation of grid multi-scroll fractional-order chaotic attractors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liping, E-mail: lip-chenhut@126.com; Pan, Wei; Wu, Ranchao

    2016-08-15

    This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9 × 9 grid FO attractors are observed at most.more » Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct.« less

  4. Impact of Donor Age on Corneal Endothelium-Descemet Membrane Layer Scroll Formation

    PubMed Central

    Bennett, Adam; Mahmoud, Shahira; Drury, Donna; Cavanagh, H. Dwight; McCulley, James P.; Petroll, W. Matthew; Mootha, V. Vinod

    2014-01-01

    Objectives To correlate corneal endothelium-Descemet membrane layer (EDM) parameters of scroll tightness with donor age, endothelial cell density, and history of diabetes. Methods EDM scrolls were harvested from 26 corneoscleral buttons using the SCUBA technique by a cornea-fellowship trained ophthalmologist masked to donor age. Two independent outcome parameters were used to characterize the scrolling severity of successfully harvested tissue: scroll width and tendency for EDM scroll formation (referred to as scroll rating on a 1 to 4 scale: incomplete scroll formation to tightly-scrolled). Results Mean donor age was 59 ± 17years (15–69). Mean endothelial cell density of EDM scroll was 2451 ± 626 cells/mm2 mm (range: 1307 – 3195). Using stepwise linear regression, a significant correlation was found between scroll width and donor age (R = 0.497, P < 0.05). Additionally, a significant inverse correlation was found between scroll width and endothelial cell density (R = −0.605, P < 0.05). There was no statistically significant correlation between a donor history of diabetes and the parameters of scrolling tendency. Conclusions Our data suggests that using older donors reduces EDM scroll tightness. PMID:25603436

  5. Analyses of Deformation and Stress of Oil-free Scroll Compressor Scroll

    NASA Astrophysics Data System (ADS)

    Peng, Bin; Li, Yaohong; Zhao, Shenxian

    2017-12-01

    The solid model of orbiting and fixed scroll is created by the Solidworks The deformation and stress of scrolls under gas force, temperature field, inertia force and the coupling field are analyzed using the Ansys software. The deformation for different thickness and height scroll tooth is investigated. The laws of deformation and stress for scrolls are gotten. The research results indicate that the stress and deformation of orbiting scroll are mainly affected by the temperature field. The maximum deformation occurs in the tooth head of scroll wrap because of the largest gas forces and the highest temperature in the tooth head of scroll wrap. The maximum stress is located in the end of the tooth, and the maximum stress of the coupling field is not the sum of loads. The scroll tooth is higher, and the deformation is bigger. The scroll tooth is thicker, and the deformation is smaller.

  6. The Ripley Scroll of the Royal College of Physicians of Edinburgh.

    PubMed

    McCallum, R I

    1996-01-01

    Alchemical scrolls associated with George Ripley are unusual documents which illustrate the pursuit of the Philosophers Stone. Scrolls vary from about 5 feet in length by 5 inches wide to over 20 feet long and about 3 feet wide. There are 16 scrolls in libraries in the UK and 4 in the USA. Ripley whose name is attached to the scrolls was a Canon of Bridlington in Yorkshire and lived from about 1415 to 1495. He is renowned as an alchemist and author of alchemical works in rhyme, and his verses are used on the scrolls. Some of the scrolls were produced in the 16th century, in Lübeck, probably at the request of John Dee the Elizabethan polymath. A Ripley scroll is in the library of the Royal College of Physicians of Edinburgh to which it was presented in 1707. The only published description of this scroll appeared in 1876, and it has not apparently been studied since. Interest in Ripley scrolls has grown in recent years and there have been a number of publications describing them since 1990. The Edinburgh scroll is described and is compared with the other scrolls which have been seen personally or for which detailed descriptions have been published. The origin, significance and use of Ripley Scrolls are discussed in an attempt to define their contemporary role.

  7. Morphology and spacing of river meander scrolls

    NASA Astrophysics Data System (ADS)

    Strick, Robert J. P.; Ashworth, Philip J.; Awcock, Graeme; Lewin, John

    2018-06-01

    Many of the world's alluvial rivers are characterised by single or multiple channels that are often sinuous and that migrate to produce a mosaicked floodplain landscape of truncated scroll (or point) bars. Surprisingly little is known about the morphology and geometry of scroll bars despite increasing interest from hydrocarbon geoscientists working with ancient large meandering river deposits. This paper uses remote sensing imagery, LiDAR data-sets of meandering scroll bar topography, and global coverage elevation data to quantify scroll bar geometry, anatomy, relief, and spacing. The analysis focuses on preserved scroll bars in the Mississippi River (USA) floodplain but also compares attributes to 19 rivers of different scale and depositional environments from around the world. Analysis of 10 large scroll bars (median area = 25 km2) on the Mississippi shows that the point bar deposits can be categorised into three different geomorphological units of increasing scale: individual 'scrolls', 'depositional packages', and 'point bar complexes'. Scroll heights and curvatures are greatest near the modern channel and at the terminating boundaries of different depositional packages, confirming the importance of the formative main channel on subsequent scroll bar relief and shape. Fourier analysis shows a periodic variation in signal (scroll bar height) with an average period (spacing) of 167 m (range 150-190 m) for the Mississippi point bars. For other rivers, a strong relationship exists between the period of scroll bars and the adjacent primary channel width for a range of rivers from 55 to 2042 mis 50% of the main channel width. The strength of this correlation over nearly two orders of magnitude of channel size indicates a scale independence of scroll bar spacing and suggests a strong link between channel migration and scroll bar construction with apparent regularities despite different flow regimes. This investigation of meandering river dynamics and floodplain patterns shows that it is possible to develop a suite of metrics that describe scroll bar morphology and geometry that can be valuable to geoscientists predicting the heterogeneity of subsurface meandering deposits.

  8. Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N + 1-scroll chaotic attractors system.

    PubMed

    Wang, Chunhua; Liu, Xiaoming; Xia, Hu

    2017-03-01

    In this paper, two kinds of novel ideal active flux-controlled smooth multi-piecewise quadratic nonlinearity memristors with multi-piecewise continuous memductance function are presented. The pinched hysteresis loop characteristics of the two memristor models are verified by building a memristor emulator circuit. Using the two memristor models establish a new memristive multi-scroll Chua's circuit, which can generate 2N-scroll and 2N+1-scroll chaotic attractors without any other ordinary nonlinear function. Furthermore, coexisting multi-scroll chaotic attractors are found in the proposed memristive multi-scroll Chua's circuit. Phase portraits, Lyapunov exponents, bifurcation diagrams, and equilibrium point analysis have been used to research the basic dynamics of the memristive multi-scroll Chua's circuit. The consistency of circuit implementation and numerical simulation verifies the effectiveness of the system design.

  9. Mounting for ceramic scroll

    DOEpatents

    Petty, Jack D.

    1993-01-01

    A mounting for a ceramic scroll on a metal engine block of a gas turbine engine includes a first ceramic ring and a pair of cross key connections between the first ceramic ring, the ceramic scroll, and the engine block. The cross key connections support the scroll on the engine block independent of relative radial thermal growth and for bodily movement toward an annular mounting shoulder on the engine. The scroll has an uninterrupted annular shoulder facing the mounting shoulder on the engine block. A second ceramic ring is captured between mounting shoulder and the uninterrupted shoulder on the scroll when the latter is bodily shifted toward the mouting shoulder to define a gas seal between the scroll and the engine block.

  10. Calculating the Flow Field in a Radial Turbine Scroll

    NASA Technical Reports Server (NTRS)

    Baskharone, E.; Abdallah, S.; Hamed, A.; Tabaoff, W.

    1983-01-01

    Set of two computer programs calculates flow field in radial turbine scroll. Programs represent improvement in analyzing flow in radial turbine scrolls and provide designer with tools for designing better scrolls. Programs written in FORTRAN IV.

  11. Variable-geometry turbocharger with asymmetric divided volute for engine exhaust gas pulse optimization

    DOEpatents

    Serres, Nicolas

    2010-11-09

    A turbine assembly for a variable-geometry turbocharger includes a turbine housing defining a divided volute having first and second scrolls, wherein the first scroll has a substantially smaller volume than the second scroll. The first scroll feeds exhaust gas to a first portion of a turbine wheel upstream of the throat of the wheel, while the second scroll feeds gas to a second portion of the wheel at least part of which is downstream of the throat. Flow from the second scroll is regulated by a sliding piston. The first scroll can be optimized for low-flow conditions such that the turbocharger can operate effectively like a small fixed-geometry turbocharger when the piston is closed. The turbine housing defines an inlet that is divided by a dividing wall into two portions respectively feeding gas to the two scrolls, a leading edge of the dividing wall being downstream of the inlet mouth.

  12. Symmetric scrolled packings of multilayered carbon nanoribbons

    NASA Astrophysics Data System (ADS)

    Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.

    2016-06-01

    Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.

  13. Scroll bar growth on the coastal Trinity River, TX, USA

    NASA Astrophysics Data System (ADS)

    Mason, J.; Hassenruck-Gudipati, H. J.; Mohrig, D. C.

    2017-12-01

    The processes leading to the formation and growth of scroll bars remain relatively mysterious despite how often they are referenced in fluvial literature. Their definition is descriptive; they are characterized as arcuate topographic highs present on the inner banks of channel bends on meandering rivers, landward of point bars. Often, they are used as proxies for previous positions of point bars. This assumption of a one-to-one correspondence between point bars and scroll bars should be reconsidered as 1) planform curvature for scroll bars is consistently smaller than the curvature for adjacent point bars, and 2) deposition on the scroll bar is typically distinct and disconnected from the adjacent point bar deposition. Results from time-lapse airborne lidar data as well as from trenches through five separate scroll bar - point bar pairings on the Trinity River in east TX, USA, will be discussed in relation to formative scroll bar processes and their connection to point bars. On the lidar difference map, scroll bar growth appears as a strip of increased deposition flanked on both the land- and channel-ward sides by areas with no or limited deposition. Trenches perpendicular to these scrolls typically show a base of dune-scale cross stratification interpreted to be associated with a previous position of the point bar. These dune sets are overlain by sets of climbing-ripple cross-strata that form the core of the modern scroll bar and preserve a record of multiple transport directions (away from, towards, and parallel to the channel). Preliminary Trinity River grain-size analyses show that the constructional scrolls are enriched in all grain sizes less than 250 microns in diameter, while point bars are enriched in all grain sizes above this cut off. Scroll bars are hypothesized to be akin to levees along the inner banks of channels-flow expansion caused by the presence of point bars induces deposition of suspended sediment that defines the positions of the scroll bars.

  14. Three dimensional LDV flow measurements and theoretical investigation in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Malak, Malak Fouad; Hamed, Awatef; Tabakoff, Widen

    1990-01-01

    A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle of a radial inflow turbine scroll. The cold flow experimental results are presented for the velocity field at the scroll tongue. In addition, a total pressure loss of 3.5 percent for the scroll is revealed from the velocity measurements combined with the static pressure readings. Moreover, the measurement of the three normal stresses of the turbulence has showed that the flow is anisotropic. Furthermore, the mean velocity components are compared with a numerical solution of the potential flow field using the finite element technique. The theoretical prediction of the exit flow angle variation agrees well with the experimental results. This variation leads to a higher scroll pattern factor which can be avoided by controlling the scroll cross sectional area distribution.

  15. The Star Wars Scroll Illusion.

    PubMed

    Shapiro, Arthur G

    2015-10-01

    The Star Wars Scroll Illusion is a dynamic version of the Leaning Tower Illusion. When two copies of a Star-Wars-like scrolling text are placed side by side (with separate vanishing points), the two scrolls appear to head in different directions even though they are physically parallel in the picture plane. Variations of the illusion are shown with one vanishing point, as well as from an inverted perspective where the scrolls appear to originate in the distance. The demos highlight the conflict between the physical lines in the picture plane and perspective interpretation: With two perspective points, the scrolling texts are parallel to each other in the picture plane but not in perspective interpretation; with one perspective point, the texts are not parallel to each other in the picture plane but are parallel to each other in perspective interpretation. The size of the effect is linearly related to the angle of rotation of the scrolls into the third dimension; the Scroll Illusion is stronger than the Leaning Tower Illusion for rotation angles between 35° and 90°. There is no effect of motion per se on the strength of the illusion.

  16. 77 FR 64373 - Culturally Significant Objects Imported for Exhibition Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Determinations: ``The Dead Sea Scrolls: Life and Faith in Ancient Times,'' Formerly Titled ``The Dead Sea Scrolls... the Department of State pertaining to the exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times.'' The referenced notice is corrected here to change the exhibition name to ``The Dead Sea...

  17. 78 FR 62354 - Culturally Significant Objects Imported for Exhibition Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-18

    ... Determinations: ``The Dead Sea Scrolls: Life and Faith in Ancient Times'' Formerly Titled ``The Dead Sea Scrolls... Department of State pertaining to the exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times... of the Federal Register (volume 77, number 203) to change the exhibition name to ``The Dead Sea...

  18. 78 FR 24462 - Culturally Significant Objects Imported for Exhibition; Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ...; Determinations: ``The Dead Sea Scrolls: Life and Faith in Ancient Times'' Formerly Titled ``The Dead Sea Scrolls... Department of State pertaining to the exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times... of the Federal Register (volume 77, number 203) to change the exhibition name to ``The Dead Sea...

  19. 78 FR 16565 - Culturally Significant Objects Imported for Exhibition Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... Determinations: ``The Dead Sea Scrolls: Life and Faith in Ancient Times'' Formerly Titled ``The Dead Sea Scrolls... Department of State pertaining to the exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times... of the Federal Register (volume 77, number 203) to change the exhibition name to ``The Dead Sea...

  20. The Star Wars Scroll Illusion

    PubMed Central

    2015-01-01

    The Star Wars Scroll Illusion is a dynamic version of the Leaning Tower Illusion. When two copies of a Star-Wars-like scrolling text are placed side by side (with separate vanishing points), the two scrolls appear to head in different directions even though they are physically parallel in the picture plane. Variations of the illusion are shown with one vanishing point, as well as from an inverted perspective where the scrolls appear to originate in the distance. The demos highlight the conflict between the physical lines in the picture plane and perspective interpretation: With two perspective points, the scrolling texts are parallel to each other in the picture plane but not in perspective interpretation; with one perspective point, the texts are not parallel to each other in the picture plane but are parallel to each other in perspective interpretation. The size of the effect is linearly related to the angle of rotation of the scrolls into the third dimension; the Scroll Illusion is stronger than the Leaning Tower Illusion for rotation angles between 35° and 90°. There is no effect of motion per se on the strength of the illusion. PMID:27648216

  1. Basic Study on Engine with Scroll Compressor and Expander

    NASA Astrophysics Data System (ADS)

    Morishita, Etsuo; Kitora, Yoshihisa; Nishida, Mitsuhiro

    Scroll compressors are becoming popular in air conditioning and refrigeration. This is primarily due to their higher efficiency and low noise/vibration characteristics. The scroll principle can be applied also to the steam expander and the Brayton cycle engine,as shown in the past literature. The Otto cycle spark-ignition engine with a scroll compressor and expander is studied in this report. The principle and basic structure of the scroll engine are explained,and the engine characteristic are calculated based on the idealized cycles and processes. A prototype model has been proposed and constructed. The rotary type engine has always had a problem with sealing. The scroll engine might overcome this shortcoming with its much lower rubbing speed compared to its previous counterparts,and is therefore worth investigating.

  2. Analysis of the cross flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    Equations of motion were derived, and a computational procedure is presented, for determining the nonviscous flow characteristics in the cross-sectional planes of a curved channel due to continuous mass discharge or mass addition. An analysis was applied to the radial inflow turbine scroll to study the effects of scroll geometry and the through flow velocity profile on the flow behavior. The computed flow velocity component in the scroll cross-sectional plane, together with the through flow velocity profile which can be determined in a separate analysis, provide a complete description of the three dimensional flow in the scroll.

  3. Miniature Scroll Pumps Fabricated by LIGA

    NASA Technical Reports Server (NTRS)

    Wiberg, Dean; Shcheglov, Kirill; White, Victor; Bae, Sam

    2009-01-01

    Miniature scroll pumps have been proposed as roughing pumps (low - vacuum pumps) for miniature scientific instruments (e.g., portable mass spectrometers and gas analyzers) that depend on vacuum. The larger scroll pumps used as roughing pumps in some older vacuum systems are fabricated by conventional machining. Typically, such an older scroll pump includes (1) an electric motor with an eccentric shaft to generate orbital motion of a scroll and (2) conventional bearings to restrict the orbital motion to a circle. The proposed miniature scroll pumps would differ from the prior, larger ones in both design and fabrication. A miniature scroll pump would include two scrolls: one mounted on a stationary baseplate and one on a flexure stage (see figure). An electromagnetic actuator in the form of two pairs of voice coils in a push-pull configuration would make the flexure stage move in the desired circular orbit. The capacitance between the scrolls would be monitored to provide position (gap) feedback to a control system that would adjust the drive signals applied to the voice coils to maintain the circular orbit as needed for precise sealing of the scrolls. To minimize power consumption and maximize precision of control, the flexure stage would be driven at the frequency of its mechanical resonance. The miniaturization of these pumps would entail both operational and manufacturing tolerances of <1 m. Such tight tolerances cannot be achieved easily by conventional machining of high-aspect-ratio structures like those of scroll-pump components. In addition, the vibrations of conventional motors and ball bearings exceed these tight tolerances by an order of magnitude. Therefore, the proposed pumps would be fabricated by the microfabrication method known by the German acronym LIGA ( lithographie, galvanoformung, abformung, which means lithography, electroforming, molding) because LIGA has been shown to be capable of providing the required tolerances at large aspect ratios.

  4. Scrolls and Designs

    ERIC Educational Resources Information Center

    Skelton, Mary Lou

    1972-01-01

    Third-graders wrote stories, then made them into books using adapted early Egyptian technique of scrolls. Scroll backs were covered with designs made from melted wax crayons and oil pastels. Article details materials and technique used. (PD)

  5. Reading with peripheral vision: a comparison of reading dynamic scrolling and static text with a simulated central scotoma.

    PubMed

    Harvey, Hannah; Walker, Robin

    2014-05-01

    Horizontally scrolling text is, in theory, ideally suited to enhance viewing strategies recommended to improve reading performance under conditions of central vision loss such as macular disease, although it is largely unproven in this regard. This study investigated if the use of scrolling text produced an observable improvement in reading performed under conditions of eccentric viewing in an artificial scotoma paradigm. Participants (n=17) read scrolling and static text with a central artificial scotoma controlled by an eye-tracker. There was an improvement in measures of reading accuracy, and adherence to eccentric viewing strategies with scrolling, compared to static, text. These findings illustrate the potential benefits of scrolling text as a potential reading aid for those with central vision loss. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Quantitative theory of diffraction by cylindrical scroll nanotubes.

    PubMed

    Khadiev, Azat; Khalitov, Zufar

    2018-05-01

    A quantitative theory of Fraunhofer diffraction by right- and left-handed multiwalled cylindrical scroll nanotubes is developed on the basis of the kinematical approach. The proposed theory is mainly dedicated to structural studies of individual nanotubes by the selected-area electron diffraction technique. Strong and diffuse reflections of the scroll nanotube were studied and explicit formulas that govern relations between the direct and reciprocal lattice of the scroll nanotube are achieved.

  7. Generating multi-double-scroll attractors via nonautonomous approach.

    PubMed

    Hong, Qinghui; Xie, Qingguo; Shen, Yi; Wang, Xiaoping

    2016-08-01

    It is a common phenomenon that multi-scroll attractors are realized by introducing the various nonlinear functions with multiple breakpoints in double scroll chaotic systems. Differently, we present a nonautonomous approach for generating multi-double-scroll attractors (MDSA) without changing the original nonlinear functions. By using the multi-level-logic pulse excitation technique in double scroll chaotic systems, MDSA can be generated. A Chua's circuit, a Jerk circuit, and a modified Lorenz system are given as designed example and the Matlab simulation results are presented. Furthermore, the corresponding realization circuits are designed. The Pspice results are in agreement with numerical simulation results, which verify the availability and feasibility of this method.

  8. Three Dimensional Imaging of Helicon Wave Fields Via Magnetic Induction Probes

    DTIC Science & Technology

    2009-07-13

    Elastomer Flange 50 The chamber is pumped by a Varian TV-300 HT turbomolecular vacuum pump with a pumping speed of 250 l/s backed by a dry scroll ... vacuum diffusion chamber with pump locations .................................................. 49 Figure 3.2. RF power delivery system...steel, 0.5 meter diameter by 1.0 meter long vacuum chamber. It has 24 access ports / flanges of varying diameter for diagnostic feed-throughs, pumping

  9. Polynomial law for controlling the generation of n-scroll chaotic attractors in an optoelectronic delayed oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Márquez, Bicky A., E-mail: bmarquez@ivic.gob.ve; Suárez-Vargas, José J., E-mail: jjsuarez@ivic.gob.ve; Ramírez, Javier A.

    2014-09-01

    Controlled transitions between a hierarchy of n-scroll attractors are investigated in a nonlinear optoelectronic oscillator. Using the system's feedback strength as a control parameter, it is shown experimentally the transition from Van der Pol-like attractors to 6-scroll, but in general, this scheme can produce an arbitrary number of scrolls. The complexity of every state is characterized by Lyapunov exponents and autocorrelation coefficients.

  10. Generating multi-double-scroll attractors via nonautonomous approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Qinghui; Xie, Qingguo, E-mail: qgxie@mail.hust.edu.cn; Shen, Yi

    It is a common phenomenon that multi-scroll attractors are realized by introducing the various nonlinear functions with multiple breakpoints in double scroll chaotic systems. Differently, we present a nonautonomous approach for generating multi-double-scroll attractors (MDSA) without changing the original nonlinear functions. By using the multi-level-logic pulse excitation technique in double scroll chaotic systems, MDSA can be generated. A Chua's circuit, a Jerk circuit, and a modified Lorenz system are given as designed example and the Matlab simulation results are presented. Furthermore, the corresponding realization circuits are designed. The Pspice results are in agreement with numerical simulation results, which verify themore » availability and feasibility of this method.« less

  11. 18. ROSS POWERHOUSE: BUTTERFLY VALVE FROM BELOW AND SCROLL CASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. ROSS POWERHOUSE: BUTTERFLY VALVE FROM BELOW AND SCROLL CASE DRAIN. TAG INDICATES THE SCROLL CASE DRAIN WAS OPEN, 1989. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  12. 77 FR 36329 - Culturally Significant Objects Imported for Exhibition Determinations: “Dead Sea Scrolls & The...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... DEPARTMENT OF STATE [Public Notice 7923] Culturally Significant Objects Imported for Exhibition Determinations: ``Dead Sea Scrolls & The Bible Ancient Artifacts-- Timeless Treasures'' SUMMARY: Notice is hereby... objects to be included in the exhibition ``Dead Sea Scrolls & The Bible Ancient Artifacts--Timeless...

  13. Water Temperature and Concentration Measurements Within the Expanding Blast Wave of a High Explosive

    DTIC Science & Technology

    2011-03-15

    Please scroll down to see the full text article. 2011 Meas. Sci. Technol. 22 045601 (http://iopscience.iop.org/0957-0233/22/4/045601) Download...Glumac [15] recently demonstrated the use of a Nd:YAG pumped dye laser for absorption measurements (single shot per detonation experiment, 10 ns...weighing 2.6 or 21 g for the 12.7 and 25.4 mm cylinders, respectively. A thin layer of vacuum grease was applied to the face of the detonator so that the

  14. 76 FR 63341 - Culturally Significant Objects Imported for Exhibition Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... DEPARTMENT OF STATE [Public Notice 7644] Culturally Significant Objects Imported for Exhibition Determinations: ``The Dead Sea Scrolls: Life and Faith in Biblical Times'' SUMMARY: Notice is hereby given of the... exhibition ``The Dead Sea Scrolls: Life and Faith in Biblical Times'' imported from abroad for temporary...

  15. 75 FR 7536 - Culturally Significant Objects Imported for Exhibition Determinations: “The Dead Sea Scrolls...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... DEPARTMENT OF STATE [Public Notice 6898] Culturally Significant Objects Imported for Exhibition Determinations: ``The Dead Sea Scrolls: Words That Changed the World'' Summary: Notice is hereby given of the... included in the exhibition ``The Dead Sea Scrolls: Words That Changed the World,'' imported from abroad for...

  16. Fabrication of scrolled magnetic thin film patterns

    NASA Astrophysics Data System (ADS)

    Min, Seonggi; Lim, Jin-Hee; Gaffney, John; Kinttle, Kristofer; Wiley, John B.; Malkinski, Leszek

    2012-04-01

    Magnetic film scrolls have been fabricated via a deterministic release of rectangular patterns of bimetallic Ti (20 nm)/Ni (20 , 30 or 40 nm) films from a sacrificial Cu underlayer. The diameter of the scrolls varied from 2.64 μm to 4.28 μm with increasing thickness of the Ni layer from 20 to 40 nm. This behavior was found to be consistent with the model of bilayered film with interfacial strain between the Ti and Ni layers of about Δɛ = 0.01. Changing the geometry of the patterns from flat patterns to scrolls led to changes in their magnetic properties.

  17. The three-dimensional compressible flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Tabakoff, W.; Malak, M.

    1984-01-01

    This work presents the results of an analytical study and an experimental investigation of the three-dimensional flow in a turbine scroll. The finite element method is used in the iterative numerical solution of the locally linearized governing equations for the three-dimensional velocity potential field. The results of the numerical computations are compared with the experimental measurements in the scroll cross sections, which were obtained using laser Doppler velocimetry and hot wire techniques. The results of the computations show a variation in the flow conditions around the rotor periphery which was found to depend on the scroll geometry.

  18. Coexisting multiple attractors and riddled basins of a memristive system.

    PubMed

    Wang, Guangyi; Yuan, Fang; Chen, Guanrong; Zhang, Yu

    2018-01-01

    In this paper, a new memristor-based chaotic system is designed, analyzed, and implemented. Multistability, multiple attractors, and complex riddled basins are observed from the system, which are investigated along with other dynamical behaviors such as equilibrium points and their stabilities, symmetrical bifurcation diagrams, and sustained chaotic states. With different sets of system parameters, the system can also generate various multi-scroll attractors. Finally, the system is realized by experimental circuits.

  19. Effects of Word Width and Word Length on Optimal Character Size for Reading of Horizontally Scrolling Japanese Words

    PubMed Central

    Teramoto, Wataru; Nakazaki, Takuyuki; Sekiyama, Kaoru; Mori, Shuji

    2016-01-01

    The present study investigated, whether word width and length affect the optimal character size for reading of horizontally scrolling Japanese words, using reading speed as a measure. In Experiment 1, three Japanese words, each consisting of four Hiragana characters, sequentially scrolled on a display screen from right to left. Participants, all Japanese native speakers, were instructed to read the words aloud as accurately as possible, irrespective of their order within the sequence. To quantitatively measure their reading performance, we used rapid serial visual presentation paradigm, where the scrolling rate was increased until the participants began to make mistakes. Thus, the highest scrolling rate at which the participants’ performance exceeded 88.9% correct rate was calculated for each character size (0.3°, 0.6°, 1.0°, and 3.0°) and scroll window size (5 or 10 character spaces). Results showed that the reading performance was highest in the range of 0.6° to 1.0°, irrespective of the scroll window size. Experiment 2 investigated whether the optimal character size observed in Experiment 1 was applicable for any word width and word length (i.e., the number of characters in a word). Results showed that reading speeds were slower for longer than shorter words and the word width of 3.6° was optimal among the word lengths tested (three, four, and six character words). Considering that character size varied depending on word width and word length in the present study, this means that the optimal character size can be changed by word width and word length in scrolling Japanese words. PMID:26909052

  20. Effects of Word Width and Word Length on Optimal Character Size for Reading of Horizontally Scrolling Japanese Words.

    PubMed

    Teramoto, Wataru; Nakazaki, Takuyuki; Sekiyama, Kaoru; Mori, Shuji

    2016-01-01

    The present study investigated, whether word width and length affect the optimal character size for reading of horizontally scrolling Japanese words, using reading speed as a measure. In Experiment 1, three Japanese words, each consisting of four Hiragana characters, sequentially scrolled on a display screen from right to left. Participants, all Japanese native speakers, were instructed to read the words aloud as accurately as possible, irrespective of their order within the sequence. To quantitatively measure their reading performance, we used rapid serial visual presentation paradigm, where the scrolling rate was increased until the participants began to make mistakes. Thus, the highest scrolling rate at which the participants' performance exceeded 88.9% correct rate was calculated for each character size (0.3°, 0.6°, 1.0°, and 3.0°) and scroll window size (5 or 10 character spaces). Results showed that the reading performance was highest in the range of 0.6° to 1.0°, irrespective of the scroll window size. Experiment 2 investigated whether the optimal character size observed in Experiment 1 was applicable for any word width and word length (i.e., the number of characters in a word). Results showed that reading speeds were slower for longer than shorter words and the word width of 3.6° was optimal among the word lengths tested (three, four, and six character words). Considering that character size varied depending on word width and word length in the present study, this means that the optimal character size can be changed by word width and word length in scrolling Japanese words.

  1. Human-computer interface including haptically controlled interactions

    DOEpatents

    Anderson, Thomas G.

    2005-10-11

    The present invention provides a method of human-computer interfacing that provides haptic feedback to control interface interactions such as scrolling or zooming within an application. Haptic feedback in the present method allows the user more intuitive control of the interface interactions, and allows the user's visual focus to remain on the application. The method comprises providing a control domain within which the user can control interactions. For example, a haptic boundary can be provided corresponding to scrollable or scalable portions of the application domain. The user can position a cursor near such a boundary, feeling its presence haptically (reducing the requirement for visual attention for control of scrolling of the display). The user can then apply force relative to the boundary, causing the interface to scroll the domain. The rate of scrolling can be related to the magnitude of applied force, providing the user with additional intuitive, non-visual control of scrolling.

  2. Real-time Kinematics Base Station and Survey Unit Setup Method for the Synchronous Impulse Reconstruction (SIRE) Radar

    DTIC Science & Technology

    2012-12-01

    GPS receiver, the Ashtech ProMark 500; a 3.4-GHz radio modem, the FreeWave 3400-SMR; a display unit, the Magellan MobileMapper CX; a 12-V battery pack...Figure 8. Bottom view of the ProMark 500. 3.1 Survey Unit RTK GPS Setup The following are the procedures for setting up...the RTK GPS Survey Unit: 1. Connect the radio modem to the ProMark 500 with serial cable #7 and #8. Display Screen Scroll Button Power LED Log

  3. Generation of 2N + 1-scroll existence in new three-dimensional chaos systems.

    PubMed

    Liu, Yue; Guan, Jian; Ma, Chunyang; Guo, Shuxu

    2016-08-01

    We propose a systematic methodology for creating 2N + 1-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition a12a21 = 0, while the Chua system satisfies a12a21 > 0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 2N + 1-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 2N + 1-scroll attractors. Finally, to explore the potential use in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1-, 3-, 5-, and 7-scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design.

  4. Revealing text in a complexly rolled silver scroll from Jerash with computed tomography and advanced imaging software

    PubMed Central

    Hoffmann Barfod, Gry; Larsen, John Møller; Raja, Rubina

    2015-01-01

    Throughout Antiquity magical amulets written on papyri, lead and silver were used for apotropaic reasons. While papyri often can be unrolled and deciphered, metal scrolls, usually very thin and tightly rolled up, cannot easily be unrolled without damaging the metal. This leaves us with unreadable results due to the damage done or with the decision not to unroll the scroll. The texts vary greatly and tell us about the cultural environment and local as well as individual practices at a variety of locations across the Mediterranean. Here we present the methodology and the results of the digital unfolding of a silver sheet from Jerash in Jordan from the mid-8th century CE. The scroll was inscribed with 17 lines in presumed pseudo-Arabic as well as some magical signs. The successful unfolding shows that it is possible to digitally unfold complexly folded scrolls, but that it requires a combination of the know-how of the software and linguistic knowledge. PMID:26648504

  5. Three-dimensional flow field measurements in a radial inflow turbine scroll using LDV

    NASA Technical Reports Server (NTRS)

    Malak, M. F.; Hamed, A.; Tabakoff, W.

    1986-01-01

    The results of an experimental study of the three-dimensional flow field in a radial inflow turbine scroll are presented. A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle. The cold flow experimental results are presented for through-flow velocity contours and the cross velocity vectors.

  6. Analysis of the three dimensional flow in a turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Baskharone, E.

    1979-01-01

    The present analysis describes the three-dimensional compressible inviscid flow in the scroll and the vaneless nozzle of a radial inflow turbine. The solution to this flow field, which is further complicated by the geometrical shape of the boundaries, is obtained using the finite element method. Symmetric and nonsymmetric scroll cross sectional geometries are investigated to determine their effect on the general flow field and on the exit flow conditions.

  7. Flow study in the cross sectional planes of a turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    A numerical study of the nonviscous flow characteristics in the cross-sectional planes of a radial inflow turbine scroll is presented. The velocity potential is used in the formulation to determine the flow velocity in these planes resulting from the continuous mass discharge. The effect of the through flow velocity is simulated by a continuous distribution of source/sink in the cross-section. A special iterative procedure is devised to handle the solution of the resulting Poisson's differential equation with Neumann boundary conditions in a domain with generally curved boundaries. The analysis is used to determine the effects of the radius of curvature, the location of the scroll section and its geometry on the flow characteristics in the turbine scroll.

  8. Numerical analysis of the transient flow in a scroll refrigeration compressor

    NASA Astrophysics Data System (ADS)

    Sun, Shuaihui; Wu, Kai; Guo, Pengcheng; Luo, Xingqi

    2017-08-01

    In the present paper, the CFD technology is adopted to simulate the working process of a scroll refrigeration compressor with R22 as working fluid. The structural grids in the scroll compressor were updated continually during the solving process to cope with the movement boundaries of the fluid domain. The radial meshing clearance was 0.008 mm which was the same with that in the real prototype. The pressure, velocity and temperature distribution in chambers of compressor were computed. Also, the transient mass flux diagrams were calculated out. The results indicated that the pressure was asymmetrical in the two symmetrical suction chambers, because the suction port and passage were not absolutely symmetrical. The gradient of temperature was great in each working chamber due to leakage flow. Velocity vector distribution was asymmetrical in each pair of working chamber owing to the movement of orbiting scroll; the flow was complicated in the central working chamber. The movement of the orbiting scroll had different influence on the vortexes formation in each pair of compression chamber. The inlet and outlet mass flux fluctuated with the crank angle obviously. Because of the ‘cut-off’ of the refrigeration fluid in the suction chamber when the crank angle was larger than 220°, the inlet mass flux decreased remarkably. Finally, some useful advices were given to improve the performance of the scroll refrigeration compressor.

  9. Generation of 2N + 1-scroll existence in new three-dimensional chaos systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yue; Guan, Jian; Ma, Chunyang

    2016-08-15

    We propose a systematic methodology for creating 2N + 1-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition a{sub 12}a{sub 21} = 0, while the Chua system satisfies a{sub 12}a{sub 21} > 0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 2N + 1-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 2N + 1-scroll attractors. Finally, to explore the potential usemore » in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1-, 3-, 5-, and 7-scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design.« less

  10. Chaotic attractors with separated scrolls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouallegue, Kais, E-mail: kais-bouallegue@yahoo.fr

    2015-07-15

    This paper proposes a new behavior of chaotic attractors with separated scrolls while combining Julia's process with Chua's attractor and Lorenz's attractor. The main motivation of this work is the ability to generate a set of separated scrolls with different behaviors, which in turn allows us to choose one or many scrolls combined with modulation (amplitude and frequency) for secure communication or synchronization. This set seems a new class of hyperchaos because each element of this set looks like a simple chaotic attractor with one positive Lyapunov exponent, so the cardinal of this set is greater than one. This newmore » approach could be used to generate more general higher-dimensional hyperchaotic attractor for more potential application. Numerical simulations are given to show the effectiveness of the proposed theoretical results.« less

  11. From damage to discovery via virtual unwrapping: Reading the scroll from En-Gedi

    PubMed Central

    Seales, William Brent; Parker, Clifford Seth; Segal, Michael; Tov, Emanuel; Shor, Pnina; Porath, Yosef

    2016-01-01

    Computer imaging techniques are commonly used to preserve and share readable manuscripts, but capturing writing locked away in ancient, deteriorated documents poses an entirely different challenge. This software pipeline—referred to as “virtual unwrapping”—allows textual artifacts to be read completely and noninvasively. The systematic digital analysis of the extremely fragile En-Gedi scroll (the oldest Pentateuchal scroll in Hebrew outside of the Dead Sea Scrolls) reveals the writing hidden on its untouchable, disintegrating sheets. Our approach for recovering substantial ink-based text from a damaged object results in readable columns at such high quality that serious critical textual analysis can occur. Hence, this work creates a new pathway for subsequent textual discoveries buried within the confines of damaged materials. PMID:27679821

  12. Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria

    PubMed Central

    Colman, Michael A; Aslanidi, Oleg V; Kharche, Sanjay; Boyett, Mark R; Garratt, Clifford; Hancox, Jules C; Zhang, Henggui

    2013-01-01

    Chronic atrial fibrillation (AF) is associated with structural and electrical remodelling in the atria, which are associated with a high recurrence of AF. Through biophysically detailed computer modelling, this study investigated mechanisms by which AF-induced electrical remodelling promotes and perpetuates AF. A family of Courtemanche–Ramirez–Nattel variant models of human atrial cell action potentials (APs), taking into account of intrinsic atrial electrophysiological properties, was modified to incorporate various experimental data sets on AF-induced changes of major ionic channel currents (ICaL, IKur, Ito, IK1, IKs, INaCa) and on intracellular Ca2+ handling. The single cell models for control and AF-remodelled conditions were incorporated into multicellular three-dimensional (3D) atrial tissue models. Effects of the AF-induced electrical remodelling were quantified as the changes of AP profile, AP duration (APD) and its dispersion across the atria, and the vulnerability of atrial tissue to the initiation of re-entry. The dynamic behaviour of re-entrant excitation waves in the 3D models was characterised. In our simulations, AF-induced electrical remodelling abbreviated atrial APD non-uniformly across the atria; this resulted in relatively short APDs co-existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. As a result, the measured tissue vulnerability to re-entry initiation at these tissue junctions was increased. The AF-induced electrical remodelling also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. Under the AF-remodelled condition, re-entrant scroll waves in the 3D model degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, realistic 3D atrial tissue models indicate that AF-induced electrical remodelling produces regionally heterogeneous and shortened APD; these respectively facilitate initiation and maintenance of re-entrant excitation waves. PMID:23732649

  13. Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria.

    PubMed

    Colman, Michael A; Aslanidi, Oleg V; Kharche, Sanjay; Boyett, Mark R; Garratt, Clifford; Hancox, Jules C; Zhang, Henggui

    2013-09-01

    Chronic atrial fibrillation (AF) is associated with structural and electrical remodelling in the atria, which are associated with a high recurrence of AF. Through biophysically detailed computer modelling, this study investigated mechanisms by which AF-induced electrical remodelling promotes and perpetuates AF. A family of Courtemanche-Ramirez-Nattel variant models of human atrial cell action potentials (APs), taking into account of intrinsic atrial electrophysiological properties, was modified to incorporate various experimental data sets on AF-induced changes of major ionic channel currents (ICaL, IKur, Ito, IK1, IKs, INaCa) and on intracellular Ca(2+) handling. The single cell models for control and AF-remodelled conditions were incorporated into multicellular three-dimensional (3D) atrial tissue models. Effects of the AF-induced electrical remodelling were quantified as the changes of AP profile, AP duration (APD) and its dispersion across the atria, and the vulnerability of atrial tissue to the initiation of re-entry. The dynamic behaviour of re-entrant excitation waves in the 3D models was characterised. In our simulations, AF-induced electrical remodelling abbreviated atrial APD non-uniformly across the atria; this resulted in relatively short APDs co-existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. As a result, the measured tissue vulnerability to re-entry initiation at these tissue junctions was increased. The AF-induced electrical remodelling also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. Under the AF-remodelled condition, re-entrant scroll waves in the 3D model degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, realistic 3D atrial tissue models indicate that AF-induced electrical remodelling produces regionally heterogeneous and shortened APD; these respectively facilitate initiation and maintenance of re-entrant excitation waves.

  14. Three dimensional flow computations in a turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Ghantous, C. A.

    1982-01-01

    The compressible three dimensional inviscid flow in the scroll and vaneless nozzle of radial inflow turbines is analyzed. A FORTRAN computer program for the numerical solution of this complex flow field using the finite element method is presented. The program input consists of the mass flow rate and stagnation conditions at the scroll inlet and of the finite element discretization parameters and nodal coordinates. The output includes the pressure, Mach number and velocity magnitude and direction at all the nodal points.

  15. Early or Premature Menopause

    MedlinePlus

    ... gov/widgets/fahc.html" width="243" height="179" title="Find a Health Center Widget" scrolling="no">https:// ... gov/widgets/fahc.html" width="243" height="179" title="Find a Health Center Widget" scrolling="no">https:// ...

  16. Chaos for cardiac arrhythmias through a one-dimensional modulation equation for alternans

    PubMed Central

    Dai, Shu; Schaeffer, David G.

    2010-01-01

    Instabilities in cardiac dynamics have been widely investigated in recent years. One facet of this work has studied chaotic behavior, especially possible correlations with fatal arrhythmias. Previously chaotic behavior was observed in various models, specifically in the breakup of spiral and scroll waves. In this paper we study cardiac dynamics and find spatiotemporal chaotic behavior through the Echebarria–Karma modulation equation for alternans in one dimension. Although extreme parameter values are required to produce chaos in this model, it seems significant mathematically that chaos may occur by a different mechanism from previous observations. PMID:20590327

  17. Volumetric image interpretation in radiology: scroll behavior and cognitive processes.

    PubMed

    den Boer, Larissa; van der Schaaf, Marieke F; Vincken, Koen L; Mol, Chris P; Stuijfzand, Bobby G; van der Gijp, Anouk

    2018-05-16

    The interpretation of medical images is a primary task for radiologists. Besides two-dimensional (2D) images, current imaging technologies allow for volumetric display of medical images. Whereas current radiology practice increasingly uses volumetric images, the majority of studies on medical image interpretation is conducted on 2D images. The current study aimed to gain deeper insight into the volumetric image interpretation process by examining this process in twenty radiology trainees who all completed four volumetric image cases. Two types of data were obtained concerning scroll behaviors and think-aloud data. Types of scroll behavior concerned oscillations, half runs, full runs, image manipulations, and interruptions. Think-aloud data were coded by a framework of knowledge and skills in radiology including three cognitive processes: perception, analysis, and synthesis. Relating scroll behavior to cognitive processes showed that oscillations and half runs coincided more often with analysis and synthesis than full runs, whereas full runs coincided more often with perception than oscillations and half runs. Interruptions were characterized by synthesis and image manipulations by perception. In addition, we investigated relations between cognitive processes and found an overall bottom-up way of reasoning with dynamic interactions between cognitive processes, especially between perception and analysis. In sum, our results highlight the dynamic interactions between these processes and the grounding of cognitive processes in scroll behavior. It suggests, that the types of scroll behavior are relevant to describe how radiologists interact with and manipulate volumetric images.

  18. Characterization of flow in a scroll duct

    NASA Technical Reports Server (NTRS)

    Begg, E. K.; Bennett, J. C.

    1985-01-01

    A quantitative, flow visualization study was made of a partially elliptic cross section, inward curving duct (scroll duct), with an axial outflow through a vaneless annular cutlet. The working fluid was water, with a Re(d) of 40,000 at the inlet to the scroll duct, this Reynolds number being representative of the conditions in an actual gas turbine scroll. Both still and high speed moving pictures of fluorescein dye injected into the flow and illuminated by an argon ion laser were used to document the flow. Strong secondary flow, similar to the secondary flow in a pipe bend, was found in the bottom half of the scroll within the first 180 degs of turning. The pressure field set up by the turning duct was strong enough to affect the inlet flow condition. At 90 degs downstream, the large scale secondary flow was found to be oscillatory in nature. The exit flow was nonuniform in the annular exit. By 270 degs downstream, the flow appeared unorganized with no distinctive secondary flow pattern. Large scale structures from the upstream core region appeared by 90 degs and continued through the duct to reenter at the inlet section.

  19. Dead Sea Scrolls

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A consortium of researchers from Jet Propulsion Laboratory and three other organizations used charged coupled devices (CCDs) and other imaging enhancement technology to decipher previously unreadable portions of the Dead Sea Scrolls. The technique has potentially important implications for archeology.

  20. Quenching of the Quantum Hall Effect in Graphene with Scrolled Edges

    NASA Astrophysics Data System (ADS)

    Cresti, Alessandro; Fogler, Michael M.; Guinea, Francisco; Castro Neto, A. H.; Roche, Stephan

    2012-04-01

    Edge nanoscrolls are shown to strongly influence transport properties of suspended graphene in the quantum Hall regime. The relatively long arclength of the scrolls in combination with their compact transverse size results in formation of many nonchiral transport channels in the scrolls. They short circuit the bulk current paths and inhibit the observation of the quantized two-terminal resistance. Unlike competing theoretical proposals, this mechanism of disrupting the Hall quantization in suspended graphene is not caused by ill-chosen placement of the contacts, singular elastic strains, or a small sample size.

  1. Seals and Scrolls.

    ERIC Educational Resources Information Center

    Macaulay, Sara Grove

    2000-01-01

    Describes an art unit in which students sculpt a signature seal out of clay and use Chinese brush painting techniques to paint a scroll. Discusses the seal and its historical use in China. Lists materials needed and explains the procedure. (CMK)

  2. Baseline Bone Mineral Density Measurements Key to Future Testing Intervals

    MedlinePlus

    ... Roundtable Focuses on Psoriatic Arthritis Research (scroll to fourth item) Spotlight on Research | April 7, 2017 Socially ... 2017 NIAMS Hosts Fellows for Symposium (scroll to fourth item) Spotlight on Research | March 24, 2017 Sex- ...

  3. Tracking ink composition on Herculaneum papyrus scrolls: quantification and speciation of lead by X-ray based techniques and Monte Carlo simulations.

    PubMed

    Tack, Pieter; Cotte, Marine; Bauters, Stephen; Brun, Emmanuel; Banerjee, Dipanjan; Bras, Wim; Ferrero, Claudio; Delattre, Daniel; Mocella, Vito; Vincze, Laszlo

    2016-02-08

    The writing in carbonized Herculaneum scrolls, covered and preserved by the pyroclastic events of the Vesuvius in 79 AD, was recently revealed using X-ray phase-contrast tomography, without the need of unrolling the sensitive scrolls. Unfortunately, some of the text is difficult to read due to the interference of the papyrus fibers crossing the written text vertically and horizontally. Recently, lead was found as an elemental constituent in the writing, rendering the text more clearly readable when monitoring the lead X-ray fluorescence signal. Here, several hypotheses are postulated for the origin and state of lead in the papyrus writing. Multi-scale X-ray fluorescence micro-imaging, Monte Carlo quantification and X-ray absorption microspectroscopy experiments are used to provide additional information on the ink composition, in an attempt to determine the origin of the lead in the Herculaneum scrolls and validate the postulated hypotheses.

  4. Various Types of Coexisting Attractors in a New 4D Autonomous Chaotic System

    NASA Astrophysics Data System (ADS)

    Lai, Qiang; Akgul, Akif; Zhao, Xiao-Wen; Pei, Huiqin

    An unique 4D autonomous chaotic system with signum function term is proposed in this paper. The system has four unstable equilibria and various types of coexisting attractors appear. Four-wing and four-scroll strange attractors are observed in the system and they will be broken into two coexisting butterfly attractors and two coexisting double-scroll attractors with the variation of the parameters. Numerical simulation shows that the system has various types of multiple coexisting attractors including two butterfly attractors with four limit cycles, two double-scroll attractors with a limit cycle, four single-scroll strange attractors, four limit cycles with regard to different parameters and initial values. The coexistence of the attractors is determined by the bifurcation diagrams. The chaotic and hyperchaotic properties of the attractors are verified by the Lyapunov exponents. Moreover, we present an electronic circuit to experimentally realize the dynamic behavior of the system.

  5. Detail of exciter turbine showing shaft, scroll case, servomotor and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of exciter turbine showing shaft, scroll case, servo-motor and operating ring (left foreground) and hand wheel for butterfly valve (right background) - Morony Hydroelectric Facility, Dam and Powerhouse, Morony Dam Road, Great Falls, Cascade County, MT

  6. Interior detail of scrolled brackets on post, west side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior detail of scrolled brackets on post, west side of first floor by rear entrance; camera facing north. - Mare Island Naval Shipyard, Hospital Headquarters, Johnson Lane, west side at intersection of Johnson Lane & Cossey Street, Vallejo, Solano County, CA

  7. Development of HgCdSe for Third Generation Focal Plane Arrays using Molecular Beam Epitaxy

    DTIC Science & Technology

    2013-08-01

    quartz ampoules. Prior to the anneal, the quartz ampoules were etched in HF, pumped out to a vacuum of ~10 -5 Torr with a series of scroll and...and pumped down with a scroll pump to ≤10 -3 Torr. The load-lock was then switched from the scroll pump to a sorption pump cooled with liquid...focused on regions of (a) Ga 2p, (b) Sb 3d, (c) Sb 4d and Ga 3d, and (d) after annealing without atomic hydrogen (under vacuum ) at 400 °C for 30

  8. High efficiency, low frequency linear compressor proposed for Gifford-McMahon and pulse tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Höhne, Jens

    2014-01-01

    In order to reduce the amount of greenhouse gas emissions, which are most likely the cause of substantial global warming, a reduction of overall energy consumption is crucial. Low frequency Gifford-McMahon and pulse tube cryocoolers are usually powered by a scroll compressor together with a rotary valve. It has been theoretically shown that the efficiency losses within the rotary valve can be close to 50%1. In order to eliminate these losses we propose to use a low frequency linear compressor, which directly generates the pressure wave without using a rotary valve. First results of this development will be presented.

  9. High efficiency, low frequency linear compressor proposed for Gifford-McMahon and pulse tube cryocoolers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höhne, Jens

    2014-01-29

    In order to reduce the amount of greenhouse gas emissions, which are most likely the cause of substantial global warming, a reduction of overall energy consumption is crucial. Low frequency Gifford-McMahon and pulse tube cryocoolers are usually powered by a scroll compressor together with a rotary valve. It has been theoretically shown that the efficiency losses within the rotary valve can be close to 50%{sup 1}. In order to eliminate these losses we propose to use a low frequency linear compressor, which directly generates the pressure wave without using a rotary valve. First results of this development will be presented.

  10. Computer program for the analysis of the cross flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    A computer program was used to solve the governing of the potential flow in the cross sectional planes of a radial inflow turbine scroll. A list of the main program, the subroutines, and typical output example are included.

  11. Tracking ink composition on Herculaneum papyrus scrolls: quantification and speciation of lead by X-ray based techniques and Monte Carlo simulations

    PubMed Central

    Tack, Pieter; Cotte, Marine; Bauters, Stephen; Brun, Emmanuel; Banerjee, Dipanjan; Bras, Wim; Ferrero, Claudio; Delattre, Daniel; Mocella, Vito; Vincze, Laszlo

    2016-01-01

    The writing in carbonized Herculaneum scrolls, covered and preserved by the pyroclastic events of the Vesuvius in 79 AD, was recently revealed using X-ray phase-contrast tomography, without the need of unrolling the sensitive scrolls. Unfortunately, some of the text is difficult to read due to the interference of the papyrus fibers crossing the written text vertically and horizontally. Recently, lead was found as an elemental constituent in the writing, rendering the text more clearly readable when monitoring the lead X-ray fluorescence signal. Here, several hypotheses are postulated for the origin and state of lead in the papyrus writing. Multi-scale X-ray fluorescence micro-imaging, Monte Carlo quantification and X-ray absorption microspectroscopy experiments are used to provide additional information on the ink composition, in an attempt to determine the origin of the lead in the Herculaneum scrolls and validate the postulated hypotheses. PMID:26854067

  12. Three-dimensional flow measurements in a vaneless radial turbine scroll

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Wood, B.; Vittal, B. V. R.

    1982-01-01

    The flow behavior in a vaneless radial turbine scroll was examined experimentally. The data was obtained using the slant sensor technique of hot film anemometry. This method used the unsymmetric heat transfer characteristics of a constant temperature hot film sensor to detect the flow direction and magnitude. This was achieved by obtaining a velocity vector measurement at three sensor positions with respect to the flow. The true magnitude and direction of the velocity vector was then found using these values and a Newton-Raphson numerical technique. The through flow and secondary flow velocity components are measured at various points in three scroll sections.

  13. 77 FR 64524 - Arthritis Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... scroll down to the appropriate advisory committee meeting link, or call the advisory committee...), submitted by Hemispherx Biopharma, Inc., for the treatment of patients with chronic fatigue syndrome. FDA... available at http://www.fda.gov/AdvisoryCommittees/Calendar/default.htm . Scroll down to the appropriate...

  14. Martian Meanders and Scroll-Bars

    NASA Image and Video Library

    2017-03-01

    This is a portion of an inverted fluvial channel in the region of Aeolis/Zephyria Plana, at the Martian equator. Channels become inverted when the sediments filling them become more resistant to erosion than the surrounding material. Here, the most likely process leading to hardening of the channel material is chemical cementation by precipitation of minerals. Once the surrounding material erodes, the channel is left standing as a ridge. The series of curvilinear lineations are ancient scroll-bars, which are features typical of river meanders (bends) in terrestrial fluvial channels. Scroll-bars are series of ridges that result from the continuous lateral migration of a meander. On Earth, they are more common in mature rivers. The presence of scroll bars suggests that the water flow in this channel may have been sustained for a relatively long time. Measuring characteristics of these scroll-bars and meanders may help to estimate the amount of water that once flowed in this channel, aiding our understanding of the history of water on Mars. The map is projected here at a scale of 25 centimeters (9.8 inches) per pixel. [The original image scale is 29.3 centimeters (11.5 inches) per pixel (with 1 x 1 binning); objects on the order of 88 centimeters (29.6 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21551

  15. Scrolling and Strolling, Asian Style

    ERIC Educational Resources Information Center

    Sterling, Joan

    2012-01-01

    In this article, the author describes a lesson on Asian cultures. Asian cultures demonstrate respect for nature through their art. Students learned how to use Asian brush techniques and designs to create scrolls. They also learned how to write Haiku, a three-line form of poetry that uses a pattern of syllables.

  16. Expert Systems on Multiprocessor Architectures. Volume 2. Technical Reports

    DTIC Science & Technology

    1991-06-01

    Report RC 12936 (#58037). IBM T. J. Wartson Reiearch Center. July 1987. � Alan Jay Smith. Cache memories. Coniputing Sitrry., 1.1(3): I.3-5:30...basic-shared is an instrument for ashared memory design. The components panels are processor- qload-scrolling-bar-panel, memory-qload-scrolling-bar-panel

  17. Literary Genres in Poetic Texts from the Dead Sea Scrolls

    ERIC Educational Resources Information Center

    Pickut, William Douglas

    2017-01-01

    Among the texts of the Dead Sea Scrolls, there are four literary compositions that bear the superscriptional designations shir and mizmor. These designations correspond directly to superscriptional designations provided many times in both the now-canonical Psalter and the various witnesses to those texts unearthed at Qumran. On its face, this fact…

  18. Using a Spreadsheet Scroll Bar to Solve Equilibrium Concentrations

    ERIC Educational Resources Information Center

    Raviolo, Andres

    2012-01-01

    A simple, conceptual method is described for using the spreadsheet scroll bar to find the composition of a system at chemical equilibrium. Simulation of any kind of chemical equilibrium can be carried out using this method, and the effects of different disturbances can be predicted. This simulation, which can be used in general chemistry…

  19. Web-Based Menus: Font Size and Line Spacing Preferences.

    ERIC Educational Resources Information Center

    Pacheco, Janice; Day, Barbara Taylor; Cribelli, Susan; Jordan, John; Murry, Brandon; Persichitte, Kay A.

    The study investigated the elements of font size and line spacing in World Wide Web menus for both a scrolled and not scrolled condition with a sample of undergraduate university students. Subjects were 185 students enrolled in 13 section of educational technology preservice teacher courses at the University of Northern Colorado. Students were…

  20. Biscrolling nanotube sheets and functional guests into yarns

    NASA Astrophysics Data System (ADS)

    Baughman, Ray

    2011-03-01

    Multifunctional applications of textiles have been limited by the inability to spin important materials into yarns. Generically applicable methods are demonstrated for producing weavable yarns comprising up to 95 wt % of otherwise unspinnable particulate or nanofiber powders that remain highly functional. Scrolled 50 nm thick carbon nanotube sheets confine these powders in the galleries of irregular scroll sacks, whose observed complex structures are related to twist-dependent extension of Archimedean spirals, Fermat spirals, or spiral pairs into scrolls. The strength and electronic connectivity of a small weight fraction of scrolled carbon nanotube sheet enables yarn weaving, sewing, knotting, braiding, and charge collection. This technology is used to make yarns of superconductors, Li-ion battery materials, graphene ribbons, catalytic nanofibers for fuel cells, and Ti O2 for photocatalysis. Work done in collaboration with Shaoli Fang, Xavier Lepro-Chavez, Chihye Lewis, Raquel Ovalle-Robles, Javier Carratero-Gonzalez, Elisabet Castillo-Martinez, Mikhail Kozlov, Jiyoung Oh, Neema Rawat, Carter Haines, Mohammed Haque, Vaishnavi Aare, Stephanie Stoughton, Anvar Zakhidov, and Ray Baughman, The University of Texas at Dallas / Alan G. MacDiarmid NanoTech Institute.

  1. Fluctuating pressures in pump diffuser and collector scrolls, part 1

    NASA Technical Reports Server (NTRS)

    Sloteman, Donald P.

    1989-01-01

    The cracking of scroll liners on the SSME High Pressure Fuel Turbo Pump (HPFTP) on hot gas engine test firings has prompted a study into the nature of pressure fluctuations in centrifugal pump states. The amplitudes of these fluctuations and where they originate in the pump stage are quantified. To accomplish this, a test program was conducted to map the pressure pulsation activity in a centrifugal pump stage. This stage is based on typical commercial (or generic) pump design practice and not the specialized design of the HPFTP. Measurements made in the various elements comprising the stage indicate that pulsation activity is dominated by synchronous related phenomena. Pulsation amplitudes measured in the scroll are low, on the order of 2 to 7 percent of the impeller exit tip speed velocity head. Significant non-sychronous pressure fluctuations occur at low flow, and while of interest to commercial pump designers, have little meaning to the HPFTP experience. Results obtained with the generic components do provide insights into possible pulsation related scroll failures on the HPFTP, and provide a basis for further study.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz, Ivan; Verdun, Francis R.; Bochud, François O., E-mail: francois.bochud@chuv.ch

    Purpose: Signal detection on 3D medical images depends on many factors, such as foveal and peripheral vision, the type of signal, and background complexity, and the speed at which the frames are displayed. In this paper, the authors focus on the speed with which radiologists and naïve observers search through medical images. Prior to the study, the authors asked the radiologists to estimate the speed at which they scrolled through CT sets. They gave a subjective estimate of 5 frames per second (fps). The aim of this paper is to measure and analyze the speed with which humans scroll throughmore » image stacks, showing a method to visually display the behavior of observers as the search is made as well as measuring the accuracy of the decisions. This information will be useful in the development of model observers, mathematical algorithms that can be used to evaluate diagnostic imaging systems. Methods: The authors performed a series of 3D 4-alternative forced-choice lung nodule detection tasks on volumetric stacks of chest CT images iteratively reconstructed in lung algorithm. The strategy used by three radiologists and three naïve observers was assessed using an eye-tracker in order to establish where their gaze was fixed during the experiment and to verify that when a decision was made, a correct answer was not due only to chance. In a first set of experiments, the observers were restricted to read the images at three fixed speeds of image scrolling and were allowed to see each alternative once. In the second set of experiments, the subjects were allowed to scroll through the image stacks at will with no time or gaze limits. In both static-speed and free-scrolling conditions, the four image stacks were displayed simultaneously. All trials were shown at two different image contrasts. Results: The authors were able to determine a histogram of scrolling speeds in frames per second. The scrolling speed of the naïve observers and the radiologists at the moment the signal was detected was measured at 25–30 fps. For the task chosen, the performance of the observers was not affected by the contrast or experience of the observer. However, the naïve observers exhibited a different pattern of scrolling than the radiologists, which included a tendency toward higher number of direction changes and number of slices viewed. Conclusions: The authors have determined a distribution of speeds for volumetric detection tasks. The speed at detection was higher than that subjectively estimated by the radiologists before the experiment. The speed information that was measured will be useful in the development of 3D model observers, especially anthropomorphic model observers which try to mimic human behavior.« less

  3. NOAA History - Main Page

    Science.gov Websites

    NOAA History Banner gold bar divider home - takes you to index page about the site contacts noaa americas science and service noaa legacy 1807 - 2007 NOAA History is an intrinsic part of the history of Initiative scroll divider More NOAA History from Around the Nation scroll divider drawing of a tornado NOAA

  4. Ubiquitous Learning Project Using Life-Logging Technology in Japan

    ERIC Educational Resources Information Center

    Ogata, Hiroaki; Hou, Bin; Li, Mengmeng; Uosaki, Noriko; Mouri, Kosuke; Liu, Songran

    2014-01-01

    A Ubiquitous Learning Log (ULL) is defined as a digital record of what a learner has learned in daily life using ubiquitous computing technologies. In this paper, a project which developed a system called SCROLL (System for Capturing and Reusing Of Learning Log) is presented. The aim of developing SCROLL is to help learners record, organize,…

  5. AGT 100 automotive gas turbine system development

    NASA Technical Reports Server (NTRS)

    Helms, H. E. G.

    1982-01-01

    General Motors is developing an automotive gas turbine system that can be an alternate powerplant for future automobiles. Work sponsored by DOE and administered by NASA Lewis Research Center is emphasizing small component aerodynamics and high-temperature structural ceramics. Reliability requirements of the AGT 100 turbine system include chemical and structural ceramic component stability in the gas turbine environment. The power train system, its configuration and schedule are presented, and its performance tested. The aerodynamic component development is reviewed with discussions on the compressor, turbine, regenerator, interturbine duct and scroll, and combustor. Ceramic component development is also reviewed, and production cost and required capital investment are taken into consideration.

  6. Novel non-invasive algorithm to identify the origins of re-entry and ectopic foci in the atria from 64-lead ECGs: A computational study.

    PubMed

    Alday, Erick A Perez; Colman, Michael A; Langley, Philip; Zhang, Henggui

    2017-03-01

    Atrial tachy-arrhytmias, such as atrial fibrillation (AF), are characterised by irregular electrical activity in the atria, generally associated with erratic excitation underlain by re-entrant scroll waves, fibrillatory conduction of multiple wavelets or rapid focal activity. Epidemiological studies have shown an increase in AF prevalence in the developed world associated with an ageing society, highlighting the need for effective treatment options. Catheter ablation therapy, commonly used in the treatment of AF, requires spatial information on atrial electrical excitation. The standard 12-lead electrocardiogram (ECG) provides a method for non-invasive identification of the presence of arrhythmia, due to irregularity in the ECG signal associated with atrial activation compared to sinus rhythm, but has limitations in providing specific spatial information. There is therefore a pressing need to develop novel methods to identify and locate the origin of arrhythmic excitation. Invasive methods provide direct information on atrial activity, but may induce clinical complications. Non-invasive methods avoid such complications, but their development presents a greater challenge due to the non-direct nature of monitoring. Algorithms based on the ECG signals in multiple leads (e.g. a 64-lead vest) may provide a viable approach. In this study, we used a biophysically detailed model of the human atria and torso to investigate the correlation between the morphology of the ECG signals from a 64-lead vest and the location of the origin of rapid atrial excitation arising from rapid focal activity and/or re-entrant scroll waves. A focus-location algorithm was then constructed from this correlation. The algorithm had success rates of 93% and 76% for correctly identifying the origin of focal and re-entrant excitation with a spatial resolution of 40 mm, respectively. The general approach allows its application to any multi-lead ECG system. This represents a significant extension to our previously developed algorithms to predict the AF origins in association with focal activities.

  7. A Theoretical and Experimental Analysis of Post-Compression Water Injection in a Rolls-Royce M250 Gas Turbine Engine

    DTIC Science & Technology

    2015-05-18

    Figure 14: Pump and motor mounting assembly Solenoid valves Water Heater Ball Valves Spray nozzles Compressor Discharge Scroll Pump ...configuration schematic ........................................................................ 31 Figure 14: Pump and motor mounting assembly...Tubes (1 each side) Compressor Discharge Scroll 11 compared to the same engine cycle without the gas generator turbine stage. A temperature

  8. Experimental investigation of the ORC system in a cogenerative domestic power plant with a scroll expanders

    NASA Astrophysics Data System (ADS)

    Kaczmarczyk, Tomasz Z.; Ihnatowicz, Eugeniusz; Żywica, Grzegorz; Kiciński, Jan

    2015-11-01

    The paper presents the results of experimental investigations of the ORC system with two scroll expanders which have been used as a source of electricity. Theworking fluidwas HFE7100 - a newly engineered fluid with a unique heat transfer and favourable environmental properties. In the ORC system three heat exchangers were used (evaporator, regenerator, condenser) and before expanders the droplet separator was installed. As a source of heat an innovative biomass boiler was used. Studies have been carried out for the expanders worked in series and in parallel. The paper presents the thermal and fluidflow properties of the ORC installation for the selected flow rates and different temperatures of the working medium. The characteristics of output electrical power, operating speed and vibrations for scroll expanders were also presented.

  9. Magnetized Target Fusion - Field Reversed Configuration Formation and Injection (MTF-FRC)

    DTIC Science & Technology

    2009-11-06

    from accidental breakage and personnel from injury in that event. The pumps for the vacuum system included a Varian dry scroll pump that was...a dry scroll (oil-free) mechanical pump could be used, as mTorr pressures would be sufficient for the vacuum switch voltage hold-off and operation...56 FIGURE 46. ROUGHING PUMP AND VACUUM -GAUGE CONTROLLERS BENEATH THETA COIL CABLE HEADER

  10. Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieckmann, John; Smutzer, Chad; Sinha, Jayanti

    The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies ofmore » having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.« less

  11. CFD analysis of a twin scroll radial turbine

    NASA Astrophysics Data System (ADS)

    Fürst, Jiří; Žák, Zdenĕk

    2018-06-01

    The contribution deals with the application of coupled implicit solver for compressible flows to CFD analysis of a twin scroll radial turbine. The solver is based on the finite volume method, convective terms are approximated using AUSM+up scheme, viscous terms use central approximation and the time evolution is achieved with lower-upper symmetric Gauss-Seidel (LU-SGS) method. The solver allows steady simulation with the so called frozen rotor approach as well as the fully unsteady solution. Both approaches are at first validated for the case of ERCOFTAC pump [1]. Then the CFD analysis of the flow through a twin scroll radial turbine and the predictions of the efficiency and turbine power is performed and the results are compared to experimental data obtained in the framework of Josef Božek - Competence Centre for Automotive Industry.

  12. Improvement in Stability of SPring-8 Standard X-Ray Monochromators with Water-Cooled Crystals

    NASA Astrophysics Data System (ADS)

    Yamazaki, Hiroshi; Shimizu, Yasuhiro; Miura, Takanori; Tanaka, Masayuki; Kishimoto, Hikaru; Matsuzaki, Yasuhisa; Shimizu, Nobtaka; Kawano, Yoshiaki; Kumasaka, Takashi; Yamamoto, Masaki; Koganezawa, Tomoyuki; Sato, Masugu; Hirosawa, Ichiro; Senba, Yasunori; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2010-06-01

    SPring-8 standard double-crystal monochromators containing water-cooled crystals were stabilized to a sufficient level to function as a part of optics components to supply stable microfocused x-ray beams, by determining causes of the instability and then removing them. The instability was caused by two factors—thermal deformation of fine stepper stages in the monochromator, which resulted in reduction in beam intensity with time, and vibrations of coolant supply units and vacuum pumps, which resulted in fluctuation in beam intensity. We remodeled the crystal holders to maintain the stage temperatures constant with water, attached x-ray and electron shields to the stages in order to prevent their warming up, introduced accumulators in the water circuits to absorb pressure pulsation, used polyurethane tubes to stabilize water flow, and placed rubber cushions un der scroll vacuum pumps. As a result, the intensity reduction rate of the beam decreased from 26% to 1% per hour and the intensity fluctuation from 13% to 1%. The monochromators were also modified to prevent radiation damage to the crystals, materials used as a water seal, and motor cables.

  13. Multi-Spectral Digital Imaging of Dead Sea Scrolls and Other Ancient Documents

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory; Zuckerman, Bruce; Zuckerman, Ken; Chiu, Joseph

    1993-01-01

    It is well known that the Dead Sea scrolls and similar soft media texts are often difficult to read due to the inability of the epigrapher to distinguish the black ink with which they were written from the aged, blacked parchment on which they were inscribed. While considerable success has been achieved in enhancing the readability of these texts through infrared photography, this technique-as conventionally applied today-has distinct limitations.

  14. Testing of Performance of a Scroll Pump in Support of Improved Vapor Phase Catalytic Ammonia Removal (VPCAR) Mass Reduction

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Kraft, Thomas G.; Yee, Glenda F.; Jankovsky, Amy L.; Flynn, Michael

    2006-01-01

    This paper describes the results of ground testing of a scroll pump with a potential of being a substitute for the current vacuum pump of the Vapor Phase Catalytic Ammonia Reduction (VPCAR). Assessments of the pressure-time, pump-down time, pump power and the pump noise were made for three configurations of the pump the first of which was without the gas ballast, the second with the gas ballast installed but not operating and the third with the gas ballast operating. The tested scroll pump exhibited optimum characteristics given its mass and power requirements. The pump down time required to reach a pressure of 50 Torr ranged from 60 minutes without the ballast to about 120 minutes with the gas ballast operational. The noise emission and the pump power were assessed in this paper as well.

  15. Generating a Double-Scroll Attractor by Connecting a Pair of Mutual Mirror-Image Attractors via Planar Switching Control

    NASA Astrophysics Data System (ADS)

    Sun, Changchun; Chen, Zhongtang; Xu, Qicheng

    2017-12-01

    An original three-dimensional (3D) smooth continuous chaotic system and its mirror-image system with eight common parameters are constructed and a pair of symmetric chaotic attractors can be generated simultaneously. Basic dynamical behaviors of two 3D chaotic systems are investigated respectively. A double-scroll chaotic attractor by connecting the pair of mutual mirror-image attractors is generated via a novel planar switching control approach. Chaos can also be controlled to a fixed point, a periodic orbit and a divergent orbit respectively by switching between two chaotic systems. Finally, an equivalent 3D chaotic system by combining two 3D chaotic systems with a switching law is designed by utilizing a sign function. Two circuit diagrams for realizing the double-scroll attractor are depicted by employing an improved module-based design approach.

  16. Untangling the Reaction Mechanisms Involved in the Explosive Decomposition of Model Compounds of Energetic Materials

    DTIC Science & Technology

    2014-06-11

    typically of a few 10-11 torr using oil-free magnetically suspended turbomolecular pumps backed with dry scroll pumps . A cold finger assembled from...on line and in situ utilizing a Faraday cup mounted inside a differentially pumped chamber on an ultrahigh vacuum compatible translation state. The...down to a base pressure typically of a few 10-11 torr using oil-free magnetically suspended turbomolecular pumps backed with dry scroll pumps . A

  17. A flow study in radial inflow turbine scroll-nozzle assembly

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Baskharone, E.; Tabakoff, W.

    1978-01-01

    The present analysis describes the flow behavior in the combined scroll-nozzle assembly of a radial inflow turbine. This model was chosen to provide a better understanding of the mutual interaction effects of these two components on the flow. The finite element method is used in the solution of the flow field in this multiply connected domain. The mass flow rates in the different nozzle channels is not presumed constant, but is determined from the solution.

  18. Modeling and Analysis of a Fractional-Order Generalized Memristor-Based Chaotic System and Circuit Implementation

    NASA Astrophysics Data System (ADS)

    Yang, Ningning; Xu, Cheng; Wu, Chaojun; Jia, Rong; Liu, Chongxin

    2017-12-01

    Memristor is a nonlinear “missing circuit element”, that can easily achieve chaotic oscillation. Memristor-based chaotic systems have received more and more attention. Research shows that fractional-order systems are more close to real systems. As an important parameter, the order can increase the flexibility and degree of freedom of the system. In this paper, a fractional-order generalized memristor, which consists of a diode bridge and a parallel circuit with an equivalent unit circuit and a linear resistance, is proposed. Frequency and electrical characteristics of the fractional-order memristor are analyzed. A chain structure circuit is used to implement the fractional-order unit circuit. Then replacing the conventional Chua’s diode by the fractional-order generalized memristor, a fractional-order memristor-based chaotic circuit is proposed. A large amount of research work has been done to investigate the influence of the order on the dynamical behaviors of the fractional-order memristor-based chaotic circuit. Varying with the order, the system enters the chaotic state from the periodic state through the Hopf bifurcation and period-doubling bifurcation. The chaotic state of the system has two types of attractors: single-scroll and double-scroll attractor. The stability theory of fractional-order systems is used to determine the minimum order occurring Hopf bifurcation. And the influence of the initial value on the system is analyzed. Circuit simulations are designed to verify the results of theoretical analysis and numerical simulation.

  19. Evaluation of Dry, Rough Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Hunter, Brian

    2006-01-01

    This document provides information on the testing and evaluation of thirteen dry rough vacuum pumps of various designs and from various manufacturers. Several types of rough vacuum pumps were evaluated, including scroll, roots, and diaphragm pumps. Tests included long term testing, speed curve generation, voltage variance, vibrations emissions and susceptibility, electromagnetic interference emissions and susceptibility, static leak rate, exhaust restriction, response/recovery time tests, and a contamination analysis for scroll pumps. Parameters were found for operation with helium, which often is not provided from the manufacturer

  20. Electrical Wave Propagation in a Minimally Realistic Fiber Architecture Model of the Left Ventricle

    NASA Astrophysics Data System (ADS)

    Song, Xianfeng; Setayeshgar, Sima

    2006-03-01

    Experimental results indicate a nested, layered geometry for the fiber surfaces of the left ventricle, where fiber directions are approximately aligned in each surface and gradually rotate through the thickness of the ventricle. Numerical and analytical results have highlighted the importance of this rotating anisotropy and its possible destabilizing role on the dynamics of scroll waves in excitable media with application to the heart. Based on the work of Peskin[1] and Peskin and McQueen[2], we present a minimally realistic model of the left ventricle that adequately captures the geometry and anisotropic properties of the heart as a conducting medium while being easily parallelizable, and computationally more tractable than fully realistic anatomical models. Complementary to fully realistic and anatomically-based computational approaches, studies using such a minimal model with the addition of successively realistic features, such as excitation-contraction coupling, should provide unique insight into the basic mechanisms of formation and obliteration of electrical wave instabilities. We describe our construction, implementation and validation of this model. [1] C. S. Peskin, Communications on Pure and Applied Mathematics 42, 79 (1989). [2] C. S. Peskin and D. M. McQueen, in Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology, 309(1996)

  1. Multi-AUV autonomous task planning based on the scroll time domain quantum bee colony optimization algorithm in uncertain environment

    PubMed Central

    Zhang, Rubo; Yang, Yu

    2017-01-01

    Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution. PMID:29186166

  2. Multi-AUV autonomous task planning based on the scroll time domain quantum bee colony optimization algorithm in uncertain environment.

    PubMed

    Li, Jianjun; Zhang, Rubo; Yang, Yu

    2017-01-01

    Research on distributed task planning model for multi-autonomous underwater vehicle (MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algorithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain marine environment, the rolling time domain control technique is used to realize a numerical optimization in a narrowed time range. Rolling time domain control is one of the better task planning techniques, which can greatly reduce the computational workload and realize the tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment was performed to evaluate the distributed task planning performance of the scroll time domain quantum bee colony optimization algorithm. The simulation results demonstrate that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms of both iterations and running time. The STDQABC algorithm can effectively improve MAUV distributed tasking planning performance, complete the task goal and get the approximate optimal solution.

  3. Advanced Gas Turbine (AGT) technology development

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A 74.5 kW (100 hp) automotive gas turbine was evaluated. The engine structure, bearings, oil system, and electronics were demonstrated and no shaft dynamics or other vibration problem were encountered. Areas identified during the five tests are the scroll retention features, and transient thermal deflection of turbine backplates. Modifications were designed. Seroll retention is addressed by modifying the seal arrangement in front of the gasifier turbine assembly, which will increase the pressure load on the scroll in the forward direction and thereby increase the retention forces. the backplate thermal deflection is addressed by geometric changes and thermal insulation to reduce heat input. Combustor rig proof testing of two ceramic combustor assemblies was completed. The combustor was modified to incorporate slots and reduce sharp edges, which should reduce thermal stresses. The development work focused on techniques to sinter these barrier materials onto the ceramic rotors with successes for both material systems. Silicon carbide structural parts, including engine configuration gasifier rotors (ECRs), preliminary gasifier scroll parts, and gasifier and power turbine vanes are fabricated.

  4. Ince-Strutt stability charts for ship parametric roll resonance in irregular waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Yang, He-zhen; Xiao, Fei; Xu, Pei-ji

    2017-08-01

    Ince-Strutt stability chart of ship parametric roll resonance in irregular waves is conducted and utilized for the exploration of the parametric roll resonance in irregular waves. Ship parametric roll resonance will lead to large amplitude roll motion and even wreck. Firstly, the equation describing the parametric roll resonance in irregular waves is derived according to Grim's effective theory and the corresponding Ince-Strutt stability charts are obtained. Secondly, the differences of stability charts for the parametric roll resonance in irregular and regular waves are compared. Thirdly, wave phases and peak periods are taken into consideration to obtain a more realistic sea condition. The influence of random wave phases should be taken into consideration when the analyzed points are located near the instability boundary. Stability charts for different wave peak periods are various. Stability charts are helpful for the parameter determination in design stage to better adapt to sailing condition. Last, ship variables are analyzed according to stability charts by a statistical approach. The increase of the metacentric height will help improve ship stability.

  5. Orbital stability of solitary waves for generalized Boussinesq equation with two nonlinear terms

    NASA Astrophysics Data System (ADS)

    Zhang, Weiguo; Li, Xiang; Li, Shaowei; Chen, Xu

    2018-06-01

    This paper investigates the orbital stability and instability of solitary waves for the generalized Boussinesq equation with two nonlinear terms. Firstly, according to the theory of Grillakis-Shatah-Strauss orbital stability, we present the general results to judge orbital stability of the solitary waves. Further, we deduce the explicit expression of discrimination d‧‧(c) to judge the stability of the two solitary waves, and give the stable wave speed interval. Moreover, we analyze the influence of the interaction between two nonlinear terms on the stable wave speed interval, and give the maximal stable range for the wave speed. Finally, some conclusions are given in this paper.

  6. Improvement in Stability of SPring-8 Standard X-Ray Monochromators with Water-Cooled Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamazaki, Hiroshi; Shimizu, Nobtaka; Kumasaka, Takashi

    2010-06-23

    SPring-8 standard double-crystal monochromators containing water-cooled crystals were stabilized to a sufficient level to function as a part of optics components to supply stable microfocused x-ray beams, by determining causes of the instability and then removing them. The instability was caused by two factors--thermal deformation of fine stepper stages in the monochromator, which resulted in reduction in beam intensity with time, and vibrations of coolant supply units and vacuum pumps, which resulted in fluctuation in beam intensity. We remodeled the crystal holders to maintain the stage temperatures constant with water, attached x-ray and electron shields to the stages in ordermore » to prevent their warming up, introduced accumulators in the water circuits to absorb pressure pulsation, used polyurethane tubes to stabilize water flow, and placed rubber cushions under scroll vacuum pumps. As a result, the intensity reduction rate of the beam decreased from 26% to 1% per hour and the intensity fluctuation from 13% to 1%. The monochromators were also modified to prevent radiation damage to the crystals, materials used as a water seal, and motor cables.« less

  7. The value of Tablets as reading aids for individuals with central visual field loss: an evaluation of eccentric reading with static and scrolling text.

    PubMed

    Walker, Robin; Bryan, Lauren; Harvey, Hannah; Riazi, Afsane; Anderson, Stephen J

    2016-07-01

    Technological devices such as smartphones and tablets are widely available and increasingly used as visual aids. This study evaluated the use of a novel app for tablets (MD_evReader) developed as a reading aid for individuals with a central field loss resulting from macular degeneration. The MD_evReader app scrolls text as single lines (similar to a news ticker) and is intended to enhance reading performance using the eccentric viewing technique by both reducing the demands on the eye movement system and minimising the deleterious effects of perceptual crowding. Reading performance with scrolling text was compared with reading static sentences, also presented on a tablet computer. Twenty-six people with low vision (diagnosis of macular degeneration) read static or dynamic text (scrolled from right to left), presented as a single line at high contrast on a tablet device. Reading error rates and comprehension were recorded for both text formats, and the participant's subjective experience of reading with the app was assessed using a simple questionnaire. The average reading speed for static and dynamic text was not significantly different and equal to or greater than 85 words per minute. The comprehension scores for both text formats were also similar, equal to approximately 95% correct. However, reading error rates were significantly (p = 0.02) less for dynamic text than for static text. The participants' questionnaire ratings of their reading experience with the MD_evReader were highly positive and indicated a preference for reading with this app compared with their usual method. Our data show that reading performance with scrolling text is at least equal to that achieved with static text and in some respects (reading error rate) is better than static text. Bespoke apps informed by an understanding of the underlying sensorimotor processes involved in a cognitive task such as reading have excellent potential as aids for people with visual impairments. © 2016 The Authors Ophthalmic and Physiological Optics published by John Wiley & Sons Ltd on behalf of College of Optometrists.

  8. Periodic waves of the Lugiato-Lefever equation at the onset of Turing instability.

    PubMed

    Delcey, Lucie; Haraguss, Mariana

    2018-04-13

    We study the existence and the stability of periodic steady waves for a nonlinear model, the Lugiato-Lefever equation, arising in optics. Starting from a detailed description of the stability properties of constant solutions, we then focus on the periodic steady waves which bifurcate at the onset of Turing instability. Using a centre manifold reduction, we analyse these Turing bifurcations, and prove the existence of periodic steady waves. This approach also allows us to conclude on the nonlinear orbital stability of these waves for co-periodic perturbations, i.e. for periodic perturbations which have the same period as the wave. This stability result is completed by a spectral stability result for general bounded perturbations. In particular, this spectral analysis shows that instabilities are always due to co-periodic perturbations.This article is part of the theme issue 'Stability of nonlinear waves and patterns and related topics'. © 2018 The Author(s).

  9. Drill drive mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dressel, M.O.

    1979-10-30

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfacesmore » of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the different gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft. 11 claims.« less

  10. CFD simulation of a dry scroll vacuum pump with clearances, solid heating and thermal deformation

    NASA Astrophysics Data System (ADS)

    Spille-Kohoff, A.; Hesse, J.; Andres, R.; Hetze, F.

    2017-08-01

    Although dry scroll vacuum pumps (DSPV) are essential devices in many different industrial processes, the CFD simulation of such pumps is not widely used and often restricted to simplified cases due to its complexity: The working principle with a fixed and an orbiting scroll leads to working chambers that are changing in time and are connected through moving small radial and axial clearances in the range of 10 to 100 μm. Due to the low densities and low mass flow rates in vacuum pumps, it is important to include heat transfer towards and inside the solid components. Solid heating is very slow compared to the scroll revolution speed and the gas behaviour, thus a special workflow is necessary to reach the working conditions in reasonable simulation times. The resulting solid temperature is then used to compute the thermal deformation, which usually results in gap size changes that influence leakage flows. In this paper, setup steps and results for the simulation of a DSVP are shown and compared to theoretical and experimental results. The time-varying working chambers are meshed with TwinMesh, a hexahedral meshing programme for positive displacement machines. The CFD simulation with ANSYS CFX accounts for gas flow with compressibility and turbulence effects, conjugate heat transfer between gas and solids, and leakage flows through the clearances. Time-resolved results for torques, chamber pressure, mass flow, and heat flow between gas and solids are shown, as well as time- and space-resolved results for pressure, velocity, and temperature for different operating conditions of the DSVP.

  11. Drill drive mechanism

    DOEpatents

    Dressel, Michael O.

    1979-01-01

    A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.

  12. Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices.

    PubMed

    Hu, Ping; Yan, Mengyu; Wang, Xuanpeng; Han, Chunhua; He, Liang; Wei, Xiujuan; Niu, Chaojiang; Zhao, Kangning; Tian, Xiaocong; Wei, Qiulong; Li, Zijia; Mai, Liqiang

    2016-03-09

    Graphene has been widely used to enhance the performance of energy storage devices due to its high conductivity, large surface area, and excellent mechanical flexibility. However, it is still unclear how graphene influences the electrochemical performance and reaction mechanisms of electrode materials. The single-nanowire electrochemical probe is an effective tool to explore the intrinsic mechanisms of the electrochemical reactions in situ. Here, pure MnO2 nanowires, reduced graphene oxide/MnO2 wire-in-scroll nanowires, and porous graphene oxide/MnO2 wire-in-scroll nanowires are employed to investigate the capacitance, ion diffusion coefficient, and charge storage mechanisms in single-nanowire electrochemical devices. The porous graphene oxide/MnO2 wire-in-scroll nanowire delivers an areal capacitance of 104 nF/μm(2), which is 4.0 and 2.8 times as high as those of reduced graphene oxide/MnO2 wire-in-scroll nanowire and MnO2 nanowire, respectively, at a scan rate of 20 mV/s. It is demonstrated that the reduced graphene oxide wrapping around the MnO2 nanowire greatly increases the electronic conductivity of the active materials, but decreases the ion diffusion coefficient because of the shielding effect of graphene. By creating pores in the graphene, the ion diffusion coefficient is recovered without degradation of the electron transport rate, which significantly improves the capacitance. Such single-nanowire electrochemical probes, which can detect electrochemical processes and behavior in situ, can also be fabricated with other active materials for energy storage and other applications in related fields.

  13. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Méndez-García, C.; Renteria-Villalobos, M.; García-Tenorio, R.; Montero-Cabrera, M. E.

    2014-07-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. 232Th-series, 238U-series, 40K and 137Cs activity concentrations (AC, Bq kg-1) were determined by gamma spectrometry with a high purity Ge detector. 238U and 234U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating of core sediments was performed applying CRS method to 210Pb activities. Results were verified by 137Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High 238U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento - Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) 234U/overflow="scroll">238U and 238U/overflow="scroll">226Ra in sediments have values between 0.9-1.2, showing a behavior close to radioactive equilibrium in the entire basin. 232Th/overflow="scroll">238U, 228Ra/overflow="scroll">226Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.

  14. VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

    PubMed Central

    2016-01-01

    Nowadays, chaos generators are an attractive field for research and the challenge is their realization for the development of engineering applications. From more than three decades ago, chaotic oscillators have been designed using discrete electronic devices, very few with integrated circuit technology, and in this work we propose the use of field-programmable gate arrays (FPGAs) for fast prototyping. FPGA-based applications require that one be expert on programming with very-high-speed integrated circuits hardware description language (VHDL). In this manner, we detail the VHDL descriptions of chaos generators for fast prototyping from high-level programming using Python. The cases of study are three kinds of chaos generators based on piecewise-linear (PWL) functions that can be systematically augmented to generate even and odd number of scrolls. We introduce new algorithms for the VHDL description of PWL functions like saturated functions series, negative slopes and sawtooth. The generated VHDL-code is portable, reusable and open source to be synthesized in an FPGA. Finally, we show experimental results for observing 2, 10 and 30-scroll attractors. PMID:27997930

  15. VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators.

    PubMed

    Tlelo-Cuautle, Esteban; Quintas-Valles, Antonio de Jesus; de la Fraga, Luis Gerardo; Rangel-Magdaleno, Jose de Jesus

    2016-01-01

    Nowadays, chaos generators are an attractive field for research and the challenge is their realization for the development of engineering applications. From more than three decades ago, chaotic oscillators have been designed using discrete electronic devices, very few with integrated circuit technology, and in this work we propose the use of field-programmable gate arrays (FPGAs) for fast prototyping. FPGA-based applications require that one be expert on programming with very-high-speed integrated circuits hardware description language (VHDL). In this manner, we detail the VHDL descriptions of chaos generators for fast prototyping from high-level programming using Python. The cases of study are three kinds of chaos generators based on piecewise-linear (PWL) functions that can be systematically augmented to generate even and odd number of scrolls. We introduce new algorithms for the VHDL description of PWL functions like saturated functions series, negative slopes and sawtooth. The generated VHDL-code is portable, reusable and open source to be synthesized in an FPGA. Finally, we show experimental results for observing 2, 10 and 30-scroll attractors.

  16. Target simulations with SCROLL non-LTE opacity/emissivity databases.

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Colombant, D.; Bar-Shalom, A.

    2001-10-01

    SCROLL[1], a collisional radiative model and code based on superconfigurations, is able to compute high Z non-LTE opacities and emissivities accurately and efficiently. It was used to create opacity/emissivity databases for Pd, Lu, Au on a 50 temperatures/80 densities grid. Incident radiation field was shown to have no effect on opacities in the case of interest, and was not taken into account. These databases were introduced in the hydrocode FAST1D[2]. SCROLL also gives an ionization temperature Tz which is used in FAST1D to obtain non-LTE corrections to the equation of state. Results will be compared to those of a previous version using Busquet’s algorithm[3]. Work supported by USDOE under a contract with NRL. [1] A. Bar-Shalom, J. Oreg and M. Klapisch, J. Quant. Spectrosc. Radiat. Transfer, 65, 43(2000). [2] J. H. Gardner, A. J. Schmitt, J. P. Dahlburg, C. J. Pawley, S. E. Bodner, S. P. Obenschain, V. Serlin and Y. Aglitskiy, Phys. Plasmas, 5, 1935 (1998). [3] M. Busquet, Phys. Fluids B, 5, 4191 (1993).

  17. An experiment with content distribution methods in touchscreen mobile devices.

    PubMed

    Garcia-Lopez, Eva; Garcia-Cabot, Antonio; de-Marcos, Luis

    2015-09-01

    This paper compares the usability of three different content distribution methods (scrolling, paging and internal links) in touchscreen mobile devices as means to display web documents. Usability is operationalized in terms of effectiveness, efficiency and user satisfaction. These dimensions are then measured in an experiment (N = 23) in which users are required to find words in regular-length web documents. Results suggest that scrolling is statistically better in terms of efficiency and user satisfaction. It is also found to be more effective but results were not significant. Our findings are also compared with existing literature to propose the following guideline: "try to use vertical scrolling in web pages for mobile devices instead of paging or internal links, except when the content is too large, then paging is recommended". With an ever increasing number of touchscreen web-enabled mobile devices, this new guideline can be relevant for content developers targeting the mobile web as well as institutions trying to improve the usability of their content for mobile platforms. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. [Neurology in the medical papyruses of the pharaohs].

    PubMed

    García-Albea, E

    The civilization of Ancient Egypt included a long period of almost three millenniums, and is the most interesting example of the so-called pretechnical archaic cultures. Papyrus scrolls are the main source of information about medical activities. There are fourteen medical papyrus scrolls, in varying states of conservation, mostly corresponding to the Middle Empire, but containing references to the Ancient Empire (the period of the pyramids). These are practical treaties with little explanation of the underlying pathology (a primitive theory of the 'flow' of humors, involving the flowing of different malignant entities) within a system of magic and religion. The empirical observations referring to diseases or dysfunctions of the nervous system, although few, seem to be worth reviewing. Remedies for migraine ('the disorder affecting half the head') take up a long chapter of the only complete and best preserved Ebers papyrus. Dementia (deterioration with age), convulsions and tetany are briefly mentioned in several papyrus scrolls. With the detailed description of the clinical findings of cranial and vertebral trauma, and the orderly assessment of severity presented in Edwin Smith's papyrus the neurology of pharaonic Egypt attained its greatest importance.

  19. Evans function computation for the stability of travelling waves

    NASA Astrophysics Data System (ADS)

    Barker, B.; Humpherys, J.; Lyng, G.; Lytle, J.

    2018-04-01

    In recent years, the Evans function has become an important tool for the determination of stability of travelling waves. This function, a Wronskian of decaying solutions of the eigenvalue equation, is useful both analytically and computationally for the spectral analysis of the linearized operator about the wave. In particular, Evans-function computation allows one to locate any unstable eigenvalues of the linear operator (if they exist); this allows one to establish spectral stability of a given wave and identify bifurcation points (loss of stability) as model parameters vary. In this paper, we review computational aspects of the Evans function and apply it to multidimensional detonation waves. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.

  20. Stability and instability of periodic travelling wave solutions for the critical Korteweg-de Vries and nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Angulo Pava, Jaime; Natali, Fábio M. Amorin

    2009-04-01

    In this paper we establish new results about the existence, stability, and instability of periodic travelling wave solutions related to the critical Korteweg-de Vries equation ut+5u4ux+u=0, and the critical nonlinear Schrödinger equation ivt+v+|v=0. The periodic travelling wave solutions obtained in our study tend to the classical solitary wave solutions in the infinite wavelength scenario. The stability approach is based on the theory developed by Angulo & Natali in [J. Angulo, F. Natali, Positivity properties of the Fourier transform and the stability of periodic travelling wave solutions, SIAM J. Math. Anal. 40 (2008) 1123-1151] for positive periodic travelling wave solutions associated to dispersive evolution equations of Korteweg-de Vries type. The instability approach is based on an extension to the periodic setting of arguments found in Bona & Souganidis & Strauss [J.L. Bona, P.E. Souganidis, W.A. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London Ser. A 411 (1987) 395-412]. Regarding the critical Schrödinger equation stability/instability theories similar to the critical Korteweg-de Vries equation are obtained by using the classical Grillakis & Shatah & Strauss theory in [M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal. 94 (1990) 308-348; M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987) 160-197]. The arguments presented in this investigation have prospects for the study of the stability of periodic travelling wave solutions of other nonlinear evolution equations.

  1. Detection and monitoring of shear crack growth using S-P conversion of seismic waves

    NASA Astrophysics Data System (ADS)

    Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    A diagnostic method for monitoring shear crack initiation, propagation, and coalescence in rock is key for the detection of major rupture events, such as slip along a fault. Active ultrasonic monitoring was used in this study to determine the precursory signatures to shear crack initiation in pre-cracked rock. Prismatic specimens of Indiana limestone (203x2101x638x1 mm) with two pre-existing parallel flaws were subjected to uniaxial compression. The flaws were cut through the thickness of the specimen using a scroll saw. The length of the flaws was 19.05 mm and had an inclination angle with respect to the loading direction of 30o. Shear wave transducers were placed on each side of the specimen, with polarization parallel to the loading direction. The shear waves, given the geometry of the flaws, were normally incident to the shear crack forming between the two flaws during loading. Shear crack initiation and propagation was detected on the specimen surface using digital image correlation (DIC), while initiation inside the rock was monitored by measuring full waveforms of the transmitted and reflected shear (S) waves across the specimen. Prior to the detection of a shear crack on the specimen surface using DIC, transmitted S waves were converted to compressional (P) waves. The emergence of converted S-P wave occurs because of the presence of oriented microcracks inside the rock. The microcracks coalesce and form the shear crack observed on the specimen surface. Up to crack coalescence, the amplitude of the converted waves increased with shear crack propagation. However, the amplitude of the transmitted shear waves between the two flaws did not change with shear crack initiation and propagation. This is in agreement with the conversion of elastic waves (P- to S-wave or S- to P-wave) observed by Nakagawa et al., (2000) for normal incident waves. Elastic wave conversions are attributed to the formation of an array of oriented microcracks that dilate under shear stress, which causes energy partitioning into P, S, and P-to-S or S-to-P waves. This finding provides a diagnostic method for detecting shear crack initiation and growth using seismic wave conversions. Acknowledgments: This material is based upon work supported by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).

  2. Organ culture storage of pre-prepared corneal donor material for Descemet's membrane endothelial keratoplasty

    PubMed Central

    Bhogal, Maninder; Matter, Karl; Balda, Maria S; Allan, Bruce D

    2016-01-01

    Purpose To evaluate the effect of media composition and storage method on pre-prepared Descemet's membrane endothelial keratoplasty (DMEK) grafts. Methods 50 corneas were used. Endothelial wound healing and proliferation in different media were assessed using a standard injury model. DMEK grafts were stored using three methods: peeling with free scroll storage; partial peeling with storage on the stroma and fluid bubble separation with storage on the stroma. Endothelial cell (EC) phenotype and the extent of endothelial overgrowth were examined. Global cell viability was assessed for storage methods that maintained a normal cell phenotype. Results 1 mm wounds healed within 4 days. Enhanced media did not increase EC proliferation but may have increased EC migration into the wounded area. Grafts that had been trephined showed evidence of EC overgrowth, whereas preservation of a physical barrier in the bubble group prevented this. In grafts stored in enhanced media or reapposed to the stroma after trephination, endothelial migration occurred sooner and cells underwent endothelial-mesenchymal transformation. Ongoing cell loss, with new patterns of cell death, was observed after returning grafts to storage. Grafts stored as free scrolls retained more viable ECs than grafts prepared with the fluid bubble method (74.2± 3% vs 60.3±6%, p=0.04 (n=8). Conclusion Free scroll storage is superior to liquid bubble and partial peeling techniques. Free scrolls only showed overgrowth of ECs after 4 days in organ culture, indicating a viable time window for the clinical use of pre-prepared DMEK donor material using this method. Methods for tissue preparation and storage media developed for whole corneas should not be used in pre-prepared DMEK grafts without prior evaluation. PMID:27543290

  3. Spectral characterization as a tool for parchment analysis

    NASA Astrophysics Data System (ADS)

    Radis, Michela; Iacomussi, Paola; Rossi, Giuseppe

    2015-06-01

    The paper presents an investigation on the correlation between spectral characteristics and conservation conditions of parchment to define a NON invasive methodology able to detect and monitor deterioration process in historical parchment without the need of taking small samples. To verify the feasibility and define the most appropriate measurement method, several samples of contemporary parchments, produced following ancient recipes and coming from different animal species, with different degrees of artificially induced damage, were analyzed. The SRF and STF of each sample were measured in the same point, before and after each step of the artificial ageing treatment. Having at disposal a parchment coming from a whole lamb leather, allowed also the study of the correlations between the variations of SRF - STF and the intrinsic factors of a parchment like the variability of animal skin anatomy and of manufacturing. Analyzing different samples allowed also the definition of the measuring method sensitivity and of reference spectrum for the different animal species parchments with accuracy limits. The definition of a reference spectrum of not damaged parchment with acceptability limits is a necessary step for understanding, through SRF - STF measurements, historical parchments conservation conditions: indeed it is necessary to know if deviations from the reference spectrum are ascribable to damage or only to parchment anatomic/production variability. As a case study, the method has been applied to two historical parchment scrolls stored at the Archivio di Stato di Torino (Italy). The SRF - STF of both scrolls was acquired in several points of the scroll, the average spectrum of each scroll was compared with the reference spectra with the relative tolerance limits, recognizing the animal species and damage alterations and demonstrating the feasibility of the method.

  4. Orbital stability of periodic traveling-wave solutions for the log-KdV equation

    NASA Astrophysics Data System (ADS)

    Natali, Fábio; Pastor, Ademir; Cristófani, Fabrício

    2017-09-01

    In this paper we establish the orbital stability of periodic waves related to the logarithmic Korteweg-de Vries equation. Our motivation is inspired in the recent work [3], in which the authors established the well-posedness and the linear stability of Gaussian solitary waves. By using the approach put forward recently in [20] to construct a smooth branch of periodic waves as well as to get the spectral properties of the associated linearized operator, we apply the abstract theories in [13] and [25] to deduce the orbital stability of the periodic traveling waves in the energy space.

  5. Cold air performance of a tip turbine designed to drive a lift fan. 2: Partial admission

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.; Hotz, G. M.; Futral, S. M., Jr.

    1977-01-01

    Partial admission performance was obtained for a 0.4 linear scale version of the LF460 lift fan turbine over a range of speed from 40 to 140 percent of design equivalent speed and a range of scroll inlet total to diffuser exit static pressure ratio from 2.2 to 5.0. The investigation was conducted in two parts, with each part using a different side of the turbine scroll to simulate loss of a gas generator. Each side had an arc of admission of 180. Results are presented in terms of specific work, torque, mass flow, and efficiency.

  6. Edwards nXDS15iC Vacuum Scroll Pump Pressure Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sessions, H.; Morgan, G. A.

    2013-07-17

    The SRNL High Pressure Laboratory performed testing on an Edwards Model nXDS15iC Vacuum Scroll Pump on July 10th and 11th of 2013 at 723-A. This testing was done in an attempt to obtain initial compression ratio information for the nXDS15iC pump, with compression ratio defined as discharge pressure of the pump divided by suction pressure. Pressure burst testing was also done on the pump to determine its design pressure for pressure safety reasons. The Edwards nXDS15iC pump is being evaluated by SRNL for use part of the SHINE project being executed by SRNL.

  7. Synchronized navigation of current and prior studies using image registration improves radiologist's efficiency.

    PubMed

    Forsberg, Daniel; Gupta, Amit; Mills, Christopher; MacAdam, Brett; Rosipko, Beverly; Bangert, Barbara A; Coffey, Michael D; Kosmas, Christos; Sunshine, Jeffrey L

    2017-03-01

    The purpose of this study was to investigate how the use of multi-modal rigid image registration integrated within a standard picture archiving and communication system affects the efficiency of a radiologist while performing routine interpretations of cases including prior examinations. Six radiologists were recruited to read a set of cases (either 16 neuroradiology or 14 musculoskeletal cases) during two crossover reading sessions. Each radiologist read each case twice, one time with synchronized navigation, which enables spatial synchronization across examinations from different study dates, and one time without. Efficiency was evaluated based upon time to read a case and amount of scrolling while browsing a case using Wilcoxon signed rank test. Significant improvements in efficiency were found considering either all radiologists simultaneously, the two sections separately and the majority of individual radiologists for time to read and for amount of scrolling. The relative improvement for each individual radiologist ranged from 4 to 32% for time to read and from 14 to 38% for amount of scrolling. Image registration providing synchronized navigation across examinations from different study dates provides a tool that enables radiologists to work more efficiently while reading cases with one or more prior examinations.

  8. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    NASA Astrophysics Data System (ADS)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  9. Controlling the position of a stabilized detonation wave in a supersonic gas mixture flow in a plane channel

    NASA Astrophysics Data System (ADS)

    Levin, V. A.; Zhuravskaya, T. A.

    2017-03-01

    Stabilization of a detonation wave in a stoichiometric hydrogen-air mixture flowing at a supersonic velocity into a plane symmetric channel with constriction has been studied in the framework of a detailed kinetic mechanism of the chemical interaction. Conditions ensuring the formation of a thrust-producing f low with a stabilized detonation wave in the channel are determined. The inf luence of the inf low Mach number, dustiness of the combustible gas mixture supplied to the channel, and output cross-section size on the position of a stabilized detonation wave in the f low has been analyzed with a view to increasing the efficiency of detonation combustion of the gas mixture. It is established that thrust-producing flow with a stabilized detonation wave can be formed in the channel without any energy consumption.

  10. An innovative browser-based data exploration tool with simultaneous scrolling in time and wavelength domains

    NASA Astrophysics Data System (ADS)

    Slater, Gregory L.; Schiff, David; De Pontieu, Bart; Tarbell, Theodore D.; Freeland, Samuel L.

    2017-08-01

    We present Cruiser, a new web tool for the precision interactive blending of image series across time and wavelength domains. Scrolling in two dimensions enables discovery and investigation of similarities and differences in structure and evolution across multiple wavelengths. Cruiser works in the latest versions of standards compliant browsers on both desktop and IOS platforms. Co-aligned data cubes have been generated for AIA, IRIS, and Hinode SOT FG, and image data from additional instruments, both space-based and ground-based, can be data sources. The tool has several movie playing and image adjustment controls which will be described in the poster and demonstrated on a MacOS notebook and iPad.

  11. Enhanced secure 4-D modulation space optical multi-carrier system based on joint constellation and Stokes vector scrambling.

    PubMed

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun

    2018-03-19

    This paper proposes and demonstrates an enhanced secure 4-D modulation optical generalized filter bank multi-carrier (GFBMC) system based on joint constellation and Stokes vector scrambling. The constellation and Stokes vectors are scrambled by using different scrambling parameters. A multi-scroll Chua's circuit map is adopted as the chaotic model. Large secure key space can be obtained due to the multi-scroll attractors and independent operability of subcarriers. A 40.32Gb/s encrypted optical GFBMC signal with 128 parallel subcarriers is successfully demonstrated in the experiment. The results show good resistance against the illegal receiver and indicate a potential way for the future optical multi-carrier system.

  12. Status of the Monolithic Suspensions for Advanced Virgo

    NASA Astrophysics Data System (ADS)

    Travasso, F.; Virgo Collaboration

    2018-02-01

    Successfully implemented in GEO and Virgo+, the monolithic suspensions are one of the most important upgrades in the second generation of gravitational wave interferometric detectors, including Advanced LIGO (aLIGO) and Advanced Virgo (AdV). Characterized by a very low thermal noise, monolithic suspensions are essential for improving the interferometers sensitivity at low frequencies (10-100Hz). In Advanced Virgo their installation was delayed because of a contamination problem in the vacuum system: dust produced by scroll pumps was injected in the main vacuum chambers during the venting processes, damaging the fibers and ultimately causing their repeated failure. The effort to explain and resolve this issue was useful to further confirm the suspensions’ reliability and our control on the production process. Moreover, we developed and implemented new tools and procedures to certify each part of the monolithic suspensions. In the meanwhile, in order to join aLIGO during its second Observation Run (O2), a temporary steel suspension was implemented, based on the initial Virgo design. That solution allowed us to contribute to the first three-detector observation of a gravitational wave (GW) ([1]), and to the first observation of a coalescing neutron star binary ([2]) In the near future the monolithic suspensions will be reinstalled along with additional upgrades of Virgo.

  13. Generation of a medium vacuum pressure by using two different pumping methods in the KRISS dynamic flow-control system

    NASA Astrophysics Data System (ADS)

    Hong, S. S.; Lim, J. Y.; Khan, W.

    2014-02-01

    Pumping systems with large vacuum chambers have numerous applications in the process industry: for example, mixing of various types of gases as in the semiconductor industry, the calibration of vacuum gauges, the measurement of outgassing rates of various materials in the field of space technology, etc. Most often, these systems are used in the medium vacuum range (10-1 Pa-102 Pa) and in the dynamically-generated pressure mode. We have designed and developed a new dynamic flow system at the KRISS (Korea Research Institute of Standards and Science) that can be used for such applications with reliability in the range from 0.1 Pa - 133 Pa. In this report, the design philosophy, operational procedure and experimental data for the generated stable pressure points in the chamber of the system are discussed. The data consist the pressure points generated in the medium vacuum range while pumping the chamber of the system by using two different methods: first by using a dry scroll pump and then by using a combination of a turbomolecular pump backed by the same scroll pump. The relative standard deviations in the pressure points were calculated and were found to be greater than 1.5% for the scroll pump and less than 0.5% for the turbomolecular pump.

  14. Conceptual Design Study of a Closed Brayton Cycle Turbogenerator for Space Power Thermal-To-Electric Conversion System

    NASA Technical Reports Server (NTRS)

    Hansen, Jeff L.

    2000-01-01

    A conceptual design study was completed for a 360 kW Helium-Xenon closed Brayton cycle turbogenerator. The selected configuration is comprised of a single-shaft gas turbine engine coupled directly to a high-speed generator. The engine turbomachinery includes a 2.5:1 pressure ratio compression system with an inlet corrected flow of 0.44 kg/sec. The single centrifugal stage impeller discharges into a scroll via a vaned diffuser. The scroll routes the air into the cold side sector of the recuperator. The hot gas exits a nuclear reactor radiator at 1300 K and enters the turbine via a single-vaned scroll. The hot gases are expanded through the turbine and then diffused before entering the hot side sector of the recuperator. The single shaft design is supported by air bearings. The high efficiency shaft mounted permanent magnet generator produces an output of 370 kW at a speed of 60,000 rpm. The total weight of the turbogenerator is estimated to be only 123 kg (less than 5% of the total power plant) and has a volume of approximately 0.11 cubic meters. This turbogenerator is a key element in achieving the 40 to 45% overall power plant thermal efficiency.

  15. Multistability in Chua's circuit with two stable node-foci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, B. C.; Wang, N.; Xu, Q.

    2016-04-15

    Only using one-stage op-amp based negative impedance converter realization, a simplified Chua's diode with positive outer segment slope is introduced, based on which an improved Chua's circuit realization with more simpler circuit structure is designed. The improved Chua's circuit has identical mathematical model but completely different nonlinearity to the classical Chua's circuit, from which multiple attractors including coexisting point attractors, limit cycle, double-scroll chaotic attractor, or coexisting chaotic spiral attractors are numerically simulated and experimentally captured. Furthermore, with dimensionless Chua's equations, the dynamical properties of the Chua's system are studied including equilibrium and stability, phase portrait, bifurcation diagram, Lyapunov exponentmore » spectrum, and attraction basin. The results indicate that the system has two symmetric stable nonzero node-foci in global adjusting parameter regions and exhibits the unusual and striking dynamical behavior of multiple attractors with multistability.« less

  16. Organ culture storage of pre-prepared corneal donor material for Descemet's membrane endothelial keratoplasty.

    PubMed

    Bhogal, Maninder; Matter, Karl; Balda, Maria S; Allan, Bruce D

    2016-11-01

    To evaluate the effect of media composition and storage method on pre-prepared Descemet's membrane endothelial keratoplasty (DMEK) grafts. 50 corneas were used. Endothelial wound healing and proliferation in different media were assessed using a standard injury model. DMEK grafts were stored using three methods: peeling with free scroll storage; partial peeling with storage on the stroma and fluid bubble separation with storage on the stroma. Endothelial cell (EC) phenotype and the extent of endothelial overgrowth were examined. Global cell viability was assessed for storage methods that maintained a normal cell phenotype. 1 mm wounds healed within 4 days. Enhanced media did not increase EC proliferation but may have increased EC migration into the wounded area. Grafts that had been trephined showed evidence of EC overgrowth, whereas preservation of a physical barrier in the bubble group prevented this. In grafts stored in enhanced media or reapposed to the stroma after trephination, endothelial migration occurred sooner and cells underwent endothelial-mesenchymal transformation. Ongoing cell loss, with new patterns of cell death, was observed after returning grafts to storage. Grafts stored as free scrolls retained more viable ECs than grafts prepared with the fluid bubble method (74.2± 3% vs 60.3±6%, p=0.04 (n=8). Free scroll storage is superior to liquid bubble and partial peeling techniques. Free scrolls only showed overgrowth of ECs after 4 days in organ culture, indicating a viable time window for the clinical use of pre-prepared DMEK donor material using this method. Methods for tissue preparation and storage media developed for whole corneas should not be used in pre-prepared DMEK grafts without prior evaluation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Orbital stability of solitary waves for Kundu equation

    NASA Astrophysics Data System (ADS)

    Zhang, Weiguo; Qin, Yinghao; Zhao, Yan; Guo, Boling

    In this paper, we consider the Kundu equation which is not a standard Hamiltonian system. The abstract orbital stability theory proposed by Grillakis et al. (1987, 1990) cannot be applied directly to study orbital stability of solitary waves for this equation. Motivated by the idea of Guo and Wu (1995), we construct three invariants of motion and use detailed spectral analysis to obtain orbital stability of solitary waves for Kundu equation. Since Kundu equation is more complex than the derivative Schrödinger equation, we utilize some techniques to overcome some difficulties in this paper. It should be pointed out that the results obtained in this paper are more general than those obtained by Guo and Wu (1995). We present a sufficient condition under which solitary waves are orbitally stable for 2c+sυ<0, while Guo and Wu (1995) only considered the case 2c+sυ>0. We obtain the results on orbital stability of solitary waves for the derivative Schrödinger equation given by Colin and Ohta (2006) as a corollary in this paper. Furthermore, we obtain orbital stability of solitary waves for Chen-Lee-Lin equation and Gerdjikov-Ivanov equation, respectively.

  18. Nonlinear dynamics near the stability margin in rotating pipe flow

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Leibovich, S.

    1991-01-01

    The nonlinear evolution of marginally unstable wave packets in rotating pipe flow is studied. These flows depend on two control parameters, which may be taken to be the axial Reynolds number R and a Rossby number, q. Marginal stability is realized on a curve in the (R, q)-plane, and the entire marginal stability boundary is explored. As the flow passes through any point on the marginal stability curve, it undergoes a supercritical Hopf bifurcation and the steady base flow is replaced by a traveling wave. The envelope of the wave system is governed by a complex Ginzburg-Landau equation. The Ginzburg-Landau equation admits Stokes waves, which correspond to standing modulations of the linear traveling wavetrain, as well as traveling wave modulations of the linear wavetrain. Bands of wavenumbers are identified in which the nonlinear modulated waves are subject to a sideband instability.

  19. Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System

    NASA Astrophysics Data System (ADS)

    Li, Hailiang; Wang, Yi; Yang, Tong; Zhong, Mingying

    2018-04-01

    The main purpose of the present paper is to investigate the nonlinear stability of viscous shock waves and rarefaction waves for the bipolar Vlasov-Poisson-Boltzmann (VPB) system. To this end, motivated by the micro-macro decomposition to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179, 2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro-macro decomposition around the local Maxwellian related to the bipolar VPB system and give a unified framework to study the nonlinear stability of the basic wave patterns to the system. Then, as applications of this new decomposition, the time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock waves and rarefaction waves are proved for the 1D bipolar VPB system. More precisely, it is first proved that the linear superposition of two Boltzmann shock profiles in the first and third characteristic fields is nonlinearly stable to the 1D bipolar VPB system up to some suitable shifts without the zero macroscopic mass conditions on the initial perturbations. Then the time-asymptotic stability of the rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar VPB system. These two results are concerned with the nonlinear stability of wave patterns for Boltzmann equation coupled with additional (electric) forces, which together with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725, 2016) sheds light on understanding the complicated dynamic behaviors around the wave patterns in the transportation of charged particles under the binary collisions, mutual interactions, and the effect of the electrostatic potential forces.

  20. Stability of nonlinear waves and patterns and related topics

    NASA Astrophysics Data System (ADS)

    Ghazaryan, Anna; Lafortune, Stephane; Manukian, Vahagn

    2018-04-01

    Periodic and localized travelling waves such as wave trains, pulses, fronts and patterns of more complex structure often occur in natural and experimentally built systems. In mathematics, these objects are realized as solutions of nonlinear partial differential equations. The existence, dynamic properties and bifurcations of those solutions are of interest. In particular, their stability is important for applications, as the waves that are observable are usually stable. When the waves are unstable, further investigation is warranted of the way the instability is exhibited, i.e. the nature of the instability, and also coherent structures that appear as a result of an instability of travelling waves. A variety of analytical, numerical and hybrid techniques are used to study travelling waves and their properties. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.

  1. Organic Rankine cycle - review and research directions in engine applications

    NASA Astrophysics Data System (ADS)

    Panesar, Angad

    2017-11-01

    Waste heat to power conversion using Organic Rankine Cycles (ORC) is expected to play an important role in CO2 reductions from diesel engines. Firstly, a review of automotive ORCs is presented focusing on the pure working fluids, thermal architectures and expanders. The discussion includes, but is not limited to: R245fa, ethanol and water as fluids; series, parallel and cascade as architectures; dry saturated, superheated and supercritical as expansion conditions; and scroll, radial turbine and piston as expansion machines. Secondly, research direction in versatile expander and holistic architecture (NOx + CO2) are proposed. Benefits of using the proposed unconventional approaches are quantified using Ricardo Wave and Aspen HYSYS for diesel engine and ORC modelling. Results indicate that, the implementation of versatile piston expander tolerant to two-phase and using cyclopentane can potentially increase the highway drive cycle power by 8%. Furthermore, holistic architecture offering complete utilisation of charge air and exhaust recirculation heat increased the performance noticeably to 5% of engine power at the design point condition.

  2. Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations

    NASA Astrophysics Data System (ADS)

    Zhang, Linghai

    2017-10-01

    The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 < 2 (1 + αγ) θ < αβγ; the existence and stability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and γ2 ε > 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 <γ2 ε < 1; the existence and instability of an upside down standing pulse solution if 0 < (1 + αγ) θ < αβγ < 2 (1 + αγ) θ. To establish the bifurcation for the scalar equation, we will study the existence and stability of a traveling wave front as well as the existence and instability of a standing pulse solution if 0 < 2 θ < β; the existence and stability of two standing wave fronts if 2 θ = β; the existence and stability of a traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 < θ < β < 2 θ. By the way, we will also study the existence and stability of a traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 < 2 θ < β. To achieve the main goals, we will make complete use of the special structures of the model equations and we will construct Evans functions and apply them to study the eigenvalues and eigenfunctions of several eigenvalue problems associated with several linear differential operators. It turns out that a complex number λ0 is an eigenvalue of the linear differential operator, if and only if λ0 is a zero of the Evans function. The stability, instability and bifurcations of the nonlinear waves follow from the zeros of the Evans functions. A very important motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.

  3. Orbital stability of periodic traveling wave solutions for the Kawahara equation

    NASA Astrophysics Data System (ADS)

    de Andrade, Thiago Pinguello; Cristófani, Fabrício; Natali, Fábio

    2017-05-01

    In this paper, we investigate the orbital stability of periodic traveling waves for the Kawahara equation. We prove that the periodic traveling wave, under certain conditions, minimizes a convenient functional by using an adaptation of the method developed by Grillakis et al. [J. Funct. Anal. 74, 160-197 (1987)]. The required spectral properties to ensure the orbital stability are obtained by knowing the positiveness of the Fourier transform of the associated periodic wave established by Angulo and Natali [SIAM J. Math. Anal. 40, 1123-1151 (2008)].

  4. Stability Design and Response to Waves by Batoids.

    PubMed

    Fish, Frank E; Hoffman, Jessica L

    2015-10-01

    Unsteady flows in the marine environment can affect the stability and locomotor costs of animals. For fish swimming at shallow depths, waves represent a form of unsteady flow. Waves consist of cyclic oscillations, during which the water moves in circular or elliptical orbits. Large gravity waves have the potential to displace fish both cyclically and in the direction of wave celerity for animals floating in the water column or holding station on the bottom. Displacement of a fish can exceed its stability control capability when the size of the wave orbit is equivalent to the size of the fish. Previous research into compensatory behaviors of fishes to waves has focused on pelagic osteichthyan fishes with laterally compressed bodies. However, dorsoventrally compressed batoid rays must also contend with waves. Examination of rays subjected to waves showed differing strategies for stability between pelagic and demersal species. Pelagic cownose rays (Rhinoptera bonasus) would glide through or be transported by waves, maintaining a positive dihedral of the wing-like pectoral fins. Demersal Atlantic stingrays (Dasyatis sabina) and freshwater rays (Potamotrygon motoro) maintained contact with the bottom and performed compensatory fin motions and body postures. The ability to limit displacement due to wave action by the demersal rays was also a function of the bottom texture. The ability of rays to maintain stability due to wave action suggests mechanisms to compensate for the velocity flux of the water impinging on the large projected area of the enlarged pectoral fins of rays. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  5. Stability properties of solitary waves for fractional KdV and BBM equations

    NASA Astrophysics Data System (ADS)

    Angulo Pava, Jaime

    2018-03-01

    This paper sheds new light on the stability properties of solitary wave solutions associated with Korteweg-de Vries-type models when the dispersion is very low. Using a compact, analytic approach and asymptotic perturbation theory, we establish sufficient conditions for the existence of exponentially growing solutions to the linearized problem and so a criterium of spectral instability of solitary waves is obtained for both models. Moreover, the nonlinear stability and spectral instability of the ground state solutions for both models is obtained for some specific regimen of parameters. Via a Lyapunov strategy and a variational analysis, we obtain the stability of the blow-up of solitary waves for the critical fractional KdV equation. The arguments presented in this investigation show promise for use in the study of the instability of traveling wave solutions of other nonlinear evolution equations.

  6. Stability of nonlinear waves and patterns and related topics.

    PubMed

    Ghazaryan, Anna; Lafortune, Stephane; Manukian, Vahagn

    2018-04-13

    Periodic and localized travelling waves such as wave trains, pulses, fronts and patterns of more complex structure often occur in natural and experimentally built systems. In mathematics, these objects are realized as solutions of nonlinear partial differential equations. The existence, dynamic properties and bifurcations of those solutions are of interest. In particular, their stability is important for applications, as the waves that are observable are usually stable. When the waves are unstable, further investigation is warranted of the way the instability is exhibited, i.e. the nature of the instability, and also coherent structures that appear as a result of an instability of travelling waves. A variety of analytical, numerical and hybrid techniques are used to study travelling waves and their properties.This article is part of the theme issue 'Stability of nonlinear waves and patterns and related topics'. © 2018 The Author(s).

  7. Substitutes in Chillers

    EPA Pesticide Factsheets

    Chillers typically cool water, which is then circulated to provide comfort cooling throughout a building or other location. Chillers can be classified by compressor type, including centrifugal, reciprocating, screw, and scroll.

  8. "Wave" signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis.

    PubMed

    Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Gao, Shan; Li, Ming; Zong, Keqing; Chen, Haihong; Hu, Shenghong

    2015-01-20

    A novel "wave" signal-smoothing and mercury-removing device has been developed for laser ablation quadrupole and multiple collector ICPMS analysis. With the wave stabilizer that has been developed, the signal stability was improved by a factor of 6.6-10 and no oscillation of the signal intensity was observed at a repetition rate of 1 Hz. Another advantage of the wave stabilizer is that the signal decay time is similar to that without the signal-smoothing device (increased by only 1-2 s for a signal decay of approximately 4 orders of magnitude). Most of the normalized elemental signals (relative to those without the stabilizer) lie within the range of 0.95-1.0 with the wave stabilizer. Thus, the wave stabilizer device does not significantly affect the aerosol transport efficiency. These findings indicate that this device is well-suited for routine optimization of ICPMS, as well as low repetition rate laser ablation analysis, which provides smaller elemental fractionation and better spatial resolution. With the wave signal-smoothing and mercury-removing device, the mercury gas background is reduced by 1 order of magnitude. More importantly, the (202)Hg signal intensity produced in the sulfide standard MASS-1 by laser ablation is reduced from 256 to 0.7 mV by the use of the wave signal-smoothing and mercury-removing device. This result suggests that the mercury is almost completely removed from the sample aerosol particles produced by laser ablation with the operation of the wave mercury-removing device. The wave mercury-removing device that we have designed is very important for Pb isotope ratio and accessory mineral U-Pb dating analysis, where removal of the mercury from the background gas and sample aerosol particles is highly desired. The wave signal-smoothing and mercury-removing device was applied successfully to the determination of the (206)Pb/(204)Pb isotope ratio in samples with low Pb content and/or high Hg content.

  9. The Temporal Stability of Lack of Sexual Attraction Across Young Adulthood.

    PubMed

    Cranney, Stephen

    2016-04-01

    There is a large and growing literature on the stability of sexual orientation across the lifespan. However, virtually no studies have been conducted on the longitudinal stability of any dimension of asexuality. Here I utilized Kinsey scale-type data from Wave III and Wave IV of the Add Health survey to measure the stability of indicating "not sexually attracted to either males or females" in a forced-choice, Kinsey-type scale and during the time participants were moving through early adulthood (18-26 years in Wave III and 24-32 years in Wave IV). I found that, for the most part, individuals who reported no sexual attraction in Wave III were not the same individuals who reported no sexual attraction in Wave IV, with only three out of the 25 in Wave III who indicated no sexual attraction going on to do the same in Wave IV. This inter-wave consistency was lower than it was for other sexual minorities. However, indicating no sexual attraction in one wave was still a statistically significant predictor of indicating no sexual attraction in the other wave, as was refusing to answer or indicating the "don't know" option in the other wave. These findings do not necessarily denote change in sexual attraction across waves; the fact that not answering the question in one wave was a significant predictor of indicating no sexual attraction in the other wave provides quantitative evidence for the ambiguities involved in sexual identities when sexuality is taken for granted in the broader culture. This ambiguity affects the operationalization and quantification of asexuality.

  10. The Temporal Stability of Lack of Sexual Attraction across Young Adulthood

    PubMed Central

    Cranney, Stephen

    2017-01-01

    There is a large and growing literature on the stability of sexual orientation across the lifespan. However, virtually no studies have been conducted on the longitudinal stability of any dimension of asexuality. Here, I utilized Kinsey scale-type data from Wave III and Wave IV of the Add Health survey to measure the stability of indicating “not sexually attracted to either males or females” in a forced-choice, Kinsey-type scale during the time participants were moving through early adulthood (18-26 in Wave III and 24-32 in Wave IV). I found that, for the most part, individuals who reported no sexual attraction in Wave III were not the same individuals who reported no sexual attraction in Wave IV, with only three out of the 25 in Wave III who indicated no sexual attraction going on to do the same in Wave IV. This inter-wave consistency was lower than it was for other sexual minorities. However, indicating no sexual attraction in one wave was still a statistically significant predictor of indicating no sexual attraction in the other wave, as was refusing to answer or indicating the “don’t know” option in the other wave. These findings do not necessarily denote change in sexual attraction across waves; the fact that not answering the question in one wave was a significant predictor of indicating no sexual attraction in the other wave provides quantitative evidence for the ambiguities involved in sexual identities when sexuality is taken for granted in the broader culture. This ambiguity affects the operationalization and quantification of asexuality. PMID:26228992

  11. The stability of freak waves with regard to external impact and perturbation of initial data

    NASA Astrophysics Data System (ADS)

    Smirnova, Anna; Shamin, Roman

    2014-05-01

    We investigate solutions of the equations, describing freak waves, in perspective of stability with regard to external impact and perturbation of initial data. The modeling of freak waves is based on numerical solution of equations describing a non-stationary potential flow of the ideal fluid with a free surface. We consider the two-dimensional infinitely deep flow. For waves modeling we use the equations in conformal variables. The variant of these equations is offered in [1]. Mathematical correctness of these equations was discussed in [2]. These works establish the uniqueness of solutions, offer the effective numerical solution calculation methods, prove the numerical convergence of these methods. The important aspect of numerical modeling of freak waves is the stability of solutions, describing these waves. In this work we study the questions of stability with regards to external impact and perturbation of initial data. We showed the stability of freak waves numerical model, corresponding to the external impact. We performed series of computational experiments with various freak wave initial data and random external impact. This impact means the power density on free surface. In each experiment examine two waves: the wave that was formed by external impact and without one. In all the experiments we see the stability of equation`s solutions. The random external impact practically does not change the time of freak wave formation and its form. Later our work progresses to the investigation of solution's stability under perturbations of initial data. We take the initial data that provide a freak wave and get the numerical solution. In common we take the numerical solution of equation with perturbation of initial data. The computing experiments showed that the freak waves equations solutions are stable under perturbations of initial data.So we can make a conclusion that freak waves are stable relatively external perturbation and perturbation of initial data both. 1. Zakharov V.E., Dyachenko A.I., Vasilyev O.A. New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface// Eur. J.~Mech. B Fluids. 2002. V. 21. P. 283-291. 2. R.V. Shamin. Dynamics of an Ideal Liquid with a Free Surface in Conformal Variables // Journal of Mathematical Sciences, Vol. 160, No. 5, 2009. P. 537-678. 3. R.V. Shamin, V.E. Zakharov, A.I. Dyachenko. How probability for freak wave formation can be found // THE EUROPEAN PHYSICAL JOURNAL - SPECIAL TOPICS Volume 185, Number 1, 113-124, DOI: 10.1140/epjst/e2010-01242-y

  12. Structural transformations of carbon and boron nitride nanoscrolls at high impact collisions.

    PubMed

    Woellner, C F; Machado, L D; Autreto, P A S; de Sousa, J M; Galvao, D S

    2018-02-14

    The behavior of nanostructures under high strain-rate conditions has been the object of theoretical and experimental investigations in recent years. For instance, it has been shown that carbon and boron nitride nanotubes can be unzipped into nanoribbons at high-velocity impacts. However, the response of many nanostructures to high strain-rate conditions is still unknown. In this work, we have investigated the mechanical behavior of carbon (CNS) and boron nitride nanoscrolls (BNS) colliding against solid targets at high velocities, using fully atomistic reactive (ReaxFF) molecular dynamics (MD) simulations. CNS (BNS) are graphene (boron nitride) membranes rolled up into papyrus-like structures. Their open-ended topology leads to unique properties not found in their close-ended analogs, such as nanotubes. Our results show that collision products are mainly determined by impact velocities and by two orientation angles, which define the position of the scroll (i) axis and (ii) open edge relative to the target. Our MD results showed that for appropriate velocities and orientations, large-scale deformations and nanoscroll fractures could occur. We also observed unscrolling (scrolls going back to quasi-planar membranes), scroll unzipping into nanoribbons, and significant reconstruction due to breaking and/or formation of new chemical bonds. For particular edge orientations and velocities, conversion from open to close-ended topology is also possible, due to the fusion of nanoscroll walls.

  13. Structural transformations of carbon and boron nitride nanoscrolls at high impact collisions

    NASA Astrophysics Data System (ADS)

    Woellner, C. F.; Machado, L. D.; Autreto, P. A. S.; de Sousa, J. M.; Galvao, D. S.

    The behavior of nanostructures under high strain-rate conditions has been object of theoretical and experimental investigations in recent years. For instance, it has been shown that carbon and boron nitride nanotubes can be unzipped into nanoribbons at high velocity impacts. However, the response of many nanostructures to high strain-rate conditions is still not completely understood. In this work we have investigated through fully atomistic reactive (ReaxFF) molecular dynamics (MD) simulations the mechanical behavior of carbon (CNS) and boron nitride nanoscrolls (BNS) colliding against solid targets at high velocities,. CNS (BNS) nanoscrolls are graphene (boron nitride) membranes rolled up into papyrus-like structures. Their open-ended topology leads to unique properties not found in close-ended analogues, such as nanotubes. Our results show that the collision products are mainly determined by impact velocities and by two impact angles, which define the position of the scroll (i) axis and (ii) open edge relative to the target. Our MD results showed that for appropriate velocities and orientations large-scale deformations and nanoscroll fracture can occur. We also observed unscrolling (scrolls going back to quasi-planar membranes), scroll unzipping into nanoribbons, and significant reconstruction due to breaking and/or formation of new chemical bonds. For particular edge orientations and velocities, conversion from open to close-ended topology is also possible, due to the fusion of nanoscroll walls.

  14. Glossary

    MedlinePlus

    ... instructions that come inside the box or package. Qualitative Test: A test that gives results in terms ... Federal, State & Local Officials Consumers Health Professionals Science & Research Industry Scroll back to top Popular Content Home ...

  15. Waves on radial film flows

    NASA Astrophysics Data System (ADS)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2005-08-01

    We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.

  16. 76 FR 59404 - Gastrointestinal Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... Pharmaceuticals, Inc., for irritable bowel syndrome with diarrhea. FDA intends to make background material...Committees/Calendar/default.htm . Scroll down to the appropriate advisory committee link. Procedure...

  17. Wave energy analysis based on simulation wave data in the China Sea

    NASA Astrophysics Data System (ADS)

    Gao, Zhan-sheng; Qian, Yu-hao; Sui, Yu-wei; Chen, Xuan; Zhang, Da

    2018-05-01

    In the current world, where human beings are severely plagued by environmental problems and energy crisis, the full and reasonable utilization of marine new energy resources will contribute to alleviating the energy crisis, contributing to global energy-saving, emission reduction and environmental protection, thus to promote sustainable development. In this study, we firstly simulated a 10-year (1991-2000) 6-hourly wave data of the China Sea, by using the Simulating WAves Nearshore (SWAN) wave model nested with WAVEWATCH-III (WW3) wave model forced with Cross-Calibrated, Multi-Platform (CCMP) wind data. Considering the value size and stability of the wave energy density, we analyzed the overall characteristics of the China Sea wave energy with using the simulation wave data. Results show that: (1) The wave energy density in January and October is distinctly higher than that in April and July. The large center of annual average Wave energy density is located in the north of the South China Sea (of about 12-16 kW/m). (2) Synthetically considering the value size and stability of the wave energy density and stability, the energy-rich area is found to be located in the north region of the South China Sea.

  18. Stability analysis and wave dynamics of an extended hybrid traffic flow model

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Qing; Zhou, Chao-Fan; Li, Wei-Kang; Yan, Bo-Wen; Jia, Bin; Wang, Ji-Xin

    2018-02-01

    The stability analysis and wave dynamic properties of an extended hybrid traffic flow model, WZY model, are intensively studied in this paper. The linear stable condition obtained by the linear stability analysis is presented. Besides, by means of analyzing Korteweg-de Vries equation, we present soliton waves in the metastable region. Moreover, the multiscale perturbation technique is applied to derive the traveling wave solution of the model. Furthermore, by means of performing Darboux transformation, the first-order and second-order doubly-periodic solutions and rational solutions are presented. It can be found that analytical solutions match well with numerical simulations.

  19. Stability of post-fertilization traveling waves

    NASA Astrophysics Data System (ADS)

    Flores, Gilberto; Plaza, Ramón G.

    This paper studies the stability of a family of traveling wave solutions to the system proposed by Lane et al. [D.C. Lane, J.D. Murray, V.S. Manoranjan, Analysis of wave phenomena in a morphogenetic mechanochemical model and an application to post-fertilization waves on eggs, IMA J. Math. Appl. Med. Biol. 4 (4) (1987) 309-331], to model a pair of mechanochemical phenomena known as post-fertilization waves on eggs. The waves consist of an elastic deformation pulse on the egg's surface, and a free calcium concentration front. The family is indexed by a coupling parameter measuring contraction stress effects on the calcium concentration. This work establishes the spectral, linear and nonlinear orbital stability of these post-fertilization waves for small values of the coupling parameter. The usual methods for the spectral and evolution equations cannot be applied because of the presence of mixed partial derivatives in the elastic equation. Nonetheless, exponential decay of the directly constructed semigroup on the complement of the zero eigenspace is established. We show that small perturbations of the waves yield solutions to the nonlinear equations decaying exponentially to a phase-modulated traveling wave.

  20. On the axisymmetric stability of heated supersonic round jets

    PubMed Central

    2016-01-01

    We perform an inviscid, spatial stability analysis of supersonic, heated round jets with the mean properties assumed uniform on either side of the jet shear layer, modelled here via a cylindrical vortex sheet. Apart from the hydrodynamic Kelvin–Helmholtz (K–H) wave, the spatial growth rates of the acoustically coupled supersonic and subsonic instability waves are computed for axisymmetric conditions (m=0) to analyse their role on the jet stability, under increased heating and compressibility. With the ambient stationary, supersonic instability waves may exist for any jet Mach number Mj≥2, whereas the subsonic instability waves, in addition, require the core-to-ambient flow temperature ratio Tj/To>1. We show, for moderately heated jets at Tj/To>2, the acoustically coupled instability modes, once cut on, to govern the overall jet stability with the K–H wave having disappeared into the cluster of acoustic modes. Sufficiently high heating makes the subsonic modes dominate the jet near-field dynamics, whereas the supersonic instability modes form the primary Mach radiation at far field. PMID:27274691

  1. A Kinetic Approach to Propagation and Stability of Detonation Waves

    NASA Astrophysics Data System (ADS)

    Monaco, R.; Bianchi, M. Pandolfi; Soares, A. J.

    2008-12-01

    The problem of the steady propagation and linear stability of a detonation wave is formulated in the kinetic frame for a quaternary gas mixture in which a reversible bimolecular reaction takes place. The reactive Euler equations and related Rankine-Hugoniot conditions are deduced from the mesoscopic description of the process. The steady propagation problem is solved for a Zeldovich, von Neuman and Doering (ZND) wave, providing the detonation profiles and the wave thickness for different overdrive degrees. The one-dimensional stability of such detonation wave is then studied in terms of an initial value problem coupled with an acoustic radiation condition at the equilibrium final state. The stability equations and their initial data are deduced from the linearized reactive Euler equations and related Rankine-Hugoniot conditions through a normal mode analysis referred to the complex disturbances of the steady state variables. Some numerical simulations for an elementary reaction of the hydrogen-oxygen chain are proposed in order to describe the time and space evolution of the instabilities induced by the shock front perturbation.

  2. Indoor Tanning: The Risks of Ultraviolet Rays

    MedlinePlus

    ... Class I devices are low risk and are subject to the least regulatory controls. Class II devices, ... Compliance Federal, State & Local Officials Consumers Health Professionals Science & Research Industry Scroll back to top Popular Content ...

  3. 76 FR 49774 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... immunodeficiency diseases, beta thalassemia, Hurler syndrome, Krabbe disease, and X- linked adrenoleukodystrophy... available at http://www.fda.gov/AdvisoryCommittees/Calendar/default.htm . Scroll down to the appropriate...

  4. 20. ROSS POWERHOUSE: BUTTERFLY VALVE AS SEEN FROM INSIDE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. ROSS POWERHOUSE: BUTTERFLY VALVE AS SEEN FROM INSIDE THE SCROLL CASE, 1987. - Skagit Power Development, Ross Powerhouse, On Skagit River, 10.7 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  5. Magnetron Sputtering System for Novel Intrinsically Switchable Thin Film Ferroelectric Resonators and Filters

    DTIC Science & Technology

    2012-08-03

    the growth conditions and to improve film quality.    Mechanical  Scroll   Pump   The sputtering system requires a mechanical  scroll   pump  to bring the...load lock and main processing  chamber from atmospheric pressure to medium  vacuum . This particular type of  pump  does not expose  any part of the  vacuum ...additional  pump  to bring the main processing chamber from medium  vacuum  to ultrahigh  vacuum . Cryogenic  pumps  have no mechanical components and are

  6. Erosion in radial inflow turbines. Volume 4: Erosion rates on internal surfaces

    NASA Technical Reports Server (NTRS)

    Clevenger, W. B., Jr.; Tabakoff, W.

    1975-01-01

    An analytic study of the rate at which material is removed by ingested dust impinging on the internal surfaces of a typical radial inflow turbine is presented. Results show that there are several regions which experience very severe erosion loss, and other regions that experience moderate levels of erosion loss: (1) the greatest amount of material loss occurs on the trailing edges of the nozzle blades where very high velocity, moderate angle impacts occur. The tip regions of ductile materials are also subjected to serious levels of erosion loss; (2) moderate amounts of erosion occur near the end of the scroll and on a few of the nozzle blades near this location. Results are presented in the form of surface contours that exist on the scroll and blade surfaces after continuous particulate ingestion with time.

  7. Cellulose Nanocrystal Templated Graphene Nanoscrolls for High Performance Supercapacitors and Hydrogen Storage: An Experimental and Molecular Simulation Study.

    PubMed

    Dhar, Prodyut; Gaur, Surendra Singh; Kumar, Amit; Katiyar, Vimal

    2018-03-01

    Graphene nanoscrolls (GNS), due to their remarkably interesting properties, have attracted significant interest with applications in various engineering sectors. However, uncontrolled morphologies, poor yield and low quality GNS produced through traditional routes are major challenges associated. We demonstrate sustainable approach of utilizing bio-derived cellulose nanocrystals (CNCs) as template for fabrication of GNS with tunable morphological dimensions ranging from micron-to-nanoscale(controlled length < 1 μm or >1 μm), alongwith encapsulation of catalytically active metallic-species in scroll interlayers. The surface-modified magnetic CNCs acts as structural-directing agents which provides enough momentum to initiate self-scrolling phenomenon of graphene through van der Waals forces and π-π interactions, mechanism of which is demonstrated through experimental and molecular simulation studies. The proposed approach of GNS fabrication provides flexibility to tune physico-chemical properties of GNS by simply varying interlayer spacing, scrolling density and fraction of encapsulated metallic nanoparticles. The hybrid GNS with confined palladium or platinum nanoparticles (at lower loading ~1 wt.%) shows enhanced hydrogen storage capacity (~0.2 wt.% at~20 bar and ~273 K) and excellent supercapacitance behavior (~223-357 F/g) for prolonged cycles (retention ~93.5-96.4% at ~10000 cycles). The current strategy of utilizing bio-based templates can be further extended to incorporate complex architectures or nanomaterials in GNS core or inter-layers, which will potentially broaden its applications in fabrication of high-performance devices.

  8. Toward a Micro Gas Chromatograph/Mass Spectrometer (GC/MS) System

    NASA Technical Reports Server (NTRS)

    Wiberg, D. V.; Eyre, F. B.; Orient, O.; Chutjian, A.; Garkarian, V.

    2001-01-01

    Miniature mass filters (e.g., quadrupoles, ion traps) have been the subject of several miniaturization efforts. A project is currently in progress at JPL to develop a miniaturized Gas Chromatograph/Mass Spectrometer (GC/MS) system, incorporating and/or developing miniature system components including turbomolecular pumps, scroll type roughing pump, quadrupole mass filter, gas chromatograph, precision power supply and other electronic components. The preponderance of the system elements will be fabricated using microelectromechanical systems (MEMS) techniques. The quadrupole mass filter will be fabricated using an X-ray lithography technique producing high precision, 5x5 arrays of quadrupoles with pole lengths of about 3 mm and a total volume of 27 cubic mm. The miniature scroll pump will also be fabricated using X-ray lithography producing arrays of scroll stages about 3 mm in diameter. The target detection range for the mass spectrometer is 1 to 300 atomic mass units (AMU) with are solution of 0.5 AMU. This resolution will allow isotopic characterization for geochronology, atmospheric studies and other science efforts dependant on the understanding of isotope ratios of chemical species. This paper will discuss the design approach, the current state-of-the art regarding the system components and the progress toward development of key elements. The full system is anticipated to be small enough in mass, volume and power consumption to allow in situ chemical analysis on highly miniaturized science craft for geochronology, atmospheric characterization and detection of life experiments applicable to outer planet roadmap missions.

  9. Experimental Evaluation of Journal Bearing Stability and New Gas Wave Bearing Materials

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Dimofte, Florin

    1998-01-01

    A gas journal bearing, with a wavy surfaces was tested in a range of speeds up to 18,000 RPM to determine its stability in an unloaded condition as a function of the wave amplitude. The bearing, was 50 mm in diameter, 58 mm long and had 0.01 65 mm radial clearance. Three waves were created on the inner surface by deforming the bearing sleeve. The ratio of the wave amplitude to the radial clearance (the wave amplitude ratio) was varied from zero to 0.3.

  10. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-01-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.

  11. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-06-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.

  12. Stability of the cometary ionopause

    NASA Astrophysics Data System (ADS)

    Ershkovich, A. I.; Axford, W. I.; Ip, W.-H.; Flammer, K. R.

    MHD stability of the cometary ionopause is discussed in the context of the Giotto mission to comet Halley. A mechanism associated with the plasma compressibility is suggested here as being responsible for the apparent stability of the Halley ionopause: when the phase velocity of surface waves at the ionopause approaches the fast magnetoacoustic speed the unstable surface waves are transformed into stable body waves in the whole fluid resulting in an effective damping of the instability. The effects of both mass loading (due to photoionization) and dissociative recombination are also studied.

  13. Existence, Uniqueness and Asymptotic Stability of Time Periodic Traveling Waves for a Periodic Lotka-Volterra Competition System with Diffusion

    PubMed Central

    Zhao, Guangyu; Ruan, Shigui

    2011-01-01

    We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive Lotka-Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c* such that for each wave speed c ≤ c*, there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We also show that the traveling wave solutions with wave speed c < c* are asymptotically stable in certain sense. In addition, we establish the nonexistence of time periodic traveling waves for nonzero speed c > c*. PMID:21572575

  14. Effect of parallel electric fields on the ponderomotive stabilization of MHD instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litwin, C.; Hershkowitz, N.

    The contribution of the wave electric field component E/sub parallel/, parallel to the magnetic field, to the ponderomotive stabilization of curvature driven instabilities is evaluated and compared to the transverse component contribution. For the experimental density range, in which the stability is primarily determined by the m = 1 magnetosonic wave, this contribution is found to be the dominant and stabilizing when the electron temperature is neglected. For sufficiently high electron temperatures the dominant fast wave is found to be axially evanescent. In the same limit, E/sub parallel/ becomes radially oscillating. It is concluded that the increased electron temperature nearmore » the plasma surface reduces the magnitude of ponderomotive effects.« less

  15. Phase and frequency structure of superradiance pulses generated by relativistic Ka-band backward-wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostov, V. V.; Romanchenko, I. V.; Elchaninov, A. A.

    2016-08-15

    Phase and frequency stability of electromagnetic oscillations in sub-gigawatt superradiance (SR) pulses generated by an extensive slow-wave structure of a relativistic Ka-band backward-wave oscillator were experimentally investigated. Data on the frequency tuning and radiation phase stability of SR pulses with a variation of the energy and current of electron beam were obtained.

  16. Stability of standing wave for the fractional nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Peng, Congming; Shi, Qihong

    2018-01-01

    In this paper, we study the stability and instability of standing waves for the fractional nonlinear Schrödinger equation i∂tu = (-Δ)su - |u|2σu, where (t ,x ) ∈R × RN, 1/2

  17. Mechanisms of arrhythmogenesis related to calcium-driven alternans in a model of human atrial fibrillation

    NASA Astrophysics Data System (ADS)

    Chang, Kelly C.; Trayanova, Natalia A.

    2016-11-01

    The occurrence of atrial fibrillation (AF) is associated with progressive changes in the calcium handling system of atrial myocytes. Calcium cycling instability has been implicated as an underlying mechanism of electrical alternans observed in patients who experience AF. However, the extent to which calcium-induced alternation of electrical activity in the atria contributes to arrhythmogenesis is unknown. In this study, we investigated the effects of calcium-driven alternans (CDA) on arrhythmia susceptibility in a biophysically detailed, 3D computer model of the human atria representing electrical and structural remodeling secondary to chronic AF. We found that elevated propensity to CDA rendered the atria vulnerable to ectopy-induced arrhythmia. It also increased the complexity and persistence of arrhythmias induced by fast pacing, with unstable scroll waves meandering and frequently breaking up to produce multiple wavelets. Our results suggest that calcium-induced electrical instability may increase arrhythmia vulnerability and promote increasing disorganization of arrhythmias in the chronic AF-remodeled atria, thus playing an important role in the progression of the disease.

  18. Unifying perspective: Solitary traveling waves as discrete breathers in Hamiltonian lattices and energy criteria for their stability

    NASA Astrophysics Data System (ADS)

    Cuevas-Maraver, Jesús; Kevrekidis, Panayotis G.; Vainchtein, Anna; Xu, Haitao

    2017-09-01

    In this work, we provide two complementary perspectives for the (spectral) stability of solitary traveling waves in Hamiltonian nonlinear dynamical lattices, of which the Fermi-Pasta-Ulam and the Toda lattice are prototypical examples. One is as an eigenvalue problem for a stationary solution in a cotraveling frame, while the other is as a periodic orbit modulo shifts. We connect the eigenvalues of the former with the Floquet multipliers of the latter and using this formulation derive an energy-based spectral stability criterion. It states that a sufficient (but not necessary) condition for a change in the wave stability occurs when the functional dependence of the energy (Hamiltonian) H of the model on the wave velocity c changes its monotonicity. Moreover, near the critical velocity where the change of stability occurs, we provide an explicit leading-order computation of the unstable eigenvalues, based on the second derivative of the Hamiltonian H''(c0) evaluated at the critical velocity c0. We corroborate this conclusion with a series of analytically and numerically tractable examples and discuss its parallels with a recent energy-based criterion for the stability of discrete breathers.

  19. Anabolic Steroids (For Teens)

    MedlinePlus

    ... left or right to scroll. Monitoring the Future Study: Trends in Prevalence of Steroids for 8th Graders, 10th Graders, and 12th Graders; 2017 (in percent)* Drug Time Period 8th Graders 10th Graders 12th Graders Steroids ...

  20. Stability of Planar Rarefaction Wave to 3D Full Compressible Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Li, Lin-an; Wang, Teng; Wang, Yi

    2018-05-01

    We prove time-asymptotic stability toward the planar rarefaction wave for the three-dimensional full, compressible Navier-Stokes equations with the heat-conductivities in an infinite long flat nozzle domain {R × T^2} . Compared with one-dimensional case, the proof here is based on our new observations on the cancellations on the flux terms and viscous terms due to the underlying wave structures, which are crucial for overcoming the difficulties due to the wave propagation in the transverse directions x 2 and x 3 and its interactions with the planar rarefaction wave in x 1 direction.

  1. Mechanics of rolling of nanoribbon on tube and sphere.

    PubMed

    Yin, Qifang; Shi, Xinghua

    2013-06-21

    The configuration of graphene nano-ribbon (GNR) assembly on carbon nanotube (CNT) and sphere is studied through theoretical modeling and molecular simulation. The GNR can spontaneously wind onto the CNT due to van der Waals (vdW) interaction and form two basic configurations: helix and scroll. The final configuration arises from the competition among three energy terms: the bending energy of the GNR, the vdW interaction between GNR and CNT, the vdW between the GNR itself. We derive analytical solutions by accounting for the three energy parts, with which we draw phase diagrams and predict the final configuration (helix or scroll) based on the selected parameters. The molecular simulations are conducted to verify the model with the results agree well with the model predicted. Our work can be used to actively control and transfer the tube-like nanoparticles and viruses as well as to assemble ribbon-like nanomaterials.

  2. Flow in nonrotating passages of radial inflow turbines

    NASA Technical Reports Server (NTRS)

    Baskharone, E.; Hamed, A.; Tabakoff, W.

    1979-01-01

    The analysis of irrotational incompressible flow field in the stator unit of a radial inflow turbine is presented. The solution in the combined scroll-nozzle assembly is complicated by the domain geometry and by its multiconnectivity. This model is necessary, however, in order to provide a better understanding of the mutual interaction effects of these two components on the flow field. The finite element method is used in the solution which is limited to the two dimensional case. A substructuring technique is adopted in the computational procedure and results in considerable savings in both computer time and core storage requirements. The results are presented for the flow velocity magnitude and direction in the scroll and through the various nozzles, for two nozzle blade geometries. In addition, the mass flow rates in the different nozzles are computed and their deviations from the mean value determined.

  3. Using the Scroll Wheel on a Wireless Mouse as a Motion Sensor

    NASA Astrophysics Data System (ADS)

    Taylor, Richard S.; Wilson, William R.

    2010-12-01

    Since its inception in the mid-80s, the computer mouse has undergone several design changes. As the mouse has evolved, physicists have found new ways to utilize it as a motion sensor. For example, the rollers in a mechanical mouse have been used as pulleys to study the motion of a magnet moving through a copper tube as a quantitative demonstration of Lenz's law and to study mechanical oscillators (e.g., mass-spring system and compound pendulum).1-3 Additionally, the optical system in an optical mouse has been used to study a mechanical oscillator (e.g., mass-spring system).4 The argument for using a mouse as a motion sensor has been and continues to be availability and cost. This paper continues this tradition by detailing the use of the scroll wheel on a wireless mouse as a motion sensor.

  4. Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit

    NASA Astrophysics Data System (ADS)

    Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D.; Taggart-Scarff, Joshua K.; Qing, Bo; Van Vliet, Krystyn J.; Li, Richard; Wardle, Brian L.; Strano, Michael S.

    2016-07-01

    Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction.

  5. Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit.

    PubMed

    Liu, Pingwei; Jin, Zhong; Katsukis, Georgios; Drahushuk, Lee William; Shimizu, Steven; Shih, Chih-Jen; Wetzel, Eric D; Taggart-Scarff, Joshua K; Qing, Bo; Van Vliet, Krystyn J; Li, Richard; Wardle, Brian L; Strano, Michael S

    2016-07-22

    Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction. Copyright © 2016, American Association for the Advancement of Science.

  6. Stabilized floating platforms

    DOEpatents

    Thomas, David G.

    1976-01-01

    The subject invention is directed to a floating platform for supporting nuclear reactors and the like at selected offshore sites. The platform is provided with a stabilizer mechanism which significantly reduces the effects of wave action upon the platform and which comprises a pair of relatively small floats attached by rigid booms to the platform at locations spaced therefrom for reducing wave pitch, acceleration, and the resonance period of the wave.

  7. Stability of Viscous St. Venant Roll Waves: From Onset to Infinite Froude Number Limit

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Johnson, Mathew A.; Noble, Pascal; Rodrigues, L. Miguel; Zumbrun, Kevin

    2017-02-01

    We study the spectral stability of roll wave solutions of the viscous St. Venant equations modeling inclined shallow water flow, both at onset in the small Froude number or "weakly unstable" limit F→ 2^+ and for general values of the Froude number F, including the limit F→ +∞ . In the former, F→ 2^+, limit, the shallow water equations are formally approximated by a Korteweg-de Vries/Kuramoto-Sivashinsky (KdV-KS) equation that is a singular perturbation of the standard Korteweg-de Vries (KdV) equation modeling horizontal shallow water flow. Our main analytical result is to rigorously validate this formal limit, showing that stability as F→ 2^+ is equivalent to stability of the corresponding KdV-KS waves in the KdV limit. Together with recent results obtained for KdV-KS by Johnson-Noble-Rodrigues-Zumbrun and Barker, this gives not only the first rigorous verification of stability for any single viscous St. Venant roll wave, but a complete classification of stability in the weakly unstable limit. In the remainder of the paper, we investigate numerically and analytically the evolution of the stability diagram as Froude number increases to infinity. Notably, we find transition at around F=2.3 from weakly unstable to different, large- F behavior, with stability determined by simple power-law relations. The latter stability criteria are potentially useful in hydraulic engineering applications, for which typically 2.5≤ F≤ 6.0.

  8. Note on the stability of viscous roll waves

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Johnson, Mathew A.; Noble, Pascal; Rodrigues, Luis Miguel; Zumbrun, Kevin

    2017-02-01

    In this note, we announce a complete classification of the stability of periodic roll-wave solutions of the viscous shallow water equations, from their onset at Froude number F ≈ 2 up to the infinite Froude limit. For intermediate Froude numbers, we obtain numerically a particularly simple power-law relation between F and the boundaries of the region of stable periods, which appears potentially useful in hydraulic engineering applications. In the asymptotic regime F → 2 (onset), we provide an analytic expression of the stability boundaries, whereas in the limit F → ∞, we show that roll waves are always unstable.

  9. Geometric Effects on the Amplification of First Mode Instability Waves

    NASA Technical Reports Server (NTRS)

    Kirk, Lindsay C.; Candler, Graham V.

    2013-01-01

    The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.

  10. Stability characteristics of the mesopause region above the Andes

    NASA Astrophysics Data System (ADS)

    Yang, F.; Liu, A. Z.

    2017-12-01

    The structure and seasonal variations of static and dynamic (shear) instabilities in the upper atmosphere (80 to 110 km) are examined using 3-year high-resolution wind and temperature data obtained with the Na Lidar at Andes Lidar Observatory (30S,71W). The stabilities are primarily determined by background temperature and wind, but strongly affected by tidal and gravity wave variations. Gravity waves perturb the atmosphere, causing intermittent unstable layers. The stabilities are characterized by their vertical and seasonal distributions of probability of instabilities. As have been found in previous studies, there is a correlation between high static stability (large N2) and strong vertical wind shear. The mechanism for this relationship is investigated in the context of gravity waves interacting with varying background.

  11. Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T. (Inventor)

    1997-01-01

    The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.

  12. Scrolling and driving: how an MP3 player and its aftermarket controller affect driving performance and visual behavior.

    PubMed

    Lee, John D; Roberts, Shannon C; Hoffman, Joshua D; Angell, Linda S

    2012-04-01

    The aim of this study was to assess how scrolling through playlists on an MP3 player or its aftermarket controller affects driving performance and to examine how drivers adapt device use to driving demands. Drivers use increasingly complex infotainment devices that can undermine driving performance. The goal activation hypothesis suggests that drivers might fail to compensate for these demands, particularly with long tasks and large search set sizes. A total of 50 participants searched for songs in playlists of varying lengths using either an MP3 player or an aftermarket controller while negotiating road segments with traffic and construction in a medium-fidelity driving simulator. Searching through long playlists (580 songs) resulted in poor driving performance and required more long glances (longer than 2 s) to the device compared with other playlist lengths. The aftermarket controller also led to more long glances compared with the MP3 player. Drivers did not adequately adapt their behavior to roadway demand, as evident in their degraded driving performance. No significant performance differences were found between short playlists, the radio-tuning task, and the no-task condition. Selecting songs from long playlists undermined driving performance, and drivers did not sufficiently adapt their use of the device to the roadway demands, consistent with the goal activation hypothesis. The aftermarket controller degraded rather than enhanced performance. Infotainment systems should support drivers in managing distraction. Aftermarket controllers can have the unintended effect of making devices carried into the car less compatible with driving.These results can motivate development of new interfaces as alternatives to scrolling lists.

  13. A Stability Analysis for a Hydrodynamic Three-Wave Journal Bearing

    NASA Technical Reports Server (NTRS)

    Ene, Nicoleta M.; Dimofte, Florin; Keith, Theo G., Jr.

    2007-01-01

    The influence of the wave amplitude and oil supply pressure on the dynamic behavior of a hydrodynamic three-wave journal bearing is presented. Both, a transient and a small perturbation technique, were used to predict the threshold to fractional frequency whirl (FFW). In addition, the behavior of the rotor after FFW appeared was determined from the transient analysis. The turbulent effects were also included in the computations. Bearings having a diameter of 30 mm, a length of 27.5 mm, and a clearance of 35 microns were analyzed. Numerical results were compared to experimental results obtained at the NASA GRC. Numerical and experimental results showed that the above-mentioned wave bearing with a wave amplitude ratio of 0.305 operates stably at rotational speeds up to 60,000 rpm, regardless of the oil supply pressure. For smaller wave amplitude ratios, a threshold of stability was found. It was observed that the threshold of stability for lower wave amplitude strongly depends on the oil supply pressure and on the wave amplitude. When the FFW occurs, the journal center maintains its trajectory inside the bearing clearance and therefore the rotor can be run safely without damaging the bearing surfaces.

  14. Tissue elasticity of in vivo skeletal muscles measured in the transverse and longitudinal planes using shear wave elastography.

    PubMed

    Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki

    2017-07-01

    The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (P<0·001), but measurement repeatability did not differ significantly between the imaging planes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (P<0·001). Image stability and measurement values of shear wave elastography images varied with imaging plane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  15. Stem breakage of salt marsh vegetation under wave forcing: A field and model study

    NASA Astrophysics Data System (ADS)

    Vuik, Vincent; Suh Heo, Hannah Y.; Zhu, Zhenchang; Borsje, Bas W.; Jonkman, Sebastiaan N.

    2018-01-01

    One of the services provided by coastal ecosystems is wave attenuation by vegetation, and subsequent reduction of wave loads on flood defense structures. Therefore, stability of vegetation under wave forcing is an important factor to consider. This paper presents a model which determines the wave load that plant stems can withstand before they break or fold. This occurs when wave-induced bending stresses exceed the flexural strength of stems. Flexural strength was determined by means of three-point-bending tests, which were carried out for two common salt marsh species: Spartina anglica (common cord-grass) and Scirpus maritimus (sea club-rush), at different stages in the seasonal cycle. Plant stability is expressed in terms of a critical orbital velocity, which combines factors that contribute to stability: high flexural strength, large stem diameter, low vegetation height, high flexibility and a low drag coefficient. In order to include stem breakage in the computation of wave attenuation by vegetation, the stem breakage model was implemented in a wave energy balance. A model parameter was calibrated so that the predicted stem breakage corresponded with the wave-induced loss of biomass that occurred in the field. The stability of Spartina is significantly higher than that of Scirpus, because of its higher strength, shorter stems, and greater flexibility. The model is validated by applying wave flume tests of Elymus athericus (sea couch), which produced reasonable results with regards to the threshold of folding and overall stem breakage percentage, despite the high flexibility of this species. Application of the stem breakage model will lead to a more realistic assessment of the role of vegetation for coastal protection.

  16. Vibration waveform effects on dynamic stabilization of ablative Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Lucchio, L. Di; Rodriguez Prieto, G.

    2011-08-15

    An analysis of dynamic stabilization of Rayleigh-Taylor instability in an ablation front is performed by considering a general square wave for modulating the vertical acceleration of the front. Such a kind of modulation allows for clarifying the role of thermal conduction in the mechanism of dynamic stabilization. In addition, the study of the effect of different modulations by varying the duration and amplitude of the square wave in each half-period provides insight on the optimum performance of dynamic stabilization.

  17. A novel function of WAVE in lamellipodia: WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading.

    PubMed

    Yamazaki, Daisuke; Fujiwara, Takashi; Suetsugu, Shiro; Takenawa, Tadaomi

    2005-05-01

    When a cell spreads and moves, reorganization of the actin cytoskeleton pushes the cell membrane, and the resulting membrane protrusions create new points of contact with the substrate and generate the locomotive force. Membrane extension and adhesion to a substrate must be tightly coordinated for effective cell movement, but little is known about the mechanisms underlying these processes. WAVEs are critical regulators of Rac-induced actin reorganization. WAVE2 is essential for formation of lamellipodial structures at the cell periphery stimulated by growth factors, but it is thought that WAVE1 is dispensable for such processes in mouse embryonic fibroblasts (MEFs). Here we show a novel function of WAVE in lamellipodial protrusions during cell spreading. During spreading on fibronectin (FN), MEFs with knockouts (KOs) of WAVE1 and WAVE2 showed different membrane dynamics, suggesting that these molecules have distinct roles in lamellipodium formation. Formation of lamellipodial structures on FN was inhibited in WAVE2 KO MEFs. In contrast, WAVE1 is not essential for extension of lamellipodial protrusions but is required for stabilization of such structures. WAVE1-deficiency decreased the density of actin filaments and increased the speed of membrane extension, causing deformation of focal complex at the tip of spreading edges. Thus, at the tip of the lamellipodial protrusion, WAVE2 generates the membrane protrusive structures containing actin filaments, and modification by WAVE1 stabilizes these structures through cell-substrate adhesion. Coordination of WAVE1 and WAVE2 activities appears to be necessary for formation of proper actin structures in stable lamellipodia.

  18. Uniform stabilization of wave equation with localized internal damping and acoustic boundary condition with viscoelastic damping

    NASA Astrophysics Data System (ADS)

    Frota, Cícero Lopes; Vicente, André

    2018-06-01

    In this paper, we deal with the uniform stabilization to the mixed problem for a nonlinear wave equation and acoustic boundary conditions on a non-locally reacting boundary. The main purpose is to study the stability when the internal damping acts only over a subset ω of the domain Ω and the boundary damping is of the viscoelastic type.

  19. What to Know When Buying or Using a Breast Pump

    MedlinePlus

    ... and friends,” says H. Paige Lewter, an electrical engineer and device reviewer in the FDA’s Obstetrics and ... State & Local Officials Consumers Health Professionals Science & Research Industry Scroll back to top Popular Content Home Latest ...

  20. Direct-to-Consumer Promotion of Prescription Drugs on Mobile Devices: Content Analysis

    PubMed Central

    Sullivan, Helen W; Dolina, Suzanne; Lynch, Molly; Squiers, Linda B

    2017-01-01

    Background US Food and Drug Administration (FDA) regulations state that any prescription drug promotion that presents drug benefits to consumers must also disclose certain information about the drug’s risks in a similar manner. Nearly three-quarters of all US mobile phone subscribers use a smartphone, and over half report receiving mobile advertisements on their device. Objective The objective of this project was to investigate how prescription drugs are being promoted to consumers using mobile technologies. We were particularly interested in the presentation of drug benefits and risks, with regard to presence, placement, and prominence. Methods We analyzed a sample of 51 mobile promotional communications and their associated linked landing pages. We assessed the content and format of the mobile communications and landing pages with regard to presentation of drug benefits and risks. Results Of the 51 mobile communications we coded, 41% (21/51) were product claim communications (includes the drug name, benefits, and risks), 22% (11/51) were reminder communications (includes drug name only), and 37% (19/51) were help-seeking communications (includes information about the medical condition but not the drug name). Some of the product claim communications (5/21, 24%) required scrolling to see all the benefit information; in contrast, 95% (20/21) required scrolling to see all the risk information. Of the 19 product claim communications that presented both benefits and risks, 95% (18/19) presented benefits before risks and 47% (9/19) used a bigger font for benefits than for risks. Most mobile communications (35/51, 69%) linked to branded drug websites with both benefits and risks, 25% (13/51) linked to a landing page with benefits but no visible risks, and 6% (3/51) linked to a landing page with risks but no visible benefits. Few landing pages (4/51, 8%) required scrolling to see all the benefit information; in contrast, 51% (26/51) required scrolling to see all the risk information. Of the 35 landing pages with both benefit and risk information, 71% (25/35) presented benefits before risks and 51% (18/35) used a bigger font for benefits than for risks. Conclusions These results indicate that, while risks and benefits are both represented in mobile communications and their associated landing pages, they are not equally prominent and accessible. This has implications for compliance with FDA fair balance regulations. PMID:28676469

  1. Demonstration of a robust magnonic spin wave interferometer.

    PubMed

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B; Ross, Caroline A; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-07-22

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe.

  2. Demonstration of a robust magnonic spin wave interferometer

    PubMed Central

    Kanazawa, Naoki; Goto, Taichi; Sekiguchi, Koji; Granovsky, Alexander B.; Ross, Caroline A.; Takagi, Hiroyuki; Nakamura, Yuichi; Inoue, Mitsuteru

    2016-01-01

    Magnonics is an emerging field dealing with ultralow power consumption logic circuits, in which the flow of spin waves, rather than electric charges, transmits and processes information. Waves, including spin waves, excel at encoding information via their phase using interference. This enables a number of inputs to be processed in one device, which offers the promise of multi-input multi-output logic gates. To realize such an integrated device, it is essential to demonstrate spin wave interferometers using spatially isotropic spin waves with high operational stability. However, spin wave reflection at the waveguide edge has previously limited the stability of interfering waves, precluding the use of isotropic spin waves, i.e., forward volume waves. Here, a spin wave absorber is demonstrated comprising a yttrium iron garnet waveguide partially covered by gold. This device is shown experimentally to be a robust spin wave interferometer using the forward volume mode, with a large ON/OFF isolation value of 13.7 dB even in magnetic fields over 30 Oe. PMID:27443989

  3. Current driven instabilities of an electromagnetically accelerated plasma

    NASA Technical Reports Server (NTRS)

    Chouetri, E. Y.; Kelly, A. J.; Jahn, R. G.

    1988-01-01

    A plasma instability that strongly influences the efficiency and lifetime of electromagnetic plasma accelerators was quantitatively measured. Experimental measurements of dispersion relations (wave phase velocities), spatial growth rates, and stability boundaries are reported. The measured critical wave parameters are in excellent agreement with theoretical instability boundary predictions. The instability is current driven and affects a wide spectrum of longitudinal (electrostatic) oscillations. Current driven instabilities, which are intrinsic to the high-current-carrying magnetized plasma of the magnetoplasmadynmic (MPD) accelerator, were investigated with a kinetic theoretical model based on first principles. Analytical limits of the appropriate dispersion relation yield unstable ion acoustic waves for T(i)/T(e) much less than 1 and electron acoustic waves for T(i)/T(e) much greater than 1. The resulting set of nonlinear equations for the case of T(i)/T(e) = 1, of most interest to the MPD thruster Plasma Wave Experiment, was numerically solved to yield a multiparameter set of stability boundaries. Under certain conditions, marginally stable waves traveling almost perpendicular to the magnetic field would travel at a velocity equal to that of the electron current. Such waves were termed current waves. Unstable current waves near the upper stability boundary were observed experimentally and are in accordance with theoretical predictions. This provides unambiguous proof of the existence of such instabilites in electromagnetic plasma accelerators.

  4. Stability analysis of a Vlasov-Wave system describing particles interacting with their environment

    NASA Astrophysics Data System (ADS)

    De Bièvre, Stephan; Goudon, Thierry; Vavasseur, Arthur

    2018-06-01

    We study a kinetic equation of the Vlasov-Wave type, which arises in the description of the behavior of a large number of particles interacting weakly with an environment, composed of an infinite collection of local vibrational degrees of freedom, modeled by wave equations. We use variational techniques to establish the existence of large families of stationary states for this system, and analyze their stability.

  5. Some problems of nonlinear waves in solid propellant rocket motors

    NASA Technical Reports Server (NTRS)

    Culick, F. E. C.

    1979-01-01

    An approximate technique for analyzing nonlinear waves in solid propellant rocket motors is presented which inexpensively provides accurate results up to amplitudes of ten percent. The connection with linear stability analysis is shown. The method is extended to third order in the amplitude of wave motion in order to study nonlinear stability, or triggering. Application of the approximate method to the behavior of pulses is described.

  6. Pseudo-incompressible, finite-amplitude gravity waves: wave trains and stability

    NASA Astrophysics Data System (ADS)

    Schlutow, Mark; Klein, Rupert

    2017-04-01

    Based on weak asymptotic WKB-like solutions for two-dimensional atmospheric gravity waves (GWs) traveling wave solutions (wave trains) are derived and analyzed with respect to stability. A systematic multiple-scale analysis using the ratio of the dominant wavelength and the scale height as a scale separation parameter is applied on the fully compressible Euler equations. A distinguished limit favorable for GWs close to static instability, reveals that pseudo-incompressible rather than Boussinesq theory applies. A spectral expansion including a mean flow, combined with the additional WKB assumption of slowly varying phases and amplitudes, is used to find general weak asymptotic solutions. This ansatz allows for arbitrarily strong, non-uniform stratification and holds even for finite-amplitude waves. It is deduced that wave trains as leading order solutions can only exist if either some non-uniform background stratification is given but the wave train propagates only horizontally or if the wave train velocity vector is given but the background is isothermal. For the first case, general analytical solutions are obtained that may be used to model mountain lee waves. For the second case with the additional assumption of horizontal periodicity, upward propagating wave train fronts were found. These wave train fronts modify the mean flow beyond the non-acceleration theorem. Stability analysis reveal that they are intrinsically modulationally unstable. The range of validity for the scale separation parameter was tested with fully nonlinear simulations. Even for large values an excellent agreement with the theory was found.

  7. Existence and exponential stability of traveling waves for delayed reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Hsiung; Yang, Tzi-Sheng; Yu, Zhixian

    2018-03-01

    The purpose of this work is to investigate the existence and exponential stability of traveling wave solutions for general delayed multi-component reaction-diffusion systems. Following the monotone iteration scheme via an explicit construction of a pair of upper and lower solutions, we first obtain the existence of monostable traveling wave solutions connecting two different equilibria. Then, applying the techniques of weighted energy method and comparison principle, we show that all solutions of the Cauchy problem for the considered systems converge exponentially to traveling wave solutions provided that the initial perturbations around the traveling wave fronts belong to a suitable weighted Sobolev space.

  8. Use of satellite data and modeling to assess the influence of stratospheric processes on the troposphere

    NASA Astrophysics Data System (ADS)

    Nathan, Terrence

    1991-09-01

    Over the past forty years, numerous linear stability studies have been performed in order to explain the origin and structure of observed waves in the atmosphere. Of these studies, only a small fraction have considered the stability of time-dependent, zonally varying flow or the influence of radiative-photochemical feedbacks on the stability of zonally uniform flow. The stability of such flows is described, and these flows may yield important information concerning the origin, structure, and transient time scales of free waves in the atmosphere. During the period 1990 to 1991, a beta-plane model that couples radiative transfer, ozone advection, and ozone photochemistry with the quasigeostrophic dynamical circulation was developed in order to study the diabatic effects of Newtonian cooling and ozone-dynamics interaction on the linear stability of free planetary waves in the atmosphere. The stability of a basic state consisting of a westward-moving wave and a zonal mean jet was examined using a linearized, nondivergent barotropic model on sphere. The sensitivity of the stability of the flow to the strength and structure of the zonal jet was emphasized. The current research is focused on the following problems: (1) examination of the finite amplitude interactions among radiation, ozone, and dynamics; and (2) examination of the role of seasonal forcing in short-term climate variability. The plans for next year are presented.

  9. Stability analysis of a two-stage tapered gyrotron traveling-wave tube amplifier with distributed losses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, C. L.; Lian, Y. H.; Cheng, N. H.

    2012-11-15

    The two-stage tapered gyrotron traveling-wave tube (gyro-TWT) amplifier has achieved wide bandwidth in the millimeter wave range. However, possible oscillations in each stage limit this amplifier's operating beam current and thus its output power. To further enhance the amplifier's stability, distributed losses are applied to the interaction circuit of the two-stage tapered gyro-TWT. A self-consistent particle-tracing code is used for analyzing the beam-wave interactions. The stability analysis includes the effects of the wall losses and the length of each stage on the possible oscillations. Simulation results reveal that the distributed-loss method effectively stabilizes all the oscillations in the two stages.more » Under stable operating conditions, the device is predicted to produce a peak power of 60 kW with an efficiency of 29% and a saturated gain of 52 dB in the Ka-band. The 3-dB bandwidth is 5.7 GHz, which is approximately 16% of the center frequency.« less

  10. Detail of west corner of front entry stair showing mission ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of west corner of front entry stair showing mission scrolls and sill of former living porch opening, facing east. - Albrook Air Force Station, Company Officer's Quarters, East side of Canfield Avenue, Balboa, Former Panama Canal Zone, CZ

  11. Stability of wave processes in a rotating electrically conducting fluid

    NASA Astrophysics Data System (ADS)

    Peregudin, S. I.; Peregudina, E. S.; Kholodova, S. E.

    2018-05-01

    The paper puts forward a mathematical model of dynamics of spatial large-scale motions in a rotating layer of electrically conducting incompressible perfect fluid of variable depth with due account of dissipative effects. The resulting boundary-value problem is reduced to a vector system of partial differential equations for any values of the Reynolds number. Theoretical analysis of the so-obtained analytical solution reveals the effect of the magnetic field diffusion on the stability of the wave mode — namely, with the removed external magnetic field, the diffusion of the magnetic field promotes its damping. Besides, a criterion of stability of a wave mode is obtained.

  12. Pressure potential and stability analysis in an acoustical noncontact transportation

    NASA Astrophysics Data System (ADS)

    Li, J.; Liu, C. J.; Zhang, W. J.

    2017-01-01

    Near field acoustic traveling wave is one of the most popular principles in noncontact manipulations and transportations. The stability behavior is a key factor in the industrial applications of acoustical noncontact transportation. We present here an in-depth analysis of the transportation stability of a planar object levitated in near field acoustic traveling waves. To more accurately describe the pressure distributions on the radiation surface, a 3D nonlinear traveling wave model is presented. A closed form solution is derived based on the pressure potential to quantitatively calculate the restoring forces and moments under small disturbances. The physical explanations of the effects of fluid inertia and the effects of non-uniform pressure distributions are provided in detail. It is found that a vibration rail with tapered cross section provides more stable transportation than a rail with rectangular cross section. The present study sheds light on the issue of quantitative evaluation of stability in acoustic traveling waves and proposes three main factors that influence the stability: (a) vibration shape, (b) pressure distribution and (c) restoring force/moment. It helps to provide a better understanding of the physics behind the near field acoustic transportation and provide useful design and optimization tools for industrial applications.

  13. Nonlinear hydrodynamic stability and transition; Proceedings of the IUTAM Symposium, Nice, France, Sept. 3-7, 1990

    NASA Astrophysics Data System (ADS)

    Theoretical and experimental research on nonlinear hydrodynamic stability and transition is presented. Bifurcations, amplitude equations, pattern in experiments, and shear flows are considered. Particular attention is given to bifurcations of plane viscous fluid flow and transition to turbulence, chaotic traveling wave covection, chaotic behavior of parametrically excited surface waves in square geometry, amplitude analysis of the Swift-Hohenberg equation, traveling wave convection in finite containers, focus instability in axisymmetric Rayleigh-Benard convection, scaling and pattern formation in flowing sand, dynamical behavior of instabilities in spherical gap flows, and nonlinear short-wavelength Taylor vortices. Also discussed are stability of a flow past a two-dimensional grid, inertia wave breakdown in a precessing fluid, flow-induced instabilities in directional solidification, structure and dynamical properties of convection in binary fluid mixtures, and instability competition for convecting superfluid mixtures.

  14. Effects of audio coaching and visual feedback on the stability of respiration during radiotherapy.

    PubMed

    Baba, Fumiya; Tanaka, Satoshi; Nonogaki, Yoshinori; Hasegawa, Shinji; Nishihashi, Minami; Ayakawa, Shiho; Yamada, Maho; Shibamoto, Yuta

    2016-08-01

    The aim of this study is to compare the respiration-stabilizing abilities of audio coaching (AC) and AC with visual feedback (VF) with that of free breathing (FB). Ten healthy volunteers were told to breathe in FB, under AC and under AC + VF in random order. The standard deviation (SD) values of the respiratory cycle, the amplitude, the lowest points (exhalation), and the highest points (inhalation) of respiratory wave were used as indices of respiratory stability. Compared with FB, the AC method significantly improved respiratory cycle stability (p = 0.001). The AC + VF method improved the stability of the respiratory cycle, the amplitude and the lowest point of respiratory wave (all p < 0.001). In analyses of each subject's data, compared with FB, the AC method significantly improved the respiratory cycle stability in five subjects, and the AC + VF method improved the stability of the respiratory cycle, the amplitude and the lowest point of respiratory wave in 4, 5, and 4 subjects, respectively. In two cases, coaching did not improve respiratory stability. The AC + VF method had the most beneficial effects on respiratory stability. However, coaching is not necessarily effective in all cases. Therefore, the most suitable method should be chosen on an individual basis.

  15. Prediction of destination entry and retrieval times using keystroke-level models

    DOT National Transportation Integrated Search

    1998-04-01

    Thirty-six drivers entered and retrieved destinations using an Ali-Scout navigation computer. Retrieval involved keying in part of the destination name, scrolling through a list of names, or a combination of those methods. Entry required keying in th...

  16. USEPA SEMINARS ON INDOOR AIR VAPOR INTRUSION

    EPA Science Inventory

    This interactive CD has been developed to introduce you to the seminar speakers and their presentation topics. It includes introduction and overview video clips, an interactive class exercise that explains how to interpret and use the new EPA IAVI Guidance, a scrolling seminar vi...

  17. The role of density discontinuity in the inviscid instability of two-phase parallel flows

    NASA Astrophysics Data System (ADS)

    Behzad, M.; Ashgriz, N.

    2014-02-01

    We re-examine the inviscid instability of two-phase parallel flows with piecewise linear velocity profiles. Although such configuration has been theoretically investigated, we employ the concept of waves resonance to physically interpret the instability mechanism as well as the essential role of density discontinuity in the flow. Upon performing linear stability analysis, we demonstrate the existence of neutrally stable "density" and "density-vorticity" waves which are emerged due to the density jump in the flow, in addition to the well-known vorticity waves. Such waves are capable of resonating with each other to form unstable modes in the flow. Although unstable modes in this study are classified as the "shear instability" type, we demonstrate that they are not necessarily of the Rayleigh type. The results also show that the density can have both stabilizing and destabilizing effects on the flow stability. We verify that the difference in the resonating pair of neutral waves leads to such distinct behavior of the density variation.

  18. Analysis of a Stabilized CNLF Method with Fast Slow Wave Splittings for Flow Problems

    DOE PAGES

    Jiang, Nan; Tran, Hoang A.

    2015-04-01

    In this work, we study Crank-Nicolson leap-frog (CNLF) methods with fast-slow wave splittings for Navier-Stokes equations (NSE) with a rotation/Coriolis force term, which is a simplification of geophysical flows. We propose a new stabilized CNLF method where the added stabilization completely removes the method's CFL time step condition. A comprehensive stability and error analysis is given. We also prove that for Oseen equations with the rotation term, the unstable mode (for which u(n+1) + u(n-1) equivalent to 0) of CNLF is asymptotically stable. Numerical results are provided to verify the stability and the convergence of the methods.

  19. Ultra scale-down device to predict dewatering levels of solids recovered in a continuous scroll decanter centrifuge.

    PubMed

    Lopes, A G; Keshavarz-Moore, E

    2013-01-01

    During centrifugation operation, the major challenge in the recovery of extracellular proteins is the removal of the maximum liquid entrapped within the spaces between the settled solids-dewatering level. The ability of the scroll decanter centrifuge (SDC) to process continuously large amounts of feed material with high concentration of solids without the need for resuspension of feeds, and also to achieve relatively high dewatering, could be of great benefit for future use in the biopharmaceutical industry. However, for reliable prediction of dewatering in such a centrifuge, tests using the same kind of equipment at pilot-scale are required, which are time consuming and costly. To alleviate the need of pilot-scale trials, a novel USD device, with reduced amounts of feed (2 mL) and to be used in the laboratory, was developed to predict the dewatering levels of a SDC. To verify USD device, dewatering levels achieved were plotted against equivalent compression (Gtcomp ) and decanting (Gtdec ) times, obtained from scroll rates and feed flow rates operated at pilot-scale, respectively. The USD device was able to successfully match dewatering trends of the pilot-scale as a function of both Gtcomp and Gtdec , particularly for high cell density feeds, hence accounting for all key variables that influenced dewatering in a SDC. In addition, it accurately mimicked the maximum dewatering performance of the pilot-scale equipment. Therefore the USD device has the potential to be a useful tool at early stages of process development to gather performance data in the laboratory thus minimizing lengthy and costly runs with pilot-scale SDC. © 2013 American Institute of Chemical Engineers.

  20. Wave propagation in elastic and damped structures with stabilized negative-stiffness components

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.

    2017-09-01

    Effects on wave propagation achievable by introduction of a negative-stiffness component are investigated via perhaps the simplest discrete repeating element that can remain stable in the component's presence. When the system is elastic, appropriate tuning of the stabilized component's negative stiffness introduces a no-pass zone theoretically extending from zero to an arbitrarily high frequency, tunable by a mass ratio adjustment. When the negative-stiffness component is tuned to the system's stability limit and a mass ratio is sufficiently small, the system restricts propagation to waves of approximately a single arbitrary frequency, adjustable by tuning the stiffness ratio of the positive-stiffness components. The elastic system's general solutions are closed-form and transparent. When damping is added, the general solutions are still closed-form, but so complex that they do not clearly display how the negative stiffness component affects the system's response and how it should best be tuned to achieve desired effects. Approximate solutions having these features are obtained via four perturbation analyses: one for long wavelengths; one for small damping; and two for small mass ratios. The long-wavelengths solution shows that appropriate tuning of the negative-stiffness component can prevent propagation of long-wavelength waves. The small damping solution shows that the zero-damping low-frequency no-pass zone remains, while waves that do propagate are highly damped when a mass ratio is made small. Finally, very interesting effects are achievable at the full system's stability limit. For small mass ratios, the wavelength range of waves prohibited from propagation can be adjusted, from all to none, by tuning the system's damping: When one mass ratio is small, all waves with wavelengths larger than an arbitrary damping-adjusted value can be prohibited from propagation, while when the inverse of this mass ratio is small, all waves with wavelengths outside an arbitrary single adjustable value or range of values can be prohibited from propagation. All of the approximate solutions' analytically-transparent predictions are confirmed by the exact solution. The conclusions are that a stabilized tuned negative-stiffness component greatly enhances control of wave propagation in a purely elastic system, and when adjustable damping is added, even further control is facilitated.

  1. --No Title--

    Science.gov Websites

    (Perlmutter et al., B.A.A.S., v. 29, no. 5, p. 1351, 1997) Click on this reduced-size poster to see enlarged sections of the poster. Note: to see the captions in the enlarged sections scroll to the bottom of the enlarged page.

  2. Three Functions of the School Newspaper: The Truth Shop, The Persuasion Podium, The Pleasure Dome.

    ERIC Educational Resources Information Center

    Campbell, Laurence R.

    This Quill and Scroll Study, which is illustrated with numerous tables, concerns the following subjects: The School Newspaper as a Truth Shop; The School Newspaper as a Pleasure Dome; and The School Newspaper as a Persuasion Podium. (DB)

  3. Driving while using a smartphone-based mobility application: Evaluating the impact of three multi-choice user interfaces on visual-manual distraction.

    PubMed

    Louveton, N; McCall, R; Koenig, V; Avanesov, T; Engel, T

    2016-05-01

    Innovative in-car applications provided on smartphones can deliver real-time alternative mobility choices and subsequently generate visual-manual demand. Prior studies have found that multi-touch gestures such as kinetic scrolling are problematic in this respect. In this study we evaluate three prototype tasks which can be found in common mobile interaction use-cases. In a repeated-measures design, 29 participants interacted with the prototypes in a car-following task within a driving simulator environment. Task completion, driving performance and eye gaze have been analysed. We found that the slider widget used in the filtering task was too demanding and led to poor performance, while kinetic scrolling generated a comparable amount of visual distraction despite it requiring a lower degree of finger pointing accuracy. We discuss how to improve continuous list browsing in a dual-task context. Copyright © 2016 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Shaping van der Waals nanoribbons via torsional constraints: Scrolls, folds and supercoils

    NASA Astrophysics Data System (ADS)

    Shahabi, Alireza; Wang, Hailong; Upmanyu, Moneesh

    2014-11-01

    Interplay between structure and function in atomically thin crystalline nanoribbons is sensitive to their conformations yet the ability to prescribe them is a formidable challenge. Here, we report a novel paradigm for controlled nucleation and growth of scrolled and folded shapes in finite-length nanoribbons. All-atom computations on graphene nanoribbons (GNRs) and experiments on macroscale magnetic thin films reveal that decreasing the end distance of torsionally constrained ribbons below their contour length leads to formation of these shapes. The energy partitioning between twisted and bent shapes is modified in favor of these densely packed soft conformations due to the non-local van der Waals interactions in these 2D crystals; they subvert the formation of supercoils that are seen in their natural counterparts such as DNA and filamentous proteins. The conformational phase diagram is in excellent agreement with theoretical predictions. The facile route can be readily extended for tailoring the soft conformations of crystalline nanoscale ribbons, and more general self-interacting filaments.

  5. Analysis, synchronisation and circuit design of a new highly nonlinear chaotic system

    NASA Astrophysics Data System (ADS)

    Mobayen, Saleh; Kingni, Sifeu Takougang; Pham, Viet-Thanh; Nazarimehr, Fahimeh; Jafari, Sajad

    2018-02-01

    This paper investigates a three-dimensional autonomous chaotic flow without linear terms. Dynamical behaviour of the proposed system is investigated through eigenvalue structures, phase portraits, bifurcation diagram, Lyapunov exponents and basin of attraction. For a suitable choice of the parameters, the proposed system can exhibit anti-monotonicity, periodic oscillations and double-scroll chaotic attractor. Basin of attraction of the proposed system shows that the chaotic attractor is self-excited. Furthermore, feasibility of double-scroll chaotic attractor in the real word is investigated by using the OrCAD-PSpice software via an electronic implementation of the proposed system. A good qualitative agreement is illustrated between the numerical simulations and the OrCAD-PSpice results. Finally, a finite-time control method based on dynamic sliding surface for the synchronisation of master and slave chaotic systems in the presence of external disturbances is performed. Using the suggested control technique, the superior master-slave synchronisation is attained. Illustrative simulation results on the studied chaotic system are presented to indicate the effectiveness of the suggested scheme.

  6. Dynamics of High Temperature Plasmas.

    DTIC Science & Technology

    1985-10-01

    25 VI. > LASER BEAT WAVE PARTICLE ACCELERATION-.. ..... .. 27 ,, VII. ORBITRON MASER DESIGN .. ..... ............. 30 0 VIIM> ELECTRON BEAM STABILITY...IN THE MODIFIED BETATRON .... ............ 32 IX. * RELATIVISTIC ELECTRON BEAM DIODE DESIGN . . . . 35 X. FREE ELECTRON LASER APPLICATION TO XUV...Accelerators (B), VI. Laser Beat Wave Particle Acceleration, VII. Orbitron Maser Design , VIII. Electron Beam Stability in the Modified Betatron, IX

  7. On the role of vegetation in the formation of river anabranching patterns

    NASA Astrophysics Data System (ADS)

    Crouzy, B.; D'Odorico, P.; Wütrich, D.; Perona, P.

    2012-04-01

    Part of studies on the couplings between the evolution of riparian vegetation and the river morphodynamics, we investigate the effect of spatial interactions between vegetation located at different positions within the channel. This work generalizes the experimental and theoretical results by Perona et al. and by Crouzy and Perona (both Advances in Water Resources, in Press) on colonization of riverbars by seedlings or large woody debris by relaxing the hypothesis made in those two works of the biomass growth and uprooting being independent on the presence of neighboring plants. While the hypothesis of independent vegetation growth and uprooting is justified for sparse vegetation cover or young seedlings, it fails as soon as the canopy significantly disturbs the flow or changes the sediment stability. Then, flow-mediated interactions between riparian vegetation located at different positions within the channel can be observed. Those interactions are either constructive or destructive. For example, a region favorable to the development of biomass appears on the lee side of a vegetated obstacle (with bleed flow) due to increased deposition of seeds and sediment (Schnauder and Moggridge, 2008) while conversely scouring can be increased laterally due to obstacle-induced flow diversion (Roulund et al., 2005; Melville and Sutherland, 1988; Zong and Nepf, 2008). We focus on the role of vegetation in the formation of the regular vegetated ridge patterns found in ephemeral rivers (see for example the work by Tooth and Nanson, 2004 on anabranching patterns) or as a succession of swales and ridges on the inside of meander bends (scroll bars). From the analysis of aerial images, we obtain the characteristic length scale of the patterns. We show how in the limit where the hydrological (interarrival time of floods) and the biological (germination and growth rates) timescales are comparable the combination between both positive and negative feedbacks between vegetation located at different positions can lead to the spatial organization of the vegetation. Classically, the presence of the anabranches has been ascribed to an optimization of the sediment load transport (Huang and Nanson, 2007) or for the scroll bars to channel migration, without explicitly accounting for the role of vegetation.

  8. Normetex Pump Alternatives Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Elliot A.

    2013-04-25

    A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine,more » chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying resistances to ionizing radiation - aromatic polymers such as polyimide Vespel (TM) and the elastomer EPDM (ethylene propylene diene monomer) have been found to be more resistant to degradation in tritium than other polymers. This report presents information to help select replacement pumps for Normetex pumps in tritium systems. Several pumps being considered as Normetex replacement pumps are discussed.« less

  9. Existence and Stability of Spatial Plane Waves for the Incompressible Navier-Stokes in R^3

    NASA Astrophysics Data System (ADS)

    Correia, Simão; Figueira, Mário

    2018-03-01

    We consider the three-dimensional incompressible Navier-Stokes equation on the whole space. We observe that this system admits a L^∞ family of global spatial plane wave solutions, which are connected with the two-dimensional equation. We then proceed to prove local well-posedness over a space which includes L^3(R^3) and these solutions. Finally, we prove L^3-stability of spatial plane waves, with no condition on their size.

  10. Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials.

    PubMed

    Kourakis, I; Shukla, P K

    2005-07-01

    We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.

  11. Control of Current Profile and Instability by Radiofrequency Wave Injection in JT-60U and Its Applicability in JT-60SA

    NASA Astrophysics Data System (ADS)

    Isayama, A.; Suzuki, T.; Hayashi, N.; Ide, S.; Hamamatsu, K.; Fujita, T.; Hosoyama, H.; Kamada, Y.; Nagasaki, K.; Oyama, N.; Ozeki, T.; Sakata, S.; Seki, M.; Sueoka, M.; Takechi, M.; Urano, H.

    2007-09-01

    Recent results of control of current profile and instability using radiofrequency wave in JT-60U and prediction analysis in JT-60SA are descried. In JT-60U, control of current profile in high-beta regime was demonstrated by using a real-time system, where the motional Stark effect diagnostic and lower hybrid wave were used as a detector and actuator, respectively. The minimum value of the safety factor was raised from 1.3 to 1.7 so as to follow the commanded value. Complete stabilization of a neoclassical tearing mode (NTM) with the poloidal mode number m = 2 and the toroidal mode number n = 1 was demonstrated using electron cyclotron (EC) current drive. By scanning the location of EC current drive in detail, strong stabilization effect was found for misalignment less than about half of the full island width. In addition, destabilization of the 2/1 NTM was observed for misalignment comparable to the full island width. Simulation of NTM stabilization in JT-60SA was performed by using the TOPICS code combined with the modified Rutherford equation. The TOPICS simulation showed that complete stabilization can be achieved more effectively by optimizing the EC wave injection angle and modulating the EC wave.

  12. Control of Current Profile and Instability by Radiofrequency Wave Injection in JT-60U and Its Applicability in JT-60SA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isayama, A.; Suzuki, T.; Hayashi, N.

    2007-09-28

    Recent results of control of current profile and instability using radiofrequency wave in JT-60U and prediction analysis in JT-60SA are descried. In JT-60U, control of current profile in high-beta regime was demonstrated by using a real-time system, where the motional Stark effect diagnostic and lower hybrid wave were used as a detector and actuator, respectively. The minimum value of the safety factor was raised from 1.3 to 1.7 so as to follow the commanded value. Complete stabilization of a neoclassical tearing mode (NTM) with the poloidal mode number m = 2 and the toroidal mode number n = 1 wasmore » demonstrated using electron cyclotron (EC) current drive. By scanning the location of EC current drive in detail, strong stabilization effect was found for misalignment less than about half of the full island width. In addition, destabilization of the 2/1 NTM was observed for misalignment comparable to the full island width. Simulation of NTM stabilization in JT-60SA was performed by using the TOPICS code combined with the modified Rutherford equation. The TOPICS simulation showed that complete stabilization can be achieved more effectively by optimizing the EC wave injection angle and modulating the EC wave.« less

  13. Developments of high frequency and intensity stabilized lasers for space gravitational wave detector DECIGO/B-DECIGO

    NASA Astrophysics Data System (ADS)

    Suemasa, Aru; Shimo-oku, Ayumi; Nakagawa, Ken'ichi; Musha, Mitsuru

    2017-12-01

    In Japan, not only the ground-based gravitational wave (GW) detector mission KAGRA but also the space GW detector mission DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) and its milestone mission B-DECIGO have been promoted. The designed strain sensitivity of DECIGO and B-DECIGO are δL/ L < 10-23. Since the GW detector requires high power and highly-stable light source, we have developed the light source with high frequency and intensity stability for DECIGO and B-DECIGO. The frequency of the Yb-doped fiber DFB lasers are stabilized to the iodine saturated absorption at 515 nm, and the intensity of the laser at 1 Hz (observation band) is stabilized by controlling the pump source of an Yb-doped fiber amplifier. The intensity of the laser at 200 kHz (modulation band) is also stabilized using an acousto-optic modulator to improve the frequency stability of the laser. In the consequences, we obtain the frequency stability of δf = 0.4 Hz/√Hz (in-loop) at 1 Hz, and the intensity stability of δI/ I = 1.2 × 10-7/√Hz (out-of-loop) and δI/I = 1.5 × 10-7/√Hz (in-loop) at 1 Hz and 200 kHz, respectively.

  14. Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves.

    PubMed

    Cuevas-Maraver, J; Kevrekidis, P G; Frantzeskakis, D J; Karachalios, N I; Haragus, M; James, G

    2017-07-01

    In the present work, we aim at taking a step towards the spectral stability analysis of Peregrine solitons, i.e., wave structures that are used to emulate extreme wave events. Given the space-time localized nature of Peregrine solitons, this is a priori a nontrivial task. Our main tool in this effort will be the study of the spectral stability of the periodic generalization of the Peregrine soliton in the evolution variable, namely the Kuznetsov-Ma breather. Given the periodic structure of the latter, we compute the corresponding Floquet multipliers, and examine them in the limit where the period of the orbit tends to infinity. This way, we extrapolate towards the stability of the limiting structure, namely the Peregrine soliton. We find that multiple unstable modes of the background are enhanced, yet no additional unstable eigenmodes arise as the Peregrine limit is approached. We explore the instability evolution also in direct numerical simulations.

  15. A mechanism to explain the variations of tropopause and tropopause inversion layer in the Arctic region during a sudden stratospheric warming in 2009

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Tomikawa, Yoshihiro; Nakamura, Takuji; Huang, Kaiming; Zhang, Shaodong; Zhang, Yehui; Yang, Huigen; Hu, Hongqiao

    2016-10-01

    The mechanism to explain the variations of tropopause and tropopause inversion layer (TIL) in the Arctic region during a sudden stratospheric warming (SSW) in 2009 was studied with the Modern-Era Retrospective analysis for Research and Applications reanalysis data and GPS/Constellation Observing system for Meteorology, Ionosphere, and Climate (COSMIC) temperature data. During the prominent SSW in 2009, the cyclonic system changed to the anticyclonic system due to the planetary wave with wave number 2 (wave2). The GPS/COSMIC temperature data showed that during the SSW in 2009, the tropopause height in the Arctic decreased accompanied with the tropopause temperature increase and the TIL enhancement. The variations of the tropopause and TIL were larger in higher latitudes. A static stability analysis showed that the variations of the tropopause and TIL were associated with the variations of the residual circulation and the static stability due to the SSW. Larger static stability appeared in the upper stratosphere and moved downward to the narrow region just above the tropopause. The descent of strong downward flow was faster in higher latitudes. The static stability tendency analysis showed that the strong downward residual flow induced the static stability change in the stratosphere and around the tropopause. The strong downwelling in the stratosphere was mainly induced by wave2, which led to the tropopause height and temperature changes due to the adiabatic heating. Around the tropopause, a pair of downwelling above the tropopause and upwelling below the tropopause due to wave2 contributed to the enhancement of static stability in the TIL immediately after the SSW.

  16. Stabilized Lasers and Precision Measurements.

    ERIC Educational Resources Information Center

    Hall, J. L.

    1978-01-01

    Traces the development of stabilized lasers from the Massachusetts Institute of Technology passive-stabilization experiments of the early 1960s up through the current epoch of highly stabilized helium-neon and carbon dioxide and continuous wave dye lasers. (Author/HM)

  17. Stability of a flow down an incline with respect to two-dimensional and three-dimensional disturbances for Newtonian and non-Newtonian fluids.

    PubMed

    Allouche, M H; Millet, S; Botton, V; Henry, D; Ben Hadid, H; Rousset, F

    2015-12-01

    Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.

  18. Mathematics Programming on the Apple II and IBM PC.

    ERIC Educational Resources Information Center

    Myers, Roy E.; Schneider, David I.

    1987-01-01

    Details the features of BASIC used in mathematics programming and provides the information needed to translate between the Apple II and IBM PC computers. Discusses inputing a user-defined function, setting scroll windows, displaying subscripts and exponents, variable names, mathematical characters and special symbols. (TW)

  19. Publications - Quadrangle Search | Alaska Division of Geological &

    Science.gov Websites

    Publication Sales. Access bibliography for: Quadrangle name will appear as your mouse scrolls across Alaska Long Mountains Misheguk Mountain Howard Pass Killik River Chandler Lake Philip Smith Mountains Arctic Table Mountain Noatak Baird Mountains Ambler River Survey Pass Wiseman Chandalar Christian Coleen

  20. Noted

    ERIC Educational Resources Information Center

    Nunberg, Geoffrey

    2013-01-01

    Considering how much attention people lavish on the technologies of writing--scroll, codex, print, screen--it's striking how little they pay to the technologies for digesting and regurgitating it. One way or another, there's no sector of the modern world that is not saturated with note-taking--the bureaucracy, the liberal professions, the…

  1. MASS MEDIA

    Science.gov Websites

    Office Marine, Tropical, and Tsunami Services Branch Items of Interest Marine Forecasts Text, Graphic , either directly or as a Secondary Audio Program (SAP). Scrolling of NWS text forecasts via specialized cable TV weather channels is becoming increasingly commonplace. In the case of severe weather, text is

  2. Metacognition of Agency

    ERIC Educational Resources Information Center

    Metcalfe, Janet; Greene, Matthew Jason

    2007-01-01

    The feeling that we are agents, intentionally making things happen by our own actions, is foundational to our understanding of ourselves as humans. People's metacognitions of agency were investigated in 4 experiments. Participants played a game in which they tried to touch downward scrolling Xs and avoid touching Os. Variables that affected…

  3. Flow behavior in inlet guide vanes of radial turbines

    NASA Technical Reports Server (NTRS)

    Sokhey, J.; Tabakoff, W.; Hosny, W. M.

    1975-01-01

    Scroll flow is discussed. Streamline pattern and velocity distribution in the guide vanes are calculated. The blade surface temperature distribution is also determined. The effects of the blade shapes and the nozzle channel width on the velocity profiles at inlet to the guide vanes are investigated.

  4. Direct-to-Consumer Promotion of Prescription Drugs on Mobile Devices: Content Analysis.

    PubMed

    Aikin, Kathryn J; Sullivan, Helen W; Dolina, Suzanne; Lynch, Molly; Squiers, Linda B

    2017-07-04

    US Food and Drug Administration (FDA) regulations state that any prescription drug promotion that presents drug benefits to consumers must also disclose certain information about the drug's risks in a similar manner. Nearly three-quarters of all US mobile phone subscribers use a smartphone, and over half report receiving mobile advertisements on their device. The objective of this project was to investigate how prescription drugs are being promoted to consumers using mobile technologies. We were particularly interested in the presentation of drug benefits and risks, with regard to presence, placement, and prominence. We analyzed a sample of 51 mobile promotional communications and their associated linked landing pages. We assessed the content and format of the mobile communications and landing pages with regard to presentation of drug benefits and risks. Of the 51 mobile communications we coded, 41% (21/51) were product claim communications (includes the drug name, benefits, and risks), 22% (11/51) were reminder communications (includes drug name only), and 37% (19/51) were help-seeking communications (includes information about the medical condition but not the drug name). Some of the product claim communications (5/21, 24%) required scrolling to see all the benefit information; in contrast, 95% (20/21) required scrolling to see all the risk information. Of the 19 product claim communications that presented both benefits and risks, 95% (18/19) presented benefits before risks and 47% (9/19) used a bigger font for benefits than for risks. Most mobile communications (35/51, 69%) linked to branded drug websites with both benefits and risks, 25% (13/51) linked to a landing page with benefits but no visible risks, and 6% (3/51) linked to a landing page with risks but no visible benefits. Few landing pages (4/51, 8%) required scrolling to see all the benefit information; in contrast, 51% (26/51) required scrolling to see all the risk information. Of the 35 landing pages with both benefit and risk information, 71% (25/35) presented benefits before risks and 51% (18/35) used a bigger font for benefits than for risks. These results indicate that, while risks and benefits are both represented in mobile communications and their associated landing pages, they are not equally prominent and accessible. This has implications for compliance with FDA fair balance regulations. ©Kathryn J Aikin, Helen W Sullivan, Suzanne Dolina, Molly Lynch, Linda B Squiers. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 04.07.2017.

  5. Rogue waves generation in a left-handed nonlinear transmission line with series varactor diodes

    NASA Astrophysics Data System (ADS)

    Onana Essama, B. G.; Atangana, J.; Biya Motto, F.; Mokhtari, B.; Cherkaoui Eddeqaqi, N.; Kofane, Timoleon C.

    2014-07-01

    We investigate the electromagnetic wave behavior and its characterization using collective variables technique. Second-order dispersion, first- and second-order nonlinearities, which strongly act in a left-handed nonlinear transmission line with series varactor diodes, are taken into account. Four frequency ranges have been found. The first one gives the so-called energetic soliton due to a perfect combination of second-order dispersion and first-order nonlinearity. The second frequency range presents a dispersive soliton leading to the collapse of the electromagnetic wave at the third frequency range. But the fourth one shows physical conditions which are able to provoke the appearance of wave trains generation with some particular waves, the rogue waves. Moreover, we demonstrate that the number of rogue waves increases with frequency. The soliton, thereafter, gains a relative stability when second-order nonlinearity comes into play with some specific values in the fourth frequency range. Furthermore, the stability conditions of the electromagnetic wave at high frequencies have been also discussed.

  6. Note: Silicon Carbide Telescope Dimensional Stability for Space-based Gravitational Wave Detectors

    NASA Technical Reports Server (NTRS)

    Sanjuah, J.; Korytov, D.; Mueller, G.; Spannagel, R.; Braxmaier, C.; Preston, A.; Livas, J.

    2012-01-01

    Space-based gravitational wave detectors are conceived to detect gravitational waves in the low frequency range by measuring the distance between proof masses in spacecraft separated by millions of kilometers. One of the key elements is the telescope which has to have a dimensional stability better than 1 pm Hz(exp -1/2) at 3 mHz. In addition, the telescope structure must be light, strong, and stiff. For this reason a potential telescope structure consisting of a silicon carbide quadpod has been designed, constructed, and tested. We present dimensional stability results meeting the requirements at room temperature. Results at -60 C are also shown although the requirements are not met due to temperature fluctuations in the setup.

  7. Note: silicon carbide telescope dimensional stability for space-based gravitational wave detectors.

    PubMed

    Sanjuán, J; Korytov, D; Mueller, G; Spannagel, R; Braxmaier, C; Preston, A; Livas, J

    2012-11-01

    Space-based gravitational wave detectors are conceived to detect gravitational waves in the low frequency range by measuring the distance between proof masses in spacecraft separated by millions of kilometers. One of the key elements is the telescope which has to have a dimensional stability better than 1 pm Hz(-1/2) at 3 mHz. In addition, the telescope structure must be light, strong, and stiff. For this reason a potential telescope structure consisting of a silicon carbide quadpod has been designed, constructed, and tested. We present dimensional stability results meeting the requirements at room temperature. Results at -60 °C are also shown although the requirements are not met due to temperature fluctuations in the setup.

  8. Stability analysis for acoustic wave propagation in tilted TI media by finite differences

    NASA Astrophysics Data System (ADS)

    Bakker, Peter M.; Duveneck, Eric

    2011-05-01

    Several papers in recent years have reported instabilities in P-wave modelling, based on an acoustic approximation, for inhomogeneous transversely isotropic media with tilted symmetry axis (TTI media). In particular, instabilities tend to occur if the axis of symmetry varies rapidly in combination with strong contrasts of medium parameters, which is typically the case at the foot of a steeply dipping salt flank. In a recent paper, we have proposed and demonstrated a P-wave modelling approach for TTI media, based on rotated stress and strain tensors, in which the wave equations reduce to a coupled set of two second-order partial differential equations for two scalar stress components: a normal component along the variable axis of symmetry and a lateral component of stress in the plane perpendicular to that axis. Spatially constant density is assumed in this approach. A numerical discretization scheme was proposed which uses discrete second-derivative operators for the non-mixed second-order derivatives in the wave equations, and combined first-derivative operators for the mixed second-order derivatives. This paper provides a complete and rigorous stability analysis, assuming a uniformly sampled grid. Although the spatial discretization operator for the TTI acoustic wave equation is not self-adjoint, this operator still defines a complete basis of eigenfunctions of the solution space, provided that the solution space is somewhat restricted at locations where the medium is elliptically anisotropic. First, a stability analysis is given for a discretization scheme, which is purely based on first-derivative operators. It is shown that the coefficients of the central difference operators should satisfy certain conditions. In view of numerical artefacts, such a discretization scheme is not attractive, and the non-mixed second-order derivatives of the wave equation are discretized directly by second-derivative operators. It is shown that this modification preserves stability, provided that the central difference operators of the second-order derivatives dominate over the twice applied operators of the first-order derivatives. In practice, it turns out that this is almost the case. Stability of the desired discretization scheme is enforced by slightly weighting down the mixed second-order derivatives in the wave equation. This has a minor, practically negligible, effect on the kinematics of wave propagation. Finally, it is shown that non-reflecting boundary conditions, enforced by applying a taper at the boundaries of the grid, do not harm the stability of the discretization scheme.

  9. Contact Us | High-Performance Computing | NREL

    Science.gov Websites

    Select Peregrine Merlin WinHPC Allocation project handle (if requesting HPC account) Description of "SEND REQUEST" and nothing happens, it most likely means you forgot to provide information in a required field. You may need to scroll up to see what required information is missing

  10. National Centers for Environmental Prediction

    Science.gov Websites

    . Government's official Web portal to all Federal, state and local government Web resources and services. MISSION Web Page [scroll down to "Verification" Section] HRRR Verification at NOAA ESRL HRRR Web Verification Web Page NOAA / National Weather Service National Centers for Environmental Prediction

  11. 29 CFR 1910.243 - Guarding of portable powered tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... circular saws. (i) All portable, power-driven circular saws having a blade diameter greater than 2 in.... (2) Switches and controls. (i) All hand-held powered circular saws having a blade diameter greater... diameter, belt sanders, reciprocating saws, saber, scroll, and jig saws with blade shanks greater than a...

  12. 29 CFR 1910.243 - Guarding of portable powered tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... circular saws. (i) All portable, power-driven circular saws having a blade diameter greater than 2 in.... (2) Switches and controls. (i) All hand-held powered circular saws having a blade diameter greater... diameter, belt sanders, reciprocating saws, saber, scroll, and jig saws with blade shanks greater than a...

  13. 29 CFR 1910.243 - Guarding of portable powered tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... circular saws. (i) All portable, power-driven circular saws having a blade diameter greater than 2 in.... (2) Switches and controls. (i) All hand-held powered circular saws having a blade diameter greater... diameter, belt sanders, reciprocating saws, saber, scroll, and jig saws with blade shanks greater than a...

  14. 29 CFR 1910.243 - Guarding of portable powered tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... circular saws. (i) All portable, power-driven circular saws having a blade diameter greater than 2 in.... (2) Switches and controls. (i) All hand-held powered circular saws having a blade diameter greater... diameter, belt sanders, reciprocating saws, saber, scroll, and jig saws with blade shanks greater than a...

  15. 29 CFR 1910.243 - Guarding of portable powered tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... circular saws. (i) All portable, power-driven circular saws having a blade diameter greater than 2 in.... (2) Switches and controls. (i) All hand-held powered circular saws having a blade diameter greater... diameter, belt sanders, reciprocating saws, saber, scroll, and jig saws with blade shanks greater than a...

  16. A novel multi-scroll chaotic generator: Analysis, simulation, and implementation

    NASA Astrophysics Data System (ADS)

    Zhang, Gui-Tao; Wang, Fa-Qiang

    2018-01-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51377124 and 51521065), the Foundation for the Author of National Excellent Doctoral Dissertation, China (Grant No. 201337), and the New Star of Youth Science and Technology of Shaanxi Province, China (Grant No. 2016KJXX-40).

  17. Expanded Transparency and Enhanced Reading in the First-Year Literature Survey

    ERIC Educational Resources Information Center

    Ford, Natalie Mera

    2016-01-01

    Required first-year English courses present instructors with a challenge common in the humanities: How do we motivate students to engage in active reading rather than passively scroll down online guides? Introductory literature courses aim to develop students' critical thinking through close reading, analysis, and argumentation--skills demanding…

  18. A Village of Painters

    ERIC Educational Resources Information Center

    Gomez, Aurelia

    2007-01-01

    In West Bengal, India, a traditional caste community of artists, called "patuas", paint colorful scrolls to accompany songs which they sing to relate historic, current, religious, and cultural events to their audiences. These itinerant painter/singers are part of a long lineage that has passed the tradition down for generations. In this…

  19. Writing Conferences Using the Microcomputer.

    ERIC Educational Resources Information Center

    Pufahl, John

    1986-01-01

    Describes a teaching strategy using Apple IIe computers in a sequence of individual conferences. Includes asking questions while scrolling through the paper, showing students how to elaborate ideas by entering suggested changes and prompts in capital letters during the conference, and using a spelling checker to prompt revision (e.g., by compiling…

  20. Incorporating Digital E-Books into Educational Curriculum

    ERIC Educational Resources Information Center

    Turner, Freda

    2005-01-01

    The first books were probably the Egyptian scrolls of papyrus that provided lineal content to readers. Today (2005) the Internet technology presents the Internet lifestyle that has introduced electronic or e-books that can enrich learning experiences. E-books have an advantage over traditional books in that they offer hypertext linking, search…

  1. Selections from a Humanities Unit on India. Fulbright-Hays Summer Seminars Abroad 1998 (India).

    ERIC Educational Resources Information Center

    Makin, Marion A.

    Intended for high school students, two humanities lessons on India approach India from a "world cultures" perspective. In the first lesson, "Story Scrolls," pairs of students create and present stories from Hindu mythology using traditional methods. The lesson gives content objectives, skills objectives, and…

  2. Net Survey: "Top Ten Mistakes" in Academic Web Design.

    ERIC Educational Resources Information Center

    Petrik, Paula

    2000-01-01

    Highlights the top ten mistakes in academic Web design: (1) bloated graphics; (2) scaling images; (3) dense text; (4) lack of contrast; (5) font size; (6) looping animations; (7) courseware authoring software; (8) scrolling/long pages; (9) excessive download; and (10) the nothing site. Includes resources. (CMK)

  3. Stabilization and Structure of wave packets in Rydberg atoms ionized by a strong light field.

    PubMed

    Fedorov, M; Fedorov, S

    1998-09-28

    New features of the phenomenon of interference stabilization of Rydberg atoms are found to exist. The main of them are: (i) dynamical stabilization, which means that in case of pulses with a smooth envelope the time-dependent residual probability for an atom to survive in bound states remains almost constant in the middle part of a pulse (at the strongest fields); (ii) existence of the strong-field stabilization of the after-pulse residual probability in case of pulses longer than the classical Kepler period; and (iii) pulsation of the time-dependent Rydberg wave packet formed in the process of photoionization.

  4. Aeroelastic impact of above-rated wave-induced structural motions on the near-wake stability of a floating offshore wind turbine rotor

    NASA Astrophysics Data System (ADS)

    Rodriguez, Steven; Jaworski, Justin

    2017-11-01

    The impact of above-rated wave-induced motions on the stability of floating offshore wind turbine near-wakes is studied numerically. The rotor near-wake is generated using a lifting-line free vortex wake method, which is strongly coupled to a finite element solver for kinematically nonlinear blade deformations. A synthetic time series of relatively high-amplitude/high-frequency representative of above-rated conditions of the NREL 5MW referece wind turbine is imposed on the rotor structure. To evaluate the impact of these above-rated conditions, a linear stability analysis is first performed on the near wake generated by a fixed-tower wind turbine configuration at above-rated inflow conditions. The platform motion is then introduced via synthetic time series, and a stability analysis is performed on the wake generated by the floating offshore wind turbine at the same above-rated inflow conditions. The stability trends (disturbance modes versus the divergence rate of vortex structures) of the two analyses are compared to identify the impact that above-rated wave-induced structural motions have on the stability of the floating offshore wind turbine wake.

  5. d -wave superconductivity in the presence of nearest-neighbor Coulomb repulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, M.; Hahner, U. R.; Schulthess, T. C.

    Dynamic cluster quantum Monte Carlo calculations for a doped two-dimensional extended Hubbard model are used to study the stability and dynamics of d-wave pairing when a nearest-neighbor Coulomb repulsion V is present in addition to the on-site Coulomb repulsion U. We find that d-wave pairing and the superconducting transition temperature Tc are only weakly suppressed as long as V does not exceed U/2. This stability is traced to the strongly retarded nature of pairing that allows the d-wave pairs to minimize the repulsive effect of V. When V approaches U/2, large momentum charge fluctuations are found to become important andmore » to give rise to a more rapid suppression of d-wave pairing and T c than for smaller V.« less

  6. Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves.

    PubMed

    Shera, Christopher A

    2003-07-01

    Mammalian spontaneous otoacoustic emissions (SOAEs) have been suggested to arise by three different mechanisms. The local-oscillator model, dating back to the work of Thomas Gold, supposes that SOAEs arise through the local, autonomous oscillation of some cellular constituent of the organ of Corti (e.g., the "active process" underlying the cochlear amplifier). Two other models, by contrast, both suppose that SOAEs are a global collective phenomenon--cochlear standing waves created by multiple internal reflection--but differ on the nature of the proposed power source: Whereas the "passive" standing-wave model supposes that SOAEs are biological noise, passively amplified by cochlear standing-wave resonances acting as narrow-band nonlinear filters, the "active" standing-wave model supposes that standing-wave amplitudes are actively maintained by coherent wave amplification within the cochlea. Quantitative tests of key predictions that distinguish the local-oscillator and global standing-wave models are presented and shown to support the global standing-wave model. In addition to predicting the existence of multiple emissions with a characteristic minimum frequency spacing, the global standing-wave model accurately predicts the mean value of this spacing, its standard deviation, and its power-law dependence on SOAE frequency. Furthermore, the global standing-wave model accounts for the magnitude, sign, and frequency dependence of changes in SOAE frequency that result from modulations in middle-ear stiffness. Although some of these SOAE characteristics may be replicable through artful ad hoc adjustment of local-oscillator models, they all arise quite naturally in the standing-wave framework. Finally, the statistics of SOAE time waveforms demonstrate that SOAEs are coherent, amplitude-stabilized signals, as predicted by the active standing-wave model. Taken together, the results imply that SOAEs are amplitude-stabilized standing waves produced by the cochlea acting as a biological, hydromechanical analog of a laser oscillator. Contrary to recent claims, spontaneous emission of sound from the ear does not require the autonomous mechanical oscillation of its cellular constituents.

  7. Effect of anisotropic dust pressure and superthermal electrons on propagation and stability of dust acoustic solitary waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashir, M. F., E-mail: frazbashir@yahoo.com; Behery, E. E., E-mail: eebehery@gmail.com; Department of Physics, Faculty of Science, Damietta University, P.O. 34517, New Damietta

    2015-06-15

    Employing the reductive perturbation technique, Zakharov–Kuznetzov (ZK) equation is derived for dust acoustic (DA) solitary waves in a magnetized plasma which consists the effects of dust anisotropic pressure, arbitrary charged dust particles, Boltzmann distributed ions, and Kappa distributed superthermal electrons. The ZK solitary wave solution is obtained. Using the small-k expansion method, the stability analysis for DA solitary waves is also discussed. The effects of the dust pressure anisotropy and the electron superthermality on the basic characteristics of DA waves as well as on the three-dimensional instability criterion are highlighted. It is found that the DA solitary wave is rarefactivemore » (compressive) for negative (positive) dust. In addition, the growth rate of instability increases rapidly as the superthermal spectral index of electrons increases with either positive or negative dust grains. A brief discussion for possible applications is included.« less

  8. Unstable solitary-wave solutions of the generalized Benjamin-Bona-Mahony equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinney, W.R.; Restrepo, J.M.; Bona, J.L.

    1994-06-01

    The evolution of solitary waves of the gBBM equation is investigated computationally. The experiments confirm previously derived theoretical stability estimates and, more importantly, yield insights into their behavior. For example, highly energetic unstable solitary waves when perturbed are shown to evolve into several stable solitary waves.

  9. The tropical tropopause inversion layer: variability and modulation by equatorial waves

    NASA Astrophysics Data System (ADS)

    Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl

    2016-09-01

    The tropical tropopause layer (TTL) acts as a transition layer between the troposphere and the stratosphere over several kilometers, where air has both tropospheric and stratospheric properties. Within this region, a fine-scale feature is located: the tropopause inversion layer (TIL), which consists of a sharp temperature inversion at the tropopause and the corresponding high static stability values right above, which theoretically affect the dispersion relations of atmospheric waves like Rossby or inertia-gravity waves and hamper stratosphere-troposphere exchange (STE). Therefore, the TIL receives increasing attention from the scientific community, mainly in the extratropics so far. Our goal is to give a detailed picture of the properties, variability and forcings of the tropical TIL, with special emphasis on small-scale equatorial waves and the quasi-biennial oscillation (QBO).We use high-resolution temperature profiles from the COSMIC satellite mission, i.e., ˜ 2000 measurements per day globally, between 2007 and 2013, to derive TIL properties and to study the fine-scale structures of static stability in the tropics. The situation at near tropopause level is described by the 100 hPa horizontal wind divergence fields, and the vertical structure of the QBO is provided by the equatorial winds at all levels, both from the ERA-Interim reanalysis.We describe a new feature of the equatorial static stability profile: a secondary stability maximum below the zero wind line within the easterly QBO wind regime at about 20-25 km altitude, which is forced by the descending westerly QBO phase and gives a double-TIL-like structure. In the lowermost stratosphere, the TIL is stronger with westerly winds. We provide the first evidence of a relationship between the tropical TIL strength and near-tropopause divergence, with stronger (weaker) TIL with near-tropopause divergent (convergent) flow, a relationship analogous to that of TIL strength with relative vorticity in the extratropics.To elucidate possible enhancing mechanisms of the tropical TIL, we quantify the signature of the different equatorial waves on the vertical structure of static stability in the tropics. All waves show, on average, maximum cold anomalies at the thermal tropopause, warm anomalies above and a net TIL enhancement close to the tropopause. The main drivers are Kelvin, inertia-gravity and Rossby waves. We suggest that a similar wave modulation will exist at mid- and polar latitudes from the extratropical wave modes.

  10. ULF waves and plasma stability in different regions of the magnetosheath

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Escoubet, C. Philippe; Grison, Benjamin

    2016-04-01

    We present a statistical study of the occurrence and properties of ultra low frequency waves in the magnetosheath and interpret the results in terms of the competition of mirror and Alfvén-ion-cyclotron (AIC) instabilities. Both mirror and AIC waves are generated in high beta plasma of the magnetosheath when ion temperature anisotropy exceeds the threshold of the respective instabilities. These waves are frequently observed in the terrestrial and planetary magnetosheaths, but their distribution within the magnetosheath is inhomogeneous and their character varies as a function of location, local and upstream plasma parameters. We studied the spatial distribution of the two wave modes in the magnetosheath together with the local plasma parameters important for the stability of ULF waves. This analysis was performed on a dataset of all magnetosheath crossings observed by Cluster spacecraft over two years. For each observation we used bow shock, magnetopause and magnetosheath flow models to identify the relative position of the spacecraft with respect to magnetosheath boundaries and local properties of the upstream shock crossing. A strong dependence of parameters characterizing plasma stability and mirror/AIC wave occurrence on upstream ΘBn and MA is identified. The occurrence of mirror and AIC modes was compared against the respective instability thresholds and it was observed that AIC waves occurred nearly exclusively under mirror stable conditions. This is interpreted in terms of the different character of non-linear saturation of the two modes.

  11. General stability of memory-type thermoelastic Timoshenko beam acting on shear force

    NASA Astrophysics Data System (ADS)

    Apalara, Tijani A.

    2018-03-01

    In this paper, we consider a linear thermoelastic Timoshenko system with memory effects where the thermoelastic coupling is acting on shear force under Neumann-Dirichlet-Dirichlet boundary conditions. The same system with fully Dirichlet boundary conditions was considered by Messaoudi and Fareh (Nonlinear Anal TMA 74(18):6895-6906, 2011, Acta Math Sci 33(1):23-40, 2013), but they obtained a general stability result which depends on the speeds of wave propagation. In our case, we obtained a general stability result irrespective of the wave speeds of the system.

  12. Investigating Coastal Processes Responsible for Large-Scale Shoreline Responses to Human Shoreline Stabilization

    NASA Astrophysics Data System (ADS)

    Slott, J. M.; Murray, A. B.; Ashton, A. D.

    2006-12-01

    Human shoreline stabilization practices, such as beach nourishment (i.e. placing sand on an eroding beach), have become more prevalent as erosion threatens coastal communities. On sandy shorelines, recent experiments with a numerical model of shoreline change (Slott, et al., in press) indicate that moderate shifts in storminess patterns, one possible outcome of global warming, may accelerate the rate at which shorelines erode or accrete, by altering the angular distribution of approaching waves (the `wave climate'). Accelerated erosion would undoubtedly place greater demands on stabilization. Scientists and coastal engineers have typically only considered the site-specific consequences of shoreline stabilization; here we explore the coastal processes responsible for large-scale (10's kms) and long-term (decades) effects using a numerical model developed by Ashton, et al. (2001). In this numerical model, waves breaking at oblique angles drive a flux of sediment along the shoreline, where gradients in this flux can shape the coastline into surprisingly complex forms (e.g. cuspate-capes found on the Carolina coast). Wave "shadowing" plays a major role in shoreline evolution, whereby coastline features may block incoming waves from reaching distant parts. In this work, we include beach nourishment in the Ashton, et al. (2001) model. Using a cuspate-cape shoreline as our initial model condition, we conducted pairs of experiments and varied the wave-climate forcing across each pair, each representing different storminess scenarios. Here we report on one scenario featuring increased extra-tropical storm influence. For each experiment-pair we ran a control experiment with no shoreline stabilization and a second where a beach nourishment project stabilized a cape tip. By comparing the results of these two parallel runs, we isolate the tendency of the shoreline to migrate landward or seaward along the domain due solely to beach nourishment. Significant effects from beach nourishment reached several tens of kilometers away from the nourishment project. The magnitude of these effects rivaled the erosion we expect from sea-level rise alone over the coming century. Furthermore, the nature of the effects were unexpected: where we expect beach nourishment sand to spread laterally in the direction of net alongshore sediment transport (e.g. to the right looking off-shore), coastline segments to the right of the cape should tend to migrate seaward, while segments to the left of the cape might naively be expected to feel little effects. We observed, however, that shoreline segments to the left (right) of the stabilized cape tip tended to migrate seaward (landward). Two statistics we collected for each model run--the extent of wave shadowing and the net flux of sediment at each alongshore position--helped explain the surprising behavior. By pinning the location of the cape tip, beach nourishment altered the way in which the cape shadowed adjacent coastlines. The stabilized cape-tip shadowed segments to the left more often, increasing the influence from left-approaching waves. These shoreline segments shifted seaward, relative to the non-nourishment case, through a convergence in alongshore sediment transport from increased transport from the left, rather than from laterally-spreading beach nourishment sand. The stabilized cape-tip shadowed segments to the right less often, increasing the influence of left-approaching waves. These segments shifted landward through a divergence in alongshore sediment transport from increased transport to the right.

  13. Temporal evolutions and stationary waves for dissipative Benjamin-Ono equation

    NASA Astrophysics Data System (ADS)

    Feng, Bao-Feng; Kawahara, Takuji

    2000-05-01

    Initial value problems as well as stationary solitary and periodic waves are investigated for dissipative Benjamin-Ono (DBO) equation. Multi-hump stationary waves and their structures are identified numerically and the stability regions of stationary periodic waves are also examined numerically. These results elucidate a close relation between irregular behaviours in the initial value problem and the multiplicity of stationary waves.

  14. Short-period atmospheric gravity waves - A study of their statistical properties and source mechanisms

    NASA Technical Reports Server (NTRS)

    Gedzelman, S. D.

    1983-01-01

    Gravity waves for the one year period beginning 19 October 1976 around Palisades, New York, are investigated to determine their statistical properties and sources. The waves have typical periods of 10 min, pressure amplitudes of 3 Pa and velocities of 30 m/s. In general, the largest, amplitude waves occur during late fall and early winter when the upper tropospheric winds directly overhead are fastest and the static stability of the lower troposphere is greatest. Mean wave amplitudes correlate highly with the product of the mean maximum wind speed and the mean low level stratification directly aloft. A distinct diurnal variation of wave amplitudes with the largest waves occurring in the pre-dawn hours is also observed as a result of the increased static stability then. The majority of waves are generated by shear instability; however, a number of waves are generated by distant sources such as nuclear detonations or large thunderstorms. The waves with distant sources can be distinguished on the basis of their generally much higher coherency across the grid and velocities that depart markedly from the wind velocity at any point in the sounding.

  15. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Park, C.B.

    1999-01-01

    The shear-wave (S-wave) velocity of near-surface materials (soil, rocks, pavement) and its effect on seismic-wave propagation are of fundamental interest in many groundwater, engineering, and environmental studies. Rayleigh-wave phase velocity of a layered-earth model is a function of frequency and four groups of earth properties: P-wave velocity, S-wave velocity, density, and thickness of layers. Analysis of the Jacobian matrix provides a measure of dispersion-curve sensitivity to earth properties. S-wave velocities are the dominant influence on a dispersion curve in a high-frequency range (>5 Hz) followed by layer thickness. An iterative solution technique to the weighted equation proved very effective in the high-frequency range when using the Levenberg-Marquardt and singular-value decomposition techniques. Convergence of the weighted solution is guaranteed through selection of the damping factor using the Levenberg-Marquardt method. Synthetic examples demonstrated calculation efficiency and stability of inverse procedures. We verify our method using borehole S-wave velocity measurements.Iterative solutions to the weighted equation by the Levenberg-Marquardt and singular-value decomposition techniques are derived to estimate near-surface shear-wave velocity. Synthetic and real examples demonstrate the calculation efficiency and stability of the inverse procedure. The inverse results of the real example are verified by borehole S-wave velocity measurements.

  16. On the nonlinear stability of viscous modes within the Rayleigh problem on an infinite flat plate

    NASA Technical Reports Server (NTRS)

    Webb, J. C.; Otto, S. R.; Lilley, G. M.

    1994-01-01

    The stability has been investigated of the unsteady flow past an infinite flat plate when it is moved impulsively from rest, in its own plane. For small times the instantaneous stability of the flow depends on the linearized equations of motion which reduce in this problem to the Orr-Sommerfeld equation. It is known that the flow for certain values of Reynolds number, frequency and wave number is unstable to Tollmien-Schlichting waves, as in the case of the Blasius boundary layer flow past a flat plate. With increase in time, the unstable waves only undergo growth for a finite time interval, and this growth rate is itself a function of time. The influence of finite amplitude effects is studied by solving the full Navier-Stokes equations. It is found that the stability characteristics are markedly changed both by the consideration of the time evolution of the flow, and by the introduction of finite amplitude effects.

  17. Influence of nonlinear interactions on the development of instability in hydrodynamic wave systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanova, N. N.; Chkhetiani, O. G., E-mail: ochkheti@mx.iki.rssi.ru, E-mail: ochkheti@gmail.ru; Yakushkin, I. G.

    2016-05-15

    The problem of the development of shear instability in a three-layer medium simulating the flow of a stratified incompressible fluid is considered. The hydrodynamic equations are solved by expanding the Hamiltonian in a small parameter. The equations for three interacting waves, one of which is unstable, have been derived and solved numerically. The three-wave interaction is shown to stabilize the instability. Various regimes of the system’s dynamics, including the stochastic ones dependent on one of the invariants in the problem, can arise in this case. It is pointed out that the instability development scenario considered differs from the previously consideredmore » scenario of a different type, where the three-wave interaction does not stabilize the instability. The interaction of wave packets is considered briefly.« less

  18. Dynamic stabilization of Rayleigh-Taylor instability in an ablation front

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Di Lucchio, L.; Rodriguez Prieto, G.

    2011-01-15

    Dynamic stabilization of Rayleigh-Taylor instability in an ablation front is studied by considering a modulation in the acceleration that consists of sequences of Dirac deltas. This allows obtaining explicit analytical expressions for the instability growth rate as well as for the boundaries of the stability region. As a general rule, it is found that it is possible to stabilize all wave numbers above a certain minimum value k{sub m}, but the requirements in the modulation amplitude and frequency become more exigent with smaller k{sub m}. The essential role of compressibility is phenomenologically addressed in order to find the constraint itmore » imposes on the stability region. The results for some different wave forms of the acceleration modulation are also presented.« less

  19. Biological Aerosol Test Method and Personal Protective Equipment (PPE) Decon

    DTIC Science & Technology

    2011-05-01

    supply to the porous tube diluter. This stops all air into the LSAT. 6. Power off the vacuum pump and the compressed air supply. 22 Distribution...Experiment from Template from the menu. 10. Scroll down the template list until you find APHL Flu Assay 04272009. 11. Highlight the test, then click

  20. 78 FR 76308 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... neurogenic orthostatic hypotension in patients with primary autonomic failure (Parkinson's disease, multiple... recommendations to the Agency on FDA's regulatory issues. Date and Time: The meeting will be held on January 14... Agency's Web site at http://www.fda.gov/AdvisoryCommittees/default.htm and scroll down to the appropriate...

  1. NASA contributions to radial turbine aerodynamic analyses

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1980-01-01

    A brief description of the radial turbine and its analysis needs is followed by discussions of five analytical areas; design geometry and performance, off design performance, blade row flow, scroll flow, and duct flow. The functions of the programs, areas of applicability, and limitations and uncertainties are emphasized. Both past contributions and current activities are discussed.

  2. Improving Student Performance through Computer-Based Assessment: Insights from Recent Research.

    ERIC Educational Resources Information Center

    Ricketts, C.; Wilks, S. J.

    2002-01-01

    Compared student performance on computer-based assessment to machine-graded multiple choice tests. Found that performance improved dramatically on the computer-based assessment when students were not required to scroll through the question paper. Concluded that students may be disadvantaged by the introduction of online assessment unless care is…

  3. E-­Learning as a Teaching Strategy Actively Used in FATIH Project

    ERIC Educational Resources Information Center

    Eryilmaz, Selami; Adalar, Hayati; Icinak, Abdullah

    2015-01-01

    The changes and innovations in information and communication technologies influence the economic and social lives of the societies to a great degree. The countries accordingly take new decisions to benefit effectively from these technologies. The new media system scrolling traditional educational paradigms has also required changes in educational…

  4. 21. DIABLO POWERHOUSE: LOOKING AT THE TRUNION FOR THE BUTTERFLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DIABLO POWERHOUSE: LOOKING AT THE TRUNION FOR THE BUTTERFLY VALVE AND DRAIN FOR SCROLL CASE FOR UNIT 32. THESE ARE LOCATED ON THE SAME LEVEL IN THE POWERHOUSE AS THE LOWER OIL ROOM, 1989. - Skagit Power Development, Diablo Powerhouse, On Skagit River, 6.1 miles upstream from Newhalem, Newhalem, Whatcom County, WA

  5. Comparing the Readability of Text Displays on Paper, E-Book Readers, and Small Screen Devices

    ERIC Educational Resources Information Center

    Baker, Rebecca Dawn

    2010-01-01

    Science fiction has long promised the digitalization of books. Characters in films and television routinely check their palm-sized (or smaller) electronic displays for fast-scrolling information. However, this very technology, increasingly prevalent in today's world, has not been embraced universally. While the convenience of pocket-sized…

  6. Managing Library 2.0

    ERIC Educational Resources Information Center

    Carpenter, Miranda; Green, Ravonne A.

    2009-01-01

    Libraries have never been stable or static. They are inevitably designed for one information vessel and have to learn to accommodate a new one. Scrolls became codices, and books were augmented with vinyl records, VHS tapes, and CDs. The only difference in trying to manage technology now, as opposed to then, is that change comes so much more…

  7. Preserving Library Value through the Shifting Tides of Technology

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2012-01-01

    The core mission of libraries has always centered on making content and related services available to patrons. The form in which that content is delivered has changed continually. The most ancient libraries or archives organized clay tablets or cylinders written in cuneiform. Centuries ago, the transition from scrolls to codices must have been…

  8. Take the Red Pill: A New Matrix of Literacy

    ERIC Educational Resources Information Center

    Brabazon, Tara

    2011-01-01

    Using "The Matrix" film series as an inspiration, aspiration and model, this article integrates horizontal and vertical models of literacy. My goal is to create a new matrix for media literacy, aligning the best of analogue depth models for meaning making with the rapid scrolling, clicking and moving through the read-write web. To…

  9. PACALL: Supporting Language Learning Using SenseCam

    ERIC Educational Resources Information Center

    Hou, Bin; Ogata, Hiroaki; Kunita, Toma; Li, Mengmeng; Uosaki, Noriko

    2013-01-01

    The authors' research defines a ubiquitous learning log (ULLO) as a digital record of what a learner has learned in the daily life using ubiquitous technologies. In their previous works, the authors proposed a model named LORE (Log--Organize--Recall--Evaluate) to describe the learning process of ULLO and developed a system named SCROLL to…

  10. Indians of Canada. Jackdaw No. C16.

    ERIC Educational Resources Information Center

    Rogers, Edward, Comp.; Irwin, Clarke, Comp.

    The Jackdaw packet contains historical documents dealing with Canadian Indians. The packet may be used for senior high school and college level students. Included are a reproduction of a birchbark scroll owned by an Ojibwa Medicine Society, showing membership symbols known only to the society; a speech (1743) by an Indian chief, as transcribed…

  11. Periodic sequence of stabilized wave segments in an excitable medium

    NASA Astrophysics Data System (ADS)

    Zykov, V. S.; Bodenschatz, E.

    2018-03-01

    Numerical computations show that a stabilization of a periodic sequence of wave segments propagating through an excitable medium is possible only in a restricted domain within the parameter space. By application of a free-boundary approach, we demonstrate that at the boundary of this domain the parameter H introduced in our Rapid Communication is constant. We show also that the discovered parameter predetermines the propagation velocity and the shape of the wave segments. The predictions of the free-boundary approach are in good quantitative agreement with results from numerical reaction-diffusion simulations performed on the modified FitzHugh-Nagumo model.

  12. Blower augmentor for power oil and power gas burners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, L.A.

    1987-07-14

    An oil burner is described in combination: (a) a blower comprising a scroll housing and a driven squirrel cage, the squirrel cage having an interior air space, and having blades disposed around space and constituting an air impeller; (b) the scroll housing having a tangential air outlet, and further comprising a spiral wall encircling the squirrel cage; (c) a stationary barrier wall mounted in the housing and extending into the interior air space of the squirrel cage. The barrier wall extends outward from and with respect to a central axial area of the squirrel cage to a location adjacent themore » blades; (d) the housing is wider than the squirrel cage in axial dimension, to provide an end space between the squirrel cage and the housing, in which end space air tends to recirculate in the housing; and (e) support and baffle means disposed in the end space between the housing and squirrel cage, for mounting the barrier wall and for redirecting in outward directions a portion of the circularly travelling recirculating air in the housing.« less

  13. Astronomy and Calendars at Qumran

    NASA Astrophysics Data System (ADS)

    Ben-Dov, Jonathan

    A corpus of ca. 20 calendrical texts dated mostly to the first century BCE was found among the Dead Sea scrolls. These documents attest to a year of 364 days, which was adopted from earlier Jewish Pseudepigrapha like the Books of Enoch and Jubilees. The 364-day year was the main time frame used by the sectarian community represented in the scrolls. It is not a solar year, as often stated, but rather a schematic-sabbatical year. Its main characteristic in the DSS is the absorption of many various calendrical frameworks. The 364-day calendar tradition is strongly based on the calculation of full creational weeks and of weeks of years (Shemitah). It incorporates the service cycles of the 24 priestly families in the temple, while in addition, it encompasses an additional cycle of lunar phenomena. This cycle is related to the Mesopotamian concept of "the Lunar Three". Finally, an awareness of the cycle of the Jubilee (49 years) produced a megacycle of 294 years. It remains unknown how and whether at all the 364-day year was intercalated to fit the tropical year of 365.25 days approximately.

  14. Three stage vacuum system for ultralow temperature installation

    NASA Astrophysics Data System (ADS)

    Das, N. K.; Pradhan, J.; Naser, Md Z. A.; Mandal, B. Ch; Roy, A.; Kumar, P.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    We use a three stage vacuum system for developing a dilution fridge at VECC, Kolkata. We aim at achieving a cooling power of 20μW at 100mK for various experiments especially in the field of condensed matter and nuclear physics. The system is essentially composed of four segments-bath cryostat, vacuum system, dilution insert and 3He circulation circuit. Requirement of vacuum system at different stages are different. The vacuum system for cryostat and for internal vacuum chamber located within the helium bath is a common turbo molecular pump backed by scroll pump as to maintain a vacuum ~10-6mbar. For bringing down the temperature of the helium evaporator, we use a high throughput Roots pump backed by a dry pump. The pumping system for 3He distillation chamber (still) requires a high pumping speed, so a turbo drag pump backed by a scroll pump has been installed. As the fridge use precious 3He gas for operation, the entire system has been made to be absolutely leak proof with respect to the 3He gas.

  15. Ultratransparent and stretchable graphene electrodes

    PubMed Central

    Liu, Nan; Chortos, Alex; Lei, Ting; Jin, Lihua; Kim, Taeho Roy; Bae, Won-Gyu; Zhu, Chenxin; Wang, Sihong; Pfattner, Raphael; Chen, Xiyuan; Sinclair, Robert; Bao, Zhenan

    2017-01-01

    Two-dimensional materials, such as graphene, are attractive for both conventional semiconductor applications and nascent applications in flexible electronics. However, the high tensile strength of graphene results in fracturing at low strain, making it challenging to take advantage of its extraordinary electronic properties in stretchable electronics. To enable excellent strain-dependent performance of transparent graphene conductors, we created graphene nanoscrolls in between stacked graphene layers, referred to as multilayer graphene/graphene scrolls (MGGs). Under strain, some scrolls bridged the fragmented domains of graphene to maintain a percolating network that enabled excellent conductivity at high strains. Trilayer MGGs supported on elastomers retained 65% of their original conductance at 100% strain, which is perpendicular to the direction of current flow, whereas trilayer films of graphene without nanoscrolls retained only 25% of their starting conductance. A stretchable all-carbon transistor fabricated using MGGs as electrodes exhibited a transmittance of >90% and retained 60% of its original current output at 120% strain (parallel to the direction of charge transport). These highly stretchable and transparent all-carbon transistors could enable sophisticated stretchable optoelectronics. PMID:28913422

  16. Checking the validity of Busquet's ionization temperature with detailed collisional radiative models.

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Bar-Shalom, A.

    1997-12-01

    Busquet's RADIOM model for effective ionization temperature Tz is an appealing and simple way to introduce non LTE effects in hydrocodes. The authors report checking the validity of RADIOM in the optically thin case by comparison with two collisional radiative models, MICCRON (level-by-level) for C and Al and SCROLL (superconfiguration- by-superconfiguration) for Lu and Au. MICCRON is described in detail. The agreement between the average ion charge >Z< and the corresponding Tz obtained from RADIOM on the one hand, and from MICCRON on the other hand for C and Al is excellent. The absorption spectra at Tz agree very well with the one generated by SCROLL near LTE conditions (small β). Farther from LTE (large β) the agreement is still good, but another effective temperature gives an excellent agreement. It is concluded that the model of Busquet is very good in most cases. There is however room for improvement when the departure from LTE is more pronounced for heavy atoms and for emissivity. Improvement appears possible because the concept of ionization temperature seems to hold in a broader range of parameters.

  17. Improved Software to Browse the Serial Medical Images for Learning

    PubMed Central

    2017-01-01

    The thousands of serial images used for medical pedagogy cannot be included in a printed book; they also cannot be efficiently handled by ordinary image viewer software. The purpose of this study was to provide browsing software to grasp serial medical images efficiently. The primary function of the newly programmed software was to select images using 3 types of interfaces: buttons or a horizontal scroll bar, a vertical scroll bar, and a checkbox. The secondary function was to show the names of the structures that had been outlined on the images. To confirm the functions of the software, 3 different types of image data of cadavers (sectioned and outlined images, volume models of the stomach, and photos of the dissected knees) were inputted. The browsing software was downloadable for free from the homepage (anatomy.co.kr) and available off-line. The data sets provided could be replaced by any developers for their educational achievements. We anticipate that the software will contribute to medical education by allowing users to browse a variety of images. PMID:28581279

  18. Improved Software to Browse the Serial Medical Images for Learning.

    PubMed

    Kwon, Koojoo; Chung, Min Suk; Park, Jin Seo; Shin, Byeong Seok; Chung, Beom Sun

    2017-07-01

    The thousands of serial images used for medical pedagogy cannot be included in a printed book; they also cannot be efficiently handled by ordinary image viewer software. The purpose of this study was to provide browsing software to grasp serial medical images efficiently. The primary function of the newly programmed software was to select images using 3 types of interfaces: buttons or a horizontal scroll bar, a vertical scroll bar, and a checkbox. The secondary function was to show the names of the structures that had been outlined on the images. To confirm the functions of the software, 3 different types of image data of cadavers (sectioned and outlined images, volume models of the stomach, and photos of the dissected knees) were inputted. The browsing software was downloadable for free from the homepage (anatomy.co.kr) and available off-line. The data sets provided could be replaced by any developers for their educational achievements. We anticipate that the software will contribute to medical education by allowing users to browse a variety of images. © 2017 The Korean Academy of Medical Sciences.

  19. Demonstration of new PCSD capabilities

    NASA Technical Reports Server (NTRS)

    Gough, M.

    1986-01-01

    The new, more flexible and more friendly graphics capabilities to be available in later releases of the Pilot Climate Data System were demonstrated. The LIMS-LAMAT data set was chosen to illustrate these new capabilities. Pseudocolor and animation were used to represent the third and fourth dimensions, expanding the analytical capabilities available through the traditional two-dimensional x-y plot. In the new version, variables for the axes are chosen by scrolling through viable selections. This scrolling feature is a function of the new user interface customization. The new graphics are extremely user friendly and should free the scientist to look at data and converse with it, without doing any programming. The system is designed to rapidly plot any variable versus any other variable and animate by any variable. Any one plot in itself is not extraordinary; however, the fact that a user can generate the plots instead of a programmer distinguishes the graphics capabilities of the PCDS from other software packages. In addition, with the new CDF design, the system will become more generic, and the new graphics will become much more rigorous in the area of correlative studies.

  20. On Pulsating and Cellular Forms of Hydrodynamic Instability in Liquid-Propellant Combustion

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)

    1998-01-01

    An extended Landau-Levich model of liquid-propellant combustion, one that allows for a local dependence of the burning rate on the (gas) pressure at the liquid-gas interface, exhibits not only the classical hydrodynamic cellular instability attributed to Landau but also a pulsating hydrodynamic instability associated with sufficiently negative pressure sensitivities. Exploiting the realistic limit of small values of the gas-to-liquid density ratio p, analytical formulas for both neutral stability boundaries may be obtained by expanding all quantities in appropriate powers of p in each of three distinguished wave-number regimes. In particular, composite analytical expressions are derived for the neutral stability boundaries A(sub p)(k), where A, is the pressure sensitivity of the burning rate and k is the wave number of the disturbance. For the cellular boundary, the results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wave numbers for negative values of A(sub p), which is characteristic of many hydroxylammonium nitrate-based liquid propellants over certain pressure ranges. In contrast, the pulsating hydrodynamic stability boundary is insensitive to gravitational and surface-tension effects but is more sensitive to the effects of liquid viscosity because, for typical nonzero values of the latter, the pulsating boundary decreases to larger negative values of A(sub p) as k increases through O(l) values. Thus, liquid-propellant combustion is predicted to be stable (that is, steady and planar) only for a range of negative pressure sensitivities that lie below the cellular boundary that exists for sufficiently small negative values of A(sub p) and above the pulsating boundary that exists for larger negative values of this parameter.

  1. Computation of the stability derivatives via CFD and the sensitivity equations

    NASA Astrophysics Data System (ADS)

    Lei, Guo-Dong; Ren, Yu-Xin

    2011-04-01

    The method to calculate the aerodynamic stability derivates of aircrafts by using the sensitivity equations is extended to flows with shock waves in this paper. Using the newly developed second-order cell-centered finite volume scheme on the unstructured-grid, the unsteady Euler equations and sensitivity equations are solved simultaneously in a non-inertial frame of reference, so that the aerodynamic stability derivatives can be calculated for aircrafts with complex geometries. Based on the numerical results, behavior of the aerodynamic sensitivity parameters near the shock wave is discussed. Furthermore, the stability derivatives are analyzed for supersonic and hypersonic flows. The numerical results of the stability derivatives are found in good agreement with theoretical results for supersonic flows, and variations of the aerodynamic force and moment predicted by the stability derivatives are very close to those obtained by CFD simulation for both supersonic and hypersonic flows.

  2. Studies on dispersive stabilization of porous media flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daripa, Prabir, E-mail: prabir.daripa@math.tamu.edu; Gin, Craig

    Motivated by a need to improve the performance of chemical enhanced oil recovery (EOR) processes, we investigate dispersive effects on the linear stability of three-layer porous media flow models of EOR for two different types of interfaces: permeable and impermeable interfaces. Results presented are relevant for the design of smarter interfaces in the available parameter space of capillary number, Peclet number, longitudinal and transverse dispersion, and the viscous profile of the middle layer. The stabilization capacity of each of these two interfaces is explored numerically and conditions for complete dispersive stabilization are identified for each of these two types ofmore » interfaces. Key results obtained are (i) three-layer porous media flows with permeable interfaces can be almost completely stabilized by diffusion if the optimal viscous profile is chosen, (ii) flows with impermeable interfaces can also be almost completely stabilized for short time, but become more unstable at later times because diffusion flattens out the basic viscous profile, (iii) diffusion stabilizes short waves more than long waves which leads to a “turning point” Peclet number at which short and long waves have the same growth rate, and (iv) mechanical dispersion further stabilizes flows with permeable interfaces but in some cases has a destabilizing effect for flows with impermeable interfaces, which is a surprising result. These results are then used to give a comparison of the two types of interfaces. It is found that for most values of the flow parameters, permeable interfaces suppress flow instability more than impermeable interfaces.« less

  3. Bifurcations and stability of standing waves in the nonlinear Schrödinger equation on the tadpole graph

    NASA Astrophysics Data System (ADS)

    Noja, Diego; Pelinovsky, Dmitry; Shaikhova, Gaukhar

    2015-07-01

    We develop a detailed analysis of edge bifurcations of standing waves in the nonlinear Schrödinger (NLS) equation on a tadpole graph (a ring attached to a semi-infinite line subject to the Kirchhoff boundary conditions at the junction). It is shown in the recent work [7] by using explicit Jacobi elliptic functions that the cubic NLS equation on a tadpole graph admits a rich structure of standing waves. Among these, there are different branches of localized waves bifurcating from the edge of the essential spectrum of an associated Schrödinger operator. We show by using a modified Lyapunov-Schmidt reduction method that the bifurcation of localized standing waves occurs for every positive power nonlinearity. We distinguish a primary branch of never vanishing standing waves bifurcating from the trivial solution and an infinite sequence of higher branches with oscillating behavior in the ring. The higher branches bifurcate from the branches of degenerate standing waves with vanishing tail outside the ring. Moreover, we analyze stability of bifurcating standing waves. Namely, we show that the primary branch is composed by orbitally stable standing waves for subcritical power nonlinearities, while all nontrivial higher branches are linearly unstable near the bifurcation point. The stability character of the degenerate branches remains inconclusive at the analytical level, whereas heuristic arguments based on analysis of embedded eigenvalues of negative Krein signatures support the conjecture of their linear instability at least near the bifurcation point. Numerical results for the cubic NLS equation show that this conjecture is valid and that the degenerate branches become spectrally stable far away from the bifurcation point.

  4. On increasing stability in the two dimensional inverse source scattering problem with many frequencies

    NASA Astrophysics Data System (ADS)

    Entekhabi, Mozhgan Nora; Isakov, Victor

    2018-05-01

    In this paper, we will study the increasing stability in the inverse source problem for the Helmholtz equation in the plane when the source term is assumed to be compactly supported in a bounded domain Ω with a sufficiently smooth boundary. Using the Fourier transform in the frequency domain, bounds for the Hankel functions and for scattering solutions in the complex plane, improving bounds for the analytic continuation, and the exact observability for the wave equation led us to our goals which are a sharp uniqueness and increasing stability estimate when the wave number interval is growing.

  5. Connection between the two branches of the quantum two-stream instability across the k space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Haas, F.

    2010-05-15

    The stability of two quantum counterstreaming electron beams is investigated within the quantum plasma fluid equations for arbitrarily oriented wave vectors k. The analysis reveals that the two quantum two-stream unstable branches are indeed connected by a continuum of unstable modes with oblique wave vectors. Using the longitudinal approximation, the stability domain for any k is analytically explained, together with the growth rate.

  6. Personality Types in Adolescence: Change and Stability and Links with Adjustment and Relationships--A Five-Wave Longitudinal Study

    ERIC Educational Resources Information Center

    Meeus, Wim; Van de Schoot, Rens; Klimstra, Theo; Branje, Susan

    2011-01-01

    We examined change and stability of the 3 personality types identified by Block and Block (1980) and studied their links with adjustment and relationships. We used data from a 5-wave study of 923 early-to-middle and 390 middle-to-late adolescents, thereby covering the ages of 12-20 years. In Study 1, systematic evidence for personality change was…

  7. Stability of two layers dielectric-electrolyte microflow subjected to an alternating external electric field.

    PubMed

    Demekhin, Evgeny A; Ganchenko, Georgy S; Gorbacheva, Ekaterina V; Amiroudine, Sakir

    2018-04-16

    The stability of the electroosmotic flow of the two-phase system electrolyte-dielectric with a free interface in the microchannel under an external electric field is examined theoretically. The mathematical model includes the Nernst-Plank equations for the ion concentrations. The linear stability of the 1D nonstationary solution with respect to the small, periodic perturbations along the channel, is studied. Two types of instability have been highlighted. The first is known as the long-wave instability and is connected with the distortion of the free charge on the interface. In the long-wave area, the results are in good agreement with the ones obtained theoretically and experimentally in the literature. The second type of instability is a short-wave and mostly connected with the disturbance of the electrolyte conductivity. The short-wave type of instability has not been found previously in the literature and constitutes the basis and the strength of the present work. It is revealed that with the increase of the external electric field frequency, the 1D flow is stabilized. The dependence of the flow on the other parameters of the system is qualitatively the same as for the constant electric field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A longitudinal, population-based twin study of avoidant and obsessive-compulsive personality disorder traits from early to middle adulthood

    PubMed Central

    Gjerde, L. C.; Czajkowski, N.; Røysamb, E.; Ystrom, E.; Tambs, K.; Aggen, S. H.; Ørstavik, R. E.; Kendler, K. S.; Reichborn-Kjennerud, T.; Knudsen, G. P.

    2015-01-01

    Background The phenotypic stability of avoidant personality disorder (AVPD) and obsessive-compulsive personality disorder (OCPD) has previously been found to be moderate. However, little is known about the longitudinal structure of genetic and environmental factors for these disorders separately and jointly, and to what extent genetic and environmental factors contribute to their stability. Method AVPD and OCPD criteria were assessed using the Structured Interview for DSM-IV Personality in 2793 young adult twins (1385 pairs, 23 singletons) from the Norwegian Institute of Public Health Twin Panel at wave 1 and 2282 (986 pairs, 310 singletons) of these on average 10 years later at wave 2. Longitudinal biometric models were fitted to AVPD and OCPD traits. Results For twins who participated at both time-points, the number of endorsed sub-threshold criteria for both personality disorders (PDs) decreased 31% from wave 1 to wave 2. Phenotypic correlations between waves were 0.54 and 0.37 for AVPD and OCPD, respectively. The heritability estimates of the stable PD liabilities were 0.67 for AVPD and 0.53 for OCPD. The genetic correlations were 1.00 for AVPD and 0.72 for OCPD, while the unique environmental influences correlated 0.26 and 0.23, respectively. The correlation between the stable AVPD and OCPD liabilities was 0.39 of which 63% was attributable to genetic influences. Shared environmental factors did not significantly contribute to PD variance at either waves 1 or 2. Conclusion Phenotypic stability was moderate for AVPD and OCPD traits, and genetic factors contributed more than unique environmental factors to the stability both within and across phenotypes. PMID:26273730

  9. A longitudinal, population-based twin study of avoidant and obsessive-compulsive personality disorder traits from early to middle adulthood.

    PubMed

    Gjerde, L C; Czajkowski, N; Røysamb, E; Ystrom, E; Tambs, K; Aggen, S H; Ørstavik, R E; Kendler, K S; Reichborn-Kjennerud, T; Knudsen, G P

    2015-12-01

    The phenotypic stability of avoidant personality disorder (AVPD) and obsessive-compulsive personality disorder (OCPD) has previously been found to be moderate. However, little is known about the longitudinal structure of genetic and environmental factors for these disorders separately and jointly, and to what extent genetic and environmental factors contribute to their stability. AVPD and OCPD criteria were assessed using the Structured Interview for DSM-IV Personality in 2793 young adult twins (1385 pairs, 23 singletons) from the Norwegian Institute of Public Health Twin Panel at wave 1 and 2282 (986 pairs, 310 singletons) of these on average 10 years later at wave 2. Longitudinal biometric models were fitted to AVPD and OCPD traits. For twins who participated at both time-points, the number of endorsed sub-threshold criteria for both personality disorders (PDs) decreased 31% from wave 1 to wave 2. Phenotypic correlations between waves were 0.54 and 0.37 for AVPD and OCPD, respectively. The heritability estimates of the stable PD liabilities were 0.67 for AVPD and 0.53 for OCPD. The genetic correlations were 1.00 for AVPD and 0.72 for OCPD, while the unique environmental influences correlated 0.26 and 0.23, respectively. The correlation between the stable AVPD and OCPD liabilities was 0.39 of which 63% was attributable to genetic influences. Shared environmental factors did not significantly contribute to PD variance at either waves 1 or 2. Phenotypic stability was moderate for AVPD and OCPD traits, and genetic factors contributed more than unique environmental factors to the stability both within and across phenotypes.

  10. Cognitively Elite, Cognitively Normal, and Cognitively Impaired Aging: Neurocognitive Status and Stability Moderate Memory Performance

    PubMed Central

    Dixon, Roger A.; de Frias, Cindy M.

    2014-01-01

    Objective Although recent theories of brain and cognitive aging distinguish among normal, exceptional, and impaired groups, further empirical evidence is required. We adapted and applied standard procedures for classifying groups of cognitively impaired (CI) and cognitively normal (CN) older adults to a third classification, cognitively healthy, exceptional, or elite (CE) aging. We then examined concurrent and two-wave longitudinal performance on composite variables of episodic, semantic, and working memory. Method We began with a two-wave source sample from the Victoria Longitudinal Study (VLS) (source n=570; baseline age=53–90 years). The goals were to: (a) apply standard and objective classification procedures to discriminate three cognitive status groups, (b) conduct baseline comparisons of memory performance, (c) develop two-wave status stability and change subgroups, and (d) compare of stability subgroup differences in memory performance and change. Results As expected, the CE group performed best on all three memory composites. Similarly, expected status stability effects were observed: (a) stable CE and CN groups performed memory tasks better than their unstable counterparts and (b) stable (and chronic) CI group performed worse than its unstable (variable) counterpart. These stability group differences were maintained over two waves. Conclusion New data validate the expectations that (a) objective clinical classification procedures for cognitive impairment can be adapted for detecting cognitively advantaged older adults and (b) performance in three memory systems is predictably related to the tripartite classification. PMID:24742143

  11. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.; Vainchtein, A.; Rubin, J. E.

    2016-06-01

    Motivated by earlier studies of artificial perceptions of light called phosphenes, we analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolution and stability of planar fronts. Our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.

  12. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    DOE PAGES

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.; ...

    2016-02-27

    Artificial perceptions of light called phosphenes were motivated by earlier studies. We analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolutionmore » and stability of planar fronts. Moreover, our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.« less

  13. Traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duanmu, M.; Whitaker, N.; Kevrekidis, P. G.

    Artificial perceptions of light called phosphenes were motivated by earlier studies. We analyze traveling wave solutions in a chain of periodically forced coupled nonlinear oscillators modeling this phenomenon. We examine the discrete model problem in its co-traveling frame and systematically obtain the corresponding traveling waves in one spatial dimension. Direct numerical simulations as well as linear stability analysis are employed to reveal the parameter regions where the traveling waves are stable, and these waves are, in turn, connected to the standing waves analyzed in earlier work. We also consider a two-dimensional extension of the model and demonstrate the robust evolutionmore » and stability of planar fronts. Moreover, our simulations also suggest the radial fronts tend to either annihilate or expand and flatten out, depending on the phase value inside and the parameter regime. Finally, we observe that solutions that initially feature two symmetric fronts with bulged centers evolve in qualitative agreement with experimental observations of phosphenes.« less

  14. Wind-Wave Effects on Vertical Mixing in Chesapeake Bay, USA: comparing observations to second-moment closure predictions.

    NASA Astrophysics Data System (ADS)

    Fisher, A. W.; Sanford, L. P.; Scully, M. E.

    2016-12-01

    Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer transitions to a turbulent log layer. The influences of fetch-limited wind waves, density stratification, and surface buoyancy fluxes will also be discussed.

  15. Small amplitude waves and linear firehose and mirror instabilities in rotating polytropic quantum plasma

    NASA Astrophysics Data System (ADS)

    Bhakta, S.; Prajapati, R. P.; Dolai, B.

    2017-08-01

    The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.

  16. Rac-WAVE-mediated actin reorganization is required for organization and maintenance of cell-cell adhesion.

    PubMed

    Yamazaki, Daisuke; Oikawa, Tsukasa; Takenawa, Tadaomi

    2007-01-01

    During cadherin-dependent cell-cell adhesion, the actin cytoskeleton undergoes dynamic reorganization in epithelial cells. Rho-family small GTPases, which regulate actin dynamics, play pivotal roles in cadherin-dependent cell-cell adhesion; however, the precise molecular mechanisms that underlie cell-cell adhesion formation remain unclear. Here we show that Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE)-mediated reorganization of actin, downstream of Rac plays an important role in normal development of cadherin-dependent cell-cell adhesions in MDCK cells. Rac-induced development of cadherin-dependent adhesions required WAVE2-dependent actin reorganization. The process of cell-cell adhesion is divided into three steps: formation of new cell-cell contacts, stabilization of these new contacts and junction maturation. WAVE1 and WAVE2 were expressed in MDCK cells. The functions of WAVE1 and WAVE2 were redundant in this system but WAVE2 appeared to play a more significant role. During the first step, WAVE2-dependent lamellipodial protrusions facilitated formation of cell-cell contacts. During the second step, WAVE2 recruited actin filaments to new cell-cell contacts and stabilized newly formed cadherin clusters. During the third step, WAVE2-dependent actin reorganization was required for organization and maintenance of mature cell-cell adhesions. Thus, Rac-WAVE-dependent actin reorganization is not only involved in formation of cell-cell adhesions but is also required for their maintenance.

  17. Effect of sound on boundary layer stability

    NASA Technical Reports Server (NTRS)

    Saric, William S. (Principal Investigator); Spencer, Shelly Anne

    1993-01-01

    Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-travelling, sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2(lambda)(sub TS)/pi, of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations and the Stokes wave subtracted) show the generation of 3-D-T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modelling are observed.

  18. Effect of sound on boundary layer stability

    NASA Technical Reports Server (NTRS)

    Saric, William S.; Spencer, Shelly Anne

    1993-01-01

    Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-traveling sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2 lambda(sub TS)/pi of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations, and the Stokes wave subtracted) show the generation of 3-D T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modeling are observed.

  19. Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson's disease.

    PubMed

    Kim, Kwang Soo; Marcogliese, Paul C; Yang, Jungwoo; Callaghan, Steve M; Resende, Virginia; Abdel-Messih, Elizabeth; Marras, Connie; Visanji, Naomi P; Huang, Jana; Schlossmacher, Michael G; Trinkle-Mulcahy, Laura; Slack, Ruth S; Lang, Anthony E; Park, David S

    2018-05-14

    Leucine-rich repeat kinase 2 ( LRRK2 ) has been implicated in both familial and sporadic Parkinson's disease (PD), yet its pathogenic role remains unclear. A previous screen in Drosophila identified Scar/WAVE (Wiskott-Aldrich syndrome protein-family verproline) proteins as potential genetic interactors of LRRK2 Here, we provide evidence that LRRK2 modulates the phagocytic response of myeloid cells via specific modulation of the actin-cytoskeletal regulator, WAVE2. We demonstrate that macrophages and microglia from LRRK2-G2019S PD patients and mice display a WAVE2-mediated increase in phagocytic response, respectively. Lrrk2 loss results in the opposite effect. LRRK2 binds and phosphorylates Wave2 at Thr470, stabilizing and preventing its proteasomal degradation. Finally, we show that Wave2 also mediates Lrrk2 - G2019S-induced dopaminergic neuronal death in both macrophage-midbrain cocultures and in vivo. Taken together, a LRRK2-WAVE2 pathway, which modulates the phagocytic response in mice and human leukocytes, may define an important role for altered immune function in PD.

  20. Linear stability and nonlinear analyses of traffic waves for the general nonlinear car-following model with multi-time delays

    NASA Astrophysics Data System (ADS)

    Sun, Dihua; Chen, Dong; Zhao, Min; Liu, Weining; Zheng, Linjiang

    2018-07-01

    In this paper, the general nonlinear car-following model with multi-time delays is investigated in order to describe the reactions of vehicle to driving behavior. Platoon stability and string stability criteria are obtained for the general nonlinear car-following model. Burgers equation and Korteweg de Vries (KdV) equation and their solitary wave solutions are derived adopting the reductive perturbation method. We investigate the properties of typical optimal velocity model using both analytic and numerical methods, which estimates the impact of delays about the evolution of traffic congestion. The numerical results show that time delays in sensing relative movement is more sensitive to the stability of traffic flow than time delays in sensing host motion.

  1. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    NASA Astrophysics Data System (ADS)

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-08-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.

  2. Marangoni instability in a thin film heated from below: Effect of nonmonotonic dependence of surface tension on temperature

    NASA Astrophysics Data System (ADS)

    Sarma, Rajkumar; Mondal, Pranab Kumar

    2018-04-01

    We investigate Marangoni instability in a thin liquid film resting on a substrate of low thermal conductivity and separated from the surrounding gas phase by a deformable free surface. Considering a nonmonotonic variation of surface tension with temperature, here we analytically derive the neutral stability curve for the monotonic and oscillatory modes of instability (for both the long-wave and short-wave perturbations) under the framework of linear stability analysis. For the long-wave instability, we derive a set of amplitude equations using the scaling k ˜(Bi) 1 /2 , where k is the wave number and Bi is the Biot number. Through this investigation, we demonstrate that for such a fluid layer upon heating from below, both monotonic and oscillatory instability can appear for a certain range of the dimensionless parameters, viz., Biot number (Bi ) , Galileo number (Ga ) , and inverse capillary number (Σ ) . Moreover, we unveil, through this study, the influential role of the above-mentioned parameters on the stability of the system and identify the critical values of these parameters above which instability initiates in the liquid layer.

  3. Stability of standing spin wave in permalloy thin film studied by anisotropic magnetoresistance effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanoi, K.; Yokotani, Y.; Cui, X.

    2015-12-21

    We have investigated the stability for the resonant spin precession under the strong microwave magnetic field by a specially developed detection method using the anisotropic magnetoresistance effect. The electrically separated excitation and detection circuits enable us to investigate the influence of the heating effect and the nonuniform spin dynamics independently. The large detecting current is found to induce the field shift of the resonant spectra because of the Joule heating. From the microwave power dependence, we found that the linear response regime for the standing spin wave is larger than that for the ferromagnetic resonance. This robust characteristic of themore » standing spin wave is an important advantage for the high power operation of the spin-wave device.« less

  4. Characteristics of finite amplitude stationary gravity waves in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Young, Richard E.; Walterscheid, Richard L.; Schubert, Gerald; Pfister, Leonhard; Houben, Howard; Bindschadler, Duane L.

    1994-01-01

    This paper extends the study of stationary gravity waves generated near the surface of Venus reported previously by Young et al. to include finite amplitude effects associated with large amplitude waves. Waves are forced near the surface of Venus by periodic forcing. The height-dependent profiles of static stability and mean wind in the Venus atmosphere play a very important role in the evolution of the nonlinear behavior of the waves, just as they do in the linear wave solutions. Certain wave properties are qualitatively consistent with linear wave theory, such as wave trapping, resonance, and wave evanescence for short horizontal wavelenghts. However, the finite amplitude solutions also exhibit many other interesting features. In particular, for forcing amplitudes representative of those that could be expected in mountainous regions such as Aphrodite Terra, waves generated near the surface can reach large amplitudes at and above cloud levels, with clear signatures in the circulation pattern. At still higher levels, the waves can reach large enough amplitude to break, unless damping rates above the clouds are sufficient to limit wave amplitude growth. Well below cloud levels the waves develop complex flow patterns as the result of finite amplitude wave-wave interactions, and waves are generated having considerably shorter horizontal wavelenghts than that associated with the forcing near the surface. Nonlinear interactions can excite waves that are resonant with the background wind and static stability fields even when the primary surface forcing does not, and these waves can dominate the wave spectrum near cloud levels. A global map of Venus topographic slopes derived from Magellan altimetry data shows that slopes of magnitude comparable to or exceeding that used to force the model are ubiquitous over the surface.

  5. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  6. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    PubMed Central

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993

  7. Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold

    NASA Astrophysics Data System (ADS)

    Zhang, Kaitian; Liu, Jianhua; Cui, Heng; Xiao, Chao

    2018-06-01

    A water model of slab mold was established to analyze the microscopic and macroscopic fluctuation of meniscus. The fast Fourier transform and wavelet entropy were adopted to analyze the wave amplitude, frequency, and components of fluctuation. The flow patterns under the meniscus were measured by using particle image velocimetry measurement and then the mechanisms of meniscus fluctuation were discussed. The results reflected that wavelet entropy had multi-scale and statistical properties, and it was suitable for the study of meniscus fluctuation details both in time and frequency domain. The basic wave, frequency of which exceeding 1 Hz in the condition of no mold oscillation, was demonstrated in this work. In fact, three basic waves were found: long-wave with low frequency, middle-wave with middle frequency, and short-wave with high frequency. In addition, the upper roll flow in mold had significant effect on meniscus fluctuation. When the position of flow impinged was far from the meniscus, long-wave dominated the fluctuation and the stability of meniscus was enhanced. However, when the velocity of flow was increased, the short-wave dominated the meniscus fluctuation and the meniscus stability was decreased.

  8. Perceiving Event Dynamics and Parsing Hollywood Films

    ERIC Educational Resources Information Center

    Cutting, James E.; Brunick, Kaitlin L.; Candan, Ayse

    2012-01-01

    We selected 24 Hollywood movies released from 1940 through 2010 to serve as a film corpus. Eight viewers, three per film, parsed them into events, which are best termed subscenes. While watching a film a second time, viewers scrolled through frames and recorded the frame number where each event began. Viewers agreed about 90% of the time. We then…

  9. Summer Reading Goes High Tech

    ERIC Educational Resources Information Center

    Fink, Jennifer L. W.

    2012-01-01

    Not long ago, "summer reading" meant settling under a shady tree with a hefty book. Shady trees are still around, but books with pages can seem as out-of-date as vinyl records to many kids, especially older ones. Today, they scroll through content online, swipe pages on tablets, and manage a near-constant stream of media. Teachers can take…

  10. A Mathematical and Sociological Analysis of Google Search Algorithm

    DTIC Science & Technology

    2013-01-16

    through the collective intelligence of the web to determine a page’s importance. Let v be a vector of RN with N ≥ 8 billion. Any unit vector in RN is...scrolled up by some artifical hits. Aknowledgment: The authors would like to thank Dr. John Lavery for his encouragement and support which enable them to

  11. Role of Passive Capturing in a Ubiquitous Learning Environment

    ERIC Educational Resources Information Center

    Ogata, Hiroaki; Hou, Bin; Li, MengMeng; Uosaki, Noriko; Mouri, Kousuke

    2013-01-01

    Ubiquitous Learning Log (ULL) is defined as a digital record of what you have learned in the daily life using ubiquitous technologies. This paper focuses on how to capture learning experiences in our daily life for vocabulary learning. In our previous works, we developed a system named SCROLL (System for Capturing and Reminding Of Learning Log) in…

  12. Modeling User Behavior and Attention in Search

    ERIC Educational Resources Information Center

    Huang, Jeff

    2013-01-01

    In Web search, query and click log data are easy to collect but they fail to capture user behaviors that do not lead to clicks. As search engines reach the limits inherent in click data and are hungry for more data in a competitive environment, mining cursor movements, hovering, and scrolling becomes important. This dissertation investigates how…

  13. Anime Goes Mainstream: There's Something for Everyone, so Get in on the Act

    ERIC Educational Resources Information Center

    Halsall, Jane

    2010-01-01

    "Princess Mononoke," "Akira," and "Cowboy Bebop" may not be household names. But in the world of anime, or Japanese animation, they are among the top 10 films ever made. With its complex plots and moral messages, anime is as intelligent as some of the best feature films. From the epic fantasy "Ninja Scroll"…

  14. The Fall of an Academic Cyberbully

    ERIC Educational Resources Information Center

    Kolowich, Steve

    2009-01-01

    Few academic debates are as contentious as those surrounding the Dead Sea Scrolls. These fragments of some 800 ancient documents include portions of all but one book of the Hebrew Bible. The first ones were discovered in 1947 by shepherds in caves on the northwestern shore of the Dead Sea, and are believed to be the oldest surviving Judaic…

  15. Slip sliding away: Graphene and diamonds prove a slippery combination |

    Science.gov Websites

    away: Graphene and diamonds prove a slippery combination By Jared Sagoff * May 22, 2015 Tweet creating the 'superlubricity' effect," he said. "The two materials depend on each other." At the effect could be seen not merely at the nanoscale but also at the macroscale. "A scroll can be

  16. 78 FR 11207 - Transmissible Spongiform Encephalopathies Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... exposure to the variant Creutzfeldt-Jakob disease (vCJD) agent in Red Blood Cells for transfusion in the... days before the meeting. If FDA is unable to post the background material on its Web site prior to the... material is available at http://www.fda.gov/AdvisoryCommittees/Calendar/default.htm . Scroll down to the...

  17. Password Complexity Recommendations: xezandpAxat8Um or P4$$w0rd!!!!

    DTIC Science & Technology

    2014-10-01

    have we seen the computer screen with fast- scrolling characters, with good answers being indicated one by one? This is not a MasterMind game ! Password...security/2013/ 05/how-crackers-make-minced- meat -out-of-your-passwords (Access Date: 2014-04-02). 18 DRDC-RDDC-2014-R27 DOCUMENT CONTROL DATA (Security

  18. Examining the Effect of Computer-Based Passage Presentation on Reading Test Performance

    ERIC Educational Resources Information Center

    Higgins, Jennifer; Russell, Michael; Hoffmann, Thomas

    2005-01-01

    To examine the impact of transitioning 4th grade reading comprehension assessments to the computer, 219 fourth graders were randomly assigned to take a one-hour reading comprehension assessment on paper, on a computer using scrolling text to navigate through passages, or on a computer using paging text to navigate through passages. This study…

  19. Symbols and Scrolls: Teaching Elementary Students about Historic Writing. Pull-out 2.

    ERIC Educational Resources Information Center

    Christensen, Lois M.

    1999-01-01

    Describes a unit for elementary students on the history and technology of writing from ancient to medieval times. Includes a contemporary writing and print exercise, an ancient and medieval writing exercise, a research activity on the evolution of writing, a biography study, a fine arts exercise, and a community survey. Addresses the unit…

  20. The Education and Lifestyle of the Chinese Literati. Lesson Plan.

    ERIC Educational Resources Information Center

    Smithsonian Institution, Washington, DC. Arthur M. Sackler Gallery.

    This teaching package describes the education and lifestyle of the Chinese literati, popular from the Ming to the Qing dynasties (1368-1911). It consists of four lesson plans and a teacher's guide to a slide set. The latter illustrates painting formats popular during the late Ming period (1573-1644), hanging scrolls, handscrolls, the album leaf,…

  1. 78 FR 27405 - Anesthetic and Analgesic Drug Products Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... check the Agency's Web site at http://www.fda.gov/AdvisoryCommittees/default.htm and scroll down to the... proposed indications of routine reversal of moderate and deep neuromuscular blockade (NMB) induced by... meeting. If FDA is unable to post the background material on its Web site prior to the meeting, the...

  2. Something Drawn, Something Touched, Something Scrolled: An Exploratory Comparison of Perimeter and Area Interventions Including Kidspiration

    ERIC Educational Resources Information Center

    Sossi, Dino; Jamalian, Azadeh; Richardson, Shenetta

    2011-01-01

    This exploratory study compared a computer-based mathematics education intervention with two more traditional approaches with the purpose of improving instruction in perimeter and area. Kidspiration software, tile/stick manipulatives and pencil/paper-based copying/drawing of shapes were implemented in a 3rd Grade New York City public school…

  3. Investigation of longitudinal control system for a small hydrofoil boat

    NASA Technical Reports Server (NTRS)

    Phillips, W. H.; Shaughnessy, J. D.

    1976-01-01

    An analysis of a hydromechanical system for longitudinal control of a small hydrofoil boat is presented. The system incorporates height and acceleration sensors operating flaps on the foils through a mechanical linkage. Effects of some of the system parameters on the stability and response to waves are shown. The results indicate that the system is capable of providing adequate stability, but the response to stern waves at low frequencies is larger than desired.

  4. Instabilities and subharmonic resonances of subsonic heated round jets, volume 2. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ng, Lian Lai

    1990-01-01

    When a jet is perturbed by a periodic excitation of suitable frequency, a large-scale coherent structure develops and grows in amplitude as it propagates downstream. The structure eventually rolls up into vortices at some downstream location. The wavy flow associated with the roll-up of a coherent structure is approximated by a parallel mean flow and a small, spatially periodic, axisymmetric wave whose phase velocity and mode shape are given by classical (primary) stability theory. The periodic wave acts as a parametric excitation in the differential equations governing the secondary instability of a subharmonic disturbance. The (resonant) conditions for which the periodic flow can strongly destabilize a subharmonic disturbance are derived. When the resonant conditions are met, the periodic wave plays a catalytic role to enhance the growth rate of the subharmonic. The stability characteristics of the subharmonic disturbance, as a function of jet Mach number, jet heating, mode number and the amplitude of the periodic wave, are studied via a secondary instability analysis using two independent but complementary methods: (1) method of multiple scales, and (2) normal mode analysis. It is found that the growth rates of the subharmonic waves with azimuthal numbers beta = 0 and beta = 1 are enhanced strongly, but comparably, when the amplitude of the periodic wave is increased. Furthermore, compressibility at subsonic Mach numbers has a moderate stabilizing influence on the subharmonic instability modes. Heating suppresses moderately the subharmonic growth rate of an axisymmetric mode, and it reduces more significantly the corresponding growth rate for the first spinning mode. Calculations also indicate that while the presence of a finite-amplitude periodic wave enhances the growth rates of subharmonic instability modes, it minimally distorts the mode shapes of the subharmonic waves.

  5. Wave Driven Non-Linear Flow Oscillator for the 22-Year Solar Cycle

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Wolff, C. L.; Hartle, R. E.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We propose that waves generate an oscillation in the Sun to account for the 22-year magnetic cycle. The mechanism we envision is analogous to that driving the Quasi Biennial Oscillation (QBO) observed in the terrestrial atmosphere, which is well understood in principal. Planetary waves and gravity waves deposit momentum in the background atmosphere and accelerate the flow under viscous dissipation. Analysis shows that such a momentum source represents a non-linearity of third or generally odd order, which generates also the fundamental frequency/period so that an oscillation is maintained without external time dependent forcing. For the Sun, we propose that the wave driven oscillation would occur just below the convection region, where the buoyancy frequency or convective stability becomes small to favor wave breaking and wave mean flow interaction. Using scale analysis to extrapolate from terrestrial to solar conditions, we present results from a simplified analytical model, applied to the equator, that incorporates Hines'Doppler Spread Parameterization for gravity waves (GW). Based on a parametric study, we conclude: (1) Depending on the adopted horizontal wavelengths of GW's, wave amplitudes < 10 m/s can be made to produce oscillating zonal winds of about 25 m/s that should be large enough to generate a corresponding oscillation in the main poloidal magnetic field; (2) The oscillation period can be made to be 22 years provided the buoyancy frequency (stability) is sufficiently small, which would place the oscillating wind field near the base of the convection region; (3) In this region, the turbulence associated with wave processes would be enhanced by low stability, and this also helps to produce the desired oscillation period and generate the dynamo currents that would produce the reversing magnetic field. We suggest that the above mechanism may also drive other long-period metronomes in planetary and stellar interiors.

  6. Dynamic stabilization of the Rayleigh-Taylor instability of miscible liquids and the related "frozen waves"

    NASA Astrophysics Data System (ADS)

    Wolf, Gerd Gerhard H.

    2018-02-01

    Superimposed miscible liquids, the heavier one on top, when subjected to vibrations vertical to their interface (dynamic stabilization), can only be maintained for a certain period. A mechanism is presented explaining the resulting process of degradation and "anomalous diffusion" through that interface. Superimposed liquids, the lighter one on top, exposed to horizontal vibrations, develop a saw-tooth-like pattern called "frozen waves." These are subject to conditions similar to those of dynamic stabilization and, if miscible, thus can also only be maintained for a certain period. A further analysis of these processes would be desirable, also in view of their relation to analogue phenomena.

  7. On Liapunov and Exponential Stability of Rossby-Haurwitz Waves in Invariant Sets of Perturbations

    NASA Astrophysics Data System (ADS)

    Skiba, Yuri N.

    2018-01-01

    In this work, the stability of the Rossby-Haurwitz (RH) waves from the subspace H1\\oplus Hn is considered (n≥2 ) where Hk is the subspace of the homogeneous spherical polynomials of degree k. A conservation law for arbitrary perturbations of the RH wave is derived, and all perturbations are divided into three invariant sets M-n , M0n and M+n in which the mean spectral number χ (ψ ^' }) of any perturbation ψ ^' } is less than, equal to or greater than n(n+1) , respectively. In turn, the set M0n is divided into the invariant subsets Hn and M0n{\\setminus } Hn . Quotient spaces and norms of the perturbations are introduced, a hyperbolic law for the perturbations belonging to the sets M-n and M+n is derived, and a geometric interpretation of variations in the kinetic energy of perturbations is given. It is proved that any non-zonal RH wave from H1\\oplus Hn (n≥2 ) is Liapunov unstable in the invariant set M-n . Also, it is shown that a stationary RH wave from H1\\oplus Hn may be exponentially unstable only in the invariant set M0n{\\setminus } Hn , while any perturbation of the invariant set Hn conserves its form with time and hence is neutral. Since a Legendre polynomial flow aPn(μ ) and zonal RH wave - ω μ +aPn(μ ) are particular cases of the RH waves of H1\\oplus Hn , the major part of the stability results obtained here is also true for them.

  8. Nondestructive evaluation of orthopaedic implant stability in THA using highly nonlinear solitary waves

    NASA Astrophysics Data System (ADS)

    Yang, Jinkyu; Silvestro, Claudio; Sangiorgio, Sophia N.; Borkowski, Sean L.; Ebramzadeh, Edward; De Nardo, Luigi; Daraio, Chiara

    2012-01-01

    We propose a new biomedical sensing technique based on highly nonlinear solitary waves to assess orthopaedic implant stability in a nondestructive and efficient manner. We assemble a granular crystal actuator consisting of a one-dimensional tightly packed array of spherical particles, to generate acoustic solitary waves. Via direct contact with the specimen, we inject acoustic solitary waves into a biomedical prosthesis, and we nondestructively evaluate the mechanical integrity of the bone-prosthesis interface, studying the properties of the waves reflected from the contact zone between the granular crystal and the implant. The granular crystal contains a piezoelectric sensor to measure the travelling solitary waves, which allows it to function also as a sensor. We perform a feasibility study using total hip arthroplasty (THA) samples made of metallic stems implanted in artificial composite femurs using polymethylmethacrylate for fixation. We first evaluate the sensitivity of the proposed granular crystal sensor to various levels of prosthesis insertion into the composite femur. Then, we impose a sequence of harsh mechanical loading on the THA samples to degrade the mechanical integrity at the stem-cement interfaces, using a femoral load simulator that simulates aggressive, accelerated physiological loading. We investigate the implant stability via the granular crystal sensor-actuator during testing. Preliminary results suggest that the reflected waves respond sensitively to the degree of implant fixation. In particular, the granular crystal sensor-actuator successfully detects implant loosening at the stem-cement interface following violent cyclic loading. This study suggests that the granular crystal sensor and actuator has the potential to detect metal-cement defects in a nondestructive manner for orthopaedic applications.

  9. Stability of transition waves and positive entire solutions of Fisher-KPP equations with time and space dependence

    NASA Astrophysics Data System (ADS)

    Shen, Wenxian

    2017-09-01

    This paper is concerned with the stability of transition waves and strictly positive entire solutions of random and nonlocal dispersal evolution equations of Fisher-KPP type with general time and space dependence, including time and space periodic or almost periodic dependence as special cases. We first show the existence, uniqueness, and stability of strictly positive entire solutions of such equations. Next, we show the stability of uniformly continuous transition waves connecting the unique strictly positive entire solution and the trivial solution zero and satisfying certain decay property at the end close to the trivial solution zero (if it exists). The existence of transition waves has been studied in Liang and Zhao (2010 J. Funct. Anal. 259 857-903), Nadin (2009 J. Math. Pures Appl. 92 232-62), Nolen et al (2005 Dyn. PDE 2 1-24), Nolen and Xin (2005 Discrete Contin. Dyn. Syst. 13 1217-34) and Weinberger (2002 J. Math. Biol. 45 511-48) for random dispersal Fisher-KPP equations with time and space periodic dependence, in Nadin and Rossi (2012 J. Math. Pures Appl. 98 633-53), Nadin and Rossi (2015 Anal. PDE 8 1351-77), Nadin and Rossi (2017 Arch. Ration. Mech. Anal. 223 1239-67), Shen (2010 Trans. Am. Math. Soc. 362 5125-68), Shen (2011 J. Dynam. Differ. Equ. 23 1-44), Shen (2011 J. Appl. Anal. Comput. 1 69-93), Tao et al (2014 Nonlinearity 27 2409-16) and Zlatoš (2012 J. Math. Pures Appl. 98 89-102) for random dispersal Fisher-KPP equations with quite general time and/or space dependence, and in Coville et al (2013 Ann. Inst. Henri Poincare 30 179-223), Rawal et al (2015 Discrete Contin. Dyn. Syst. 35 1609-40) and Shen and Zhang (2012 Comm. Appl. Nonlinear Anal. 19 73-101) for nonlocal dispersal Fisher-KPP equations with time and/or space periodic dependence. The stability result established in this paper implies that the transition waves obtained in many of the above mentioned papers are asymptotically stable for well-fitted perturbation. Up to the author’s knowledge, it is the first time that the stability of transition waves of Fisher-KPP equations with general time and space dependence is studied.

  10. Damping of lower hybrid waves by low-frequency drift waves

    NASA Astrophysics Data System (ADS)

    Krall, Nicholas A.

    1989-11-01

    The conditions under which a spectrum of lower hybrid drift waves will decay into low-frequency drift waves (LFD) are calculated. The purpose is to help understand why lower hybrid drift waves are not seen in all field-reversed configuration (FRC) experiments in which they are predicted. It is concluded that if there is in the plasma a LFD wave amplitude above a critical level, lower hybrid waves will decay into low-frequency drift waves. The critical level required to stabilize TRX-2 [Phys. Fluids 30, 1497 (1987)] is calculated and found to be reasonably consistent with theoretical estimates.

  11. Bistable traveling waves for a competitive-cooperative system with nonlocal delays

    NASA Astrophysics Data System (ADS)

    Tian, Yanling; Zhao, Xiao-Qiang

    2018-04-01

    This paper is devoted to the study of bistable traveling waves for a competitive-cooperative reaction and diffusion system with nonlocal time delays. The existence of bistable waves is established by appealing to the theory of monotone semiflows and the finite-delay approximations. Then the global stability of such traveling waves is obtained via a squeezing technique and a dynamical systems approach.

  12. General Investigation of Tidal Inlets: Stability of Selected United States Tidal Inlets

    DTIC Science & Technology

    1991-09-01

    characteristics in relation to the variability of the hydr; aulic parameters. An inlet can fall into any of four "stability" classes 48 Orientation Parameter 80...nlot he ~ :Ke(: t 93. If a fairly straight coast with uniform offshore slopes and a regionally homogeneous wave climate is considered, a reasonable...expectation is LhaL the longshore transport quantities and directions are homogeneous. Given a long-term variability in wave climate , a corresponding

  13. Stability of dust ion acoustic solitary waves in a collisionless unmagnetized nonthermal plasma in presence of isothermal positrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sardar, Sankirtan; Bandyopadhyay, Anup, E-mail: abandyopadhyay1965@gmail.com; Das, K. P.

    A three-dimensional KP (Kadomtsev Petviashvili) equation is derived here describing the propagation of weakly nonlinear and weakly dispersive dust ion acoustic wave in a collisionless unmagnetized plasma consisting of warm adiabatic ions, static negatively charged dust grains, nonthermal electrons, and isothermal positrons. When the coefficient of the nonlinear term of the KP-equation vanishes an appropriate modified KP (MKP) equation describing the propagation of dust ion acoustic wave is derived. Again when the coefficient of the nonlinear term of this MKP equation vanishes, a further modified KP equation is derived. Finally, the stability of the solitary wave solutions of the KPmore » and the different modified KP equations are investigated by the small-k perturbation expansion method of Rowlands and Infeld [J. Plasma Phys. 3, 567 (1969); 8, 105 (1972); 10, 293 (1973); 33, 171 (1985); 41, 139 (1989); Sov. Phys. - JETP 38, 494 (1974)] at the lowest order of k, where k is the wave number of a long-wavelength plane-wave perturbation. The solitary wave solutions of the different evolution equations are found to be stable at this order.« less

  14. Radiating Instabilities of Internal Inertio-gravity Waves

    NASA Astrophysics Data System (ADS)

    Kwasniok, F.; Schmitz, G.

    The vertical radiation of local convective and shear instabilities of internal inertio- gravity waves is examined within linear stability theory. A steady, plane-parallel Boussinesq flow with vertical profiles of horizontal velocity and static stability re- sembling an internal inertio-gravity wave packet without mean vertical shear is used as dynamical framework. The influence of primary-wave frequency and amplitude as well as orientation and horizontal wavenumber of the instability on vertical radi- ation is discussed. Considerable radiation occurs at small to intermediate instability wavenumbers for basic state gravity waves with high to intermediate frequencies and moderately convectively supercritical amplitudes. Radiation is then strongest when the horizontal wavevector of the instability is aligned parallel to the horizontal wavevector of the basic state gravity wave. These radiating modes are essentially formed by shear instability. Modes of convective instability, that occur at large instability wavenum- bers or strongly convectively supercritical amplitudes, as well as modes at convec- tively subcritical amplitudes are nonradiating, trapped in the region of instability. The radiation of an instability is found to be related to the existence of critical levels, a radiating mode being characterized by the absence of critical levels outside the region of instability of the primary wave.

  15. Interaction of rippled shock wave with flat fast-slow interface

    NASA Astrophysics Data System (ADS)

    Zhai, Zhigang; Liang, Yu; Liu, Lili; Ding, Juchun; Luo, Xisheng; Zou, Liyong

    2018-04-01

    The evolution of a flat air/sulfur-hexafluoride interface subjected to a rippled shock wave is investigated. Experimentally, the rippled shock wave is produced by diffracting a planar shock wave around solid cylinder(s), and the effects of the cylinder number and the spacing between cylinders on the interface evolution are considered. The flat interface is created by a soap film technique. The postshock flow and the evolution of the shocked interface are captured by a schlieren technique combined with a high-speed video camera. Numerical simulations are performed to provide more details of flows. The wave patterns of a planar shock wave diffracting around one cylinder or two cylinders are studied. The shock stability problem is analytically discussed, and the effects of the spacing between cylinders on shock stability are highlighted. The relationship between the amplitudes of the rippled shock wave and the shocked interface is determined in the single cylinder case. Subsequently, the interface morphologies and growth rates under different cases are obtained. The results show that the shock-shock interactions caused by multiple cylinders have significant influence on the interface evolution. Finally, a modified impulsive theory is proposed to predict the perturbation growth when multiple solid cylinders are present.

  16. Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3

    NASA Astrophysics Data System (ADS)

    Wada, Yoshio; Satoh, Takumi; Higashi, Yasuhiro; Urata, Yoshiharu

    2017-12-01

    We demonstrate a high-average-power, single longitudinal-mode, and tunable terahertz (THz)-wave source based on difference frequency generation (DFG) in a MgO:LiNbO3 (MgO:LN) crystal. The waves for DFG are generated using a pair of Yb-doped pulsed fiber lasers with a master oscillator power fiber amplifier configuration. The average power of the THz-wave output reaches 450 μW at 1.07 THz (280 μm) at a linewidth of 7.2 GHz, and the tunability ranges from 0.35 to 1.07 THz under the pulse repetition frequency of 500 kHz. A short burn-in test of the THz wave is also carried out, and the output power stability is within ± 5% of the averaged power without any active stabilizing technique. The combination of MgO:LN-DFG and stable and robust fiber laser sources is highly promising for the development of high-average-power THz-wave sources, particularly in the high transmission sub-THz region. This approach may enable new applications of THz-wave spectroscopy in imaging and remote sensing.

  17. Menuing and Scrolling as Alternative Information Management Techniques

    DTIC Science & Technology

    1988-02-01

    Reef Inhabitant Angelfish Parrotfish[ Cardinalfish Scorpionfish INSECT Carnivorous r Cicada Killer Lacewing LFlea Mosquito Herbivorous r Chinch Bug...Ayt -Ave 20 0 Bow f in 20 4 Bunt ing 20 1 1 0 Carrion Beetle 20 7 5 2 C avy 20 0 0 Chamoi s 20 i 1 0 Chinch Bug 20 4 2 Cicada Kilter 20 4 3 1 Earwig

  18. Assessment of an Optical Flow Field-Based Polyp Detector for CT Colonography

    DTIC Science & Technology

    2001-10-25

    sort true polyps from false positives based on features extracted from the computed OFFs. II. METHODOLOGY A. Pre-processing The 3D CT data was...subvolume and scrolling direction, as follows:      = ∑ Z ZD y)x,( Smoothy )x,( vv (2) The smoothing filter used is a 3×3 rectangular

  19. System and Apparatus for Filtering Particles

    NASA Technical Reports Server (NTRS)

    Agui, Juan H. (Inventor); Vijayakumar, Rajagopal (Inventor)

    2015-01-01

    A modular pre-filtration apparatus may be beneficial to extend the life of a filter. The apparatus may include an impactor that can collect a first set of particles in the air, and a scroll filter that can collect a second set of particles in the air. A filter may follow the pre-filtration apparatus, thus causing the life of the filter to be increased.

  20. Scrolling toward Enrollment: Web Site Content and the E-Expectations of College-Bound Seniors. E-Expectations

    ERIC Educational Resources Information Center

    Noel-Levitz, Inc, 2009

    2009-01-01

    Communicating with prospective students has undergone a profound transformation in the past ten years. Campus marketing--like marketing for any organization--had to adapt first to the Internet and e-mail and now to new social media formats like social networking and blogging. A recent survey of 1,000 college-bound seniors, however, shows that…

  1. Grouping of Items in Mobile Web Questionnaires

    ERIC Educational Resources Information Center

    Mavletova, Aigul; Couper, Mick P.

    2016-01-01

    There is some evidence that a scrolling design may reduce breakoffs in mobile web surveys compared to a paging design, but there is little empirical evidence to guide the choice of the optimal number of items per page. We investigate the effect of the number of items presented on a page on data quality in two types of questionnaires: with or…

  2. Assisting People with Disabilities Improves Their Collaborative Pointing Efficiency through the Use of the Mouse Scroll Wheel

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang

    2013-01-01

    This study provided that people with multiple disabilities can have a collaborative working chance in computer operations through an Enhanced Multiple Cursor Dynamic Pointing Assistive Program (EMCDPAP, a new kind of software that replaces the standard mouse driver, changes a mouse wheel into a thumb/finger poke detector, and manages mouse…

  3. Egyptian Symbols and Figures. Hieroglyphs [and] Scroll Paintings. [Lesson Plan].

    ERIC Educational Resources Information Center

    2002

    This lesson introduces students to the writing, art, and religious beliefs of ancient Egypt through hieroglyphs, one of the oldest writing systems in the world, and through tomb paintings. Hieroglyphs consist of pictures of familiar objects that represent sounds and were used in ancient Egypt from about 3100 BC to 400 CE. In the first part of the…

  4. NOAA Photo Library - Navigating the Collection

    Science.gov Websites

    will have to change the setting to 800x600 to view the full image without having to scroll from left to view or download the highest resolution image available, click on the message "High Resolution viewing individual images associated with albums. If wishing to view the image ID number of a thumbnail

  5. Non-LTE Equation of State for ICF simulations

    NASA Astrophysics Data System (ADS)

    Klapisch, Marcel; Bar-Shalom, Avraham; Colombant, Denis

    2002-11-01

    SCROLL is a collisional radiative model able to deal with complex spectra[1]. It is used to generate opacity/emissivity databases [2] compatible with the hydrocode FAST[3] for all elements of interest in the simulation of ICF targets, including high-Z. It is now modified to yield tables of EOS data for FAST, in the whole range of interest (T=1 to 25000eV, rho=10-6 to 100g/cc). SCROLL contributes the electronic -free and bound- part of the EOS, replacing Busquet's model of an ionization temperature. Ionization energies include contributions of all excited states. Energies and Z* go smoothly to the high density regime, where a "jellium" model is assumed. The free electrons are self consistent with the bound electrons. Examples of runs will be shown. Supported by USDOE through a contract with the Naval Research Laboratory. [1] A. Bar-Shalom, J. Oreg, and M. Klapisch, J. Quant. Spectrosc. Radiat. Transfer 65, 43 (2000). [2] A. Bar-shalom, M. Klapisch, J. Oreg, and D. Colombant, Bull. Am. Phys. Soc. 46, 295 (2001). [3] J. H. Gardner, A. J. Schmitt, J. P. Dahlburg, et al, Phys. Plasmas 5, 1935 (1998).

  6. Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics

    DOEpatents

    Bakhtiari, Sasan; Gopalsami, Nachappa; Raptis, Apostolos C.

    1999-03-23

    A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.

  7. Wave Journal Bearing. Part 2: Experimental Pressure Measurements and Fractional Frequency Whirl Threshold for Wave and Plain Journal Bearings

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Dimofte, Florin; Addy, Harold E., Jr.

    1995-01-01

    A new hydrodynamic bearing concept, the wave journal bearing, is being developed because it has better stability characteristics than plain journal bearings while maintaining similar load capacity. An analysis code to predict the steady state and dynamic performance of the wave journal bearing is also part of the development. To verify numerical predictions and contrast the wave journal bearing's stability characteristics to a plain journal bearing, tests were conducted at NASA Lewis Research Center using an air bearing test rig. Bearing film pressures were measured at 16 ports located around the bearing circumference at the middle of the bearing length. The pressure measurements for both a plain journal bearing and a wave journal bearing compared favorably with numerical predictions. Both bearings were tested with no radial load to determine the speed threshold for self-excited fractional frequency whirl. The plain journal bearing started to whirl immediately upon shaft start-up. The wave journal did not incur self-excited whirl until 800 to 900 rpm as predicted by the analysis. Furthermore, the wave bearing's geometry limited the whirl orbit to less than the bearing's clearance. In contrast, the plain journal bearing did not limit the whirl orbit, causing it to rub.

  8. Effect of Surface Waviness on Transition in Three-Dimensional Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Masad, Jamal A.

    1996-01-01

    The effect of a surface wave on transition in three-dimensional boundary-layer flow over an infinite swept wing was studied. The mean flow computed using interacting boundary-layer theory, and transition was predicted using linear stability theory coupled with the empirical eN method. It was found that decreasing the wave height, sweep angle, or freestream unit Reynolds number, and increasing the freestream Mach number or suction level all stabilized the flow and moved transition onset to downstream locations.

  9. Biological Effects of Millimeter-Wave Irradiation.

    DTIC Science & Technology

    1982-12-01

    With the recent advances in millimeter-wave technology, including the availability of high - power transmitters in this band , the interaction of fields at... power was 14 mW for E- band , 10 mW for U- band ; and the frequency increment was 0.5 GHz. The mean values and the SD for the number of revertant colonies... high stability for short periods (i.e., about 30 minutes). We are now evaluating electronic means of stabilizing the klystron so that a ±1-MHz

  10. Modulational stability of periodic solutions of the Kuramoto-Sivaskinsky equation

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.; Papanicolaou, George C.; Smyrlis, Yiorgos S.

    1993-01-01

    We study the long-wave, modulational, stability of steady periodic solutions of the Kuramoto-Sivashinsky equation. The analysis is fully nonlinear at first, and can in principle be carried out to all orders in the small parameter, which is the ratio of the spatial period to a characteristic length of the envelope perturbations. In the linearized regime, we recover a high-order version of the results of Frisch, She, and Thual, which shows that the periodic waves are much more stable than previously expected.

  11. Unsteady Motions in Combustion Chambers for Propulsion Systems

    DTIC Science & Technology

    2006-12-01

    Internal Heat Conduction on the Propagation of Acoustic 5-10 Waves 5.4 Energy and Intensity Associated with Acoustic Waves 5-13 5.5 The Growth or... Heat Source and Motion of the Boundary 6-16 6.6 Rayleigh’s Criterion and Linear Stability 6-18 6.7 Some Results for Linear Stability in Three...7.11.1 Pulsing Solid Propellant Rockets 7-45 7.12 Dependence of Wall Heat Transfer on the Amplitude of Oscillations 7-52 7.13 One Way to Analyze

  12. A quasioptically stabilized resonant-tunneling-diode oscillator for the millimeter- and submillimeter-wave regions

    NASA Technical Reports Server (NTRS)

    Brown, Elliott R.; Parker, Christopher D.; Molvar, Karen M.; Stephan, Karl D.

    1992-01-01

    A semiconfocal open-cavity resonator has been used to stabilize a resonant-tunneling-diode waveguide oscillator at frequencies near 100 GHz. The high quality factor of the open cavity resulted in a linewidth of approximately 10 kHz at 10 dB below the peak, which is about 100 times narrower than the linewidth of an unstabilized waveguide oscillator. This technique is well suited for resonant-tunneling-diode oscillators in the submillimeter-wave region.

  13. The energy balance of wind waves and the remote sensing problem

    NASA Technical Reports Server (NTRS)

    Hasselmann, K.

    1972-01-01

    Measurements of wave growth indicate an energy balance of the wave spectrum governed primarily by input from the atmosphere, nonlinear transfer to shorter and longer waves, and advection. The pronounced spectral peak and sharp low frequency cut-off characteristic of fetch-limited spectra are explained as a self-stabilizing feature of the nonlinear wave-wave interactions. The momentum transferred from the atmosphere to the wind waves accounts for a large part of the wind drag. These findings are relevant for remote microwave sensing of the sea surface by backscatter and passive radiometry methods.

  14. Stability results for multi-layer radial Hele-Shaw and porous media flows

    NASA Astrophysics Data System (ADS)

    Gin, Craig; Daripa, Prabir

    2015-01-01

    Motivated by stability problems arising in the context of chemical enhanced oil recovery, we perform linear stability analysis of Hele-Shaw and porous media flows in radial geometry involving an arbitrary number of immiscible fluids. Key stability results obtained and their relevance to the stabilization of fingering instability are discussed. Some of the key results, among many others, are (i) absolute upper bounds on the growth rate in terms of the problem data; (ii) validation of these upper bound results against exact computation for the case of three-layer flows; (iii) stability enhancing injection policies; (iv) asymptotic limits that reduce these radial flow results to similar results for rectilinear flows; and (v) the stabilizing effect of curvature of the interfaces. Multi-layer radial flows have been found to have the following additional distinguishing features in comparison to rectilinear flows: (i) very long waves, some of which can be physically meaningful, are stable; and (ii) eigenvalues can be complex for some waves depending on the problem data, implying that the dispersion curves for one or more waves can contact each other. Similar to the rectilinear case, these results can be useful in providing insight into the interfacial instability transfer mechanism as the problem data are varied. Moreover, these can be useful in devising smart injection policies as well as controlling the complexity of the long-term dynamics when drops of various immiscible fluids intersperse among each other. As an application of the upper bound results, we provide stabilization criteria and design an almost stable multi-layer system by adding many layers of fluid with small positive jumps in viscosity in the direction of the basic flow.

  15. Pulse propagation in discrete excitatory networks of integrate-and-fire neurons.

    PubMed

    Badel, Laurent; Tonnelier, Arnaud

    2004-07-01

    We study the propagation of solitary waves in a discrete excitatory network of integrate-and-fire neurons. We show the existence and the stability of a fast wave and a family of slow waves. Fast waves are similar to those already described in continuum networks. Stable slow waves have not been previously reported in purely excitatory networks and their propagation is particular to the discrete nature of the network. The robustness of our results is studied in the presence of noise.

  16. Effect of thermal expansion on the stability of two-reactant flames

    NASA Technical Reports Server (NTRS)

    Jackson, T. L.

    1986-01-01

    The full problem of flame stability for the two-reactant model, which takes into account thermal expansion effects for all disturbance wave lengths, is examined. It is found that the stability problem for the class of two-reactant flames is equivalent to the stability problem for the class of one-reactant flames with an appropriate interpretation of Lewis numbers.

  17. 2D instabilities of surface gravity waves on a linear shear current

    NASA Astrophysics Data System (ADS)

    Francius, Marc; Kharif, Christian

    2016-04-01

    Periodic 2D surface water waves propagating steadily on a rotational current have been studied by many authors (see [1] and references therein). Although the recent important theoretical developments have confirmed that periodic waves can exist over flows with arbitrary vorticity, their stability and their nonlinear evolution have not been much studied extensively so far. In fact, even in the rather simple case of uniform vorticity (linear shear), few papers have been published on the effect of a vertical shear current on the side-band instability of a uniform wave train over finite depth. In most of these studies [2-5], asymptotic expansions and multiple scales method have been used to obtain envelope evolution equations, which allow eventually to formulate a condition of (linear) instability to long modulational perturbations. It is noted here that this instability is often referred in the literature as the Benjamin-Feir or modulational instability. In the present study, we consider the linear stability of finite amplitude two-dimensional, periodic water waves propagating steadily on the free surface of a fluid with constant vorticity and finite depth. First, the steadily propagating surface waves are computed with steepness up to very close to the highest, using a Fourier series expansions and a collocation method, which constitutes a simple extension of Fenton's method [6] to the cases with a linear shear current. Then, the linear stability of these permanent waves to infinitesimal 2D perturbations is developed from the fully nonlinear equations in the framework of normal modes analysis. This linear stability analysis is an extension of [7] to the case of waves in the presence of a linear shear current and permits the determination of the dominant instability as a function of depth and vorticity for a given steepness. The numerical results are used to assess the accuracy of the vor-NLS equation derived in [5] for the characteristics of modulational instabilities due to resonant four-wave interactions, as well as to study the influence of vorticity and nonlinearity on the characteristics of linear instabilities due to resonant five-wave and six-wave interactions. Depending on the dimensionless depth, superharmonic instabilities due to five-wave interactions can become dominant with increasing positive vorticiy. Acknowledgments: This work was supported by the Direction Générale de l'Armement and funded by the ANR project n°. ANR-13-ASTR-0007. References [1] A. Constantin, Two-dimensionality of gravity water flows of constant non-zero vorticity beneath a surface wave train, Eur. J. Mech. B/Fluids, 2011, 30, 12-16. [2] R. S. Johnson, On the modulation of water waves on shear flows, Proc. Royal Soc. Lond. A., 1976, 347, 537-546. [3] M. Oikawa, K. Chow, D. J. Benney, The propagation of nonlinear wave packets in a shear flow with a free surface, Stud. Appl. Math., 1987, 76, 69-92. [4] A. I Baumstein, Modulation of gravity waves with shear in water, Stud. Appl. Math., 1998, 100, 365-90. [5] R. Thomas, C. Kharif, M. Manna, A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity, Phys. Fluids, 2012, 24, 127102. [6] M. M Rienecker, J. D Fenton, A Fourier approximation method for steady water waves , J. Fluid Mech., 1981, 104, 119-137 [7] M. Francius, C. Kharif, Three-dimensional instabilities of periodic gravity waves in shallow water, J. Fluid Mech., 2006, 561, 417-437

  18. The stabilization of unstable detonation waves for the mixture of nitromethane/methanol

    NASA Astrophysics Data System (ADS)

    Utkin, A. V.; Koldunov, S. A.; Mochalova, V. M.; Torunov, S. I.; Lapin, S. M.

    2015-11-01

    Using a laser interferometer VISAR the measurements of the particle velocity profiles in detonation waves for nitromethane/methanol mixtures with additions of a sensitizer diethylenetriamine were conducted. It is shown that the detonation front in a mixture of nitromethane/methanol is unstable and sensitizer is an effective method for the flow stabilization. If the diluent concentration is less than 10%, the detonation front is stabilized by adding of 1% diethylenetriamine. At higher concentrations of methanol, the sensitizer does not reject instability, but the amplitude of oscillations decreases in several times. An increase of the limit concentration of methanol at the addition of diethylenetriamine to the mixture was found.

  19. Turing patterns in parabolic systems of conservation laws and numerically observed stability of periodic waves

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Jung, Soyeun; Zumbrun, Kevin

    2018-03-01

    Turing patterns on unbounded domains have been widely studied in systems of reaction-diffusion equations. However, up to now, they have not been studied for systems of conservation laws. Here, we (i) derive conditions for Turing instability in conservation laws and (ii) use these conditions to find families of periodic solutions bifurcating from uniform states, numerically continuing these families into the large-amplitude regime. For the examples studied, numerical stability analysis suggests that stable periodic waves can emerge either from supercritical Turing bifurcations or, via secondary bifurcation as amplitude is increased, from subcritical Turing bifurcations. This answers in the affirmative a question of Oh-Zumbrun whether stable periodic solutions of conservation laws can occur. Determination of a full small-amplitude stability diagram - specifically, determination of rigorous Eckhaus-type stability conditions - remains an interesting open problem.

  20. Stability investigations of relaxing molecular gas flows. Results and perspectives

    NASA Astrophysics Data System (ADS)

    Grigor'ev, Yurii N.; Ershov, Igor V.

    2017-10-01

    This article presents results of systematic investigations of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The effect can be a new way for control stability and laminar turbulent transition in aerodynamic flows. The consideration of suppression of inviscid acoustic waves in 2D shear flows is presented. Nonlinear evolution of large-scale vortices and Kelvin — Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both classical linear and nonlinear energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of this article is to show the new dissipative effect, which can be used for flow control and laminarization.

  1. Recent Developments in Gravity-Wave Effects in Climate Models and the Global Distribution of Gravity-Wave Momentum Flux from Observations and Models

    DTIC Science & Technology

    2010-07-01

    by changes in wind and stability to a vertical wavelength lying outside the observable range. Gravity-wave parametrizations also represent intermit ...tropopause variability. J. Atmos. Sci. 65: 1817–1837. Salby ML. 1982. Sampling theory for asynoptic satellite observations. Part II: Fast Fourier synoptic

  2. Simulation studies of plasma waves in the electron foreshock - The generation of downshifted oscillations

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    The generation of waves with frequencies downshifted from the plasma frequency, as observed in the electron foreshock, is analyzed by particle simulation. Wave excitation differs fundamentally from the familiar excitation of the plasma eigenmodes by a gentle bump-on-tail electron distribution. Beam modes are destabilized by resonant interaction with bulk electrons, provided the beam velocity spread is very small. These modes are stabilized, starting with the higher frequencies, as the beam is broadened and slowed down by the interaction with the wave spectrum. Initially a very cold beam is also capable of exciting frequencies considerably above the plasma frequency, but such oscillations are quickly stabilized. Low-frequency modes persist for a long time, until the bump in the electron distribution is completely 'ironed' out. This diffusion process also is quite different from the familiar case of well-separated beam and bulk electrons. A quantitative analysis of these processes is carried out.

  3. The effect of beam-driven return current instability on solar hard X-ray bursts

    NASA Technical Reports Server (NTRS)

    Cromwell, D.; Mcquillan, P.; Brown, J. C.

    1986-01-01

    The problem of electrostatic wave generation by a return current driven by a small area electron beam during solar hard X-ray bursts is discussed. The marginal stability method is used to solve numerically the electron and ion heating equations for a prescribed beam current evolution. When ion-acoustic waves are considered, the method appears satisfactory and, following an initial phase of Coulomb resistivity in which T sub e/T sub i rise, predicts a rapid heating of substantial plasma volumes by anomalous ohmic dissipation. This hot plasma emits so much thermal bremsstrahlung that, contrary to previous expectations, the unstable beam-plasma system actually emits more hard X-rays than does the beam in the purely collisional thick target regime relevant to larger injection areas. Inclusion of ion-cyclotron waves results in ion-acoustic wave onset at lower T sub e/T sub i and a marginal stability treatment yields unphysical results.

  4. Secondary instability of high-speed flows and the influence of wall cooling and suction

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1992-01-01

    The periodic streamwise modulation of the supersonic and hypersonic boundary layers by a two dimensional first mode or second mode wave makes the resulting base flow susceptible to a broadband spanwise-periodic three dimensional type of instability. The principal parametric resonance of this instability (subharmonic) was analyzed using Floquet theory. The effect of Mach number and the effectiveness of wall cooling or wall suction in controlling the onset, the growth rate, and the vortical nature of the subharmonic secondary instability are assessed for both a first mode and a second mode primary wave. Results indicate that the secondary subharmonic instability of the insulated wall boundary layer is weakened as Mach number increases. Cooling of the wall destabilizes the secondary subharmonic of a second mode primary wave, but stabilizes it when the primary wave is a first mode. Suction stabilizes the secondary subharmonic at all Mach numbers.

  5. Uncertainty principles for inverse source problems for electromagnetic and elastic waves

    NASA Astrophysics Data System (ADS)

    Griesmaier, Roland; Sylvester, John

    2018-06-01

    In isotropic homogeneous media, far fields of time-harmonic electromagnetic waves radiated by compactly supported volume currents, and elastic waves radiated by compactly supported body force densities can be modelled in very similar fashions. Both are projected restricted Fourier transforms of vector-valued source terms. In this work we generalize two types of uncertainty principles recently developed for far fields of scalar-valued time-harmonic waves in Griesmaier and Sylvester (2017 SIAM J. Appl. Math. 77 154–80) to this vector-valued setting. These uncertainty principles yield stability criteria and algorithms for splitting far fields radiated by collections of well-separated sources into the far fields radiated by individual source components, and for the restoration of missing data segments. We discuss proper regularization strategies for these inverse problems, provide stability estimates based on the new uncertainty principles, and comment on reconstruction schemes. A numerical example illustrates our theoretical findings.

  6. Faraday waves under time-reversed excitation.

    PubMed

    Pietschmann, Dirk; Stannarius, Ralf; Wagner, Christian; John, Thomas

    2013-03-01

    Do parametrically driven systems distinguish periodic excitations that are time mirrors of each other? Faraday waves in a Newtonian fluid are studied under excitation with superimposed harmonic wave forms. We demonstrate that the threshold parameters for the stability of the ground state are insensitive to a time inversion of the driving function. This is a peculiarity of some dynamic systems. The Faraday system shares this property with standard electroconvection in nematic liquid crystals [J. Heuer et al., Phys. Rev. E 78, 036218 (2008)]. In general, time inversion of the excitation affects the asymptotic stability of a parametrically driven system, even when it is described by linear ordinary differential equations. Obviously, the observed symmetry has to be attributed to the particular structure of the underlying differential equation system. The pattern selection of the Faraday waves above threshold, on the other hand, discriminates between time-mirrored excitation functions.

  7. Stability of an ion-ring distribution in a multi-ion component plasma

    NASA Astrophysics Data System (ADS)

    Mithaiwala, Manish; Rudakov, Leonid; Ganguli, Gurudas

    2010-04-01

    The stability of a cold ion-ring velocity distribution in a thermal plasma is analyzed. In particular, the effect of plasma temperature and density on the instability is considered. A high ring density (compared to the background plasma) neutralizes the stabilizing effect of the warm background plasma and the ring is unstable to the generation of waves below the lower-hybrid frequency even for a very high temperature plasma. For ring densities lower than the background plasma density, there is a slow instability where the growth rate is less than the background-ion cyclotron frequency and, consequently, the background-ion response is magnetized. This is in addition to the widely discussed fast instability where the wave growth rate exceeds the background-ion cyclotron frequency and hence the background ions are effectively unmagnetized. Thus, even a low density ring is unstable to waves around the lower-hybrid frequency range for any ring speed. This implies that effectively there is no velocity threshold for a sufficiently cold ring.

  8. A 3-D enlarged cell technique (ECT) for elastic wave modelling of a curved free surface

    NASA Astrophysics Data System (ADS)

    Wei, Songlin; Zhou, Jianyang; Zhuang, Mingwei; Liu, Qing Huo

    2016-09-01

    The conventional finite-difference time-domain (FDTD) method for elastic waves suffers from the staircasing error when applied to model a curved free surface because of its structured grid. In this work, an improved, stable and accurate 3-D FDTD method for elastic wave modelling on a curved free surface is developed based on the finite volume method and enlarged cell technique (ECT). To achieve a sufficiently accurate implementation, a finite volume scheme is applied to the curved free surface to remove the staircasing error; in the mean time, to achieve the same stability as the FDTD method without reducing the time step increment, the ECT is introduced to preserve the solution stability by enlarging small irregular cells into adjacent cells under the condition of conservation of force. This method is verified by several 3-D numerical examples. Results show that the method is stable at the Courant stability limit for a regular FDTD grid, and has much higher accuracy than the conventional FDTD method.

  9. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2015-01-01

    Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.

  10. The interaction between vegetation and channel dynamics based on experimental findings

    NASA Astrophysics Data System (ADS)

    Teske, R.; Van Dijk, W. M.; Van De Lageweg, W.; Kleinhans, M. G.

    2012-12-01

    Strong feedbacks exist between river channel dynamics, floodplain development and riparian vegetation. Several experimental studies showed how uniformly sown vegetation causes a shift from a braided river to a single-thread and sometimes meandering river. The objective of this study is to test what the effect of fluvially distributed seeds and vegetation settling is on channel pattern change and channel dynamics. The experiments were carried out in a flume of 3 m wide and 10 m long. We tested where the vegetation deposited in a braided and meandering river and how the morphology changed. We used a simple hydrograph of 0.25 hour high flow and 3.75 hour low flow, where alfalfa seeds were added during high flow. The bed sediment consisted of a poorly sorted sediment mixture ranging from fine sand to fine gravel. The evolution was recorded by a high-resolution laser-line scanner and a Digital Single Lens Reflex (DSLR) camera used for channel floodplain segmentation, water depth approximation and vegetation distribution. In an initially braided river, vegetation settled on the higher banks and stabilized the banks. In an initially meandering river, vegetation settled in the inner scrolls, and also on the outer banks when water level exceeded bankfull conditions. In agreement with earlier work, the outer bank was stabilized; erosion rate decreased and bends became sharper. The inner bend vegetation stabilized a part of the point bar and hydraulic resistance of the vegetation steered water in the channel and to the non-vegetated part of the inner bend. As result the meander bend became braided as water flows along the vegetation. Vegetation formed patches that grew over time and reduced channel dynamics. We conclude that self-settling vegetation decreased local bank erosion and that vegetated islands leads to a multi-thread system instead of single-threaded.

  11. Introduction to Plasma Physics

    NASA Astrophysics Data System (ADS)

    Gurnett, Donald A.; Bhattacharjee, Amitava

    2017-03-01

    Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.

  12. Stability of planar traveling waves in a Keller-Segel equation on an infinite strip domain

    NASA Astrophysics Data System (ADS)

    Chae, Myeongju; Choi, Kyudong; Kang, Kyungkeun; Lee, Jihoon

    2018-07-01

    We consider a simplified model of tumor angiogenesis, described by a Keller-Segel equation on the two dimensional domain (x , y) ∈ R ×Sλ where Sλ is the circle of perimeter λ. It is known that the system allows planar traveling wave solutions of an invading type. In case that λ is sufficiently small, we establish the nonlinear stability of traveling wave solutions in the absence of chemical diffusion if the initial perturbation is sufficiently small in some weighted Sobolev space. When chemical diffusion is present, it can be shown that the system is linearly stable. Lastly, we prove that any solution with our front condition eventually becomes planar under certain regularity conditions.

  13. Effects of Nose Bluntness on Stability of Hypersonic Boundary Layers over Blunt Cone

    NASA Technical Reports Server (NTRS)

    Kara, K.; Balakumar, P.; Kandil, O. A.

    2007-01-01

    Receptivity and stability of hypersonic boundary layers are numerically investigated for boundary layer flows over a 5-degree straight cone at a free-stream Mach number of 6.0. To compute the shock and the interaction of shock with the instability waves, we solve the Navier-Stokes equations in axisymmetric coordinates. The governing equations are solved using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. Generation of instability waves from leading edge region and receptivity of boundary layer to slow acoustic waves are investigated. Computations are performed for a cone with nose radii of 0.001, 0.05 and 0.10 inches that give Reynolds numbers based on the nose radii ranging from 650 to 130,000. The linear stability results showed that the bluntness has a strong stabilizing effect on the stability of axisymmetric boundary layers. The transition Reynolds number for a cone with the nose Reynolds number of 65,000 is increased by a factor of 1.82 compared to that for a sharp cone. The receptivity coefficient for a sharp cone is about 4.23 and it is very small, approx.10(exp -3), for large bluntness.

  14. Computerized Presentation of Text: Effects on Children's Reading of Informational Material. Special Issue on Reading Comprehension ? Part II

    ERIC Educational Resources Information Center

    Kerr, Matthew A.; Symons, Sonya E.

    2006-01-01

    This study examined whether children's reading rate, comprehension, and recall are affected by computer presentation of text. Participants were 60 grade five students, who each read two expository texts, one in a traditional print format and the other from a computer monitor, which used a common scrolling text interface. After reading each text,…

  15. The Workstation Approach to Laboratory Computing

    PubMed Central

    Crosby, P.A.; Malachowski, G.C.; Hall, B.R.; Stevens, V.; Gunn, B.J.; Hudson, S.; Schlosser, D.

    1985-01-01

    There is a need for a Laboratory Workstation which specifically addresses the problems associated with computing in the scientific laboratory. A workstation based on the IBM PC architecture and including a front end data acquisition system which communicates with a host computer via a high speed communications link; a new graphics display controller with hardware window management and window scrolling; and an integrated software package is described.

  16. Using the Scroll Wheel on a Wireless Mouse as a Motion Sensor

    ERIC Educational Resources Information Center

    Taylor, Richard S.; Wilson, William R.

    2010-01-01

    Since its inception in the mid-80s, the computer mouse has undergone several design changes. As the mouse has evolved, physicists have found new ways to utilize it as a motion sensor. For example, the rollers in a mechanical mouse have been used as pulleys to study the motion of a magnet moving through a copper tube as a quantitative demonstration…

  17. High Temperature Polymer Film Dielectrics for Aerospace Power Conditioning Capacitor Applications

    DTIC Science & Technology

    2008-10-01

    a temperature controller as well as a vacuum controller. A vacuum of əTorr is achieved with a combination of a turbo pump and a scroll pump system...the addition of a non- solvent such as de-ionized, distilled water. The films were dried at ∼0.1 Torr vacuum in an oven for several days at 65–75 ◦C

  18. CAD Extensions and Other Refinements to the LOCATE Workplace Layout Tool

    DTIC Science & Technology

    2000-05-01

    25 - Scrolling and Nudging ........................................................................................ 25 System Checks...Motif’s default behaviour when creating or renaming items in pop-up menus. (0) Rotation • Provide a rotation mode to allow for multiple rotations. (0...EObs (and other objects) expand from the top left comer or the centre. (0) System Checks • Update (or close) all open windows when changes are made to

  19. Was Pythagoras Chinese? An Examination of Right Triangle Theory in Ancient China. The Pennsylvania State University Studies No. 40.

    ERIC Educational Resources Information Center

    Swetz, Frank J.; Kao, T. I.

    This book is primarily a scholarly monograph on ancient Chinese theory and application concerning the right triangle, based on evidence contained in classical mathematics texts and scrolls. It is also the first complete English translation of the ninth chapter of the Chiu chang suan chu, the richest source of problems from antiquity dealing with…

  20. 78 FR 21129 - Orthopaedic and Rehabilitation Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... always check the Agency's Web site at http://www.fda.gov/AdvisoryCommittees/default.htm and scroll down... conditions by means other than the generation of deep heat within body tissues. On July 6, 2012 (77 FR 39953... than 2 business days before the meeting. If FDA is unable to post the background material on its Web...

  1. Toddlers’ Fine Motor Milestone Achievement Is Associated with Early Touchscreen Scrolling

    PubMed Central

    Bedford, Rachael; Saez de Urabain, Irati R.; Cheung, Celeste H. M.; Karmiloff-Smith, Annette; Smith, Tim J.

    2016-01-01

    Touchscreen technologies provide an intuitive and attractive source of sensory/cognitive stimulation for young children. Despite fears that usage may have a negative impact on toddlers’ cognitive development, empirical evidence is lacking. The current study presents results from the UK Toddler Attentional Behaviours and LEarning with Touchscreens (TABLET) project, examining the association between toddlers’ touchscreen use and the attainment of developmental milestones. Data were gathered in an online survey of 715 parents of 6- to 36-month-olds to address two research questions: (1) How does touchscreen use change from 6 to 36 months? (2) In toddlers (19–36 months, i.e., above the median age, n = 366), how does retrospectively reported age of first touchscreen usage relate to gross motor (i.e., walking), fine motor (i.e., stacking blocks), and language (i.e., producing two-word utterances) milestones? In our sample, the proportion of children using touchscreens, as well as the average daily usage time, increased with age (youngest quartile, 6–11 months: 51.22% users, 8.53 min per day; oldest quartile, 26–36 months: 92.05% users, average use of 43.95 min per day). In toddlers, aged 19–36 months, age of first touchscreen use was significantly associated with fine motor (stacking blocks), p = 0.03, after controlling for covariates age, sex, mother’s education (a proxy for socioeconomic status) as well as age of early fine motor milestone achievement (pincer grip). This effect was only present for active scrolling of the touchscreen p = 0.04, not for video watching. No significant relationships were found between touchscreen use and either gross motor or language milestones. Touchscreen use increases rapidly over the first 3 years of life. In the current study, we find no evidence to support a negative association between the age of first touchscreen usage and developmental milestones. Indeed, earlier touchscreen use, specifically scrolling of the screen, was associated with earlier fine motor achievement. Future longitudinal studies are required to elucidate the temporal order and mechanisms of this association, and to examine the impact of touchscreen use on other, more fine-grained, measures of behavioral, cognitive, and neural development. PMID:27531985

  2. In-situ Damage Assessment of Collagen within Ancient Manuscripts Written on Parchment: A Polarized Raman Spectroscopy Approach

    NASA Astrophysics Data System (ADS)

    Schütz, R.; Rabin, I.; Hahn, O.; Fratzl, P.; Masic, A.

    2010-08-01

    The collection generally known as Qumran scrolls or Dead Sea Scrolls (DSS) comprises some 900 highly fragmented manuscripts (mainly written on parchment) from the Second Temple period. In the years since their manufacture the writing materials have undergone serious deterioration due to a combination of natural ageing and environmental effects. Therefore, understanding quantitatively state of conservation of such manuscripts is a challenging task and a deep knowledge of damage pathways on all hierarchical levels (from molecular up to macroscopic) results of fundamental importance for a correct protection and conservation strategy. However, the degradation of parchments is very complex and not well understood process. Parchment is a final product of processing of animal skin and consist mainly of type I collagen, which is the most abundant constituent of the dermal matrix. Collagen molecule is built by folding of three polypeptide α-chains into a right-handed triple helix. Every α-chain is made by a repetitive sequence of (Gly-X-Y)n, where X and Y are often proline and hydroxyproline. Parallel and staggered collagen triple helices associate into fibrils, which than assemble into fibers. Deterioration of parchment is caused by chemical changes due to gelatinization, oxidation and hydrolysis of the collagen chains, promoted by several factors, summarized as biological and microbiological (bacteria, fungi etc.), heat, light, humidity and pollutants (1, 2). In this work we have focused on studying the collagen within parchments on two different levels of organization (molecular and fibrilar) by applying polarized Raman spectroscopic technique. Beside spectral information related to chemical bonding, polarization anisotropy of some collagen bands (i.e. amide I) has been used to explore organization of collagen on higher levels (three-dimensional arrangement of the triple-helix molecules and their alignment within a fibril of collagen). To this aim we have compared native and gelatinized (random coiled collagen), stretched and not stretched rat tail tendon (RTT), bovine skin collagen, new and artificially aged parchments and collagen fibers from the Temple scroll (Figure 1).

  3. Long-term stability of diurnal salivary cortisol and alpha-amylase secretion patterns.

    PubMed

    Skoluda, Nadine; La Marca, Roberto; Gollwitzer, Mario; Müller, Andreas; Limm, Heribert; Marten-Mittag, Birgitt; Gündel, Harald; Angerer, Peter; Nater, Urs M

    2017-06-01

    This study aimed to investigate long-term stability and variability of diurnal cortisol and alpha-amylase patterns. Diurnal cortisol and alpha-amylase secretion patterns were assessed on a single workday with three waves of measurement across a total time period of 24months in 189 participants. Separate hierarchical linear models were analyzed, with and without a number of potential predictor variables (age, BMI, smoking, chronic stress, stress reactivity). While low long-term stability was found in diurnal cortisol, the stability of diurnal alpha-amylase was moderate across the time period of 24months. Several predictor variables had a positive impact on diurnal cortisol and alpha-amylase secretion patterns averaged across waves. Our findings underpin the notion that long-term stability is not necessarily warranted in longitudinal studies. It is important to choose an appropriate study design when attempting to disentangle clinically and biologically relevant changes from naturally occurring variations in diurnal cortisol and alpha-amylase. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Receptivity of Hypersonic Boundary Layers to Distributed Roughness and Acoustic Disturbances

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2013-01-01

    Boundary-layer receptivity and stability of Mach 6 flows over smooth and rough seven-degree half-angle sharp-tipped cones are numerically investigated. The receptivity of the boundary layer to slow acoustic disturbances, fast acoustic disturbances, and vortical disturbances is considered. The effects of three-dimensional isolated roughness on the receptivity and stability are also simulated. The results for the smooth cone show that the instability waves are generated in the leading edge region and that the boundary layer is much more receptive to slow acoustic waves than to the fast acoustic waves. Vortical disturbances also generate unstable second modes, however the receptivity coefficients are smaller than that of the slow acoustic wave. Distributed roughness elements located near the nose region decreased the receptivity of the second mode generated by the slow acoustic wave by a small amount. Roughness elements distributed across the continuous spectrum increased the receptivity of the second mode generated by the slow and fast acoustic waves and the vorticity wave. The largest increase occurred for the vorticity wave. Roughness elements distributed across the synchronization point did not change the receptivity of the second modes generated by the acoustic waves. The receptivity of the second mode generated by the vorticity wave increased in this case, but the increase is lower than that occurred with the roughness elements located across the continuous spectrum. The simulations with an isolated roughness element showed that the second mode waves generated by the acoustic disturbances are not influenced by the small roughness element. Due to the interaction, a three-dimensional wave is generated. However, the amplitude is orders of magnitude smaller than the two-dimensional wave.

  5. Controllable parabolic-cylinder optical rogue wave.

    PubMed

    Zhong, Wei-Ping; Chen, Lang; Belić, Milivoj; Petrović, Nikola

    2014-10-01

    We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation. Such rogue waves may appear in different forms, as the hump and paw profiles.

  6. Millimeter-wave generation and characterization of a GaAs FET by optical mixing

    NASA Technical Reports Server (NTRS)

    Ni, David C.; Fetterman, Harold R.; Chew, Wilbert

    1990-01-01

    Coherent mixing of optical radiation from a tunable continuous-wave dye laser and a stabilized He-Ne laser was used to generate millimeter-wave signals in GaAs FETs attached to printed-circuit millimeter-wave antennas. The generated signal was further down-converted to a 2-GHz IF by an antenna-coupled millimeter-wave local oscillator at 62 GHz. Detailed characterizations of power and S/N under different bias conditions have been performed. This technique is expected to allow signal generation and frequency-response evaluation of millimeter-wave devices at frequencies as high as 100 GHz.

  7. A novel control algorithm for interaction between surface waves and a permeable floating structure

    NASA Astrophysics Data System (ADS)

    Tsai, Pei-Wei; Alsaedi, A.; Hayat, T.; Chen, Cheng-Wu

    2016-04-01

    An analytical solution is undertaken to describe the wave-induced flow field and the surge motion of a permeable platform structure with fuzzy controllers in an oceanic environment. In the design procedure of the controller, a parallel distributed compensation (PDC) scheme is utilized to construct a global fuzzy logic controller by blending all local state feedback controllers. A stability analysis is carried out for a real structure system by using Lyapunov method. The corresponding boundary value problems are then incorporated into scattering and radiation problems. They are analytically solved, based on separation of variables, to obtain series solutions in terms of the harmonic incident wave motion and surge motion. The dependence of the wave-induced flow field and its resonant frequency on wave characteristics and structure properties including platform width, thickness and mass has been thus drawn with a parametric approach. From which mathematical models are applied for the wave-induced displacement of the surge motion. A nonlinearly inverted pendulum system is employed to demonstrate that the controller tuned by swarm intelligence method can not only stabilize the nonlinear system, but has the robustness against external disturbance.

  8. Numerical Investigation of Crossflow Instability on the HIFiRE-5

    NASA Astrophysics Data System (ADS)

    Lakebrink, Matthew T.

    Stability analysis was performed with the Langley Stability and Transition Analysis Code (LASTRAC) on a 38.1% scale model of the HIFiRE-5 elliptic-cone forebody to study crossflow-induced transition in hypersonic boundary layers. A resolution study consisting of three grids (30e6, 45e6, and 91e6 points) indicated that the fine grid was sufficiently resolved. Results were largely insensitive to grid resolution over the acreage and near the attachment line. The percent variation in second-mode properties along the semi-minor axis was less than 1% between the medium and fine grids. The variation in crossflow-wave properties was less than 0.04% between the medium and fine grids. Comparisons were made between crossflow-wave properties computed using quasi-parallel Linear Stability Theory (LST), the Linear Parabolized Stability Equations (LPSE), and surface marching or two-plane LPSE (2pLPSE). Sensitivity to marching path was also explored by performing analysis along Group-Velocity Lines (GVL) and Inviscid Streamlines (ISL). The wave properties were largely insensitive to analysis type and marching path, with the greatest variation near the attachment line. The LPSE-growth rates were as much as 20% greater than LST. Results from LPSE and 2pLPSE were similar except near the attachment line, where 2pLPSE growth rates were about 30% greater. Growth rates for crossflow and second-mode waves computed with 2pLPSE were compared to Spatial BiGlobal (SBG) analysis. Crossflow growth rates agreed well between 2pLPSE and SBG, indicating that the more expensive SBG approach is unnecessary for crossflow computation over the acreage. Second-mode growth rates along the attachment line had similar peak frequencies between the various methods, but 2pLPSE and LST growth rates were as much as 200% and 30% greater than SBG respectively. These results represent the first comparison between SBG and conventional techniques for crossflow waves, and help to define best practices for the use of each technique. Crossflow-wave computations were compared to measurements made by Dr. Matt Borg in the Boeing AFOSR Mach 6 Quiet Tunnel (BAM6QT). Linear analysis for wave angle, phase speed, peak frequency, and spanwise wavelength agreed well with the experiment for sufficiently low Reynolds numbers. The Reynolds number at which linear theory deviated from the test data was termed the 'linear limit'. A stationary-crossflow N-factor of 8.2 correlated well with the linear limit, as did a traveling-wave amplitude of about 1%. Experimental PSD data was used to identify the onset of turbulence at the downstream end of the model, and the associated stationary-crossflow N-factor based on LST was 9.4. Correlating to the linear limit provides a way to conservatively estimate crossflow-induced transition using LST. Evolution of the crossflow waves between the linear limit and the breakdown to turbulence was studied using Non-linear PSE (NPSE). By exciting a combination of stationary and traveling waves, naturally excited harmonics grew downstream of the linear limit to amplitudes of about 2% based on peak temperature. The wave angles of these harmonics agreed well with the test data. For reasons unknown, such agreement was not realized for phase speed. Initial-amplitude sweeps were performed for both stationary and traveling waves. Initial stationary-wave amplitude had a strong influence on the peak-harmonic amplitude and location of transition onset, while initial amplitude of the traveling-waves primarily influenced the location of transition onset. This is the first dataset from which detailed comparisons have been made between stability analysis and quiet tunnel data for crossflow waves in both the linear and non-linear stages of evolution. Several of these comparisons serve as validation of LASTRAC for crossflow-wave analysis. Finally, to aid the comparison of stability analysis to experimental data in general, the sensitivities of crossflow-wave evolution to small-yaw angles and changes in wall temperature were investigated. A yaw angle of 0.5 degrees resulted in a change in N-factor of about 1 between the same point on opposite halves of the geometry. A 15K increase in wall temperature led to a 0.1 increase in N-factor. These results, which are the first of their kind, highlight the sensitivity of crossflow waves to subtle changes in boundary conditions, and serve to emphasize the importance of high-quality test data for which flow conditions are recorded as precisely as possible.

  9. Supersonic Wave Interference Affecting Stability

    NASA Technical Reports Server (NTRS)

    Love, Eugene S.

    1958-01-01

    Some of the significant interference fields that may affect stability of aircraft at supersonic speeds are briefly summarized. Illustrations and calculations are presented to indicate the importance of interference fields created by wings, bodies, wing-body combinations, jets, and nacelles.

  10. Goal conflict and the moderating effects of intention stability in intention-behavior relations: physical activity among Hong Kong chinese.

    PubMed

    Li, Kin-Kit; Chan, Darius K S

    2008-02-01

    This study examined how goal conflict influences the pattern of the moderating effects of intention stability on the intention-behavior relations in the context of physical activity participation. A longitudinal study of 136 young adult students with three waves of data collection (a 2-week interval between waves) was conducted. Results showed a significant three-way interaction among intention, goal conflict,& intention stability in explaining vigorous-intensity physical activity (Beta = -.25, p < .05). Consistent with our expectation, the pattern of the three-way interaction revealed that when the level of goal conflict was low, the intention-behavior relations were stronger with stable intentions and weaker with unstable intentions. However, when the level of goal conflict was high, the intention-behavior relations were weaker with stable intentions and stronger with unstable intentions. Possible underlying processes of goal conflict and intention stability on the intention-behavior relations are discussed.

  11. Running interfacial waves in a two-layer fluid system subject to longitudinal vibrations.

    PubMed

    Goldobin, D S; Pimenova, A V; Kovalevskaya, K V; Lyubimov, D V; Lyubimova, T P

    2015-05-01

    We study the waves at the interface between two thin horizontal layers of immiscible fluids subject to high-frequency horizontal vibrations. Previously, the variational principle for energy functional, which can be adopted for treatment of quasistationary states of free interface in fluid dynamical systems subject to vibrations, revealed the existence of standing periodic waves and solitons in this system. However, this approach does not provide regular means for dealing with evolutionary problems: neither stability problems nor ones associated with propagating waves. In this work, we rigorously derive the evolution equations for long waves in the system, which turn out to be identical to the plus (or good) Boussinesq equation. With these equations one can find all the time-independent-profile solitary waves (standing solitons are a specific case of these propagating waves), which exist below the linear instability threshold; the standing and slow solitons are always unstable while fast solitons are stable. Depending on initial perturbations, unstable solitons either grow in an explosive manner, which means layer rupture in a finite time, or falls apart into stable solitons. The results are derived within the long-wave approximation as the linear stability analysis for the flat-interface state [D.V. Lyubimov and A.A. Cherepanov, Fluid Dynamics 21, 849 (1986)] reveals the instabilities of thin layers to be long wavelength.

  12. The advanced cosmic microwave explorer - A millimeter-wave telescope and stabilized platform

    NASA Technical Reports Server (NTRS)

    Meinhold, P. R.; Chingcuanco, A. O.; Gundersen, J. O.; Schuster, J. A.; Seiffert, M. D.; Lubin, P. M.; Morris, D.; Villela, T.

    1993-01-01

    We have developed and flown a 1 m diameter Gregorian telescope system for measurements of anisotropy in the Cosmic Background Radiation (CBR). The telescope is incorporated in a balloon-borne stabilized platform with arcminute stabilization capability. To date, the system has flown four times and observed from the ground at the South Pole twice. The telescope has used both coherent and incoherent detectors. We describe the development of the telescope, pointing platform, and one of the receivers employed in making measurements of the CBR. Performance of the system during the first flight and operation on the ground at the South Pole are described, and the quality of the South Pole as a millimeter wave observing site is discussed.

  13. Stability of the sum of two solitary waves for (gDNLS) in the energy space

    NASA Astrophysics Data System (ADS)

    Tang, Xingdong; Xu, Guixiang

    2018-03-01

    In this paper, we continue the study in [18]. We use the perturbation argument, modulational analysis and the energy argument in [15,16] to show the stability of the sum of two solitary waves with weak interactions for the generalized derivative Schrödinger equation (gDNLS) in the energy space. Here (gDNLS) hasn't the Galilean transformation invariance, the pseudo-conformal invariance and the gauge transformation invariance, and the case σ > 1 we considered corresponds to the L2-supercritical case.

  14. Gyrokinetic stability of electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Mishchenko, A.; Zocco, A.; Helander, P.; Könies, A.

    2018-02-01

    The gyrokinetic stability of electron-positron plasmas contaminated by an ion (proton) admixture is studied in a slab geometry. The appropriate dispersion relation is derived and solved. Stable K-modes, the universal instability, the ion-temperature-gradient-driven instability, the electron-temperature-gradient-driven instability and the shear Alfvén wave are considered. It is found that the contaminated plasma remains stable if the contamination degree is below some threshold and that the shear Alfvén wave can be present in a contaminated plasma in cases where it is absent without ion contamination.

  15. Square-Wave Model for a Pendulum with Oscillating Suspension

    ERIC Educational Resources Information Center

    Yorke, Ellen D.

    1978-01-01

    Demonstrates that if a sinusoidal oscillation of the point of support of a pendulum is approximated by a square wave, a matrix method may be used to discuss parametric resonance and the stability of the inverted pendulum. (Author/SL)

  16. Long-wave theory for a new convective instability with exponential growth normal to the wall.

    PubMed

    Healey, J J

    2005-05-15

    A linear stability theory is presented for the boundary-layer flow produced by an infinite disc rotating at constant angular velocity in otherwise undisturbed fluid. The theory is developed in the limit of long waves and when the effects of viscosity on the waves can be neglected. This is the parameter regime recently identified by the author in a numerical stability investigation where a curious new type of instability was found in which disturbances propagate and grow exponentially in the direction normal to the disc, (i.e. the growth takes place in a region of zero mean shear). The theory describes the mechanisms controlling the instability, the role and location of critical points, and presents a saddle-point analysis describing the large-time evolution of a wave packet in frames of reference moving normal to the disc. The theory also shows that the previously obtained numerical solutions for numerically large wavelengths do indeed lie in the asymptotic long-wave regime, and so the behaviour and mechanisms described here may apply to a number of cross-flow instability problems.

  17. Hydrodynamic Analyses and Evaluation of New Fluid Film Bearing Concepts

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Dimofte, Florin

    1998-01-01

    Over the past several years, numerical and experimental investigations have been performed on a waved journal bearing. The research work was undertaken by Dr. Florin Dimofte, a Senior Research Associate in the Mechanical Engineering Department at the University of Toledo. Dr. Theo Keith, Distinguished University Professor in the Mechanical Engineering Department was the Technical Coordinator of the project. The wave journal bearing is a bearing with a slight but precise variation in its circular profile such that a waved profile is circumscribed on the inner bearing diameter. The profile has a wave amplitude that is equal to a fraction of the bearing clearance. Prior to this period of research on the wave bearing, computer codes were written and an experimental facility was established. During this period of research considerable effort was directed towards the study of the bearing's stability. The previously developed computer codes and the experimental facility were of critical importance in performing this stability research. A collection of papers and reports were written to describe the results of this work. The attached captures that effort and represents the research output during the grant period.

  18. Electron Bernstein Wave Studies in MST

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Reusch, Joshua; Hendries, Eric

    2013-10-01

    The overdense condition in a RFP prevents electromagnetic waves from propagating past the extreme edge. However use of the electron Bernstein wave (EBW) has the potential to heat and drive current in the plasma. MHD simulations have demonstrated that resistive tearing mode stability is very sensitive to the gradient in the edge current density profile, allowing EBW current drive to influence and potentially stabilize tearing mode activity. Coupling between the X-mode and Bernstein waves is strongly dependent on the edge density gradient. The effects on coupling of plasma density, magnetic field strength, antenna radial position and launch polarization have been examined. Coupling as high as 90% has been observed. Construction of a 450 kw RF source is complete and initial experimental results will be reported. The power and energy of this auxiliary system should be sufficient for several scientific purposes, including verifying mode conversion, EBW propagation and absorption in high beta plasmas. Target plasmas in the 300-400 kA range will be heated near the reversal surface, potentially allowing mode control, while target plasmas in the 250 kA range will allow heating near the core, allowing better observation of heating effects. Heating and heat pulse propagation experiments are planned, as well as probing the stability of parametric decay during mode conversion, at moderate injected power. Work supported by USDOE.

  19. Understanding the destabilizing role for surface tension in planar shear flows in terms of wave interaction

    NASA Astrophysics Data System (ADS)

    Biancofiore, L.; Heifetz, E.; Hoepffner, J.; Gallaire, F.

    2017-10-01

    Both surface tension and buoyancy force in stable stratification act to restore perturbed interfaces back to their initial positions. Hence, both are intuitively considered as stabilizing agents. Nevertheless, the Taylor-Caulfield instability is a counterexample in which the presence of buoyancy forces in stable stratification destabilize shear flows. An explanation for this instability lies in the fact that stable stratification supports the existence of gravity waves. When two vertically separated gravity waves propagate horizontally against the shear, they may become phase locked and amplify each other to form a resonance instability. Surface tension is similar to buoyancy but its restoring mechanism is more efficient at small wavelengths. Here, we show how a modification of the Taylor-Caulfield configuration, including two interfaces between three stably stratified immiscible fluids, supports interfacial capillary gravity whose interaction yields resonance instability. Furthermore, when the three fluids have the same density, an instability arises solely due to a pure counterpropagating capillary wave resonance. The linear stability analysis predicts a maximum growth rate of the pure capillary wave instability for an intermediate value of surface tension corresponding to We-1=5 , where We denotes the Weber number. We perform direct numerical nonlinear simulation of this flow and find nonlinear destabilization when 2 ≤We-1≤10 , in good agreement with the linear stability analysis. The instability is present also when viscosity is introduced, although it is gradually damped and eventually quenched.

  20. Linear and nonlinear stability characteristics of whistlers

    NASA Technical Reports Server (NTRS)

    Brinca, A. L.

    1972-01-01

    Linear and nonlinear propagating characteristics of right-hand polarized, slow electromagnetic, magnetoplasma waves (whistlers) are discussed in terms of stability and dispersion. An analysis of the stability of whistlers propagating at an angle to the static magnetic field is presented. A new mechanism is derived for the onset of stimulated emissions, and modulational instability for nonlinear whistlers are discussed.

  1. Adolescent Alcohol Use Self-Report Stability: A Decade of Panel Study Data

    ERIC Educational Resources Information Center

    Shillington, Audrey M.; Clapp, John D.; Reed, Mark B.; Woodruff, Susan I.

    2011-01-01

    This study analyzed six waves of panel data from the National Longitudinal Survey of Youth (NLSY). These analyses were conducted to test the stability of self-reported lifetime use and age of onset. Intraclass correlation coefficients (ICCs) indicated that the stability of age of onset reports decreased with longer time frames between follow-ups.…

  2. Dynamics of Galaxies

    NASA Astrophysics Data System (ADS)

    Bertin, Giuseppe

    2000-08-01

    Part I. Basic Phenomenology: 1. Scales; 2. Observational windows; 3. Classifications; 4. Photometry, kinematics, dark matter; 5. Basic questions, semi-empirical approach, dynamical window; Part II. Physical Models: 6. Self-gravity and relation with plasma physics; 7. Relaxation times, absence of thermodynamical equilibrium; 8. Models; 9. Equilibrium and stability: symmetry and symmetry breaking; 10. Classical ellipsoids; 11. Introduction to dispersive waves; 12. Jeans instability; Part III. Spiral Galaxies: 13. Orbits; 14. The basic state: vertical and horizontal equilibrium in the disk; 15. Density waves; 16. Role of gas; 17. Global spiral modes; 18. Spiral structure in galaxies; 19. Bending waves; 20. Dark matter in spiral galaxies; Part IV. Elliptical Galaxies: 21. Orbits; 22. Stellar dynamical approach; 23. Stability; 24. Dark matter in elliptical galaxies; Part V. In Perspective: 25. Selected aspects of formation and evolution; Notes; Index.

  3. Resonant Triad in Boundary-Layer Stability. Part 2; Composite Solution and Comparison with Observations

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1991-01-01

    Here, numerical results are computed from an asymptotic near-resonance triad analysis. The analysis considers a resonant triad of instability waves consisting of a plane fundamental wave and a pair of symmetrical oblique subharmonic waves. The relevant scaling ensures that nonlinearity is confined to a distinct critical layer. The analysis is first used to form a composite solution that accounts for both the flow divergence and nonlinear effects. It is shown that the backreaction on the plane Tollmien Schlichting (TS) fundamental wave, although fully accounted for, is of little significance. The observed enhancement at the fundamental frequency disturbance is not in the plane TS wave, but is caused by nonlinearly generated waves at the fundamental frequency that result from nonlinear interactions in the critical layer. The saturation of the oblique waves is caused by their self-interaction. The nonlinear phase-locking phenomenon, the location of resonance with respect to the neutral stability curve, low frequency effects, detuning in the streamwise wave numbers, and nonlinear distortion of the mode shapes are discussed. Nonlinearity modifies the initially two dimensional Blasius profile into a fuller one with spanwise periodicity. The interactions at a wide range of unstable spanwise wave numbers are considered, and the existence of a preferred spanwise wave number is explained by means of the vorticity distribution in the critical layer. Besides presenting novel features of the phenomena and explaining the delicate mechanisms of the interactions, the results of the theory are in excellent agreement with experimental and numerical observations for all stages of the development and for various input parameters.

  4. Transverse instability of solitary waves in the generalized kadomtsev-petviashvili equation

    PubMed

    Kataoka; Tsutahara; Negoro

    2000-04-03

    The linear stability of planar solitary waves with respect to long-wavelength transverse perturbations is studied in the framework of the generalized Kadomtsev-Petviashvili equation. It is newly discovered that for some nonlinearities in this family, the solitary waves could be transversely unstable even in a medium with negative dispersion. In the case of positive dispersion, they are found to be always unstable.

  5. Preparation, Delivery, and Evaluation of Picomole Vapor Standards

    DTIC Science & Technology

    2013-07-10

    brass bellows vacuum valve (Part No. BFLM-K40, Duniway Stockroom Corp., Mountain View, CA USA). A scroll pump was used rather than a mechanical...evacuated 1 L ballast canister, while the dead volume of the quick connect is evacuated with a turbomolecular vacuum pump . 3 Figure 1: Valve layout...mL canister for 2 min. GC Splitless Inlet GC Splitless Inlet Turbomolecular Vacuum Pump Turbomolecular Vacuum Pump QT Quick

  6. Performance Characterization of a Three-Axis Hall Effect Thruster

    DTIC Science & Technology

    2010-12-01

    mounted to the vacuum tank overhead and were individually connected to CVI CBST 6.0 scroll compressor units via flexible tubing. The pumps were capable...and Support Equipment . . . . . . . . . 23 3.2.1 Vacuum Chamber . . . . . . . . . . . . . . . . . 23 3.2.2 Pumps and Pump -down Sequence...Sequence. Chamber pressure monitoring and control of vacuum pumps was accomplished using a combination of two gauge systems. The first was used when tank

  7. Advanced Photonic Sensors Enabled by Semiconductor Bonding

    DTIC Science & Technology

    2010-05-31

    a dry scroll backing pump to maintain the high differential pressure between the UV gun and the sample/analysis chamber. We also replaced the...semiconductor materials in an ultra-high vacuum (UHV) environment where the properties of the interface can be controlled with atomic-level precision. Such...year research program, we designed and constructed a unique system capable of fusion bonding two wafers in an ultra-high vacuum environment. This system

  8. Ultrafast High Harmonic, Soft X-Ray Probing of Molecular Dynamics

    DTIC Science & Technology

    2013-04-30

    590 L/s scroll pump and a titanium sublimation pump . A TOF-PES has been designed and constructed to analyze the energy of the photoelectrons...are studied using the quasi-continuous vacuum ultraviolet light of the Advanced Light Source at Lawrence Berkeley National Laboratory. The molecular...34), the method of high order harmonic generation of ultrashort vacuum ultraviolet pulses was used to investigate molecular photodissociation, ultrafast

  9. Assisting People with Multiple Disabilities and Minimal Motor Behavior to Improve Computer Drag-and-Drop Efficiency through a Mouse Wheel

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang

    2011-01-01

    This study evaluated whether two people with multiple disabilities and minimal motor behavior would be able to improve their Drag-and-Drop (DnD) performance using their finger/thumb poke ability with a mouse scroll wheel through a Dynamic Drag-and-Drop Assistive Program (DDnDAP). A multiple probe design across participants was used in this study…

  10. A Toolkit for Designing User Interfaces

    DTIC Science & Technology

    1990-03-01

    as the NPS IB can provide prototyping capability. Interface generators are available commercially for nearly every computing machine on the market ...structure which holds attributes of the message buffer window is shown in Figure 4.2. The variables nlines and nchars hold the number of lines in the...window its appearance of scrolling 46 /* define a type and structure for the message buffer */ struct messbuf( long nlines ; /* number of lines in the

  11. Do Gender and Exposure to Interparental Violence Moderate the Stability of Teen Dating Violence?: Latent Transition Analysis.

    PubMed

    Choi, Hye Jeong; Temple, Jeff R

    2016-04-01

    This study investigates the development, change, and stability of teen dating violence (TDV) victimization over time. Specifically, we identify distinct subgroups of adolescents based on past-year TDV victimization, whether adolescents change victimization statuses over time (e.g., from psychological victimization to physical victimization), and how exposure to interparental violence and gender influence the prevalence and stability of TDV statuses. Adolescents (N=1,042) from 7 public high schools in Texas participated in this longitudinal study. The Conflict in Adolescent Dating Relationships Inventory (CADRI) (Wolfe et al., Psychological Assessment, 13(2), 277-293, 2001) was used to identify victimization statuses. Latent Transition Analysis (LTA) with measurement invariance was used to examine transition probability of an individual's latent status at Wave3 or Wave4 given his or her latent status at Wave2 or Wave3. Gender and exposure to interparental violence was included as moderators in the LTA. Three statuses of TDV victimization were identified: (1) non-victims; (2) emotional/verbal victims; and (3) physical/psychological victims. LTA showed that the majority of adolescents stayed in the same status over time; however, female youth exposed to interparental violence were more likely to move from a less to more severe status over time compared to non-exposed youth. This is among the first study to identify subgroups of TDV victimization and to examine the stability of group membership over time. Female youth exposed to interparental violence were more likely to remain in or move into a violent relationship compared to unexposed youth.

  12. Instabilities of convection patterns in a shear-thinning fluid between plates of finite conductivity

    NASA Astrophysics Data System (ADS)

    Varé, Thomas; Nouar, Chérif; Métivier, Christel

    2017-10-01

    Rayleigh-Bénard convection in a horizontal layer of a non-Newtonian fluid between slabs of arbitrary thickness and finite thermal conductivity is considered. The first part of the paper deals with the primary bifurcation and the relative stability of convective patterns at threshold. Weakly nonlinear analysis combined with Stuart-Landau equation is used. The competition between squares and rolls, as a function of the shear-thinning degree of the fluid, the slabs' thickness, and the ratio of the thermal conductivity of the slabs to that of the fluid is investigated. Computations of heat transfer coefficients are in agreement with the maximum heat transfer principle. The second part of the paper concerns the stability of the convective patterns toward spatial perturbations and the determination of the band width of the stable wave number in the neighborhood of the critical Rayleigh number. The approach used is based on the Ginzburg-Landau equations. The study of rolls stability shows that: (i) for low shear-thinning effects, the band of stable wave numbers is bounded by zigzag instability and cross-roll instability. Furthermore, the marginal cross-roll stability boundary enlarges with increasing shear-thinning properties; (ii) for high shear-thinning effects, Eckhaus instability becomes more dangerous than cross-roll instability. For square patterns, the wave number selection is always restricted by zigzag instability and by "rectangular Eckhaus" instability. In addition, the width of the stable wave number decreases with increasing shear-thinning effects. Numerical simulations of the planform evolution are also presented to illustrate the different instabilities considered in the paper.

  13. Efficiency of perfectly matched layers for seismic wave modeling in second-order viscoelastic equations

    NASA Astrophysics Data System (ADS)

    Ping, Ping; Zhang, Yu; Xu, Yixian; Chu, Risheng

    2016-12-01

    In order to improve the perfectly matched layer (PML) efficiency in viscoelastic media, we first propose a split multi-axial PML (M-PML) and an unsplit convolutional PML (C-PML) in the second-order viscoelastic wave equations with the displacement as the only unknown. The advantage of these formulations is that it is easy and efficient to revise the existing codes of the second-order spectral element method (SEM) or finite-element method (FEM) with absorbing boundaries in a uniform equation, as well as more economical than the auxiliary differential equations PML. Three models which are easily suffered from late time instabilities are considered to validate our approaches. Through comparison the M-PML with C-PML efficiency of absorption and stability for long time simulation, it can be concluded that: (1) for an isotropic viscoelastic medium with high Poisson's ratio, the C-PML will be a sufficient choice for long time simulation because of its weak reflections and superior stability; (2) unlike the M-PML with high-order damping profile, the M-PML with second-order damping profile loses its stability in long time simulation for an isotropic viscoelastic medium; (3) in an anisotropic viscoelastic medium, the C-PML suffers from instabilities, while the M-PML with second-order damping profile can be a better choice for its superior stability and more acceptable weak reflections than the M-PML with high-order damping profile. The comparative analysis of the developed methods offers meaningful significance for long time seismic wave modeling in second-order viscoelastic wave equations.

  14. Investigation of air gasification of micronized coal, mechanically activated using the plasma control of the process

    NASA Astrophysics Data System (ADS)

    Butakov, Evgenii; Burdukov, Anatoly; Chernetskiy, Mikhail; Kuznetsov, Victor

    2017-10-01

    Combination of the processes of coal combustion and gasification into a single technology of mechano-chemical and plasma-chemical activation is of a considerable scientific and technological interest. Enhancement of coal reactivity at their grinding with mechanical activation is associated with an increase in the reaction rate of carbon material, and at plasma-chemical effect, the main is an increase in reactivity of the oxidizing agent caused by the high plasma temperatures of atomic oxygen. The process of gasification was studied on the 1-MW setup with tangential scroll supply of pulverized coal-air mixture and cylindrical reaction chamber. Coal ground by the standard boiler mill is fed to the disintegrator, then, it is sent to the scroll inlet of the burner-reactor with the transport air. Pulverized coal is ignited by the plasmatron of 10-kW power. In experiments on air gasification of micronized coal, carried out at the temperature in the reaction chamber of 1000-1200°C and air excess α = 0.3-1, the data on CO concentration of 11% and H2 concentration of up to 6% were obtained. Air and air-steam gasification of mechanically-activated micronized coals with plasma control was calculated using SigmaFlow software package.

  15. Numerical simulation of CO2 scroll compressor in transcritical compression cycle

    NASA Astrophysics Data System (ADS)

    Wang, Hongli; Tian, JingRui; Du, Yuanhang; Hou, Xiujuan

    2018-05-01

    Based on the theory of thermodynamics and kinetics, the mathematical model of an orbiting scroll was established and the stress deformations were employed by ANSYS software. Under the action of pressure load, the results show that the serious displacement part is located in the center of the gear head and the maximum deformation is about 7.33 μm. The maximum radial displacement is about 4.42 μm. The maximum radial stress point occurs in the center of the gear head and the maximum stress is about 40.9 MPa. The maximum axial displacement is about 2.31 μm. The maximum axial stress point occurs in the gear head and the maximum stress is about 44.7 MPa. Under the action of temperature load, the results show that the serious deformation part is located in the center of the gear head and the maximum deformation is about 6.3 μm. The maximum thermal stress occurs in the center of the gear head and the maximum thermal stress is about 86.36 MPa. Under the combined action of temperature load and pressure load, the results show that the serious deformation part and the maximum stress are located in the center of the gear head, and the value are about 7.79 μm and 74.19 MPa, respectively.

  16. Exploring inter-frame correlation analysis and wavelet-domain modeling for real-time caption detection in streaming video

    NASA Astrophysics Data System (ADS)

    Li, Jia; Tian, Yonghong; Gao, Wen

    2008-01-01

    In recent years, the amount of streaming video has grown rapidly on the Web. Often, retrieving these streaming videos offers the challenge of indexing and analyzing the media in real time because the streams must be treated as effectively infinite in length, thus precluding offline processing. Generally speaking, captions are important semantic clues for video indexing and retrieval. However, existing caption detection methods often have difficulties to make real-time detection for streaming video, and few of them concern on the differentiation of captions from scene texts and scrolling texts. In general, these texts have different roles in streaming video retrieval. To overcome these difficulties, this paper proposes a novel approach which explores the inter-frame correlation analysis and wavelet-domain modeling for real-time caption detection in streaming video. In our approach, the inter-frame correlation information is used to distinguish caption texts from scene texts and scrolling texts. Moreover, wavelet-domain Generalized Gaussian Models (GGMs) are utilized to automatically remove non-text regions from each frame and only keep caption regions for further processing. Experiment results show that our approach is able to offer real-time caption detection with high recall and low false alarm rate, and also can effectively discern caption texts from the other texts even in low resolutions.

  17. Fundamentals of Plasma Physics

    NASA Astrophysics Data System (ADS)

    Bellan, Paul M.

    2008-07-01

    Preface; 1. Basic concepts; 2. The Vlasov, two-fluid, and MHD models of plasma dynamics; 3. Motion of a single plasma particle; 4. Elementary plasma waves; 5. Streaming instabilities and the Landau problem; 6. Cold plasma waves in a magnetized plasma; 7. Waves in inhomogeneous plasmas and wave energy relations; 8. Vlasov theory of warm electrostatic waves in a magnetized plasma; 9. MHD equilibria; 10. Stability of static MHD equilibria; 11. Magnetic helicity interpreted and Woltjer-Taylor relaxation; 12. Magnetic reconnection; 13. Fokker-Planck theory of collisions; 14. Wave-particle nonlinearities; 15. Wave-wave nonlinearities; 16. Non-neutral plasmas; 17. Dusty plasmas; Appendix A. Intuitive method for vector calculus identities; Appendix B. Vector calculus in orthogonal curvilinear coordinates; Appendix C. Frequently used physical constants and formulae; Bibliography; References; Index.

  18. A Waved Journal Bearing Concept-Evaluating Steady-State and Dynamic Performance with a Potential Active Control Alternative

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1993-01-01

    Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. The performance of generic waved bearings having either three or four waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of fluid film stability and dynamic coefficients. It was found that the bearing wave amplitude has an important influence on both the steady-state and the dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases.

  19. On Richardson extrapolation for low-dissipation low-dispersion diagonally implicit Runge-Kutta schemes

    NASA Astrophysics Data System (ADS)

    Havasi, Ágnes; Kazemi, Ehsan

    2018-04-01

    In the modeling of wave propagation phenomena it is necessary to use time integration methods which are not only sufficiently accurate, but also properly describe the amplitude and phase of the propagating waves. It is not clear if amending the developed schemes by extrapolation methods to obtain a high order of accuracy preserves the qualitative properties of these schemes in the perspective of dissipation, dispersion and stability analysis. It is illustrated that the combination of various optimized schemes with Richardson extrapolation is not optimal for minimal dissipation and dispersion errors. Optimized third-order and fourth-order methods are obtained, and it is shown that the proposed methods combined with Richardson extrapolation result in fourth and fifth orders of accuracy correspondingly, while preserving optimality and stability. The numerical applications include the linear wave equation, a stiff system of reaction-diffusion equations and the nonlinear Euler equations with oscillatory initial conditions. It is demonstrated that the extrapolated third-order scheme outperforms the recently developed fourth-order diagonally implicit Runge-Kutta scheme in terms of accuracy and stability.

  20. Avoiding Tokamak Disruptions by Applying Static Magnetic Fields That Align Locked Modes with Stabilizing Wave-Driven Currents [Avoiding Tokamak Disruptions by Magnetically Aligning Locked Modes with Stabilizing Wave-Driven Currents

    DOE PAGES

    Volpe, F. A.; Hyatt, Alan; La Haye, Robert J.; ...

    2015-10-19

    The international ITER tokamak has the objective of demonstrating the scientific feasibility of magnetic confinement fusion as a source of energy. A concern towards the achievement of this goal is represented by major disruptions: complete losses of confinement often initiated by a non-rotating ('locked') magnetic island created by magnetic reconnection. During disruptions, energy and particles accumulated in the plasma volume over many seconds are lost in a few milliseconds and released on the plasma-facing materials. In addition, multi-MA level currents flowing in the tokamak plasma for its sustainment and confinement are lost, also in milliseconds, thus terminating the plasma dischargemore » and causing electromagnetic stresses that, if unmitigated, could lead to excessive device wear. Moreover it is shown that magnetic perturbations can be used to avoid disruptions by "guiding" the magnetic island to lock in a position where it is accessible to millimetre wave beams that fully stabilize it.« less

  1. Stabilization of the Peregrine soliton and Kuznetsov-Ma breathers by means of nonlinearity and dispersion management

    NASA Astrophysics Data System (ADS)

    Cuevas-Maraver, J.; Malomed, Boris A.; Kevrekidis, P. G.; Frantzeskakis, D. J.

    2018-04-01

    We demonstrate a possibility to make rogue waves (RWs) in the form of the Peregrine soliton (PS) and Kuznetsov-Ma breathers (KMBs) effectively stable objects, with the help of properly defined dispersion or nonlinearity management applied to the continuous-wave (CW) background supporting the RWs. In particular, it is found that either management scheme, if applied along the longitudinal coordinate, making the underlying nonlinear Schrödinger equation (NLSE) self-defocusing in the course of disappearance of the PS, indeed stabilizes the global solution with respect to the modulational instability of the background. In the process, additional excitations are generated, namely, dispersive shock waves and, in some cases, also a pair of slowly separating dark solitons. Further, the nonlinearity-management format, which makes the NLSE defocusing outside of a finite domain in the transverse direction, enables the stabilization of the KMBs, in the form of confined oscillating states. On the other hand, a nonlinearity-management format applied periodically along the propagation direction, creates expanding patterns featuring multiplication of KMBs through their cascading fission.

  2. Effects of Nose Bluntness on Hypersonic Boundary-Layer Receptivity and Stability Over Cones

    NASA Technical Reports Server (NTRS)

    Kara, Kursat; Balakumar, Ponnampalam; Kandil, Osama A.

    2011-01-01

    The receptivity to freestream acoustic disturbances and the stability properties of hypersonic boundary layers are numerically investigated for boundary-layer flows over a 5 straight cone at a freestream Mach number of 6.0. To compute the shock and the interaction of the shock with the instability waves, the Navier-Stokes equations in axisymmetric coordinates were solved. In the governing equations, inviscid and viscous flux vectors are discretized using a fifth-order accurate weighted-essentially-non-oscillatory scheme. A third-order accurate total-variation-diminishing Runge-Kutta scheme is employed for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. The appearance of instability waves near the nose region and the receptivity of the boundary layer with respect to slow mode acoustic waves are investigated. Computations confirm the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary-layer transition. The current solutions, compared with experimental observations and other computational results, exhibit good agreement.

  3. On wave-CISK and the evaporation-wind feedback for the Madden-Julian oscillation

    NASA Technical Reports Server (NTRS)

    Kirtman, B.; Vernekar, A.

    1993-01-01

    The combined effects of Kelvin wave-CISK and the evaporation-wind (E-W) feedback are proposed as a possible mechanism for the Madden-Julian oscillation. A very simple single vertical mode model has been employed to examine the effects of both these processes on moist Kelvin waves. The effects of wave-induced moisture convergence is parameterized by reducing the moist static stability, and CISK occurs when the moist static stability becomes negative. The E-W feedback in the presence of mean easterlies leads to unstable Kelvin modes. The presence of mean westerlies leads to decaying Kelvin modes. When CISK and the E-W feedback work in concert, an unstable Kelvin mode develops that has phase speeds of propagation between 5 m/s and 10 m/s for a large range of parameter values. On the other hand, the E-W feedback mechanism alone, in the case when CISK is not operating, produces the phase speeds of the observed Madden-Julian oscillation for only a very limited range of parameter values.

  4. Existence and stability of dispersive solutions to the Kadomtsev-Petviashvili equation in the presence of dispersion effect

    NASA Astrophysics Data System (ADS)

    Das, Amiya; Ganguly, Asish

    2017-07-01

    The paper deals with Kadomtsev-Petviashvili (KP) equation in presence of a small dispersion effect. The nature of solutions are examined under the dispersion effect by using Lyapunov function and dynamical system theory. We prove that when dispersion is added to the KP equation, in certain regions, yet there exist bounded traveling wave solutions in the form of solitary waves, periodic and elliptic functions. The general solution of the equation with or without the dispersion effect are obtained in terms of Weirstrass ℘ functions and Jacobi elliptic functions. New form of kink-type solutions are established by exploring a new technique based on factorization method, use of functional transformation and the Abel's first order nonlinear equation. Furthermore, the stability analysis of the dispersive solutions are examined which shows that the traveling wave velocity is a bifurcation parameter which governs between different classes of waves. We use the phase plane analysis and show that at a critical velocity, the solution has a transcritical bifurcation.

  5. Modulation stability and optical soliton solutions of nonlinear Schrödinger equation with higher order dispersion and nonlinear terms and its applications

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad; Seadawy, Aly R.; Lu, Dianchen

    2017-12-01

    In optical fibers, the higher order non-linear Schrödinger equation (NLSE) with cubic quintic nonlinearity describes the propagation of extremely short pulses. We constructed bright and dark solitons, solitary wave and periodic solitary wave solutions of generalized higher order NLSE in cubic quintic non Kerr medium by applying proposed modified extended mapping method. These obtained solutions have key applications in physics and mathematics. Moreover, we have also presented the formation conditions on solitary wave parameters in which dark and bright solitons can exist for this media. We also gave graphically the movement of constructed solitary wave and soliton solutions, that helps to realize the physical phenomena's of this model. The stability of the model in normal dispersion and anomalous regime is discussed by using the modulation instability analysis, which confirms that all constructed solutions are exact and stable. Many other such types of models arising in applied sciences can also be solved by this reliable, powerful and effective method.

  6. Localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with time–space modulation

    NASA Astrophysics Data System (ADS)

    Yao, Yu-Qin; Han, Wei; Li, Ji; Liu, Wu-Ming

    2018-05-01

    Nonlinearity is one of the most remarkable characteristics of Bose–Einstein condensates (BECs). Much work has been done on one- and two-component BECs with time- or space-modulated nonlinearities, while there is little work on spinor BECs with space–time-modulated nonlinearities. In the present paper we investigate localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with nonlinearities dependent on time and space. We solve the three coupled Gross–Pitaevskii equations by similarity transformation and obtain two families of exact matter wave solutions in terms of Jacobi elliptic functions and the Mathieu equation. The localized states of the spinor matter wave describe the dynamics of vector breathing solitons, moving breathing solitons, quasi-breathing solitons and resonant solitons. The results show that one-order vector breathing solitons, quasi-breathing solitons, resonant solitons and the moving breathing solitons ψ ±1 are all stable, but the moving breathing soliton ψ 0 is unstable. We also present the experimental parameters to realize these phenomena in future experiments.

  7. Modulation stability analysis of exact multidimensional solutions to the generalized nonlinear Schrödinger equation and the Gross-Pitaevskii equation using a variational approach.

    PubMed

    Petrović, Nikola Z; Aleksić, Najdan B; Belić, Milivoj

    2015-04-20

    We analyze the modulation stability of spatiotemporal solitary and traveling wave solutions to the multidimensional nonlinear Schrödinger equation and the Gross-Pitaevskii equation with variable coefficients that were obtained using Jacobi elliptic functions. For all the solutions we obtain either unconditional stability, or a conditional stability that can be furnished through the use of dispersion management.

  8. Using phase locking for improving frequency stability and tunability of THz-band gyrotrons

    NASA Astrophysics Data System (ADS)

    Adilova, Asel B.; Gerasimova, Svetlana A.; Melnikova, Maria M.; Tyshkun, Alexandra V.; Rozhnev, Andrey G.; Ryskin, Nikita M.

    2018-04-01

    Medium-power (10-100 W) THz-band gyrotrons operating in a continuous-wave (CW) mode are of great importance for many applications such as NMR spectroscopy with dynamic nuclear polarization (DNP/NMR), plasma diagnostics, nondestructive inspection, stand-off detection of radioactive materials, biomedical applications, etc. For all these applications, high frequency stability and tunability within 1-2 GHz frequency range is typically required. Apart from different existing techniques for frequency stabilization, phase locking has recently attracted strong interest. In this paper, we present the results of theoretical analysis and numerical simulation for several phase locking techniques: (a) phase locking by injection of the external driving signal; (b) mutual phase locking of two coupled gyrotrons; and (c) selfinjection locking by a wave reflected from the remote load.

  9. Nonlinear stability of Halley comethosheath with transverse plasma motion

    NASA Technical Reports Server (NTRS)

    Srivastava, Krishna M.; Tsurutani, Bruce T.

    1994-01-01

    Weakly nonlinear Magneto Hydrodynamic (MHD) stability of the Halley cometosheath determined by the balance between the outward ion-neutral drag force and the inward Lorentz force is investigated including the transverse plasma motion as observed in the flanks with the help of the method of multiple scales. The eigenvalues and the eigenfunctions are obtained for the linear problem and the time evolution of the amplitude is obtained using the solvability condition for the solution of the second order problem. The diamagnetic cavity boundary and the adjacent layer of about 100 km thickness is found unstable for the travelling waves of certain wave numbers. Halley ionopause has been observed to have strong ripples with a wavelength of several hundred kilometers. It is found that nonlinear effects have stabilizing effect.

  10. Effects of control inputs on the estimation of stability and control parameters of a light airplane

    NASA Technical Reports Server (NTRS)

    Cannaday, R. L.; Suit, W. T.

    1977-01-01

    The maximum likelihood parameter estimation technique was used to determine the values of stability and control derivatives from flight test data for a low-wing, single-engine, light airplane. Several input forms were used during the tests to investigate the consistency of parameter estimates as it relates to inputs. These consistencies were compared by using the ensemble variance and estimated Cramer-Rao lower bound. In addition, the relationship between inputs and parameter correlations was investigated. Results from the stabilator inputs are inconclusive but the sequence of rudder input followed by aileron input or aileron followed by rudder gave more consistent estimates than did rudder or ailerons individually. Also, square-wave inputs appeared to provide slightly improved consistency in the parameter estimates when compared to sine-wave inputs.

  11. RF stabilization of plasma instabilities: a note on physical mechanism

    NASA Astrophysics Data System (ADS)

    Sen, S.; Martinell, J.; Imadera, K.; Kishimoto, Y.; Vahala, G.

    2018-02-01

    In a series of recent works, we have developed models including realistic spatial profiles of both flow and radio-frequency-induced ponderomotive force. With these inclusions, the picture of stability of various plasma and fluid instabilities is expected to be changed drastically with ground-breaking consequences. The inhomogeneous parallel flow and the radio-frequency waves can actually stabilize turbulence. This is different from the prevalent notion that both parallel flow shear and radio-frequency waves are responsible for the excitation (destabilization) of plasma turbulence. This model thus aims to open-up new channels and provide a major breakthrough in our knowledge of plasma and fluid turbulence and its consequent roles in energy, space and processing technology. In this short note, we elucidate the physical mechanism behind this novel observation.

  12. Watch-hand-like optical rogue waves in three-wave interactions.

    PubMed

    Chen, Shihua; Soto-Crespo, Jose M; Grelu, Philippe

    2015-01-12

    We investigate the resonant interaction of three optical pulses of different group velocity in quadratic media and report on the novel watch-hand-like super rogue wave patterns. In addition to having a giant wall-like hump, each rogue-wave hand involves a peak amplitude more than five times its background height. We attribute such peculiar structures to the nonlinear superposition of six Peregrine-type solitons. The robustness has been confirmed by numerical simulations. This stability along with the non-overlapping distribution property may facilitate the experimental diagnostics and observation of these super rogue waves.

  13. Stochastic Growth of Ion Cyclotron And Mirror Waves In Earth's Magnetosheath

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Grubits, K. A.

    2001-01-01

    Electromagnetic ion cyclotron and mirror waves in Earth's magnetosheath are bursty, have widely variable fields, and are unexpectedly persistent, properties difficult to reconcile with uniform secular growth. Here it is shown for specific periods that stochastic growth theory (SGT) quantitatively accounts for the functional form of the wave statistics and qualitatively explains the wave properties. The wave statistics are inconsistent with uniform secular growth or self-organized criticality, but nonlinear processes sometimes play a role at high fields. The results show SGT's relevance near marginal stability and suggest that it is widely relevant to space and astrophysical plasmas.

  14. Wave Interactions and Fluid Flows

    NASA Astrophysics Data System (ADS)

    Craik, Alex D. D.

    1988-07-01

    This up-to-date and comprehensive account of theory and experiment on wave-interaction phenomena covers fluids both at rest and in their shear flows. It includes, on the one hand, water waves, internal waves, and their evolution, interaction, and associated wave-driven means flow and, on the other hand, phenomena on nonlinear hydrodynamic stability, especially those leading to the onset of turbulence. This study provide a particularly valuable bridge between these two similar, yet different, classes of phenomena. It will be of value to oceanographers, meteorologists, and those working in fluid mechanics, atmospheric and planetary physics, plasma physics, aeronautics, and geophysical and astrophysical fluid dynamics.

  15. Spike-like solitary waves in incompressible boundary layers driven by a travelling wave.

    PubMed

    Feng, Peihua; Zhang, Jiazhong; Wang, Wei

    2016-06-01

    Nonlinear waves produced in an incompressible boundary layer driven by a travelling wave are investigated, with damping considered as well. As one of the typical nonlinear waves, the spike-like wave is governed by the driven-damped Benjamin-Ono equation. The wave field enters a completely irregular state beyond a critical time, increasing the amplitude of the driving wave continuously. On the other hand, the number of spikes of solitary waves increases through multiplication of the wave pattern. The wave energy grows in a sequence of sharp steps, and hysteresis loops are found in the system. The wave energy jumps to different levels with multiplication of the wave, which is described by winding number bifurcation of phase trajectories. Also, the phenomenon of multiplication and hysteresis steps is found when varying the speed of driving wave as well. Moreover, the nature of the change of wave pattern and its energy is the stability loss of the wave caused by saddle-node bifurcation.

  16. Married and Cohabiting Parents' Relationship Stability: A Focus on Race and Ethnicity

    ERIC Educational Resources Information Center

    Osborne, Cynthia; Manning, Wendy D.; Smock, Pamela J.

    2007-01-01

    We draw on three waves of the Fragile Families Study (N = 2,249) to examine family stability among a recent birth cohort of children. We find that children born to cohabiting versus married parents have over five times the risk of experiencing their parents' separation. This difference in union stability is greatest for White children, as compared…

  17. On the interaction of stationary crossflow vortices and Tollmien-Schlichting waves in the boundary layer on a rotating disc

    NASA Technical Reports Server (NTRS)

    Bassom, Andrew P.; Hall, Philip

    1989-01-01

    There are many fluid flows where the onset of transition can be caused by different instability mechanisms which compete among themselves. The interaction is considered of two types of instability mode (at an asymptotically large Reynolds number) which can occur in the flow above a rotating disc. In particular, the interaction is examined between lower branch Tollmien-Schlichting (TS) waves and the upper branch, stationary, inviscid crossflow vortex whose asymptotic structure has been described by Hall (1986). This problem is studied in the context of investigating the effect of the vortex on the stability characteristics of a small TS wave. Essentially, it is found that the primary effect is felt through the modification to the mean flow induced by the presence of the vortex. Initially, the TS wave is taken to be linear in character and it is shown (for the cases of both a linear and a nonlinear stationary vortex) that the vortex can exhibit both stabilizing and destabilizing effects on the TS wave and the nature of this influence is wholly dependent upon the orientation of this latter instability. Further, the problem is examined with a larger TS wave, whose size is chosen so as to ensure that this mode is nonlinear in its own right. An amplitude equation for the evolution of the TS wave is derived which admits solutions corresponding to finite amplitude, stable, traveling waves.

  18. Flow of a falling liquid curtain onto a moving substrate

    NASA Astrophysics Data System (ADS)

    Liu, Yekun; Itoh, Masahiro; Kyotoh, Harumichi

    2017-10-01

    In this study, we investigate a low-Weber-number flow of a liquid curtain bridged between two vertical edge guides and the upper surface of a moving substrate. Surface waves are observed on the liquid curtain, which are generated due to a large pressure difference between the inner and outer region of the meniscus on the substrate, and propagate upstream. They are categorized as varicose waves that propagate upstream on the curtain and become stationary because of the downstream flow. The Kistler’s equation, which governs the flow in thin liquid curtains, is solved under the downstream boundary conditions, and the numerical solutions are studied carefully. The solutions are categorized into three cases depending on the boundary conditions. The stability of the varicose waves is also discussed as wavelets were observed on these waves. The two types of modes staggered and peak-valley patterns are considered in the present study, and they depend on the Reynolds number, the Weber number, and the amplitude of the surface waves. The former is observed in our experiment, while the latter is predicted by our calculation. Both the types of modes can be derived using the equations with periodic coefficients that originated from the periodic base flow due to the varicose waves. The stability analysis of the waves shows that the appearance of the peak-valley pattern requires a significantly greater amplitude of the waves, and a significantly higher Weber number and Reynolds number compared to the condition in which the staggered pattern is observed.

  19. Synchrony, waves and ripple in spatially coupled Kuramoto oscillators with Mexican hat connectivity.

    PubMed

    Heitmann, Stewart; Ermentrout, G Bard

    2015-06-01

    Spatiotemporal waves of synchronized activity are known to arise in oscillatory neural networks with lateral inhibitory coupling. How such patterns respond to dynamic changes in coupling strength is largely unexplored. The present study uses analysis and simulation to investigate the evolution of wave patterns when the strength of lateral inhibition is varied dynamically. Neural synchronization was modeled by a spatial ring of Kuramoto oscillators with Mexican hat lateral coupling. Broad bands of coexisting stable wave solutions were observed at all levels of inhibition. The stability of these waves was formally analyzed in both the infinite ring and the finite ring. The broad range of multi-stability predicted hysteresis in transitions between neighboring wave solutions when inhibition is slowly varied. Numerical simulation confirmed the predicted transitions when inhibition was ramped down from a high initial value. However, non-wave solutions emerged from the uniform solution when inhibition was ramped upward from zero. These solutions correspond to spatially periodic deviations of phase that we call ripple states. Numerical continuation showed that stable ripple states emerge from synchrony via a supercritical pitchfork bifurcation. The normal form of this bifurcation was derived analytically, and its predictions compared against the numerical results. Ripple states were also found to bifurcate from wave solutions, but these were locally unstable. Simulation also confirmed the existence of hysteresis and ripple states in two spatial dimensions. Our findings show that spatial synchronization patterns can remain structurally stable despite substantial changes in network connectivity.

  20. An efficient shooting algorithm for Evans function calculations in large systems

    NASA Astrophysics Data System (ADS)

    Humpherys, Jeffrey; Zumbrun, Kevin

    2006-08-01

    In Evans function computations of the spectra of asymptotically constant-coefficient linear operators, a basic issue is the efficient and numerically stable computation of subspaces evolving according to the associated eigenvalue ODE. For small systems, a fast, shooting algorithm may be obtained by representing subspaces as single exterior products [J.C. Alexander, R. Sachs, Linear instability of solitary waves of a Boussinesq-type equation: A computer assisted computation, Nonlinear World 2 (4) (1995) 471-507; L.Q. Brin, Numerical testing of the stability of viscous shock waves, Ph.D. Thesis, Indiana University, Bloomington, 1998; L.Q. Brin, Numerical testing of the stability of viscous shock waves, Math. Comp. 70 (235) (2001) 1071-1088; L.Q. Brin, K. Zumbrun, Analytically varying eigenvectors and the stability of viscous shock waves, in: Seventh Workshop on Partial Differential Equations, Part I, 2001, Rio de Janeiro, Mat. Contemp. 22 (2002) 19-32; T.J. Bridges, G. Derks, G. Gottwald, Stability and instability of solitary waves of the fifth-order KdV equation: A numerical framework, Physica D 172 (1-4) (2002) 190-216]. For large systems, however, the dimension of the exterior-product space quickly becomes prohibitive, growing as (n/k), where n is the dimension of the system written as a first-order ODE and k (typically ˜n/2) is the dimension of the subspace. We resolve this difficulty by the introduction of a simple polar coordinate algorithm representing “pure” (monomial) products as scalar multiples of orthonormal bases, for which the angular equation is a numerically optimized version of the continuous orthogonalization method of Drury-Davey [A. Davey, An automatic orthonormalization method for solving stiff boundary value problems, J. Comput. Phys. 51 (2) (1983) 343-356; L.O. Drury, Numerical solution of Orr-Sommerfeld-type equations, J. Comput. Phys. 37 (1) (1980) 133-139] and the radial equation is evaluable by quadrature. Notably, the polar-coordinate method preserves the important property of analyticity with respect to parameters.

Top