SCTP as scalable video coding transport
NASA Astrophysics Data System (ADS)
Ortiz, Jordi; Graciá, Eduardo Martínez; Skarmeta, Antonio F.
2013-12-01
This study presents an evaluation of the Stream Transmission Control Protocol (SCTP) for the transport of the scalable video codec (SVC), proposed by MPEG as an extension to H.264/AVC. Both technologies fit together properly. On the one hand, SVC permits to split easily the bitstream into substreams carrying different video layers, each with different importance for the reconstruction of the complete video sequence at the receiver end. On the other hand, SCTP includes features, such as the multi-streaming and multi-homing capabilities, that permit to transport robustly and efficiently the SVC layers. Several transmission strategies supported on baseline SCTP and its concurrent multipath transfer (CMT) extension are compared with the classical solutions based on the Transmission Control Protocol (TCP) and the Realtime Transmission Protocol (RTP). Using ns-2 simulations, it is shown that CMT-SCTP outperforms TCP and RTP in error-prone networking environments. The comparison is established according to several performance measurements, including delay, throughput, packet loss, and peak signal-to-noise ratio of the received video.
A Seamless Ubiquitous Telehealthcare Tunnel
Cheng, Po-Hsun; Lin, Bor-Shing; Yu, Chu; Hu, Shun-Hsiang; Chen, Sao-Jie
2013-01-01
Mobile handheld devices are rapidly using to implement healthcare services around the World. Fundamentally, these services utilize telemedicine technologies. A disconnection of a mobile telemedicine system usually results in an interruption, which is embarrassing, and reconnection is necessary during the communication session. In this study, the Stream Control Transmission Protocol (SCTP) is adopted to build a stable session tunnel to guarantee seamless switching among heterogeneous wireless communication standards, such as Wi-Fi and 3G. This arrangement means that the telemedicine devices will not be limited by a fixed wireless connection and can switch to a better wireless channel if necessary. The tunnel can transmit plain text, binary data, and video streams. According to the evaluation of the proposed software-based SCTP-Tunnel middleware shown, the performance is lower than anticipated and is slightly slower than a fixed connection. However, the transmission throughput is still acceptable for healthcare professionals in a healthcare enterprise or home care site. It is necessary to build more heterogeneous wireless protocols into the proposed tunnel-switching scheme to support all possible communication protocols. In addition, SCTP is another good choice for promoting communication in telemedicine and healthcare fields. PMID:23917812
Optimizing the ASC WAN: evaluating network performance tools for comparing transport protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lydick, Christopher L.
2007-07-01
The Advanced Simulation & Computing Wide Area Network (ASC WAN), which is a high delay-bandwidth network connection between US Department of Energy National Laboratories, is constantly being examined and evaluated for efficiency. One of the current transport-layer protocols which is used, TCP, was developed for traffic demands which are different from that on the ASC WAN. The Stream Control Transport Protocol (SCTP), on the other hand, has shown characteristics which make it more appealing to networks such as these. Most important, before considering a replacement for TCP on any network, a testing tool that performs well against certain criteria needsmore » to be found. In order to try to find such a tool, two popular networking tools (Netperf v.2.4.3 & v.2.4.6 (OpenSS7 STREAMS), and Iperf v.2.0.6) were tested. These tools implement both TCP and SCTP and were evaluated using four metrics: (1) How effectively can the tool reach a throughput near the bandwidth? (2) How much of the CPU does the tool utilize during operation? (3) Is the tool freely and widely available? And, (4) Is the tool actively developed? Following the analysis of those tools, this paper goes further into explaining some recommendations and ideas for future work.« less
Consistent Steering System using SCTP for Bluetooth Scatternet Sensor Network
NASA Astrophysics Data System (ADS)
Dhaya, R.; Sadasivam, V.; Kanthavel, R.
2012-12-01
Wireless communication is the best way to convey information from source to destination with flexibility and mobility and Bluetooth is the wireless technology suitable for short distance. On the other hand a wireless sensor network (WSN) consists of spatially distributed autonomous sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants. Using Bluetooth piconet wireless technique in sensor nodes creates limitation in network depth and placement. The introduction of Scatternet solves the network restrictions with lack of reliability in data transmission. When the depth of the network increases, it results in more difficulties in routing. No authors so far focused on the reliability factors of Scatternet sensor network's routing. This paper illustrates the proposed system architecture and routing mechanism to increase the reliability. The another objective is to use reliable transport protocol that uses the multi-homing concept and supports multiple streams to prevent head-of-line blocking. The results show that the Scatternet sensor network has lower packet loss even in the congestive environment than the existing system suitable for all surveillance applications.
Rethinking Mobile Telephony with the IMP
2011-01-01
in the telephony industry, and portions of it such as SS7 or SCTP signaling are packet-switched, deployed mobile telephony access infrastructure is...deployment of wireless LAN technology raises the question of how a mobile telephony system might instead be architected to use wireless LAN access ...and wireless access points has made universal Internet access increasingly convenient. There are clearly barriers to this vision of accessing a
Distributed Multihoming Routing Method by Crossing Control MIPv6 with SCTP
NASA Astrophysics Data System (ADS)
Shi, Hongbo; Hamagami, Tomoki
There are various wireless communication technologies, such as 3G, WiFi, used widely in the world. Recently, not only the laptop but also the smart phones can be equipped with multiple wireless devices. The communication terminals which are implemented with multiple interfaces are usually called multi-homed nodes. Meanwhile, a multi-homed node with multiple interfaces can also be regarded as multiple single-homed nodes. For example, when a person who is using smart phone and laptop to connect to the Internet concurrently, we may regard the person as a multi-homed node in the Internet. This paper proposes a new routing method, Multi-homed Mobile Cross-layer Control to handle multi-homed mobile nodes. Our suggestion can provide a distributed end-to-end routing method for handling the communications among multi-homed nodes at the fundamental network layer.
End-to-End Concurrent Multipath Transfer Using Transport Layer Multihoming
2006-07-01
Department,Newark, DE ,19716 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S... Systems , Inc. My thanks to all for their generous funding that made this research possible. iv TABLE OF CONTENTS ABSTRACT...SCTP implementation, which is written for the BSD family of operating systems . This implementation effort was funded by Cisco Systems , with the goal of
A High Performance SOAP Engine for Grid Computing
NASA Astrophysics Data System (ADS)
Wang, Ning; Welzl, Michael; Zhang, Liang
Web Service technology still has many defects that make its usage for Grid computing problematic, most notably the low performance of the SOAP engine. In this paper, we develop a novel SOAP engine called SOAPExpress, which adopts two key techniques for improving processing performance: SCTP data transport and dynamic early binding based data mapping. Experimental results show a significant and consistent performance improvement of SOAPExpress over Apache Axis.
Song, Qinxin; Wei, Guijiang; Zhou, Guohua
2014-07-01
A portable bioluminescence analyser for detecting the DNA sequence of genetically modified organisms (GMOs) was developed by using a photodiode (PD) array. Pyrosequencing on eight genes (zSSIIb, Bt11 and Bt176 gene of genetically modified maize; Lectin, 35S-CTP4, CP4EPSPS, CaMV35S promoter and NOS terminator of the genetically modified Roundup ready soya) was successfully detected with this instrument. The corresponding limit of detection (LOD) was 0.01% with 35 PCR cycles. The maize and soya available from three different provenances in China were detected. The results indicate that pyrosequencing using the small size of the detector is a simple, inexpensive, and reliable way in a farm/field test of GMO analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Efficient SCT Protocol for Post Disaster Communication
NASA Astrophysics Data System (ADS)
Ramesh, T. K.; Giriraja, C. V.
2017-08-01
Natural and catastrophic disasters can cause damage to the communication system, the damage may be complete or it may be partial. In such areas communication and exchange of information plays a very important role and become difficult to happen in such situations. So, the rescue systems should be installed in those areas for the rescue operations and to take important decisions about how to make a connection from there to the outside world. Wireless communication network architecture should be setup in disaster areas for the communication to happen and to gather information. Wireless ad-hoc network architecture is proposed in this paper with access nodes. These access nodes acts as hotspot for certain area in which they are set up such that the Wi-Fi capable devices get connected to them for communication to happen. If the mobile battery is drained in such situations wireless charging using microwave is shown in this paper. Performance analysis of the communication transport layer protocols is shown and Efficient SCTP (ESTP) algorithm is developed which shows better results in terms of cumulative packet loss.
Hydrogeologic controls on summer stream temperatures in the McKenzie River basin, Oregon
Christina Tague; Michael Farrell; Gordon Grant; Sarah Lewis; Serge Rey
2007-01-01
Stream temperature is a complex function of energy inputs including solar radiation and latent and sensible heat transfer. In streams where groundwater inputs are significant, energy input through advection can also be an important control on stream temperature. For an individual stream reach, models of stream temperature can take advantage of direct measurement or...
A secure transmission scheme of streaming media based on the encrypted control message
NASA Astrophysics Data System (ADS)
Li, Bing; Jin, Zhigang; Shu, Yantai; Yu, Li
2007-09-01
As the use of streaming media applications increased dramatically in recent years, streaming media security becomes an important presumption, protecting the privacy. This paper proposes a new encryption scheme in view of characteristics of streaming media and the disadvantage of the living method: encrypt the control message in the streaming media with the high security lever and permute and confuse the data which is non control message according to the corresponding control message. Here the so-called control message refers to the key data of the streaming media, including the streaming media header and the header of the video frame, and the seed key. We encrypt the control message using the public key encryption algorithm which can provide high security lever, such as RSA. At the same time we make use of the seed key to generate key stream, from which the permutation list P responding to GOP (group of picture) is derived. The plain text of the non-control message XORs the key stream and gets the middle cipher text. And then obtained one is permutated according to P. In contrast the decryption process is the inverse process of the above. We have set up a testbed for the above scheme and found our scheme is six to eight times faster than the conventional method. It can be applied not only between PCs but also between handheld devices.
NASA Astrophysics Data System (ADS)
Erez, Mattan; Dally, William J.
Stream processors, like other multi core architectures partition their functional units and storage into multiple processing elements. In contrast to typical architectures, which contain symmetric general-purpose cores and a cache hierarchy, stream processors have a significantly leaner design. Stream processors are specifically designed for the stream execution model, in which applications have large amounts of explicit parallel computation, structured and predictable control, and memory accesses that can be performed at a coarse granularity. Applications in the streaming model are expressed in a gather-compute-scatter form, yielding programs with explicit control over transferring data to and from on-chip memory. Relying on these characteristics, which are common to many media processing and scientific computing applications, stream architectures redefine the boundary between software and hardware responsibilities with software bearing much of the complexity required to manage concurrency, locality, and latency tolerance. Thus, stream processors have minimal control consisting of fetching medium- and coarse-grained instructions and executing them directly on the many ALUs. Moreover, the on-chip storage hierarchy of stream processors is under explicit software control, as is all communication, eliminating the need for complex reactive hardware mechanisms.
McKnight, Diane M.; Bencala, Kenneth E.
1990-01-01
Several studies were conducted in three acidic, metal-enriched, mountain streams, and the results are discussed together in this paper to provide a synthesis of watershed and in-stream processes controlling Fe, Al, and DOC (dissolved organic carbon) concentrations. One of the streams, the Snake River, is naturally acidic; the other two, Peru Creek and St. Kevin Gulch, receive acid mine drainage. Analysis of stream water chemistry data for the acidic headwaters of the Snake River shows that some trace metal solutes (Al, Mn, Zn) are correlated with major ions, indicating that watershed processes control their concentrations. Once in the stream, biogeochemical processes can control transport if they occur over time scales comparable to those for hydrologic transport. Examples of the following in-stream reactions are presented: (1) photoreduction and dissolution of hydrous iron oxides in response to an experimental decrease in stream pH, (2) precipitation of Al at three stream confluences, and (3) sorption of dissolved organic material by hydrous iron and aluminum oxides in a stream confluence. The extent of these reactions is evaluated using conservative tracers and a transport model that includes storage in the substream zone.
Kinesthetic working memory and action control within the dorsal stream.
Fiehler, Katja; Burke, Michael; Engel, Annerose; Bien, Siegfried; Rösler, Frank
2008-02-01
There is wide agreement that the "dorsal (action) stream" processes visual information for movement control. However, movements depend not only on vision but also on tactile and kinesthetic information (=haptics). Using functional magnetic resonance imaging, the present study investigates to what extent networks within the dorsal stream are also utilized for kinesthetic action control and whether they are also involved in kinesthetic working memory. Fourteen blindfolded participants performed a delayed-recognition task in which right-handed movements had to be encoded, maintained, and later recognized without any visual feedback. Encoding of hand movements activated somatosensory areas, superior parietal lobe (dorsodorsal stream), anterior intraparietal sulcus (aIPS) and adjoining areas (ventrodorsal stream), premotor cortex, and occipitotemporal cortex (ventral stream). Short-term maintenance of kinesthetic information elicited load-dependent activity in the aIPS and adjacent anterior portion of the superior parietal lobe (ventrodorsal stream) of the left hemisphere. We propose that the action representation system of the dorsodorsal and ventrodorsal stream is utilized not only for visual but also for kinesthetic action control. Moreover, the present findings demonstrate that networks within the ventrodorsal stream, in particular the left aIPS and closely adjacent areas, are also engaged in working memory maintenance of kinesthetic information.
Biophysical Controls on Carbon Cycling in Restored and Unrestored Urban Streams
NASA Astrophysics Data System (ADS)
Larsen, L. G.; Harvey, J. W.; Singh, J. D.; Sinclair, G. A.; Langston, T.; Maglio, M. M.
2012-12-01
Stream restoration is a multibillion dollar industry, yet how restoration impacts the ecological functioning of streams remains poorly understood. Because stream restoration may alter numerous biophysical controls, including light availability (through tree removal during bank regrading), hydraulics, sediment characteristics, and/or nutrient concentrations, it can be challenging to achieve a general understanding of how different aspects of stream restoration design influence ecosystem function (e.g., carbon cycling). In this study we combined strategies of continuously monitoring hydrology, turbidity, and dissolved oxygen at a station with spatially distributed but temporally sparse synoptic sampling to understand how restoration and land-use impact carbon fixation and respiration in urban streams. The study was performed over three years in three adjacent 3rd-4th order stream reaches in the urban Chesapeake Bay watershed, one of which was restored in 2002 using the ubiquitous Natural Channel Design method. By parsing the dissolved oxygen time series into contributions from respiration and gross primary production, we found the unrestored urban reach to be the most heterotrophic. It removed two times more carbon from the stream to the atmosphere than an unrestored suburban stream that was nutrient impacted and five times more carbon than the restored urban stream. The synoptic sampling revealed that nutrients, light, and hydrodynamic disturbance were the primary controls on carbon fixation and respiration, with fine sediment also exhibiting importance, likely as a vehicle for nutrient transport. Low rates of net carbon removal in the restored stream arose from high light availability resulting in high primary production, combined with low fine sediment availability restricting respiration. Thus, while restoration may have been effective for stream stabilization, it has decreased the functionality of the stream for net carbon removal to the atmosphere. Surprisingly, streambed potential respiration rates were indistinguishable between different geomorphic zones within the streams, suggesting that large-scale factors (i.e., nutrient and fine sediment supply) were more dominant controls than geomorphically controlled local variability.
NASA Astrophysics Data System (ADS)
Ward, Adam S.; Schmadel, Noah M.; Wondzell, Steven M.; Harman, Ciaran; Gooseff, Michael N.; Singha, Kamini
2016-02-01
Solute transport along riparian and hyporheic flow paths is broadly expected to respond to dynamic hydrologic forcing by streams, aquifers, and hillslopes. However, direct observation of these dynamic responses is lacking, as is the relative control of geologic setting as a control on responses to dynamic hydrologic forcing. We conducted a series of four stream solute tracer injections through base flow recession in each of two watersheds with contrasting valley morphology in the H.J. Andrews Experimental Forest, monitoring tracer concentrations in the stream and in a network of shallow riparian wells in each watershed. We found hyporheic mean arrival time, temporal variance, and fraction of stream water in the bedrock-constrained valley bottom and near large roughness elements in the wider valley bottom were not variable with discharge, suggesting minimal control by hydrologic forcing. Conversely, we observed increases in mean arrival time and temporal variance and decreasing fraction stream water with decreasing discharge near the hillslopes in the wider valley bottom. This may indicate changes in stream discharge and valley bottom hydrology control transport in less constrained locations. We detail five hydrogeomorphic responses to base flow recession to explain observed spatial and temporal patterns in the interactions between streams and their valley bottoms. Models able to account for the transition from geologically dominated processes in the near-stream subsurface to hydrologically dominated processes near the hillslope will be required to predict solute transport and fate in valley bottoms of headwater mountain streams.
Interactions between dorsal and ventral streams for controlling skilled grasp
van Polanen, Vonne; Davare, Marco
2015-01-01
The two visual systems hypothesis suggests processing of visual information into two distinct routes in the brain: a dorsal stream for the control of actions and a ventral stream for the identification of objects. Recently, increasing evidence has shown that the dorsal and ventral streams are not strictly independent, but do interact with each other. In this paper, we argue that the interactions between dorsal and ventral streams are important for controlling complex object-oriented hand movements, especially skilled grasp. Anatomical studies have reported the existence of direct connections between dorsal and ventral stream areas. These physiological interconnections appear to be gradually more active as the precision demands of the grasp become higher. It is hypothesised that the dorsal stream needs to retrieve detailed information about object identity, stored in ventral stream areas, when the object properties require complex fine-tuning of the grasp. In turn, the ventral stream might receive up to date grasp-related information from dorsal stream areas to refine the object internal representation. Future research will provide direct evidence for which specific areas of the two streams interact, the timing of their interactions and in which behavioural context they occur. PMID:26169317
Speechley, W J; Murray, C B; McKay, R M; Munz, M T; Ngan, E T C
2010-03-01
Dual-stream information processing proposes that reasoning is composed of two interacting processes: a fast, intuitive system (Stream 1) and a slower, more logical process (Stream 2). In non-patient controls, divergence of these streams may result in the experience of conflict, modulating decision-making towards Stream 2, and initiating a more thorough examination of the available evidence. In delusional schizophrenia patients, a failure of conflict to modulate decision-making towards Stream 2 may reduce the influence of contradictory evidence, resulting in a failure to correct erroneous beliefs. Delusional schizophrenia patients and non-patient controls completed a deductive reasoning task requiring logical validity judgments of two-part conditional statements. Half of the statements were characterized by a conflict between logical validity (Stream 2) and content believability (Stream 1). Patients were significantly worse than controls in determining the logical validity of both conflict and non-conflict conditional statements. This between groups difference was significantly greater for the conflict condition. The results are consistent with the hypothesis that delusional schizophrenia patients fail to use conflict to modulate towards Stream 2 when the two streams of reasoning arrive at incompatible judgments. This finding provides encouraging preliminary support for the Dual-Stream Modulation Failure model of delusion formation and maintenance. 2009 Elsevier Masson SAS. All rights reserved.
Forestry best management practices and sediment control at skidder stream crossings
Laura R. Wear; W. Michael Aust; M. Chad Bolding; Brian D. Strahm; Andrew C. Dolloff
2015-01-01
Stream crossings for skid trails have high sediment delivery ratios. Forestry Best Management Practices (BMPs) have proven to be effective for erosion control, but few studies have quantified the impact of various levels of BMPs on sedimentation. In this study, three skid-trail stream-crossing BMP treatments were installed on nine operational stream crossings (three...
Seasonal and event-scale controls on dissolved organic carbon and nitrate flushing from catchments
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.
2005-05-01
To explore terrestrial and aquatic linkages controlling nutrient dynamics in forested catchments, we collected high-frequency samples from 2002 to 2004 at the Sleepers River Research Watershed in northeastern Vermont USA. We measured DOC (dissolved organic carbon), SUVA (specific UV absorbance), nitrate, and major ion concentrations over a wide range of flow conditions. In addition, weekly samples since 1991 provide a longer term record of stream nutrient fluxes. During events, DOC concentrations increased with flow consistent with the flushing of a large reservoir of mobile organic carbon from forest soils. Higher concentrations of DOC and SUVA in the growing versus dormant season illustrated seasonal variation in sources, characteristics (i.e. reactivity), availability, and controls on the flushing response of organic matter from the landscape to streams. In contrast, stream nitrate concentrations increased with flow but only when catchments "wetted-up" after baseflow periods. Growing season stream nitrate responses were dependent on short-term antecedent moisture conditions indicating rapid depletion of the soil nitrate reservoir when source areas became hydrologically connected to streams. While the different response patterns emphasized variable source and biogeochemical controls in relation to flow patterns, coupled carbon and nitrogen biogeochemical processes were also important controls on stream nutrient fluxes. In particular, leaf fall was a critical time when reactive DOC from freshly decomposing litter fueled in-stream consumption of nitrate leading to sharp declines of stream nitrate concentrations. Our measurements highlight the importance of "hot spots" and "hot moments" of biogeochemical and hydrological processes that control stream responses. Furthermore, our work illustrates how carbon, nitrogen, and water cycles are coupled in catchments, and provides a conceptual model for future work aimed at modeling forest stream hydrochemistry at the catchment scale.
Code of Federal Regulations, 2012 CFR
2012-07-01
... each treatment process. (b) Control options: Group 1 wastewater streams for Table 9 compounds. The... section. (c) Control options: Group 1 wastewater streams for Table 8 compounds. The owner or operator...) Residuals. For each residual removed from a Group 1 wastewater stream, the owner or operator shall control...
Code of Federal Regulations, 2013 CFR
2013-07-01
... each treatment process. (b) Control options: Group 1 wastewater streams for Table 9 compounds. The... section. (c) Control options: Group 1 wastewater streams for Table 8 compounds. The owner or operator...) Residuals. For each residual removed from a Group 1 wastewater stream, the owner or operator shall control...
Code of Federal Regulations, 2011 CFR
2011-07-01
... each treatment process. (b) Control options: Group 1 wastewater streams for Table 9 compounds. The... section. (c) Control options: Group 1 wastewater streams for Table 8 compounds. The owner or operator...) Residuals. For each residual removed from a Group 1 wastewater stream, the owner or operator shall control...
Code of Federal Regulations, 2012 CFR
2012-07-01
... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...
Code of Federal Regulations, 2013 CFR
2013-07-01
... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...
Code of Federal Regulations, 2011 CFR
2011-07-01
... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...
Code of Federal Regulations, 2012 CFR
2012-07-01
... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...
Code of Federal Regulations, 2014 CFR
2014-07-01
... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...
Code of Federal Regulations, 2014 CFR
2014-07-01
... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...
Code of Federal Regulations, 2013 CFR
2013-07-01
... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...
Code of Federal Regulations, 2011 CFR
2011-07-01
... inlet stream and, if applicable, the desorption schedule, the regeneration stream pressure or temperature, and the flow rate of the regeneration stream. For vacuum desorption, pressure drop shall be...
Effect of Free Stream Turbulence on the Performance of a Marine Hydrokinetic Turbine
NASA Astrophysics Data System (ADS)
Vinod, Ashwin; Banerjee, Arindam
2015-11-01
The effects of controlled and elevated levels of free stream turbulence on the performance characteristics of a three bladed, constant chord, untwisted marine hydrokinetic turbine is tested experimentally. Controlled homogeneous free stream turbulence levels ranging from 3% to ~20% are achieved by employing an active grid turbulence generator that is placed at the entrance of the water channel test section and is equipped with motor controlled winglet shafts. In addition to free stream turbulence, various (turbine) operating conditions such as the free stream velocity and rotational speed are varied. A comparison of performance characteristics that includes the mean and standard deviations of the power coefficient (CP) , and thrust coefficient (CT) will be presented and compared to the case of a laminar free stream with FST levels <1%.
NASA Technical Reports Server (NTRS)
Sauer, Richard L. (Inventor); Akse, James R. (Inventor); Thompson, John O. (Inventor); Atwater, James E. (Inventor)
1999-01-01
Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia.
NASA Astrophysics Data System (ADS)
Donahoe, R. J.; Hawkins, P. D.
2017-12-01
The Lake Harris watershed was the site of legacy surface mining of coal conducted from approximately 1969 to 1976. The mine site was abandoned and finally reclaimed in 1986. Water quality in the stream draining the mined area is still severely impacted by acid mine drainage (AMD), despite the reclamation effort. Lake Harris is used as a source of industrial water, but shows no negative water quality effects from the legacy mining activities despite receiving drainage from the AMD-impacted stream. Water samples were collected monthly between October 2016 and September 2017 from a first-order stream impacted by acid mine drainage (AMD), a nearby first-order control stream, and Lake Harris. Stream water chemistry was observed to vary both spatially and seasonally, as monitored at five sample stations in each stream over the study period. Comparison of the two streams shows the expected elevated concentrations of AMD-indicator solutes (sulfate and iron), as well as significant increases in conductivity and acidity for the stream draining the reclaimed mine site. In addition, dramatic (1-2 orders of magnitude) increases in major element (Al, Ca, Mg, K), minor element (Mn, Sr) and trace element (Co, Ni) concentrations are also observed for the AMD-impacted stream compared to the control stream. The AMD-impacted stream also shows elevated (2-4 times) levels of other stream water solutes (Cl, Na, Si, Zn), compared to the control stream. As the result of continuing AMD input, the stream draining the reclaimed mine site is essentially sterile, in contrast to the lake and control stream, which support robust aquatic ecosystems. A quantitative model, constrained by isotopic data (δD and δ18O), will be presented that seeks to explain the observed temporal differences in water quality for the AMD-impacted stream as a function of variable meteoric water, groundwater, and AMD inputs. Similar models may be developed for other AMD-impacted streams to better understand and predict temporal variations in water quality parameters and their effect on aquatic ecosystems.
In large regions, human land uses typically overlay wide ranges of natural geomorphic factors that control stream habitat characteristics and benthic macroinvertebrate assemblages. Many macroinvertebrate measures of stream "health" show strong association with substrate size, a ...
Recuperated atmospheric SOFC/gas turbine hybrid cycle
Lundberg, Wayne
2010-05-04
A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).
Recuperated atmosphere SOFC/gas turbine hybrid cycle
Lundberg, Wayne
2010-08-24
A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).
A.S. Ward; M. Fitzgerald; M.N. Gooseff; A.M. Binley; K. Singha
2012-01-01
Hyporheic hydrodynamics are a control on stream ecosystems, yet we lack a thorough understanding of catchment controls on these flow paths, including valley constraint and hydraulic gradients in the valley bottom. We performed four whole-stream solute tracer injections under steady state flow conditions at the H. J. Andrews Experimental Forest (Oregon, United States)...
Controls on streamflow intermittence in the Colorado Front Range
NASA Astrophysics Data System (ADS)
Kampf, S. K.; Puntenney, K.; Martin, C.; Weber, R.; Gerlich, J.; Hammond, J. C.; Lefsky, M. A.
2017-12-01
Intermittent streams comprise more than 60% of the channel length in semiarid northern Colorado, yet little is known about their flow magnitude and timing. We used field surveys, stream sensors, and remote sensing to quantify spatial and temporal patterns of streamflow intermittence in the Cache la Poudre basin in 2016-2017. To evaluate potential controls on streamflow intermittence, we delineated the drainage area to each monitored point and quantified the catchment's mean precipitation, temperature, snow persistence, slope, aspect, vegetation type, soil type, and bedrock geology. During the period of study, most streams below 2500 m elevation and <550 mm mean annual precipitation were intermittent, with flow only during the early spring and summer. In these drier low elevation areas, flow duration generally increased with precipitation and snow persistence. Locally, the type of bedrock geology and location of streams relative to faults affected flow duration. Above 2500 m, nearly all streams with drainage areas >1 km2 had perennial flow, whereas nearly all streams with drainage areas <1 km2 had intermittent flow. For the high elevation intermittent streams, stream locations often differed substantially from the locations mapped in standard GIS data products. Initial analyses have identified no clearly quantifiable controls on flow duration of high elevation streams, but field observations indicate subsurface flow paths are important contributors to surface streams.
Methanol tailgas combustor control method
Hart-Predmore, David J.; Pettit, William H.
2002-01-01
A method for controlling the power and temperature and fuel source of a combustor in a fuel cell apparatus to supply heat to a fuel processor where the combustor has dual fuel inlet streams including a first fuel stream, and a second fuel stream of anode effluent from the fuel cell and reformate from the fuel processor. In all operating modes, an enthalpy balance is determined by regulating the amount of the first and/or second fuel streams and the quantity of the first air flow stream to support fuel processor power requirements.
NASA Astrophysics Data System (ADS)
Abdul-Aziz, O. I.; Ahmed, S.
2017-12-01
Dissolved oxygen (DO) is a key indicator of stream water quality and ecosystem health. However, the temporal dynamics of stream DO is controlled by a multitude of interacting environmental drivers. The relative linkages of stream DO with the relevant environmental drivers were determined in this study across the U.S. East Coast by employing a systematic data analytics approach. The study analyzed temporal data for 51 water quality monitoring stations from USGS NWIS and EPA STORET databases. Principal component analysis and factor analysis, along with Pearson's correlation analysis, were applied to identify the interrelationships and unravel latent patterns among DO and the environmental drivers. Power law based partial least squares regression models with a bootstarp Monte-Carlo procedure (1000 iterations) were developed to reliably estimate the environmental linkages of DO by resolving multicollinearity. Based on the similarity of dominant drivers, the streams were categorized into three distinct environmental regimes. Stream DO in the northern part of temperate zone (e.g., northeast coast) had the strongest linkage with water temperature; suggesting an environmental regime with dominant climatic control. However, stream DO in the tropical zones (e.g., southeast Florida) was mostly driven by pH; indicating an environmental regime likely controlled by redox chemistry. Further, a transitional regime was found between the temperate and tropical zones, where stream DO was controlled by both water temperature and pH. The results suggested a strong effect of the climatic gradient (temperate to tropical) on stream DO along the East Coast. The identified environmental regimes and the regime-specific relative linkages provided new information on the dominant controls of coastal stream water quality dynamics. The findings would guide the planning and management of coastal stream water quality and ecosystem health across the U.S. East Coast and around the world.
Sheth, Bhavin R; Young, Ryan
2016-01-01
Evidence is strong that the visual pathway is segregated into two distinct streams-ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/ focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal.
EMAP SEDIMENTATION INDEX: LAND USE AND NATURAL HYDRAULIC CONTROLS ON STREAM SEDIMENTATION
Excessive erosion, transport and deposition of sediment in streams and rivers is a major problem in surface waters throughout the United States. It is important to have a reliable measure of stream sedimentation that properly accounts for natural controls on the amount of fine p...
While watershed and local scale controls on stream metabolism have been independently investigated, little is known about how controls exerted at these different scales interact to determine stream metabolic rates, or how these interactions vary across seasons. To address this ...
NASA Astrophysics Data System (ADS)
McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam
2015-08-01
While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.
Continuous magnetic separator and process
Oder, Robin R.; Jamison, Russell E.
2008-04-22
A continuous magnetic separator and process for separating a slurry comprising magnetic particles into a clarified stream and a thickened stream. The separator has a container with a slurry inlet, an overflow outlet for the discharge of the clarified slurry stream, and an underflow outlet for the discharge of a thickened slurry stream. Magnetic particles in the slurry are attracted to, and slide down, magnetic rods within the container. The slurry is thus separated into magnetic concentrate and clarified slurry. Flow control means can be used to control the ratio of the rate of magnetic concentrate to the rate of clarified slurry. Feed control means can be used to control the rate of slurry feed to the slurry inlet.
Controls on stream network branching angles, tested using landscape evolution models
NASA Astrophysics Data System (ADS)
Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.
2016-04-01
Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349(6243), 51-53.
Emergence of kinetic behavior in streaming ultracold neutral plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
McQuillen, P.; Castro, J.; Bradshaw, S. J.
2015-04-15
We create streaming ultracold neutral plasmas by tailoring the photoionizing laser beam that creates the plasma. By varying the electron temperature, we control the relative velocity of the streaming populations, and, in conjunction with variation of the plasma density, this controls the ion collisionality of the colliding streams. Laser-induced fluorescence is used to map the spatially resolved density and velocity distribution function for the ions. We identify the lack of local thermal equilibrium and distinct populations of interpenetrating, counter-streaming ions as signatures of kinetic behavior. Experimental data are compared with results from a one-dimensional, two-fluid numerical simulation.
Controls of streamwater dissolved inorganic carbon dynamics in a forested watershed
Finlay, J.C.
2003-01-01
I investigated controls of stream dissolved inorganic carbon (DIC) sources and cycling along a stream size and productivity gradient in a temperate forested watershed in northern California. Dissolved CO2 (CO2 (aq)) dynamics in heavily shaded streams contrasted strongly with those of larger, open canopied sites. In streams with canopy cover > 97%, CO2 (aq) was highest during baseflow periods (up to 540 ??M) and was negatively related to discharge. Effects of algal photosynthesis on CO2 (aq) were minimal and stream CO2 (aq) was primarily controlled by groundwater CO2 (aq) inputs and degassing losses to the atmosphere. In contrast to the small streams. CO2 (aq) in larger, open-canopied streams was often below atmospheric levels at midday during baseflow and was positively related to discharge. Here, stream CO2 (aq) was strongly influenced by the balance between autotrophic and heterotrophic processes. Dynamics of HCO3- were less complex. HCO3- and Ca2+ were positively correlated, negatively related to discharge, and showed no pattern with stream size. Stable carbon isotope ratios of DIC (i.e. ??13C DIC) increased with stream size and discharge, indicating contrasting sources of DIC to streams and rivers. During summer baseflows, ??13C DIC were 13C-depleted in the smallest streams (minimum of -17.7???) due to the influence of CO2 (aq) derived from microbial respiration and HCO3- derived from carbonate weathering. ??13C DIC were higher (up to -6.6???) in the larger streams and rivers due to invasion of atmospheric CO2 enhanced by algal CO2 (aq) uptake. While small streams were influenced by groundwater inputs, patterns in CO2 (aq) and evidence from stable isotopes demonstrate the strong influence of stream metabolism and CO2 exchange with the atmosphere on stream and river carbon cycles.
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Pellerin, B.; Saraceno, J.; Aiken, G. R.; Boyer, E. W.; Doctor, D. H.; Kendall, C.
2009-05-01
There is a need to understand the coupled biogeochemical and hydrological processes that control stream hydrochemistry in upland forested catchments. At watershed 9 (W-9) of the Sleepers River Research Watershed in the northeastern USA, we use high-frequency sampling, environmental tracers, end-member mixing analysis, and stream reach mass balances to understand dynamic factors affect forms and concentrations of nitrogen and organic matter in streamflow. We found that rates of stream nitrate processing changed during autumn baseflow and that up to 70% of nitrate inputs to a stream reach were retained. At the same time, the stream reach was a net source of the dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) fractions of dissolved organic matter (DOM). The in-stream nitrate loss and DOM gains are examples of hot moments of biogeochemical transformations during autumn when deciduous litter fall increases DOM availability. As hydrological flowpaths changed during rainfall events, the sources and transformations of nitrate and DOM differed from baseflow. For example, during storm flow we measured direct inputs of unprocessed atmospheric nitrate to streams that were as large as 30% of the stream nitrate loading. At the same time, stream DOM composition shifted to reflect inputs of reactive organic matter from surficial upland soils. The transport of atmospheric nitrate and reactive DOM to streams underscores the importance of quantifying source variation during short-duration stormflow events. Building upon these findings we present a conceptual model of interacting ecosystem processes that control the flow of water and nutrients to streams in a temperate upland catchment.
Sheth, Bhavin R.; Young, Ryan
2016-01-01
Evidence is strong that the visual pathway is segregated into two distinct streams—ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal. PMID:27920670
Size Control of Sessile Microbubbles for Reproducibly Driven Acoustic Streaming
NASA Astrophysics Data System (ADS)
Volk, Andreas; Kähler, Christian J.
2018-05-01
Acoustically actuated bubbles are receiving growing interest in microfluidic applications, as they induce a streaming field that can be used for particle sorting and fluid mixing. An essential but often unspoken challenge in such applications is to maintain a constant bubble size to achieve reproducible conditions. We present an automatized system for the size control of a cylindrical bubble that is formed at a blind side pit of a polydimethylsiloxane microchannel. Using a pressure control system, we adapt the protrusion depth of the bubble into the microchannel to a precision of approximately 0.5 μ m on a timescale of seconds. By comparing the streaming field generated by bubbles of width 80 μ m with a protrusion depth between -12 and 60 μ m , we find that the mean velocity of the induced streaming fields varies by more than a factor of 4. We also find a qualitative change of the topology of the streaming field. Both observations confirm the importance of the bubble size control system in order to achieve reproducible and reliable bubble-driven streaming experiments.
Soil Microbial Community Contribution to Small Headwater Stream Metabolism.
NASA Astrophysics Data System (ADS)
Clapcott, J. E.; Gooderham, J. P.; Barmuta, L. A.; Davies, P. E.
2005-05-01
The temporal dynamics of sediment respiration were examined in seven small headwater streams in forested catchments in 2004. A strong seasonal response was observed with higher respiration rates in depositional zones than in gravel runs. The data were also examined in the context of proportional habitat distributions that highlighted the importance of high flow events in shaping whole stream metabolic budgets. This study specifically examines the question of terrestrial soil respiration contribution to whole stream metabolism by the controlled inundation of terrestrial soils. The experiment included six experimentally inundated terrestrial zones, six terrestrial controls, and six in-stream depositional zones. Sediment bacterial respiration was measured using 14C leucine incorporation and cotton strip bioassays were also employed to provide an indicative measure of sediment microbial activity. Despite high variability and exhibiting significantly lower bacterial activity than in-stream sediments, modelling using flow data and habitat mapping illustrated the important contribution of terrestrial soil respiration to the whole stream metabolic budgets of small headwater streams. In addition, microbial community composition examined using phospholipid fatty acid analysis clearly differentiated between terrestrial and aquatic communities. Freshly inundated terrestrial communities remained similar to un-inundated controls after 28 days.
Lerch, R.N.; Blanchard, P.E.; Thurman, E.M.
1998-01-01
The contribution of hydroxylated atrazine degradation products (HADPs) to the total atrazine load (i.e., atrazine plus stable metabolites)in streams needs to be determined in order to fully assess the impact of atrazine contamination on stream ecosystems and human health. The objectives of this study were (1) to determine the contribution of HADPs to the total atrazine load in streams of nine midwestern states and (2) to discuss the mechanisms controlling the concentrations of HADPs in streams. Stream samples were collected from 95 streams in northern Missouri at preplant and postplant of 1994 and 1995, and an additional 46 streams were sampled in eight midwestern states at postplant of 1995. Samples were analyzed for atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and three HADPs. Overall, HADP prevalence (i.e., frequency of detection) ranged from 87 to 100% for hydroxyatrazine (HA), 0 to 58% for deethylhydroxyatrazine (DEHA), and 0% for deisopropylhydroxyatrazine (DIHA) with method detection limits of 0.04-0.10 ??g L-1. Atrazine metabolites accounted for nearly 60% of the atrazine load in northern Missouri streams at preplant, with HA the predominant metabolite present. Data presented in this study and a continuous monitoring study are used to support the hypothesis that a combination of desorption from stream sediments and dissolved-phase transport control HADP concentrations in streams.The contribution of hydroxylated atrazine degradation products (HADPs) to the total atrazine load (i.e., atrazine plus stable metabolites) in streams needs to be determined in order to fully assess the impact of atrazine contamination on stream ecosystems and human health. The objectives of this study were (1) to determine the contribution of HADPs to the total atrazine load in streams of nine midwestern states and (2) to discuss the mechanisms controlling the concentrations of HADPs in streams. Stream samples were collected from 95 streams in northern Missouri at preplant and postplant of 1994 and 1995, and an additional 46 streams were sampled in eight midwestern states at postplant of 1995. Samples were analyzed for atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and three HADPs. Overall, HADP prevalence (i.e., frequency of detection) ranged from 87 to 100% for hydroxyatrazine (HA), 0 to 58% for deethylhydroxyatrazine (DEHA), and 0% for deisopropylhydroxyatrazine (DIHA) with method detection limits of 0.04-0.10 ??g L-1. Atrazine metabolites accounted for nearly 60% of the atrazine load in northern Missouri streams at preplant, with HA the predominant metabolite present. Data presented in this study and a continuous monitoring study are used to support the hypothesis that a combination of desorption from stream sediments and dissolved-phase transport control HADP concentrations in streams.
Brian J. Palik; Stephen W. Golladay; P. Charles Goebel; Brad W. Taylor
1998-01-01
Large floods are an important process controlling the structure and function of stream ecosystems. One of the ways floods affect streams is through the recruitment of coarse woody debris from stream-side forests. Stream valley geomorphology may mediate this interaction by altering flood velocity, depth, and duration. Little research has examined how floods and...
Endogenous and exogenous control of ecosystem function: N cycling in headwater streams.
Valett, H M; Thomas, S A; Mulholland, P J; Webster, J R; Dahm, C N; Fellows, C S; Crenshaw, C L; Peterson, C G
2008-12-01
Allochthonous inputs act as resource subsidies to many ecosystems, where they exert strong influences on metabolism and material cycling. At the same time, metabolic theory proposes endogenous thermal control independent of resource supply. To address the relative importance of exogenous and endogenous influences, we quantified spatial and temporal variation in ecosystem metabolism and nitrogen (N) uptake using seasonal releases of 15N as nitrate in six streams differing in riparian-stream interaction and metabolic character. Nitrate removal was quantified using a nutrient spiraling approach based on measurements of downstream decline in 15N flux. Respiration (R) and gross primary production (GPP) were measured with whole-stream diel oxygen budgets. Uptake and metabolism metrics were addressed as z scores relative to site means to assess temporal variation. In open-canopied streams, areal uptake (U; microg N x m(-2) x s(-1)) was closely related to GPP, metabolic rates increased with temperature, and R was accurately predicted by metabolic scaling relationships. In forested streams, N spiraling was not related to GPP; instead, uptake velocity (v(f); mm/s) was closely related to R. In contrast to open-canopied streams, N uptake and metabolic activity were negatively correlated to temperature and poorly described by scaling laws. We contend that streams differ along a gradient of exogenous and endogenous control that relates to the relative influences of resource subsidies and in-stream energetics as determinants of seasonal patterns of metabolism and N cycling. Our research suggests that temporal variation in the propagation of ecological influence between adjacent systems generates phases when ecosystems are alternatively characterized as endogenously and exogenously controlled.
Hamlet, Jason R [Albuquerque, NM; Robertson, Perry J [Albuquerque, NM; Pierson, Lyndon G [Albuquerque, NM; Olsberg, Ronald R [Albuquerque, NM
2012-02-28
A deflate decompressor includes at least one decompressor unit, a memory access controller, a feedback path, and an output buffer unit. The memory access controller is coupled to the decompressor unit via a data path and includes a data buffer to receive the data stream and temporarily buffer a first portion the data stream. The memory access controller transfers fixed length data units of the data stream from the data buffer to the decompressor unit with reference to a memory pointer pointing into the memory buffer. The feedback path couples the decompressor unit to the memory access controller to feed back decrement values to the memory access controller for updating the memory pointer. The decrement values each indicate a number of bits unused by the decompressor unit when decoding the fixed length data units. The output buffer unit buffers a second portion of the data stream after decompression.
Spatial and seasonal variability of forested headwater stream temperatures in western Oregon, USA
J. A. Leach; D. H. Olson; P. D. Anderson; B. N. I. Eskelson
2017-01-01
Thermal regimes of forested headwater streams control the growth and distribution of various aquatic organisms. In a western Oregon, USA, case study we examined: (1) forested headwater stream temperature variability in space and time; (2) relationships between stream temperature patterns and weather, above-stream canopy cover, and geomorphic attributes; and (3) the...
Slope failure as an upslope source of stream wood
Daniel Miller
2013-01-01
Large woody debris is recognized as an important component of stream geomorphology and stream ecosystem function, and forest-land management is recognized as an important control on the quantity (and size and species distributions) of wood available for recruitment to streams. Much of the wood present in streams comes from adjacent forests, and riparian management...
Digital Multicasting of Multiple Audio Streams
NASA Technical Reports Server (NTRS)
Macha, Mitchell; Bullock, John
2007-01-01
The Mission Control Center Voice Over Internet Protocol (MCC VOIP) system (see figure) comprises hardware and software that effect simultaneous, nearly real-time transmission of as many as 14 different audio streams to authorized listeners via the MCC intranet and/or the Internet. The original version of the MCC VOIP system was conceived to enable flight-support personnel located in offices outside a spacecraft mission control center to monitor audio loops within the mission control center. Different versions of the MCC VOIP system could be used for a variety of public and commercial purposes - for example, to enable members of the general public to monitor one or more NASA audio streams through their home computers, to enable air-traffic supervisors to monitor communication between airline pilots and air-traffic controllers in training, and to monitor conferences among brokers in a stock exchange. At the transmitting end, the audio-distribution process begins with feeding the audio signals to analog-to-digital converters. The resulting digital streams are sent through the MCC intranet, using a user datagram protocol (UDP), to a server that converts them to encrypted data packets. The encrypted data packets are then routed to the personal computers of authorized users by use of multicasting techniques. The total data-processing load on the portion of the system upstream of and including the encryption server is the total load imposed by all of the audio streams being encoded, regardless of the number of the listeners or the number of streams being monitored concurrently by the listeners. The personal computer of a user authorized to listen is equipped with special- purpose MCC audio-player software. When the user launches the program, the user is prompted to provide identification and a password. In one of two access- control provisions, the program is hard-coded to validate the user s identity and password against a list maintained on a domain-controller computer at the MCC. In the other access-control provision, the program verifies that the user is authorized to have access to the audio streams. Once both access-control checks are completed, the audio software presents a graphical display that includes audiostream-selection buttons and volume-control sliders. The user can select all or any subset of the available audio streams and can adjust the volume of each stream independently of that of the other streams. The audio-player program spawns a "read" process for the selected stream(s). The spawned process sends, to the router(s), a "multicast-join" request for the selected streams. The router(s) responds to the request by sending the encrypted multicast packets to the spawned process. The spawned process receives the encrypted multicast packets and sends a decryption packet to audio-driver software. As the volume or muting features are changed by the user, interrupts are sent to the spawned process to change the corresponding attributes sent to the audio-driver software. The total latency of this system - that is, the total time from the origination of the audio signals to generation of sound at a listener s computer - lies between four and six seconds.
Packet spacing : an enabling mechanism for delivering multimedia content in computational grids /
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, A. C.; Feng, W. C.; Belford, Geneva G.
2001-01-01
Streaming multimedia with UDP has become increasingly popular over distributed systems like the Internet. Scientific applications that stream multimedia include remote computational steering of visualization data and video-on-demand teleconferencing over the Access Grid. However, UDP does not possess a self-regulating, congestion-control mechanism; and most best-efort traflc is served by congestion-controlled TCF! Consequently, UDP steals bandwidth from TCP such that TCP$ows starve for network resources. With the volume of Internet traffic continuing to increase, the perpetuation of UDP-based streaming will cause the Internet to collapse as it did in the mid-1980's due to the use of non-congestion-controlled TCP. To address thismore » problem, we introduce the counterintuitive notion of inter-packet spacing with control feedback to enable UDP-based applications to perform well in the next-generation Internet and computational grids. When compared with traditional UDP-based streaming, we illustrate that our approach can reduce packet loss over SO% without adversely afecting delivered throughput. Keywords: network protocol, multimedia, packet spacing, streaming, TCI: UDlq rate-adjusting congestion control, computational grid, Access Grid.« less
Impact of Azimuthally Controlled Fluidic Chevrons on Jet Noise
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Norum, Thomas D.
2008-01-01
The impact of azimuthally controlled air injection on broadband shock noise and mixing noise for single and dual stream jets was investigated. The single stream experiments focused on noise reduction for low supersonic jet exhausts. Dual stream experiments included high subsonic core and fan conditions and supersonic fan conditions with transonic core conditions. For the dual stream experiments, air was injected into the core stream. Significant reductions in broadband shock noise were achieved in a single jet with an injection mass flow equal to 1.2% of the core mass flow. Injection near the pylon produced greater broadband shock noise reductions than injection at other locations around the nozzle periphery. Air injection into the core stream did not result in broadband shock noise reduction in dual stream jets. Fluidic injection resulted in some mixing noise reductions for both the single and dual stream jets. For subsonic fan and core conditions, the lowest noise levels were obtained when injecting on the side of the nozzle closest to the microphone axis.
Agriculture and stream water quality: A biological evaluation of erosion control practices
NASA Astrophysics Data System (ADS)
Lenat, David R.
1984-07-01
Agricultural runoff affects many streams in North Carolina. However, there is is little information about either its effect on stream biota or any potential mitigation by erosion control practices. In this study, benthic macroinvertebrates were sampled in three different geographic areas of North Carolina, comparing control watersheds with well-managed and poorly managed watersheds. Agricultural streams were characterized by lower taxa richness (especially for intolerant groups) and low stability. These effects were most evident at the poorly managed sites. Sedimentation was the apparent major problem, but some changes at agricultural sites implied water quality problems. The groups most intolerant of agricultural runoff were Ephemeroptera, Plecoptera and Trichoptera. Tolerant species were usually filter-feeders or algal grazers, suggesting a modification of the food web by addition of particulate organic matter and nutrients. This study clearly indicates that agricultural runoff can severely impact stream biota. However, this impact can be greatly mitigated by currently recommended erosion control practices.
Method of synchronizing independent functional unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Changhoan
A system for synchronizing parallel processing of a plurality of functional processing units (FPU), a first FPU and a first program counter to control timing of a first stream of program instructions issued to the first FPU by advancement of the first program counter; a second FPU and a second program counter to control timing of a second stream of program instructions issued to the second FPU by advancement of the second program counter, the first FPU is in communication with a second FPU to synchronize the issuance of a first stream of program instructions to the second stream ofmore » program instructions and the second FPU is in communication with the first FPU to synchronize the issuance of the second stream program instructions to the first stream of program instructions.« less
Method of synchronizing independent functional unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Changhoan
2017-05-16
A system for synchronizing parallel processing of a plurality of functional processing units (FPU), a first FPU and a first program counter to control timing of a first stream of program instructions issued to the first FPU by advancement of the first program counter; a second FPU and a second program counter to control timing of a second stream of program instructions issued to the second FPU by advancement of the second program counter, the first FPU is in communication with a second FPU to synchronize the issuance of a first stream of program instructions to the second stream ofmore » program instructions and the second FPU is in communication with the first FPU to synchronize the issuance of the second stream program instructions to the first stream of program instructions.« less
Method of synchronizing independent functional unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Changhoan
2017-02-14
A system for synchronizing parallel processing of a plurality of functional processing units (FPU), a first FPU and a first program counter to control timing of a first stream of program instructions issued to the first FPU by advancement of the first program counter; a second FPU and a second program counter to control timing of a second stream of program instructions issued to the second FPU by advancement of the second program counter, the first FPU is in communication with a second FPU to synchronize the issuance of a first stream of program instructions to the second stream ofmore » program instructions and the second FPU is in communication with the first FPU to synchronize the issuance of the second stream program instructions to the first stream of program instructions.« less
Vincent J. Pacific; Kelsey G. Jencso; Brian L. McGlynn
2010-01-01
Stream DOC dynamics during snowmelt have been the focus of much research, and numerous DOC mobilization and delivery mechanisms from riparian and upland areas have been proposed. However, landscape structure controls on DOC export from riparian and upland landscape elements remains poorly understood. We investigated stream and groundwater DOC dynamics across three...
NASA Astrophysics Data System (ADS)
Martin, C.
2017-12-01
Topography can be used to delineate streams and quantify the topographic control on hydrological processes of a watershed because geomorphologic processes have shaped the topography and streams of a catchment over time. Topographic Wetness index (TWI) is a common index used for delineating stream networks by predicting location of saturation excess overland flow, but is also used for other physical attributes of a watershed such as soil moisture, groundwater level, and vegetation patterns. This study evaluates how well TWI works across an elevation gradient and the relationships between the active drainage network of four headwater watersheds at various elevations in the Colorado Front Range to topography, geology, climate, soils, elevation, and vegetation in attempt to determine the controls on streamflow location and duration. The results suggest that streams prefer to flow along a path of least resistance which including faults and permeable lithology. Permeable lithologies created more connectivity of stream networks during higher flows but during lower flows dried up. Streams flowing over impermeable lithologies had longer flow duration. Upslope soil hydraulic conductivity played a role on stream location, where soils with low hydraulic conductivity had longer flow duration than soils with higher hydraulic conductivity.Finally TWI thresholds ranged from 5.95 - 10.3 due to changes in stream length and to factors such as geology and soil. TWI had low accuracy for the lowest elevation site due to the greatest change of stream length. In conclusion, structural geology, upslope soil texture, and the permeability of the underlying lithology influenced where the stream was flowing and for how long. Elevation determines climate which influences the hydrologic processes occurring at the watersheds and therefore affects the duration and timing of streams at different elevations. TWI is an adequate tool for delineating streams because results suggest topography has a primary control on the stream locations, but because intermittent streams change throughout the year a algorithm needs to be created to correspond to snow melt and rain events. Also geology indices and soil indices need be considered in addition to topography to have the most accurate derived stream network.
Distribution of fishes in U. S. streams tributary to Lake Superior
Moore, Harry H.; Braem, Robert A.
1965-01-01
Experimental sea lamprey control by the Bureau of Commercial Fisheries on Lake Superior streams provided many new distributional records of the fish fauna. Seventy-one species were recorded from 175 streams. Specimens were collected at the electromechanical barriers, with electric shockers, with fyke nets, and during chemical treatment of streams. Maps showing stream records of each species are presented.
John S. Richardson; Robert J. Naiman; Frederick J. Swanson; David E. Hibbs
2005-01-01
Riparian areas of large streams provide important habitat to many species and control many instream processes - but is the same true for the margins of small streams? This review considers riparian areas alongside small streams in forested, mountainous areas of the Pacific Northwest and asks if there are fundamental ecological differences from larger streams and from...
Apparatus and method of controlling the thermal performance of an oxygen-fired boiler
Levasseur, Armand A.; Kang, Shin G.; Kenney, James R.; Edberg, Carl D.
2017-09-05
Disclosed herein is a method of controlling the operation of an oxy-fired boiler; the method comprising combusting a fuel in a boiler; producing a heat absorption pattern in the boiler; discharging flue gases from the boiler; recycling a portion of the flue gases to the boiler; combining a first oxidant stream with the recycled flue gases to form a combined stream; splitting the combined stream into several fractions; and introducing each fraction of the combined stream to the boiler at different points of entry to the boiler.
Tree leaf control on low flow water quality in a small Virginia stream
Slack, K.V.; Feltz, H.R.
1968-01-01
Impaired water quality in a small stream was related to autumn leaf fall from riparian vegetation. Dissolved oxygen and pH decreased, and water color, specific conductance, iron, manganese, and bicarbonate values increased as the rate of leaf fall increased. Similar quality changes occurred in laboratory cultures of tree leaves in filtered stream water, but the five leaf species studied produced widely differing results. Stream quality improved rapidly following channel flushing by storm flow. Organic loading by tree litter can exert significant control on water composition, especially during low flow.
NASA Astrophysics Data System (ADS)
Godsey, S.; Kirchner, J. W.; Whiting, J. A.
2016-12-01
Temporary headwater streams - both intermittent and ephemeral waterways - supply water to approximately 1/3 of the US population, and 60% of streams used for drinking water are temporary. Stream ecologists increasingly recognize that a gradient of processes across the drying continuum affect ecosystems at dynamic terrestrial-aquatic interfaces. Understanding the hydrological controls across that gradient of drying may improve management of these sensitive systems. One possible control on surface flows includes transpiration losses from either the riparian zone or the entire watershed. We mapped several stream networks under extreme low flow conditions brought on by severe drought in central Idaho and California in 2015. Compared to previous low-flow stream length estimates, the active drainage network had generally decreased by a very small amount across these sites, perhaps because stored water buffered the precipitation decrease, or because flowing channel heads are fixed by focused groundwater flow emerging at springs. We also examined the apparent sources of water for both riparian and hillslope trees using isotopic techniques. During drought conditions, we hypothesized that riparian trees - but not those far from flowing streams - would be sustained by streamflow recharging riparian aquifers, and thus would transpire water that was isotopically similar to streamflow because little soil water would remain available below the wilting point and stream water would be sustain those trees. We found a more complex pattern, but in most places stream water and water transpired by trees were isotopically distinct regardless of flow intermittency or tree location. We also found that hillslope trees outside of the riparian zone appeared to be using different waters from those used by riparian trees. Finally, we explore subsurface controls on network extent, showing that bedrock characteristics can influence network stability and contraction patterns.
Crawford, John T.; Lottig, Noah R.; Stanley, Emily H.; Walker, John F.; Hanson, Paul C.; Finlay, Jacques C.; Striegl, Robert G.
2014-01-01
Aquatic ecosystems are important components of landscape carbon budgets. In lake-rich landscapes, both lakes and streams may be important sources of carbon gases (CO2 and CH4) to the atmosphere, but the processes that control gas concentrations and emissions in these interconnected landscapes have not been adequately addressed. We use multiple data sets that vary in their spatial and temporal extent during 2001–2012 to investigate the carbon gas source strength of streams in a lake-rich landscape and to determine the contribution of lakes, metabolism, and groundwater to stream CO2 and CH4. We show that streams emit roughly the same mass of CO2 (23.4 Gg C yr−1; 0.49 mol CO2 m−2 d−1) as lakes at a regional scale (27 Gg C yr−1) and that stream CH4 emissions (189 Mg C yr−1; 8.46 mmol CH4 m−2 d−1) are an important component of the regional greenhouse gas balance. Gas transfer velocity variability (range = 0.34 to 13.5 m d−1) contributed to the variability of gas flux in this landscape. Groundwater inputs and in-stream metabolism control stream gas supersaturation at the landscape scale, while carbon cycling in lakes and deep groundwaters does not control downstream gas emissions. Our results indicate the need to consider connectivity of all aquatic ecosystems (lakes, streams, wetlands, and groundwater) in lake-rich landscapes and their connections with the terrestrial environment in order to understand the full nature of the carbon cycle.
Engineering fluid flow using sequenced microstructures
NASA Astrophysics Data System (ADS)
Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A.; di Carlo, Dino
2013-05-01
Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.
Stephen D. Sebestyen; Elizabeth W. Boyer; James B. Shanley; Carol Kendall; Daniel H. Doctor; George R. Aiken; Nobuhito Ohte
2008-01-01
We explored catchment processes that control stream nutrient concentrations at an upland forest in northeastern Vermont, USA, where inputs of nitrogen via atmospheric deposition are among the highest in the nation and affect ecosystem functioning. We traced sources of water, nitrate, and dissolved organic matter (DOM) using stream water samples collected at high...
Arsenic Redistribution Between Sediments and Water Near a Highly Contaminated Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keimowitz,A.; Zheng, Y.; Chillrud, S.
2005-01-01
Mechanisms controlling arsenic partitioning between sediment, groundwater, porewaters, and surface waters were investigated at the Vineland Chemical Company Superfund site in southern New Jersey. Extensive inorganic and organic arsenic contamination at this site (historical total arsenic >10 000 {micro}g L{sup -1} or >130 {micro}M in groundwater) has spread downstream to the Blackwater Branch, Maurice River, and Union Lake. Stream discharge was measured in the Blackwater Branch, and water samples and sediment cores were obtained from both the stream and the lake. Porewaters and sediments were analyzed for arsenic speciation as well as total arsenic, iron, manganese, and sulfur, and theymore » indicate that geochemical processes controlling mobility of arsenic were different in these two locations. Arsenic partitioning in the Blackwater Branch was consistent with arsenic primarily being controlled by sulfur, whereas in Union Lake, the data were consistent with arsenic being controlled largely by iron. Stream discharge and arsenic concentrations indicate that despite large-scale groundwater extraction and treatment, >99% of arsenic transport away from the site results from continued discharge of high arsenic groundwater to the stream, rather than remobilization of arsenic in stream sediments. Changing redox conditions would be expected to change arsenic retention on sediments. In sulfur-controlled stream sediments, more oxic conditions could oxidize arsenic-bearing sulfide minerals, thereby releasing arsenic to porewaters and streamwaters; in iron-controlled lake sediments, more reducing conditions could release arsenic from sediments via reductive dissolution of arsenic-bearing iron oxides.« less
Geomorphology controls the trophic base of stream food webs in a boreal watershed .
Smits, Adrianne P; Schindler, Daniel E; Brett, Michael T
2015-07-01
Abstract. Physical attributes of rivers control the quantity and quality of energy sources available to consumers, but it remains untested whether geomorphic conditions of whole watersheds affect the assimilation of different resources by stream organisms. We compared the fatty acid (FA) compositions of two invertebrate taxa (caddisflies, mayflies) collected from 16 streams in southwest Alaska, USA, to assess how assimilation of terrestrial organic matter (OM) and algae varied across a landscape gradient in watershed features. We found relatively higher assimilation of algae in high-gradient streams compared with low-gradient streams, and the opposite pattern for assimilation of terrestrial OM and microbes. The strength of these patterns was more pronounced for caddisflies than mayflies. Invertebrates from low-gradient watersheds had FA markers unique to methane-oxidizing bacteria and sulfate-reducing microbes, indicating a contribution of anaerobic pathways to primary consumers. Diversity of FA composition was highest in watersheds of intermediate slopes that contain both significant terrestrial inputs as well as high algal biomass. By controlling the accumulation rate and processing of terrestrial OM, watershed features influence the energetic base of food webs in boreal streams.
Vision for perception and vision for action in the primate brain.
Goodale, M A
1998-01-01
Visual systems first evolved not to enable animals to see, but to provide distal sensory control of their movements. Vision as 'sight' is a relative newcomer to the evolutionary landscape, but its emergence has enabled animals to carry out complex cognitive operations on perceptual representations of the world. The two streams of visual processing that have been identified in the primate cerebral cortex are a reflection of these two functions of vision. The dorsal 'action' stream projecting from primary visual cortex to the posterior parietal cortex provides flexible control of more ancient subcortical visuomotor modules for the production of motor acts. The ventral 'perceptual' stream projecting from the primary visual cortex to the temporal lobe provides the rich and detailed representation of the world required for cognitive operations. Both streams process information about the structure of objects and about their spatial locations--and both are subject to the modulatory influences of attention. Each stream, however, uses visual information in different ways. Transformations carried out in the ventral stream permit the formation of perceptual representations that embody the enduring characteristics of objects and their relations; those carried out in the dorsal stream which utilize moment-to-moment information about objects within egocentric frames of reference, mediate the control of skilled actions. Both streams work together in the production of goal-directed behaviour.
Son, H K; Sivakumar, S; Rood, M J; Kim, B J
2016-01-15
Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40-900 ppm(v)) and superficial gas velocity (6.3-9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system. Copyright © 2015 Elsevier B.V. All rights reserved.
Laura R. Wear; Michael W. Aust; M. Chad Bolding; Brian D. Strahm; C. Andrew Dolloff
2013-01-01
Temporary skid trail stream crossings have repeatedly been identified as having considerable potential to introduce sediment to streams. Forestry Best Management Practices (BMPs) have proven to be effective for controlling erosion and subsequent sedimentation, yet few studies have quantified sedimentation associated with various levels of BMPs for skidder stream...
Neotropical Amphibian Declines Affect Stream Ecosystem Properties
NASA Astrophysics Data System (ADS)
Connelly, S.; Pringle, C. M.; Bixby, R. J.; Whiles, M. R.; Lips, K. R.; Brenes, R.; Colon-Gaud, J. C.; Kilham, S.; Hunte-Brown, M.
2005-05-01
Global declines of amphibians are well documented, yet effects of these dramatic losses on ecosystem structure and function are poorly understood. As part of a larger collaborative project, we compared two upland Panamanian streams. Both streams are biologically and geologically similar; however, one stream (Fortuna) has recently experienced almost complete extirpation of stream-dwelling frogs, while the other (Cope) still has intact populations. We experimentally excluded tadpoles from localized areas in each stream. We then compared chlorophyll a, algal community composition, ash-free dry mass (AFDM), inorganic matter, and insect assemblages in control and exclusion areas. Additionally, we sampled the natural substrate of both streams monthly for chlorophyll a, algal community composition, AFDM, and inorganic matter. At Cope, chlorophyll a, AFDM, and inorganic matter were greater in areas where tadpoles were excluded than in their presence. Numbers of dominant algal species (e.g., Nupela praecipua and Eunotia siolii) were greater in the exclusion versus control treatments. Monthly sampling of natural substrate indicated higher chlorophyll a and AFDM at Cope compared to Fortuna. Our data suggest that stream-dwelling anuran larvae have significant impacts on algal communities. These results also have implications for predicting the relevance of short-term experimental manipulations to long-term, whole-stream processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. T. Jubin; D. M. Strachan; N. R. Soelberg
2013-09-01
Used nuclear fuel is currently being reprocessed in only a few countries, notably France, England, Japan, and Russia. The need to control emissions of the gaseous radionuclides to the air during nuclear fuel reprocessing has already been reported for the entire plant. But since the gaseous radionuclides can partition to various different reprocessing off-gas streams, for example, from the head end, dissolver, vessel, cell, and melter, an understanding of each of these streams is critical. These off-gas streams have different flow rates and compositions and could have different gaseous radionuclide control requirements, depending on how the gaseous radionuclides partition. Thismore » report reviews the available literature to summarize specific engineering data on the flow rates, forms of the volatile radionuclides in off-gas streams, distributions of these radionuclides in these streams, and temperatures of these streams. This document contains an extensive bibliography of the information contained in the open literature.« less
Inter-regional comparison of land-use effects on stream metabolism
Bernot, M.J.; Sobota, D.J.; Hall, R.O.; Mulholland, P.J.; Dodds, W.K.; Webster, J.R.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Gregory, S.V.; Grimm, N. B.; Hamilton, S.K.; Johnson, S.L.; McDowell, W.H.; Meyer, J.L.; Peterson, B.; Poole, G.C.; Maurice, Valett H.M.; Arango, C.; Beaulieu, J.J.; Burgin, A.J.; Crenshaw, C.; Helton, A.M.; Johnson, L.; Merriam, J.; Niederlehner, B.R.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Thomas, S.M.; Wilson, K.
2010-01-01
1. Rates of whole-system metabolism (production and respiration) are fundamental indicators of ecosystem structure and function. Although first-order, proximal controls are well understood, assessments of the interactions between proximal controls and distal controls, such as land use and geographic region, are lacking. Thus, the influence of land use on stream metabolism across geographic regions is unknown. Further, there is limited understanding of how land use may alter variability in ecosystem metabolism across regions.2. Stream metabolism was measured in nine streams in each of eight regions (n = 72) across the United States and Puerto Rico. In each region, three streams were selected from a range of three land uses: agriculturally influenced, urban-influenced, and reference streams. Stream metabolism was estimated from diel changes in dissolved oxygen concentrations in each stream reach with correction for reaeration and groundwater input.3. Gross primary production (GPP) was highest in regions with little riparian vegetation (sagebrush steppe in Wyoming, desert shrub in Arizona/New Mexico) and lowest in forested regions (North Carolina, Oregon). In contrast, ecosystem respiration (ER) varied both within and among regions. Reference streams had significantly lower rates of GPP than urban or agriculturally influenced streams.4. GPP was positively correlated with photosynthetically active radiation and autotrophic biomass. Multiple regression models compared using Akaike's information criterion (AIC) indicated GPP increased with water column ammonium and the fraction of the catchment in urban and reference land-use categories. Multiple regression models also identified velocity, temperature, nitrate, ammonium, dissolved organic carbon, GPP, coarse benthic organic matter, fine benthic organic matter and the fraction of all land-use categories in the catchment as regulators of ER.5. Structural equation modelling indicated significant distal as well as proximal control pathways including a direct effect of land-use on GPP as well as SRP, DIN, and PAR effects on GPP; GPP effects on autotrophic biomass, organic matter, and ER; and organic matter effects on ER.6. Overall, consideration of the data separated by land-use categories showed reduced inter-regional variability in rates of metabolism, indicating that the influence of agricultural and urban land use can obscure regional differences in stream metabolism. ?? 2010 Blackwell Publishing Ltd.
On the patterns and processes of wood in northern California streams
NASA Astrophysics Data System (ADS)
Benda, Lee; Bigelow, Paul
2014-03-01
Forest management and stream habitat can be improved by clarifying the primary riparian and geomorphic controls on streams. To this end, we evaluated the recruitment, storage, transport, and the function of wood in 95 km of streams (most drainage areas < 30 km2) in northern California, crossing four coastal to inland regions with different histories of forest management (managed, less-managed, unmanaged). The dominant source of variability in stream wood storage and recruitment is driven by local variation in rates of bank erosion, forest mortality, and mass wasting. These processes are controlled by changes in watershed structure, including the location of canyons, floodplains and tributary confluences; types of geology and topography; and forest types and management history. Average wood storage volumes in coastal streams are 5 to 20 times greater than inland sites primarily from higher riparian forest biomass and growth rates (productivity), with some influence by longer residence time of wood in streams and more wood from landsliding and logging sources. Wood recruitment by mortality (windthrow, disease, senescence) was substantial across all sites (mean 50%) followed by bank erosion (43%) and more locally by mass wasting (7%). The distances to sources of stream wood are controlled by recruitment process and tree height. Ninety percent of wood recruitment occurs within 10 to 35 m of channels in managed and less-managed forests and upward of 50 m in unmanaged Sequoia and coast redwood forests. Local landsliding extends the source distance. The recruitment of large wood pieces that create jams (mean diameter 0.7 m) is primarily by bank erosion in managed forests and by mortality in unmanaged forests. Formation of pools by wood is more frequent in streams with low stream power, indicating the further relevance of environmental context and watershed structure. Forest management influences stream wood dynamics, where smaller trees in managed forests often generate shorter distances to sources of stream wood, lower stream wood storage, and smaller diameter stream wood. These findings can be used to improve riparian protection and inform spatially explicit riparian management.
A recirculating stream aquarium for ecological studies.
Gordon H. Reeves; Fred H. Everest; Carl E. McLemore
1983-01-01
Investigations of the ecological behavior of fishes often require studies in both natural and artificial stream environments. We describe a large, recirculating stream aquarium and its controls, constructed for ecological studies at the Forestry Sciences Laboratory in Corvallis.
Watershed Land Use and Seasonal Variation Constrain the ...
While watershed and local scale controls on stream metabolism have been independently investigated, little is known about how controls exerted at these different scales interact to determine stream metabolic rates, or how these interactions vary across seasons. To address this knowledge gap, we measured ecosystem metabolism in four urban and four reference streams in northern Kentucky, USA, with paired closed and open riparian canopies, during each of the four seasons of the year. Gross primary production (GPP), ecosystem respiration (ER), and net ecosystem production (NEP) were all best predicted by models with season as a main effect, but interactions between season, canopy and watershed varied for each response. Urban streams exhibited higher GPP during most seasons, likely due to elevated nutrient loads. Open canopy reaches in both urban and forested streams supported higher rates of GPP than the closed canopy reaches during the summer and fall when the overhead vegetation shaded the closed reaches. Surprisingly, the effect of canopy cover on GPP was similar among urban and forested streams. The combination of watershed and local-scale controls resulted in urban streams that alternated between net heterotrophy (NEP 0) between seasons with and without dense canopy cover. This finding has management relevance because net production can lead to accumulation of algal biomass and associated issues like dissolved oxygen sags at night. Our study reinforces
Chang, Hung-Cheng; Grossberg, Stephen; Cao, Yongqiang
2014-01-01
The Where’s Waldo problem concerns how individuals can rapidly learn to search a scene to detect, attend, recognize, and look at a valued target object in it. This article develops the ARTSCAN Search neural model to clarify how brain mechanisms across the What and Where cortical streams are coordinated to solve the Where’s Waldo problem. The What stream learns positionally-invariant object representations, whereas the Where stream controls positionally-selective spatial and action representations. The model overcomes deficiencies of these computationally complementary properties through What and Where stream interactions. Where stream processes of spatial attention and predictive eye movement control modulate What stream processes whereby multiple view- and positionally-specific object categories are learned and associatively linked to view- and positionally-invariant object categories through bottom-up and attentive top-down interactions. Gain fields control the coordinate transformations that enable spatial attention and predictive eye movements to carry out this role. What stream cognitive-emotional learning processes enable the focusing of motivated attention upon the invariant object categories of desired objects. What stream cognitive names or motivational drives can prime a view- and positionally-invariant object category of a desired target object. A volitional signal can convert these primes into top-down activations that can, in turn, prime What stream view- and positionally-specific categories. When it also receives bottom-up activation from a target, such a positionally-specific category can cause an attentional shift in the Where stream to the positional representation of the target, and an eye movement can then be elicited to foveate it. These processes describe interactions among brain regions that include visual cortex, parietal cortex, inferotemporal cortex, prefrontal cortex (PFC), amygdala, basal ganglia (BG), and superior colliculus (SC). PMID:24987339
Code of Federal Regulations, 2011 CFR
2011-01-01
... conservation and water control facilities such as dikes, terraces, detention reservoirs, stream channels... vegetative measures to stabilize stream channels and gullies. (iv) Basic farm conservation practices to control runoff, erosion, and sedimentation. (6) Installing, repairing, and improving water storage...
Riparian control of stream-water chemistry: Implications for hydrochemical basin models
Hooper, R.P.; Aulenbach, Brent T.; Burns, Douglas A.; McDonnell, J.; Freer, J.; Kendall, C.; Beven, K.
1998-01-01
End-member mixing analysis has been used to determine the hydrological structure for basin hydrochemical models at several catchments. Implicit in this use is the assumption that controlling end members have been identified, and that these end members represent distinct landscape locations. At the Panola Mountain Research Watershed, the choice of controlling end members was supported when a large change in the calcium and sulphate concentration of one of the end members was reflected in the stream water. More extensive sampling of groundwater and soil water indicated, however, that the geographic extent of the contributing end members was limited to the riparian zone. Hillslope solutions were chemically distinct from the riparian solutions and did not appear to make a large contribution to streamflow. The dominant control of the riparian zone on stream-water chemistry suggests that hydrological flow paths cannot be inferred from stream-water chemical dynamics.
Geomorphic controls on hyporheic exchange flow in mountain streams.
T. Kasahara; S.M. Wondzell
2003-01-01
Hyporheic exchange flows were simulated using MODFLOW and MODPATH to estimate relative effects of channel morphologic features on the extent of the hyporheic zone, on hyporheic exchange flow, and on the residence time of stream water in the hyporheic zone. Four stream reaches were compared in order to examine the influence of stream size and channel constraint. Within...
Checking for Circular Dependencies in Distributed Stream Programs
2011-08-29
extensions to express new complexities more conve- nient. Teleport messaging ( TMG ) in the StreamIt language [30] is an example. 1.1 StreamIt Language...dynamicities to an FIR computation Thies et al. in [30] give a TMG model for distributed stream pro- grams. TMG is a mechanism that implements control...messages for stream graphs. The TMG mechanism is designed not to interfere with original dataflow graphs’ structures and scheduling, therefore a key
NASA Astrophysics Data System (ADS)
Malmer, Anders
1996-07-01
Most estimates of P export from natural or disturbed humid tropical ecosystems by streams have been based only on export of dissolved P, even though P often is limiting and can be expected to be strongly associated to particles. Therefore loss of ignition (LOI) and particulate P (Ppart) analyses were made on organic and inorganic detritus resulting from surface erosion and on stream-suspended sediments in an undisturbed rain forest (control), as well as during and after conversion of rain forest into forest plantation. Control forest surface erosion and stream sediments consisted mainly of organics, and dissolved P (Pdiss) dominated over Ppart in stream water. The same relation was found after conversion, with a maximum mean Pdiss/Ppart ratio of up to 10 after burning, compared with 2-2.5 for control forests. This larger difference was assumed to depend on PO4 dissolved from ashes to larger concentrations than could be adsorbed during the short time (<1 hour) to reach peak flow during rainstorms.
Method of controlling injection of oxygen into hydrogen-rich fuel cell feed stream
Meltser, Mark Alexander; Gutowski, Stanley; Weisbrod, Kirk
2001-01-01
A method of operating a H.sub.2 --O.sub.2 fuel cell fueled by hydrogen-rich fuel stream containing CO. The CO content is reduced to acceptable levels by injecting oxygen into the fuel gas stream. The amount of oxygen injected is controlled in relation to the CO content of the fuel gas, by a control strategy that involves (a) determining the CO content of the fuel stream at a first injection rate, (b) increasing the O.sub.2 injection rate, (c) determining the CO content of the stream at the higher injection rate, (d) further increasing the O.sub.2 injection rate if the second measured CO content is lower than the first measured CO content or reducing the O.sub.2 injection rate if the second measured CO content is greater than the first measured CO content, and (e) repeating steps a-d as needed to optimize CO consumption and minimize H.sub.2 consumption.
Oxy-fuel combustion with integrated pollution control
Patrick, Brian R [Chicago, IL; Ochs, Thomas Lilburn [Albany, OR; Summers, Cathy Ann [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul Chandler [Independence, OR
2012-01-03
An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.
NASA Astrophysics Data System (ADS)
Fanelli, R. M.; Prestegaard, K. L.; Palmer, M.
2015-12-01
Urbanization alters watershed hydrological processes; impervious surfaces increase runoff generation, while storm sewer networks increase connectivity between runoff sources and streams. Stormwater control measures (SCMs) that enhance stormwater infiltration have been proposed to mitigate these effects by functioning as stormwater sinks. Regenerative stormwater conveyances structures (RSCs) are an example of infiltration-based SCMs that are placed between storm sewer outfalls and perennial stream networks. Given their location, RSCs act as critical nodes that regulate stormwater-stream connectivity. Therefore, the storage capacity of a RSC structure may exert a major control on the frequency, duration, and magnitude of these connections. This project examined both hydrogeological and hydro-climatic factors that could influence storage capacity of RSC structures. We selected three headwater (5-48 ha) urban watersheds near Annapolis, Maryland, USA. Each watershed is drained by first-order perennial streams and has been implemented with a RSC structure. We conducted high-frequency precipitation and stream stage monitoring below the outlet of each RSC structure for a 1-year period. We also instrumented one of the RSC structures with groundwater wells to monitor changes in subsurface storage over time. Using these data, we 1) identified rainfall thresholds for RSC storage capacity exceedance; 2) quantified the frequency and duration of connectivity when the storage capacity of each RSC was exceeded; and 3) evaluated both event-scale and seasonal changes in groundwater levels within the RSC structure. Precipitation characteristics and antecedent precipitation indices influenced the frequency and duration of stormwater-stream connections. We hypothesize both infiltration limitations and storage limitations of the RSCs contributed to the temporal patterns we observed in stormwater-stream connectivity. We also observed reduced storage potential as contributing area and percent impervious cover increased. Overall, the efficacy of urban SCMs for mitigating the impacts of urbanization and reducing stormwater-stream connectivity is dependent on both climate and the landscape context in which they are placed.
Shields, F Douglas; Knight, Scott S; Cooper, Charles M
2007-07-01
Degradation of warmwater streams in agricultural landscapes is a pervasive problem, and reports of restoration effectiveness based on monitoring data are rare. Described is the outcome of rehabilitation of two deeply incised, unstable sand-and-gravel-bed streams. Channel networks of both watersheds were treated using standard erosion control measures, and aquatic habitats within 1-km-long reaches of each stream were further treated by addition of instream structures and planting woody vegetation on banks ("habitat rehabilitation"). Fish and their habitats were sampled semiannually during 1-2 years before rehabilitation, 3-4 years after rehabilitation, and 10-11 years after rehabilitation. Reaches with only erosion control measures located upstream from the habitat measure reaches and in similar streams in adjacent watersheds were sampled concurrently. Sediment concentrations declined steeply throughout both watersheds, with means > or = 40% lower during the post-rehabilitation period than before. Physical effects of habitat rehabilitation were persistent through time, with pool habitat availability much higher in rehabilitated reaches than elsewhere. Fish community structure responded with major shifts in relative species abundance: as pool habitats increased after rehabilitation, small-bodied generalists and opportunists declined as certain piscivores and larger-bodied species such as centrarchids and catostomids increased. Reaches without habitat rehabilitation were significantly shallower, and fish populations there were similar to the rehabilitated reaches prior to treatment. These findings are applicable to incised, warmwater streams draining agricultural watersheds similar to those we studied. Rehabilitation of warmwater stream ecosystems is possible with current knowledge, but a major shift in stream corridor management strategies will be needed to reverse ongoing degradation trends. Apparently, conventional channel erosion controls without instream habitat measures are ineffective tools for ecosystem restoration in incised, warmwater streams of the Southeastern U.S., even if applied at the watershed scale and accompanied by significant reductions in suspended sediment concentration.
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.
2004-12-01
Our ability to assess how stream nutrient concentrations respond to biogeochemical transformations and stream flow dynamics is often limited by datasets that do not include all flow conditions that occur over event, monthly, seasonal, and yearly time scales. At the Sleepers River Research Watershed in northeastern Vermont, USA, nitrate, DOC (dissolved organic carbon), and major ion concentrations were measured on samples collected over a wide range of flow conditions from summer 2002 through summer 2004. Nutrient flushing occurred at the W-9 catchment and high-frequency sampling revealed critical insights into seasonal and event-scale controls on nutrient concentrations. In this seasonally snow-covered catchment, the earliest stage of snowmelt introduced nitrogen directly to the stream from the snowpack. As snowmelt progressed, the source of stream nitrate shifted to flushing of soil nitrate along shallow subsurface flow paths. In the growing season, nitrogen flushing to streams varied with antecedent moisture conditions. More nitrogen was available to flush to streams when antecedent moisture was lowest, and mobile nitrogen stores in the landscape regenerated under baseflow conditions on times scales as short as 7 days. Leaf fall was another critical time when coupled hydrological and biogeochemical processes controlled nutrient fluxes. With the input of labile organic carbon from freshly decomposing leaves, nitrate concentrations declined sharply in response to in-stream immobilization or denitrification. These high-resolution hydrochemical data from multiple flow regimes are identifying "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nutrient fluxes in streams.
Inter-regional comparison of land-use effects on stream metabolism
Melody J. Bernot; Daniel J. Sobota; Robert Hall; Patrick J. Mulholland; Walter K. Dodds; et al
2010-01-01
1. Rates of whole-system metabolism (production and respiration) are fundamental indicators of ecosystem structure and function. Although first-order, proximal controls are well understood, assessments of the interactions between proximal controls and distal controls, such as land use and geographic region, are lacking. Thus, the influence of land use on stream...
Inter-regional comparison of land-use effects on stream metabolism
Melody J. Bernot; Daniel J. Sobota; Robert O. Hall; Patrick J. Mulholland; Walter K. Dodds; Jackson R. Webster; Jennifer L. Tank; Linda R. Ashkenas; Lee W. Cooper; Clifford N. Dahm; Stanley V. Gregory; Nancy B. Grimm; Stephen K. Hamilton; Sherri L. Johnson; William H. McDowell; Judith L. Meyer; Bruce Peterson; Geoffrey C. Poole; H. Maurice Valett; Clay Arango; Jake J. Beaulieu; Amy J. Burgin; Chelsea Crenshaw; Ashley M. Helton; Laura Johnson; Jeff Merriam; B.R. Niederlehner; Jonathan M. O' Brien; Jody D. Potter; Richard W. Sheibley; Suzanne M. Thomas; Kym Wilson
2010-01-01
Rates of whole-system metabolism (production and respiration) are fundamental indicators of ecosystem structure and function. Although first-order, proximal controls are well understood, assessments of the interactions between proximal controls and distal controls, such as land use and geographic region, are lacking. Thus, the influence of land use on stream metabolism...
Serial Interface through Stream Protocol on EPICS Platform for Distributed Control and Monitoring
NASA Astrophysics Data System (ADS)
Das Gupta, Arnab; Srivastava, Amit K.; Sunil, S.; Khan, Ziauddin
2017-04-01
Remote operation of any equipment or device is implemented in distributed systems in order to control and proper monitoring of process values. For such remote operations, Experimental Physics and Industrial Control System (EPICS) is used as one of the important software tool for control and monitoring of a wide range of scientific parameters. A hardware interface is developed for implementation of EPICS software so that different equipment such as data converters, power supplies, pump controllers etc. could be remotely operated through stream protocol. EPICS base was setup on windows as well as Linux operating system for control and monitoring while EPICS modules such as asyn and stream device were used to interface the equipment with standard RS-232/RS-485 protocol. Stream Device protocol communicates with the serial line with an interface to asyn drivers. Graphical user interface and alarm handling were implemented with Motif Editor and Display Manager (MEDM) and Alarm Handler (ALH) command line channel access utility tools. This paper will describe the developed application which was tested with different equipment and devices serially interfaced to the PCs on a distributed network.
Continuous Dissolved Oxygen Measurements and Modelling Metabolism in Peatland Streams
Dick, Jonathan J.; Soulsby, Chris; Birkel, Christian; Malcolm, Iain; Tetzlaff, Doerthe
2016-01-01
Stream water dissolved oxygen was monitored in a 3.2km2 moorland headwater catchment in the Scottish Highlands. The stream consists of three 1st order headwaters and a 2nd order main stem. The stream network is fringed by peat soils with no riparian trees, though dwarf shrubs provide shading in the lower catchment. Dissolved oxygen (DO) is regulated by the balance between atmospheric re-aeration and the metabolic processes of photosynthesis and respiration. DO was continuously measured for >1 year and the data used to calibrate a mass balance model, to estimate primary production, respiration and re-aeration for a 1st order site and in the 2nd order main stem. Results showed that the stream was always heterotrophic at both sites. Sites were most heterotrophic in the summer reflecting higher levels of stream metabolism. The 1st order stream appeared more heterotrophic which was consistent with the evident greater biomass of macrophytes in the 2nd order stream, with resulting higher primary productivity. Comparison between respiration, primary production, re-aeration and potential physical controls revealed only weak relationships. However, the most basic model parameters (e.g. the parameter linking light and photosynthesis) controlling ecosystem processes resulted in significant differences between the sites which seem related to the stream channel geometry. PMID:27556278
DOT National Transportation Integrated Search
1982-01-01
Twelve streams affected by highway construction were monitored to ascertain the effectiveness of the Virginia Department of Highways and Transportation's erosion and sediment control practices. The streams were located throughout Virginia in areas ha...
A Control Chart Approach for Representing and Mining Data Streams with Shape Based Similarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omitaomu, Olufemi A
The mining of data streams for online condition monitoring is a challenging task in several domains including (electric) power grid system, intelligent manufacturing, and consumer science. Considering a power grid application in which thousands of sensors, called the phasor measurement units, are deployed on the power grid network to continuously collect streams of digital data for real-time situational awareness and system management. Depending on design, each sensor could stream between ten and sixty data samples per second. The myriad of sensory data captured could convey deeper insights about sequence of events in real-time and before major damages are done. However,more » the timely processing and analysis of these high-velocity and high-volume data streams is a challenge. Hence, a new data processing and transformation approach, based on the concept of control charts, for representing sequence of data streams from sensors is proposed. In addition, an application of the proposed approach for enhancing data mining tasks such as clustering using real-world power grid data streams is presented. The results indicate that the proposed approach is very efficient for data streams storage and manipulation.« less
Characterizing the Effects of Stormwater Mitigation on Nutrient Export and Stream Concentrations
NASA Astrophysics Data System (ADS)
Bell, Colin D.; McMillan, Sara K.; Clinton, Sandra M.; Jefferson, Anne J.
2017-04-01
Urbanization increases nutrient loading and lowers residence times for processing of reactive solutes, including nitrate, total dissolved nitrogen, orthophosphate, and dissolved organic carbon), which leads to increased stream concentrations and mass export. Stormwater control measures mitigate the impacts of urbanization, and have the potential to improve stream water quality, however the net effect instream is not well understood. We monitored two urban and two suburban watersheds in Charlotte, NC to determine if mitigation controlled the fraction of total mass export during storm, if development classification as either urban or suburban (defined by the age, density and distribution of urban development) controlled storm nutrient and carbon dynamics, and if stormwater control measures were able to change stream water chemistry. While average concentrations during stormflow were generally greater than baseflow, indicating that storms are important times of solute export, the fraction of storm-derived export was unrelated to mitigation by stormwater control measures. Development classification was generally not an important control on export of N and dissolved organic carbon. However, event mean concentrations of orthophosphate were higher at the suburban sites, possibly from greater fertilizer application. Stormwater control measures influenced instream water chemistry at only one site, which also had the greatest mitigated area, but differences between stormwater control measure outflow and stream water suggest the potential for water quality improvements. Together, results suggest stormwater control measures have the potential to decrease solute concentrations from urban runoff, but the type, location, and extent of urban development in the watershed may influence the magnitude of this effect.
Biological and economic impact of stream alteration in the Virginia Piedmont
Whelan, James B.
1981-01-01
A 31 month (September 1974 - March 1977) study was conducted on warmwater streams located in the Roanoke Creek watershed of the Piedmont Region of Virginia. The purpose of the study was to determine the effects of stream channelization on the aquatic/riparian wildlife resource and agricultural land-use patterns associated with the altered streams. Three streams, which were channelized 3, 6, and 10 years prior to initiation of the study, and teo unaltered streams, were selected as representative streams for the study. Recently channelized streams lacked overstory cover but has an abundance of herbaceous and small woody plany cover, Conversely, control streams had significantly larger percentages of trees over 46 m tall. Plant species diversity, foliage height diversity, and evenness diversity increased as age since channelization increased. No major differences in water quality parameters were found for either channelized or control streams, although channelized streams had greater deposits of sand and lesser amount of rock, rubble, and gravel. These changes in substrate composition did not significantly modify actual stream flow rates. Fish species composition and species diversity among channelized and unchannelized streams were only slightly different, with most of the differences probably attributable to strays from adjacent habitats, However, evenness diversity for fish communities was lower in channelized streams. The benthic population showed greater changes than did the fish populations with an increase in Chironominae tolerant of unstable sand substrates in channelized streams. Evenness diversity of benthic populations was also higher and showed more consistency in the control stream than in channelized streams. Evenness diversity of benthic communities in control stream averaged between 0.5 to 0.6 and was quite consistent; whereas, the average in the two youngest channelized streams was 0.3 to 0.4. These data seem to indicate decreased stability of the biota in altered streams. In general, benthic macroinvertabrate and fish community parameters collected from channelized streams located 1200 m below a reservoir were either comparable to, or intermediate between, upstream (unchannelized) and reservoir tailwater values. The shallow surface discharge impoundments associated with channelized streams appeared to have a highly localized impact on the downstream benthic marcoinvertabrate and fish communities. During winter, bird species diversity (BSD) among channelized stream sites was not significantly different. During the breeding season, species richness (number of breeding species) and BSD increased with age since channelization. Breeding bird densities were 6.2 pairs/ha in the most recent (3 yr) channelized site and 13.3 pairs/ha on the control streams. Bird diversity and density, particularly for Parulids (warblers), during the breeding season were reduced significantly by removal of tree and shrub layers along channelized streams. No significant differences were found among study sites for either total number of small mammals or their species diversity indices; although, there was a trend toward increasing diversity as age since channelization increased. Smaller differences in species diversity values for small mammals on channelized sites than for birds suggests that small mammal populations require less time for recovery following channelization than avian communities. When streams are channelized: 1) vegetation should be removed from only one side of the stream, with minimal disturbance of top-soil; followed by plantings of herbaceous and woody vegetation, 2) hedgrow plantings should be maintained between agricultural fields and the stream for bank stabilization, 3) dead snags and large trees should be left for birds, 4) all channelization projects should be designed according to the most recent guidelines recommended by the SCS and other resources agencies. In 1958, the Roanoke County Watershed Work Plan projected annual costs of the structured measures (mainly reservoirs and downstream channelization) to be $79,897 and the average annual monetary benefits to be $111,103. With this favorable benefit/cost ration of 1.4, work began in 1960. In 1970, the annual capital cost was 60,780 and operations/maintenance costs were 10,402, or a total annual project cost of $71, 182. High and low values of annual benefits from agricultural income, water supply, recreation, and non-agricultural flood damage were determined for 1970 and compared to annual project cost. The benefit/cost ratio obtained was between 0.25 and 0.58, considerably lower than the 1.4 estimate of the 1958. work plan. This unsatisfactory ratio for the project was due mainly to the failure of the project to encourage large scale cropping of bottomland area. Future projects should be planned with 1) a greater recognition of constraints on farm operator behavior which affect land use change, 2) conservative projection for land use changes in area where agriculture ids in overall decline, 3) increased use of sensitivity analysis to examine the consequences for project economic justification of alternative land use change projections.
NASA Astrophysics Data System (ADS)
Ward, A. S.; Schmadel, N.; Wondzell, S. M.; Harman, C. J.; Gooseff, M. N.; Singha, K.
2015-12-01
Transport along riparian and hyporheic flowpaths is generally believed to integrate the responses of streams and aquifers to dynamic hydrological forcing. Although it is generally expected transport along these flow paths is time-variable, such dynamic responses have seldom been demonstrated. Further, we do not understand how hydrological forcing interacts with local geologic setting (i.e., valley and streambed morphology) We conducted a series of four stream solute tracer injections in each of two watersheds with contrasting valley morphology in the H.J. Andrews Experimental Forest, monitoring tracer concentrations in the stream and in a network of shallow wells in each watershed. Time series analyses were used to deconvolve transport along subsurface flowpaths from transport in the stream channel. We found time-invariant hyporheic transport in the narrow, bedrock-constrained valley and near large roughness elements (e.g., steps, logs) in the wider valley bottom despite order of magnitude changes in discharge, suggesting geologic controls dominate hyporheic transport in these locations. In contrast, we observed increases in mean arrival time and temporal variance with decreasing discharge at the riparian-hillslope transition, suggesting hydrological dynamics control transport in these locations. We pose several mechanisms by which dynamic hydrology and geologic setting interact that may explain the observed behavior. We interpret time-invariant transport as an indication that discharge in the surface stream is a poor predictor of exchange along the stream-hyporheic-riparian-hillslope continuum in headwater valleys. As such, models able to account for the transition from geologically-dominated processes in the near-stream subsurface to hydrologically-dominated processes near the hillslope are required to predict transport and fate in valley bottoms of headwater mountain streams.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-08
... Environmental Impact Statement for the `[Imacr]ao Stream Flood Control Project, Wailuku, Maui, HI AGENCY... Project, Wailuku, Maui, HI. This effort is being proposed under Section 203 of the Flood Control Act of...), Building 230, Fort Shafter, HI 96858- 5440. Submit electronic comments to [email protected] . FOR...
Downhole material injector for lost circulation control
Glowka, D.A.
1991-01-01
This invention is comprised of an apparatus and method for simultaneously and separately emplacing two streams of different materials through a drillstring in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drillstring at the desired downhole location and harden only after mixing for control of a lost circulation zone.
Downhole material injector for lost circulation control
Glowka, D.A.
1994-09-06
Apparatus and method are disclosed for simultaneously and separately emplacing two streams of different materials through a drill string in a borehole to a downhole location for lost circulation control. The two streams are mixed outside the drill string at the desired downhole location and harden only after mixing for control of a lost circulation zone. 6 figs.
Kristopher Brown; Kevin J. McGuire; W. Michael Aust; W. Cully Hession; C. Andrew Dolloff
2014-01-01
Direct sediment inputs from forest roads at stream crossings are a major concern for water quality and aquatic habitat. Legacy roadâstream crossing approaches, or the section of road leading to the stream, may have poor water and grade control upon reopening, thus increasing the potential for negative impacts to water quality. Rainfall simulation experiments were...
J.L. Tank; P.J. Mulholland; J.L. Meyer; W.B. Bowden; J.R. Webster; B.J. Peterson
2000-01-01
Nitrogen is a critical element controlling the productivity and dynamics of stream ecosystems and many streams are limited by the supply of biologically available nitrogen (e.g. Grimm & Fisher 1986, Lohman et al. 1991). We are learning more about the fate of inorganic nitrogen entering streams through 15N tracer additions (Peterson et al....
Agricultural land use alters the seasonality and magnitude of stream metabolism
Streams are active processors of organic carbon; however, spatial and temporal variation in the rates and controls on metabolism are not well quantified in streams draining intensively-farmed landscapes. We present a comprehensive dataset of gross primary production (GPP) and ec...
GEOMORPHIC CONTROLS ON C AND N PROCESSING IN A RESTORED URBAN STREAM; POWER POINT PRESENTATION
Stream channel incision due to hydraulic alteration stemming from urbanization may cause a disconnection between the stream channel and the adjacent floodplain. This disconnection may inhibit removal of nitrate via denitrification and/or stimulate nitrate production through nitr...
Sequential Tests of Multiple Hypotheses Controlling Type I and II Familywise Error Rates
Bartroff, Jay; Song, Jinlin
2014-01-01
This paper addresses the following general scenario: A scientist wishes to perform a battery of experiments, each generating a sequential stream of data, to investigate some phenomenon. The scientist would like to control the overall error rate in order to draw statistically-valid conclusions from each experiment, while being as efficient as possible. The between-stream data may differ in distribution and dimension but also may be highly correlated, even duplicated exactly in some cases. Treating each experiment as a hypothesis test and adopting the familywise error rate (FWER) metric, we give a procedure that sequentially tests each hypothesis while controlling both the type I and II FWERs regardless of the between-stream correlation, and only requires arbitrary sequential test statistics that control the error rates for a given stream in isolation. The proposed procedure, which we call the sequential Holm procedure because of its inspiration from Holm’s (1979) seminal fixed-sample procedure, shows simultaneous savings in expected sample size and less conservative error control relative to fixed sample, sequential Bonferroni, and other recently proposed sequential procedures in a simulation study. PMID:25092948
Future climates may warm stream temperatures altering aquatic communities and threatening socioeconomically-important species. These impacts will vary across large spatial extents and require special evaluation tools. Statistical stream network models (SSNs) account for spatial a...
The physical behavior and geologic control of radon in mountain streams
Rogers, Allen S.
1956-01-01
Radon measurement were made in several small, turbulent mountain streams in the Wasatch Mountains near Salt Lake City and Ogden, Utah, to determine the relationship between the distribution of radon and its geologic environment. In this area, the distribution of radon in streams can be sued to locate points where relatively large amounts of radon-bearing ground water enter the stream, although other evidence of spring activity may be lacking. These points of influence ground water are marked by abrupt increases (as much as two orders of magnitude within a distance of 50 feet) in the radon content of the stream waters. The excess radon in the stream water is then rapidly lost to the atmosphere through stream turbulence. The rate of radon dissipation is an exponential function, of different slopes, with respect to distance of streamflow, and depend upon the rate and volume of streamflow, and the gradient and nature of the stream channel. The higher radon concentration can be generally related to specific stratigraphic horizons in several different drainage area. Thus, lithologic units which act as the primary aquifers can be identifies. In one area, thrust faults were found to control he influx of ground water into the stream. Estimates, based on radon concentration in stream and related spring waters, can also be made of the major increments of addition of ground water to streamflow where conventional methods such as stream gaging are not practical. The radon in the waters studied was found to be almost completely unsupported by radium in solution.
Wigington, P.J.; DeWalle, David R.; Murdoch, Peter S.; Kretser, W.A.; Simonin, H.A.; Van Sickle, J.; Baker, J.P.
1996-01-01
As part of the Episodic Response Project (ERP), we intensively monitored discharge and stream chemistry of 13 streams located in the Northern Appalachian region of Pennsylvania and in the Catskill and Adirondack Mountains of New York from fall 1988 to spring 1990. The ERP clearly documented the occurrence of acidic episodes with minimum episodic pH ??? 5 and inorganic monomeric Al (Alim) concentrations >150 ??g/L in at least two study streams in each region. Several streams consistently experienced episodes with maximum Alim concentrations >350 ??g/L. Acid neutralizing capacity (ANC) depressions resulted from complex interactions of multiple ions. Base cation decreases often made the most important contributions to ANC depressions during episodes. Organic acid pulses were also important contributors to ANC depressions in the Adirondack streams, and to a lesser extent, in the Catskill and Pennsylvania streams. Nitrate concentrations were low in the Pennsylvania streams, whereas the Catskill and Adirondack study streams had high NO3- concentrations and large episodic pulses (???54 ??eq/L). Most of the Pennsylvania study streams also frequently experienced episodic pulses of SO42- (???78 ??eq/L), whereas the Adirondack and Catskill streams did not. High baseline concentrations of SO42- (all three study areas) and NO3- (Adirondacks and Catskills) reduced episodic minimum ANC, even when these ions did not change during episodes. The ion changes that controlled the most severe episodes (lowest minimum episodic ANC) differed from the ion changes most important to smaller, more frequent episodes. Pulses of NO3- (Catskills and Adirondacks), SO42- (Pennsylvania), or organic acids became more important during major episodes. Overall, the behavior of streamwater SO42- and NO4- is an indicator that acidic deposition has contributed to the severity of episodes in the study streams.
NASA Astrophysics Data System (ADS)
Gebreslase, A. K.; Abdul-Aziz, O. I.
2017-12-01
Dynamics of coastal stream water quality is influenced by a multitude of interacting environmental drivers. A systematic data analytics approach was employed to determine the relative linkages of stream dissolved oxygen (DO) with the hydroclimatic and biogeochemical variables across the Gulf Coast of U.S.A. Multivariate pattern recognition techniques of PCA and FA, alongside Pearson's correlation matrix, were utilized to examine the interrelation of variables at 36 water quality monitoring stations from USGS NWIS and EPA STORET databases. Power-law based partial least square regression models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to estimate the relative linkages of dissolved oxygen with the hydroclimatic and biogeochemical variables by appropriately resolving multicollinearity (Nash-Sutcliffe efficiency = 0.58-0.94). Based on the dominant drivers, stations were divided into four environmental regimes. Water temperature was the dominant driver of DO in the majority of streams, representing most the northern part of Gulf Coast states. However, streams in the southern part of Texas and Florida showed a dominant pH control on stream DO. Further, streams representing the transition zone of the two environmental regimes showed notable controls of multiple drivers (i.e., water temperature, stream flow, and specific conductance) on the stream DO. The data analytics research provided profound insight to understand the dynamics of stream DO with the hydroclimatic and biogeochemical variables. The knowledge can help water quality managers in formulating plans for effective stream water quality and watershed management in the U.S. Gulf Coast. Keywords Data analytics, coastal streams, relative linkages, dissolved oxygen, environmental regimes, Gulf Coast, United States.
Upgrade of U.S. EPA's Experimental Stream Facility Supervisory Control and Data Acquisition System
The Supervisory control and data acquisition (SCADA) system for the U.S. EPA’s Experimental Stream Facility (ESF) was upgraded using Camile hardware and software in 2015. The upgrade added additional hardwired connections, new wireless capabilities, and included a complete rewrit...
The composition of riparian meadow vegetation is controlled by access to groundwater. Depth to groundwater is controlled by meadow architecture and water source, and changes in either meadow architecture or water source through stream incision or changes in annual precipitation c...
Ultrasonics and Optics Would Control Shot Size
NASA Technical Reports Server (NTRS)
Morrison, A. D.
1983-01-01
Feedback system assures production of silicon shot of uniform size. Breakup of silicon stream into drops is controlled, in part, by varying frequency of vibrations imparted to stream by ultrasonic transducer. Drop size monitored by photodetector. Control method particularly advantageous in that constant size is maintained even while other process variables are changed deliberately or inadvertently. Applicable to materials other than silicon.
Michael N. Gooseff; Justin K. Anderson; Steven M. Wondzell; Justin LaNier; Roy Haggerty
2005-01-01
Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the...
Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.
2018-01-01
Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.
Quantifying nutrient sources in an upland catchment using multiple chemical and isotopic tracers
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.; Kendall, C.; Aiken, G. R.
2006-12-01
To explore processes that control the temporal variation of nutrients in surface waters, we measured multiple environmental tracers at the Sleepers River Research Watershed, an upland catchment in northeastern Vermont, USA. Using a set of high-frequency stream water samples, we quantified the variation of nutrients over a range of stream flow conditions with chemical and isotopic tracers of water, nitrate, and dissolved organic carbon (DOC). Stream water concentrations of nitrogen (predominantly in the forms of nitrate and dissolved organic nitrogen) and DOC reflected mixing of water contributed from distinct sources in the forested landscape. Water isotopic signatures and end-member mixing analysis revealed when solutes entered the stream from these sources and that the sources were linked to the stream by preferential shallow subsurface and overland flow paths. Results from the tracers indicated that freshly-leached, terrestrial organic matter was the overwhelming source of high DOC concentrations in stream water. In contrast, in this region where atmospheric nitrogen deposition is chronically elevated, the highest concentrations of stream nitrate were attributable to atmospheric sources that were transported via melting snow and rain fall. These findings are consistent with a conceptual model of the landscape in which coupled hydrological and biogeochemical processes interact to control stream solute variability over time.
Laurentide glacial landscapes: the role of ice streams
Patterson, C.J.
1998-01-01
Glacial landforms of the North American prairie can be divided into two suites that result from different styles of ice flow: 1) a lowland suite of level-to-streamlined till consistent with formation beneath ice streams, and 2) an upland and lobe-margin suite of thick, hummocky till and glacial thrust blocks consistent with formation at ice-stream and ice-lobe margins. Southern Laurentide ice lobes hypothetically functioned as outlets of ice streams. Broad branching lowlands bounded by escarpments mark the stable positions of the ice streams that fed the lobes. If the lobes and ice streams were similar to modern ice streams, their fast flow was facilitated by high subglacial water pressure. Favorable geology and topography in the midcontinent encouraged nonuniform ice flow and controlled the location of ice streams and outlet lobes.
Effects of reduced-impact logging on fish assemblages in central Amazonia.
Dias, Murilo S; Magnusson, William E; Zuanon, Jansen
2010-02-01
In Amazonia reduced-impact logging, which is meant to reduce environmental disturbance by controlling stem-fall directions and minimizing construction of access roads, has been applied to large areas containing thousands of streams. We investigated the effects of reduced-impact logging on environmental variables and the composition of fish in forest streams in a commercial logging concession in central Amazonia, Amazonas State, Brazil. To evaluate short-term effects, we sampled 11 streams before and after logging in one harvest area. We evaluated medium-term effects by comparing streams in 11 harvest areas logged 1-8 years before the study with control streams in adjacent areas. Each sampling unit was a 50-m stream section. The tetras Pyrrhulina brevis and Hemigrammus cf. pretoensis had higher abundances in plots logged > or =3 years before compared with plots logged <3 years before. The South American darter (Microcharacidium eleotrioides) was less abundant in logged plots than in control plots. In the short term, the overall fish composition did not differ two months before and immediately after reduced-impact logging. Temperature and pH varied before and after logging, but those differences were compatible with normal seasonal variation. In the medium term, temperature and cover of logs were lower in logged plots. Differences in ordination scores on the basis of relative fish abundance between streams in control and logged areas changed with time since logging, mainly because some common species increased in abundance after logging. There was no evidence of species loss from the logging concession, but differences in log cover and ordination scores derived from relative abundance of fish species persisted even after 8 years. For Amazonian streams, reduced-impact logging appears to be a viable alternative to clear-cut practices, which severely affect aquatic communities. Nevertheless, detailed studies are necessary to evaluated subtle long-term effects.
Exploring the impact of big data in economic geology using cloud-based synthetic sensor networks
NASA Astrophysics Data System (ADS)
Klump, J. F.; Robertson, J.
2015-12-01
In a market demanding lower resource prices and increasing efficiencies, resources companies are increasingly looking to the realm of real-time, high-frequency data streams to better measure and manage their minerals processing chain, from pit to plant to port. Sensor streams can include real-time drilling engineering information, data streams from mining trucks, and on-stream sensors operating in the plant feeding back rich chemical information. There are also many opportunities to deploy new sensor streams - unlike environmental monitoring networks, the mine environment is not energy- or bandwidth-limited. Although the promised efficiency dividends are inviting, the path to achieving these is difficult to see for most companies. As well as knowing where to invest in new sensor technology and how to integrate the new data streams, companies must grapple with risk-laden changes to their established methods of control to achieve maximum gains. What is required is a sandbox data environment for the development of analysis and control strategies at scale, allowing companies to de-risk proposed changes before actually deploying them to a live mine environment. In this presentation we describe our approach to simulating real-time scaleable data streams in a mine environment. Our sandbox consists of three layers: (a) a ground-truth layer that contains geological models, which can be statistically based on historical operations data, (b) a measurement layer - a network of RESTful synthetic sensor microservices which can simulate measurements of ground-truth properties, and (c) a control layer, which integrates the sensor streams and drives the measurement and optimisation strategies. The control layer could be a new machine learner, or simply a company's existing data infrastructure. Containerisation allows rapid deployment of large numbers of sensors, as well as service discovery to form a dynamic network of thousands of sensors, at a far lower cost than physically building the network.
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2014 CFR
2014-07-01
... (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream... regeneration 2. For each regeneration cycle, record the maximum carbon bed-temperature. 3. Temperature of...
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2013 CFR
2013-07-01
... (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream... regeneration 2. For each regeneration cycle, record the maximum carbon bed-temperature. 3. Temperature of...
40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...
40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...
40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...
40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...
40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...
40 CFR 63.146 - Process wastewater provisions-reporting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...
40 CFR 63.146 - Process wastewater provisions-reporting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...
40 CFR 63.146 - Process wastewater provisions-reporting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...
40 CFR 63.146 - Process wastewater provisions-reporting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...
Partitioning Hydrologic and Biological Drivers of Discharge Loss in Arctic Headwater Streams
NASA Astrophysics Data System (ADS)
Koch, J. C.; Carey, M.; O'Donnell, J. A.; Records, M. K.; Sjoberg, Y.; Zimmerman, C. E.
2017-12-01
The Arctic-Boreal transition (ABT) zone of Alaska is experiencing unprecedented warming, leading to permafrost thaw and vegetation change. Both of these processes are likely to affect streams and stream ecosystems, but there is little direct empirical evidence regarding the magnitude of these effects and their relative importance. To understand how permafrost thaw and vegetation are affecting streams at the ABT, we monitored 8 first-order streams that drain catchments varying in elevation, aspect, and vegetation cover. Data were obtained from meteorological stations, continuous stream discharge, seepage runs, and stream tracer experiments. Hydrograph analysis indicated that runoff ratios in south-facing catchments were lower than north-facing catchments and decreased over the season. Seepage runs indicated that south-facing catchments lost a large portion of water (up to 50% per km stream reach) in the late summer, while north-facing catchments were gaining water. All streams displayed diel variability in discharge, but with different daily and seasonal trends related to aspect and elevation. South-facing, forested catchment streams showed diel discharge timing consistent with cycles in evapotranspiration rates, while the signal in north-facing catchments and those dominated by tundra was more consistent with thermal controls on water viscosity and groundwater discharge to streams. Together, these signals indicate that the warmer, south-facing catchments are losing a large portion of water to a combination of infiltration and evapotranspiration. The seasonal trends are consistent with higher infiltration rates beneath south-facing streams as the ground thaws over the summer. The magnitude and seasonal dynamics of the diel signatures help separate biological (i.e. evapotranspiration) vs. physical controls (i.e. frozen ground hydrology) on stream-catchment interactions, which vary depending on aspect, elevation, and vegetation cover. Warming, and subsequent increases in infiltration and evapotranspiration rates may cause some south-facing streams to become ephemeral in the near future. This infiltration feeds aquifers and ultimately larger rivers, potentially explaining hydrograph shifts observed on the larger, river scale in permafrost environments.
NASA Astrophysics Data System (ADS)
Spänhoff, Bernd; Riss, Wolfgang; Jäkel, Paul; Dakkak, Nadja; Meyer, Elisabeth I.
2006-02-01
A straightened stream stretch with poor habitat heterogeneity was divided into a “control” section with a low amount of submerged woody debris and an experimentally “wood-enriched” downstream section to study the effect of enhanced habitat diversity on the benthic invertebrate community. The downstream section was enriched by fixing 25 wood packages constructed from 9-10 branches on the stream bottom. Succession processes occurring in the two stream sections were compared by chironomid exuviae drift from July to November 2000 and from April to August 2001. During the first sampling period, more drifting chironomid exuviae (medians of control vs. wood-enriched: 446 vs. 331, no significant difference) and total number of taxa (44 vs. 36, Wilcoxon signed-rank test P = 0.019) were recorded for the control section. Although species compositions of both stream sections were highly similar (Sørensen index: 0.83) the diversity in the wood-enriched section was distinctly lower compared to the control section (Shannon-Weaver index: 1.19 vs. 1.50). During the second sampling period, exuviae numbers remained higher in the control section (median: 326 vs. 166), but total numbers of taxa were nearly equal (51 vs. 49), as well as species diversity (Shannon-Weaver index: 1.67 vs. 1.64). The lower chironomid diversity observed during the first sampling period coincided with a gradual but significant change of the streambed morphology in the wood-enriched section. There, the initially more U-shaped profile (V/U = 0.81 ± 0.37) had turned into a pronounced V shape (V/U = 1.14 ± 0.21), whereas the control section retained its unaltered U shape (V/U = 0.62-0.75). This small-scale study on experimental of woody debris in sandy lowland streams showed that the negative impact of increased hydraulic disturbance of the existing streambed more than outweighed any positive impact resulting from the increase in woody debris.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and Group 1/Group 2 determinations (determining which wastewater streams require control). (a... methods and procedures for determining applicability and Group 1/Group 2 determinations (determining which wastewater streams require control). 63.144 Section 63.144 Protection of Environment ENVIRONMENTAL PROTECTION...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and Group 1/Group 2 determinations (determining which wastewater streams require control). (a... methods and procedures for determining applicability and Group 1/Group 2 determinations (determining which wastewater streams require control). 63.144 Section 63.144 Protection of Environment ENVIRONMENTAL PROTECTION...
Code of Federal Regulations, 2014 CFR
2014-07-01
... and Group 1/Group 2 determinations (determining which wastewater streams require control). (a... methods and procedures for determining applicability and Group 1/Group 2 determinations (determining which wastewater streams require control). 63.144 Section 63.144 Protection of Environment ENVIRONMENTAL PROTECTION...
Code of Federal Regulations, 2011 CFR
2011-07-01
... and Group 1/Group 2 determinations (determining which wastewater streams require control). (a... methods and procedures for determining applicability and Group 1/Group 2 determinations (determining which wastewater streams require control). 63.144 Section 63.144 Protection of Environment ENVIRONMENTAL PROTECTION...
Code of Federal Regulations, 2012 CFR
2012-07-01
... and Group 1/Group 2 determinations (determining which wastewater streams require control). (a... methods and procedures for determining applicability and Group 1/Group 2 determinations (determining which wastewater streams require control). 63.144 Section 63.144 Protection of Environment ENVIRONMENTAL PROTECTION...
NASA Astrophysics Data System (ADS)
Marcarelli, A. M.
2005-05-01
To test the importance of factors controlling N-fixation in subalpine streams, I conducted a stream-side mesocosm experiment with epilithic communities and nutrient diffusing substrates (NDS) to test how temperature and nutrients interact to influence algal communities. Within two days, warm temperature (18°C) stimulated N-fixation by Calothrix in the epilithic community 2X above cold temperature (13°C), indicating a strong physiological response. Community responses measured on NDS indicated that cold-water diatoms dominated by day 45 in the cold treatment, while diatoms containing N-fixing endosymbionts dominated only in warm treatments with added phosphorus. There was a significant interaction between nutrient supply and temperature on N-fixation rates in the experiment. On nutrient controls, warm temperature boosted fixation 2X above cold temperature, but when P was added, temperature increased fixation 20X. This study indicates that N-fixation is stimulated both by temperature and nutrients in this stream, but the magnitude of response to phosphorus was much greater than to temperature. Furthermore, our results support the hypothesis that biological characteristics in streams, including community structure and biogeochemical processes, can be altered in complex ways by disturbances like grazing and logging that alter multiple controlling factors simultaneously.
NASA Astrophysics Data System (ADS)
Jiang, Changlong; Ma, Cheng; He, Ning; Zhang, Xugang; Wang, Chongyang; Jia, Huibo
2002-12-01
In many real-time fields the sustained high-speed data recording system is required. This paper proposes a high-speed and sustained data recording system based on the complex-RAID 3+0. The system consists of Array Controller Module (ACM), String Controller Module (SCM) and Main Controller Module (MCM). ACM implemented by an FPGA chip is used to split the high-speed incoming data stream into several lower-speed streams and generate one parity code stream synchronously. It also can inversely recover the original data stream while reading. SCMs record lower-speed streams from the ACM into the SCSI disk drivers. In the SCM, the dual-page buffer technology is adopted to implement speed-matching function and satisfy the need of sustainable recording. MCM monitors the whole system, controls ACM and SCMs to realize the data stripping, reconstruction, and recovery functions. The method of how to determine the system scale is presented. At the end, two new ways Floating Parity Group (FPG) and full 2D-Parity Group (full 2D-PG) are proposed to improve the system reliability and compared with the Traditional Parity Group (TPG). This recording system can be used conveniently in many areas of data recording, storing, playback and remote backup with its high-reliability.
Louhi, Pauliina; Mykrä, Heikki; Paavola, Riku; Huusko, Ari; Vehanen, Teppo; Mäki-Petäys, Aki; Muotka, Timo
2011-09-01
The primary focus of many in-stream restoration projects is to enhance habitat diversity for salmonid fishes, yet the lack of properly designed monitoring studies, particularly ones with pre-restoration data, limits any attempts to assess whether restoration has succeeded in improving salmonid habitat. Even less is known about the impacts of fisheries-related restoration on other, non-target biota. We examined how restoration aiming at the enhancement of juvenile brown trout (Salmo trutta L.) affects benthic macroinvertebrates, using two separate data sets: (1) a before-after-control-impact (BACI) design with three years before and three after restoration in differently restored and control reaches of six streams; and (2) a space-time substitution design including channelized, restored, and near-natural streams with an almost 20-year perspective on the recovery of invertebrate communities. In the BACI design, total macroinvertebrate density differed significantly from before to after restoration. Following restoration, densities decreased in all treatments, but less so in the controls than in restored sections. Taxonomic richness also decreased from before to after restoration, but this happened similarly in all treatments. In the long-term comparative study, macroinvertebrate species richness showed no difference between the channel types. Community composition differed significantly between the restored and natural streams, but not between restored and channelized streams. Overall, the in-stream restoration measures used increased stream habitat diversity but did not enhance benthic biodiversity. While many macroinvertebrates may be dispersal limited, our study sites should not have been too distant to reach within almost two decades. A key explanation for the weak responses by macroinvertebrate communities may have been historical. When Fennoscandian streams were channelized for log floating, the loss of habitat heterogeneity was only partial. Therefore, habitat may not have been limiting the macroinvertebrate communities to begin with. Stream restoration to support trout fisheries has strong public acceptance in Finland and will likely continue to increase in the near future. Therefore, more effort should be placed on assessing restoration success from a biodiversity perspective using multiple organism groups in both stream and riparian ecosystems.
NASA Astrophysics Data System (ADS)
Leach, J.; Moore, D.
2015-12-01
Winter stream temperature of coastal mountain catchments influences fish growth and development. Transient snow cover and advection associated with lateral throughflow inputs are dominant controls on stream thermal regimes in these regions. Existing stream temperature models lack the ability to properly simulate these processes. Therefore, we developed and evaluated a conceptual-parametric catchment-scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model provided reasonable estimates of observed stream temperature at three test catchments. We used the model to simulate winter stream temperature for virtual catchments located at different elevations within the rain-on-snow zone. The modelling exercise examined stream temperature response associated with interactions between elevation, snow regime, and changes in air temperature. Modelling results highlight that the sensitivity of winter stream temperature response to changes in climate may be dependent on catchment elevation and landscape position.
Factoring stream turbulence into global assessments of nitrogen pollution.
Grant, Stanley B; Azizian, Morvarid; Cook, Perran; Boano, Fulvio; Rippy, Megan A
2018-03-16
The discharge of excess nitrogen to streams and rivers poses an existential threat to both humans and ecosystems. A seminal study of headwater streams across the United States concluded that in-stream removal of nitrate is controlled primarily by stream chemistry and biology. Reanalysis of these data reveals that stream turbulence (in particular, turbulent mass transfer across the concentration boundary layer) imposes a previously unrecognized upper limit on the rate at which nitrate is removed from streams. The upper limit closely approximates measured nitrate removal rates in streams with low concentrations of this pollutant, a discovery that should inform stream restoration designs and efforts to assess the effects of nitrogen pollution on receiving water quality and the global nitrogen cycle. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Upland and in-stream controls on baseflow nutrient dynamics in tile-drained agroecosystem watersheds
NASA Astrophysics Data System (ADS)
Ford, William I.; King, Kevin; Williams, Mark R.
2018-01-01
In landscapes with low residence times (e.g., rivers and reservoirs), baseflow nutrient concentration dynamics during sensitive timeframes can contribute to deleterious environmental conditions downstream. This study assessed upland and in-stream controls on baseflow nutrient concentrations in a low-gradient, tile-drained agroecosystem watershed. We conducted time-series analysis using Empirical mode decomposition of seven decade-long nutrient concentration time-series in the agricultural Upper Big Walnut Creek watershed (Ohio, USA). Four tributaries of varying drainage areas and three main-stem sites were monitored, and nutrient grab samples were collected weekly from 2006 to 2016 and analyzed for dissolved reactive phosphorus (DRP), nitrate-nitrogen (NO3-N), total nitrogen (TN), and total phosphorus (TP). Statistically significant seasonal fluctuations were compared with seasonality of baseflow, watershed characteristics (e.g., tile-drain density), and in-stream water quality parameters (pH, DO, temperature). Findings point to statistically significant seasonality of all parameters with peak P concentrations in summer and peak N in late winter-early spring. Results suggest that upland processes exert strong control on DRP concentrations in the winter and spring months, while coupled upland and in-stream conditions control watershed baseflow DRP concentrations during summer and early fall. Conversely, upland flow sources driving streamflow exert strong control on baseflow NO3-N, and in-stream attenuation through transient and permanent pathways impacts the magnitude of removal. Regarding TN and TP, we found that TN was governed by NO3-N, while TP was governed by DRP in summer and fluvial erosion of P-rich benthic sediments during higher baseflow conditions. Findings of the study highlight the importance of coupled in-stream and upland management for mitigating eutrophic conditions during environmentally sensitive timeframes.
Stream-groundwater exchange and hydrologic turnover at the network scale
NASA Astrophysics Data System (ADS)
Covino, Tim; McGlynn, Brian; Mallard, John
2011-12-01
The exchange of water between streams and groundwater can influence stream water quality, hydrologic mass balances, and attenuate solute export from watersheds. We used conservative tracer injections (chloride, Cl-) across 10 stream reaches to investigate stream water gains and losses from and to groundwater at larger spatial and temporal scales than typically associated with hyporheic exchanges. We found strong relationships between reach discharge, median tracer velocity, and gross hydrologic loss across a range of stream morphologies and sizes in the 11.4 km2 Bull Trout Watershed of central ID. We implemented these empirical relationships in a numerical network model and simulated stream water gains and losses and subsequent fractional hydrologic turnover across the stream network. We found that stream gains and losses from and to groundwater can influence source water contributions and stream water compositions across stream networks. Quantifying proportional influences of source water contributions from runoff generation locations across the network on stream water composition can provide insight into the internal mechanisms that partially control the hydrologic and biogeochemical signatures observed along networks and at watershed outlets.
Effect of emergent aquatic insects on bat foraging in a riparian forest.
Fukui, Dai; Murakami, Masashi; Nakano, Shigeru; Aoi, Toshiki
2006-11-01
1. Riparian zones serve several ecological functions for bats. They provide a source of prey and likely provide favourable structural habitats and shelter from predators. Many studies have shown that bats use the space above streams, ponds or riparian vegetation as feeding habitat. These studies, however, have never distinguished between the effects of habitat structure and prey availability on the foraging activities of bats. Such effects can only be distinguished by an experimental approach. We predicted that bat activity along a stream is influenced by the number of emerged aquatic insects. 2. We evaluated the response of terrestrial consumers, insectivorous bats, to changes in the abundance of emergent aquatic insects by conducting a manipulative field experiment. In a deciduous riparian forest in Japan, aquatic insect flux from the stream to the riparian zone was controlled with an insect-proof cover over a 1.2 km stream reach. 3. We estimated the abundance of emergent aquatic and flying terrestrial arthropods near the treatment and control reaches using Malaise traps. The foraging activity of bats was evaluated in both treatment and control reaches using ultrasonic detectors. 4. The insect-proof cover effectively reduced the flux of emergent aquatic insects to the riparian zone adjacent to the treatment reach. Adjacent to the control reach, adult aquatic insect biomass was highest in spring, and then decreased gradually. Terrestrial insect biomass increased gradually during the summer at both treatment and control reaches. 5. Foraging activity of bats was correlated with insect abundance. In spring, foraging activity of bats at the control reach was significantly greater than at the treatment reach, and increased at both sites with increasing terrestrial insect abundance. 6. Our result suggests that the flux of aquatic insects emerging from streams is one of the most important factors affecting the distribution of riparian-foraging bats. As is the case with other riparian consumers, resource subsidies from streams can directly enhance the performance or population density of riparian-dependent bats. To conserve and manage bat populations, it is important to protect not only forest ecosystems, but also adjacent aquatic systems such as streams.
NASA Astrophysics Data System (ADS)
Artigas, Joan; García-Berthou, Emili; Bauer, Delia E.; Castro, Maria I.; Cochero, Joaquín; Colautti, Darío C.; Cortelezzi, Agustina; Donato, John C.; Elosegi, Arturo; Feijoó, Claudia; Giorgi, Adonis; Gómez, Nora; Leggieri, Leonardo; Muñoz, Isabel; Rodrigues-Capítulo, Alberto; Romaní, Anna M.; Sabater, Sergi
2013-03-01
We assessed the effects of nutrient enrichment on three stream ecosystems running through distinct biomes (Mediterranean, Pampean and Andean). We increased the concentrations of N and P in the stream water 1.6-4-fold following a before-after control-impact paired series (BACIPS) design in each stream, and evaluated changes in the biomass of bacteria, primary producers, invertebrates and fish in the enriched (E) versus control (C) reaches after nutrient addition through a predictive-BACIPS approach. The treatment produced variable biomass responses (2-77% of explained variance) among biological communities and streams. The greatest biomass response was observed for algae in the Andean stream (77% of the variance), although fish also showed important biomass responses (about 9-48%). The strongest biomass response to enrichment (77% in all biological compartments) was found in the Andean stream. The magnitude and seasonality of biomass responses to enrichment were highly site specific, often depending on the basal nutrient concentration and on windows of ecological opportunity (periods when environmental constraints other than nutrients do not limit biomass growth). The Pampean stream, with high basal nutrient concentrations, showed a weak response to enrichment (except for invertebrates), whereas the greater responses of Andean stream communities were presumably favored by wider windows of ecological opportunity in comparison to those from the Mediterranean stream. Despite variation among sites, enrichment globally stimulated the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food webs (bacteria and invertebrate shredders). This study shows that nutrient enrichment tends to globally enhance the biomass of stream biological assemblages, but that its magnitude and extent within the food web are complex and are strongly determined by environmental factors and ecosystem structure.
Spatial and Temporal Dynamics of Carbon Fluxes in Glacial Meltwater Streams, Antarctica
NASA Astrophysics Data System (ADS)
Torrens, C.; Lyons, W. B.; McKnight, D. M.; Welch, K. A.; Gooseff, M. N.
2017-12-01
In the McMurdo Dry Valleys [MDV], Antarctica, glacial meltwater streams are the primary biogeochemical connectors linking glaciers, soils and lakes. These streams control the supply of nutrients and carbon to their terminal lakes, yet little is known about the magnitude, timing or distribution of these fluxes. The McMurdo Long Term Ecological Research project [MCM LTER] has collected over 20 years of sample data on dissolved organic and inorganic carbon in Taylor Valley streamwater; this is the first spatial and temporal analysis of this data. MDV streams are characterized by strong diel pulses in streamflow, specific electrical conductance, and temperature. Unlike temperate stream systems, there is no terrestrial vegetation, lateral overland flow or deep groundwater connection in MDV streams. As a result, the organic carbon is autochthonous, originating from stream microbial mats. Inorganic carbon is primarily bicarbonate; its source is hyporheic zone weathering. The carbonate system is in atmospheric equilibrium, reflecting the wide and shallow stream channels. Preliminary data show that the DOC flux varies with streamflow and is greater on the rising limb of the diel flow pulse. This pattern is more distinct in longer streams. DIC data does not show the same pattern, although the response may be blurred by a lag in hyporheic response to flood pulses and the lack of time-series data for alkalinity. Stream flood pulse dynamics control carbon loading to MDV lakes. As the climate changes, so will the timing and magnitude of diel flood pulses. This is likely to increase carbon loading to the Dry Valley lakes, altering the ecosystem carbon balance. This study increases our understanding of past and current patterns of carbon fluxes from streams to lakes; understanding past patterns will improve predictions of future changes.
NASA Astrophysics Data System (ADS)
Corrigan, A.; Silins, U.; Stone, M.
2016-12-01
Best management practices (BMPs) and associated erosion control measures for mitigating sediment impacts from forestry roads and road-stream crossings are well documented. While rapid road decommissioning after forestry operations may serve to limit broader impacts on sediment production in high value headwater streams, few studies have evaluated the combined effects of accelerated harvest operations and rapid retirement of logging roads and road-stream crossings on stream sediment. The objectives of this study were to evaluate the initial impacts of these strategies on fine sediment loading and fate during a short duration harvesting operation in 3 headwater sub-catchments in the southwestern Rocky Mountains of Alberta, Canada. A multi-pronged sampling approach (ISCOs, event focused grab sampling, continuous wash load sampling, and stream bed sediment intrusion measurements) was used to measure sediment loading and deposition in streambeds upstream and downstream of road-stream bridge crossings during harvest operations (2015) and after road and bridge crossing retirement (2016). Sediment production from forestry roads was generally much lower than has been reported from other studies in similar settings. Average total suspended solids (TSS) downstream of the bridge crossings were actually lower (-3.28 g/L; -0.704 g/L) than upstream of two bridge crossings while in-stream sediment sources contributed to elevated sediment downstream of a third road-stream crossing. Minimal in stream sediment impacts from forest harvest and road-stream crossings was likely a reflection of combined factors including a) employment of erosion control BMPs to roads and bridge crossings, b) rapid decommissioning of roads and crossings to limit exposure of linear land disturbance features, and c) drier El Niño climatic conditions during the study.
Stream succession: Channel changes after wildfire disturbance
Nicholas E. Scheidt
2006-01-01
One concept in geomorphology is that vegetation is a fundamental control on sediment and water supplies to streams and, therefore, on downstream fluvial processes and channel morphology. Within this paradigm, wildfire has been implicated as a major driving force behind landscape erosion and changes to stream channels, periodically yielding pulses of sediment from...
Recommendations for constructing forest stream crossings to control soil losses
Pamela J. Edwards; Jingxin Wang; Joshua T. Stedman
2009-01-01
Stream water samples were collected once daily and throughout storms from a small forested watershed in north central West Virginia for approximately 8 years. The turbidities of the samples were measured to determine how water quality changed in response to the construction of three associated stream crossings. The influence of the...
Physical consequences of large organic debris in Pacific Northwest streams.
Frederick J. Swanson; George W. Lienkaemper
1978-01-01
Large organic debris in streams controls the distribution of aquatic habitats, the routing of sediment through stream systems, and the stability of streambed and banks. Management activities directly alter debris loading by addition or removal of material and indirectly by increasing the probability of debris torrents and removing standing streamside trees. We propose...
Code of Federal Regulations, 2014 CFR
2014-07-01
... non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, capable of recording the total regeneration stream mass for each regeneration cycle. For non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device...
Code of Federal Regulations, 2013 CFR
2013-07-01
... non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, capable of recording the total regeneration stream mass for each regeneration cycle. For non-vacuum regeneration systems, an integrating regeneration stream flow monitoring device...
A riparian zone is the land and vegetation within and directly adjacent to surface water ecosystems, such as lakes and streams. The vegetation in riparian zones provides ecosystem services (such as reducing flooding and bank erosion and reducing levels of pollutants in streams) ...
Rosa, Sarah N.; Oki, Delwyn S.
2010-01-01
Reliable estimates of the magnitude and frequency of floods are necessary for the safe and efficient design of roads, bridges, water-conveyance structures, and flood-control projects and for the management of flood plains and flood-prone areas. StreamStats provides a simple, fast, and reproducible method to define drainage-basin characteristics and estimate the frequency and magnitude of peak discharges in Hawaii?s streams using recently developed regional regression equations. StreamStats allows the user to estimate the magnitude of floods for streams where data from stream-gaging stations do not exist. Existing estimates of the magnitude and frequency of peak discharges in Hawaii can be improved with continued operation of existing stream-gaging stations and installation of additional gaging stations for areas where limited stream-gaging data are available.
Alexander, Richard B.; Böhlke, John Karl; Boyer, Elizabeth W.; David, Mark B.; Harvey, Judson W.; Mulholland, Patrick J.; Seitzinger, Sybil P.; Tobias, Craig R.; Tonitto, Christina; Wollheim, Wilfred M.
2009-01-01
The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly equally to seasonal and stream-size related variations in the percentage of the stream nitrate flux removed in each watershed.
Pound, Katrina L; Lawrence, Gregory B.; Passy, Sophia I.
2013-01-01
For over 40 years, acid deposition has been recognized as a serious international environmental problem, but efforts to restore acidified streams and biota have had limited success. The need to better understand the effects of different sources of acidity on streams has become more pressing with the recent increases in surface water organic acids, or 'brownification' associated with climate change and decreased inorganic acid deposition. Here, we carried out a large scale multi-seasonal investigation in the Adirondacks, one of the most acid-impacted regions in the United States, to assess how acid stream producers respond to local and watershed influences and whether these influences can be used in acidification remediation. We explored the pathways of wetland control on aluminum chemistry and diatom taxonomic and functional composition. We demonstrate that streams with larger watershed wetlands have higher organic content, lower concentrations of acidic anions, and lower ratios of inorganic to organic monomeric aluminum, all beneficial for diatom biodiversity and guilds producing high biomass. Although brownification has been viewed as a form of pollution, our results indicate that it may be a stimulating force for biofilm producers with potentially positive consequences for higher trophic levels. Our research also reveals that the mechanism of watershed control of local stream diatom biodiversity through wetland export of organic matter is universal in running waters, operating not only in hard streams, as previously reported, but also in acid streams. Our findings that the negative impacts of acid deposition on Adirondack stream chemistry and biota can be mitigated by wetlands have important implications for biodiversity conservation and stream ecosystem management. Future acidification research should focus on the potential for wetlands to improve stream ecosystem health in acid-impacted regions and their direct use in stream restoration, for example, through stream rechanneling or wetland construction in appropriate hydrologic settings.
40 CFR 63.137 - Process wastewater provisions-oil-water separators.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (2) The control device shall be designed, operated, and inspected in accordance with the requirements... treats a Group 1 wastewater stream or a residual removed from a Group 1 wastewater stream, the owner or... air pollutants vapors vented from the oil-water separator to a control device. The fixed roof, closed...
40 CFR 63.134 - Process wastewater provisions-surface impoundments.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) The control device shall be designed, operated, and inspected in accordance with § 63.139 of this... treats a Group 1 wastewater stream or a residual removed from a Group 1 wastewater stream, the owner or... pollutants vapors vented from the surface impoundment to a control device in accordance with paragraph (b)(1...
40 CFR 63.134 - Process wastewater provisions-surface impoundments.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) The control device shall be designed, operated, and inspected in accordance with § 63.139 of this... treats a Group 1 wastewater stream or a residual removed from a Group 1 wastewater stream, the owner or... pollutants vapors vented from the surface impoundment to a control device in accordance with paragraph (b)(1...
40 CFR 63.134 - Process wastewater provisions-surface impoundments.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) The control device shall be designed, operated, and inspected in accordance with § 63.139 of this... treats a Group 1 wastewater stream or a residual removed from a Group 1 wastewater stream, the owner or... pollutants vapors vented from the surface impoundment to a control device in accordance with paragraph (b)(1...
40 CFR 63.134 - Process wastewater provisions-surface impoundments.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) The control device shall be designed, operated, and inspected in accordance with § 63.139 of this... treats a Group 1 wastewater stream or a residual removed from a Group 1 wastewater stream, the owner or... pollutants vapors vented from the surface impoundment to a control device in accordance with paragraph (b)(1...
COMPLEX CONDITIONAL CONTROL BY PIGEONS IN A CONTINUOUS VIRTUAL ENVIRONMENT
Qadri, Muhammad A. J.; Reid, Sean; Cook, Robert G.
2016-01-01
We tested two pigeons in a continuously streaming digital environment. Using animation software that constantly presented a dynamic, three-dimensional (3D) environment, the animals were tested with a conditional object identification task. The correct object at a given time depended on the virtual context currently streaming in front of the pigeon. Pigeons were required to accurately peck correct target objects in the environment for food reward, while suppressing any pecks to intermixed distractor objects which delayed the next object’s presentation. Experiment 1 established that the pigeons’ discrimination of two objects could be controlled by the surface material of the digital terrain. Experiment 2 established that the pigeons’ discrimination of four objects could be conjunctively controlled by both the surface material and topography of the streaming environment. These experiments indicate that pigeons can simultaneously process and use at least two context cues from a streaming environment to control their identification behavior of passing objects. These results add to the promise of testing interactive digital environments with animals to advance our understanding of cognition and behavior. PMID:26781058
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, W.L.
2000-02-28
The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams.
Controls on the early Holocene collapse of the Bothnian Sea Ice Stream
NASA Astrophysics Data System (ADS)
Clason, Caroline C.; Greenwood, Sarah L.; Selmes, Nick; Lea, James M.; Jamieson, Stewart S. R.; Nick, Faezeh M.; Holmlund, Per
2016-12-01
New high-resolution multibeam data in the Gulf of Bothnia reveal for the first time the subglacial environment of a Bothnian Sea Ice Stream. The geomorphological record suggests that increased meltwater production may have been important in driving rapid retreat of Bothnian Sea Ice during deglaciation. Here we apply a well-established, one-dimensional flow line model to simulate ice flow through the Gulf of Bothnia and investigate controls on retreat of the ice stream during the post-Younger Dryas deglaciation of the Fennoscandian Ice Sheet. The relative influence of atmospheric and marine forcings are investigated, with the modeled ice stream exhibiting much greater sensitivity to surface melting, implemented through surface mass balance and hydrofracture-induced calving, than to submarine melting or relative sea level change. Such sensitivity is supported by the presence of extensive meltwater features in the geomorphological record. The modeled ice stream does not demonstrate significant sensitivity to changes in prescribed ice stream width or overall bed slope, but local variations in basal topography and ice stream width result in nonlinear retreat of the grounding line, notably demonstrating points of short-lived retreat slowdown on reverse bed slopes. Retreat of the ice stream was most likely governed by increased ice surface meltwater production, with the modeled retreat rate less sensitive to marine forcings despite the marine setting.
HIV/AIDS policy agenda setting in Iran
Khodayari - Zarnaq, Rahim; Ravaghi, Hamid; Mohammad Mosaddeghrad, Ali; Sedaghat, Abbas; Mohraz, Minoo
2016-01-01
Background: HIV/AIDS control are one of the most important goals of the health systems. The aim of this study was to determine how HIV/AIDS control was initiated among policy makers’ agenda setting in Iran. Methods: A qualitative research (semi-structured interview) was conducted using Kingdon’s framework (problem, policy and politics streams, and policy windows and policy entrepreneurs) to analysis HIV/AIDS agenda setting in Iran. Thirty-two policy makers, managers, specialists, and researchers were interviewed. Also, 30 policy documents were analyzed. Framework analysis method was used for data analysis. Results: the increase of HIV among Injecting drug users (IDUs) and Female Sex Workers (FSWs), lack of control of their high-risk behaviors, and exceeding the HIV into concentrated phase were examples of problem stream. Policy stream was evidence-based solutions that highlighted the need for changing strategies for dealing with such a problem and finding technically feasible and acceptable solutions. Iran’s participation in United Nations General Assembly special sessions on HIV/AIDS (UNGASS), the establishment of National AIDS Committee; highlighting AIDS control in Iran’s five years development program and the support of the judiciary system of harm reduction policies were examples of politics stream. Policy entrepreneurs linking these streams put the HIV/AIDS on the national agenda (policy windows) and provide their solutions. Conclusion: There were mutual interactions among these three streams and sometimes, they weakened or reinforced each other. Future studies are recommended to understand the interactions between these streams’ parts and perhaps develop further Kingdon’s framework, especially in the health sector. PMID:27579283
Blindness alters the microstructure of the ventral but not the dorsal visual stream.
Reislev, Nina L; Kupers, Ron; Siebner, Hartwig R; Ptito, Maurice; Dyrby, Tim B
2016-07-01
Visual deprivation from birth leads to reorganisation of the brain through cross-modal plasticity. Although there is a general agreement that the primary afferent visual pathways are altered in congenitally blind individuals, our knowledge about microstructural changes within the higher-order visual streams, and how this is affected by onset of blindness, remains scant. We used diffusion tensor imaging and tractography to investigate microstructural features in the dorsal (superior longitudinal fasciculus) and ventral (inferior longitudinal and inferior fronto-occipital fasciculi) visual pathways in 12 congenitally blind, 15 late blind and 15 normal sighted controls. We also studied six prematurely born individuals with normal vision to control for the effects of prematurity on brain connectivity. Our data revealed a reduction in fractional anisotropy in the ventral but not the dorsal visual stream for both congenitally and late blind individuals. Prematurely born individuals, with normal vision, did not differ from normal sighted controls, born at term. Our data suggest that although the visual streams are structurally developing without normal visual input from the eyes, blindness selectively affects the microstructure of the ventral visual stream regardless of the time of onset. We suggest that the decreased fractional anisotropy of the ventral stream in the two groups of blind subjects is the combined result of both degenerative and cross-modal compensatory processes, affecting normal white matter development.
Controls on Nitrous Oxide Emissions from the Hyporheic Zones of Streams.
Quick, Annika M; Reeder, W Jeffery; Farrell, Tiffany B; Tonina, Daniele; Feris, Kevin P; Benner, Shawn G
2016-11-01
The magnitude and mechanisms of nitrous oxide (N 2 O) release from rivers and streams are actively debated. The complex interactions of hydrodynamic and biogeochemical controls on emissions of this important greenhouse gas preclude prediction of when and where N 2 O emissions will be significant. We present observations from column and large-scale flume experiments supporting an integrative model of N 2 O emissions from stream sediments. Our results show a distinct, replicable, pattern of nitrous oxide generation and consumption dictated by subsurface (hyporheic) residence times and biological nitrogen reduction rates. Within this model, N 2 O emission from stream sediments requires subsurface residence times (and microbially mediated reduction rates) be sufficiently long (and fast reacting) to produce N 2 O by nitrate reduction but also sufficiently short (or slow reacting) to limit N 2 O conversion to dinitrogen gas. Most subsurface exchange will not result in N 2 O emissions; only specific, intermediate, residence times (reaction rates) will both produce and release N 2 O to the stream. We also confirm previous observations that elevated nitrate and declining organic carbon reactivity increase N 2 O production, highlighting the importance of associated reaction rates in controlling N 2 O accumulation. Combined, these observations help constrain when N 2 O release will occur, providing a predictive link between stream geomorphology, hydrodynamics, and N 2 O emissions.
Controlled temperature expansion in oxygen production by molten alkali metal salts
Erickson, Donald C.
1985-06-04
A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.
Controlled temperature expansion in oxygen production by molten alkali metal salts
Erickson, D.C.
1985-06-04
A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power. 1 fig.
The Effect on Rudder Control of Slip Stream Body, and Ground Interference
NASA Technical Reports Server (NTRS)
Hood, H I; Bacon, D L
1922-01-01
This investigation was undertaken to determine the relative effects of those factors which may interfere with the rudder control of an airplane, with especial reference to the process of landing. It shows that ground interference is negligible, but that the effects of a large rounded body and of the slip stream may combine to interfere seriously with rudder control at low flying speeds and when taxiing.
Roadside-based communication system and method
NASA Technical Reports Server (NTRS)
Bachelder, Aaron D. (Inventor)
2007-01-01
A roadside-based communication system providing backup communication between emergency mobile units and emergency command centers. In the event of failure of a primary communication, the mobile units transmit wireless messages to nearby roadside controllers that may take the form of intersection controllers. The intersection controllers receive the wireless messages, convert the messages into standard digital streams, and transmit the digital streams along a citywide network to a destination intersection or command center.
Effects of pulse and press drying disturbance on benthic stream communities
Lynch, Dustin T.; Magoulick, Daniel D.
2016-01-01
Natural disturbance is an integral component of most ecosystems and occurs in 3 different forms: pulse, press, and ramp. In lotic ecosystems, seasonal drought is a major form of disturbance, particularly in intermittent headwater streams, which often are reduced to pools that serve as refuges for biota. We used simulated intermittent stream pools to compare the effects of control, pulse, and press drying on growth and survival in 3 fish species (Lepomis megalotis, Campostoma anomalum, and Etheostoma spectabile) commonly found together in drought-prone streams in the Ozark Highlands, USA. We also compared effects on benthic community structure, including periphyton and chironomid density and sediment in deep (permanently watered) and shallow (intermittently dewatered) habitat. Only one species, L. megalotis, showed a significant reduction in length and mass growth in press drying compared with control treatments. Drying and type of drying had no effect on survival of any fish species. Drying and type of drying had strong overall effects on periphyton growth in shallow habitats, where ash-free dry mass decreased and the autotrophic index (the ratio of chlorophyll a to total biomass) increased significantly in drying relative to control and in press relative to pulse treatments. Drying negatively affected sediment accumulation in shallow habitat and chironomid density in deep habitat. Drying in intermittent streams has species-dependent effects on fish growth and benthic structure, and pulse and press drying differ in their effects on periphyton in these systems. These effects may have important consequences in seasonally drying streams as anthropogenic influence on stream drying increases.
Nutrient enrichment of phosphorus and nitrogen is the second most cited cause for impairment of streams and rivers in the U.S. There is a need to develop stream nutrient criteria to control nutrient loadings. Since biotic metrics can assess the overall impact of nutrient enrichm...
Code of Federal Regulations, 2012 CFR
2012-07-01
... consistent with the manufacturer's recommendations within 15 days or by the next time any process vent stream... the manufacturer's recommendations within 15 days or by the next time any process vent stream is...) Determine gas stream flow using the design blower capacity, with appropriate adjustments for pressure drop...
K.J. Anlauf; D.W. Jensen; K.M. Burnett; E.A. Steel; K. Christiansen; J.C. Firman; B.E. Feist; D.P. Larsen
2011-01-01
1. The distribution and composition of in-stream habitats are reflections of landscape scale geomorphic and climatic controls. Correspondingly, Pacific salmon (Oncorhynchus spp.) are largely adapted to and constrained by the quality and complexity of those in-stream habitat conditions. The degree to which lands have been fragmented and managed can...
Hydrological connectivity of hillslopes and streams: characteristic time scales and nonlinearities
Kevin J. McGuire; Jeffrey J. McDonnell
2010-01-01
Subsurface flow from hillslopes is widely recognized as an important contributor to streamflow generation; however, processes that control how and when hillslopes connect to streams remain unclear. We investigated stream and hillslope runoff dynamics through a wet-up period in watershed 10 of the H. J. Andrews Experimental Forest in the western Cascades of Oregon where...
Alex D. Foster; Joan Ziegltrum
2013-01-01
We evaluated the abundance of riparian gastropod communities along headwater streams and their response to logging in southwestern Washington State. Terrestrial mollusks near logged streams with ~15 m fixed-width buffers were compared to logged streams with no buffers and to unlogged controls. Mollusk communities varied among sites relative to vegetative composition,...
Cassie D. Mellon; Mark S. Wipfli; Judith L. Li
2008-01-01
1. Recent increases in fire frequency in North America have focused interest on potential effects on adjacent ecosystems, induding streams. Headwaters could be particularly affected because of their high connectivity to riparian and downstream aquatic ecosystems through aquatic invertebrate drift and emergence. 2. Headwater streams from replicated burned and control...
North Fork Clear Creek (NFCC) in Colorado, an acid-mine drainage (AMD) impacted stream, was chosen to examine the distribution of dissolved and particulate Cu, Fe, Mn, and Zn in the water column, with respect to seasonal hydrologic controls. NFCC is a high-gradient stream with d...
The National Rivers and Streams Assessment (NRSA) is a statistical survey of flowing waters of the U.S. The purpose of this survey was to assess the condition of the nation's rivers and streams, establish a baseline to evaluate progress of pollution control activities in flowing...
Controls on patterns of coarse organic particle retention in headwater streams
E. N. Jack Brookshire; Kathleen A. Dwire
2003-01-01
Organic matter retention is an integral ecosystem process affecting C and nutrient dynamics and biota in streams. Influences of discharge (Q), reach-scale channel form, and riparian vegetation on coarse particulate organic matter (CPOM) retention were analyzed in 2 headwater streams in northeastern Oregon. Ginkgo biloba leaves were released in coniferous forest reaches...
Process and system for removing impurities from a gas
Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S
2014-04-15
A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.
Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, Ellen; Rathburn, Sara; Chignell, Stephen
We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less
Mapping longitudinal stream connectivity in the North St. Vrain Creek watershed of Colorado
Wohl, Ellen; Rathburn, Sara; Chignell, Stephen; ...
2016-05-06
We use reach-scale stream gradient as an indicator of longitudinal connectivity for water, sediment, and organic matter in a mountainous watershed in Colorado. Stream reaches with the highest gradient tend to have narrow valley bottoms with limited storage space and attenuation of downstream fluxes, whereas stream reaches with progressively lower gradients have progressively more storage and greater attenuation. We compared the distribution of stream gradient to stream-reach connectivity rankings that incorporated multiple potential control variables, including lithology, upland vegetation, hydroclimatology, road crossings, and flow diversions. We then assessed connectivity rankings using different weighting schemes against stream gradient and against field-basedmore » understanding of relative connectivity within the watershed. Here, we conclude that stream gradient, which is simple to map using publicly available data and digital elevation models, is the most robust indicator of relative longitudinal connectivity within the river network.« less
Electrophysiological Evidence for Ventral Stream Deficits in Schizophrenia Patients
Plomp, Gijs; Roinishvili, Maya; Chkonia, Eka; Kapanadze, George; Kereselidze, Maia; Brand, Andreas; Herzog, Michael H.
2013-01-01
Schizophrenic patients suffer from many deficits including visual, attentional, and cognitive ones. Visual deficits are of particular interest because they are at the fore-end of information processing and can provide clear examples of interactions between sensory, perceptual, and higher cognitive functions. Visual deficits in schizophrenic patients are often attributed to impairments in the dorsal (where) rather than the ventral (what) stream of visual processing. We used a visual-masking paradigm in which patients and matched controls discriminated small vernier offsets. We analyzed the evoked electroencephalography (EEG) responses and applied distributed electrical source imaging techniques to estimate activity differences between conditions and groups throughout the brain. Compared with controls, patients showed strongly reduced discrimination accuracy, confirming previous work. The behavioral deficits corresponded to pronounced decreases in the evoked EEG response at around 200 ms after stimulus onset. At this latency, patients showed decreased activity for targets in left parietal cortex (dorsal stream), but the decrease was most pronounced in lateral occipital cortex (in the ventral stream). These deficiencies occurred at latencies that reflect object processing and fine shape discriminations. We relate the reduced ventral stream activity to deficient top-down processing of target stimuli and provide a framework for relating the commonly observed dorsal stream deficiencies with the currently observed ventral stream deficiencies. PMID:22258884
Electrophysiological evidence for ventral stream deficits in schizophrenia patients.
Plomp, Gijs; Roinishvili, Maya; Chkonia, Eka; Kapanadze, George; Kereselidze, Maia; Brand, Andreas; Herzog, Michael H
2013-05-01
Schizophrenic patients suffer from many deficits including visual, attentional, and cognitive ones. Visual deficits are of particular interest because they are at the fore-end of information processing and can provide clear examples of interactions between sensory, perceptual, and higher cognitive functions. Visual deficits in schizophrenic patients are often attributed to impairments in the dorsal (where) rather than the ventral (what) stream of visual processing. We used a visual-masking paradigm in which patients and matched controls discriminated small vernier offsets. We analyzed the evoked electroencephalography (EEG) responses and applied distributed electrical source imaging techniques to estimate activity differences between conditions and groups throughout the brain. Compared with controls, patients showed strongly reduced discrimination accuracy, confirming previous work. The behavioral deficits corresponded to pronounced decreases in the evoked EEG response at around 200 ms after stimulus onset. At this latency, patients showed decreased activity for targets in left parietal cortex (dorsal stream), but the decrease was most pronounced in lateral occipital cortex (in the ventral stream). These deficiencies occurred at latencies that reflect object processing and fine shape discriminations. We relate the reduced ventral stream activity to deficient top-down processing of target stimuli and provide a framework for relating the commonly observed dorsal stream deficiencies with the currently observed ventral stream deficiencies.
NASA Astrophysics Data System (ADS)
Ågren, A.; Haei, M.; Öquist, M.; Buffam, I.; Ottosson-Löfvenius, M.; Kohler, S.; Bishop, K.; Blomkvist, P.; Laudon, H.
2011-12-01
Using 15 year stream records from two forested northern boreal catchments, coupled with soil frost experiments in the riparian zone, we demonstrate the complex inter-annual control on [DOC] and export during snowmelt. Stream [DOC] varied by a factor of 2 during those 15 years with no consistent trend. Based on our long-term analysis, we demonstrate, for the first time, that stream water [DOC] is strongly linked to the climatic conditions during the preceding winter, but that there is also a long-term memory effect in the catchment soils, related to the extent of the previous export from the catchment. Hydrology had a first order control on the inter-annual variation in concentrations, and the length of the winter was more important than the memory effect. By removing the effect of discharge on [DOC], using a conceptual hydrological model, we could detect processes that would otherwise have been overshadowed. A short and intense snowmelt gave higher [DOC] in the stream. During a prolonged snowmelt, one soil layer at the time might have been "flushed" from easily exported DOC, resulting in slightly lower stream [DOC] during such years. We found that longer and colder winters resulted in higher [DOC] during the subsequent snowmelt. A soil frost manipulation experiment in the riparian soils of the study catchment showed that the DOC concentrations in the soil water increased with the duration of the soil frost. A high antecedent DOC export during the preceding summer and autumn resulted in lower concentrations during the following spring, indicating a long-term "memory effect" of the catchment soils. In a nearby stream draining mire, we found a different response to hydrology but similar response to climate and memory effect. The inter-annual variation in snowmelt DOC exports was mostly controlled by the amount of runoff, but the variability in [DOC] also exerted a significant control on the exports, accounting for 15% of the variance in exports. We conclude that winter climatic conditions can play a substantial role in controlling stream [DOC] in ways not previously understood. These findings are especially important for northern latitude regions expected to be most affected by climate change. It's difficult to directly translate this to a future climate change prediction. If warmer winters with less insulating snow cover increase the soil frost, the results from the soil frost manipulation experiment then suggest increasing [DOC] in a future climate. At the same time the statistical analysis of the stream records suggest that a shorter and warmer winter would decrease the [DOC]. Our results do, however, highlight the role of winter climate for regulating DOC in areas with seasonally frozen soils which should be considered when resolving the sensitivity of stream [DOC] to global environmental change.
Two different streams form the dorsal visual system: anatomy and functions.
Rizzolatti, Giacomo; Matelli, Massimo
2003-11-01
There are two radically different views on the functional role of the dorsal visual stream. One considers it as a system involved in space perception. The other is of a system that codes visual information for action organization. On the basis of new anatomical data and a reconsideration of previous functional and clinical data, we propose that the dorsal stream and its recipient parietal areas form two distinct functional systems: the dorso-dorsal stream (d-d stream) and the ventro-dorsal stream (v-d stream). The d-d stream is formed by area V6 (main d-d extrastriate visual node) and areas V6A and MIP of the superior parietal lobule. Its major functional role is the control of actions "on line". Its damage leads to optic ataxia. The v-d stream is formed by area MT (main v-d extrastriate visual node) and by the visual areas of the inferior parietal lobule. As the d-d stream, v-d stream is responsible for action organization. It, however, also plays a crucial role in space perception and action understanding. The putative mechanisms linking action and perception in the v-d stream is discussed.
Process for simultaneous removal of SO.sub.2 and NO.sub.x from gas streams
Rosenberg, Harvey S.
1987-01-01
A process for simultaneous removal of SO.sub.2 and NO.sub.x from a gas stream that includes flowing the gas stream to a spray dryer and absorbing a portion of the SO.sub.2 content of the gas stream and a portion of the NO.sub.x content of the gas stream with ZnO by contacting the gas stream with a spray of an aqueous ZnO slurry; controlling the gas outlet temperature of the spray dryer to within the range of about a 0.degree. to 125.degree. F. approach to the adiabatic saturation temperature; flowing the gas, unreacted ZnO and absorbed SO.sub.2 and NO.sub.x from the spray dryer to a fabric filter and collecting any solids therein and absorbing a portion of the SO.sub.2 remaining in the gas stream and a portion of the NO.sub.x remaining in the gas stream with ZnO; and controlling the ZnO content of the aqueous slurry so that sufficient unreacted ZnO is present in the solids collected in the fabric filter to react with SO.sub.2 and NO.sub.x as the gas passes through the fabric filter whereby the overall feed ratio of ZnO to SO.sub.2 plus NO.sub.x is about 1.0 to 4.0 moles of ZnO per of SO.sub.2 and about 0.5 to 2.0 moles of ZnO per mole of NO.sub.x. Particulates may be removed from the gas stream prior to treatment in the spray dryer. The process further allows regeneration of ZnO that has reacted to absorb SO.sub.2 and NO.sub.x from the gas stream and acid recovery.
Process for simultaneous removal of SO[sub 2] and NO[sub x] from gas streams
Rosenberg, H.S.
1987-02-03
A process is described for simultaneous removal of SO[sub 2] and NO[sub x] from a gas stream that includes flowing the gas stream to a spray dryer and absorbing a portion of the SO[sub 2] content of the gas stream and a portion of the NO[sub x] content of the gas stream with ZnO by contacting the gas stream with a spray of an aqueous ZnO slurry; controlling the gas outlet temperature of the spray dryer to within the range of about a 0 to 125 F approach to the adiabatic saturation temperature; flowing the gas, unreacted ZnO and absorbed SO[sub 2] and NO[sub x] from the spray dryer to a fabric filter and collecting any solids therein and absorbing a portion of the SO[sub 2] remaining in the gas stream and a portion of the NO[sub x] remaining in the gas stream with ZnO; and controlling the ZnO content of the aqueous slurry so that sufficient unreacted ZnO is present in the solids collected in the fabric filter to react with SO[sub 2] and NO[sub x] as the gas passes through the fabric filter whereby the overall feed ratio of ZnO to SO[sub 2] plus NO[sub x] is about 1.0 to 4.0 moles of ZnO per of SO[sub 2] and about 0.5 to 2.0 moles of ZnO per mole of NO[sub x]. Particulates may be removed from the gas stream prior to treatment in the spray dryer. The process further allows regeneration of ZnO that has reacted to absorb SO[sub 2] and NO[sub x] from the gas stream and acid recovery. 4 figs.
40 CFR Table 5 of Subpart Bbbbbbb... - Reporting Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
... vent streams from equipment in target HAP service to a PM control device with a PM percent reduction efficiency of 95 percent (98 percent for new sources) or an outlet concentration of 0.03 gr/dscf or less a... requirement to route all process vent streams from equipment in target HAP service to a PM control device that...
40 CFR Table 5 of Subpart Bbbbbbb... - Reporting Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
... vent streams from equipment in target HAP service to a PM control device with a PM percent reduction efficiency of 95 percent (98 percent for new sources) or an outlet concentration of 0.03 gr/dscf or less a... requirement to route all process vent streams from equipment in target HAP service to a PM control device that...
40 CFR Table 5 of Subpart Bbbbbbb... - Reporting Requirements
Code of Federal Regulations, 2012 CFR
2012-07-01
... vent streams from equipment in target HAP service to a PM control device with a PM percent reduction efficiency of 95 percent (98 percent for new sources) or an outlet concentration of 0.03 gr/dscf or less a... requirement to route all process vent streams from equipment in target HAP service to a PM control device that...
40 CFR Table 5 of Subpart Bbbbbbb... - Reporting Requirements
Code of Federal Regulations, 2010 CFR
2010-07-01
... vent streams from equipment in target HAP service to a PM control device with a PM percent reduction efficiency of 95 percent (98 percent for new sources) or an outlet concentration of 0.03 gr/dscf or less a... requirement to route all process vent streams from equipment in target HAP service to a PM control device that...
40 CFR Table 5 of Subpart Bbbbbbb... - Reporting Requirements
Code of Federal Regulations, 2011 CFR
2011-07-01
... vent streams from equipment in target HAP service to a PM control device with a PM percent reduction efficiency of 95 percent (98 percent for new sources) or an outlet concentration of 0.03 gr/dscf or less a... requirement to route all process vent streams from equipment in target HAP service to a PM control device that...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Halogenated Group 1 transfer operation vent stream for which you use a combustion device to control organic... your transfer operations. For each . . . You must. . . . 1. Group 1 transfer operation vent stream a... system to any combination of control devices (except a flare); or b. Reduce emissions of total organic...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Halogenated Group 1 transfer operation vent stream for which you use a combustion device to control organic... your transfer operations. For each . . . You must. . . . 1. Group 1 transfer operation vent stream a... system to any combination of control devices (except a flare); or b. Reduce emissions of total organic...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Halogenated Group 1 transfer operation vent stream for which you use a combustion device to control organic... your transfer operations. For each . . . You must. . . . 1. Group 1 transfer operation vent stream a... system to any combination of control devices (except a flare); or b. Reduce emissions of total organic...
40 CFR 63.9020 - What performance tests and other procedures must I use?
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Hydrochloric Acid Production... where: Ci, Co = Concentration of HCl or Cl2 in the gas stream at the inlet and outlet of the control...-mole. Qi, Qo = Flow rate of gas stream at the inlet and outlet of the control device(s), respectively...
Bonsai: an event-based framework for processing and controlling data streams
Lopes, Gonçalo; Bonacchi, Niccolò; Frazão, João; Neto, Joana P.; Atallah, Bassam V.; Soares, Sofia; Moreira, Luís; Matias, Sara; Itskov, Pavel M.; Correia, Patrícia A.; Medina, Roberto E.; Calcaterra, Lorenza; Dreosti, Elena; Paton, Joseph J.; Kampff, Adam R.
2015-01-01
The design of modern scientific experiments requires the control and monitoring of many different data streams. However, the serial execution of programming instructions in a computer makes it a challenge to develop software that can deal with the asynchronous, parallel nature of scientific data. Here we present Bonsai, a modular, high-performance, open-source visual programming framework for the acquisition and online processing of data streams. We describe Bonsai's core principles and architecture and demonstrate how it allows for the rapid and flexible prototyping of integrated experimental designs in neuroscience. We specifically highlight some applications that require the combination of many different hardware and software components, including video tracking of behavior, electrophysiology and closed-loop control of stimulation. PMID:25904861
An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream
Marakhimov, A. R.; Igamberdiev, H. Z.; Umarov, Sh. X.
2016-01-01
This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081
NASA Astrophysics Data System (ADS)
Sandstrom, M. W.; Battaglin, W. A.
2007-05-01
Concentrations of 11 fungicides were measured in stream samples during 2 years in agricultural areas in the United States that grow predominantly corn and soybean. The fungicides are registered for control of Asian Soybean Rust (ASR), which entered the United States in 2004. Many of these fungicides were registered under an emergency exemption because evaluation of environmental risks related to their widespread use on soybeans had not been completed. Some of these fungicides are considered moderately to highly toxic to fish and aquatic invertebrates. We developed a solid-phase extraction and gas chromatography/mass spectrometry method for determining the fungicides at low concentrations (ng/L). Stream samples were collected 2 to 4 times at study areas during the late spring through fall season when fungicides are applied. Six fungicides registered for control of ASR (Phakospora pachyrhizi) in 2005 were measured in streams in Alabama, Georgia, North Carolina, South Carolina, and Mississippi during August-November, 2005. One or more fungicides were detected in 8 of the 12 streams sampled. Azoxystrobin, pyraclostrobin, propiconazole, tebuconazole, and myclobutanil were found in at least one of the 40 samples collected, while chlorothalonil was not found. Azoxystrobin was detected most frequently, in 35 percent of the samples. In 2006, five additional fungicides registered for use in control of ASR were included in the analytical method. One or more of the fungicides (azoxystrobin, pyraclostrobin, trifloxystrobin, metconazole, propiconazole, tebuconazole, tetraconazole, myclobutanil) were detected in 12 of the 16 streams sampled from areas in the South and Midwest during May-September, 2006. Azoxystrobin was detected most frequently (40 percent of the samples) and the highest concentration was 1.1 μg/L in a small predominantly cotton and soybean watershed. The highest concentrations of azoxystrobin were measured prior to the spread of ASR in 2006, and the detections in streams might be related to use on other crops. Concentrations of the fungicides measured were about 100 times lower than aquatic toxicity levels. These results show that ASR fungicides were found in streams before extensive spread of ASR in the United States.
Computation of records of streamflow at control structures
Collins, Dannie L.
1977-01-01
Traditional methods of computing streamflow records on large, low-gradient streams require a continuous record of water-surface slope over a natural channel reach. This slope must be of sufficient magnitude to be accuratly measured with available stage measuring devices. On highly regulated streams, this slope approaches zero during periods of low flow and accurate measurement is difficult. Methods are described to calibrate multipurpose regulating control structures to more accurately compute streamflow records on highly-regulated streams. Hydraulic theory, assuming steady, uniform flow during a computational interval, is described for five different types of flow control. The controls are: Tainter gates, hydraulic turbines, fixed spillways, navigation locks, and crest gates. Detailed calibration procedures are described for the five different controls as well as for several flow regimes for some of the controls. The instrumentation package and computer programs necessary to collect and process the field data are discussed. Two typical calibration procedures and measurement data are presented to illustrate the accuracy of the methods. (Woodard-USGS)
Roth, T R; Westhoff, M C; Huwald, H; Huff, J A; Rubin, J F; Barrenetxea, G; Vetterli, M; Parriaux, A; Selkeer, J S; Parlange, M B
2010-03-15
Elevated in-stream temperature has led to a surge in the occurrence of parasitic intrusion proliferative kidney disease and has resulted in fish kills throughout Switzerland's waterways. Data from distributed temperature sensing (DTS) in-stream measurements for three cloud-free days in August 2007 over a 1260 m stretch of the Boiron de Merges River in southwest Switzerland were used to calibrate and validate a physically based one-dimensional stream temperature model. Stream temperature response to three distinct riparian conditions were then modeled: open, in-stream reeds, and forest cover. Simulation predicted a mean peak stream temperature increase of 0.7 °C if current vegetation was removed, an increase of 0.1 °C if dense reeds covered the entire stream reach, and a decrease of 1.2 °C if a mature riparian forest covered the entire reach. Understanding that full vegetation canopy cover is the optimal riparian management option for limiting stream temperature, in-stream reeds, which require no riparian set-aside and grow very quickly, appear to provide substantial thermal control, potentially useful for land-use management.
Stream-aquifer interactions in the Straight River area, Becker and Hubbard counties, Minnesota
Stark, J.R.; Armstrong, David S.; Zwilling, Daniel R.
1994-01-01
Daily fluctuations of stream temperature are as great as 15 degrees Celsius during the summer, primarily in response to changes in air temperature. Ground-water discharge to the Straight River decreases stream temperature during the summer. Results of simulations from a stream-temperature model indicate that daily changes in stream temperature are strongly influenced by solar radiation, wind speed, stream depth, and ground-water inflow. Results of simulations from ground-water-flow and stream-temperature models developed for the investigation indicate a significant decrease in ground-water flow could result from ground-water withdrawal at rates similar to those measured during 1988. This reduction in discharge to the stream could result in an increase in stream temperature of 0.5 to 1.5 degrees Celsius. Nitrate concentrations in shallow wells screened at the water table, in some areas, are locally greater than the limit set by the Minnesota Pollution Control Agency. Nitrate concentrations in water from deeper wells and in the stream are low, generally less than 1.0 milligram per liter.
Jack E. Janisch; Steven M. Wondzell; William J. Ehinger
2012-01-01
We examined stream temperature response to forest harvest in small forested headwater catchments in western Washington, USA over a seven year period (2002-2008). These streams have very low discharge in late summer and many become spatially intermittent. We used a before-after, control-impact (BACl) study design to contrast the effect of clearcut logging with two...
A stream mesocosm experiment was designed to compare biotic responses among streams exposed to an equal excess specific conductivity target of 850 µS/cm relative to a control that was set for 200 µS/cm and three treatments comprised of different major ion contents. Each treatment...
Kelsey G. Jencso; Brian L. McGlynn; Michael N. Gooseff; Kenneth E. Bencala; Steven M. Wondzell
2010-01-01
Hydrologic connectivity between catchment upland and near stream areas is essential for the transmission of water, solutes, and nutrients to streams. However, our current understanding of the role of riparian zones in mediating landscape hydrologic connectivity and the catchment scale export of water and solutes is limited. We tested the relationship between the...
Stream chemistry following a forest fire and urea fertilization in north-central Washington.
Arthur R. Tiedemann
1973-01-01
During 2 years of study, nitrate-N in streamflow increased from background levels of 0.005 part per million (p.p.m.) in a control stream to 0.042 and 0.310 p.p.m. in streams from burned and burned, urea-fertilized watersheds, respectively. Cation concentration increased on the burned, unfertilized watershed, but because of dilution effects,...
NASA Astrophysics Data System (ADS)
Sonam; Jain, Vikrant
2018-03-01
Long profiles of rivers provide a platform to analyse interaction between geological and geomorphic processes operating at different time scales. Identification of an appropriate model for river long profile becomes important in order to establish a quantitative relationship between the profile shape, its geomorphic effectiveness, and inherent geological characteristics. This work highlights the variability in the long profile shape of the Ganga River and its major tributaries, its impact on stream power distribution pattern, and role of the geological controls on it. Long profile shapes are represented by the sum of two exponential functions through the curve fitting method. We have shown that coefficients of river long profile equations are governed by the geological characteristics of subbasins. These equations further define the spatial distribution pattern of stream power and help to understand stream power variability in different geological terrains. Spatial distribution of stream power in different geological terrains successfully explains spatial variability in geomorphic processes within the Himalayan hinterland area. In general, the stream power peaks of larger rivers lie in the Higher Himalaya, and rivers in the eastern hinterland area are characterised by the highest magnitude of stream power.
Liquid additives for particulate emissions control
Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon
1999-01-01
The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.
Method of controlling scale in oil recovery operations
Krajicek, Richard W.
1981-01-01
Disclosed is a method of producing highly viscous minerals from a subterranean formation by injection of an acidic, thermal vapor stream without substantial scale buildup in downstream piping, pumps and well bore. The process comprises heating the formation by injection of heat, preferably in the form of a thermal vapor stream composed of combustion gases and steam and injecting an acidic compound simultaneously with the thermal vapor stream into the formation at a temperature above the dew point of the thermal vapor stream. The acidic, thermal vapor stream increases the solubility of metal ions in connate water and thus reduces scaling in the downstream equipment during the production of viscous hydrocarbons.
Dynamic Grouping of Hippocampal Neural Activity During Cognitive Control of Two Spatial Frames
Kelemen, Eduard; Fenton, André A.
2010-01-01
Cognitive control is the ability to coordinate multiple streams of information to prevent confusion and select appropriate behavioral responses, especially when presented with competing alternatives. Despite its theoretical and clinical significance, the neural mechanisms of cognitive control are poorly understood. Using a two-frame place avoidance task and partial hippocampal inactivation, we confirmed that intact hippocampal function is necessary for coordinating two streams of spatial information. Rats were placed on a continuously rotating arena and trained to organize their behavior according to two concurrently relevant spatial frames: one stationary, the other rotating. We then studied how information about locations in these two spatial frames is organized in the action potential discharge of ensembles of hippocampal cells. Both streams of information were represented in neuronal discharge—place cell activity was organized according to both spatial frames, but almost all cells preferentially represented locations in one of the two spatial frames. At any given time, most coactive cells tended to represent locations in the same spatial frame, reducing the risk of interference between the two information streams. An ensemble's preference to represent locations in one or the other spatial frame alternated within a session, but at each moment, location in the more behaviorally relevant spatial frame was more likely to be represented. This discharge organized into transient groups of coactive neurons that fired together within 25 ms to represent locations in the same spatial frame. These findings show that dynamic grouping, the transient coactivation of neural subpopulations that represent the same stream of information, can coordinate representations of concurrent information streams and avoid confusion, demonstrating neural-ensemble correlates of cognitive control in hippocampus. PMID:20585373
Delivering Unidata Technology via the Cloud
NASA Astrophysics Data System (ADS)
Fisher, Ward; Oxelson Ganter, Jennifer
2016-04-01
Over the last two years, Docker has emerged as the clear leader in open-source containerization. Containerization technology provides a means by which software can be pre-configured and packaged into a single unit, i.e. a container. This container can then be easily deployed either on local or remote systems. Containerization is particularly advantageous when moving software into the cloud, as it simplifies the process. Unidata is adopting containerization as part of our commitment to migrate our technologies to the cloud. We are using a two-pronged approach in this endeavor. In addition to migrating our data-portal services to a cloud environment, we are also exploring new and novel ways to use cloud-specific technology to serve our community. This effort has resulted in several new cloud/Docker-specific projects at Unidata: "CloudStream," "CloudIDV," and "CloudControl." CloudStream is a docker-based technology stack for bringing legacy desktop software to new computing environments, without the need to invest significant engineering/development resources. CloudStream helps make it easier to run existing software in a cloud environment via a technology called "Application Streaming." CloudIDV is a CloudStream-based implementation of the Unidata Integrated Data Viewer (IDV). CloudIDV serves as a practical example of application streaming, and demonstrates how traditional software can be easily accessed and controlled via a web browser. Finally, CloudControl is a web-based dashboard which provides administrative controls for running docker-based technologies in the cloud, as well as providing user management. In this work we will give an overview of these three open-source technologies and the value they offer to our community.
Hyporheic zone influences on concentration-discharge relationships in a headwater sandstone stream
NASA Astrophysics Data System (ADS)
Hoagland, Beth; Russo, Tess A.; Gu, Xin; Hill, Lillian; Kaye, Jason; Forsythe, Brandon; Brantley, Susan L.
2017-06-01
Complex subsurface flow dynamics impact the storage, routing, and transport of water and solutes to streams in headwater catchments. Many of these hydrogeologic processes are indirectly reflected in observations of stream chemistry responses to rain events, also known as concentration-discharge (CQ) relations. Identifying the relative importance of subsurface flows to stream CQ relationships is often challenging in headwater environments due to spatial and temporal variability. Therefore, this study combines a diverse set of methods, including tracer injection tests, cation exchange experiments, geochemical analyses, and numerical modeling, to map groundwater-surface water interactions along a first-order, sandstone stream (Garner Run) in the Appalachian Mountains of central Pennsylvania. The primary flow paths to the stream include preferential flow through the unsaturated zone ("interflow"), flow discharging from a spring, and groundwater discharge. Garner Run stream inherits geochemical signatures from geochemical reactions occurring along each of these flow paths. In addition to end-member mixing effects on CQ, we find that the exchange of solutes, nutrients, and water between the hyporheic zone and the main stream channel is a relevant control on the chemistry of Garner Run. CQ relationships for Garner Run were compared to prior results from a nearby headwater catchment overlying shale bedrock (Shale Hills). At the sandstone site, solutes associated with organo-mineral associations in the hyporheic zone influence CQ, while CQ trends in the shale catchment are affected by preferential flow through hillslope swales. The difference in CQ trends document how the lithology and catchment hydrology control CQ relationships.
Larson, Danelle M.; Dodds, Walter K.; Veach, Allison M.
2018-04-23
Riparian zones are key interfaces between stream and terrestrial ecosystems. Yet, we know of no whole-watershed experiments that cut only woody vegetation in the riparian zone in an otherwise intact watershed to isolate the role of riparian zones on stream ecology. We removed all of the woody riparian vegetation (from 10- and 30-m-wide buffers in headwaters and main channels, respectively) for 5 km of stream in a single watershed while leaving the remainder of the grassland watershed un-impacted. We assessed water chemistry changes 3 years before and 3 years after riparian wood removal and in two neighboring control watersheds withmore » a before–after, control-impact design and analysis. Riparian woody removal caused 10–100-fold increases in mean stream water nitrate concentrations and pulses of high nitrate for 3 years thereafter. Other nutrients and total suspended solids increased 2–25 times for the 3 years of post-removal. In-stream rates of gross primary production, ecosystem respiration, and net ecosystem production had large treatment effect sizes but also high variance among samples. Past studies of whole-watershed deforestations showed similar water quality responses to our riparian deforestation. Riparian zones of grassland streams are sensitive to disturbance and likely impart relatively greater influence on stream structure and function than the upslope of the watershed. Finally, our results further emphasize the role of riparian zones in biogeochemically linking aquatic and terrestrial habitats.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, Danelle M.; Dodds, Walter K.; Veach, Allison M.
Riparian zones are key interfaces between stream and terrestrial ecosystems. Yet, we know of no whole-watershed experiments that cut only woody vegetation in the riparian zone in an otherwise intact watershed to isolate the role of riparian zones on stream ecology. We removed all of the woody riparian vegetation (from 10- and 30-m-wide buffers in headwaters and main channels, respectively) for 5 km of stream in a single watershed while leaving the remainder of the grassland watershed un-impacted. We assessed water chemistry changes 3 years before and 3 years after riparian wood removal and in two neighboring control watersheds withmore » a before–after, control-impact design and analysis. Riparian woody removal caused 10–100-fold increases in mean stream water nitrate concentrations and pulses of high nitrate for 3 years thereafter. Other nutrients and total suspended solids increased 2–25 times for the 3 years of post-removal. In-stream rates of gross primary production, ecosystem respiration, and net ecosystem production had large treatment effect sizes but also high variance among samples. Past studies of whole-watershed deforestations showed similar water quality responses to our riparian deforestation. Riparian zones of grassland streams are sensitive to disturbance and likely impart relatively greater influence on stream structure and function than the upslope of the watershed. Finally, our results further emphasize the role of riparian zones in biogeochemically linking aquatic and terrestrial habitats.« less
NASA Astrophysics Data System (ADS)
Bawa, Nupur; Jain, Vikrant; Shekhar, Shashank; Kumar, Niraj; Jyani, Vikas
2014-12-01
Understanding the controls on the morphological variability of river systems constitutes one of the fundamental questions in geomorphic investigation. Channel morphology is an important indicator of river processes and is of significance for mapping the hydrology-ecologic connectivity in a river system and for predicting the future trajectory of river health in response to external forcings. This paper documents the spatial morphological variability and its natural and anthropogenic controls for the Yamuna River, a major tributary of the Ganga River, India. The Yamuna River runs through a major urban centre i.e. Delhi National Capital Region. The Yamuna River was divided into eight geomorphically distinct reaches on the basis of the assemblages of geomorphic units and the association of landscape, valley and floodplain settings. The morphological variability was analysed through stream power distribution and sediment load data at various stations. Stream power distribution of the Yamuna River basin is characterised by a non-linear pattern that was used to distinguish (a) high energy ‘natural' upstream reaches, (b) ‘anthropogenically altered', low energy middle stream reaches, and (c) ‘rejuvenated' downstream reaches again with higher stream power. The relationship between stream power and channel morphology in these reaches was integrated with sediment load data to define the maximum flow efficiency (MFE) as the threshold for geomorphic transition. This analysis supports the continuity of river processes and the significance of a holistic, basin-scale approach rather than isolated local scale analysis in river studies.
Design concept of a cryogenic distillation column cascade for a ITER scale fusion reactor
NASA Astrophysics Data System (ADS)
Yamanishi, Toshihiko; Enoeda, Mikio; Okuno, Kenji
1994-07-01
A column cascade has been proposed for the fuel cycle of a ITER scale fusion reactor. The proposed cascade consists of three columns and has significant features: either top or bottom product is prior to the other for each column; it is avoided to withdraw side streams as products or feeds of down stream columns; and there is no recycle steam between the columns. In addition, the product purity of the cascade can be maintained against the changes of flow rates and compositions of feed streams just by adjusting the top and bottom flow rates. The control system has been designed for each column in the cascade. A key component in the prior product stream was selected, and the analysis method of this key component was proposed. The designed control system never brings instability as long as the concentration of the key component is measured with negligible time lag. The time lag for the measurement considerably affects the stability of the control system. A significant conclusion by the simulation in this work is that permissible time for the measurement is about 0.5 hour to obtain stable control. Hence, the analysis system using the gas chromatography is valid for control of the columns.
Galeone, Daniel G.; Low, Dennis J.; Brightbill, Robin A.
2006-01-01
This study indicated that a small buffer width along a stream in pasture land can have a positive influence on surface-water quality, benthic macroinvertebrates, and near-stream shallow ground-water quality. Overland runoff processes that move suspended sediment to the stream were controlled (or reduced) to some extent by the vegetative buffer established. Results indicated streambank fencing resulted in decreases in N-species, total-P, and suspended-sediment concentrations and yields at the outlet of the treatment basin relative to untreated sites; however, dissolved-P concentrations and yields increased. These results indicate that nutrient management, in conjunction with streambank fencing, is important in helping to control nutrient loadings to streams in this agricultural setting. An upstream site (T-2) in the treatment basin showed post-treatment reductions in suspended-sediment yields and increases in N and P yields. The different results for these treated sites indicates the effects of streambank fencing should be studied at as large a scale as possible because field-scale influences on water quality as drainage area decreases can mute the effects of fencing. Benthic-macroinvertebrate data indicated streambank fencing had a positive influence on benthic macroinvertebrates and their habitat. More improvement was detected at the outlet of the treatment basin than the upstream sites. Probably the most important biological metric, taxa richness, indicated a greater number of benthic-macroinvertebrate taxa at treated relative to control sites after fencing. Results indicated fencing improved shallow ground-water quality (for the well nest in a stream-gaining area), as noted by decreased concentrations of N species and fecal-streptococcus counts. This improvement only occurred at the well nest where the stream was gaining water from the shallow ground-water system.
Adoption of Stream Fencing Among Dairy Farmers in Four New Zealand Catchments
NASA Astrophysics Data System (ADS)
Bewsell, Denise; Monaghan, Ross M.; Kaine, Geoff
2007-08-01
The effect of dairy farming on water quality in New Zealand streams has been identified as an important environmental issue. Stream fencing, to keep cattle out of streams, is seen as a way to improve water quality. Fencing ensures that cattle cannot defecate in the stream, prevents bank erosion, and protects the aquatic habitat. Stream fencing targets have been set by the dairy industry. In this paper the results of a study to identify the factors influencing dairy farmers’ decisions to adopt stream fencing are outlined. Qualitative methods were used to gather data from 30 dairy farmers in four New Zealand catchments. Results suggest that farm contextual factors influenced farmers’ decision making when considering stream fencing. Farmers were classified into four segments based on their reasons for investing in stream fencing. These reasons were fencing boundaries, fencing for stock control, fencing to protect animal health, and fencing because of pressure to conform to local government guidelines or industry codes of practice. This suggests that adoption may be slow in the absence of on-farm benefits, that promotion of stream fencing needs to be strongly linked to on-farm benefits, and that regulation could play a role in ensuring greater adoption of stream fencing.
ERIC Educational Resources Information Center
Technology & Learning, 2008
2008-01-01
When it comes to IT, there has always been an important link between data center control and client flexibility. As computing power increases, so do the potentially crippling threats to security, productivity and financial stability. This article talks about Dell's On-Demand Desktop Streaming solution which is designed to centralize complete…
NASA Astrophysics Data System (ADS)
Lauer, F.; Frede, H.-G.; Breuer, L.
2012-04-01
Spatially confined groundwater discharge can contribute significantly to stream discharge. Distributed fibre optic temperature sensing (DTS) of stream water has been successfully used to localize- and quantify groundwater discharge from this type "point sources" (PS) in small first-order streams. During periods when stream and groundwater temperatures differ PS appear as abrupt step in longitudinal stream water temperature distribution. Based on stream temperature observation up- and downstream of a point source and estimated or measured groundwater temperature the proportion of groundwater inflow to stream discharge can be quantified using simple mixing models. However so far this method has not been quantitatively verified, nor has a detailed uncertainty analysis of the method been conducted. The relative accuracy of this method is expected to decrease nonlinear with decreasing proportions of lateral inflow. Furthermore it depends on the temperature differences (ΔT) between groundwater and surface water and on the accuracy of temperature measurement itself. The latter could be affected by different sources of errors. For example it has been shown that a direct impact of solar radiation on fibre optic cables can lead to errors in temperature measurements in small streams due to low water depth. Considerable uncertainty might also be related to the determination of groundwater temperature through direct measurements or derived from the DTS signal. In order to directly validate the method and asses it's uncertainty we performed a set of artificial point source experiments with controlled lateral inflow rates to a natural stream. The experiments were carried out at the Vollnkirchener Bach, a small head water stream in Hessen, Germany in November and December 2011 during a low flow period. A DTS system was installed along a 1.2 km sub reach of the stream. Stream discharge was measured using a gauging flume installed directly upstream of the artificial PS. Lateral inflow was simulated using a pumping system connected to a 2 m3 water tank. Pumping rates were controlled using a magnetic inductive flowmeter and kept constant for a time period of 30 minutes to 1.5 hours depending on the simulated inflow rate. Different temperatures of lateral inflow were adjusted by heating the water in the tank (for summer experiments a cooling by ice cubes could be realized). With this setup, different proportions of lateral inflow to stream flow ranging from 2 to 20%, could be simulated for different ΔT's (2-7° C) between stream- and inflowing water. Results indicate that the estimation of groundwater discharge through DTS is working properly, but that the method is very sensitive to the determination of the PS groundwater temperature. The span of adjusted ΔT and inflow rates of the artificial system are currently used to perform a thorough uncertainty analysis of the DTS method and to derive thresholds for detection limits.
The effect of beaver ponds on water quality in rural coastal plain streams
Bason, Christopher W.; Kroes, Daniel; Brinson, Mark M.
2017-01-01
We compared water-quality effects of 13 beaver ponds on adjacent free-flowing control reaches in the Coastal Plain of rural North Carolina. We measured concentrations of nitrate, ammonium, soluble reactive phosphorus (SRP), and suspended sediment (SS) upstream and downstream of paired ponds and control reaches. Nitrate and SS concentrations decreased, ammonium concentrations increased, and SRP concentrations were unaffected downstream of the ponds and relative to the control reaches. The pond effect on nitrate concentration was a reduction of 112 ± 55 μg-N/L (19%) compared to a control-reach—influenced reduction of 28 ± 17 μg-N/L. The pond effect on ammonium concentration was an increase of 9.47 ± 10.9 μg-N/L (59%) compared to the control-reach—influenced reduction of 1.49 ± 1.37 μg-N/L. The pond effect on SS concentration was a decrease of 3.41 ± 1.68 mg/L (40%) compared to a control-reach—influenced increase of 0.56 ± 0.27 mg/L. Ponds on lower-order streams reduced nitrate concentrations by greater amounts compared to those in higher-order streams. Older ponds reduced SS concentrations by greater amounts compared to younger ponds. The findings of this study indicate that beaver ponds provide water-quality benefits to rural Coastal Plain streams by reducing concentrations of nitrate and suspended sediment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Erika C.; Gido, Keith B.; Bello, Nora
Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwatermore » prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources across habitat types and locations within a reach can therefore be influenced by the taxonomic and functional composition of fishes in small prairie streams. Thus, disturbances that alter diversity of these systems might have unexpected ecosystem-level consequences.« less
Martin, Erika C.; Gido, Keith B.; Bello, Nora; ...
2016-04-06
Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwatermore » prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources across habitat types and locations within a reach can therefore be influenced by the taxonomic and functional composition of fishes in small prairie streams. Thus, disturbances that alter diversity of these systems might have unexpected ecosystem-level consequences.« less
Variable cycle engines for advanced supersonic transports
NASA Technical Reports Server (NTRS)
Howlett, R. A.; Kozlowski, H.
1975-01-01
Variable Cycle Engines being studied for advanced commercial supersonic transports show potential for significant environmental and economic improvements relative to 1st generation SST engines. The two most promising concepts are: a Variable Stream Control Engine and a Variable Cycle Engine with a rear flow-control valve. Each concept utilizes variable components and separate burners to provide independent temperature and velocity control for two coannular flow streams. Unique fuel control techniques are combined with cycle characteristics that provide low fuel consumption, similar to a turbojet engine, for supersonic operation. This is accomplished while retaining the good subsonic performance features of a turbofan engine. A two-stream coannular nozzle shows potential to reduce jet noise to below FAR Part 36 without suppressors. Advanced burner concepts have the potential for significant reductions in exhaust emissions. In total, these unique engine concepts have the potential for significant overall improvements to the environmental and economic characteristics of advanced supersonic transports.
Hydrogeologic controls on groundwater discharge and nitrogen loads in a coastal watershed
Russoniello, Chrtopher J.; Konikow, Leonard F.; Kroeger, Kevin D.; Fernandez, Cristina; Andres, A. Scott; Michael, Holly A.
2016-01-01
Submarine groundwater discharge (SGD) is a small portion of the global water budget, but a potentially large contributor to coastal nutrient budgets due to high concentrations relative to stream discharge. A numerical groundwater flow model of the Inland Bays Watershed, Delaware, USA, was developed to identify the primary hydrogeologic factors that affect groundwater discharge rates and transit times to streams and bays. The distribution of groundwater discharge between streams and bays is sensitive to the depth of the water table below land surface. Higher recharge and reduced hydraulic conductivity raised the water table and increased discharge to streams relative to bays compared to the Reference case (in which 66% of recharge is discharged to streams). Increases to either factor decreased transit times for discharge to both streams and bays compared to the Reference case (in which mean transit times are 56.5 and 94.3 years, respectively), though sensitivity to recharge is greater. Groundwater-borne nitrogen loads were calculated from nitrogen concentrations measured in discharging fresh groundwater and modeled SGD rates. These loads combined with long SGD transit times suggest groundwater-borne nitrogen reductions and estuarine water quality improvements will lag decades behind implementation of efforts to manage nutrient sources. This work enhances understanding of the hydrogeologic controls on and uncertainties in absolute and relative rates and transit times of groundwater discharge to streams and bays in coastal watersheds.
Wildfire Effects on In-stream Nutrient Processing and Hydrologic Transport
NASA Astrophysics Data System (ADS)
Rhea, A.; Covino, T. P.; Rhoades, C.; Fegel, T.
2017-12-01
In many forests throughout the Western U.S., drought, climate change, and growing fuel loads are contributing to increased fire frequency and severity. Wildfires can influence watershed nutrient retention as they fundamentally alter the biological composition and physical structure in upland landscapes, riparian corridors, and stream channels. While numerous studies have documented substantial short-term increases in stream nutrient concentrations and export (particularly reactive nitrogen, N) following forest fires, the long-term implications for watershed nutrient cycling remain unclear. For example, recent work indicates that nitrate concentrations and export can remain elevated for a decade or more following wildfire, yet the controls on these processes are unknown. In this research, we use empirical observations from nutrient tracer injections, nutrient diffusing substrates, and continuous water quality monitoring to isolate biological and physical controls on nutrient export across a burn-severity gradient. Tracer results demonstrate substantial stream-groundwater exchange, but little biological nutrient uptake in burned streams. This in part explains patterns of elevated nutrient export. Paired nutrient diffusing substrate experiments allow us to further investigate shifts in N, phosphorus, and carbon limitation that may suppress post-fire stream nutrient uptake. By isolating the mechanisms that reduce the capacity of fire-affected streams to retain and transform nutrient inputs, we can better predict dynamics in post-fire water quality and help prioritize upland and riparian restoration.
Approaches to resource recovery in controlled ecological life support systems
NASA Technical Reports Server (NTRS)
Bubenheim, D. L.; Wydeven, T.
1994-01-01
Recovery of resources from waste streams in a space habitat is essential to minimize the resupply burden and achieve self sufficiency. The ultimate goal of a Controlled Ecological Life Support System (CELSS) is to achieve the greatest practical level of mass recycle and provide self sufficiency and safety for humans. Several mission scenarios leading to the ultimate application could employ CELSS component technologies or subsystems with initial emphasis on recycle of the largest mass components of the waste stream. Candidate physical/chemical and biological processes for resource recovery from liquid and solid waste streams are discussed and the current fundamental recovery potentials are estimated.
Aerodynamic Applications of Boundary Layer Control Using Embedded Streamwise Vortices
2003-07-01
section, 0.02% free-stream turbulence level, free-stream velocity up to 18 m/s; the strain gauge can be used for aerodynamic force measurements. (2...section, free-stream velocity up to 28 m/s; equipped with the 3-component strain gauge (values of streamwise and normal forces measured up to 3N and 6...dimensional model: test section of 4m x 2.5m x 5.5m, free-stream velocities up to 42 m/s, multi-base 6-component strain gauge. Project Manager: Nina F
Fate of acetone in an outdoor model stream in southern Mississippi, U.S.A.
Rathbun, R.E.; Stephens, D.W.; Shultz, D.J.; Tai, D.Y.
1988-01-01
The fate of acetone in water was investigated in an outdoor model stream located in southern Mississippi, U.S.A. Acetone was injected continuously for 32 days resulting in small milligram-perliter concentrations in the stream. Rhodamine-WT dye was injected at the beginning and at the end of the study to determine the time-of-travel and dispersion characteristics of the stream. A 12-h injection of t-butyl alcohol (TBA) was used to determine the volatilization characteristics of the stream. Volatilization controlled the acetone concentration in the stream. Significant bacterial degradation of acetone did not occur, contrary to expectations based on previous laboratory studies. Attempts to induce degradation of the acetone by injecting glucose and a nutrient solution containing bacteria acclimated to acetone were unsuccessful. Possible explanations for the lack of bacterial degradation included a nitrate limitation and a limited residence time in the stream system. ?? 1988.
Floods on small streams in Texas
Ruggles, Frederick H.
1966-01-01
The first streamflow station in Texas was established on the Rio Grande at El Paso on May 10, 1889. Sip,ce that time the systematic collection of streamflow data. has expanded. In 1915 the Texas Board of Water Engineers (now the Texas Water Development Board) entered into a cooperative agreement with the U. S. Geological Survey for the purpose of expanding the network of stream-gaging stations in Texas. Sites were selected for stream-gaging stations to obtain hydrologic data for water supply and flood control. Therefore, the stream-gaging stations were located principally on major streams. Today, after three-quarters of a century.of hydrologic data collection, peak discharge data on small streams are still deficient in Texas. The Geological Survey and the Texas Highway Department, therefore, have entered into a cooperative program to collect peak discharge data on small streams for the purpose of deriving flood-frequency data needed for the economical design of culverts and small bridges.
Jeremiah D. Groom; Sherri L. Johnson; Joshua D. Seeds; George G. Ice
2017-01-01
We present the results of a replicated before-after-control-impact study on 33 streams to test the effectiveness of riparian rules for private and State forests at meeting temperature criteria in streams in western Oregon. Many states have established regulatory temperature thresholds, referred to as numeric criteria, to protect cold-water fishes such as salmon and...
Adam S. Ward; Robert A. Payn; Michael N. Gooseff; Brian L. McGlynn; Kenneth E. Bencala; Christa A. Kellecher; Steven M. Wondzell; Thorsten Wagener
2013-01-01
The accumulation of discharge along a stream valley is frequently assumed to be the primary control on solute transport processes. Relationships of both increasing and decreasing transient storage, and decreased gross losses of stream water have been reported with increasing discharge; however, we have yet to validate these relationships with extensive field study. We...
Cross-regional prediction of long-term trajectory of stream water DOC response to climate change
H. Laudon; J.M. Buttle; S.K. Carey; J.J. McDonnell; K.J. McGuire; J. Seibert; J. Shanley; C. Soulsby; D. Tetzlaff
2012-01-01
There is no scientific consensus about how dissolved organic carbon (DOC) in surface waters is regulated. Here we combine recent literature data from 49 catchments with detailed stream and catchment process information from nine well established research catchments at mid- to high latitudes to examine the question of how climate controls stream water DOC. We show for...
Douglas Allen; William Dietrich; Peter Baker; Frank Ligon; Bruce Orr
2007-01-01
We describe a mechanistically-based stream model, BasinTemp, which assumes that direct shortwave radiation moderated by riparian and topographic shading, controls stream temperatures during the hottest part of the year. The model was developed to support a temperature TMDL for the South Fork Eel basin in Northern California and couples a GIS and a 1-D energy balance...
NASA Astrophysics Data System (ADS)
Patti, Andrew; Tan, Wai-tian; Shen, Bo
2007-09-01
Streaming video in consumer homes over wireless IEEE 802.11 networks is becoming commonplace. Wireless 802.11 networks pose unique difficulties for streaming high definition (HD), low latency video due to their error-prone physical layer and media access procedures which were not designed for real-time traffic. HD video streaming, even with sophisticated H.264 encoding, is particularly challenging due to the large number of packet fragments per slice. Cross-layer design strategies have been proposed to address the issues of video streaming over 802.11. These designs increase streaming robustness by imposing some degree of monitoring and control over 802.11 parameters from application level, or by making the 802.11 layer media-aware. Important contributions are made, but none of the existing approaches directly take the 802.11 queuing into account. In this paper we take a different approach and propose a cross-layer design allowing direct, expedient control over the wireless packet queue, while obtaining timely feedback on transmission status for each packet in a media flow. This method can be fully implemented on a media sender with no explicit support or changes required to the media client. We assume that due to congestion or deteriorating signal-to-noise levels, the available throughput may drop substantially for extended periods of time, and thus propose video source adaptation methods that allow matching the bit-rate to available throughput. A particular H.264 slice encoding is presented to enable seamless stream switching between streams at multiple bit-rates, and we explore using new computationally efficient transcoding methods when only a high bit-rate stream is available.
Liquid additives for particulate emissions control
Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.
1999-01-05
The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.
Juan F. Blanco; Frederick N. Scatena
2006-01-01
Diadromous faunas dominate most tropical coastal streams and rivers, but the factors controlling their distribution are not well understood. Our study documents abiotic variables controlling the distribution and abundance of the diadromous snail Neritina virginea (Gastropoda:Neritidae) in the Caribbean island of Puerto Rico. An intensive survey of N. virginea density...
Process for injecting liquid in moving natural gas streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budke, H.T. Jr.; Rivers, J.B. Jr.
1979-01-02
A simplified, low-cost method of treating pressurized, moving natural gas streams in order to control problems created by entrained water in the gas is provided which facilitates downstream treatment of the gas and increases product yields by lessening the formation of oil and water emulsions and hydrates which can coat and clog processing equipment, while also minimizing corrosion of the latter. The method involves introduction of an agent into the moving gas stream which includes a polymer having recurring quaternized pyridinium groups therein for controlling the emulsion, hydrate, and corrosion problems. The method is especially effective when the entrained watermore » contains surfactants, detergents, soaps, and the like. In preferred forms a low moleuclar weight copolymer of styrene and 2-vinyl pyridine dispersed in water is atomized into the gas stream adjacent cooling and scrubbing stations. 8 claims.« less
Process for injecting liquid in moving natural gas streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivers, J.B. Jr.; Budke, H.T. Jr.
1979-01-02
Western Chemical Co.'s simplified, low-cost method of treating pressurized, moving natural gas streams in order to control problems created by entrained water facilitates the downstream treatment of the gas and increases product yields by lessening the formation of oil and water emulsions and hydrates that can coat and clog the processing equipment, while also minimizing equipment corrosion. The method involves introducing into the moving gas stream an agent that includes a polymer having recurring quaternized pyridinium groups for controlling the emulsion, hydrate, and corrosion problems. The method is especially effective when the entrained water contains surfactants, detergents, soaps, etc. Inmore » preferred forms, a low-molecular-weight copolymer of styrene and 2-vinyl pyridine dispersed in water is atomized into the gas stream adjacent to cooling and scrubbing stations. The method is particularly useful in connection with natural gas products plants.« less
Wang, Mingyu; Kadle, Prasad S.; Ghosh, Debashis; Zima, Mark J.; Wolfe, IV, Edward; Craig, Timothy D
2016-10-04
A heating, ventilation, and air conditioning (HVAC) system and a method of controlling a HVAC system that is configured to provide a perceived comfortable ambient environment to an occupant seated in a vehicle cabin. The system includes a nozzle configured to direct an air stream from the HVAC system to the location of a thermally sensitive portion of the body of the occupant. The system also includes a controller configured to determine an air stream temperature and an air stream flow rate necessary to establish the desired heat supply rate for the sensitive portion and provide a comfortable thermal environment by thermally isolating the occupant from the ambient vehicle cabin temperature. The system may include a sensor to determine the location of the sensitive portion. The nozzle may include a thermoelectric device to heat or cool the air stream.
Chieffi, Sergio; Messina, Giovanni; Messina, Antonietta; Villano, Ines; Monda, Vincenzo; Ambra, Ferdinando Ivano; Garofalo, Elisabetta; Romano, Felice; Mollica, Maria Pina; Monda, Marcellino; Iavarone, Alessandro
2017-01-01
Previous studies suggested that the occipitoparietal stream orients attention toward the near/lower space and is involved in immediate reaching, whereas the occipitotemporal stream orients attention toward the far/upper space and is involved in delayed reaching. In the present study, we investigated the role of the occipitotemporal stream in attention orienting and delayed reaching in a patient (GP) with bilateral damage to the occipitoparietal areas and optic ataxia. GP and healthy controls took part in three experiments. In the experiment 1, the participants bisected lines oriented along radial, vertical, and horizontal axes. GP bisected radial lines farther, and vertical lines more above, than the controls, consistent with an attentional bias toward the far/upper space and near/lower space neglect. The experiment 2 consisted of two tasks: (1) an immediate reaching task, in which GP reached target locations under visual control and (2) a delayed visual reaching task, in which GP and controls were asked to reach remembered target locations visually presented. We measured constant and variable distance and direction errors. In immediate reaching task, GP accurately reached target locations. In delayed reaching task, GP overshot remembered target locations, whereas the controls undershot them. Furthermore, variable errors were greater in GP than in the controls. In the experiment 3, GP and controls performed a delayed proprioceptive reaching task. Constant reaching errors did not differ between GP and the controls. However, variable direction errors were greater in GP than in the controls. We suggest that the occipitoparietal damage, and the relatively intact occipitotemporal region, produced in GP an attentional orienting bias toward the far/upper space (experiment 1). In turns, the attentional bias selectively shifted toward the far space remembered visual (experiment 2), but not proprioceptive (experiment 3), target locations. As a whole, these findings further support the hypothesis of an involvement of the occipitotemporal stream in delayed reaching. Furthermore, the observation that in both delayed reaching tasks the variable errors were greater in GP than in the controls suggested that in optic ataxia is present not only a visuo- but also a proprioceptivo-motor integration deficit. PMID:28620345
Reilly, Timothy J.; Smalling, Kelly L.; Wilson, Emma R.; Battaglin, William A.
2012-01-01
Water-quality samples were collected from April through December 2010 from four streams in Idaho and analyzed for a suite of pesticides, including fungicides, by the U.S. Geological Survey. Water samples were collected from two agricultural and two nonagricultural (control) streams approximately biweekly from the beginning of the growing season (April) through the end of the calendar year (December). Samples were analyzed for 90 pesticides using gas chromatography/mass spectrometry. Twenty-three pesticides, including 8 fungicides, 10 herbicides, 3 insecticides, and 2 pesticide degradates, were detected in 45 water samples. The most frequently detected compounds in the two agricultural streams and their detection frequencies were metolachlor, 96 percent; azoxystrobin, 79 percent; boscalid, 79 percent; atrazine, 46 percent; pendimethalin, 33 percent; and trifluralin, 33 percent. Dissolved-pesticide concentrations ranged from below instrumental limits of detection (0.5-1.0 nanograms per liter) to 771 nanograms per liter (hexazinone). The total number of pesticides detected in any given water sample ranged from 0 to 11. Only three pesticides (atrazine, fipronil, and simazine) were detected in samples from the control streams during the sampling period.
NASA Astrophysics Data System (ADS)
Daya Sagar, B. S.
2005-01-01
Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.
Fate of acetone in an outdoor model stream with a nitrate supplement, southern Mississippi, U.S.A.
Rathbun, R.E.; Stephens, D.W.; Tai, D.Y.
1991-01-01
The fate of acetone in an outdoor model stream to which nitrate was added as a nutrient supplement was determined. The stream, in southern Mississippi, U.S.A. was 234 m long. Water was supplied to the stream by an artesian well at about 1.21 s-1, resulting in a mean water velocity of about 0.5 m min-1. Acetone was injected continuously for 26 days resulting in concentrations of 20-40 mg l-1. A nitrate solution was injected for 21 days resulting in an instream concentration of about 1.7 mg l-1 at the upstream end of the stream. Rhodamine-WT dye was used to determine the travel time and dispersion characteristics of the stream, and t-butyl alcohol was used to determine the volatilization characteristics. Volatilization controlled the fate of acetone in the model stream. The lack of substantial bacterial degradation of acetone was contrary to expectations based on the results of laboratory degradation studies using model stream water enriched with nitrate. A possible explanation for the lack of significant degradation in the model stream may be the limited 6-h residence time of the acetone in the stream. ?? 1991.
Modeling the Impact of Stream Discharge Events on Riparian Solute Dynamics.
Mahmood, Muhammad Nasir; Schmidt, Christian; Fleckenstein, Jan H; Trauth, Nico
2018-03-22
The biogeochemical composition of stream water and the surrounding riparian water is mainly defined by the exchange of water and solutes between the stream and the riparian zone. Short-term fluctuations in near stream hydraulic head gradients (e.g., during stream flow events) can significantly influence the extent and rate of exchange processes. In this study, we simulate exchanges between streams and their riparian zone driven by stream stage fluctuations during single stream discharge events of varying peak height and duration. Simulated results show that strong stream flow events can trigger solute mobilization in riparian soils and subsequent export to the stream. The timing and amount of solute export is linked to the shape of the discharge event. Higher peaks and increased durations significantly enhance solute export, however, peak height is found to be the dominant control for overall mass export. Mobilized solutes are transported to the stream in two stages (1) by return flow of stream water that was stored in the riparian zone during the event and (2) by vertical movement to the groundwater under gravity drainage from the unsaturated parts of the riparian zone, which lasts for significantly longer time (> 400 days) resulting in long tailing of bank outflows and solute mass outfluxes. We conclude that strong stream discharge events can mobilize and transport solutes from near stream riparian soils into the stream. The impact of short-term stream discharge variations on solute exchange may last for long times after the flow event. © 2018, National Ground Water Association.
NASA Astrophysics Data System (ADS)
McKnight, D. M.; Dyson, I.; Esposito, R. M.; Gooseff, M. N.; Lyons, W. B.; Welch, K. A.
2015-12-01
The McMurdo Dry Valleys of Antarctica is comprised of alpine and terminal glaciers, large expanses of patterned ground, and ice-covered lakes in the valley floors, which are linked by glacial meltwater streams that flow during the austral summer. As part of the McMurdo Dry Valleys Long-Term Ecological research project, we have observed stream ecosystem response to a sustained 18 year cool period with low flows, which has been recently interrupted by three "flood events" during sunny, warm summers. Many of these streams contain thriving microbial mats comprised of cyanobacteria and endemic diatoms, the most diverse group of eukaryotic organisms in the valleys. Of the 45 diatom taxa, some common taxa are heavily silicified, Hantzschia amphioxys f. muelleri, while others are only lightly silicified. By comparing diatom communities in streams which flow every summer with those in streams that only flow during flood events, we found that hydrologic flow regime acts as a strong environmental filter on diatom community composition. Following the first flood event in 2001/02, mat biomass was two-fold lower due to scouring and recovered over several years, with lesser declines following the subsequent floods. In the longer streams, the diatom community composition remained stable through the flood events, whereas in two of the shorter streams, Green and Bowles Creeks, the diatom community shifted after the first flood event to a greater abundance of lightly silicified taxa. Water quality monitoring and reactive transport modeling have shown that rapid weathering of silicate minerals in the hyporheic zone accounts for the downstream increases in Si concentration which are observed in the longer streams. One mechanism driving this greater abundance of lightly silicified diatoms in shorter streams could be the greater dilution of the Si supply from hyporheic weathering in shorter streams under high flows. Given that the stream diatom community is well preserved in the 40,000-year sediment record from the receiving lake, greater understanding of hydrologic and biogeochemical controls on diatom community composition provides insight into the evolution of the lakes and geologic history of the region.
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Ohte, N.; Doctor, D. H.; Kendall, C.
2003-12-01
Quantifying sources and transformations of nitrate in headwater catchments is fundamental to understanding the movement of nitrogen to streams. At the Sleepers River Research Watershed in northeastern Vermont (USA), we are using multiple chemical tracer and mixing model approaches to quantify sources and transport of nitrate to streams under varying flow regimes. We sampled streams, lysimeters, and wells at nested locations from the headwaters to the outlet of the 41 ha W-9 watershed under the entire range of flow regimes observed throughout 2002-2003, including baseflow and multiple events (stormflow and snowmelt). Our results suggest that nitrogen sources, and consequently stream nitrate concentrations, are rapidly regenerated during several weeks of baseflow and nitrogen is flushed from the watershed by stormflow events that follow baseflow periods. Both basic chemistry data (anions, cations, & dissolved organic carbon) and isotopic data (nitrate, dissolved organic carbon, and dissolved inorganic carbon) indicate that nitrogen source contributions vary depending upon the extent of saturation in the watershed, the initiation of shallow subsurface water inputs, and other hydrological processes. Stream nitrate concentrations typically peak with discharge and are higher on the falling than the rising limb of the hydrograph. Our data also indicate the importance of terrestrial and aquatic biogeochemical processes, in addition to hydrological connectivity in controlling how nitrate moves from the terrestrial landscape to streams. Our detailed sampling data from multiple flow regimes are helping to identify and quantify the "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nitrogen fluxes in streams.
Sebestyen, Stephen D.; Boyer, Elizabeth W.; Shanley, James B.; Kendall, Carol; Doctor, Daniel H.; Aiken, George R.; Ohte, Nobuhito
2008-01-01
We explored catchment processes that control stream nutrient concentrations at an upland forest in northeastern Vermont, USA, where inputs of nitrogen via atmospheric deposition are among the highest in the nation and affect ecosystem functioning. We traced sources of water, nitrate, and dissolved organic matter (DOM) using stream water samples collected at high frequency during spring snowmelt. Hydrochemistry, isotopic tracers, and end‐member mixing analyses suggested the timing, sources, and source areas from which water and nutrients entered the stream. Although stream‐dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) both originated from leaching of soluble organic matter, flushing responses between these two DOM components varied because of dynamic shifts of hydrological flow paths and sources that supply the highest concentrations of DOC and DON. High concentrations of stream water nitrate originated from atmospheric sources as well as nitrified sources from catchment soils. We detected nitrification in surficial soils during late snowmelt which affected the nitrate supply that was available to be transported to streams. However, isotopic tracers showed that the majority of nitrate in upslope surficial soil waters after the onset of snowmelt originated from atmospheric sources. A fraction of the atmospheric nitrogen was directly delivered to the stream, and this finding highlights the importance of quick flow pathways during snowmelt events. These findings indicate that interactions among sources, transformations, and hydrologic transport processes must be deciphered to understand why concentrations vary over time and over space as well as to elucidate the direct effects of human activities on nutrient dynamics in upland forest streams.
Device for staged carbon monoxide oxidation
Vanderborgh, Nicholas E.; Nguyen, Trung V.; Guante, Jr., Joseph
1993-01-01
A method and apparatus for selectively oxidizing carbon monoxide in a hydrogen rich feed stream. The method comprises mixing a feed stream consisting essentially of hydrogen, carbon dioxide, water and carbon monoxide with a first predetermined quantity of oxygen (air). The temperature of the mixed feed/oxygen stream is adjusted in a first the heat exchanger assembly (20) to a first temperature. The mixed feed/oxygen stream is sent to reaction chambers (30,32) having an oxidation catalyst contained therein. The carbon monoxide of the feed stream preferentially absorbs on the catalyst at the first temperature to react with the oxygen in the chambers (30,32) with minimal simultaneous reaction of the hydrogen to form an intermediate hydrogen rich process stream having a lower carbon monoxide content than the feed stream. The elevated outlet temperature of the process stream is carefully controlled in a second heat exchanger assembly (42) to a second temperature above the first temperature. The process stream is then mixed with a second predetermined quantity of oxygen (air). The carbon monoxide of the process stream preferentially reacts with the second quantity of oxygen in a second stage reaction chamber (56) with minimal simultaneous reaction of the hydrogen in the process stream. The reaction produces a hydrogen rich product stream having a lower carbon monoxide content than the process stream. The product stream is then cooled in a third heat exchanger assembly (72) to a third predetermined temperature. Three or more stages may be desirable, each with metered oxygen injection.
Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability
Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.
1993-01-01
IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.
The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin
NASA Astrophysics Data System (ADS)
Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.
2017-12-01
Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are decreasing salinity in groundwater transported to streams.
Comparison of drinking water treatment process streams for optimal bacteriological water quality.
Ho, Lionel; Braun, Kalan; Fabris, Rolando; Hoefel, Daniel; Morran, Jim; Monis, Paul; Drikas, Mary
2012-08-01
Four pilot-scale treatment process streams (Stream 1 - Conventional treatment (coagulation/flocculation/dual media filtration); Stream 2 - Magnetic ion exchange (MIEX)/Conventional treatment; Stream 3 - MIEX/Conventional treatment/granular activated carbon (GAC) filtration; Stream 4 - Microfiltration/nanofiltration) were commissioned to compare their effectiveness in producing high quality potable water prior to disinfection. Despite receiving highly variable source water quality throughout the investigation, each stream consistently reduced colour and turbidity to below Australian Drinking Water Guideline levels, with the exception of Stream 1 which was difficult to manage due to the reactive nature of coagulation control. Of particular interest was the bacteriological quality of the treated waters where flow cytometry was shown to be the superior monitoring tool in comparison to the traditional heterotrophic plate count method. Based on removal of total and active bacteria, the treatment process streams were ranked in the order: Stream 4 (average log removal of 2.7) > Stream 2 (average log removal of 2.3) > Stream 3 (average log removal of 1.5) > Stream 1 (average log removal of 1.0). The lower removals in Stream 3 were attributed to bacteria detaching from the GAC filter. Bacterial community analysis revealed that the treatments affected the bacteria present, with the communities in streams incorporating conventional treatment clustering with each other, while the community composition of Stream 4 was very different to those of Streams 1, 2 and 3. MIEX treatment was shown to enhance removal of bacteria due to more efficient flocculation which was validated through the novel application of the photometric dispersion analyser. Copyright © 2012 Elsevier Ltd. All rights reserved.
MANUAL OF TEMPORARY EROSION CONTROL PRODUCTS FOR ROADSIDE DITCHES
DOT National Transportation Integrated Search
2017-09-01
Sediment continues to be the primary pollutant by volume in Ohio's streams and rivers. Unvegetated roadside ditches' side slopes and bottoms erode and contribute tons of sediment annually to local receiving streams. Pollutants attach themselves to se...
McMurdo LTER: streamflow measurements in Taylor Valley
McKnight, D.; House, H.; Von Guerard, P.
1994-01-01
Has established a stream gaging network for the three major lake basins in Taylor Valley. These data are critical for determining nutrient budgets for the lake ecosystems and for understanding physical factors controlling microbial mats in the streams.
Encouraging stormwater management using a reverse auction: potential to restore stream ecosystems
Stormwater runoff is the primary mechanism by which urbanizing landscapes disrupt natural, stream ecosystems. Source control management has been demonstrated as an effective and cost-efficient method for reducing stormwater runoff; however, sufficiently widespread implementation...
Progress with variable cycle engines
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.
1980-01-01
The evaluation of components of an advanced propulsion system for a future supersonic cruise vehicle is discussed. These components, a high performance duct burner for thrust augmentation and a low jet noise coannular exhaust nozzle, are part of the variable stream control engine. An experimental test program involving both isolated component and complete engine tests was conducted for the high performance, low emissions duct burner with excellent results. Nozzle model tests were completed which substantiate the inherent jet noise benefit associated with the unique velocity profile possible of a coannular exhaust nozzle system on a variable stream control engine. Additional nozzle model performance tests have established high thrust efficiency levels at takeoff and supersonic cruise for this nozzle system. Large scale testing of these two critical components is conducted using an F100 engine as the testbed for simulating the variable stream control engine.
Combustor air flow control method for fuel cell apparatus
Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.
2001-01-01
A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.
Atkinson, Janette; Braddick, Oliver
2011-01-01
Visual information is believed to be processed through two distinct, yet interacting cortical streams. The ventral stream performs the computations needed for recognition of objects and faces ("what" and "who"?) and the dorsal stream the computations for registering spatial relationships and for controlling visually guided actions ("where" and "how"?). We initially proposed a model of spatial deficits in Williams syndrome (WS) in which visual abilities subserved by the ventral stream, such as face recognition, are relatively well developed (although not necessarily in exactly the same way as in typical development), whereas dorsal-stream functions, such as visuospatial actions, are markedly impaired. Since these initial findings in WS, deficits of motion coherence sensitivity, a dorsal-stream function has been found in other genetic disorders such as Fragile X and autism, and as a consequence of perinatal events (in hemiplegia, perinatal brain anomalies following very premature birth), leading to the proposal of a general "dorsal-stream vulnerability" in many different conditions of abnormal human development. In addition, dorsal-stream systems provide information used in tasks of visuospatial memory and locomotor planning, and these systems are closely coupled to networks for attentional control. We and several other research groups have previously shown deficits of frontal and parietal lobe function in WS individuals for specific attention tasks [e.g., Atkinson, J., Braddick, O., Anker, S., Curran, W., & Andrew, R. (2003). Neurobiological models of visuospatial cognition in children with Williams Syndrome: Measures of dorsal-stream and frontal function. Developmental Neuropsychology, 23(1/2), 141-174.]. We have used the Test of Everyday Attention for Children (TEA-Ch) which aims to attempt to separate components of attention with distinct brain networks (selective attention, sustained attention, and attention control-executive function) testing a group of older children with WS, but this test battery is too demanding for many children and adults with WS. Consequently, we have devised a new set of tests of attention, the Early Childhood Attention Battery (ECAB). This uses similar principles to the TEA-Ch, but adapted for mental ages younger than 6 years. The ECAB shows a distinctive attention profile for WS individuals relative to their overall cognitive development, with relative strength in tasks of sustained attention and poorer performance on tasks of selective attention and executive control. These profiles, and the characteristic developmental courses, also show differences between children with Down's syndrome and WS. This chapter briefly reviews new research findings on WS in these areas, relating the development of brain systems in WS to evidence from neuroimaging in typically developing infants, children born very preterm, and normal adults. The hypothesis of "dorsal-stream(s) vulnerability" which will be discussed includes a number of interlinked brain networks, subserving not only global visual processing and formulation of visuomotor actions but interlinked networks of attention. Copyright © 2011 Elsevier B.V. All rights reserved.
Jurmu, Michael C
2002-12-01
Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.
Processing reafferent and exafferent visual information for action and perception.
Reichenbach, Alexandra; Diedrichsen, Jörn
2015-01-01
A recent study suggests that reafferent hand-related visual information utilizes a privileged, attention-independent processing channel for motor control. This process was termed visuomotor binding to reflect its proposed function: linking visual reafferences to the corresponding motor control centers. Here, we ask whether the advantage of processing reafferent over exafferent visual information is a specific feature of the motor processing stream or whether the improved processing also benefits the perceptual processing stream. Human participants performed a bimanual reaching task in a cluttered visual display, and one of the visual hand cursors could be displaced laterally during the movement. We measured the rapid feedback responses of the motor system as well as matched perceptual judgments of which cursor was displaced. Perceptual judgments were either made by watching the visual scene without moving or made simultaneously to the reaching tasks, such that the perceptual processing stream could also profit from the specialized processing of reafferent information in the latter case. Our results demonstrate that perceptual judgments in the heavily cluttered visual environment were improved when performed based on reafferent information. Even in this case, however, the filtering capability of the perceptual processing stream suffered more from the increasing complexity of the visual scene than the motor processing stream. These findings suggest partly shared and partly segregated processing of reafferent information for vision for motor control versus vision for perception.
Formation and Control of Fluidic Species
NASA Technical Reports Server (NTRS)
Link, Darren Roy (Inventor); Marquez-Sanchez, Manuel (Inventor); Cheng, Zhengdong (Inventor); Weitz, David A. (Inventor)
2015-01-01
This invention generally relates to systems and methods for the formation and/or control of fluidic species, and articles produced by such systems and methods. In some cases, the invention involves unique fluid channels, systems, controls, and/or restrictions, and combinations thereof. In certain embodiments, the invention allows fluidic streams (which can be continuous or discontinuous, i.e., droplets) to be formed and/or combined, at a variety of scales, including microfluidic scales. In one set of embodiments, a fluidic stream may be produced from a channel, where a cross-sectional dimension of the fluidic stream is smaller than that of the channel, for example, through the use of structural elements, other fluids, and/or applied external fields, etc. In some cases, a Taylor cone may be produced. In another set of embodiments, a fluidic stream may be manipulated in some fashion, for example, to create tubes (which may be hollow or solid), droplets, nested tubes or droplets, arrays of tubes or droplets, meshes of tubes, etc. In some cases, droplets produced using certain embodiments of the invention may be charged or substantially charged, which may allow their further manipulation, for instance, using applied external fields. Non-limiting examples of such manipulations include producing charged droplets, coalescing droplets (especially at the microscale), synchronizing droplet formation, aligning molecules within the droplet, etc. In some cases, the droplets and/or the fluidic streams may include colloids, cells, therapeutic agents, and the like.
Quality control in the recycling stream of PVC from window frames by hyperspectral imaging
NASA Astrophysics Data System (ADS)
Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Di Maio, Francesco; Rem, Peter
2013-05-01
Polyvinyl chloride (PVC) is one of the most commonly used thermoplastic materials in respect to the worldwide polymer consumption. PVC is mainly used in the building and construction sector, products such as pipes, window frames, cable insulation, floors, coverings, roofing sheets, etc. are realised utilising this material. In recent years, the problem of PVC waste disposal gained increasing importance in the public discussion. The quantity of used PVC items entering the waste stream is gradually increased as progressively greater numbers of PVC products approach to the end of their useful economic lives. The quality of the recycled PVC depends on the characteristics of the recycling process and the quality of the input waste. Not all PVC-containing waste streams have the same economic value. A transparent relation between value and composition is required to decide if the recycling process is cost effective for a particular waste stream. An objective and reliable quality control technique is needed in the recycling industry for the monitoring of both recycled flow streams and final products in the plant. In this work hyperspectral imaging technique in the near infrared (NIR) range (1000-1700 nm) was applied to identify unwanted plastic contaminants and rubber present in PVC coming from windows frame waste in order to assess a quality control procedure during its recycling process. Results showed as PVC, PE and rubber can be identified adopting the NIR-HSI approach.
Nelson, Kären C.; Palmer, Margaret A.; Pizzuto, James E.; Moglen, Glenn E.; Angermeier, Paul L.; Hilderbrand, Robert H.; Dettinger, Mike; Hayhoe, Katharine
2009-01-01
Synthesis and applications. The interaction of climate change and urban growth may entail significant reconfiguring of headwater streams, including a loss of ecosystem structure and services, which will be more costly than climate change alone. On local scales, stakeholders cannot control climate drivers but they can mitigate stream impacts via careful land use. Therefore, to conserve stream ecosystems, we recommend that proactive measures be taken to insure against species loss or severe population declines. Delays will inevitably exacerbate the impacts of both climate change and urbanization on headwater systems.
Rini, Michael J.; Towle, David P.
1992-01-01
A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.
ERIC Educational Resources Information Center
Jax, Steven A.; Rosenbaum, David A.
2007-01-01
According to a prominent theory of human perception and performance (M. A. Goodale & A. D. Milner, 1992), the dorsal, action-related stream only controls visually guided actions in real time. Such a system would be predicted to show little or no action priming from previous experience. The 3 experiments reported here were designed to determine…
Cloud-Based Perception and Control of Sensor Nets and Robot Swarms
2016-04-01
distributed stream processing framework provides the necessary API and infrastructure to develop and execute such applications in a cluster of computation...streaming DDDAS applications based on challenges they present to the backend Cloud control system. Figure 2 Parallel SLAM Application 3 1) Set of...the art deep learning- based object detectors can recognize among hundreds of object classes and this capability would be very useful for mobile
J. M. McClure; R. K. Kolka; A. White
2004-01-01
The distribution of coarse woody debris (CWD) was analyzed in three Appalachian watersheds in eastern Kentucky, eighteen years after harvest. The three watersheds included an unharvested control (Control), a second watershed with best management practices (BMPs) applied that included a 15.2 m unharvested zone near the stream (BMP watershed), and a third watershed that...
NASA Astrophysics Data System (ADS)
Herzog, S.; Portmann, A. C.; Halpin, B. N.; Higgins, C.; McCray, J. E.
2017-12-01
Nonpoint source nitrogen pollution from agricultural and urban runoff is one of the leading causes of impairment to US rivers and streams. The hyporheic zone (HZ) offers a natural biogeochemical hotspot for the attenuation of nitrogen within streams, thereby complementing efforts to prevent aquatic nitrogen pollution in the first place. However, HZ in urban and agricultural streams are often degraded by scouring and colmation, which limit their potential to improve stream water quality at the reach scale. A recent effort to mitigate nitrogen pollution in the Chesapeake Bay region provides denitrification credits for hyporheic restoration projects. Unfortunately, many of the featured hyporheic zone best management practices (BMP) (e.g., weirs, cross-vanes) tend to create only localized, aerobic hyporheic flows that are not optimal for the anaerobic denitrification reaction. In short, practitioners lack an adaptable BMP that can both 1) increase hyporheic exchange, and 2) tailor HZ residence times to match reactions of interest. Here we present new performance data for an HZ engineering technique called Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST are subsurface modules that utilize low-permeability sediments to drive efficient hyporheic exchange and control residence times, along with reactive geomedia to increase reaction rates within HZ sediments. This research utilized two artificial stream flumes: One flume served as an all-sand control condition, the other featured BEST modules at 1m spacing with a mixture of 70/30 sand/woodchips (v/v). Two different BEST media were tested: a coarse sand module with K 0.5 cm/s, and a fine sand module with K 0.15 cm/s. The flume with coarse sand BEST modules created aerobic HZ conditions and demonstrated rapid nitrification of ammonia at rates significantly higher than the control. However, denitrification was much slower and not significantly different between the two streams. In contrast, the fine sand module promoted anaerobic conditions and increased denitrification rates significantly compared to the all-sand control, but at the expense of nitrification. These results highlight the need to tailor HZ designs to provide appropriate conditions for reactions of interest, and demonstrate the applicability of BEST for this purpose.
Hill, Dagne D; Owens, William E; Tchounwou, Paul B
2005-04-01
The objective of this research was to compare the chemical/physical parameters and bacterial qualities of selected surface water streams in Louisiana, including a natural stream (control) and an animal waste related stream. Samples were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols (LaMotte 2002). An analysis of biological oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total dissolved solids (TDS), conductivity, pH, temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, turbidity, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [9]. Results of the comparisons of the various surface water streams showed that phosphate levels, according to Mitchell and Stapp, were considered good for Lake Claiborne (control) and Bayou Dorcheat. The levels were found to be .001 mg/L and .007 mg/L respectively. Other streams associated with animal waste, had higher phosphate levels of 2.07 mg/L and 2.78 mg/L, respectively. Conductivity and total dissolved solids (TDS) levels were the lowest in Lake Claiborne and highest in the Hill Farm Research Station stream. It can be concluded from the data that some bacterial levels and various nutrient levels can be affected in water resources due to non-point source pollution. Many of these levels will remain unaffected.
Sanders, Michael J.; Markstrom, Steven L.; Regan, R. Steven; Atkinson, R. Dwight
2017-09-15
A module for simulation of daily mean water temperature in a network of stream segments has been developed as an enhancement to the U.S. Geological Survey Precipitation Runoff Modeling System (PRMS). This new module is based on the U.S. Fish and Wildlife Service Stream Network Temperature model, a mechanistic, one-dimensional heat transport model. The new module is integrated in PRMS. Stream-water temperature simulation is activated by selection of the appropriate input flags in the PRMS Control File and by providing the necessary additional inputs in standard PRMS input files.This report includes a comprehensive discussion of the methods relevant to the stream temperature calculations and detailed instructions for model input preparation.
Variable mixer propulsion cycle
NASA Technical Reports Server (NTRS)
Rundell, D. J.; Mchugh, D. P.; Foster, T.; Brown, R. H. (Inventor)
1978-01-01
A design technique, method and apparatus are delineated for controlling the bypass gas stream pressure and varying the bypass ratio of a mixed flow gas turbine engine in order to achieve improved performance. The disclosed embodiments each include a mixing device for combining the core and bypass gas streams. The variable area mixing device permits the static pressures of the core and bypass streams to be balanced prior to mixing at widely varying bypass stream pressure levels. The mixed flow gas turbine engine therefore operates efficiently over a wide range of bypass ratios and the dynamic pressure of the bypass stream is maintained at a level which will keep the engine inlet airflow matched to an optimum design level throughout a wide range of engine thrust settings.
Effects of stormwater management and stream restoration on watershed nitrogen retention
Restoring urban infrastructure and managing the nitrogen cycle represent emerging challenges for urban water quality. We investigated whether stormwater control measures (SCMs), a form of green infrastructure, integrated into restored and degraded urban stream networks can influ...
GEOMORPHIC CONTROLS ON CARBON AND NITROGEN PROCESSING IN A DEGRADED URBAN STREAM
Elevated nitrate levels in streams and groundwater pose human and ecological threats. Microbial denitrification removes nitrate from groundwater but requires anaerobic (saturated) conditions and adequate supply of dissolved organic carbon from detritus and organic soils. Condit...
Groundwater Discharge along a Channelized Coastal Plain Stream
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaSage, Danita M; Sexton, Joshua L; Mukherjee, Abhijit
In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffusemore » discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.« less
Crocker, J.B.; Bank, M.S.; Loftin, C.S.; Jung Brown, R.E.
2007-01-01
We investigated effects of observers and stream flow on Northern Two-Lined Salamander (Eurycea bislineata bislineata) counts in streams in Acadia (ANP) and Shenandoah National Parks (SNP). We counted salamanders in 22 ANP streams during high flow (May to June 2002) and during low flow (July 2002). We also counted salamanders in SNP in nine streams during high flow (summer 2003) and 11 streams during low flow (summers 2001?02, 2004). In 2002, we used a modified cover-controlled active search method with a first and second observer. In succession, observers turned over 100 rocks along five 1-m belt transects across the streambed. The difference between observers in total salamander counts was not significant. We counted fewer E. b. bislineata during high flow conditions, confirming that detection of this species is reduced during high flow periods and that assessment of stream salamander relative abundance is likely more reliable during low or base flow conditions.
The Effectiveness of Streaming Video on Medical Student Learning: A Case Study
Bridge, Patrick D.; Jackson, Matt; Robinson, Leah
2009-01-01
Information technology helps meet today's medical students’ needs by providing multiple curriculum delivery methods. Video streaming is an e-learning technology that uses the Internet to deliver curriculum while giving the student control of the content's delivery. There have been few studies conducted on the effectiveness of streaming video in medical schools. A 5-year retrospective study was conducted using three groups of students (n = 1736) to determine if the availability of streaming video in Years 1–2 of the basic science curriculum affected overall Step 1 scores for first-time test-takers. The results demonstrated a positive effect on program outcomes as streaming video became more readily available to students. Based on these findings, streaming video technology seems to be a viable tool to complement in-class delivery methods, to accommodate the needs of medical students, and to provide options for meeting the challenges of delivering the undergraduate medical curriculum. Further studies need to be conducted to continue validating the effectiveness of streaming video technology. PMID:20165525
Research and implementation on improving I/O performance of streaming media storage system
NASA Astrophysics Data System (ADS)
Lu, Zheng-wu; Wang, Yu-de; Jiang, Guo-song
2008-12-01
In this paper, we study the special requirements of a special storage system: streaming media server, and propose a solution to improve I/O performance of RAID storage system. The solution is suitable for streaming media applications. A streaming media storage subsystem includes the I/O interfaces, RAID arrays, I/O scheduling and device drivers. The solution is implemented on the top of the storage subsystem I/O Interface. Storage subsystem is the performance bottlenecks of a streaming media system, and I/O interface directly affect the performance of the storage subsystem. According to theoretical analysis, 64 KB block-size is most appropriate for streaming media applications. We carry out experiment in detail, and verified that the proper block-size really is 64KB. It is in accordance with our analysis. The experiment results also show that by using DMA controller, efficient memory management technology and mailbox interface design mechanism, streaming media storage system achieves a high-speed data throughput.
The effectiveness of streaming video on medical student learning: a case study.
Bridge, Patrick D; Jackson, Matt; Robinson, Leah
2009-08-19
Information technology helps meet today's medical students' needs by providing multiple curriculum delivery methods. Video streaming is an e-learning technology that uses the Internet to deliver curriculum while giving the student control of the content's delivery. There have been few studies conducted on the effectiveness of streaming video in medical schools. A 5-year retrospective study was conducted using three groups of students (n = 1736) to determine if the availability of streaming video in Years 1-2 of the basic science curriculum affected overall Step 1 scores for first-time test-takers. The results demonstrated a positive effect on program outcomes as streaming video became more readily available to students. Based on these findings, streaming video technology seems to be a viable tool to complement in-class delivery methods, to accommodate the needs of medical students, and to provide options for meeting the challenges of delivering the undergraduate medical curriculum. Further studies need to be conducted to continue validating the effectiveness of streaming video technology.
Detection of human enteric viruses in stream water with RT-PCR and cell culture.
Denis-Mize, K.; Fout, G.S.; Dahling, D.R.; Francy, D.S.
2004-01-01
A multiplex RT-PCR method was used to measure virus occurrence at five stream water sites that span a range of hydroclimatic, water-quality, and land-use characteristics. The performance of the molecular method was evaluated in comparison with traditional cell culture and Escherichia coli membrane filtration assays. The study incorporated multiple quality controls and included a control for virus recovery during the sampling procedure as well as controls to detect potentially false-negative and false-positive data. Poliovirus recovery ranged from 16 to 65% and was variable, even in samples collected within the same stream. All five sites were positive for viruses by both molecular and cell culture-based virus assays. Enteroviruses, reoviruses, rotaviruses, and hepatitis A viruses were detected, but the use of the quality controls proved critical for interpretation of the molecular data. All sites showed evidence of faecal contamination, and culturable viruses were detected in four samples that would have met the US Environmental Protection Agency's recommended E. coli guideline for safe recreational water.
NASA Astrophysics Data System (ADS)
Haskins, M. N.; Vollmer, F. W.; Rayburn, J. A.; Gurdak, J. J.
2010-12-01
To investigate joint control on hydrology as well as tectonic implications, we conducted a study of joint orientations near the Stony Clove and Warner Creek drainages of the Catskill Mountains, Eastern New York. Specific goals of this research were to determine joint control on stream orientations and groundwater flow, to compare results with previous studies in the area, and to investigate their tectonic significance. Trails, streams, and road cuts were traversed to locate bedrock outcrops whose positions were determined using topographic maps and a handheld GPS unit. Additional outcrops were located using aerial photographs and GIS data. Joint orientations were measured using a standard Brunton pocket transit. The data was analyzed using Orient (Vollmer, 2010), an orientation analysis program, to plot joint and stream orientations on rose diagrams. ArcGIS was used to produce topographic, hill-shade, and stream drainage maps. Over 500 joint orientations at over 100 outcrop stations were collected. The data were plotted on a rose diagrams, and two major joint sets were found, one with a mean strike of 021° and one with a mean strike of 096°. Stream orientations were also plotted on a rose diagram showing an axial mean of 022°, and indicate that the joint set with mean strike of 021 may have a significant control on stream orientations. The hill-shade maps also demonstrate clearly the strong control of jointing on the topography. The data collected in this research expands on previous joint orientation studies of Engelder and Geiser (1980) in the southwestern and central Catskills, and is similar to joint orientations found by Isachsen et al. (1977) in their study of the Panther Mountain circular structure, a possible impact-related feature. The origin of this jointing is thought to be related to Alleghanian (Permian) and possibly Acadian (Devonian) orogenic events.
Hill, N Jeremy; Moinuddin, Aisha; Häuser, Ann-Katrin; Kienzle, Stephan; Schalk, Gerwin
2012-01-01
Most brain-computer interface (BCI) systems require users to modulate brain signals in response to visual stimuli. Thus, they may not be useful to people with limited vision, such as those with severe paralysis. One important approach for overcoming this issue is auditory streaming, an approach whereby a BCI system is driven by shifts of attention between two simultaneously presented auditory stimulus streams. Motivated by the long-term goal of translating such a system into a reliable, simple yes-no interface for clinical usage, we aim to answer two main questions. First, we asked which of two previously published variants provides superior performance: a fixed-phase (FP) design in which the streams have equal period and opposite phase, or a drifting-phase (DP) design where the periods are unequal. We found FP to be superior to DP (p = 0.002): average performance levels were 80 and 72% correct, respectively. We were also able to show, in a pilot with one subject, that auditory streaming can support continuous control and neurofeedback applications: by shifting attention between ongoing left and right auditory streams, the subject was able to control the position of a paddle in a computer game. Second, we examined whether the system is dependent on eye movements, since it is known that eye movements and auditory attention may influence each other, and any dependence on the ability to move one's eyes would be a barrier to translation to paralyzed users. We discovered that, despite instructions, some subjects did make eye movements that were indicative of the direction of attention. However, there was no correlation, across subjects, between the reliability of the eye movement signal and the reliability of the BCI system, indicating that our system was configured to work independently of eye movement. Together, these findings are an encouraging step forward toward BCIs that provide practical communication and control options for the most severely paralyzed users.
Penaluna, Brooke E.; Railsback, Steve F.; Dunham, Jason B.; Johnson, S.; Bilby, Richard E.; Skaugset, Arne E.
2015-01-01
The importance of multiple processes and instream factors to aquatic biota has been explored extensively, but questions remain about how local spatiotemporal variability of aquatic biota is tied to environmental regimes and the geophysical template of streams. We used an individual-based trout model to explore the relative role of the geophysical template versus environmental regimes on biomass of trout (Oncorhynchus clarkii clarkii). We parameterized the model with observed data from each of the four headwater streams (their local geophysical template and environmental regime) and then ran 12 simulations where we replaced environmental regimes (stream temperature, flow, turbidity) of a given stream with values from each neighboring stream while keeping the geophysical template fixed. We also performed single-parameter sensitivity analyses on the model results from each of the four streams. Although our modeled findings show that trout biomass is most responsive to changes in the geophysical template of streams, they also reveal that biomass is restricted by available habitat during seasonal low flow, which is a product of both the stream’s geophysical template and flow regime. Our modeled results suggest that differences in the geophysical template among streams render trout more or less sensitive to environmental change, emphasizing the importance of local fish–habitat relationships in streams.
Switch of flow direction in an Antarctic ice stream.
Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H
2002-10-03
Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.
Analyzing indicators of stream health for Minnesota streams
Singh, U.; Kocian, M.; Wilson, B.; Bolton, A.; Nieber, J.; Vondracek, B.; Perry, J.; Magner, J.
2005-01-01
Recent research has emphasized the importance of using physical, chemical, and biological indicators of stream health for diagnosing impaired watersheds and their receiving water bodies. A multidisciplinary team at the University of Minnesota is carrying out research to develop a stream classification system for Total Maximum Daily Load (TMDL) assessment. Funding for this research is provided by the United States Environmental Protection Agency and the Minnesota Pollution Control Agency. One objective of the research study involves investigating the relationships between indicators of stream health and localized stream characteristics. Measured data from Minnesota streams collected by various government and non-government agencies and research institutions have been obtained for the research study. Innovative Geographic Information Systems tools developed by the Environmental Science Research Institute and the University of Texas are being utilized to combine and organize the data. Simple linear relationships between index of biological integrity (IBI) and channel slope, two-year stream flow, and drainage area are presented for the Redwood River and the Snake River Basins. Results suggest that more rigorous techniques are needed to successfully capture trends in IBI scores. Additional analyses will be done using multiple regression, principal component analysis, and clustering techniques. Uncovering key independent variables and understanding how they fit together to influence stream health are critical in the development of a stream classification for TMDL assessment.
Quantitative measurement of stream respiration using the resazurin-resorufin system
NASA Astrophysics Data System (ADS)
Gonzalez Pinzon, R. A.; Acker, S.; Haggerty, R.; Myrold, D.
2011-12-01
After three decades of active research in hydrology and stream ecology, the relationship between stream solute transport, metabolism and nutrient dynamics is still unresolved. These knowledge gaps obscure the function of stream ecosystems and how they interact with other landscape processes. To date, measuring rates of stream metabolism is accomplished with techniques that have vast uncertainties and are not spatially representative. These limitations mask the role of metabolism in nutrient processing. Clearly, more robust techniques are needed to develop mechanistic relationships that will ultimately improve our fundamental understanding of in-stream processes and how streams interact with other ecosystems. We investigated the "metabolic window of detection" of the Resazurin (Raz)-Resorufin (Rru) system (Haggerty et al., 2008, 2009). Although previous results have shown that the transformation of Raz to Rru is strongly correlated with respiration, a quantitative relationship between them is needed. We investigated this relationship using batch experiments with pure cultures (aerobic and anaerobic) and flow-through columns with incubated sediments from four different streams. The results suggest that the Raz-Rru system is a suitable approach that will enable hydrologists and stream ecologists to measure in situ and in vivo respiration at different scales, thus opening a reliable alternative to investigate how solute transport and stream metabolism control nutrient processing.
Population control of exotic rainbow trout in streams of a natural area park
NASA Astrophysics Data System (ADS)
Moore, Stephen E.; Larson, Gary L.; Ridley, Bromfield
1986-03-01
Expansion of the distribution of exotic rainbow trout is thought to be a leading cause for the decline of native brook trout since the 1930s in Great Smoky Mountains National Park, USA. An experimental rehabilitation project was conducted from 1976 to 1981 using backpack electrofish shockers on four remnant brook trout populations sympatric with rainbow trout. The objectives were to evaluate the effectiveness of the technique to remove the exotic rainbow trout, to determine the population responses by native brook trout, and to evaluate the usefulness of the technique for trout management in the park. Rainbow trout populations were greatly reduced in density after up to six years of electrofishing, but were not eradicated. Rainbow trout recruitment, however, was essentially eliminated. Brook trout populations responded by increasing in density (including young-of-the-year), but rates of recovery differed among streams. The maximum observed densities ir each stream occurred at the end of the project. The findings suggest that electrofishing had a major negative impact on the exotic species, which was followed by positive responses from the native species in the second and third order study streams. The technique would probably be less effective in larger (fourth-order) park streams, but as an eradication tool the technique may have its highest potential in small first order streams. Nonetheless, the technique appears useful for population control without causing undue impacts on native aquatic species, although it is labor intensive, and capture efficiency is greatly influenced by fish size and stream morphology. To completely remove the exotic fish from selected streams, different technologies will have to be explored and developed.
NASA Astrophysics Data System (ADS)
Gallart, F.; Prat, N.; García-Roger, E. M.; Latron, J.; Rieradevall, M.; Llorens, P.; Barberá, G. G.; Brito, D.; de Girolamo, A. M.; Lo Porto, A.; Neves, R.; Nikolaidis, N. P.; Perrin, J. L.; Querner, E. P.; Quiñonero, J. M.; Tournoud, M. G.; Tzoraki, O.; Froebrich, J.
2011-10-01
Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. The use of the aquatic fauna structural and functional characteristics to assess the ecological quality of a temporary stream reach can not therefore be made without taking into account the controls imposed by the hydrological regime. This paper develops some methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: flood, riffles, connected, pools, dry and arid. We used the water discharge records from gauging stations or simulations using rainfall-runoff models to infer the temporal patterns of occurrence of these states using the developed aquatic states frequency graph. The visual analysis of this graph is complemented by the development of two metrics based on the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of the aquatic regimes of temporary streams in terms of their influence over the development of aquatic life is put forward, defining Permanent, Temporary-pools, Temporary-dry and Episodic regime types. All these methods were tested with data from eight temporary streams around the Mediterranean from MIRAGE project and its application was a precondition to assess the ecological quality of these streams using the current methods prescribed in the European Water Framework Directive for macroinvertebrate communities.
Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification
Mulholland, P.J.; Hall, R.O.; Sobota, D.J.; Dodds, W.K.; Findlay, S.E.G.; Grimm, N. B.; Hamilton, S.K.; McDowell, W.H.; O'Brien, J. M.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Gregory, S.V.; Johnson, S.L.; Meyer, J.L.; Peterson, B.J.; Poole, G.C.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; Niederlehner, B.R.; Potter, J.D.; Sheibley, R.W.; Thomasn, S.M.
2009-01-01
We measured denitrification rates using a field 15N-NO- 3 tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (SWden) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N2 production rates far exceeded N2O production rates in all streams. The fraction of total NO-3 removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NHz 4 concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO-3 concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO- 3 concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although Uden increased with increasing NO- 3 concentration, the efficiency of NO-3 removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO-3 load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO-3 concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO-3 concentration. ?? 2009.
Scaling Stream Flow Response to Forest Disturbance: the SID Project
NASA Astrophysics Data System (ADS)
Buttle, J. M.; Beall, F. D.; Creed, I. F.; Gordon, A. M.; Mackereth, R.; McLaughlin, J. W.; Sibley, P. K.
2004-05-01
We do not have a good understanding of the hydrologic implications of forest harvesting in Ontario, either for current or alternative management approaches. Attempts to address these implications face a three-fold problem: data on hydrologic response to forest disturbance in Ontario are lacking; most studies of these responses have been in regions with forest cover and hydrologic conditions that differ from the Ontario context; and these studies have generally been conducted at relatively small scales (<1 km2). It is generally assumed that hydrologic changes induced by forest disturbance should diminish with increasing scale due to the buffering capacity of large drainage basins. Recent modeling exercises and reanalysis of paired-basin results call this widespread applicability of this assumption into question, with important implications for assessing the cumulative impacts of forest disturbance on basin stream flow. The SID (Scalable Indicators of Disturbance) project combines stream flow monitoring across basin scales with the RHESSys modeling framework to identify forest disturbance impacts on stream flow characteristics in Ontario's major forest ecozones. As a precursor to identifying stream flow response to forest disturbance, we are examining the relative control of basin geology, topography, typology and topology on stream flow characteristics under undisturbed conditions. This will assist in identifying the dominant hydrologic processes controlling basin stream flow that must be incorporated into the RHESSys model framework in order to emulate forest disturbance and its hydrologic impacts. We present preliminary results on stream flow characteristics in a low-relief boreal forest landscape, and explore how the dominant processes influencing these characteristics change with basin scale in this landscape under both reference and disturbance conditions.
NASA Astrophysics Data System (ADS)
Ahmed, M. H.; Abdul-Aziz, O. I.
2017-12-01
Chlorophyll-a (Chl-a) is a key indicator for stream water quality and ecological health. The characterization of interplay between Chl-a and its numerous hydroclimatic and biogeochemical drivers is complex, and often involves multicollinear datasets. A systematic data analytics methodology was employed to determine the relative linkages of stream Chl-a with its dynamic environmental drivers at 50 stream water quality monitoring stations across the continental U.S. Multivariate statistical techniques of principal component analysis (PCA) and factor analysis (FA), in concert with Pearson correlation analysis, were applied to evaluate interrelationships among hydroclimatic, biogeochemical, and biological variables. Power-law based partial least square regression (PLSR) models were developed with a bootstrap Monte Carlo procedure (1000 iterations) to reliably estimate the comparative linkages of Chl-a by resolving multicollinearity in the data matrices (Nash-Sutcliff efficiency = 0.50-87). The data analytics suggested four environmental regimes of stream Chl-a, as dominated by nutrient, climate, redox, and hydro-atmospheric contributions, respectively. Total phosphorous (TP) was the most dominant driver of stream Chl-a in the nutrient controlled regime. Water temperature demonstrated the strongest control of Chl-a in the climate-dominated regime. Furthermore, pH and stream flow were found to be the most important drivers of Chl-a in the redox and hydro-atmospheric component dominated regimes, respectively. The research led to a significant reduction of dimensionality in the large data matrices, providing quantitative and qualitative insights on the dynamics of stream Chl-a. The findings would be useful to manage stream water quality and ecosystem health in the continental U.S. and around the world under a changing climate and environment.
Electrolyte chemistry control in electrodialysis processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, Thomas D.; Severin, Blaine F.
Methods for controlling electrolyte chemistry in electrodialysis units having an anode and a cathode each in an electrolyte of a selected concentration and a membrane stack disposed therebetween. The membrane stack includes pairs of cationic selective and anionic membranes to segregate increasingly dilute salts streams from concentrated salts stream. Electrolyte chemistry control is via use of at least one of following techniques: a single calcium exclusionary cationic selective membrane at a cathode cell boundary, an exclusionary membrane configured as a hydraulically isolated scavenger cell, a multivalent scavenger co-electrolyte and combinations thereof.
Diel stream temperature regimes of Bukovsky regions of the conterminous United States
NASA Astrophysics Data System (ADS)
Ferencz, Stephen B.; Cardenas, M. Bayani
2017-03-01
Stream temperature which varies over daily to seasonal timescales is a primary control on myriad ecological, biogeochemical, and physical processes. Yet geographic patterns of its diel variations have not been fully characterized. Using daily temperature records spanning 15 years (2000-2014), monthly averaged mean daily temperature and diel temperature range were calculated for streams distributed across six Bukovsky regions of the conterminous U.S. Across all six regions, diel temperature fluctuations were lowest during the winter, around 1-2°C. During the summer there was wide distribution in diel temperatures (2°C-12°C). The regions revealed distinct differences in diel patterns for small and medium streams, but not for large streams. Small and medium streams exhibited notable hysteresis in their annual progression of diel temperature ranges, with larger diel temperature fluctuations in the spring than in the fall.
Techniques for estimating magnitude and frequency of peak flows for Pennsylvania streams
Stuckey, Marla H.; Reed, Lloyd A.
2000-01-01
Regression equations for estimating the magnitude and frequency of floods on ungaged streams in Pennsylvania with drainage areas less that 2,000 square miles were developed on the basis of peak-flow data collected at 313 streamflow-gaging stations. All streamflow-gaging stations used in the development of the equations had 10 or more years of record and include active and discontinued continuous-record and crest-stage partial-record streamflow-gaging stations. Regional regression equations were developed for flood flows expected every 10, 25, 50, 100, and 500 years by the use of a weighted multiple linear regression model.The State was divided into two regions. The largest region, Region A, encompasses about 78 percent of Pennsylvania. The smaller region, Region B, includes only the northwestern part of the State. Basin characteristics used in the regression equations for Region A are drainage area, percentage of forest cover, percentage of urban development, percentage of basin underlain by carbonate bedrock, and percentage of basin controlled by lakes, swamps, and reservoirs. Basin characteristics used in the regression equations for Region B are drainage area and percentage of basin controlled by lakes, swamps, and reservoirs. The coefficient of determination (R2) values for the five flood-frequency equations for Region A range from 0.93 to 0.82, and for Region B, the range is from 0.96 to 0.89.While the regression equations can be used to predict the magnitude and frequency of peak flows for most streams in the State, they should not be used for streams with drainage areas greater than 2,000 square miles or less than 1.5 square miles, for streams that drain extensively mined areas, or for stream reaches immediately below flood-control reservoirs. In addition, the equations presented for Region B should not be used if the stream drains a basin with more than 5 percent urban development.
HOW MUCH OF STREAM HABITAT IS PREDETERMINED BY NATURAL GEOMORPHIC CONTROLS?
Detailed pre- and post-disturbance research has demonstrated the ability of human activities to alter stream channel characteristics, including the amounts of deep pool habitat and fine substrate. However, it is often difficult to demonstrate consistent associations between the...
Continuous monitoring reveals multiple controls on ecosystem metabolism in a suburban stream.
Ecosystem metabolism is an important mechanism for nutrient retention in streams, yet few high studies have investigated temporal patterns in gross primary production (GPP) and ecosystem respiration (ER) using high frequency measurements. This is a potentially important oversig...
Analysis of cache for streaming tape drive
NASA Technical Reports Server (NTRS)
Chinnaswamy, V.
1993-01-01
A tape subsystem consists of a controller and a tape drive. Tapes are used for backup, data interchange, and software distribution. The backup operation is addressed. During a backup operation, data is read from disk, processed in CPU, and then sent to tape. The processing speeds of a disk subsystem, CPU, and a tape subsystem are likely to be different. A powerful CPU can read data from a fast disk, process it, and supply the data to the tape subsystem at a faster rate than the tape subsystem can handle. On the other hand, a slow disk drive and a slow CPU may not be able to supply data fast enough to keep a tape drive busy all the time. The backup process may supply data to tape drive in bursts. Each burst may be followed by an idle period. Depending on the nature of the file distribution in the disk, the input stream to the tape subsystem may vary significantly during backup. To compensate for these differences and optimize the utilization of a tape subsystem, a cache or buffer is introduced in the tape controller. Most of the tape drives today are streaming tape drives. A streaming tape drive goes into reposition when there is no data from the controller. Once the drive goes into reposition, the controller can receive data, but it cannot supply data to the tape drive until the drive completes its reposition. A controller can also receive data from the host and send data to the tape drive at the same time. The relationship of cache size, host transfer rate, drive transfer rate, reposition, and ramp up times for optimal performance of the tape subsystem are investigated. Formulas developed will also show the advantages of cache watermarks to increase the streaming time of the tape drive, maximum loss due to insufficient cache, tradeoffs between cache and reposition times and the effectiveness of cache on a streaming tape drive due to idle times or interruptions due in host transfers. Several mathematical formulas are developed to predict the performance of the tape drive. Some examples are given illustrating the usefulness of these formulas. Finally, a summary and some conclusions are provided.
How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?
NASA Astrophysics Data System (ADS)
Morgan, J. C.; Gannon, J. P.; Kelleher, C.
2017-12-01
The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.
Tobias, Craig; Böhlke, John Karl
2011-01-01
Movement of dissolved inorganic carbon (DIC) through the hydrologic cycle is an important component of global carbon budgets, but there is considerable uncertainty about the controls of DIC transmission from landscapes to streams, and through river networks to the oceans. In this study, diel measurements of DIC, d13C-DIC, dissolved oxygen (O2), d18O-O2, alkalinity, pH, and other parameters were used to assess the relative magnitudes of biological and geochemical controls on DIC cycling and flux in a nutrient-rich, net autotrophic stream. Rates of photosynthesis (P), respiration (R), groundwater discharge, air–water exchange of CO2, and carbonate precipitation/dissolution were quantified through a time-stepping chemical/isotope (12C and 13C, 16O and 18O) mass balance model. Groundwater was the major source of DIC to the stream. Primary production and carbonate precipitation were equally important sinks for DIC removed from the water column. The stream was always super-saturated with respect to carbonate minerals, but carbonate precipitation occurred mainly during the day when P increased pH. We estimated more than half (possibly 90%) of the carbonate precipitated during the day was retained in the reach under steady baseflow conditions. The amount of DIC removed from the overlying water through carbonate precipitation was similar to the amount of DIC generated from R. Air–water exchange of CO2 was always from the stream to the atmosphere, but was the smallest component of the DIC budget. Overall, the in-stream DIC reactions reduced the amount of CO2 evasion and the downstream flux of groundwater-derived DIC by about half relative to a hypothetical scenario with groundwater discharge only. Other streams with similar characteristics are widely distributed in the major river basins of North America. Data from USGS water quality monitoring networks from the 1960s to the 1990s indicated that 40% of 652 stream monitoring stations in the contiguous USA were at or above the equilibrium saturation state for calcite, and 77% of all stations exhibited apparent increases in saturation state from the 1960/70s to the 1980/90s. Diel processes including partially irreversible carbonate precipitation may affect net carbon fluxes from many such watersheds
Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.
2014-01-01
Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate show direct and rapid effects on forest streams that may be widespread, although undocumented, throughout nitrogen-polluted temperate forests. In contrast to a week-long nitrate decline during peak autumn litterfall, base flow DON concentrations increased after leaf fall and remained high for 2 months. Dissolved organic nitrogen was hydrologically flushed to the stream from riparian soils during stormflow. In contrast to distinct seasonal changes in base flow nitrate and DON concentrations, ammonium concentrations were typically at or below the detection limit, similar to the rest of the year. Our findings reveal couplings among catchment flow paths, nutrient sources, and transformations that control seasonal extremes of stream nitrogen in forested landscapes.
Turk, John T.; Parker, Randolph S.
1982-01-01
Analysis of major and trace constituents in streams flowing through six semiarid watersheds indicates that the stream chemistry is characterized by saturation with respect to common carbonate minerals (calcium, magnesium, iron, manganese, and lead). The solubility of the carbonate minerals may be a major control on the absolute and relative concentrations of calcium, magnesium, bicarbonate, iron, manganese, and lead; however, other mechanisms probably control the concentrations of cadmium and zinc. Statistical analyses indicate that the mean concentrations of the major ions in the two climatic areas studied are significantly (P=0.05) different from one another, with larger mean concentrations in the more arid area. Trace-metal concentrations were similar from one area to another and indistinguishable from site to site (P=0.05) for lead, cadmium, and zinc. Linear regressions of major ion concentration to specific conductance are similar in both areas for sodium, bicarbonate, sulfate, and chloride. Results of the study may be useful in providing a first approximation of stream chemistry in other watersheds with the same geologic setting, determining watersheds with similar geochemical controls, and determining future changes in stream chemistry in the watersheds studied. (USGS)
Controls on stream water dissolved mercury in three mid-Appalachian forested headwater catchments
NASA Astrophysics Data System (ADS)
Riscassi, Ami L.; Scanlon, Todd M.
2011-12-01
Determining the controls on dissolved mercury (HgD) transport is necessary to improve estimations of export from unmonitored watersheds and to forecast responses to changes in deposition and other environmental forcings. Stream water HgD and dissolved organic carbon (DOC) were evaluated over a range of discharge conditions in three streams within Shenandoah National Park, VA. Watersheds are distinguished by stream water pH (ranging from neutral to acidic) and soil size fractioning (ranging from clays to sands). At all sites, discharge was a significant but poor predictor of HgD concentrations (r2 from 0.13-0.52). HgD was strongly coupled with DOC at all sites (r2 from 0.74-0.89). UV absorbance at 254 nm (UV254), a proxy for DOC quantity and quality, slightly improved the predictions of HgD. Mean DOC quality differed between streams, with less aromatic DOC mobilized from the more acidic watershed. The site with less aromatic DOC and sandy soils mobilized more Hg to the stream for the same quantity and quality of DOC, likely due to the reduced capacity of the larger-grained soils to retain Hg, leaving a greater fraction associated with the organic matter. A similar amount of 0.54 ng HgD/mg DOC is transported at all sites, suggesting the less aromatic DOC transports less Hg per unit DOC, offsetting the effects of soil type. This research demonstrates that soil composition and DOC quality influence HgDexport. We also provide evidence that soil organic carbon is a primary control on Hg-DOC ratios (0.12-1.4 ng mg-1) observed across the U.S. and Sweden.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, A.W.; Rodgers, J.H. Jr.; Dorn, P.B.
The effects of a nonionic linear alcohol ethoxylate (LAE) surfactant (with an average of 12.8 carbons per chain length and an average of 7.0 ethylene oxide units/mole) on Myriophyllum aquaticum L. and periphyton were evaluated in 30 day exposures in twelve model stream mesocosms. Effects evaluated included: chlorophyll a, pheophytin a, biomass, and membrane integrity for M. aquaticum, and chlorophyll a, pheophytin a, and biomass for periphyton. Average measured concentrations of LAE for replicate streams were 0.32, 0.88, 1.98, and 5.2 mg LAE/L with two untreated controls. During the 30 days exposure in the model stream mesocosms, no significant differencesmore » were observed among treatments and controls, and the estimated LOEC and NOEC for M. aquaticum and periphyton for all parameters measured was > 5.2 mg LAE/L. Based on the results of this study, M. aquaticum and periphyton were relatively insensitive to this (LAE) surfactant when compared with effects observed on fish and macroinvertebrates. These results are similar to those obtained in two previous experimental stream studies with other AE homologs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, Brian D; Mulholland, Patrick J; Bernhardt, Emily
2012-01-01
We present 20 years of weekly stream water chemistry, hydrology, and climate data for the Walker Branch watershed in eastern Tennessee, USA. Since 1989, the watershed has experienced a similar to 1.08 degrees C increase in mean annual temperature, a similar to 20% decline in precipitation, and a similar to 30% increase in forest evapotranspiration rates. As a result, stream runoff has declined by similar to 34%. We evaluate long-term trends in stream water concentrations and fluxes for nine solutes and use wet deposition data to calculate approximate watershed input-output budgets. Dissolved constituents were classified as geochemical solutes (Ca2+, Mg2+,more » and SO42-) or nutrients (NH4+, NO3-, soluble reactive phosphorus [SRP], total soluble nitrogen [TSN], total soluble phosphorus [TSP], and dissolved organic carbon [DOC]). Geochemical solutes are predominantly controlled by discharge, and the long-term changes in catchment hydrology have led to significant trends in the concentrations and fluxes of these solutes. Further, the trends in geochemical solute concentrations indicate shifting soil flowpath contributions to streamflow generation through time, with deep groundwater having a greater proportional contribution in recent years. Despite dramatic changes in watershed runoff, there were no trends in inorganic nutrient concentrations (NH4+, NO3-, and SRP). While most nutrients entering the watershed are retained, stream fluxes of nutrient solutes have declined significantly as a result of decreasing runoff. Nutrient concentrations in the stream exhibit large seasonality controlled by in-stream biological uptake. Stream benthic communities are sensitive to hydrologic disturbance, and changes in the frequency or intensity of storm events through time can affect nutrient fluxes. Stream NO3- concentrations are also sensitive to drought, with concentrations decreasing (increasing) if conditions during the three years prior to the time of sampling were drier (wetter) than the long-term mean. Future changes in the incidence of storm events, as well as the number and duration of droughts, have the potential to significantly alter watershed nutrient losses. Our analysis indicates that changing climates can differentially affect watershed element cycles either through changes in biogeochemical process rates or through changes in catchment hydrology. Furthermore, climate change can include both long-term trending in mean climate variables, as well as changes in the frequency and intensity of storms and droughts, with each of these types of change having distinct effects on the biological and geochemical processes governing different solutes.« less
Shanley, J.B.; Kamman, N.C.; Clair, T.A.; Chalmers, A.
2005-01-01
The physical factors controlling total mercury (HgT) and methylmercury (MeHg) concentrations in lakes and streams of northeastern USA were assessed in a regional data set containing 693 HgT and 385 corresponding MeHg concentrations in surface waters. Multiple regression models using watershed characteristics and climatic variables explained 38% or less of the variance in HgT and MeHg. Land cover percentages and soil permeability generally provided modest predictive power. Percent wetlands alone explained 19% of the variance in MeHg in streams at low-flow, and it was the only significant (p < 0.02) predictor for MeHg in lakes, albeit explaining only 7% of the variance. When stream discharge was added as a variable it became the dominant predictor for HgT in streams, improving the model r 2 from 0.19 to 0.38. Stream discharge improved the MeHg model more modestly, from r 2 of 0.25 to 0.33. Methylation efficiency (MeHg/HgT) was modeled well (r 2 of 0.78) when a seasonal term was incorporated (sine wave with annual period). Physical models explained 18% of the variance in fish Hg concentrations in 134 lakes and 55% in 20 reservoirs. Our results highlight the important role of seasonality and short-term hydrologic changes to the delivery of Hg to water bodies. ?? 2005 Springer Science+Business Media, Inc.
NASA Astrophysics Data System (ADS)
Gannon, J. P.; Lord, M.; Kinner, D. A.
2015-12-01
A growing body of evidence suggests contributions to runoff from ephemeral channels during events can exhibit significant control over water quality in higher order streams. Furthermore, field observations from a steep Appalachian catchment influenced by human activity suggest these disturbed ephemeral drainages exhibit significant control over turbidity, water temperature, and conductivity levels downstream. High turbidity during stormflow is a water quality problem in many areas of the Southern Appalachians. However, upland ephemeral channels are not included in the jurisdiction of the Clean Water Act. This offers little recourse if their contributions degrade the water quality of larger-scale streams and highlights the need for robust evidence of the potential impacts of ephemeral drainages. The aim of this research is to isolate the contribution of a disturbed ephemeral drainage by diverting its flow from the study stream network. Spatially and temporally distributed stream water samples taken during storms, when the channel is diverted or allowed to flow normally, will allow us to assess its contribution. In this poster, we present initial spatial and temporal streamwater chemistry and turbidity data as well as a detailed description of the stream network, study design, and diversion construction. We anticipate the findings of this study will be relevant to describing the environmental impact of disturbed ephemeral channels and to describing their potential influence on other water chemistry parameters downstream.
Smith, Allen J.
1967-01-01
The chemical compound 3-trifluoromethyl-4-nitrophenol (TFM) is used to control the sea lamprey (Petromyzon marinus) in the upper Great Lakes. It is introduced into streams in which sea lampreys have spawned, to kill the larvae. These 'treatments' are carried out at intervals shorter than the larval phase of the sea lamprey's life cycle (about 4 to 7 years) to prevent movement of the metamorphosed parasitic lampreys into the lakes. Most of the streams which contain sea lamprey larvae also have valuable resident fish or serve as spawning and nursery areas for fish of the Great Lakes. These species must be protected from both the direct toxic effects of the control method and from indirect effects such as destruction of food supplies. Studies have shown that TFM is nontoxic to most species of fish when used at the concentrations that kill larval lampreys. Information on the effect of TFM on aquatic invertebrates is meager. Applegate et al. reported that TFM was not harmful to selected invertebrates which they included in simulated stream tests. They also stated that no harmful effects to invertebrates were observed during actual stream application. The variety of invertebrate species used in simulated stream tests was limited, and close observation of invertebrates under stream conditions is difficult. Therefore, the present laboratory bioassays were conducted to determine the toxicity of TFM to representatives of a number of groups of invertebrates.
Hydraulic and biochemical gradients limit wetland mercury supply to an Adirondack stream
Bradley, Paul M.; Burns, Douglas A.; Harvey, Judson; Journey, Celeste A.; Brigham, Mark E.; Murray, Karen
2016-01-01
Net fluxes (change between upstream and downstream margins) for water, methylmercury (MeHg), total mercury (THg), dissolved organic carbon (DOC), and chloride (Cl) were assessed twice in an Adirondack stream reach (Sixmile Brook, USA), to test the hypothesized importance of wetland-stream hydraulic and chemical gradients as fundamental controls on fluvial mercury (Hg) supply. The 500 m study reach represented less than 4% of total upstream basin area. During a snowmelt high-flow event in May 2009 surface water, DOC, and chloride fluxes increased by 7.1±1.3%, 8.0±1.3%, and 9.0±1.3%, respectively, within the reach, demonstrating that the adjacent wetlands are important sources of water and solutes to the stream. However, shallow groundwater Hg concentrations lower than in the surface water limited groundwater-surface water Hg exchange and no significant changes in Hg (filtered MeHg and THg) fluxes were observed within the reach despite the favorable hydraulic gradient. In August 2009, the lack of significant wetland-stream hydraulic gradient resulted in no net flux of water or solutes (MeHg, THg, DOC, or Cl) within the reach. The results are consistent with the wetland-Hg-source hypothesis and indicate that hydraulic and chemical gradient (direction and magnitude) interactions are fundamental controls on the supply of wetland Hg to the stream.
Effects of a chronic lower range of triclosan exposure to a stream mesocosm community
Nietch, C.T.; Quinlan, E.L.; Lazorchak, J.; Impellitteri, C.; Raikow, D.; Walters, David M.
2013-01-01
Triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) is an antimicrobial found in consumer soaps and toothpaste. It is in treated wastewater effluents at low part per billion concentrations, representing a potentially chronic exposure condition for biota inhabiting receiving streams. A naturally colonized benthos was created using flow-through indoor mesocosms. Then the benthic communities were dosed to achieve different in-stream triclosan concentrations (Control, 0.1, 0.5, 1.0, 5.0, and 10 µg/L) for 56 days. Water quality parameters and endpoints from bacteria to macroinvertebrates plus interacting abiotic components were measured. Effects of triclosan on specific microbial endpoints were observed at all doses, including an effect on litter decomposition dynamics at doses 1.0 µg/L and higher. Resistance of periphytic bacteria to triclosan significantly increased in doses 0.5 µg/L and above. By the end of dosing, the antimicrobial appeared to stimulate the stream periphyton at the three lowest doses while the two highest doses exhibited decreased stocks of periphyton, including significantly lower bacteria cell densities, and cyanobacteria abundance compared to the control. Beside an effect on benthic ostracods, the changes that occurred in the periphyton did not translate to significant change in the colonizing nematodes, the macroinvertebrate community as a whole, or other measurements of stream function. The results shed light on the role a low, chronic exposure to triclosan may play in effluent dominated streams.
NASA Astrophysics Data System (ADS)
Shogren, A.; Tank, J. L.; Aubeneau, A. F.; Bolster, D.
2016-12-01
in streams and rivers. These processes co-vary across systems and are thus difficult to isolate. Therefore, to improve our understanding of drivers of fine-scale transport and retention of particles and solutes in streams, we experimentally compared transport and retention dynamics of two different particles (brewers yeast, 7μm; corn pollen, 70μm), a non-reactive solute (RhodamineWT), and a biologically reactive solute, nitrate (NO3-). We conducted experiments in four semi-natural constructed streams at the Notre Dame Linked Ecosystem Experimental Facility (ND-LEEF) in South Bend, Indiana. Each of the four 50 m replicate stream was lined with a unique configuration of substrate: pea gravel (PG, D50 = 0.5cm) and cobble (COB, D50 = 5cm) and structural complexity: alternating 2m sections of PG and COB substrates (ALT) and a random 50/50 mix (MIX). We allowed the experimental streams to naturally colonize with biofilm and periphyton throughout the summer sampling season. For particles, we estimated transport distance (Sp) and deposition velocity (vdep) and for solutes, we estimated uptake lengths (Sw) and uptake velocity (vf) using a short-term pulse addition technique. Sp and vdep were variable for particles, and were most strongly predicted by biofilm colonization on substrata in each stream. Biofilm accumulation also increased uptake of the reactive solute, though in contrast to particles, there were no significant differences in Sw or vf among streams suggesting that substrate type was not the main driver of reactive solute retention. These results emphasize the dynamic relationship between the physical and biological drivers influencing particle and solute retention in streams. Differential uptake of particles and solutes highlights the non stationarity of controlling variables along spatial or temporal continua. Even in highly controlled systems like those at ND-LEEF, physical vs. biological drivers are difficult to isolate.
NASA Astrophysics Data System (ADS)
Moren, I.; Worman, A. L. E.; Riml, J.
2017-12-01
Previous studies have shown that hyporheic exchange processes can be of great importance for the transport, retention and mass removal of nutrients in streams. Specifically, the flow of surface water through the hyporheic zone enhances redox-sensitive reactions such as coupled nitrification-denitrification. This self-cleaning capacity of streams can be utilized in stream restoration projects aiming to improve water quality by reconstructing the geomorphology of the streams. To optimize the effect of restoration actions we need quantitative understanding of the linkage between stream geomorphology, hyporheic exchange processes and the desired water quality targets. Here we propose an analytical, spectral methodology to evaluate how different stream geomorphologies induce hyporheic exchange on a wide range of spatial and temporal scales. Measurements of streambed topographies and surface water profiles from agricultural streams were used to calculate the average hyporheic exchange velocity and residence times and the result was compared with in-stream tracer test. Furthermore, the hyporheic exchange induced by steps in the surface water profile was derived as a comparison of the theoretical capacity of the system. Based on differences in hyporheic exchange, the mass removal of nitrate could be derived for the different geomorphologies. The maximum nitrate mass removal was found to be related to a specific Damkhöler number, which reflects that the mass removal can be either reaction or transport controlled. Therefore, although hyporheic exchange induced by steps in the surface water profile was generally larger than the hyporheic exchange in the observed natural reaches, this would not necessarily lead a larger nitrate mass removal provided that the hyporheic residence times are not long enough to facilitate denitrification processes. The study illustrates the importance to investigate a stream thoroughly before any remediation actions are implemented, specifically to evaluate if the mass removal is reaction or transport controlled.
Subsurface Controls on Stream Intermittency in a Semi-Arid Landscape
NASA Astrophysics Data System (ADS)
Dohman, J.; Godsey, S.; Thackray, G. D.; Hale, R. L.; Wright, K.; Martinez, D.
2017-12-01
Intermittent streams currently constitute 30% to greater than 50% of the global river network. In addition, the number of intermittent streams is expected to increase due to changes in land use and climate. These streams provide important ecosystem services, such as water for irrigation, increased biodiversity, and high rates of nutrient cycling. Many hydrological studies have focused on mapping current intermittent flow regimes or evaluating long-term flow records, but very few have investigated the underlying causes of stream intermittency. The disconnection and reconnection of surface flow reflects the capacity of the subsurface to accommodate flow, so characterizing subsurface flow is key to understanding stream drying. We assess how subsurface flow paths control local surface flows during low-flow periods, including intermittency. Water table dynamics were monitored in an intermittent reach of Gibson Jack Creek in southeastern Idaho. Four transects were delineated with a groundwater well located in the hillslope, riparian zone, and in the stream, for a total of 12 groundwater wells. The presence or absence of surface flow was determined by frequent visual observations as well as in situ loggers every 30m along the 200m study reach. The rate of surface water drying was measured in conjunction with temperature, precipitation, subsurface hydraulic conductivity, hillslope-riparian-stream connectivity and subsurface travel time. Initial results during an unusually wet year suggest different responses in reaches that were previously observed to occasionally cease flowing. Flows in the intermittent reaches had less coherent and lower amplitude diel variations during base flow periods than reaches that had never been observed to dry out. Our findings will help contribute to our understanding of mechanisms driving expansion and contraction cycles in intermittent streams, increase our ability to predict how land use and climate change will affect flow regimes, and improve management of our critical water resources.
Biological indicators for monitoring water quality of MTF canals system
NASA Technical Reports Server (NTRS)
Sethi, S. L.
1975-01-01
Biological models, diversity indexes, were developed to predict environmental effects of NASA's Mississippi test facility (MTF) chemical operations on canal systems in the area. To predict the effects on local streams, a physical model of unpolluted streams was established. The model is fed by artesian well water free of background levels of pollutants. The species diversity and biota composition of unpolluted MTF stream was determined; resulting information will be used to form baseline data for future comparisons. Biological modeling was accomplished by adding controlled quantities or kinds of chemical pollutants and evaluating the effects of these chemicals on the biological life of the stream.
Restoring urban infrastructure and managing the nitrogen cycle represent emerging challenges for urban water quality. We investigated whether stormwater control measures (SCMs), a form of green infrastructure, integrated into restored and degraded urban stream networks can influe...
DOT National Transportation Integrated Search
2017-02-01
Multitrophic vegetative mitigation is required for stream buffers, wetlands, and retention basins within state waters. Downslopes adjacent to linear road construction are typically steep, which creates challenges for establishment and erosion control...
Governance, legislation and protection of intermittent rivers and ephemeral streams
Institutions and processes governing the conveyance and control of water have a long history. In this chapter, we discuss the extent to which water governance systems consider the management of intermittent rivers and ephemeral streams (IRES) and identify where research could inf...
Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.
1996-01-01
Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.
Auditory stream segregation in children with Asperger syndrome
Lepistö, T.; Kuitunen, A.; Sussman, E.; Saalasti, S.; Jansson-Verkasalo, E.; Nieminen-von Wendt, T.; Kujala, T.
2009-01-01
Individuals with Asperger syndrome (AS) often have difficulties in perceiving speech in noisy environments. The present study investigated whether this might be explained by deficient auditory stream segregation ability, that is, by a more basic difficulty in separating simultaneous sound sources from each other. To this end, auditory event-related brain potentials were recorded from a group of school-aged children with AS and a group of age-matched controls using a paradigm specifically developed for studying stream segregation. Differences in the amplitudes of ERP components were found between groups only in the stream segregation conditions and not for simple feature discrimination. The results indicated that children with AS have difficulties in segregating concurrent sound streams, which ultimately may contribute to the difficulties in speech-in-noise perception. PMID:19751798
Thomas, J.T.; Culler, M.E.; Dermisis, D.C.; Pierce, Clay; Papanicolaou, A.N.; Stewart, T.W.; Larson, C.J.
2011-01-01
Land use changes and channelization of streams in the deep loess region of western Iowa have led to stream channel incision, altered flow regimes, increased sediment inputs, decreased habitat diversity and reduced lateral connectivity of streams and floodplains. Grade control structures (GCSs) are built in streams to prevent further erosion, protect infrastructure and reduce sediment loads. However, GCS can have a detrimental impact on fisheries and biological communities. We review three complementary biological and hydraulic studies on the effects of GCS in these streams. GCS with steep (≥1:4 rise : run) downstream slopes severely limited fish passage, but GCS with gentle slopes (≤1:15) allowed greater passage. Fish assemblages were dominated by species tolerant of degradation, and Index of Biotic Integrity (IBI) scores were indicative of fair or poor biotic integrity. More than 50% of fish species had truncated distributions. After modification of GCS to reduce slopes and permit increased passage, IBI scores increased and several species were detected further upstream than before modification. Total macroinvertebrate density, biomass and taxonomic diversity and abundance of ecologically sensitive taxa were greater at GCS than in reaches immediately upstream, downstream or ≥1 km from GCS. A hydraulic study confirmed results from fish passage studies; minimum depths and maximum current velocities at GCS with gentle slopes (≤1:15) were more likely to meet minimum criteria for catfish passage than GCS with steeper slopes. Multidisciplinary approaches such as ours will increase understanding of GCS-associated factors influencing fish passage, biological assemblage structure and other ecological relationships in streams.
Young, J.A.; Smith, D.R.; Snyder, C.D.; Lemarie, D.P.
2002-01-01
Biodiversity surveys are often hampered by the inability to control extraneous sources of variability introduced into comparisons of populations across a heterogenous landscape. If not specifically accounted for a priori, this noise can weaken comparisons between sites, and can make it difficult to draw inferences about specific ecological processes. We developed a terrain-based, paired-site sampling design to analyze differences in aquatic biodiversity between streams draining eastern hemlock (Tsuga canadensis) forests, and those draining mixed hardwood forests in Delaware Water Gap National Recreation Area (USA). The goal of this design was to minimize variance due to terrain influences on stream communities, while representing the range of hemlock dominated stream environments present in the park. We used geographic information systems (GIS) and cluster analysis to define and partition hemlock dominated streams into terrain types based on topographic variables and stream order. We computed similarity of forest stands within terrain types and used this information to pair hemlock-dominated streams with hardwood counterparts prior to sampling. We evaluated the effectiveness of the design through power analysis and found that power to detect differences in aquatic invertebrate taxa richness was highest when sites were paired and terrain type was included as a factor in the analysis. Precision of the estimated difference in mean richness was nearly doubled using the terrain-based, paired site design in comparison to other evaluated designs. Use of this method allowed us to sample stream communities representative of park-wide forest conditions while effectively controlling for landscape variability.
Satellite imagery of the onset of streaming flow of ice streams C and D, West Antarctica
Hodge, S.M.; Doppelhammer, S.K.
1996-01-01
Five overlapping Landsat multispectral scanner satellite images of the interior of the West Antarctic ice sheet were enhanced with principal component analysis, high-pass filtering, and linear contrast stretching and merged into a mosaic by aligning surface features in the overlap areas. The mosaic was registered to geodetic coordinates, to an accuracy of about 1 km, using the five scene centers as control points. The onset of streaming flow of two tributaries of ice stream C and one tributary of ice stream D is visible in the mosaic. The onset appears to occur within a relatively short distance, less than the width of the ice stream, typically at a subglacial topographic feature such as a step or ridge. The ice streams extend farther up into the interior than previously mapped. Ice stream D starts about 150 km from the ice divide, at an altitude of about 1500 m, approximately halfway up the convex-upward dome shape of the interior ice sheet. Ice stream D is relatively much longer than ice stream C, possibly because ice stream D is currently active whereas ice stream C is currently inactive. The grounded portion of the West Antarctic ice sheet is perhaps best conceptualized as an ice sheet in which ice streams are embedded over most of its area, with slow moving ice converging into fast moving ice streams in a widely distributed pattern, much like that of streams and rivers in a hydrologic basin. A relic margin appears to parallel most of the south margin of the tributary of ice stream D, separated from the active shear margin by about 10 km or less for a distance of over 200 km. This means there is now evidence for recent changes having occurred in three of the five major ice streams which drain most of West Antarctica (B, C, and D), two of which (B and D) are currently active.
Video streaming technologies using ActiveX and LabVIEW
NASA Astrophysics Data System (ADS)
Panoiu, M.; Rat, C. L.; Panoiu, C.
2015-06-01
The goal of this paper is to present the possibilities of remote image processing through data exchange between two programming technologies: LabVIEW and ActiveX. ActiveX refers to the process of controlling one program from another via ActiveX component; where one program acts as the client and the other as the server. LabVIEW can be either client or server. Both programs (client and server) exist independent of each other but are able to share information. The client communicates with the ActiveX objects that the server opens to allow the sharing of information [7]. In the case of video streaming [1] [2], most ActiveX controls can only display the data, being incapable of transforming it into a data type that LabVIEW can process. This becomes problematic when the system is used for remote image processing. The LabVIEW environment itself provides little if any possibilities for video streaming, and the methods it does offer are usually not high performance, but it possesses high performance toolkits and modules specialized in image processing, making it ideal for processing the captured data. Therefore, we chose to use existing software, specialized in video streaming along with LabVIEW and to capture the data provided by them, for further use, within LabVIEW. The software we studied (the ActiveX controls of a series of media players that utilize streaming technology) provide high quality data and a very small transmission delay, ensuring the reliability of the results of the image processing.
NASA Astrophysics Data System (ADS)
Pastor, A.; Babault, J.; Teixell, A.; Arboleya, M. L.
2012-11-01
The Ouarzazate basin is a Cenozoic foreland basin located to the south of the High Atlas Mountains. The basin has been externally drained during the Quaternary, with fluvial dynamics dominated by erosive processes from a progressive base level drop. The current drainage network is composed of rivers draining the mountain and carrying large amounts of coarse sediments and by piedmont streams with smaller catchments eroding the soft Cenozoic rocks of the Ouarzazate basin. The coarse-grained sediments covering the channel beds of main rivers cause the steepening of the channel gradient and act as a shield inhibiting bedrock incision. Under such circumstances, piedmont streams that incise to lower gradients evolve to large, depressed pediments at lower elevations and threaten to capture rivers originating in the mountain. Much of the current surface of the Ouarzazate basin is covered by coarse sediments forming large systems of stepped fan pediments that developed by the filling of low elevation pediments after a capture event. We identified 14 capture events, and previously published geochronology support an ~ 100 ka frequency for fan pediment formation. Our study indicates that the reorganization of the fluvial network in the Ouarzazate basin during the late Pleistocene and Holocene has been controlled by the piedmont-stream piracy process, a process ultimately controlled by the cover effect. The stream capture is influenced by erosion, sediment supply and transport, and therefore may not be entirely decoupled from tectonic and climatic forcing. Indeed, we show that at least two capture events may have occurred during climate changes, and local tectonic structures control at most the spatial localization of capture events.
Advanced supersonic propulsion study, phase 3
NASA Technical Reports Server (NTRS)
Howlett, R. A.; Johnson, J.; Sabatella, J.; Sewall, T.
1976-01-01
The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and an 8 decibel reduction in takeoff noise, relative to first generation supersonic turbojet engines.
Assessment of flow forces on large wood in rivers
USDA-ARS?s Scientific Manuscript database
Large wood (LW) exerts an important influence on the geomorphology and ecology of streams and rivers. LW management activities are diverse, including placement in streams for restoring habitats or controlling bank erosion and mitigation of LW-related hazards to bridges and other structures. Flow f...
Woody Debris: Denitrification Hotspots and N2O Production in Fluvial Systems
The maintenance and restoration of forested riparian cover is important for watershed nitrogen (N) cycling. Forested riparian zones provide woody debris to streams that may stimulate in-stream denitrification and control nitrous oxide (N2O) production. We examined the effects of ...
Influence of multi-scale hydrologic controls on river network connectivity and riparian function
The ecological functions of rivers and streams and their associated riparian zones are strongly influenced by surface and subsurface hydrologic routing of water within river basins and river networks. Hydrologic attributes of the riparian area for a given stream reach are typica...
USDA-ARS?s Scientific Manuscript database
Riparian zones of streams in northwestern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Riparian gully formation has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used conservation practice for...
NASA Astrophysics Data System (ADS)
Gordon, R.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.; Chavez, D.
2013-12-01
Melting tropical glaciers supply approximately half of dry season stream discharge in glacierized valleys of the Cordillera Blanca, Peru. The remainder of streamflow originates as groundwater stored in alpine meadows, moraines and talus slopes. A better understanding of the dynamics of alpine groundwater, including sources and contributions to streamflow, is important for making accurate estimates of glacial inputs to the hydrologic budget, and for our ability to make predictions about future water resources as glaciers retreat. Our field study, conducted during the dry season in the Llanganuco valley, focused on a 0.5-km2 alpine meadow complex at 4400 m elevation, which includes talus slopes, terminal moraines, and a debris fan. Two glacial lakes and springs throughout the complex feed a network of stream channels that flow across the meadow (~2 km total length). We combined tracer measurements of stream and spring discharge and groundwater-surface water exchange with synoptic sampling of water isotopic and geochemical composition, in order to characterize and quantify contributions to streamflow from different geomorphic features. Surface water inputs to the stream channels totaled 58 l/s, while the stream gained an additional 57 l/s from groundwater inputs. Water chemistry is primarily controlled by flowpath type (surface/subsurface) and length, as well as bedrock lithology, while stable water isotopic composition appears to be controlled by water source (glacial lake, meadow or deep groundwater). Stream water chemistry is most similar to meadow groundwater springs, but isotopic composition suggests that the majority of stream water, which issues from springs at the meadow/fan interface, is from the same glacial source as the up-gradient lake. Groundwater sampled from piezometers in confined meadow aquifers is unique in both chemistry and isotopic composition, but does not contribute a large percentage of stream water exiting this small meadow, as quantified by discharge measurements and isotopic mixing. However, we expect that as streams flow down through extensive meadows and wetlands in many Cordillera Blanca valleys, meadow groundwater is a more significant contributor to streamflow. Results from this small, high meadow in Llanganuco will be compared to a larger and lower-elevation meadow system in the Quilcayhuanca valley.
NASA Astrophysics Data System (ADS)
Serchan, S. P.; Wondzell, S. M.; Haggerty, R.; Pennington, R.; Feris, K. P.; Sanfilippo, A. R.; Reeder, W. J.; Tonina, D.
2016-12-01
Hyporheic zone biogeochemical processes can influence stream water chemistry. Some estimates show that 50-90% stream water CO2 is produced in the hyporheic zone through heterotrophic metabolism of organic matter, usually supplied from the stream as dissolved organic carbon (DOC). Preliminary results from our well network at the HJ Andrews WS1, indicate that dissolved inorganic carbon (DIC) is 1.5-2 times higher in the hyporheic zone than in stream water. Conversely, DOC (mg/L) is 1.5 times higher in stream water than in the hyporheic zone throughout the year. Overall, the hyporheic zone appears to be a net source of DIC. However, the increase in DIC along hyporheic flow paths is approximately 10-times greater than the loss of DOC, suggesting that metabolism of buried particulate organic carbon (POC) is a major source of organic carbon for microbial metabolism. However, we cannot completely rule out alternative sources of DIC, especially those originating in the overlying riparian soil, because hyporheic processes are difficult to isolate in well networks. To study hyporheic zone biogeochemical processes, particularly the transformation of organic carbon to inorganic carbon species, we designed and built six replicate 2-m long hyporheic mesocosms in which we are conducting DOC amendment experiments. We examine the role of DOC quality and quantity on hyporheic respiration by injecting labile (acetate) and refractory (fulvic acid) organic carbon and comparing rates of O2 consumption, DOC loss, and DIC gains against a control. We expect that stream source DOC is limiting in this small headwater stream, forcing hyporheic metabolism to rely on buried POC. However, the long burial time of POC suggests it is likely of low quality so that supplying labile DOC in stream water should shift hyporheic metabolism away from POC rather than increase the overall rate of metabolism. Future experiments will examine natural sources of DOC (stream periphyton, leaf, and soil humic horizon leachates), the breakdown of wood buried in the hyporheic zone, and the role of temperature and nutrients in controlling the rate at which buried POC is metabolized.
NASA Astrophysics Data System (ADS)
Gulis, V.; Ferreira, V. J.; Graca, M. A.
2005-05-01
Traditional approaches to assess stream ecosystem health rely on structural parameters, e.g. a variety of biotic indices. The goal of the Europe-wide RivFunction project is to develop methodology that uses functional parameters (e.g. plant litter decomposition) to this end. Here we report on decomposition experiments carried out in Portugal in five pairs of streams that differed in dissolved inorganic nutrients. On average, decomposition rates of alder and oak leaves were 2.8 and 1.4 times higher in high nutrient streams in coarse and fine mesh bags, respectively, than in corresponding reference streams. Breakdown rate correlated better with stream water SRP concentration rather than TIN. Fungal biomass and sporulation rates of aquatic hyphomycetes associated with decomposing leaves were stimulated by higher nutrient levels. Both fungal parameters measured at very early stages of decomposition (e.g. days 7-13) correlated well with overall decomposition rates. Eutrophication had no significant effect on shredder abundances in leaf bags but species richness was higher in disturbed streams. Decomposition is a key functional parameter in streams integrating many other variables and can be useful in assessing stream ecosystem health. We also argue that because decomposition is often controlled by fungal activity, microbial parameters can also be useful in bioassessment.
Identify the dominant variables to predict stream water temperature
NASA Astrophysics Data System (ADS)
Chien, H.; Flagler, J.
2016-12-01
Stream water temperature is a critical variable controlling water quality and the health of aquatic ecosystems. Accurate prediction of water temperature and the assessment of the impacts of environmental variables on water temperature variation are critical for water resources management, particularly in the context of water quality and aquatic ecosystem sustainability. The objective of this study is to measure stream water temperature and air temperature and to examine the importance of streamflow on stream water temperature prediction. The measured stream water temperature and air temperature will be used to test two hypotheses: 1) streamflow is a relatively more important factor than air temperature in regulating water temperature, and 2) by combining air temperature and streamflow data stream water temperature can be more accurately estimated. Water and air temperature data loggers are placed at two USGS stream gauge stations #01362357and #01362370, located in the upper Esopus Creek watershed in Phonecia, NY. The ARIMA (autoregressive integrated moving average) time series model is used to analyze the measured water temperature data, identify the dominant environmental variables, and predict the water temperature with identified dominant variable. The preliminary results show that streamflow is not a significant variable in predicting stream water temperature at both USGS gauge stations. Daily mean air temperature is sufficient to predict stream water temperature at this site scale.
Krider, Lori A.; Magner, Joseph A.; Perry, Jim; Vondracek, Bruce C.; Ferrington, Leonard C.
2013-01-01
Carbonate-sandstone geology in southeastern Minnesota creates a heterogeneous landscape of springs, seeps, and sinkholes that supply groundwater into streams. Air temperatures are effective predictors of water temperature in surface-water dominated streams. However, no published work investigates the relationship between air and water temperatures in groundwater-fed streams (GWFS) across watersheds. We used simple linear regressions to examine weekly air-water temperature relationships for 40 GWFS in southeastern Minnesota. A 40-stream, composite linear regression model has a slope of 0.38, an intercept of 6.63, and R2 of 0.83. The regression models for GWFS have lower slopes and higher intercepts in comparison to surface-water dominated streams. Regression models for streams with high R2 values offer promise for use as predictive tools for future climate conditions. Climate change is expected to alter the thermal regime of groundwater-fed systems, but will do so at a slower rate than surface-water dominated systems. A regression model of intercept vs. slope can be used to identify streams for which water temperatures are more meteorologically than groundwater controlled, and thus more vulnerable to climate change. Such relationships can be used to guide restoration vs. management strategies to protect trout streams.
NASA Astrophysics Data System (ADS)
Köhler, S. J.; Buffam, I.; Seibert, J.; Bishop, K. H.; Laudon, H.
2009-06-01
SummaryTwo different but complementary modelling approaches for reproducing the observed dynamics of total organic carbon (TOC) in a boreal stream are presented. One is based on a regression analysis, while the other is based on riparian soil conditions using a convolution of flow and concentration. Both approaches are relatively simple to establish and help to identify gaps in the process understanding of the TOC transport from soils to catchments runoff. The largest part of the temporal variation of stream TOC concentrations (4-46 mg L -1) in a forested headwater stream in the boreal zone in northern Sweden may be described using a four-parameter regression equation that has runoff and transformed air temperature as sole input variables. Runoff is assumed to be a proxy for soil wetness conditions and changing flow pathways which in turn caused most of the stream TOC variation. Temperature explained a significant part of the observed inter-annual variability. Long-term riparian hydrochemistry in soil solutions within 4 m of the stream also captures a surprisingly large part of the observed variation of stream TOC and highlights the importance of riparian soils. The riparian zone was used to reproduce stream TOC with the help of a convolution model based on flow and average riparian chemistry as input variables. There is a significant effect of wetting of the riparian soil that translates into a memory effect for subsequent episodes and thus contributes to controlling stream TOC concentrations. Situations with high flow introduce a large amount of variability into stream water TOC that may be related to memory effects, rapid groundwater fluctuations and other processes not identified so far. Two different climate scenarios for the region based on the IPCC scenarios were applied to the regression equation to test what effect the expected increase in precipitation and temperature and resulting changes in runoff would have on stream TOC concentrations assuming that the soil conditions remain unchanged. Both scenarios resulted in a mean increase of stream TOC concentrations of between 1.5 and 2.5 mg L -1 during the snow free season, which amounts to approximately 15% more TOC export compared to present conditions. Wetter and warmer conditions in the late autumn led to a difference of monthly average TOC of up to 5 mg L -1, suggesting that stream TOC may be particularly susceptible to climate variability during this season.
Perspectives on ecological research at the Outdoor StreamLab, a field-scale experimental stream
NASA Astrophysics Data System (ADS)
Merten, E. C.; Dieterman, D.; Kramarczuk, K.; Lightbody, A.; Orr, C. H.; Wellnitz, T.
2009-12-01
Artificial streams hold great promise for examining ecological processes. They lend themselves to manipulations of discharge, sediment load, water chemistry, and other parameters difficult or impossible to control in natural streams. However, artificial streams also have important limitations. In this presentation we describe insights gained from several ecological studies conducted at the St. Anthony Falls Laboratory’s Outdoor StreamLab, including, 1) short-term turbidity exposure effects on fish health, 2) macroinvertebrate grazing rates on periphyton as a function of velocity, 3) rates of macroinvertebrate colonization as related to velocity, and 4) fine-scale correlations of periphytic biomass with hydraulic conditions. Several lessons emerge from these initial attempts at ecological research in the Outdoor StreamLab. We have learned that the size, flow rate, substrate, water chemistry, and available colonization population of the artificial stream limit the kinds of organisms and types of ecological processes that can be examined and the types of experiments that can be run. We suggest that short-term biotic responses are best for study in a system of this type, and note that constant experiment maintenance is essential. Operating artificial streams to meet the needs of multiple researchers also presents challenges of scheduling, coordination, and conflict resolution. Although ecological research in artificial streams has considerable potential, the planning required is no less than that of traditional field studies.
Mechanisms of iron photoreduction in a metal-rich, acidic stream (St. Kevin Gulch, Colorado, U.S.A.)
Kimball, B.A.; McKnight, Diane M.; Wetherbee, G.A.; Harnish, R.A.
1992-01-01
Iron photoreduction in metal-rich, acidic streams affected by mine drainage accounts for some of the variability in metal chemistry of such streams, producing diel variations in Fe(II). Differentiation of the mechanisms of the Fe photoreduction reaction by a series of in-stream experiments at St. Kevin Gulch, Colorado, indicates that a homogeneous, solution-phase reaction can occur in the absence of suspended particulate Fe and bacteria, and the rate of reaction is increased by the presence of Fe colloids in the stream water. In-stream Fe photoreduction is limited during the diel cycle by the available Fe(III) in the water column and streambed. The quantum yield of Fe(II) was reproducible in diel measurements: the quantum yield, in mol E-1 (from 300 to 400 nm) was 1.4 ?? 10-3 in 1986, 0.8 ?? 10-3 in 1988 and 1.2 ?? 10-3 in 1989, at the same location and under similar streamflow and stream-chemistry conditions. In a photolysis control experiment, there was no detectable production of Fe(II) above background concentrations in stream-water samples that were experimentally excluded from sunlight. ?? 1992.
Environmental controls of wood entrapment in upper Midwestern streams
Merten, Eric C.; Finlay, Jacques; Johnson, Lucinda; Newman, Raymond; Stefan, Heinz; Vondracek, Bruce C.
2011-01-01
Wood deposited in streams provides a wide variety of ecosystem functions, including enhancing habitat for key species in stream food webs, increasing geomorphic and hydraulic heterogeneity and retaining organic matter. Given the strong role that wood plays in streams, factors that influence wood inputs, retention and transport are critical to stream ecology. Wood entrapment, the process of wood coming to rest after being swept downstream at least 10 m, is poorly understood, yet important for predicting stream function and success of restoration efforts. Data on entrapment were collected for a wide range of natural wood pieces (n = 344), stream geomorphology and hydraulic conditions in nine streams along the north shore of Lake Superior in Minnesota. Locations of pieces were determined in summer 2007 and again following an overbank stormflow event in fall 2007. The ratio of piece length to effective stream width (length ratio) and the weight of the piece were important in a multiple logistic regression model that explained 25% of the variance in wood entrapment. Entrapment remains difficult to predict in natural streams, and often may simply occur wherever wood pieces are located when high water recedes. However, this study can inform stream modifications to discourage entrapment at road crossings or other infrastructure by applying the model formula to estimate the effective width required to pass particular wood pieces. Conversely, these results could also be used to determine conditions (e.g. pre-existing large, stable pieces) that encourage entrapment where wood is valued for ecological functions.
Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 – 2013
Ribic, Christine A.; Donner, Deahn M.; Beck, Albert J.; Reinecke, Sue; Eklund, Dan
2017-01-01
The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987–2013 (Nicolet, northeast Wisconsin) and 1997–2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs. PMID:28081271
Beaver Colony Density Trends on the Chequamegon-Nicolet National Forest, 1987 - 2013.
Ribic, Christine A; Donner, Deahn M; Beck, Albert J; Rugg, David J; Reinecke, Sue; Eklund, Dan
2017-01-01
The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987-2013 (Nicolet, northeast Wisconsin) and 1997-2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.
Beaver colony density trends on the Chequamegon-Nicolet National Forest, 1987 – 2013
Ribic, Christine; Donner, Deahn M.; Beck, Albert J.; Rugg, David J.; Reinecke, Sue; Eklund, Dan
2017-01-01
The North American beaver (Castor canadensis) is a managed species in the United States. In northern Wisconsin, as part of the state-wide beaver management program, the Chequamegon-Nicolet National Forest removes beavers from targeted trout streams on U.S. Forest Service lands. However, the success of this management program has not been evaluated. Targeted removals comprise only 3% of the annual beaver harvest, a level of effort that may not affect the beaver population. We used colony location data along Forest streams from 1987–2013 (Nicolet, northeast Wisconsin) and 1997–2013 (Chequamegon, northwest Wisconsin) to assess trends in beaver colony density on targeted trout streams compared to non-targeted streams. On the Chequamegon, colony density on non-targeted trout and non-trout streams did not change over time, while colony density on targeted trout streams declined and then stabilized. On the Nicolet, beaver colony density decreased on both non-targeted streams and targeted trout streams. However, colony density on targeted trout streams declined faster. The impact of targeted trapping was similar across the two sides of the Forest (60% reduction relative to non-targeted trout streams). Exploratory analyses of weather influences found that very dry conditions and severe winters were associated with transient reductions in beaver colony density on non-targeted streams on both sides of the Forest. Our findings may help land management agencies weigh more finely calibrated beaver control measures against continued large-scale removal programs.
Similarity of Stream Width Distributions Across Headwater Systems
NASA Astrophysics Data System (ADS)
Allen, G. H.; Pavelsky, T.; Barefoot, E. A.; Tashie, A.; Butman, D. E.
2016-12-01
The morphology and abundance of streams control the rates of hydraulic and biogeochemical exchange between streams, groundwater, and the atmosphere. In large river systems, studies have used remote sensing to quantify river morphology, and have found that the relationship between river width and abundance is fractal, such that narrow rivers are proportionally more common than wider rivers. However, in headwater systems (stream order 1-3), where many biogeochemical reactions are most rapid, the relationship between stream width and abundance is unknown, reducing the certainty of biogeochemical flux estimates. To constrain this uncertainty, we surveyed two components of stream morphology (wetted stream width and length) in seven physiographically contrasting stream networks in Kings Creek in Konza Prarie, KS; Sagehen Creek in the N. Sierra Nevada Mtns., CA; Elder Creek in Angelo Coast Range Preserve, CA; Caribou Creek in the Caribou Poker Creek Research Watershed, AK; V40 Stream, NZ; Blue Duck Creek, NZ; Stony Creek in Duke Forest, NC. To assess temporal variations, we also surveyed stream geometry in a subcatchment of Stony Creek six times over a range of moderate streamflow conditions (discharge less than 90 percentile of gauge record). Here we show a strikingly consistent gamma statistical distribution of stream width in all surveys and a characteristic most abundant stream width of 32±7 cm independent of flow conditions or basin size. This consistency is remarkable given the substantial physical diversity among the studied catchments. We propose a model that invokes network topology theory and downstream hydraulic geometry to show that, as active drainage networks expand and contract in response to changes in streamflow, the most abundant stream width remains approximately static. This framework can be used to better extrapolate stream size and abundance from large rivers to small headwater streams, with significant impact on understanding of the hydraulic, ecological, and biogeochemical functions of stream networks.
Quantifying tidal stream disruption in a simulated Milky Way
NASA Astrophysics Data System (ADS)
Sandford, Emily; Küpper, Andreas H. W.; Johnston, Kathryn V.; Diemand, Jürg
2017-09-01
Simulations of tidal streams show that close encounters with dark matter subhaloes induce density gaps and distortions in on-sky path along the streams. Accordingly, observing disrupted streams in the Galactic halo would substantiate the hypothesis that dark matter substructure exists there, while in contrast, observing collimated streams with smoothly varying density profiles would place strong upper limits on the number density and mass spectrum of subhaloes. Here, we examine several measures of stellar stream 'disruption' and their power to distinguish between halo potentials with and without substructure and with different global shapes. We create and evolve a population of 1280 streams on a range of orbits in the Via Lactea II simulation of a Milky Way-like halo, replete with a full mass range of Λcold dark matter subhaloes, and compare it to two control stream populations evolved in smooth spherical and smooth triaxial potentials, respectively. We find that the number of gaps observed in a stellar stream is a poor indicator of the halo potential, but that (I) the thinness of the stream on-sky, (II) the symmetry of the leading and trailing tails and (III) the deviation of the tails from a low-order polynomial path on-sky ('path regularity') distinguish between the three potentials more effectively. We furthermore find that globular cluster streams on low-eccentricity orbits far from the galactic centre (apocentric radius ˜30-80 kpc) are most powerful in distinguishing between the three potentials. If they exist, such streams will shortly be discoverable and mapped in high dimensions with near-future photometric and spectroscopic surveys.
NASA Astrophysics Data System (ADS)
Sebestyen, Stephen D.; Boyer, Elizabeth W.; Shanley, James B.
2009-06-01
In coming decades, higher annual temperatures, increased growing season length, and increased dormant season precipitation are expected across the northeastern United States in response to anthropogenic forcing of global climate. We synthesized long-term stream hydrochemical data from the Sleepers River Research Watershed in Vermont, United States, to explore the relationship of catchment wetness to stream nitrate and DOC loadings. We modeled changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nutrient loadings respond to climate change. Model results for the 2070-2099 time period suggest that stream nutrient loadings during both the dormant and growing seasons will respond to climate change. During a warmer climate, growing season stream fluxes (runoff +20%, nitrate +57%, and DOC +58%) increase as more precipitation (+28%) and quick flow (+39%) occur during a longer growing season (+43 days). During the dormant season, stream water and nutrient loadings decrease. Net annual stream runoff (+8%) and DOC loading (+9%) increases are commensurate with the magnitude of the average increase of net annual precipitation (+7%). Net annual stream water and DOC loadings are primarily affected by increased dormant season precipitation. In contrast, decreased annual loading of stream nitrate (-2%) reflects a larger effect of growing season controls on stream nitrate and the effects of lengthened growing seasons in a warmer climate. Our findings suggest that leaching of nitrate and DOC from catchment soils will be affected by anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream loadings in the northeastern United States.
Wang, Quanxin; Burkhalter, Andreas
2013-01-23
Previous studies of intracortical connections in mouse visual cortex have revealed two subnetworks that resemble the dorsal and ventral streams in primates. Although calcium imaging studies have shown that many areas of the ventral stream have high spatial acuity whereas areas of the dorsal stream are highly sensitive for transient visual stimuli, there are some functional inconsistencies that challenge a simple grouping into "what/perception" and "where/action" streams known in primates. The superior colliculus (SC) is a major center for processing of multimodal sensory information and the motor control of orienting the eyes, head, and body. Visual processing is performed in superficial layers, whereas premotor activity is generated in deep layers of the SC. Because the SC is known to receive input from visual cortex, we asked whether the projections from 10 visual areas of the dorsal and ventral streams terminate in differential depth profiles within the SC. We found that inputs from primary visual cortex are by far the strongest. Projections from the ventral stream were substantially weaker, whereas the sparsest input originated from areas of the dorsal stream. Importantly, we found that ventral stream inputs terminated in superficial layers, whereas dorsal stream inputs tended to be patchy and either projected equally to superficial and deep layers or strongly preferred deep layers. The results suggest that the anatomically defined ventral and dorsal streams contain areas that belong to distinct functional systems, specialized for the processing of visual information and visually guided action, respectively.
NASA Astrophysics Data System (ADS)
Scaini, Anna; Hissler, Christophe; Fenicia, Fabrizio; Juilleret, Jérôme; Iffly, Jean François; Pfister, Laurent; Beven, Keith
2018-03-01
Subsurface flow is often recognized as a dominant runoff generation process. However, observing subsurface properties, and understanding how they control flow pathways, remains challenging. This paper investigates how surface slope and bedrock cleavage control subsurface flow pathways in a slate bedrock headwater catchment in Luxembourg, characterised by a double-peak streamflow response. We use a range of experimental techniques, including field observations of soil and bedrock characteristics, and a sprinkling experiment at a site located 40 m upslope from the stream channel. The sprinkling experiment uses Br- as a tracer, which is measured at a well downslope from the plot and at various locations along the stream, together with well and stream hydrometric responses. The sprinkling experiment is used to estimate velocities and celerities, which in turn are used to infer flow pathways. Our results indicate that the single or first peak of double-peak events is rainfall-driven (controlled by rainfall) while the second peak is storage-driven (controlled by storage). The comparison between velocity and celerity estimates suggests a fast flowpath component connecting the hillslope to the stream, but velocity information was too scarce to fully support such a hypothesis. In addition, different estimates of celerities suggest a seasonal influence of both rainfall intensity rate and residual water storage on the celerity responses at the hillslope scale. At the catchment outlet, the estimated of the total mass of Br- recovered in the stream was about 2.5% of the application. Further downstream, the estimate mass of Br- was about 4.0% of the application. This demonstrates that flowpaths do not appear to align with the slope gradient. In contrast, they appear to follow the strike of the bedrock cleavage. Our results have expanded our understanding of the importance of the subsurface, in particular the underlying bedrock systems, and the importance of cleavage orientation, as well as topography, in controlling subsurface flow direction in this catchment.
William Wenerick; Ken M. Fritz; Mitchell S. Kostich
2016-01-01
Classifying streams according to permanence is important in determining regulatory jurisdiction and in implementing pollution control programs. Administrators of these programs need rapid methods for making timely and defensible decisions.
40 CFR 65.152 - Carbon adsorbers used as control devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better capable of recording the total regeneration stream mass or volumetric flow for each regeneration... after each regeneration and within 15 minutes of completing any cooling cycle, shall be used. Monitoring...
40 CFR 65.162 - Nonflare control and recovery device monitoring records.
Code of Federal Regulations, 2014 CFR
2014-07-01
... regeneration stream flow and carbon bed regeneration temperature are monitored, the following records shall be...): (i) Records of total regeneration stream mass or volumetric flow for each carbon-bed regeneration cycle; and (ii) Records of the temperature of the carbon bed after each regeneration and within 15...
40 CFR 65.152 - Carbon adsorbers used as control devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better capable of recording the total regeneration stream mass or volumetric flow for each regeneration... after each regeneration and within 15 minutes of completing any cooling cycle, shall be used. Monitoring...
40 CFR 65.152 - Carbon adsorbers used as control devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better capable of recording the total regeneration stream mass or volumetric flow for each regeneration... after each regeneration and within 15 minutes of completing any cooling cycle, shall be used. Monitoring...
40 CFR 63.996 - General monitoring requirements for control and recovery devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... limits established under a referencing subpart. Where the regeneration stream flow and carbon bed temperature are monitored, the range shall be in terms of the total regeneration stream flow per regeneration... regeneration cooling cycle. (d) Alternatives to monitoring requirements—(1) Alternatives to the continuous...
40 CFR 63.996 - General monitoring requirements for control and recovery devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... limits established under a referencing subpart. Where the regeneration stream flow and carbon bed temperature are monitored, the range shall be in terms of the total regeneration stream flow per regeneration... regeneration cooling cycle. (d) Alternatives to monitoring requirements—(1) Alternatives to the continuous...
40 CFR 63.996 - General monitoring requirements for control and recovery devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... limits established under a referencing subpart. Where the regeneration stream flow and carbon bed temperature are monitored, the range shall be in terms of the total regeneration stream flow per regeneration... regeneration cooling cycle. (d) Alternatives to monitoring requirements—(1) Alternatives to the continuous...
40 CFR 65.152 - Carbon adsorbers used as control devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., or an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better capable of recording the total regeneration stream mass or volumetric flow for each regeneration... after each regeneration and within 15 minutes of completing any cooling cycle, shall be used. Monitoring...
40 CFR 63.996 - General monitoring requirements for control and recovery devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... limits established under a referencing subpart. Where the regeneration stream flow and carbon bed temperature are monitored, the range shall be in terms of the total regeneration stream flow per regeneration... regeneration cooling cycle. (d) Alternatives to monitoring requirements—(1) Alternatives to the continuous...
40 CFR 65.162 - Nonflare control and recovery device monitoring records.
Code of Federal Regulations, 2011 CFR
2011-07-01
... regeneration stream flow and carbon bed regeneration temperature are monitored, the following records shall be...): (i) Records of total regeneration stream mass or volumetric flow for each carbon-bed regeneration cycle; and (ii) Records of the temperature of the carbon bed after each regeneration and within 15...
40 CFR 63.996 - General monitoring requirements for control and recovery devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... limits established under a referencing subpart. Where the regeneration stream flow and carbon bed temperature are monitored, the range shall be in terms of the total regeneration stream flow per regeneration... regeneration cooling cycle. (d) Alternatives to monitoring requirements—(1) Alternatives to the continuous...
The effects of riparian vegetation on the reduction of agricultural nitrogen export to streams have been well described experimentally, but a clear understanding of process-level hydrological and biogeochemical controls can be difficult to ascertain from data alone. We apply a ne...
Background/Question/Methods The effectiveness of riparian forest buffers and other green infrastructure for reducing nitrogen export to agricultural streams has been well described experimentally, but a clear understanding of process-level hydrological and biogeochemical control...
Installation of best management practices (BMPs) in watersheds or streams is widely used as a means of reducing, eliminating, or controlling the input of human-based physical, chemical, or hydrologic stressors to those systems. Although BMPs may be effective in managing a partic...
MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL ...
MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL RACE OF POWER PLANT AND PENSTOCK HEADGATE TO LOWER GORGE CONTROL PLANT. A MINIMAL FLOW OF RIVER WATER IS REQUIRED TO MAINTAIN FISH LIFE - Los Angeles Aqueduct, Middle Gorge Power Plant, Los Angeles, Los Angeles County, CA
Mercury transport through stream ecosystems is driven by a complicated set of transport and transformation reactions operating on a variety of scales in the atmosphere, landscape, surface water, and biota. Riverine systems typically have short residence times and can experience l...
Preparation and characterization of methacrylate hydrogels for zeta potential control
NASA Technical Reports Server (NTRS)
Gregonis, D. E.; Ma, S. M.; Vanwagenen, R.; Andrade, J. D.
1976-01-01
A technique based on the measurement of streaming potentials has been developed to evaluate the effects of hydrophilic coatings on electroosmotic flow. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of glass capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming potential measurements is discussed. Various silane adhesion promoters exhibited only a slight decrease in streaming potential. A coating utilizing a glycidoxy silane base upon which methylcellulose is applied affords a six-fold decrease over uncoated tubes. Hydrophilic methacrylate gels show similar streaming potential behavior, independent of the water content of the gel. By introduction of positive or negative groups into the hydrophilic methacrylate gels, a range of streaming potential values are obtained having absolute positive or negative signs.
Loper, Connie A.; Crawford, J. Kent; Otto, Kim L.; Manning, Rhonda L.; Meyer, Michael T.; Furlong, Edward T.
2007-01-01
This report presents environmental and quality-control data from analyses of 15 pharmaceutical and 31 antibiotic compounds in water samples from streams and wells in south-central Pennsylvania. The analyses are part of a study by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP) to define concentrations of selected emerging contaminants in streams and well water in Pennsylvania. Sampling was conducted at 11 stream sites and at 6 wells in 9 counties of south-central Pennsylvania. Five of the streams received municipal wastewater and 6 of the streams received runoff from agricultural areas dominated by animal-feeding operations. For all 11 streams, samples were collected at locations upstream and downstream of the municipal effluents or animal-feeding operations. All six wells were in agricultural settings. A total of 120 environmental samples and 21 quality-control samples were analyzed for the study. Samples were collected at each site in March/April, May, July, and September 2006 to obtain information on changes in concentration that could be related to seasonal use of compounds.For streams, 13 pharmaceuticals and 11 antibiotics were detected at least 1 time. Detections included analytical results that were estimated or above the minimum reporting limits. Seventy-eight percent of all detections were analyzed in samples collected downstream from municipal-wastewater effluents. For streams receiving wastewater effluents, the pharmaceuticals caffeine and para-xanthine (a degradation product of caffeine) had the greatest concentrations, 4.75 μg/L (micrograms per liter) and 0.853 μg/L, respectively. Other pharmaceuticals and their respective maximum concentrations were carbamazepine (0.516 μg/L) and ibuprofen (0.277 μg/L). For streams receiving wastewater effluents, the antibiotic azithromycin had the greatest concentration (1.65 μg/L), followed by sulfamethoxazole (1.34 μg/L), ofloxacin (0.329 μg/L), and trimethoprim (0.256 μg/L).For streams receiving runoff from animal-feeding operations, the only pharmaceuticals detected were acetaminophen, caffeine, cotinine, diphenhydramine, and carbamazepine. The maximum concentration for pharmaceuticals was 0.053 μg/L. Three streams receiving runoff from animal-feeding operations had detections of one or more antibiotic compound--oxytetracycline, sulfadimethoxine, sulfamethoxazole, and tylosin. The maximum concentration for antibiotics was 0.157 μg/L. The average number of compounds (pharmaceuticals and antibiotics) detected in sites downstream from animal-feeding operations was three. The average number of compounds detected downstream from municipal-wastewater effluents was 13.For wells used to supply livestock, four compounds were detected--two pharmaceuticals (cotinine and diphenhydramine) and two antibiotics (tylosin and sulfamethoxazole). There were five detections in all the well samples. The maximum concentration detected in well water was for cotinine, estimated to be 0.024 μg/L.Seasonal occurrence of pharmaceutical and antibiotic compounds in stream water varied by compound and site type. At four stream sites, the same compounds were detected in all four seasonal samples. At other sites, pharmaceutical or antibiotic compounds were detected only one time in seasonal samples. Winter samples collected in streams receiving municipalwastewater effluent had the greatest number of compounds detected (21). Research analytical methods were used to determine concentrations for pharmaceuticals and antibiotics. To assist in evaluating the quality of the analyses, detailed information is presented on laboratory methodology and results from qualitycontrol samples. Quality-control data include results for nine blanks, nine duplicate environmental sample pairs, and three laboratory-spiked environmental samples as well as the recoveries of compounds in laboratory surrogates and laboratory reagent spikes.
NASA Astrophysics Data System (ADS)
Battin, Tom J.
1999-10-01
The objective of the present paper was to link reach-scale streambed reactive uptake of dissolved organic carbon (DOC) and dissolved oxygen (DO) to subsurface flow paths in an alpine stream (Oberer Seebach (OSB)). The topography adjacent to the stream channel largely determined flow paths, with shallow hillslope groundwater flowing beneath the stream and entering the alluvial groundwater at the opposite bank. As computed from hydrometric data, OSB consistently lost stream water to groundwater with fluxes out of the stream averaging 943 ± 47 and 664 ± 45 L m-2 h-1 at low (Q < 600 L s-1) and high (Q > 600 L s-1) flow, respectively. Hydrometric segregation of streambed fluxes and physicochemical mixing analysis indicated that stream water was the major input component to the streambed with average contributions of 70-80% to the hyporheic zone (i.e., the subsurface zone where shallow groundwater and stream water mix). Surface water was also the major source of DOC with 0.512 ± 0.043 mg C m-2 h-1 to the streambed. The DOC flux from shallow riparian groundwater was lower (0.309 ± 0.071 mg C m-2 h-1) and peaked in autumn with 1.011 mg C m-2 h-1. I computed the relative proportion of downstream discharge through the streambed as the ratio of the downstream length (Ssw) a stream water parcel travels before entering the streambed to the downstream length (Shyp) a streambed water parcel travels before returning to the stream water. The relative streambed DOC retention efficiency, calculated as (input-output)/input of interstitial DOC, correlated with the proportion (Ssw/Shyp) of downstream discharge (r2 = 0.76, p = 0.006). Also, did the streambed metabolism (calculated as DO uptake from mass balance) decrease with low subsurface downstream routing, whereas elevated downstream discharge through the streambed stimulated DO uptake (r2 = 0.69, p = 0.019)? Despite the very short DOC turnover times (˜0.05 days, calculated as mean standing stock/annual input) within the streambed, the latter constitutes a net sink of DOC (˜14 mg C m-2 h-1). Along with high standing stocks of sediment associated particulate organic carbon, these results suggest microbial biofilms as the major retention and storage site of DOC in an alpine stream where large hydrologic exchange controls DOC fluxes.
Physical and biogeochemical controls on polymictic behavior in Sierra Nevada stream pools
NASA Astrophysics Data System (ADS)
Lucas, R. G.; Conklin, M. H.; Tyler, S. W.; Suarez, F. I.; Moran, J. E.; Esser, B. K.
2011-12-01
We observed polymictic behavior in stream pools in a low gradient montane meadow in the southern Sierra Nevada mountains, California. Thermal stratification in stream pools has been observed in various environments; stratification generally persists where the buoyancy forces created by a variation in water density, as a function of water temperature, are able to overcome turbulent forces resulting from stream flow. Because the density gradient creates a relatively weak buoyancy force, low flow conditions are generally required in order to overcome the turbulent forces. In some studies, a cold water source in to the pool bottoms can help to increase the density gradient and perpetuate thermal stratification. Our study took place in Long Meadow, Sequoia National Park, California. Long Meadow lies in the Wolverton Creek watershed and is part of the Southern Sierra Critical Zone Observatory. The 1-4 m diameter and 1-2 m deep pools in our study stratified thermally during the day and mixed completely at night. The low gradient of the meadow provided low stream flows. Piezometers in the meadow indicated groundwater discharge into the meadow in the months during which stratification was observed. Radon 222 activity measured in the pools also indicated groundwater influx to the pool bottoms. We used Fluent, a computational fluid dynamics equation solver, to construct a model of one of the observed pools. Initially we attempted to model the physical mechanisms controlling thermal stratification in the pool including stream flow, groundwater discharge, solar radiation, wind speed, and air, stream and ground water temperatures. Ultimately we found the model best agreed with our observed pool temperatures when we considered the light attenuation coefficients as a function of the dissolve organic carbon (DOC) concentration. Elevated DOC concentrations are expected in low stream flow regimes associated with highly organic soils such as a montane meadow. DOC concentrations measured in samples collected from the meadow stream, pools, and ground water wells ranged from 3.09 to 5.25 mg/L. We used a power equation taken from the literature to vary the visible light attenuation with DOC values measured in the meadow system. Light attenuation coefficients determined from measured DOC concentrations ranged from 0.507 m-1 to 0.899 m-1. The results from our modeling efforts indicate that in low flow streams and rivers elevated concentrations of DOC can increase the potential for thermal stratification in stream pools.
McKnight, Diane M.; Runkel, R.L.; Tate, C.M.; Duff, J.H.; Moorhead, D.L.
2004-01-01
The McMurdo Dry Valleys of South Victoria Land, Antarctica, contain numerous glacial meltwater streams that drain into lakes on the valley floors. Many of the streams have abundant perennial mats of filamentous cyanobacteria. The algal mats grow during streamflow in the austral summer and are in a dormant freeze-dried state during the rest of the year. NO3 and soluble reactive P (SRP) concentrations were lower in streams with abundant algal mats than in streams with sparse algal mats. NO3 and SRP concentrations were higher in the hyporheic zone of a stream with abundant algal mats than in the stream itself. An experimental injection of LiCl, NaNO3, and K3PO4 was conducted in Green Creek, which has abundant algal mats. Substantial hyporheic exchange occurred. The NO3 and PO4 concentrations at 50 m below the injection were 55 ??M and 18 ??M, respectively, during the experiment. NO3 and PO4 concentrations were below the detection limit of 1 to 2 ??M at a site 497 m below the injection during the Cl tracer arrival, indicating a high capacity for nutrient uptake by algal communities. NO2 and NH4 were present at sites 226 and 327 m below the injection, indicating that, in addition to denitrification and algal uptake, dissimilatory NO3 reduction to NO2 and NH4 may be a NO3 sink during transport. Transport modelling with nutrient uptake represented as a 1st-order process yielded reach-scale parameters of 4.3 ?? 10-5 to 3.9 ?? 10-4/s and 1.4 ?? 10-4 to 3.8 ?? 10 -4/s for uptake of NO3 and PO4, respectively. The best match with the observed data was a model in which PO4 uptake occurred only in the main channel and NO3 uptake occurred in the main channel and in the hyporheic zone. Hyporheic NO3 uptake was 7 to 16% of the total uptake for the different stream reaches. These results demonstrate that nutrient flux to the lakes is controlled by hyporheic exchange and nutrient uptake by algal mats in dry valley streams. Streams without algal mats contribute more nutrients to the lakes than streams with algal mats.
Acoustic Streaming in Microgravity: Flow Stability and Heat Transfer Enhancement
NASA Technical Reports Server (NTRS)
Trinh, E. H.
1999-01-01
Experimental results are presented for drops and bubbles levitated in a liquid host, with particular attention given to the effect of shape oscillations and capillary waves on the local flow fields. Some preliminary results are also presented on the use of streaming flows for the control of evaporation rate and rotation of electrostatically levitated droplets in 1 g. The results demonstrate the potential for the technological application of acoustic methods to active control of forced convection in microgravity.
A computer program for simulating salinity loads in streams
Glover, Kent C.
1978-01-01
A FORTRAN IV program that simulates salinity loads in streams is described. Daily values of stream-discharge in cubic feet per second, or stream-discharge and specific conductance in micromhos, are used to estimate daily loads in tons by one of five available methods. The loads are then summarized by computing either total and mean monthly loads or various statistics for each calendar day. Results are output in tabular and, if requested, punch card format. Under selection of appropriate methods for estimating and summarizing daily loads is provided through the coding of program control cards. The program is designed to interface directly with data retrieved from the U.S. Geological Survey WATSTORE Daily Values File. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Krabbendam, M.; Bradwell, T.
2009-04-01
To model past and future behaviour of ice sheets, a good understanding of both modern and ancient ice streams is required. The study of present-day ice streams provides detailed data of short-term dynamic changes, whilst the study of Pleistocene palaeo-ice streams can provide crucial constraints on the longer-term evolution of ice sheets. To date, palaeo-ice streams, such as the classical Dubawnt Lake palaeo-ice stream of the former Laurentide Ice Sheet, have been recognised largely on the basis of extremely elongate drumlins and megascale glacial lineations; all soft-sediment features. Whilst it appears that topographically unconstrained ice streams (eg. within the West Antarctic Ice Sheet) are generally underlain by deformable till, topographically constrained ice streams such as Jakobshavn Isbrae do not require deformable sediment and may occur on a bedrock-dominated bed. Analysis of DEM data and geomorphology and structural geology fieldwork in Northern Scotland and Northern England has shown the occurrence of highly streamlined bedforms in bedrock of the former base of topographically controlled palaeo-ice streams, which drained parts of the British Ice Sheet. The bedforms are predominantly bedrock megagrooves with asymmetric cross-profiles. In the Ullapool tributary of the Minch palaeo ice stream, bedrock megagrooves form the dominant evidence for ice streaming. The megagrooves are typically 5-15 m deep, 10-30 m wide and 500 - 3000 m long. Spacing of megagrooves is typically 100 - 200 m. In both study areas, the bedrock is strongly anisotropic, either consisting of thin-bedded strata or strongly foliated metasedimentary rocks, with the strata or foliation having a gentle dip. Megagrooves are best developed where the strike of the anisotropy is sub-parallel (within 10 - 20°) with palaeo ice flow. The bedrock in both areas has a well-developed, relatively densely spaced (< 1m), conjugate joint system. We suggest that asymmetric megagrooves are formed by "lateral plucking", facilitated by the combination of strong bedding/foliation and the joint pattern. Glacial erosion was laterally more effective than vertically; so that stepped faces subparallel to palaeo ice flow are enhanced rather that destroyed. We propose that: a) Lateral plucking is an effective mechanism to produce streamlined bedrock bedforms by fast ice flow, providing the bedrock and bedrock structure are suitable; b) some topographically controlled palaeo-ice stream beds are dominated by bedrock rather than soft-sediment; c) the recognition of palaeo-ice streams may be dependent on the type of bedrock and the orientation of bedrock structure with respect to palaeo ice flow; d) palaeo-ice stream footprints may have been underestimated in formerly glaciated areas.
Hashim, Rohasliney; Jackson, Donald C
2009-01-01
A three-year study (July 2000 – June 2003) of fish assemblages was conducted in four tributaries of the Big Black River: Big Bywy, Little Bywy, Middle Bywy and McCurtain creeks that cross the Natchez Trace Parkway, Choctaw County, Mississippi, USA. Little Bywy and Middle Bywy creeks were within watersheds influenced by the lignite mining. Big Bywy and Middle Bywy creeks were historically impacted by channelisation. McCurtain Creek was chosen as a reference (control) stream. Fish were collected using a portable backpack electrofishing unit (Smith-Root Inc., Washington, USA). Insectivorous fish dominated all of the streams. There were no pronounced differences in relative abundances of fishes among the streams (P > 0.05) but fish assemblages fluctuated seasonally. Although there were some differences among streams with regard to individual species, channelisation and lignite mining had no discernable adverse effects on functional components of fish assemblages suggesting that fishes in these systems are euryceous fluvial generalist species adapted to the variable environments of small stream ecosystems. PMID:24575177
Trapping, focusing, and sorting of microparticles through bubble streaming
NASA Astrophysics Data System (ADS)
Wang, Cheng; Jalikop, Shreyas; Hilgenfeldt, Sascha
2010-11-01
Ultrasound-driven oscillating microbubbles can set up vigorous steady streaming flows around the bubbles. In contrast to previous work, we make use of the interaction between the bubble streaming and the streaming induced around mobile particles close to the bubble. Our experiment superimposes a unidirectional Poiseuille flow containing a well-mixed suspension of neutrally buoyant particles with the bubble streaming. The particle-size dependence of the particle-bubble interaction selects which particles are transported and which particles are trapped near the bubbles. The sizes selected for can be far smaller than any scale imposed by the device geometry, and the selection mechanism is purely passive. Changing the amplitude and frequency of ultrasound driving, we can further control focusing and sorting of the trapped particles, leading to the emergence of sharply defined monodisperse particle streams within a much wider channel. Optimizing parameters for focusing and sorting are presented. The technique is applicable in important fields like cell sorting and drug delivery.
Chew, Randall T.
1955-01-01
Traverses along some streams of the Colorado Plateau in areas known to contain minable uranium deposits show that anomalous radiation in the stream gravels can be detected with a suitable counter downstream from the deposits. The amount of radiation is influenced by the size of the uranium deposit, the size of the drainage area of the stream, the grain size of the sediments, and the lithology of the rocks over which the stream flows. The spacing of the stations where readings are taken is controlled by the size of the stream, and special readings are also taken directly downstream from important tributaries. An anomaly is empirically defined as a 10 percent rise over background. Radioactive material from large uranium deposits has been detected as much as 1 mile downstream. Radioactive material from smaller deposits is detachable over shorter distances. The method is slow but appears to be a useful prospecting tool under restricted conditions.
Corresponding long-term shifts in stream temperature and invasive fish migration
McCann, Erin L.; Johnson, Nicholas; Pangle, Kevin
2018-01-01
By investigating historic trapping records of invasive sea lamprey (Petromyzon marinus) throughout tributaries to the Laurentian Great Lakes, we found that upstream spawning migration timing was highly correlated with stream temperatures over large spatial and temporal scales. Furthermore, several streams in our study exceeded a critical spring thermal threshold (i.e., 15°C) and experienced peak spawning migration up to 30 days earlier since the 1980s, whereas others were relatively unchanged. Streams exhibiting warming trends and earlier migration were spatially clustered and generally found on the leeward side of the Great Lakes where the lakes most affect local climate. These findings highlight that all streams are not equally impacted by climate change and represent, to our knowledge, the first observation linking long-term changes in stream temperatures to shifts in migration timing of an invasive fish. Earlier sea lamprey migration in Great Lakes tributaries may improve young of the year growth and survival, but not limit their spatial distribution, making sea lamprey control more challenging.
NASA Astrophysics Data System (ADS)
Wang, S.; Somers, K.; Sudduth, E.; Hassett, B.; Bernhardt, E. S.; Urban, D. L.
2010-12-01
We used terminal restriction fragment length polymorphism (T-RFLP), a molecular fingerprinting method, to characterize denitrifier communities in sediments taken from 48 study streams in North Carolina, USA. In addition to characterizing denitrifier communities, we also used denitrification enzyme activity (DEA) assays to measure potential denitrification rates. Due to differences in watershed land-use, study streams covered a gradient of nitrogen and carbon concentrations, as well as a gradient of contaminant loading from stormwater and sanitary sewers. Nitrogen and carbon (i.e., substrate) concentrations are commonly used to make predictions about denitrification rates in streams. Such models do not take into account denitrifier community composition, which may be an important, independent control of denitrification rates, particularly under stressful conditions (e.g., high contaminant loading) that prevent communities from capitalizing on high substrate availability. Our results indicate that substrate availability by itself was a weak predictor of denitrification rates; the same was also true for denitrifier community composition. However, when both factors were incorporated in a multiple regression model, the percent variation explained increased substantially. These findings suggest that T-RFLP, a relatively cost-effective method, can be used to improve our understanding of controls on denitrification rates in streams with varying watershed land-uses.
Rosi-Marshall, Emma J; Kincaid, Dustin W; Bechtold, Heather A; Royer, Todd V; Rojas, Miguel; Kelly, John J
2013-04-01
Pharmaceutical and personal care products are ubiquitous in surface waters but their effects on aquatic biofilms and associated ecosystem properties are not well understood. We measured in situ responses of stream biofilms to six common pharmaceutical compounds (caffeine, cimetidine, ciprofloxacin, diphenhydramine, metformin, ranitidine, and a mixture of each) by deploying pharmaceutical-diffusing substrates in streams in Indiana, Maryland, and New York. Results were consistent across seasons and geographic locations. On average, algal biomass was suppressed by 22%, 4%, 22%, and 18% relative to controls by caffeine, ciprofloxacin, diphenhydramine, and the mixed treatment, respectively. Biofilm respiration was significantly suppressed by caffeine (53%), cimetidine (51%), ciprofloxacin (91%), diphenhydramine (63%), and the mixed treatment (40%). In autumn in New York, photosynthesis was also significantly suppressed by diphenhydramine (99%) and the mixed treatment (88%). Pyrosequencing of 16S rRNA genes was used to examine the effects of caffeine and diphenhydramine on biofilm bacterial community composition at the three sites. Relative to the controls, diphenhydramine exposure significantly altered bacterial community composition and resulted in significant relative increases in Pseudomonas sp. and decreases in Flavobacterium sp. in all three streams. These ubiquitous pharmaceuticals, alone or in combination, influenced stream biofilms, which could have consequences for higher trophic levels and important ecosystem processes.
Multigranular integrated services optical network
NASA Astrophysics Data System (ADS)
Yu, Oliver; Yin, Leping; Xu, Huan; Liao, Ming
2006-12-01
Based on all-optical switches without requiring fiber delay lines and optical-electrical-optical interfaces, the multigranular optical switching (MGOS) network integrates three transport services via unified core control to efficiently support bursty and stream traffic of subwavelength to multiwavelength bandwidth. Adaptive robust optical burst switching (AR-OBS) aggregates subwavelength burst traffic into asynchronous light-rate bursts, transported via slotted-time light paths established by fast two-way reservation with robust blocking recovery control. Multiwavelength optical switching (MW-OS) decomposes multiwavelength stream traffic into a group of timing-related light-rate streams, transported via a light-path group to meet end-to-end delay-variation requirements. Optical circuit switching (OCS) simply converts wavelength stream traffic from an electrical-rate into a light-rate stream. The MGOS network employs decoupled routing, wavelength, and time-slot assignment (RWTA) and novel group routing and wavelength assignment (GRWA) to select slotted-time light paths and light-path groups, respectively. The selected resources are reserved by the unified multigranular robust fast optical reservation protocol (MG-RFORP). Simulation results show that elastic traffic is efficiently supported via AR-OBS in terms of loss rate and wavelength utilization, while connection-oriented wavelength traffic is efficiently supported via wavelength-routed OCS in terms of connection blocking and wavelength utilization. The GRWA-tuning result for MW-OS is also shown.
Concentration-discharge relationships in headwater streams of the Sierra Nevada, California
NASA Astrophysics Data System (ADS)
Hunsaker, Carolyn T.; Johnson, Dale W.
2017-09-01
We examined stream water concentration-discharge relationships for eight small, forest watersheds ranging in elevation from 1485 to 2465 m in the southern Sierra Nevada. These headwater streams revealed nearly chemostatic behavior by current definitions for K+, Ca2+, Mg2+, Na+, Cl-, and SO42- in most cases but not for NH4+, NO3-, or ortho-P. The latter ions were somewhat enriched during high flows. All ions studied showed a dilution process at lower flows (<50 L s-1) with the concentration-discharge relationship being more chemostatic at higher flows. While previous studies in the Sierra Nevada have reported peak concentrations of NH4+, NO3-, and SO42- during snowmelt, the headwater systems of the Kings River Experimental Watersheds experience peak concentrations of these ions during the fall rains after the dry summer. These forested watersheds span the rain-snow transition zone, are 49-228 ha in size, and have soils derived from granite. A statistically significant relationship between soils and stream water concentrations for ortho-P, Ca2+, and Na+ strongly suggests that soil chemistry has a major influence on stream water chemistry. Factors controlling stream water NH4+, NO3-, and SO42- concentrations are less clear, but one possible source of spikes in these ions during storm events is input from O-horizon runoff where high concentrations were measured. Overall, stream water concentration-discharge relationships for these Sierran watersheds are similar to those found in other watershed systems (nearly chemostatic); however, the dominant processes controlling these relationships are probably localized because of different watershed characteristics like soil chemistry, vegetation cover, hydrologic flow paths, and weather patterns.
McMillan, Sara K.; Noe, Gregory
2017-01-01
Stream restoration practices frequently aim to increase connectivity between the stream channel and its floodplain to improve channel stability and enhance water quality through sediment trapping and nutrient retention. To measure the effectiveness of restoration and to understand the drivers of these functional responses, we monitored five restored urban streams that represent a range of channel morphology and restoration ages. High and low elevation floodplain plots were established in triplicate in each stream to capture variation in floodplain connectivity. We measured ecosystem geomorphic and soil attributes, sediment and nutrient loading, and rates of soil nutrient biogeochemistry processes (denitrification; N and P mineralization) then used boosted regression trees (BRT) to identify controls on sedimentation and nutrient processing. Local channel and floodplain morphology and position within the river network controlled connectivity with increased sedimentation at sites downstream of impaired reaches and at floodplain plots near the stream channel and at low elevations. We observed that nitrogen loading (both dissolved and particulate) was positively correlated with denitrification and N mineralization and dissolved phosphate loading positively influenced P mineralization; however, none of these input rates or transformations differed between floodplain elevation categories. Instead, continuous gradients of connectivity were observed rather than categorical shifts between inset and high floodplains. Organic matter and nutrient content in floodplain soils increased with the time since restoration, which highlights the importance of recovery time after construction that is needed for restored systems to increase ecosystem functions. Our results highlight the importance of restoring floodplains downstream of sources of impairment and building them at lower elevations so they flood frequently, not just during bankfull events. This integrated approach has the greatest potential for increasing trapping of sediment, nutrients, and associated pollutants in restored streams and thereby improving water quality in urban watersheds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory J.
This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).« less
Reed, Lloyd A.
1978-01-01
A different method for controlling erosion and sediment transport during highway construction was used in each of four adjacent drainage basins in central Pennsylvania. The basins ranged in size from 240 to 490 acres (97 to 198 hectares), and the area disturbed by highway construction in each basin ranged from 20 to 48 acres (8 to 19 hectares). Sediment discharge was measured from each basin for 3 years before construction began and for 2 years during construction. In one of the basins affected by the construction, three offstream ponds were constructed to intercept runoff from the construction area before it reached the stream. In another basin, a large onstream pond was constructed to trap runoff from the construction area after it reached the stream. In a third area, seeding, mulching, and rock dams were used to limit erosion. In the fourth area, no sediment controls were used. The effectiveness of the various sediment-control measures were determined by comparing the sediment loads transported from the basins with sediment controls to those without controls. For most storms the offstream ponds trapped about 60 percent of the sediment that reached them. The large onstream pond had a trap efficiency of about 80 percent, however, it remained turbid and kept the stream flow turbid for long periods following storm periods. Samples of runoff water from the construction area were collected above and below rock dams to determine the reduction in sediment as the flow passed through the device. Rock dams in streams had a trap efficiency of about 5 percent. Seeding and mulching may reduce sediment discharge by 20 percent during construction, and straw bales placed to trap runoff water may reduce sediment loads downstream by 5 percent.
NASA Astrophysics Data System (ADS)
Reeder, W. J.; Quick, A. M.; Farrell, T. B.; Benner, S. G.; Feris, K. P.; Tonina, D.
2013-12-01
The hyporheic zone (HZ) is a potentially important source of the potent greenhouse gas, nitrous oxide (N2O); stream processes may account for up to 10% of global anthropogenic N2O emissions. However, mechanistic understanding and predictive quantification of this gas flux is hampered by complex temporally and spatially variable interactions between flow dynamics and biogeochemical processes. Reactive inorganic nitrogen (Nr) is typically present at low concentrations in natural stream waters, but many rural and urban streams suffer from an excess of Nr, typically in the form of ammonium (NH4+) and nitrate (NO3-). These reactive species are either assimilated by living biomass or transformed by microbial processes. The two primary microbial transformations of Nr are nitrification (NH4+ to NO3-) and denitrification (NO3- to N2). Denitrification, which occurs almost exclusively in the anoxic zone of the HZ, permanently removes between 30-70% of all Nr entering streams, other mechanisms may retain nitrogen. The mass transport of reactive species (i.e. O2, NO3- and N2O) by hyporheic flow strongly influences reaction rates, residence times, and subsequent N2O flux. By extension, stream flow and channel morphology presumably control, and may be effective predictors of, N2O generation rates. By recreating the stream processes in the University of Idaho flume, we are able to control the bed morphology, fluxes and residence times through the HZ and concentrations of Nr from exogenous (stream water) and endogenous (organic material in the streambed) sources. For the present experiment, the flume was divided into three streams, each with different morphologies (3, 6 and 9cm dunes) and all using the same source water. Stream water for this first experimental phase had no significant loading of Nr. As such, all reaction products were the result of endogenous sources of Nr. To measure dissolved oxygen (DO) concentrations we deployed 120 channels of a novel, fiber-optic optode system which was coupled with an advanced optical multiplexer that allowed us to cycle continuously through all 120 channels. Using this approach, we were able to accurately map the evolution and extent of the anoxic regions within the HZ and demonstrate that bed morphology exhibits significant control over residence times and the spatial temporal evolution of the anoxic region. In addition to the DO measurements, we deployed 240 Rhizon water samplers to extract pore water, which we used to measure Nr and N2O concentrations, and an ion Clark-type electrode sensor to measure N2O concentrations at the streambed surface (results discussed separately). Integrating these various results will allow us to refine the existing models for N2O emissions from urban and rural streams.
Deegan, Linda A.; Peterson, B.J.; Golden, H.; McIvor, C.C.; Miller, M.C.
1997-01-01
This study examined the relative importance of bottom-up and top-down controls of an arctic stream food web by simultaneous manipulation of the top predator and nutrient availability. We created a two-step trophic system (algae to insects) by removal of the top predator (Arctic grayling, Thymallus arcticus) in fertilized and control stream reaches. Fish abundance was also increased 10 times to examine the effect of high fish density on stream ecosystem dynamics and fish. We measured the response of epilithic algae, benthic and drifting insects, and fish to nutrient enrichment and to changes in fish density. Insect grazers had little effect on algae and fish had little effect on insects. In both the control and fertilized reaches, fish growth, energy storage, and reproductive response of females declined with increased fish density. Fish growth and energy storage were more closely correlated with per capita insect availability than with per capita algal standing stock
NASA Astrophysics Data System (ADS)
Herzog, S.; McCray, J. E.; Higgins, C. P.
2015-12-01
The hyporheic zone is a hotspot for biogeochemical processing that can attenuate a variety of nonpoint source contaminants in streamwater. However, hyporheic zones in urban and agricultural streams are often degraded and poorly connected with surface water. In order to increase hyporheic exchange and improve water quality, we introduced engineered streambeds as a stormwater and restoration best management practice. Modifications to streambed hydraulic conductivity and reactivity are termed Biohydrochemical Enhancement structures for Streamwater Treatment (BEST). BEST are subsurface modules that utilize low- and high-permeability sediments to drive efficient hyporheic exchange, and reactive geomedia to increase reaction rates within the hyporheic zone. This work presents the first physical performance data of BEST modules at the pilot scale. BEST modules were installed in a constructed stream facility at the Colorado School of Mines in Golden, CO. This facility features two 15m artificial streams, which included an all sand control condition alongside the BEST test condition. Streams were continuously operated at a discharge of 1 L/s using recycled water. Time-lapse electrical resistivity surveys demonstrated that BEST modules provided substantially greater hyporheic exchange than the control condition. Water quality samples at the hyporheic and reach scales also revealed greater attenuation of nitrogen, coliforms, and select metals and trace organics by BEST modules relative to the control condition. These experimental results were also compared to previous numerical model simulations to evaluate model accuracy. Together, these results show that BEST may be an effective best management practice for improving streamwater quality in urban and agricultural settings.
Turunen, Jarno; Louhi, Pauliina; Mykrä, Heikki; Aroviita, Jukka; Putkonen, Emmi; Huusko, Ari; Muotka, Timo
2018-06-06
The effects of anthropogenic stressors on community structure and ecosystem functioning can be strongly influenced by local habitat structure and dispersal from source communities. Catchment land uses increase the input of fine sediments into stream channels, clogging the interstitial spaces of benthic habitats. Aquatic macrophytes enhance habitat heterogeneity and mediate important ecosystem functions, being thus a key component of habitat structure in many streams. Therefore, the recovery of macrophytes following in-stream habitat modification may be prerequisite for successful stream restoration. Restoration success is also affected by dispersal of organisms from the source community, with potentially strongest responses in relatively isolated headwater sites that receive limited amount of dispersing individuals. We used a factorial design in a set of stream mesocosms to study the independent and combined effects of an anthropogenic stressor (sand sedimentation), local habitat (macrophytes, i.e. moss transplants) and enhanced dispersal (two levels: high vs. low) on organic matter retention, algal accrual rate, leaf decomposition and macroinvertebrate community structure. Overall, all responses were simple additive effects with no interactions between treatments. Sand reduced algal accumulation, total invertebrate density and density of a few individual taxa. Mosses reduced algal accrual rate and algae-grazing invertebrates, but enhanced organic matter retention and detritus- and filter-feeders. Mosses also reduced macroinvertebrate diversity by increasing the dominance by a few taxa. Mosses also reduced leaf-mass loss, possibly because the organic matter retained by mosses provided an additional food source for leaf-shredding invertebrates and thus reduced shredder aggregation into leaf packs. The effect of mosses on macroinvertebrate communities and ecosystem functioning was distinct irrespective of the level of dispersal, suggesting strong environmental control of community structure. The strong environmental control of macroinvertebrate community composition even under enhanced dispersal suggests that re-establishing key habitat features, such as natural stream vegetation, could aid ecosystem recovery in boreal streams. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Face and location processing in children with early unilateral brain injury.
Paul, Brianna; Appelbaum, Mark; Carapetian, Stephanie; Hesselink, John; Nass, Ruth; Trauner, Doris; Stiles, Joan
2014-07-01
Human visuospatial functions are commonly divided into those dependent on the ventral visual stream (ventral occipitotemporal regions), which allows for processing the 'what' of an object, and the dorsal visual stream (dorsal occipitoparietal regions), which allows for processing 'where' an object is in space. Information about the development of each of the two streams has been accumulating, but very little is known about the effects of injury, particularly very early injury, on this developmental process. Using a set of computerized dorsal and ventral stream tasks matched for stimuli, required response, and difficulty (for typically-developing individuals), we sought to compare the differential effects of injury to the two systems by examining performance in individuals with perinatal brain injury (PBI), who present with selective deficits in visuospatial processing from a young age. Thirty participants (mean=15.1 years) with early unilateral brain injury (15 right hemisphere PBI, 15 left hemisphere PBI) and 16 matched controls participated. On our tasks children with PBI performed more poorly than controls (lower accuracy and longer response times), and this was particularly prominent for the ventral stream task. Lateralization of PBI was also a factor, as the dorsal stream task did not seem to be associated with lateralized deficits, with both PBI groups showing only subtle decrements in performance, while the ventral stream task elicited deficits from RPBI children that do not appear to improve with age. Our findings suggest that early injury results in lesion-specific visuospatial deficits that persist into adolescence. Further, as the stimuli used in our ventral stream task were faces, our findings are consistent with what is known about the neural systems for face processing, namely, that they are established relatively early, follow a comparatively rapid developmental trajectory (conferring a vulnerability to early insult), and are biased toward the right hemisphere. Copyright © 2014 Elsevier Inc. All rights reserved.
Haack, Sheridan K; Duris, Joseph W; Kolpin, Dana W; Focazio, Michael J; Meyer, Michael T; Johnson, Heather E; Oster, Ryan J; Foreman, William T
2016-09-01
Animal waste, stream water, and streambed sediment from 19 small (<32km(2)) watersheds in 12U.S. states having either no major animal agriculture (control, n=4), or predominantly beef (n=4), dairy (n=3), swine (n=5), or poultry (n=3) were tested for: 1) cholesterol, coprostanol, estrone, and fecal indicator bacteria (FIB) concentrations, and 2) shiga-toxin producing and enterotoxigenic Escherichia coli, Salmonella, Campylobacter, and pathogenic and vancomycin-resistant enterococci by polymerase chain reaction (PCR) on enrichments, and/or direct quantitative PCR. Pathogen genes were most frequently detected in dairy wastes, followed by beef, swine and poultry wastes in that order; there was only one detection of an animal-source-specific pathogen gene (stx1) in any water or sediment sample in any control watershed. Post-rainfall pathogen gene numbers in stream water were significantly correlated with FIB, cholesterol and coprostanol concentrations, and were most highly correlated in dairy watershed samples collected from 3 different states. Although collected across multiple states and ecoregions, animal-waste gene profiles were distinctive via discriminant analysis. Stream water gene profiles could also be discriminated by the watershed animal type. Although pathogen genes were not abundant in stream water or streambed samples, PCR on enrichments indicated that many genes were from viable organisms, including several (shiga-toxin producing or enterotoxigenic E. coli, Salmonella, vancomycin-resistant enterococci) that could potentially affect either human or animal health. Pathogen gene numbers and types in stream water samples were influenced most by animal type, by local factors such as whether animals had stream access, and by the amount of local rainfall, and not by studied watershed soil or physical characteristics. Our results indicated that stream water in small agricultural U.S. watersheds was susceptible to pathogen gene inputs under typical agricultural practices and environmental conditions. Pathogen gene profiles may offer the potential to address both source of, and risks associated with, fecal pollution. Published by Elsevier B.V.
Impact of managed moorland burning on DOC concentrations in soil solutions and stream waters
NASA Astrophysics Data System (ADS)
Palmer, Sheila; Wearing, Catherine; Johnson, Kerrylyn; Holden, Joseph; Brown, Lee
2013-04-01
In the UK uplands, prescribed burning of moorland vegetation is a common practice to maintain suitable habitats for game birds. Many of these landscapes are in catchments covered by significant deposits of blanket peat (typically one metre or more in depth). There is growing interest in the effect of land management on the stability of these peatland carbon stores, and their contribution to dissolved and particulate organic carbon in surface waters (DOC and POC, respectively) and subsequent effects on stream biogeochemistry and ecology. Yet there are surprisingly few published catchment-scale studies on the effect of moorland burning on DOC and POC. As part of the EMBER project, stream chemistry data were collected approximately monthly in ten upland blanket peat catchments in the UK, five of which acted as controls and were not subject to burning. The other five catchments were subject to a history of prescribed burning, typically in small patches (300-900 m2) in rotations of 8-25 years. Soil solution DOC was also monitored at four depths at two intensively studied sites (one regularly burned and one control). At the two intensive sites, soil solution DOC was considerably higher at the burned site, particularly in surface solutions where concentrations in excess of 100 mg/L were recorded on several occasions (median 37 mg/L over 18 months). The high soil solution DOC concentrations at the burned site occurred in the most recently burned plots (less than 2 years prior to start of sampling) and the lowest DOC concentrations were observed in plots burned 15-25 years previously. On average, median stream DOC and POC concentrations were approximately 43% and 35% higher respectively in burned catchments relative to control catchments. All streams exhibited peak DOC in late summer/early autumn with higher peak DOC concentrations in burned catchments (20-66 mg/L) compared to control catchments (18-54 mg/L). During winter months, DOC concentrations were low in control catchments (typically less than 15 mg/L) but were highly variable in burned catchments (9-40 mg/L), implying some instability of peat carbon stores and/or fluctuation in source. The results offer strong evidence for an impact of burning on the delivery of DOC to streams, possibly through increased surface run-off from bare or partially vegetated patches.
Wilding, Thomas K; Brown, Edmund; Collier, Kevin J
2012-10-01
Tidal streams are ecologically important components of lotic network, and we identify dissolved oxygen (DO) depletion as a potentially important stressor in freshwater tidal streams of northern New Zealand. Other studies have examined temporal DO variability within rivers and we build on this by examining variability between streams as a basis for regional-scale predictors of risk for DO stress. Diel DO variability in these streams was driven by: (1) photosynthesis by aquatic plants and community respiration which produced DO maxima in the afternoon and minima early morning (range, 0.6-4.7 g/m(3)) as a product of the solar cycle and (2) tidal variability as a product of the lunar cycle, including saline intrusions with variable DO concentrations plus a small residual effect on freshwater DO for low-velocity streams. The lowest DO concentrations were observed during March (early autumn) when water temperatures and macrophyte biomass were high. Spatial comparisons indicated that low-gradient tidal streams were at greater risk of DO depletions harmful to aquatic life. Tidal influence was stronger in low-gradient streams, which typically drain more developed catchments, have lower reaeration potential and offer conditions more suitable for aquatic plant proliferation. Combined, these characteristics supported a simple method based on the extent of low-gradient channel for identifying coastal streams at risk of DO depletion. High-risk streams can then be targeted for riparian planting, nutrient limits and water allocation controls to reduce potential ecological stress.
NASA Astrophysics Data System (ADS)
Sonam, Sonam; Jain, Vikrant
2017-04-01
River long profile is one of the fundamental geomorphic parameters which provides a platform to study interaction of geological and geomorphic processes at different time scales. Long profile shape is governed by geological processes at 10 ^ 5 - 10 ^ 6 years' time scale and it controls the modern day (10 ^ 0 - 10 ^ 1 years' time scale) fluvial processes by controlling the spatial variability of channel slope. Identification of an appropriate model for river long profile may provide a tool to analyse the quantitative relationship between basin geology, profile shape and its geomorphic effectiveness. A systematic analysis of long profiles has been carried for the Himalayan tributaries of the Ganga River basin. Long profile shape and stream power distribution pattern is derived using SRTM DEM data (90 m spatial resolution). Peak discharge data from 34 stations is used for hydrological analysis. Lithological variability and major thrusts are marked along the river long profile. The best fit of long profile is analysed for power, logarithmic and exponential function. Second order exponential function provides the best representation of long profiles. The second order exponential equation is Z = K1*exp(-β1*L) + K2*exp(-β2*L), where Z is elevation of channel long profile, L is the length, K and β are coefficients of the exponential function. K1 and K2 are the proportion of elevation change of the long profile represented by β1 (fast) and β2 (slow) decay coefficients of the river long profile. Different values of coefficients express the variability in long profile shapes and is related with the litho-tectonic variability of the study area. Channel slope of long profile is estimated taking the derivative of exponential function. Stream power distribution pattern along long profile is estimated by superimposing the discharge and long profile slope. Sensitivity analysis of stream power distribution with decay coefficients of the second order exponential equation is evaluated for a range of coefficient values. Our analysis suggests that the amplitude of stream power peak value is dependent on K1, the proportion of elevation change coming under the fast decay exponent and the location of stream power peak is dependent of the long profile decay coefficient (β1). Different long profile shapes owing to litho-tectonic variability across the Himalayas are responsible for spatial variability of stream power distribution pattern. Most of the stream power peaks lie in the Higher Himalaya. In general, eastern rivers have higher stream power in hinterland area and low stream power in the alluvial plains. This is responsible for, 1) higher erosion rate and sediment supply in hinterland of eastern rivers, 2) the incised and stable nature of channels in the western alluvial plains and 3) aggrading channels with dynamic nature in the eastern alluvial plains. Our study shows that the spatial variability of litho-units defines the coefficients of long profile function which in turn controls the position and magnitude of stream power maxima and hence the geomorphic variability in a fluvial system.
Duarte, Sofia; Cássio, Fernanda; Ferreira, Verónica; Canhoto, Cristina; Pascoal, Cláudia
2016-08-01
Ongoing climate change is expected to affect the diversity and activity of aquatic microbes, which play a key role in plant litter decomposition in forest streams. We used a before-after control-impact (BACI) design to study the effects of warming on a forest stream reach. The stream reach was divided by a longitudinal barrier, and during 1 year (ambient year) both stream halves were at ambient temperature, while in the second year (warmed year) the temperature in one stream half was increased by ca. 3 °C above ambient temperature (experimental half). Fine-mesh bags containing oak (Quercus robur L.) leaves were immersed in both stream halves for up to 60 days in spring and autumn of the ambient and warmed years. We assessed leaf-associated microbial diversity by denaturing gradient gel electrophoresis and identification of fungal conidial morphotypes and microbial activity by quantifying leaf mass loss and productivity of fungi and bacteria. In the ambient year, no differences were found in leaf decomposition rates and microbial productivities either between seasons or stream halves. In the warmed year, phosphorus concentration in the stream water, leaf decomposition rates, and productivity of bacteria were higher in spring than in autumn. They did not differ between stream halves, except for leaf decomposition, which was higher in the experimental half in spring. Fungal and bacterial communities differed between seasons in both years. Seasonal changes in stream water variables had a greater impact on the activity and diversity of microbial decomposers than a warming regime simulating a predicted global warming scenario.
Characterization of Sea Lamprey stream entry using dual‐frequency identification sonar
McCain, Erin L.; Johnson, Nicholas; Hrodey, Peter J.; Pangle, Kevin L.
2018-01-01
Effective methods to control invasive Sea Lampreys Petromyzon marinus in the Laurentian Great Lakes often rely on knowledge of the timing of the Sea Lamprey spawning migration, which has previously been characterized using data gathered from traps. Most assessment traps are located many kilometers upstream from the river mouth, so less is known about when Sea Lampreys enter spawning streams and which environmental cues trigger their transition from lakes to rivers. To decide how to develop barriers and traps that target Sea Lampreys when they enter a stream, the stream entry of Sea Lampreys into a Lake Huron tributary during 2 years was assessed using dual‐frequency identification sonar (DIDSON). Sea Lampreys entered the stream in low densities when temperatures first reached 4°C, which was up to 6 weeks and a mean of 4 weeks earlier than when they were first captured in traps located upstream. The probability of stream entry was significantly affected by stream temperature and discharge, and stream entry timing peaked when stream temperatures rose to 12°C and discharge was high. Examination of the entry at a finer temporal resolution (i.e., minutes) indicated that Sea Lampreys did not exhibit social behavior (e.g., shoaling) during stream entry. Our findings indicate that Sea Lampreys may be vulnerable to alternative trap types near river mouths and hydraulic challenges associated with traditional traps. Also, seasonal migration barriers near stream mouths may need to be installed soon after ice‐out to effectively block the entire adult Sea Lamprey cohort from upstream spawning habitat.
O'Donnell, Jonathan A.; Aiken, George R.; Kane, Evan S.; Jones, Jeremy B.
2010-01-01
Climate warming and permafrost degradation at high latitudes will likely impact watershed hydrology, and consequently, alter the concentration and character of dissolved organic carbon (DOC) in northern rivers. We examined seasonal variation of DOC chemistry in 16 streams of the Yukon River basin, Alaska. Our primary objective was to evaluate the relationship between source water (shallow versus deep groundwater flow paths) and DOC chemical composition. Using base cation chemistry and principal component analysis, we observed high contributions of deep groundwater to glacial and clearwater streams, whereas blackwater streams received larger contributions from shallow groundwater sources. DOC concentration and specific ultraviolet absorbance peaked during spring snowmelt in all streams, and were consistently higher in blackwater streams than in glacial and clearwater streams. The hydrophobic acid fraction of DOC dominated across all streams and seasons, comprising between 35% and 56% of total DOC. The hydrophilic acid fraction of DOC was more prominent in glacial (23% ± 3%) and clearwater streams (19% ± 1%) than in blackwater streams (16% ± 1%), and was enriched during winter base flow (29% ± 1%) relative to snowmelt and summer base flow. We observed that an increase in the contribution of deep groundwater to streamflow resulted in decreased DOC concentration, aromaticity, and DOC-to-dissolved organic nitrogen ratio, and an increase in the proportion of hydrophilic acids relative to hydrophobic acids. Our findings suggest that future permafrost degradation and higher contributions of groundwater to streamflow may result in a higher fraction of labile DOM in streams of the Yukon basin.
Ambient groundwater flow diminishes nitrogen cycling in streams
NASA Astrophysics Data System (ADS)
Azizian, M.; Grant, S. B.; Rippy, M.; Detwiler, R. L.; Boano, F.; Cook, P. L. M.
2017-12-01
Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. We utilized a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N- cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damkohler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.
Ambrose, H.E.; Wilzbach, M.A.; Cummins, K.W.
2004-01-01
Periphyton response to riparian canopy opening and salmon carcass addition in coastal streams of northern California was evaluated in a manipulative field experiment. The experiment followed a split-plot design, with streams as whole plots and two 100-m reaches in each of 6 streams as subplots. At the subplot level, riparian hardwoods were removed from one reach in each stream. At the whole-plot level, carcasses were added to both open- and closed-canopy reaches of 3 of the streams. Thus, treatments consisted of reaches with open or closed canopies, in the presence and absence of carcasses. Nutrient limitation of the periphyton was assessed in 2 streams (1 with carcasses and 1 without carcasses) using nutrient-diffusing clay saucers (N-enriched, P-enriched, N+P-enriched, or unenriched control) incubated in open- and closed-canopy reaches in the streams. Canopy and carcass treatments did not affect gross primary productivity or periphyton biomass on natural substrates. The periphyton assemblage consisted primarily of diatoms in all reaches on all dates. N amendment of agar in nutrient-diffusing, clay saucers and canopy removal increased biofilm ash-free dry mass on the saucers, but carcass introduction did not. Failure of periphyton to respond to carcass addition may have reflected overriding light limitation, inadequate within-stream retention of carcass nutrients, and/or limitations of the study design.
Sebestyen, Stephen D.; Boyer, Elizabeth W.; Shanley, James B.
2009-01-01
[1] In coming decades, higher annual temperatures, increased growing season length, and increased dormant season precipitation are expected across the northeastern United States in response to anthropogenic forcing of global climate. We synthesized long-term stream hydrochemical data from the Sleepers River Research Watershed in Vermont, United States, to explore the relationship of catchment wetness to stream nitrate and DOC loadings. We modeled changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nutrient loadings respond to climate change. Model results for the 2070–2099 time period suggest that stream nutrient loadings during both the dormant and growing seasons will respond to climate change. During a warmer climate, growing season stream fluxes (runoff +20%, nitrate +57%, and DOC +58%) increase as more precipitation (+28%) and quick flow (+39%) occur during a longer growing season (+43 days). During the dormant season, stream water and nutrient loadings decrease. Net annual stream runoff (+8%) and DOC loading (+9%) increases are commensurate with the magnitude of the average increase of net annual precipitation (+7%). Net annual stream water and DOC loadings are primarily affected by increased dormant season precipitation. In contrast, decreased annual loading of stream nitrate (−2%) reflects a larger effect of growing season controls on stream nitrate and the effects of lengthened growing seasons in a warmer climate. Our findings suggest that leaching of nitrate and DOC from catchment soils will be affected by anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream loadings in the northeastern United States.
Sebestyen, S.D.; Boyer, E.W.; Shanley, J.B.
2009-01-01
In coming decades, higher annual temperatures, increased growing season length, and increased dormant season precipitation are expected across the northeastern United States in response to anthropogenic forcing of global climate. We synthesized long-term stream hydrochemical data from the Sleepers River Research Watershed in Vermont, United States, to explore the relationship of catchment wetness to stream nitrate and DOC loadings. We modeled changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nutrient loadings respond to climate change. Model results for the 2070-2099 time period suggest that stream nutrient loadings during both the dormant and growing seasons will respond to climate change. During a warmer climate, growing season stream fluxes (runoff+20%, nitrate +57%, and DOC +58%) increase as more precipitation (+28%) and quick flow (+39%) occur during a longer growing season (+43 days). During the dormant season, stream water and nutrient loadings decrease. Net annual stream runoff (+8%) and DOC loading (+9%) increases are commensurate with the magnitude of the average increase of net annual precipitation (+7%). Net annual stream water and DOC loadings are primarily affected by increased dormant season precipitation. In contrast, decreased annual loading of stream nitrate (-2%) reflects a larger effect of growing season controls on stream nitrate and the effects of lengthened growing seasons in a warmer climate. Our findings suggest that leaching of nitrate and DOC from catchment soils will be affected by anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream loadings in the northeastern United States. Copyright 2009 by the American Geophysical Union.
Optimizing larval assessment to support sea lamprey control in the Great Lakes
Hansen, Michael J.; Adams, Jean V.; Cuddy, Douglas W.; Richards, Jessica M.; Fodale, Michael F.; Larson, Geraldine L.; Ollila, Dale J.; Slade, Jeffrey W.; Steeves, Todd B.; Young, Robert J.; Zerrenner, Adam
2003-01-01
Elements of the larval sea lamprey (Petromyzon marinus) assessment program that most strongly influence the chemical treatment program were analyzed, including selection of streams for larval surveys, allocation of sampling effort among stream reaches, allocation of sampling effort among habitat types, estimation of daily growth rates, and estimation of metamorphosis rates, to determine how uncertainty in each element influenced the stream selection program. First, the stream selection model based on current larval assessment sampling protocol significantly underestimated transforming sea lam-prey abundance, transforming sea lampreys killed, and marginal costs per sea lamprey killed, compared to a protocol that included more years of data (especially for large streams). Second, larval density in streams varied significantly with Type-I habitat area, but not with total area or reach length. Third, the ratio of larval density between Type-I and Type-II habitat varied significantly among streams, and that the optimal allocation of sampling effort varied with the proportion of habitat types and variability of larval density within each habitat. Fourth, mean length varied significantly among streams and years. Last, size at metamorphosis varied more among years than within or among regions and that metamorphosis varied significantly among streams within regions. Study results indicate that: (1) the stream selection model should be used to identify streams with potentially high residual populations of larval sea lampreys; (2) larval sampling in Type-II habitat should be initiated in all streams by increasing sampling in Type-II habitat to 50% of the sampling effort in Type-I habitat; and (3) methods should be investigated to reduce uncertainty in estimates of sea lamprey production, with emphasis on those that reduce the uncertainty associated with larval length at the end of the growing season and those used to predict metamorphosis.
Human impacts to mountain streams
NASA Astrophysics Data System (ADS)
Wohl, Ellen
2006-09-01
Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope/channel connections, process domains, physical and ecological roles of disturbance, and stream resilience.
Code of Federal Regulations, 2010 CFR
2010-07-01
... streams in open systems within a chemical manufacturing process unit. 63.149 Section 63.149 Protection of... open systems within a chemical manufacturing process unit. (a) The owner or operator shall comply with... Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage...
Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. An interdisciplinary group has investigated 1) the origin, characteristics, and controls on the evolution of these riparian...
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each...
40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... for continuity, oxidation, and galvanic corrosion. (c) For each integrating regeneration stream flow... a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any other control device, or for other capture systems, ensure that the CPMS is...
40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... for continuity, oxidation, and galvanic corrosion. (c) For each integrating regeneration stream flow... a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any other control device, or for other capture systems, ensure that the CPMS is...
40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... adsorber is used, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed...
40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... adsorber is used, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed...
40 CFR 63.5995 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... for continuity, oxidation, and galvanic corrosion. (c) For each integrating regeneration stream flow... a device that is capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle. (d) For any other control device, or for other capture systems, ensure that the CPMS is...
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each...
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2013 CFR
2013-07-01
... regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each regeneration cycle, record the maximum...
40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... adsorber is used, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed...
40 CFR Table 4 to Subpart Ggg of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each...
40 CFR 65.160 - Performance test and TRE index value determination records.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...
40 CFR 65.160 - Performance test and TRE index value determination records.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...
40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a
Code of Federal Regulations, 2014 CFR
2014-07-01
... regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon bed after regeneration 2. For each regeneration cycle, record the maximum...
40 CFR 65.160 - Performance test and TRE index value determination records.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...
40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... adsorber is used, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed...
40 CFR 63.990 - Absorbers, condensers, and carbon adsorbers used as control devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... adsorber is used, an integrating regeneration stream flow monitoring device having an accuracy of ±10 percent or better, capable of recording the total regeneration stream mass or volumetric flow for each regeneration cycle; and a carbon bed temperature monitoring device, capable of recording the carbon bed...
40 CFR 65.160 - Performance test and TRE index value determination records.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...
A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the Park have acid neutraliz...
USDA-ARS?s Scientific Manuscript database
Phosphorus (P) is often a limiting nutrient in freshwater ecosystems and excessive inputs can lead to eutrophication. In-stream cycling of P involves complex biological, chemical, and physical processes that are not fully understood. Microbial metabolisms are suspected to control oxygen-dependent up...
40 CFR 60.695 - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... device outlet gas stream or inlet and outlet gas stream shall be used. (i) For a carbon adsorption system... adsorption system that does not regenerate the carbon bed directly onsite in the control device (e.g., a... carbon adsorption system shall be monitored on a regular schedule, and the existing carbon shall be...
Joseph M. Secoges; Wallace M. Aust; John R. Seiler; C. Andrew Dolloff; William A. Lakel
2013-01-01
Forestry best management practices (BMP) recommendations for streamside management zones (SMZs) are based on limited data regarding SMZ width, partial harvests, and nutrient movements after forest fertilization. Agricultural fertilization is commonly linked to increased stream nutrients. However, less is known about effectiveness of SMZ options for controlling nutrient...
40 CFR 60.695 - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device outlet gas stream or inlet and outlet gas stream shall be used. (i) For a carbon adsorption system... adsorption system that does not regenerate the carbon bed directly onsite in the control device (e.g., a... carbon adsorption system shall be monitored on a regular schedule, and the existing carbon shall be...
The objective of this poster is by comparing nutrient and DOM concentrations in small and large streams, we hope to better understand: (1) watershed controls on stream nutrient and DOM concentrations; and (2) the variability of nutrient and DOM concentrations within a river netwo...
Riparian hydraulic gradient and stream-groundwater exchange dynamics in steep headwater valleys
T.J. Voltz; M.N. Gooseff; A.S. Ward; K. Singha; M. Fitzgerald; T. Wagener
2013-01-01
Patterns of riparian hydraulic gradients and stream-groundwater exchange in headwater catchments provide the hydrologic context for important ecological processes. Although the controls are relatively well understood, their dynamics during periods of hydrologic change is not. We investigate riparian hydraulic gradients over three different time scales in two steep,...
USDA-ARS?s Scientific Manuscript database
Riparian zones of streams in northern Mississippi have been impacted by agriculture, channelization, channel incision, and gully erosion. Gully erosion is the most severe form of erosion and has resulted in the fragmentation of remnant riparian zones within agricultural watersheds. One widely used c...
Adaptive Video Streaming Using Bandwidth Estimation for 3.5G Mobile Network
NASA Astrophysics Data System (ADS)
Nam, Hyeong-Min; Park, Chun-Su; Jung, Seung-Won; Ko, Sung-Jea
Currently deployed mobile networks including High Speed Downlink Packet Access (HSDPA) offer only best-effort Quality of Service (QoS). In wireless best effort networks, the bandwidth variation is a critical problem, especially, for mobile devices with small buffers. This is because the bandwidth variation leads to packet losses caused by buffer overflow as well as picture freezing due to high transmission delay or buffer underflow. In this paper, in order to provide seamless video streaming over HSDPA, we propose an efficient real-time video streaming method that consists of the available bandwidth (AB) estimation for the HSDPA network and the transmission rate control to prevent buffer overflows/underflows. In the proposed method, the client estimates the AB and the estimated AB is fed back to the server through real-time transport control protocol (RTCP) packets. Then, the server adaptively adjusts the transmission rate according to the estimated AB and the buffer state obtained from the RTCP feedback information. Experimental results show that the proposed method achieves seamless video streaming over the HSDPA network providing higher video quality and lower transmission delay.
Jellyman, P G; Clearwater, S J; Clayton, J S; Kilroy, C; Blair, N; Hickey, C W; Biggs, B J F
2011-07-01
In 2004, an invasive mat-forming freshwater diatom, Didymosphenia geminata (didymo), was found in New Zealand causing concern with regard to potential consequences for local freshwater ecosystems. A four-stage research program was initiated to identify methods to control D. geminata. This article reports the results of Stage 2, in which four potential control compounds [Gemex™ (a chelated copper formulation), EDTA, Hydrothol®191, and Organic Interceptor™ (a pine oil formulation)] selected in Stage 1 were evaluated for their biocidal efficacy on D. geminata and effects on non-target organisms using both artificial stream and laboratory trials. Artificial stream trials evaluated the mortality rates of D. geminata and fishes to three concentrations of the four biocides, whereas laboratory toxicity trials tested the response of green alga and cladocera to a range of biocide concentrations and exposure times. In artificial stream trials, Gemex and Organic Interceptor were the most effective biocides against D. geminata for a number of measured indices; however, exposure of fishes to Organic Interceptor resulted in high mortality rates. Laboratory toxicity testing indicated that Gemex might negatively affect sensitive stream invertebrates, based on the cladoceran sensitivity at the proposed river control dose. A decision support matrix evaluated the four biocides based on nine criteria stipulated by river stakeholders (effectiveness, non-target species impacts, stalk removal, degradation profile, risks to health and safety, ease of application, neutralization potential, cost, and local regulatory requirements) and Gemex was identified as the product warranting further refinement prior to an in-river trial.
Hydrology of the Bayou Bartholomew alluvial aquifer-stream system, Arkansas
Broom, M.E.; Reed, J.E.
1973-01-01
The study area comprises about 3,200 square miles of the Mississippi Alluvial Plain in southeast Arkansas. About 90 percent of the area drains south to the Ouachita River in Louisiana. The alluvial aquifer and the streams are hydraulically connected and are studied as an aquifer-stream system. Bayou Bartholomew is a principal stream of the system. The aquifer is underlain by confining strata of the Jackson Group and Cockfield Formation. The mean annual surface-water yield of the area that drains to the Ouachita River basin is nearly 2 million acre-feet. Flood-control projects have significantly reduced flooding in the area. Basin boundaries and low-flow characteristics of streams have been altered as a result of the flood-control projects and streamflow diversion for irrigation. The direction of ground-water flow generally is southward. Bayou Bartholomew functions mostly as a drain for ground-water flow from the west and as a recharge source to the aquifer east of the bayou. As a result of navigation pools, the Arkansas River is mostly a steady-recharge source to the aquifer. Pumpage from the aquifer and streams increased from about 20,000 acre-feet in 1941 to 237,000 acre-feet in 1970. Estimates of flow, derived from analog analysis but lacking field verification, indicate that recharge to the aquifer in 1970 was about 161,000 acre-feet. About 70 percent of the recharge was by capture from streams as a result of ground-water pumpage. Discharge from the aquifer was about 233,000 acre-feet. About 80 percent of the discharge was through wells. Stream diversion in 1970 from capture and open channel, excluding capture from the Arkansas and Mississippi Rivers, was about 110,000 acre-feet. Return flow to streams from rice irrigation and fishponds was about 60,000 acre-feet. The chemical quality of streamflows is excellent for irrigation. Water from the aquifer generally ranges from permissible to excellent for irrigation. The use of water from the aquifer in the flood-plain area, exclusive of irrigation, is severely limited unless it is treated to remove the iron and reduce the hardness.
NASA Astrophysics Data System (ADS)
Gallart, F.; Prat, N.; García-Roger, E. M.; Latron, J.; Rieradevall, M.; Llorens, P.; Barberá, G. G.; Brito, D.; De Girolamo, A. M.; Lo Porto, A.; Buffagni, A.; Erba, S.; Neves, R.; Nikolaidis, N. P.; Perrin, J. L.; Querner, E. P.; Quiñonero, J. M.; Tournoud, M. G.; Tzoraki, O.; Skoulikidis, N.; Gómez, R.; Sánchez-Montoya, M. M.; Froebrich, J.
2012-09-01
Temporary streams are those water courses that undergo the recurrent cessation of flow or the complete drying of their channel. The structure and composition of biological communities in temporary stream reaches are strongly dependent on the temporal changes of the aquatic habitats determined by the hydrological conditions. Therefore, the structural and functional characteristics of aquatic fauna to assess the ecological quality of a temporary stream reach cannot be used without taking into account the controls imposed by the hydrological regime. This paper develops methods for analysing temporary streams' aquatic regimes, based on the definition of six aquatic states that summarize the transient sets of mesohabitats occurring on a given reach at a particular moment, depending on the hydrological conditions: Hyperrheic, Eurheic, Oligorheic, Arheic, Hyporheic and Edaphic. When the hydrological conditions lead to a change in the aquatic state, the structure and composition of the aquatic community changes according to the new set of available habitats. We used the water discharge records from gauging stations or simulations with rainfall-runoff models to infer the temporal patterns of occurrence of these states in the Aquatic States Frequency Graph we developed. The visual analysis of this graph is complemented by the development of two metrics which describe the permanence of flow and the seasonal predictability of zero flow periods. Finally, a classification of temporary streams in four aquatic regimes in terms of their influence over the development of aquatic life is updated from the existing classifications, with stream aquatic regimes defined as Permanent, Temporary-pools, Temporary-dry and Episodic. While aquatic regimes describe the long-term overall variability of the hydrological conditions of the river section and have been used for many years by hydrologists and ecologists, aquatic states describe the availability of mesohabitats in given periods that determine the presence of different biotic assemblages. This novel concept links hydrological and ecological conditions in a unique way. All these methods were implemented with data from eight temporary streams around the Mediterranean within the MIRAGE project. Their application was a precondition to assessing the ecological quality of these streams.
NASA Astrophysics Data System (ADS)
Martins, António A.; Cabral, João; Cunha, Pedro P.; Stokes, Martin; Borges, José; Caldeira, Bento; Martins, A. Cardoso
2017-01-01
This study examines the long profiles of tributaries of the Tagus and Zêzere rivers in Portugal (West Iberia) in order to provide new insights into patterns, timing, and controls on drainage development during the Quaternary incision stage. The studied streams are incised into a relict culminant fluvial surface, abandoned at the beginning of the incision stage. The streams flow through a landscape with bedrock variations in lithology (mainly granites and metasediments) and faulted blocks with distinct uplift rates. The long profiles of the analyzed streams record an older transitory knickpoint/knickzone separating (1) an upstream relict graded profile, with lower steepness and higher concavity, that reflects a long period of quasi-equilibrium conditions reached after the beginning of the incision stage, and (2) a downstream rejuvenated long profile, with steeper gradient and lower concavity, particularly for the final reach, which is often convex. The rejuvenated reaches testify to the upstream propagation of several incision waves, interpreted as the response of each stream to increasing crustal uplift and prolonged periods of base-level lowering by the trunk drainages, coeval with low sea level conditions. The morphological configurations of the long profiles enabled spatial and relative temporal patterns of incisions to be quantified. The incision values of streams flowing on the Portuguese Central Range (PCR; ca. 380-150 m) are variable but generally higher than the incision values of streams flowing on the adjacent South Portugal Planation Surface (SPPS; ca. 220-110 m), corroborating differential uplift of the PCR relative to the SPPS. Owing to the fact that the relict graded profiles can be correlated with the Tagus River T1 terrace (1.1-0.9 My) present in the study area, incision rates can be estimated (1) for the streams located in the PCR, 0.38-0.15 m/ky and (2) for the streams flowing on the SPPS, 0.22-0.12 m/ky. The differential uplift inferred in the study area supports the neotectonic activity of the bordering faults, as proposed in previous studies based upon other geological evidence.
High performance N2O4/amine elements: Blowapart
NASA Technical Reports Server (NTRS)
Lawver, B. R.
1977-01-01
The mechanisms controlling hypergolic propellant reactive stream separation (RRS) were studied and used to develop design criteria for injectors free from both steady state RSS and cyclic propellant stream separation. This was accomplished through the analysis of single element injectors using N204/MMH propellants; the injectors were representative of the space shuttle orbit maneuvering engine and space tug applications. A gas phase/surface reaction mechanism which controls RSS was identified. Injector design criteria were developed, which defined a critical chamber pressure for those operating conditions above which RSS occurs. It was found that the amount of interfacial surface area at impingement is controlled by injector hydraulics.
Road crossing designs and their impact on fish assemblages of Great Plains streams
Bouska, Wesley W.; Paukert, Craig P.
2010-01-01
A mark-recapture field study was conducted to determine fish passage at 5 concrete box culverts and 5 low-water crossings (concrete slabs vented by culverts) as well as 10 control sites (below a natural riffle) in Flint Hills streams of northeastern Kansas. Additionally, we tested the upstream passage of four fish species native to Great Plains streams (Topeka shiner Notropis topeka, green sunfish Lepomis cyanellus, red shiner Cyprinella lutrensis, and southern redbelly dace Phoxinus erythrogaster) through three simulated crossing designs (box culverts, round corrugated culverts, and natural rock riffles) at water velocities of 0.1 to 1.1 m/s in an experimental stream. The field study indicated that cyprinids were twice as likely to move upstream of box culverts than low-water crossings and 1.4 times as likely to move upstream of control reaches than any crossing type. The best models indicated that the proportion of cyprinids that moved upstream increased with decreased culvert slope and length, perching, and increased culvert width. Our controlled experiment indicated that fish can move through velocities up to 1.1 m/s in a 1.86-m simulated stream and that the proportion of fish that moved upstream did not differ among crossing designs for southern redbelly dace, green sunfish, or Topeka shiner; however, natural rock riffles had lower proportional movements (mean = 0.19) than the box (0.38) or corrugated culvert designs (0.43) for red shiners. Water velocity did not affect the proportional upstream movement of any species except that of Topeka shiners, which increased with water velocity. Crossing design alone may not determine fish passage, and water velocities up to 1.1 m/s may not affect the passage of many Great Plains fishes. Barriers to fish movement may be the result of other factors (e.g., perching, slope, and crossing length). The use of properly designed and installed crossings has promise in conserving Great Plains stream fishes.
Bruder, Andreas; Salis, Romana K; Jones, Peter E; Matthaei, Christoph D
2017-09-01
Agricultural land use results in multiple stressors affecting stream ecosystems. Flow reduction due to water abstraction, elevated levels of nutrients and chemical contaminants are common agricultural stressors worldwide. Concurrently, stream ecosystems are also increasingly affected by climate change. Interactions among multiple co-occurring stressors result in biological responses that cannot be predicted from single-stressor effects (i.e. synergisms and antagonisms). At the ecosystem level, multiple-stressor effects can be further modified by biotic interactions (e.g. trophic interactions). We conducted a field experiment using 128 flow-through stream mesocosms to examine the individual and combined effects of water abstraction, nutrient enrichment and elevated levels of the nitrification inhibitor dicyandiamide (DCD) on survival, condition and gut content of juvenile brown trout and on benthic abundance of their invertebrate prey. Flow velocity reduction decreased fish survival (-12% compared to controls) and condition (-8% compared to initial condition), whereas effects of nutrient and DCD additions and interactions among these stressors were not significant. Negative effects of flow velocity reduction on fish survival and condition were consistent with effects on fish gut content (-25% compared to controls) and abundance of dominant invertebrate prey (-30% compared to controls), suggesting a negative metabolic balance driving fish mortality and condition decline, which was confirmed by structural equation modelling. Fish mortality under reduced flow velocity increased as maximal daily water temperatures approached the upper limit of their tolerance range, reflecting synergistic interactions between these stressors. Our study highlights the importance of indirect stressor effects such as those transferred through trophic interactions, which need to be considered when assessing and managing fish populations and stream food webs in multiple-stressor situations. However, in real streams, compensatory mechanisms and behavioural responses, as well as seasonal and spatial variation, may alter the intensity of stressor effects and the sensitivity of trout populations. © 2017 John Wiley & Sons Ltd.
Trophic state, eutrophication and nutrient criteria in streams.
Dodds, Walter K
2007-12-01
Trophic state is the property of energy availability to the food web and defines the foundation of community integrity and ecosystem function. Describing trophic state in streams requires a stoichiometric (nutrient ratio) approach because carbon input rates are linked to nitrogen and phosphorus supply rates. Light determines the source of carbon. Cross system analyses, small experiments and ecosystem level manipulations have recently advanced knowledge about these linkages, but not to the point of building complex predictive models that predict all effects of nutrient pollution. Species diversity could indicate the natural distribution of stream trophic status over evolutionary time scales. Delineation of factors that control trophic state and relationships with biological community properties allows determination of goals for management of stream biotic integrity.
StreamStats: a U.S. geological survey web site for stream information
Kernell, G. Ries; Gray, John R.; Renard, Kenneth G.; McElroy, Stephen A.; Gburek, William J.; Canfield, H. Evan; Scott, Russell L.
2003-01-01
The U.S. Geological Survey has developed a Web application, named StreamStats, for providing streamflow statistics, such as the 100-year flood and the 7-day, 10-year low flow, to the public. Statistics can be obtained for data-collection stations and for ungaged sites. Streamflow statistics are needed for water-resources planning and management; for design of bridges, culverts, and flood-control structures; and for many other purposes. StreamStats users can point and click on data-collection stations shown on a map in their Web browser window to obtain previously determined streamflow statistics and other information for the stations. Users also can point and click on any stream shown on the map to get estimates of streamflow statistics for ungaged sites. StreamStats determines the watershed boundaries and measures physical and climatic characteristics of the watersheds for the ungaged sites by use of a Geographic Information System (GIS), and then it inserts the characteristics into previously determined regression equations to estimate the streamflow statistics. Compared to manual methods, StreamStats reduces the average time needed to estimate streamflow statistics for ungaged sites from several hours to several minutes.
Kirsch, Joseph; Peterson, James T.
2014-01-01
There is considerable uncertainty about the relative roles of stream habitat and landscape characteristics in structuring stream-fish assemblages. We evaluated the relative importance of environmental characteristics on fish occupancy at the local and landscape scales within the upper Little Tennessee River basin of Georgia and North Carolina. Fishes were sampled using a quadrat sample design at 525 channel units within 48 study reaches during two consecutive years. We evaluated species–habitat relationships (local and landscape factors) by developing hierarchical, multispecies occupancy models. Modeling results suggested that fish occupancy within the Little Tennessee River basin was primarily influenced by stream topology and topography, urban land coverage, and channel unit types. Landscape scale factors (e.g., urban land coverage and elevation) largely controlled the fish assemblage structure at a stream-reach level, and local-scale factors (i.e., channel unit types) influenced fish distribution within stream reaches. Our study demonstrates the utility of a multi-scaled approach and the need to account for hierarchy and the interscale interactions of factors influencing assemblage structure prior to monitoring fish assemblages, developing biological management plans, or allocating management resources throughout a stream system.
Interactive real-time media streaming with reliable communication
NASA Astrophysics Data System (ADS)
Pan, Xunyu; Free, Kevin M.
2014-02-01
Streaming media is a recent technique for delivering multimedia information from a source provider to an end- user over the Internet. The major advantage of this technique is that the media player can start playing a multimedia file even before the entire file is transmitted. Most streaming media applications are currently implemented based on the client-server architecture, where a server system hosts the media file and a client system connects to this server system to download the file. Although the client-server architecture is successful in many situations, it may not be ideal to rely on such a system to provide the streaming service as users may be required to register an account using personal information in order to use the service. This is troublesome if a user wishes to watch a movie simultaneously while interacting with a friend in another part of the world over the Internet. In this paper, we describe a new real-time media streaming application implemented on a peer-to-peer (P2P) architecture in order to overcome these challenges within a mobile environment. When using the peer-to-peer architecture, streaming media is shared directly between end-users, called peers, with minimal or no reliance on a dedicated server. Based on the proposed software pɛvμa (pronounced [revma]), named for the Greek word meaning stream, we can host a media file on any computer and directly stream it to a connected partner. To accomplish this, pɛvμa utilizes the Microsoft .NET Framework and Windows Presentation Framework, which are widely available on various types of windows-compatible personal computers and mobile devices. With specially designed multi-threaded algorithms, the application can stream HD video at speeds upwards of 20 Mbps using the User Datagram Protocol (UDP). Streaming and playback are handled using synchronized threads that communicate with one another once a connection is established. Alteration of playback, such as pausing playback or tracking to a different spot in the media file, will be reflected in all media streams. These techniques are designed to allow users at different locations to simultaneously view a full length HD video and interactively control the media streaming session. To create a sustainable media stream with high quality, our system supports UDP packet loss recovery at high transmission speed using custom File- Buffers. Traditional real-time streaming protocols such as Real-time Transport Protocol/RTP Control Protocol (RTP/RTCP) provide no such error recovery mechanism. Finally, the system also features an Instant Messenger that allows users to perform social interactions with one another while they enjoy a media file. The ultimate goal of the application is to offer users a hassle free way to watch a media file over long distances without having to upload any personal information into a third party database. Moreover, the users can communicate with each other and stream media directly from one mobile device to another while maintaining an independence from traditional sign up required by most streaming services.
21 CFR 874.5550 - Powered nasal irrigator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... pressure-controlled pulsating stream of water. The device consists of a control unit and pump connected to a spray tube and nozzle. (b) Classification. Class I (general controls). The device is exempt from...
21 CFR 874.5550 - Powered nasal irrigator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... pressure-controlled pulsating stream of water. The device consists of a control unit and pump connected to a spray tube and nozzle. (b) Classification. Class I (general controls). The device is exempt from...
21 CFR 874.5550 - Powered nasal irrigator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... pressure-controlled pulsating stream of water. The device consists of a control unit and pump connected to a spray tube and nozzle. (b) Classification. Class I (general controls). The device is exempt from...
21 CFR 874.5550 - Powered nasal irrigator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... pressure-controlled pulsating stream of water. The device consists of a control unit and pump connected to a spray tube and nozzle. (b) Classification. Class I (general controls). The device is exempt from...
21 CFR 874.5550 - Powered nasal irrigator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... pressure-controlled pulsating stream of water. The device consists of a control unit and pump connected to a spray tube and nozzle. (b) Classification. Class I (general controls). The device is exempt from...
Variable Geometry Aircraft Pylon Structure and Related Operation Techniques
NASA Technical Reports Server (NTRS)
Shah, Parthiv N. (Inventor)
2014-01-01
An aircraft control structure can be utilized for purposes of drag management, noise control, or aircraft flight maneuvering. The control structure includes a high pressure engine nozzle, such as a bypass nozzle or a core nozzle of a turbofan engine. The nozzle exhausts a high pressure fluid stream, which can be swirled using a deployable swirl vane architecture. The control structure also includes a variable geometry pylon configured to be coupled between the nozzle and the aircraft. The variable geometry pylon has a moveable pylon section that can be deployed into a deflected state to maintain or alter a swirling fluid stream (when the swirl vane architecture is deployed) for drag management purposes, or to assist in the performance of aircraft flight maneuvers.
A novel WDM passive optical network architecture supporting two independent multicast data streams
NASA Astrophysics Data System (ADS)
Qiu, Yang; Chan, Chun-Kit
2012-01-01
We propose a novel scheme to perform optical multicast overlay of two independent multicast data streams on a wavelength-division-multiplexed (WDM) passive optical network. By controlling a sinusoidal clock signal and shifting the wavelength at the optical line terminal (OLT), the delivery of the two multicast data, being carried by the generated optical tones, can be independently and flexibly controlled. Simultaneous transmission of 10-Gb/s unicast downstream and upstream data as well as two independent 10-Gb/s multicast data was successfully demonstrated.
Bed roughness of palaeo-ice streams: insights and implications for contemporary ice sheet dynamics
NASA Astrophysics Data System (ADS)
Falcini, Francesca; Rippin, David; Selby, Katherine; Krabbendam, Maarten
2017-04-01
Bed roughness is the vertical variation of elevation along a horizontal transect. It is an important control on ice stream location and dynamics, with a correspondingly important role in determining the behaviour of ice sheets. Previous studies of bed roughness have been limited to insights derived from Radio Echo Sounding (RES) profiles across parts of Antarctica and Greenland. Such an approach has been necessary due to the inaccessibility of the underlying bed. This approach has led to important insights, such as identifying a general link between smooth beds and fast ice flow, as well as rough beds and slow ice flow. However, these insights are mainly derived from relatively coarse datasets, so that links between roughness and flow are generalised and rather simplistic. Here, we explore the use of DTMs from the well-preserved footprints of palaeo-ice streams, coupled with high resolution models of palaeo-ice flow, as a tool for investigating basal controls on the behaviour of contemporary, active ice streams in much greater detail. Initially, artificial transects were set up across the Minch palaeo-ice stream (NW Scotland) to mimic RES flight lines from past studies in Antarctica. We then explored how increasing data-resolution impacted upon the roughness measurements that were derived. Our work on the Minch palaeo-ice stream indicates that different roughness signatures are associated with different glacial landforms, and we discuss the potential for using these insights to infer, from RES-based roughness measurements, the occurrence of particular landform assemblages that may exist beneath contemporary ice sheets.
NASA Astrophysics Data System (ADS)
Varli, D.; Yilmaz, K. K.
2016-12-01
Effective management of water resources requires understanding and quantification of interaction between groundwater and surface water bodies. Moreover, the exchange processes have recently received increasing attention due to important influences on biogeochemical and ecological status of watersheds. In this study we investigated the exchange processes between surface water and groundwater along Kirmir stream - a controlled stream nearby Kizilcahamam, Ankara, Turkey. At the first stage, potential stream reaches where the exchange processes could occur were pinpointed using geological and geomorphological information. Then, thermal remote sensing was utilized to further narrow down the potential locations in which interaction could occur at a smaller scale. Nested piezometers were installed at identified locations to observe the variations in vertical hydraulic gradient over time. Differential discharge measurements were performed to understand the gains and losses along the stream reach. Streambed temperature measurements were taken at two different depths for a period of time using temperature loggers to calculate the vertical fluid fluxes through the streambed at various locations. Basic water quality field parameters (temperature, electrical conductivity, total dissolved solid amount, dissolved oxygen, pH and oxidation - reduction potential) were measured along the stream reach, from surface water and the piezometers as wells as from the nearby springs and wells. Chloride mass balance was performed to find the contribution of groundwater and chloride concentrations were associated with the geology of the area. This hierarchical, multi-scale methodology provided an efficient and effective way to determine the locations and the direction of groundwater and surface water exchange processes within the study area.
Loar, James M; Stewart, Arthur J; Smith, John G
2011-06-01
In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.
NASA Astrophysics Data System (ADS)
Loar, James M.; Stewart, Arthur J.; Smith, John G.
2011-06-01
In May 1985, a National Pollutant Discharge Elimination System permit was issued for the Department of Energy's Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee, USA, allowing discharge of effluents to East Fork Poplar Creek (EFPC). The effluents ranged from large volumes of chlorinated once-through cooling water and cooling tower blow-down to smaller discharges of treated and untreated process wastewaters, which contained a mixture of heavy metals, organics, and nutrients, especially nitrates. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to meet two major objectives: demonstrate that the established effluent limitations were protecting the classified uses of EFPC, and document the ecological effects resulting from implementing a Water Pollution Control Program at the Y-12 Complex. The second objective is the primary focus of the other papers in this special series. This paper provides a history of pollution and the remedial actions that were implemented; describes the geographic setting of the study area; and characterizes the physicochemical attributes of the sampling sites, including changes in stream flow and temperature that occurred during implementation of the BMAP. Most of the actions taken under the Water Pollution Control Program were completed between 1986 and 1998, with as many as four years elapsing between some of the most significant actions. The Water Pollution Control Program included constructing nine new wastewater treatment facilities and implementation of several other pollution-reducing measures, such as a best management practices plan; area-source pollution control management; and various spill-prevention projects. Many of the major actions had readily discernable effects on the chemical and physical conditions of EFPC. As controls on effluents entering the stream were implemented, pollutant concentrations generally declined and, at least initially, the volume of water discharged from the Y-12 Complex declined. This reduction in discharge was of ecological concern and led to implementation of a flow management program for EFPC. Implementing flow management, in turn, led to substantial changes in chemical and physical conditions of the stream: stream discharge nearly doubled and stream temperatures decreased, becoming more similar to those in reference streams. While water quality clearly improved, meeting water quality standards alone does not guarantee protection of a waterbody's biological integrity. Results from studies on the ecological changes stemming from pollution-reduction actions, such as those presented in this series, also are needed to understand how best to restore or protect biological integrity and enhance ecological recovery in stream ecosystems. With a better knowledge of the ecological consequences of their decisions, environmental managers can better evaluate alternative actions and more accurately predict their effects.
A River Runs Under It: Modeling the Distribution of Streams and Stream Burial in Large River Basins
NASA Astrophysics Data System (ADS)
Elmore, A. J.; Julian, J.; Guinn, S.; Weitzell, R.; Fitzpatrick, M.
2011-12-01
Stream network density exerts a strong control on hydrologic processes in watersheds. Over land and through soil and bedrock substrate, water moves slowly and is subject to chemical transformations unique to conditions of continuous contact with geologic materials. In contrast, once water enters stream channels it is efficiently transported out of watersheds, reducing the amount of time for biological uptake and stream nutrient processing. Therefore, stream network density dictates both the relative importance of terrestrial and aquatic influences to stream chemistry and the residence time of water in watersheds, and is critical to modeling and empirical studies aimed at understanding the impact of land use on stream water quantity and quality. Stream network density is largely a function of the number and length of the smallest streams. Methods for mapping and measuring these headwater streams range from simple measurement of stream length from existing maps, to detailed field mapping efforts, which are difficult to implement over large areas. Confounding the simplest approaches, many headwater stream reaches are not included in hydrographical maps, such as the U.S. National Hydrography Dataset (NHD), either because they were buried during the course of urban development or because they were seen as smaller than the minimum mapping size at the time of map generation. These "missing streams" severely limit the effective analyses of stream network density based on the NHD, constituting a major problem for many efforts to understand land-use impacts on streams. Here we report on research that predicts stream presence and absence by coupling field observations of headwater stream channels with maximum entropy models (MaxEnt) commonly implemented in biogeographical studies to model species distributions. The model utilizes terrain variables that are continuously accumulated along hydrologic flowpaths derived from a 10-m digital elevation model. In validation, the model correctly predicts the presence of 91% of all 10-m stream segments, and rarely miscalculates tributary numbers. We apply this model to the entire Potomac River Basin (37,800 km2) and several adjacent basins to map stream channel density and compare our results with NHD flowline data. We find that NHD underestimates stream channel density by a factor of two in most sub watersheds and this effect is strongest in the densely urbanized cities of Washington, DC and Baltimore, MD. We then apply a second predictive model based on impervious surface area data to map the extent of stream burial. Results demonstrate that the extent of stream burial increases with decreasing stream catchment area. When applied at four time steps (1975, 1990, 2001, and 2006), we find that although stream burial rates have slowed in the recent decade, streams that are not mapped in NHD flowline data continue to be buried during development. This work is the most ambitious attempt yet to map stream network density over a large region and will have lasting implications for modeling and conservation efforts.
Quantity is nothing without quality: automated QA/QC for streaming sensor networks
John L. Campbell; Lindsey E. Rustad; John H. Porter; Jeffrey R. Taylor; Ethan W. Dereszynski; James B. Shanley; Corinna Gries; Donald L. Henshaw; Mary E. Martin; Wade. M. Sheldon; Emery R. Boose
2013-01-01
Sensor networks are revolutionizing environmental monitoring by producing massive quantities of data that are being made publically available in near real time. These data streams pose a challenge for ecologists because traditional approaches to quality assurance and quality control are no longer practical when confronted with the size of these data sets and the...
Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone
Jay P. Zarnetske; Roy Haggerty; Steven M. Wondzell; Michelle A. Baker
2011-01-01
Biogeochemical reactions associated with stream nitrogen cycling, such as nitrification and denitrification, can be strongly controlled by water and solute residence times in the hyporheic zone (HZ). We used a whole-stream steady state 15N-Iabeled nitrate and conservative tracer addition to investigate the spatial and temporal physiochemical...
40 CFR 63.693 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... recorder. One temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed inlet and a second temperature sensor shall be installed in the vent stream at the nearest... temperature sensor must be ±1 percent of the temperature being measured, expressed in degrees Celsius or ±0.5...
40 CFR 63.693 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2013 CFR
2013-07-01
... recorder. One temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed inlet and a second temperature sensor shall be installed in the vent stream at the nearest... temperature sensor must be ±1 percent of the temperature being measured, expressed in degrees Celsius or ±0.5...
40 CFR 63.693 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... recorder. One temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed inlet and a second temperature sensor shall be installed in the vent stream at the nearest... temperature sensor must be ±1 percent of the temperature being measured, expressed in degrees Celsius or ±0.5...
40 CFR 63.693 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2012 CFR
2012-07-01
... recorder. One temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed inlet and a second temperature sensor shall be installed in the vent stream at the nearest... temperature sensor must be ±1 percent of the temperature being measured, expressed in degrees Celsius or ±0.5...
40 CFR 63.693 - Standards: Closed-vent systems and control devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... recorder. One temperature sensor shall be installed in the vent stream at the nearest feasible point to the catalyst bed inlet and a second temperature sensor shall be installed in the vent stream at the nearest... temperature sensor must be ±1 percent of the temperature being measured, expressed in degrees Celsius or ±0.5...
NASA Astrophysics Data System (ADS)
Osburn, Christopher L.; Oviedo-Vargas, Diana; Barnett, Emily; Dierick, Diego; Oberbauer, Steven F.; Genereux, David P.
2018-03-01
A paired-watershed approach was used to compare the quality and fluxes of dissolved organic matter (DOM) during stormflow and baseflow in two lowland tropical rainforest streams located in northeastern Costa Rica. The Arboleda stream received regional groundwater (RGW) flow, whereas the Taconazo stream did not. DOM quality was assessed with absorbance and fluorescence and stable carbon isotope (δ13C-DOC) values. RGW DOM lacked detectable fluorescence and had specific ultraviolet absorption (SUVA254) and absorbance slope ratio (SR) values consistent with low aromaticity and low molecular weight material, respectively. We attributed these properties to microbial degradation and sorption of humic DOM to mineral surfaces during transport through bedrock. SUVA254 values were lower and SR values were higher in the Arboleda stream during baseflow compared to the Taconazo stream, presumably due to dilution by RGW. However, no significant difference in SUVA254 or SR occurred between the streams during stormflow. SUVA254 was negatively correlated to δ13C-DOC (r2 = 0.61, P < 0.001), demonstrating a strong linkage between stream DOM characteristics and the relative amounts of RGW flow and local watershed runoff containing soil and throughfall C sources. Mean DOC export from the Taconazo stream during the study period was 2.62 ± 0.39 g C m-2 year-1, consistent with other tropical streams, yet mean DOC export from the Arboleda stream was 13.79 ± 2.07 g C m-2 year-1, one of the highest exports reported and demonstrating a substantial impact of old RGW from outside the watershed boundary can have on surface water carbon cycling.
NASA Astrophysics Data System (ADS)
Margold, Martin; Stokes, Chris R.; Clark, Chris D.
2018-06-01
This paper reconstructs the deglaciation of the Laurentide Ice Sheet (LIS; including the Innuitian Ice Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in ice streaming and the associated changes in flow patterns and ice divides. We build on a recent inventory of Laurentide ice streams and use an existing ice margin chronology to produce the first detailed transient reconstruction of the ice stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the ice streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the ice sheet lost its marine margin. Ice streams with a terrestrial ice margin in the west and south were more transient and ice flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide ice saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the ice streams in this region switched off at or shortly after the LGM. In contrast, the ice streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the ice sheet in several sectors. We tentatively ascribe the switching-on of some major ice streams during this period (e.g. M'Clintock Channel Ice Stream at the north-west margin), but for other large ice streams whose timing partially overlaps with the YD, the drivers are less clear and ice-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat rates markedly increased after the YD and the ice sheet became limited to the Canadian Shield. This hard-bed substrate brought a change in the character of ice streaming, which became less frequent but generated much broader terrestrial ice streams. The final collapse of the ice sheet saw a series of small ephemeral ice streams that resulted from the rapidly changing ice sheet geometry in and around Hudson Bay. Our reconstruction indicates that the LIS underwent a transition from a topographically-controlled ice drainage network at the LGM to an ice drainage network characterised by less frequent, broad ice streams during the later stages of deglaciation. These deglacial ice streams are mostly interpreted as a reaction to localised ice-dynamical forcing (flotation and calving of the ice front in glacial lakes and transgressing sea; basal de-coupling due to large amount of meltwater reaching the bed, debuttressing due to rapid changes in ice sheet geometry) rather than as conveyors of excess mass from the accumulation area of the ice sheet. At an ice sheet scale, the ice stream drainage network became less widespread and less efficient with the decreasing size of the deglaciating ice sheet, the final elimination of which was mostly driven by surface melt.
Role of biofilms in sorptive removal of steroidal hormones and 4-nonylphenol compounds from streams
Writer, Jeffrey H.; Ryan, Joseph N.; Barber, Larry B.
2011-01-01
Stream biofilms play an important role in geochemical processing of organic matter and nutrients, however, the significance of this matrix in sorbing trace organic contaminants is less understood. This study focused on the role of stream biofilms in sorbing steroidal hormones and 4-nonylphenol compounds from surface waters using biofilms colonized in situ on artificial substrata and subsequently transferred to the laboratory for controlled batch sorption experiments. Steroidal hormones and 4-nonylphenol compounds readily sorb to stream biofilms as indicated by organic matter partition coefficients (Kom, L kg–1) for 17β-estradiol (102.5–2.8 L kg–1), 17α-ethynylestradiol (102.5–2.9 L kg–1), 4-nonylphenol (103.4–4.6 L kg–1), 4-nonylphenolmonoethoxylate (103.5–4.0 L kg–1), and 4-nonylphenoldiethoxylate (103.9–4.3 L kg–1). Experiments using water quality differences to induce changes in the relative composition of periphyton and heterotrophic bacteria in the stream biofilm did not significantly affect the sorptive properties of the stream biofilm, providing additional evidence that stream biofilms will sorb trace organic compounds under of variety of environmental conditions. Because sorption of the target compounds to stream biofilms was linearly correlated with organic matter content, hydrophobic partition into organic matter appears to be the dominant mechanism. An analysis of 17β-estradiol and 4-nonylphenol hydrophobic partition into water, biofilm, sediment, and dissolved organic matter matrices at mass/volume ratios typical of smaller rivers showed that the relative importance of the stream biofilm as a sorptive matrix was comparable to bed sediments. Therefore, stream biofilms play a primary role in attenuating these compounds in surface waters. Because the stream biofilm represents the base of the stream ecosystem, accumulation of steroidal hormones and 4-nonylphenol compounds in the stream biofilm may be an exposure pathway for organisms in higher trophic levels.
Streaming current for particle-covered surfaces: simulations and experiments
NASA Astrophysics Data System (ADS)
Blawzdziewicz, Jerzy; Adamczyk, Zbigniew; Ekiel-Jezewska, Maria L.
2017-11-01
Developing in situ methods for assessment of surface coverage by adsorbed nanoparticles is crucial for numerous technological processes, including controlling protein deposition and fabricating diverse microstructured materials (e.g., antibacterial coatings, catalytic surfaces, and particle-based optical systems). For charged surfaces and particles, promising techniques for evaluating surface coverage are based on measurements of the electrokinetic streaming current associated with ion convection in the double-layer region. We have investigated the dependence of the streaming current on the area fraction of adsorbed particles for equilibrium and random-sequential-adsorption (RSA) distributions of spherical particles, and for periodic square and hexagonal sphere arrays. The RSA results have been verified experimentally. Our numerical results indicate that the streaming current weakly depends on the microstructure of the particle monolayer. Combining simulations with the virial expansion, we provide convenient fitting formulas for the particle and surface contributions to the streaming current as functions of area fractions. For particles that have the same ζ-potential as the surface, we find that surface roughness reduces the streaming current. Supported by NSF Award No. 1603627.
Optimized open-flow mixing: insights from microbubble streaming
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Wang, Cheng; Guo, Lin; Hilgenfeldt, Sascha
2015-11-01
Microbubble streaming has been developed into a robust and powerful flow actuation technique in microfluidics. Here, we study it as a paradigmatic system for microfluidic mixing under a continuous throughput of fluid (open-flow mixing), providing a systematic optimization of the device parameters in this practically important situation. Focusing on two-dimensional advective stirring (neglecting diffusion), we show through numerical simulation and analytical theory that mixing in steady streaming vortices becomes ineffective beyond a characteristic time scale, necessitating the introduction of unsteadiness. By duty cycling the streaming, such unsteadiness is introduced in a controlled fashion, leading to exponential refinement of the advection structures. The rate of refinement is then optimized for particular parameters of the time modulation, i.e. a particular combination of times for which the streaming is turned ``on'' and ``off''. The optimized protocol can be understood theoretically using the properties of the streaming vortices and the throughput Poiseuille flow. We can thus infer simple design principles for practical open flow micromixing applications, consistent with experiments. Current Address: Mechanical and Aerospace Engineering, Princeton University.
Actin Polymerization Is Essential for Pollen Tube GrowthV⃞
Vidali, Luis; McKenna, Sylvester T.; Hepler, Peter K.
2001-01-01
Actin microfilaments, which are prominent in pollen tubes, have been implicated in the growth process; however, their mechanism of action is not well understood. In the present work we have used profilin and DNAse I injections, as well as latrunculin B and cytochalasin D treatments, under quantitatively controlled conditions, to perturb actin microfilament structure and assembly in an attempt to answer this question. We found that a ∼50% increase in the total profilin pool was necessary to half-maximally inhibit pollen tube growth, whereas a ∼100% increase was necessary for half-maximal inhibition of cytoplasmic streaming. DNAse I showed a similar inhibitory activity but with a threefold more pronounced effect on growth than streaming. Latrunculin B, at only 1–4 nM in the growth medium, has a similar proportion of inhibition of growth over streaming to that of profilin. The fact that tip growth is more sensitive than streaming to the inhibitory substances and that there is no correlation between streaming and growth rates suggests that tip growth requires actin assembly in a process independent of cytoplasmic streaming. PMID:11514633
Urban contributions of glyphosate and its degradate AMPA to streams in the United States
Kolpin, D.W.; Thurman, E.M.; Lee, E.A.; Meyer, M.T.; Furlong, E.T.; Glassmeyer, S.T.
2006-01-01
Glyphosate is the most widely used herbicide in the world, being routinely applied to control weeds in both agricultural and urban settings. Microbial degradation of glyphosate produces aminomethyl phosphonic acid (AMPA). The high polarity and water-solubility of glyphosate and AMPA has, until recently, made their analysis in water samples problematic. Thus, compared to other herbicides (e.g. atrazine) there are relatively few studies on the environmental occurrence of glyphosate and AMPA. In 2002, treated effluent samples were collected from 10 wastewater treatment plants (WWTPs) to study the occurrence of glyphosate and AMPA. Stream samples were collected upstream and downstream of the 10 WWTPs. Two reference streams were also sampled. The results document the apparent contribution of WWTP effluent to stream concentrations of glyphosate and AMPA, with roughly a two-fold increase in their frequencies of detection between stream samples collected upstream and those collected downstream of the WWTPs. Thus, urban use of glyphosate contributes to glyphosate and AMPA concentrations in streams in the United States. Overall, AMPA was detected much more frequently (67.5%) compared to glyphosate (17.5%).
DENSITY VARIATIONS IN THE NW STAR STREAM OF M31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlberg, R. G.; Richer, Harvey B.; McConnachie, Alan W., E-mail: carlberg@astro.utoronto.ca, E-mail: richer@astro.ubc.ca, E-mail: alan.mcconnachie@nrc-cnrc.gc.ca
2011-04-20
The Pan Andromeda Archeological Survey (PAndAS) CFHT Megaprime survey of the M31-M33 system has found a star stream which extends about 120 kpc NW from the center of M31. The great length of the stream, and the likelihood that it does not significantly intersect the disk of M31, means that it is unusually well suited for a measurement of stream gaps and clumps along its length as a test for the predicted thousands of dark matter sub-halos. The main result of this paper is that the density of the stream varies between zero and about three times the mean alongmore » its length on scales of 2-20 kpc. The probability that the variations are random fluctuations in the star density is less than 10{sup -5}. As a control sample, we search for density variations at precisely the same location in stars with metallicity higher than the stream [Fe/H] = [0, -0.5] and find no variations above the expected shot noise. The lumpiness of the stream is not compatible with a low mass star stream in a smooth galactic potential, nor is it readily compatible with the disturbance caused by the visible M31 satellite galaxies. The stream's density variations appear to be consistent with the effects of a large population of steep mass function dark matter sub-halos, such as found in LCDM simulations, acting on an approximately 10 Gyr old star stream. The effects of a single set of halo substructure realizations are shown for illustration, reserving a statistical comparison for another study.« less
Causes of acidification of four streams on Laurel Hilld in southwestern Pennsylvania
Sharpe, William E.; DeWalle, David R.; Leibfried, Robert T.; Dinicola, Richard S.; Kimmel, William G.; Sherwin, Lysle S.
1984-01-01
Atmospheric deposition, soils developed from bedrock, a natural bog, gas wells, and a ski area were all investigated as possible sources of water quality degradation for four streams on Laurel Hill in southwestern Pennsylvania where fish kills have been reported since 1960. An intensive study of the chemistry of atmospheric deposition, soil leachate, and stream water and fish populations was conducted on these basins during 1980–1981 with emphasis on dormant season periods with runoff from snowmelt and rain. Although bedrock geology was found to control the natural buffering capacity of these streams, only acid precipitation could be linked to sharp drops in pH and increases in total Al concentrations observed during stormflows in the poorly buffered streams. Three poorly buffered streams exhibited drops to pH 4.4 to 4.5 and increases in total Al concentrations up to 1.5 mg/L during observed peak flows. Mineral soil leachate from the three major soil series on the basins during this time exhibited a low pH of 4.3 and mean total Al concentrations of 3.6 mg/L, indicating stream response during storms was closely linked to chemistry of soil leachate. Poorly buffered streams did not support reproducing populations of trout (Salmonidae sp.) or other fishes. In contrast, one well-buffered stream (20 mg/L CaCO3) exhibited drops to pH 5.5 during peak flow and supported reproducing trout and sculpin (Cottus bairdi) populations. The acidification of the four streams studied was attributed to atmospheric deposition.
Ernst, Anne G.; Baldigo, Barry P.; Mulvihill, Christiane; Vian, Mark
2010-01-01
Stream restoration has received much attention in recent years, yet there has been little effort to evaluate its impacts on physical habitat, stability, and biota. A popular but controversial stream restoration approach is natural channel design (NCD), which cannot be adequately evaluated without a long-term, independent assessment of its effects on stream habitat. Six reaches of five Catskill Mountain streams in southeastern New York were restored during 2000–2003 following NCD techniques to decrease bed and bank degradation, decrease sediment loads, and improve water quality. Habitat surveys were conducted during summer low flows from 2001 to 2007. The effects of the NCD projects on stream condition were assessed via a before–after–control–impact study design to quantify the net changes in stream and bank habitat variables relative to those in unaltered control reaches. Analysis of variance tests of three different measures of bank stability show that on average stream stability increased at treatment sites for 2–5 years after restoration. Mean channel depth, thalweg depth, and the pool–riffle ratio generally increased, whereas mean channel width, percent streambank coverage by trees, and shade decreased. Habitat suitability indices for local salmonid species increased at four of six reaches after restoration. The changes in channel dimensions rendered them generally more characteristic of stabler stream forms in the given valley settings. Although these studies were done relatively soon after project completion, our findings demonstrate that habitat conditions can be improved in degraded Catskill Mountain streams through NCD restoration.
Yamagata, Y; Ochoa, J O; Molina, P A; Sato, H; Uemoto, K; Suzuki, T
1987-09-01
Chemical control against larvae of Simulium ochraceum, the principal vector of onchocerciasis, was carried out from 1979 to 1984 in a 91.3 km2 area of Guatemala where onchocerciasis is endemic. The control operation was divided chronologically into three phases according to the different tactics employed. Phase 1 (1979-1981), using briquettes of fat and detergent containing 10% temephos, was effective only in perennial streams. Phase 2 (1981-1982), which limited the application target to small streams with discharges of 0.1-1 litre/sec, was not effective. Successful control was achieved by Phase 3 (1982-1984), which consisted of fort-nightly applications of 5% temephos water dispersable powder in fixed doses of 24 g (1.2 g active ingredient) to every 50-100 m stretch of all streams with discharge rates of 0.1-50 l/sec. Vector biting rates were reduced by 97.8% in 1982 to 1983 and 97.6% in 1983-1984. The biting density of S. ochraceum at all five stations was reduced to less than 1.9/man/hour, the proposed critical level for long term transmission of onchocerciasis. The biting density of the S. metallicum/horacioi complex was not apparently affected by this operation. Through analysis of the density of S. ochraceum at various distances from the untreated areas, infiltration of the flies was found to be rare, if the distance was beyond 2 km. Fly-round surveys proved to be practical as a surveillance method for detecting larval breeding in untreated or improperly treated streams. The cost for a nation-wide vector control operation was presented.
NASA Astrophysics Data System (ADS)
Portmann, A. C.; Halpin, B. N.; Herzog, S.; Higgins, C.; McCray, J. E.
2017-12-01
The hyporheic zone (HZ) is a natural bioreactor that can provide in-stream attenuation of various nonpoint source contaminants. Main contributions of nonpoint source pollution are coming from urban stormwater and agricultural runoff, which both adversely impact aquatic life. Stormwater pollutants of concern commonly include nutrients, metals, pathogens, and trace organic contaminants (TOrCs). Despite substantial water quality challenges, current stormwater management typically focuses on water quantity issues rather than pollutant removal. Furthermore, current HZ restoration best management practices do not explicitly control HZ residence times, and generally only induce localized effects. To increase hyporheic exchange and therefore improving water quality, we introduced engineered streambeds featuring modifications to subsurface hydraulic conductivity (K) and reactivity - termed Biohydrochemical Enhancements for Streamwater Treatment (BEST). BEST modifications comprise subsurface modules that employ 1) low-permeability sediments to drive hyporheic exchange and control subsurface residence times, and 2) permeable reactive geomedia to change reaction rates within the HZ. Here we present performance data collected in constructed stream experiments, comparing an all-sand control condition with a stream containing BEST modules and a mixture of 70/30 sand/woodchips (v/v). We evaluated the attenuation of a suite of TOrCs in the BEST versus the control system for two different streambed media: a coarse sand with K = 0.48 cm/s and a fine sand with K = 0.16 cm/s. The range of TOrCs investigated comprises urban pesticides and other stormwater relevant TOrCs. Benefits of applying BEST include increased exchange between streamwater and HZ water, leading to diverse redox conditions that are beneficial for aquatic organisms and will facilitate in-stream pollutant transformation. Future work will focus on tailoring the BEST design for specific pollutants, thereby controlling HZ residence times to match reaction timescales and conditions of interest.
Modeling Applications to Inform Hydromodification Management Design Decisions
NASA Astrophysics Data System (ADS)
Goodman, J.
2013-12-01
Hydromodification is defined as changes in runoff characteristics and in-stream processes caused by altered land use. The impact of hydromodification can manifest itself through adjustment of stream morphology via channel incision, widening, planform alteration, or coarsening of the bed material. The state of the practice for hydromodification management in California and Western Washington for new and re-development has been to mimic pre-development site hydrology. The theory is that if the pre-development distribution of in-stream flows is maintained, then the baseline capacity to transport sediment, a proxy for the geomorphic condition, will be maintained as well. A popular method of mimicking the pre-development flow regime is by maintaining the pre-development frequency distribution of runoff, known as flow duration control. This can be done by routing post-development runoff through structural stormwater facilities (BMPs) such that runoff is stored and slowly released to match pre-development flow duration characteristics. As it turns out, storage requirements for hydromodification control tend to be much larger than that for surface water treatment requirements (see nomograph). As regulatory requirements for hydromodification evolve and begin to spread to other parts of the country, it is necessary that scientists, water resources professionals, and policy makers understand the practical challenges of implementing hydromodification controls, including the sizing and cost constraints, and know about innovations which could make hydromodification controls more feasible to implement. In an effort to provide the audience with this better understanding, this presentation will share a step-by-step approach for predicting long-term hydromodification impacts; demonstrate options for mitigating these impacts within the context of the modeling approach; and discuss sizing sensitivities of LID-type hydromodification control structural BMPs as a function of performance standard (Flow Duration Control vs. Erosion Potential), receiving stream susceptibility (critical low flow discharges for incipient motion of 5%Q2, 10%Q2, vs. 20%Q2), and outlet design (passive vs. active smart controls). nomograph
Lateral and vertical distribution of downstream migrating juvenile sea lamprey
Sotola, V. Alex; Miehls, Scott M.; Simard, Lee G.; Marsden, J. Ellen
2018-01-01
Sea lamprey is considered an invasive and nuisance species in the Laurentian Great Lakes, Lake Champlain, and the Finger Lakes of New York and is a major focus of control efforts. Currently, management practices focus on limiting the area of infestation using barriers to block migratory adults, and lampricides to kill ammocoetes in infested tributaries. No control efforts currently target the downstream-migrating post-metamorphic life stage which could provide another management opportunity. In order to apply control methods to this life stage, a better understanding of their downstream movement patterns is needed. To quantify spatial distribution of downstream migrants, we deployed fyke and drift nets laterally and vertically across the stream channel in two tributaries of Lake Champlain. Sea lamprey was not randomly distributed across the stream width and lateral distribution showed a significant association with discharge. Results indicated that juvenile sea lamprey is most likely to be present in the thalweg and at midwater depths of the stream channel. Further, a majority of the catch occurred during high flow events, suggesting an increase in downstream movement activity when water levels are higher than base flow. Discharge and flow are strong predictors of the distribution of out-migrating sea lamprey, thus managers will need to either target capture efforts in high discharge areas of streams or develop means to guide sea lamprey away from these areas.
Rasmussen, Jes Jessen; Friberg, Nikolai; Larsen, Soren E
2008-11-21
In this study, the impact of a single pulse of the pyrethroid lambda-cyhalothrin was tested on a macroinvertebrate assemblage consisting of Gammarus pulex, Leuctra nigra, Heptagenia sulphurea and Ancylus fluviatilis in outdoor experimental stream channels. Channels (4m long, 0.1m wide) were groundwater fed and had natural substratum. Macroinvertebrates were exposed to 10.65 or 106.5 ng L(-1) lambda cyhalothrin for 90 min in the laboratory and after 24h introduced to the experimental stream channels with four replicates of each treatment and controls. Drift samples were taken with 24-h interval for 10 days and behaviour of drifted macroinvertebrates was assessed. Microalgae biomass was measured on days 1, 5, 8 and 10 along with leaf litter decomposition using leaf packs of beech (Fagus sylvatica). Numbers of drifting G. pulex and L. nigra with reduced mobility increased significantly with concentration of lambda-cyhalothrin. Increase of algal biomass was significantly greater in stream channels with macroinvertebrates exposed to 106.5 ng L(-1) compared to controls and 10.65 ng L(-1) treatments. Accrual of microalgal biomass was significantly higher in the high concentration treatment and decomposition of leaf litter was significantly greater in control channels compared to channels with exposed macroinvertebrates. This study may apply valuable knowledge to the understanding and assessment of how pyrethroids impact ecosystem functioning in streams.
Stream Response to an Extreme Defoliation Event
NASA Astrophysics Data System (ADS)
Gold, A.; Loffredo, J.; Addy, K.; Bernhardt, E. S.; Berdanier, A. B.; Schroth, A. W.; Inamdar, S. P.; Bowden, W. B.
2017-12-01
Extreme climatic events are known to profoundly impact stream flow and stream fluxes. These events can also exert controls on insect outbreaks, which may create marked changes in stream characteristics. The invasive Gypsy Moth (Lymantria dispar dispar) experiences episodic infestations based on extreme climatic conditions within the northeastern U.S. In most years, gypsy moth populations are kept in check by diseases. In 2016 - after successive years of unusually warm, dry spring and summer weather -gypsy moth caterpillars defoliated over half of Rhode Island's 160,000 forested ha. No defoliation of this magnitude had occurred for more than 30 years. We examined one RI headwater stream's response to the defoliation event in 2016 compared with comparable data in 2014 and 2015. Stream temperature and flow was gauged continuously by USGS and dissolved oxygen (DO) was measured with a YSI EXO2 sonde every 30 minutes during a series of deployments in the spring, summer and fall from 2014-2016. We used the single station, open channel method to estimate stream metabolism metrics. We also assessed local climate and stream temperature data from 2009-2016. We observed changes in stream responses during the defoliation event that suggest changes in ET, solar radiation and heat flux. Although the summer of 2016 had more drought stress (PDSI) than previous years, stream flow occurred throughout the summer, in contrast to several years with lower drought stress when stream flow ceased. Air temperature in 2016 was similar to prior years, but stream temperature was substantially higher than the prior seven years, likely due to the loss of canopy shading. DO declined dramatically in 2016 compared to prior years - more than the rising stream temperatures would indicate. Gross Primary Productivity was significantly higher during the year of the defoliation, indicating more total fixation of inorganic carbon from photo-autotrophs. In 2016, Ecosystem Respiration was also higher and Net Ecosystem Productivity indicated it is a heterotrophic stream. Extreme events and fluctuations in climate patterns in the region are expected to increase suggesting that further work on the effects of insect defoliation on forested streams is warranted.
Ambient groundwater flow diminishes nitrate processing in the hyporheic zone of streams
NASA Astrophysics Data System (ADS)
Azizian, Morvarid; Boano, Fulvio; Cook, Perran L. M.; Detwiler, Russell L.; Rippy, Megan A.; Grant, Stanley B.
2017-05-01
Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. Here we utilize a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N-cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damköhler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.
The quality of our Nation’s waters--ecological health in the Nation's streams, 1993-2005
Carlisle, Daren M.; Meador, Michael R.; Short, Terry M.; Tate, Cathy M.; Gurtz, Martin E.; Bryant, Wade L.; Falcone, James A.; Woodside, Michael D.
2013-01-01
This report summarizes a national assessment of the ecological health of streams done by the U.S. Geological Survey's (USGS) National Water-Quality Assessment Program (NAWQA). Healthy functioning stream ecosystems provide society with many benefits, including water purification, flood control, nutrient recycling, waste decomposition, fisheries, and aesthetics. The value to society of many of these benefits is substantial; for example, sportfishing in the United States generates an estimated annual economic output of $125 billion, including more than 1 million jobs (National Research Council, 2005; American Sportfishing Association, 2008). Continued monitoring and assessment of the Nation’s streams is needed to support informed decisions that will safeguard this important natural and economic resource. The quality of streams and rivers is often assessed with measures of the chemical or physical properties of water. However, a more comprehensive perspective is obtained if resident biological communities are also assessed. Guidelines to protect human health and aquatic life have been established for specific physical and chemical properties of water and have become useful yardsticks with which to assess water quality. Biological communities provide additional crucial information because they live within streams for weeks to years and therefore integrate through time the effects of changes to their chemical or physical environment. In addition, biological communities are a direct measure of stream health—an indicator of the ability of a stream to support aquatic life. Thus, the condition of biological communities, integrated with key physical and chemical properties, provides a comprehensive assessment of stream health.
NASA Astrophysics Data System (ADS)
Lohse, K. A.; Sanderman, J.; Amundson, R. G.
2005-12-01
Patterns of precipitation and runoff in California are changing and likely to influence the structure and functioning of watersheds. Studies have demonstrated that hydrologic flushing during seasonal transitions in Mediterranean ecosystems can exert a strong control on nitrogen (N) export, yet few studies have examined the influence of different hydrological flow paths on rates and forms of nitrogen (N) losses. Here we illuminate the influence of variations in precipitation and hydrological pathways on the rate and form of N export along a toposequence of a well-characterized Mediterranean catchment in northern California. As a part of a larger study examining particulate and dissolved carbon loss, we analyzed seasonal patterns of dissolved organic nitrogen (DON), nitrate and ammonium concentrations in rainfall, throughfall, matrix and preferential flow, and stream samples over the course of one water year. We also analyzed seasonal soil N dynamics along this toposequence. During the transition to the winter rain season, but prior to any soil water displacement to the stream, DON and nitrate moved through near-surface soils as preferential flow. Once hillslope soils became saturated, saturated subsurface flow flushed nitrate from the hollow resulting in high stream nitrate/DON concentrations. Between storms, stream nitrate/DON concentrations were lower and appeared to reflect deep subsurface water flow chemistry. During the transition to the wet season, rates of soil nitrate production were high in the hollow relative to the hillslope soils. In the spring, these rates systematically declined as soil moisture decreased. Results from our study suggest seasonal fluctuations in soil moisture control soil N cycling and seasonal changes in the hydrological connection between hillslope soils and streams control the seasonal production and export of hydrologic N.
River-groundwater connectivity and nutrient dynamics in a mesoscale catchment
NASA Astrophysics Data System (ADS)
Fleckenstein, Jan H.; Musolff, Andreas; Gilfedder, Benjamin; Frei, Sven; Wankmüller, Fabian; Trauth, Nico
2017-04-01
Diffuse solute exports from catchments are governed by many interrelated factors such as land use, climate, geological-/ hydrogeological setup and morphology. Those factors create spatial variations in solute concentrations and turnover rates in the subsurface as well as in the stream network. River-groundwater connectivity is a crucial control in this context: On the one hand groundwater is a main pathway for nitrate inputs to the stream. On the other hand, groundwater connectivity with the stream affects the magnitude of hyporheic exchange of stream water with the stream bed. We present results of a longitudinal sampling campaign along the Selke river, a 67 km long third-order stream in the Harz mountains in central Germany. Water quality at the catchment outlet is strongly impacted by agriculture with high concentrations of nitrate and a chemostatic nitrate export regime. However, the specific nitrate pathways to the stream are not fully understood as there is arable land distributed throughout the catchment. While the sparsely distributed arable land in the mountainous upper catchment receives much higher amounts of precipitation, the downstream alluvial plains are drier, but more intensively used. The three-day campaign was conducted in June 2016 under constant low flow conditions. Stream water samples were taken every 2 km along the main stem of the river and at its major tributaries. Samples were analyzed for field parameters, major cations and anions, N-O isotopes, nutrients and Radon-222 (Rn) concentrations. Additionally, at each sampling location, river discharge was manually measured using current meters. Groundwater influxes to each sampled river section were quantified from the Rn measurements using the code FINIFLUX, (Frei and Gilfedder 2015). Rn and ion concentrations showed an increase from the spring to the mouth, indicating a growing impact of groundwater flux to the river. However, increases in groundwater gains were not gradual. The strongest gains were observed downstream of where the Selke River leaves the Harz Mountains and enters the alluvial plains. At this location, land use, hydrogeological setup and river slope as well as average slope of the contributing catchment area change significantly. Downstream of this point 15N isotope values were also significantly higher, suggesting higher denitrification activity in the deeper aquifers of lower catchment. While specific discharge (discharge per catchment area) was 3 times higher in the upper catchment, nitrate mass flux per area was more than 3 times higher in lower catchment compared to the respective other part of the catchment. We conclude that catchment morphology, (hydro)geology and hydrology control river-groundwater connectivity while the interplay with land use controls in stream nitrate concentrations. Repeated sampling campaigns will allow assessing seasonal changes in solute inputs and turnover. References Frei, S. & Gilfedder, B.S. (2015): FINIFLUX: An implicit finite element model for quantification of groundwater fluxes and hyporheic exchange in streams and rivers using radon. Water Resources Research, DOI: 10.1002/2015WR017212.
NASA Astrophysics Data System (ADS)
Araya, F. Z.; Abdul-Aziz, O. I.
2017-12-01
This study utilized a systematic data analytics approach to determine the relative linkages of stream dissolved oxygen (DO) with the hydro-climatic and biogeochemical drivers across the U.S. Pacific Coast. Multivariate statistical techniques of Pearson correlation matrix, principal component analysis, and factor analysis were applied to a complex water quality dataset (1998-2015) at 35 water quality monitoring stations of USGS NWIS and EPA STORET. Power-law based partial least squares regression (PLSR) models with a bootstrap Monte Carlo procedure (1000 iterations) were developed to reliably estimate the relative linkages by resolving multicollinearity (Nash-Sutcliffe Efficiency, NSE = 0.50-0.94). Based on the dominant drivers, four environmental regimes have been identified and adequately described the system-data variances. In Pacific North West and Southern California, water temperature was the most dominant driver of DO in majority of the streams. However, in Central and Northern California, stream DO was controlled by multiple drivers (i.e., water temperature, pH, stream flow, and total phosphorus), exhibiting a transitional environmental regime. Further, total phosphorus (TP) appeared to be the limiting nutrient for most streams. The estimated linkages and insights would be useful to identify management priorities to achieve healthy coastal stream ecosystems across the Pacific Coast of U.S.A. and similar regions around the world. Keywords: Data analytics, water quality, coastal streams, dissolved oxygen, environmental regimes, Pacific Coast, United States.
Aerogeophysical evidence for active volcanism beneath the West Antarctic Ice Sheet
NASA Technical Reports Server (NTRS)
Blankenship, Donald D.; Bell, Robin E.; Hodge, Steven M.; Brozena, John M.; Behrendt, John C.
1993-01-01
Although it is widely understood that the collapse of the West Antarctic Ice Sheet (WAIS) would cause a global sea-level rise of 6 m, there continues to be considerable debate about the response of this ice sheet to climate change. The stability of the WAIS, which is characterized by a bed grounded well below sea level, may depend on geologically controlled conditions at the base, which are independent of climate. Ice streams moving up to 750 m/yr disperse material from the interior through to the oceans. As these ice streams tend to buffer the reservoir of slow-moving inland ice from exposure to oceanic degradation, understanding the ice-streaming process is important for evaluating WAIS stability. There is strong evidence that ice streams slide on a lubricating layer of water-saturated till. Development of this basal layer requires both water and easily eroded sediments. Active lithospheric extension may elevate regional heat flux, increase basal melting, and trigger ice streaming. If a geologically defined boundary with a sharp contrast in geothermal flux exists beneath the WAIS, ice streams may only be capable of operating as a buffer over a restricted region. Should ocean waters penetrate beyond this boundary, the ice-stream buffer would disappear, possibly triggering a collapse of the inland ice reservoir. Aerogeophysical evidence for active volcanism and elevated heat flux beneath the WAIS near the critical region where ice streaming begins is presented.
Response of mercury in an Adirondack (NY, USA) forest stream to watershed lime application
Millard, Geoffrey D.; Driscoll, Charles T.; Burns, Douglas; Montesdeoca, Mario R.; Murray, Karen
2018-01-01
significantly in streamwater within two weeks of treatment, to previously unobserved oncentrations. After six months, post-treatment before–after impact-control (BACI) tests indicate that mean dissolved organic carbon concentrations and total mercury to dissolved organic carbon ratios remained significantly higher and limed site fluxes of methylmercury were lower than those at the reference stream. This pattern suggests total mercury is leaching at elevated levels from the limed watershed, but limitations in production and transport to the stream channel likely resulted in increases in methylmercury concentration that were of limited duration.
Two-dimensional lattice Boltzmann model for magnetohydrodynamics.
Schaffenberger, Werner; Hanslmeier, Arnold
2002-10-01
We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.
NASA Astrophysics Data System (ADS)
Karpov, A. V.; Yumagulov, E. Z.
2003-05-01
We have restored and ordered the archive of meteor observations carried out with a meteor radar complex ``KGU-M5'' since 1986. A relational database has been formed under the control of the Database Management System (DBMS) Oracle 8. We also improved and tested a statistical method for studying the fine spatial structure of meteor streams with allowance for the specific features of application of the DBMS. Statistical analysis of the results of observations made it possible to obtain information about the substance distribution in the Quadrantid, Geminid, and Perseid meteor streams.
Anode protection system for shutdown of solid oxide fuel cell system
Li, Bob X; Grieves, Malcolm J; Kelly, Sean M
2014-12-30
An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.
Rockwell, Gerald L.; Honeywell, Paul D.
2004-01-01
The U.S. Geological Survey, in cooperation with the California Regional Water Quality Control Board, Lahonton Region, carried out a water-quality data collection program of selected streams in and near Bridgeport Valley, California, during April 2000 to June 2003. These data were collected to provide information used by the California Regional Water Quality Control Board to develop total maximum daily load standards. Field measurements of streamflow, barometric pressure, dissolved oxygen, pH, specific conductance, and water temperature were made at 15 sites located on 6 streams. Water samples were analyzed for nutrients, major ions, turbidity, fecal coliform, fecal streptococci, and suspended sediment. Field data, turbidity, nutrient, major ion, and sediment concentrations and fecal coliform and fecal streptococci densities are given in tables for each site. Field blank data are also presented in a table.