The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod
NASA Astrophysics Data System (ADS)
Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.
1991-07-01
Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.
NASA Astrophysics Data System (ADS)
Anzenhofer, M.; Gruber, T.
1998-04-01
Global mean sea level observations are necessary to answer the urgent questions about climate changes and their impact on socio-economy. At GeoForschungsZentrum/Geman Processing and Archiving Facility ERS altimeter data is used to systematically generate geophysical products such as sea surface topography, high-resolution geoid and short- and long-period sea surface height models. On the basis of this experience, fully reprocessed ERS-1 altimeter data is used to generated a time series of monthly sea surface height models from April 1992 to April 1995. The reprocessing consists of improved satellite ephemerides, merging of Grenoble tidal model, and application of range corrections due to timing errors. With the new data set the TOPEX/POSEIDON prelaunch accuracy requirements are fulfilled. The 3-year time series is taken to estimate the rate of change of global mean sea level. A careful treatment of seasonal effects is considered. A masking of continents, sea ice, and suspect sea surface heights is chosen that is common for all sea surface height models. The obtained rate of change is compared to external results from tide gauge records and TOPEX/POSEIDON data. The relation of sea level changes and sea surface temperature variations is examined by means of global monthly sea surface temperature maps. Both global wind speed and wave height maps are investigated and correlated with sea surface heights and sea surface temperatures in order to find other indicators of climate variations. The obtained rate of changes of the various global maps is compared to an atmospheric CO2 anomaly record, which is highly correlated to El Niño events. The relatively short period of 3 years, however, does not allow definite conclusions with respect to possible long-term climate changes.
Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography
NASA Technical Reports Server (NTRS)
Guest, DeNeice C.
2010-01-01
This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.
NASA Astrophysics Data System (ADS)
Leijala, Ulpu; Björkqvist, Jan-Victor; Johansson, Milla M.; Pellikka, Havu
2017-04-01
Future coastal management continuously strives for more location-exact and precise methods to investigate possible extreme sea level events and to face flooding hazards in the most appropriate way. Evaluating future flooding risks by understanding the behaviour of the joint effect of sea level variations and wind waves is one of the means to make more comprehensive flooding hazard analysis, and may at first seem like a straightforward task to solve. Nevertheless, challenges and limitations such as availability of time series of the sea level and wave height components, the quality of data, significant locational variability of coastal wave height, as well as assumptions to be made depending on the study location, make the task more complicated. In this study, we present a statistical method for combining location-specific probability distributions of water level variations (including local sea level observations and global mean sea level rise) and wave run-up (based on wave buoy measurements). The goal of our method is to obtain a more accurate way to account for the waves when making flooding hazard analysis on the coast compared to the approach of adding a separate fixed wave action height on top of sea level -based flood risk estimates. As a result of our new method, we gain maximum elevation heights with different return periods of the continuous water mass caused by a combination of both phenomena, "the green water". We also introduce a sensitivity analysis to evaluate the properties and functioning of our method. The sensitivity test is based on using theoretical wave distributions representing different alternatives of wave behaviour in relation to sea level variations. As these wave distributions are merged with the sea level distribution, we get information on how the different wave height conditions and shape of the wave height distribution influence the joint results. Our method presented here can be used as an advanced tool to minimize over- and underestimation of the combined effect of sea level variations and wind waves, and to help coastal infrastructure planning and support smooth and safe operation of coastal cities in a changing climate.
Using ship-borne GNSS data for geoid model validation at the Baltic Sea
NASA Astrophysics Data System (ADS)
Nordman, Maaria; Kuokkanen, Jaakko; Bilker-Koivula, Mirjam; Koivula, Hannu; Häkli, Pasi; Lahtinen, Sonja
2017-04-01
We present a study of geoid model validation using ship-borne GNSS data on the Bothnian Bay of the Baltic Sea. In autumn 2015 a dedicated gravity survey took place in the Bothnian Bay on board of the surveying vessel Airisto as a part of the FAMOS (Finalising surveys for the Baltic motorways of the sea) Freja project, which is supported by the European Commission with the Connecting Europe Facility. The gravity data was collected to test older existing gravity data in the area and to contribute to a new improved geoid model for the Baltic Sea. The raw GNSS and IMU data of the vessel were recorded in order to study the possibilities for validating geoid models at sea. In order to derive geoid heights from GNSS-measurements at sea, the GNSS measurements must first be reduced to sea level. The instant sea level, also called sea surface height, must then be modelled and removed in order to get the GNSS positions at the zero height. In theory, the resulting GNSS heights are the geoid heights, giving the distance between the ellipsoid and the geoid surface. There were altogether 46 lines measured during the campaign on the area. The 1 Hz GNSS-IMU observations were post-processed using the Applanix POSPac MMS 7.1 software. Different processing options were tested and the Single Base -solution was found to be the best strategy. There were some issues with the quality of the data and cycle slips and thus, 37 of the lines were of adequate quality for the geoid validation. The final coordinates were transferred to the coordinate systems related to the geoid models used. Translation of the processed heights to sea level was performed taking the pitch and roll effects of the vessel into account. Also the effects of static and dynamic draft (squat) were applied. For the reduction from sea surface to geoid surface, the sea surface heights were derived from tide gauge data and also from a physical model for the Baltic Sea. The residual errors between the GNSS-derived geoid heights and geoid heights from geoid models were as low as 2 mm on some lines. When the overall mean is taken from the mean of all lines, the lowest value of 2.1 cm, was achieved using a physical model for the sea surface and comparing with the NKG2015 geoid model. The NKG2015 model together with the tide gauge sea surface yield 3.1 cm. Comparing with Finnish geoid model gave 3.7 and 4.7 cm for the physical model and tide gauge surfaces, respectively. The mean standard deviations were below 5 cm, when the data was filtered with a 10 min. moving average. Thus, it can be said that with high quality GNSS solution and enough information on the coordinate systems, vessel movements and the sea surface heights, geoid heights can be recovered from GNSS observations at sea.
An empirical determination of the effects of sea state bias on Seasat altimetry
NASA Technical Reports Server (NTRS)
Born, G. H.; Richards, M. A.; Rosborough, G. W.
1982-01-01
A linear empirical model has been developed for the correction of sea state bias effects, in Seasat altimetry data altitude measurements, that are due to (1) electromagnetic bias caused by the fact that ocean wave troughs reflect the altimeter signal more strongly than the crests, shifting the apparent mean sea level toward the wave troughs, and (2) an independent instrument-related bias resulting from the inability of height corrections applied in the ground processor to compensate for simplifying assumptions made for the processor aboard Seasat. After applying appropriate corrections to the altimetry data, an empirical model for the sea state bias is obtained by differencing significant wave height and height measurements from coincident ground tracks. Height differences are minimized by solving for the coefficient of a linear relationship between height differences and wave height differences that minimize the height differences. In more than 50% of the 36 cases examined, 7% of the value of significant wave height should be subtracted for sea state bias correction.
Jason-3 Produces First Global Map of Sea Surface Height
2016-03-16
The U.S./European Jason-3 satellite has produced its first map of sea surface height, which corresponds well to data from its predecessor, Jason-2. Higher-than-normal sea levels are red; lower-than-normal sea levels are blue. El Niño is visible as the red blob in the eastern equatorial Pacific. Extending the timeline of ocean surface topography measurements begun by the Topex/Poseidon and Jason 1 and 2 satellites, Jason 3 will make highly detailed measurements of sea-level on Earth to gain insight into ocean circulation and climate change. http://photojournal.jpl.nasa.gov/catalog/PIA20532
NASA Astrophysics Data System (ADS)
Patra, Anindita; Bhaskaran, Prasad K.; Jose, Felix
2018-06-01
A zonal dipole in the observed trends of wind speed and significant wave height over the Head Bay of Bengal region was recently reported in the literature attributed due to the variations in sea level pressure (SLP). The SLP in turn is governed by prevailing atmospheric conditions such as local temperature, humidity, rainfall, atmospheric pressure, wind field distribution, formation of tropical cyclones, etc. The present study attempts to investigate the inter-annual variability of atmospheric parameters and its role on the observed zonal dipole trend in sea level pressure, surface wind speed and significant wave height. It reports on the aspects related to linear trend as well as its spatial variability for several atmospheric parameters: air temperature, geopotential height, omega (vertical velocity), and zonal wind, over the head Bay of Bengal, by analyzing National Centers for Environmental Prediction (NCEP) Reanalysis 2 dataset covering a period of 38 years (1979-2016). Significant warming from sea level to 200 mb pressure level and thereafter cooling above has been noticed during all the seasons. Warming within the troposphere exhibits spatial difference between eastern and western side of the domain. This led to fall in lower tropospheric geopotential height and its east-west variability, exhibiting a zonal dipole pattern across the Head Bay. In the upper troposphere, uplift in geopotential height was found as a result of cooling in higher levels (10-100 mb). Variability in omega also substantiated the observed variations in geopotential height. The study also finds weakening in the upper level westerlies and easterlies. Interestingly, a linear trend in lower tropospheric u-wind component also reveals an east-west dipole pattern over the study region. Further, the study corroborates the reported dipole in trends of sea level pressure, wind speed and significant wave height by evaluating the influence of atmospheric variability on these parameters.
NASA Astrophysics Data System (ADS)
Abulaitijiang, Adili; Baltazar Andersen, Ole; Stenseng, Lars
2014-05-01
Cryosat-2 offers the first ever possibility to perform coastal altimetric studies using SAR-Interferometry. This enabled qualified measurements of sea surface height (SST) in the fjords in Greenland. Scoresbysund fjord on the east coast of Greenland is the largest fjord in the world which is also covered by CryoSat-2 SAR-In mask making it a good test region. Also, the tide gauge operated by DTU Space is sitting in Scoresbysund bay, which provides solid ground-based sea level variation records throughout the year. We perform an investigation into sea surface height variation since the start of the Cryosat-2 mission using SAR-In L1B data processed with baseline B processing. We have employed a new develop method for projecting all SAR-In observations in the Fjord onto a centerline up the Fjord. Hereby we can make solid estimates of the annual and (semi-) annual signal in sea level/sea ice freeboard within the Fjord. These seasonal height variations enable us to derive sea ice freeboard changes in the fjord from satellite altimetry. Derived sea level and sea-ice freeboard can be validated by comparison with the tide gauge observations for sea level and output from the Microwave Radiometer derived observations of sea ice freeboard developed at the Danish Meteorological Institute.
Garner, Andra J; Mann, Michael E; Emanuel, Kerry A; Kopp, Robert E; Lin, Ning; Alley, Richard B; Horton, Benjamin P; DeConto, Robert M; Donnelly, Jeffrey P; Pollard, David
2017-11-07
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970-2005 to 4.0-5.1 m above mean tidal level by 2080-2100 and ranges from 5.0-15.4 m above mean tidal level by 2280-2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970-2005 and further decreases to ∼5 y by 2030-2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280-2300 for scenarios that include Antarctica's potential partial collapse. Copyright © 2017 the Author(s). Published by PNAS.
Mann, Michael E.; Emanuel, Kerry A.; Alley, Richard B.; Horton, Benjamin P.; DeConto, Robert M.; Donnelly, Jeffrey P.; Pollard, David
2017-01-01
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970–2005 and further decreases to ∼5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica’s potential partial collapse. PMID:29078274
NASA Astrophysics Data System (ADS)
Garner, Andra J.; Mann, Michael E.; Emanuel, Kerry A.; Kopp, Robert E.; Lin, Ning; Alley, Richard B.; Horton, Benjamin P.; DeConto, Robert M.; Donnelly, Jeffrey P.; Pollard, David
2017-11-01
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ˜500 y before 1800 to ˜25 y during 1970–2005 and further decreases to ˜5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica's potential partial collapse.
NASA Astrophysics Data System (ADS)
Gouriou, Thomas; Wöppelmann, Guy
2010-05-01
A systematic survey of the historical French archives was initiated in 2004 to search for ancient sea level observations. Long term sea-level records are invaluable to study trends in sea level components in the context of climate change due to global warming. A large amount of records have been discovered, notably on the Charente-Maritime French Atlantic coast: fort Enet (1859-1873) and fort Boyard (1873-1909), a few kilometres apart. These two historical data sets include meteorological observations in addition to the sea-level heights: sea-level pressure, air temperature, wind direction and speed, and sometimes daily indications on the local climatic conditions. Sea-level heights were measured with a "Chazallon" type of float tide gauge and whereas the sea-level pressures were measured with a "Fortin" mercury barometer. The historical data sets are now in computer-accessible form. They were manually checked for consistency, and compared to nearby data sets (e.g. Brest, Hadley centre Sea Level Pressure data set HadSLP2). We will present the data sets, the composite time series that were built for the period 1859-1909, and the joint sea level and meteorological data analysis which proved worthwhile. The pressure data were indeed of particular interest (7 observations per day, from 6.00am to 9.00pm between 1859 and 1909). First, examining the inverse barometer (IB) effect was demonstrated to be a good means to check the sea-level data sets (Woodworth 2006). If the data sets were of poor quality, then the sea-level height and air pressure monthly mean time series would show low or no correlation. Conversely, if both data sets were of good quality, there would be a high negative correlation between the local sea-level heights and sea-level pressure changes. Second, a linear regression between the two parameters (sea level and atmospheric pressure) would be giving a regression coefficient of approximately -1 cm/mbar under static assumption. Any departure from this relationship is indicative of wind-driven dynamical processes. As will be shown, the Charente-Maritime French Atlantic coast is a particular environment subject to westward winds with a complex coastline and bathymetry (islands, shallow waters). Last but not least, our data archeology exercise will provide additional evidence to the intriguing relation that was first noted by Miller and Douglas (2007) between sea level on the eastern boundary of the North Atlantic and the strength of the gyre-scale circulation, as represented by air pressure in the centre of the gyre, on multi-decadal and century-timescales.
Allowances for evolving coastal flood risk under uncertain local sea-level rise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchanan, Maya K.; Kopp, Robert E.; Oppenheimer, Michael
Estimates of future flood hazards made under the assumption of stationary mean sea level are biased low due to sea-level rise (SLR). However, adjustments to flood return levels made assuming fixed increases of sea level are also inadequate when applied to sea level that is rising over time at an uncertain rate. SLR allowances—the height adjustment from historic flood levels that maintain under uncertainty the annual expected probability of flooding—are typically estimated independently of individual decision-makers’ preferences, such as time horizon, risk tolerance, and confidence in SLR projections.We provide a framework of SLR allowances that employs complete probability distributions ofmore » local SLR and a range of user-defined flood risk management preferences. Given non-stationary and uncertain sea-level rise, these metrics provide estimates of flood protection heights and offsets for different planning horizons in coastal areas. In conclusion, we illustrate the calculation of various allowance types for a set of long-duration tide gauges along U.S. coastlines.« less
Allowances for evolving coastal flood risk under uncertain local sea-level rise
Buchanan, Maya K.; Kopp, Robert E.; Oppenheimer, Michael; ...
2016-06-03
Estimates of future flood hazards made under the assumption of stationary mean sea level are biased low due to sea-level rise (SLR). However, adjustments to flood return levels made assuming fixed increases of sea level are also inadequate when applied to sea level that is rising over time at an uncertain rate. SLR allowances—the height adjustment from historic flood levels that maintain under uncertainty the annual expected probability of flooding—are typically estimated independently of individual decision-makers’ preferences, such as time horizon, risk tolerance, and confidence in SLR projections.We provide a framework of SLR allowances that employs complete probability distributions ofmore » local SLR and a range of user-defined flood risk management preferences. Given non-stationary and uncertain sea-level rise, these metrics provide estimates of flood protection heights and offsets for different planning horizons in coastal areas. In conclusion, we illustrate the calculation of various allowance types for a set of long-duration tide gauges along U.S. coastlines.« less
El Niño: The Weak, Getting Weaker
2005-03-14
Recent sea-level height data from NASA U.S./France Jason altimetric satellite during a 10-day cycle ending February 22, 2005, show that the central equatorial Pacific continues to exhibit an area of higher-than-normal sea surface heights.
NASA Astrophysics Data System (ADS)
Du, L.; Shi, H.; Zhang, S.
2017-12-01
Acting as the typical shelf seas in northwest Pacific Ocean, regional sea level along China coasts exhibits complicated and multiscale spatial-temporal characteristics under circumstance of global change. In this paper, sea level variability is investigated with tide gauges records, satellite altimetry data, reconstructed sea surface height, and CMIP simulation fields. Sea level exhibits the interannual variability imposing on a remarkable sea level rising in the China seas and coastal region, although its seasonal signals are significant as the results of global ocean. Sea level exhibits faster rising rate during the satellite altimetry era, nearly twice to the rate during the last sixty years. AVISO data and reconstructed sea surface heights illustrate good correlation coefficient, more than 0.8. Interannual sea level variation is mainly modulated by the low-frequency variability of wind fields over northern Pacific Ocean by local and remote processes. Meanwhile sea level varies obviously by the transport fluctuation and bimodality path of Kuroshio. Its variability possibly linked to internal variability of the ocean-atmosphere system influenced by ENSO oscillation. China Sea level have been rising during the 20th century, and are projected to continue to rise during this century. Sea level can reach the highest extreme level in latter half of 21st century. Modeled sea level including regional sea level projection combined with the IPCC climate scenarios play a significant role on coastal storm surge evolution. The vulnerable regions along the ECS coast will suffer from the increasing storm damage with sea level variations.
NASA Technical Reports Server (NTRS)
Haines, B. J.; Christensen, E. J.; Norman, R. A.; Parke, M. E.; Born, G. H.; Gill, S. K.
1996-01-01
Prior to the launch of TOPEX/ Poseidon in August 1992, NASA established its primary in situ verification site on the Harvest oil platform located in the Pacific Ocean off the coast of central California. Data from a suite of geodetic and oceanographic instruments attached to the platform have been combined to yield a precise record of absolute sea level simce the beginning of the mission. Critical to the computation of this geocentric sea level record is the precise determination of the platform geodetic height and the vertical velocity in the global terrestrial reference frame.We compare estimates of the platform height and vertical velocity from global positioning system (GPS) data alone and from a combination of GPS and satellite laser ranging (SLR) information. Current estimates suggest the platform is subsiding at a rate of about 8 mm per year. This height information is combined with in situ tide gauge measurements of sea level relative to a platform reference mark in order to produce a continuous record of the local geocentric sea height.
Sea-level rise induced amplification of coastal protection design heights.
Arns, Arne; Dangendorf, Sönke; Jensen, Jürgen; Talke, Stefan; Bender, Jens; Pattiaratchi, Charitha
2017-01-06
Coastal protection design heights typically consider the superimposed effects of tides, surges, waves, and relative sea-level rise (SLR), neglecting non-linear feedbacks between these forcing factors. Here, we use hydrodynamic modelling and multivariate statistics to show that shallow coastal areas are extremely sensitive to changing non-linear interactions between individual components caused by SLR. As sea-level increases, the depth-limitation of waves relaxes, resulting in waves with larger periods, greater amplitudes, and higher run-up; moreover, depth and frictional changes affect tide, surge, and wave characteristics, altering the relative importance of other risk factors. Consequently, sea-level driven changes in wave characteristics, and to a lesser extent, tides, amplify the resulting design heights by an average of 48-56%, relative to design changes caused by SLR alone. Since many of the world's most vulnerable coastlines are impacted by depth-limited waves, our results suggest that the overall influence of SLR may be greatly underestimated in many regions.
NASA Astrophysics Data System (ADS)
Rowley, David
2017-04-01
On a spherical Earth, the mean elevation ( -2440m) would be everywhere at a mean Earth radius from the center. This directly links an elevation at the surface to physical dimensions of the Earth, including surface area and volume that are at most very slowly evolving components of the Earth system. Earth's mean elevation thus provides a framework within which to consider changes in heights of Earth's solid surface as a function of time. In this paper the focus will be on long-term, non-glacially controlled sea level. Long-term sea level has long been argued to be largely controlled by changes in ocean basin volume related to changes in area-age distribution of oceanic lithosphere. As generally modeled by Pitman (1978) and subsequent workers, the age-depth relationship of oceanic lithosphere, including both the ridge depth and coefficients describing the age-depth relationship are assumed constant. This paper examines the consequences of adhering to these assumptions when placed within the larger framework of maintaining a constant mean radius of the Earth. Self-consistent estimates of long-term sea level height and changes in mean depth of the oceanic crust are derived from the assumption that the mean elevation and corresponding mean radius are unchanging aspects of Earth's shorter-term evolution. Within this context, changes in mean depth of the oceanic crust, corresponding with changes in mean age of the oceanic lithosphere, acting over the area of the oceanic crust represent a volume change that is required to be balanced by a compensating equal but opposite volume change under the area of the continental crust. Models of paleo-cumulative hypsometry derived from a starting glacial isostatic adjustment (GIA)-corrected ice-free hypsometry that conserve mean elevation provide a basis for understanding how these compensating changes impact global hypsometry and particularly estimates of global mean shoreline height. Paleo-shoreline height and areal extent of flooding can be defined as the height and corresponding cumulative area of the solid surface of the Earth at which the integral of area as a function of elevation, from the maximum depth upwards, equals the volume of ocean water filling it with respect to cumulative paleo-hypsometry. Present height of the paleo-shoreline is the height on the GIA-corrected cumulative hypsometry at an area equal to the areal extent of flooding. Paleogeographic estimates of global extent of ocean flooding from the Middle Jurassic to end Eocene, when combined with conservation of mean elevation and ocean water volume allow an explicit estimate of the paleo-height and present height of the paleo-shoreline. The best-fitting estimate of present height of the paleo-shoreline, equivalent to a long-term "eustatic" sea level curve, implies very modest (25±22m) changes in long-term sea level above the ice-free sea level height of +40m. These, in turn, imply quite limited changes in mean depth of the oceanic crust (15±11m), and mean age of the oceanic lithosphere ( 62.1±2.4 my) since the Middle Jurassic.
Effects of climate change on wave height at the coast
NASA Astrophysics Data System (ADS)
Wolf, J.
2003-04-01
To make progress towards the ultimate objective of predicting coastal vulnerability to climate change, we need to predict the probability of extreme values of sea level and wave height, and their likely variation with changing climate. There is evidence of changes in sea level and wave height on various time-scales. For example, the North Atlantic Oscillation appears to be responsible for increasing wave height in the North Atlantic over recent decades. The impact of changes in wave height in the North Atlantic at the coastline in the North Sea, the Hebrides/Malin Shelf and the English Channel will be quite different. Three different, and contrasting areas are examined The effect of changing sea levels, due to global warming and changes in tides and surge height and frequency, is combined with increases in offshore wave height. Coastal wave modelling, using the WAM and SWAN wave models, provides a useful tool for examining the possible impacts of climate change at the coast. This study is part of a Tyndall Centre project which is examining the vulnerability of the UK coast to changing wave climate and sea level. These changes are likely to be especially important in low-lying areas with coastal wetlands such as the north Norfolk coast, which has been selected as a detailed case study area. In this area there are offshore shallow banks and extensive inter-tidal areas. There are transitions from upper marsh to freshwater grazing marshes, sand dunes, shingle beaches, mudflats and sandflats. Many internationally important and varied habitats are threatened by rising sea levels and changes in storminess due to potential climate change effects. Likely changes in overtopping of coastal embankments, inundation of intertidal areas, sediment transport and coastal erosion are examined. Changes in low water level may be important as well as high water. The second area of study is Christchurch Bay in the English Channel. The English Channel is exposed to swell from the North Atlantic and a moderate tidal range. The coastline is quite developed with popular beaches. There are defended and undefended stretches of coastline. The waves reaching the coastline are modulated by the strong tidal streams in the Solent and shoal areas like Shingles Bank. The Sea of the Hebrides is an area important for fishing and tourism, but is the part of the UK exposed to the most severe waves, being most directly connected with the North Atlantic. The UK’s first wave power plant is in operation on Islay. Sea level changes are likely to be relatively unimportant but changes in wave climate could have a direct impact on local economic activity.
47 CFR 22.1011 - Antenna height limitations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 2 2013-10-01 2013-10-01 false Antenna height limitations. 22.1011 Section 22... MOBILE SERVICES Offshore Radiotelephone Service § 22.1011 Antenna height limitations. The antenna height of offshore stations must not exceed 61 meters (200 feet) above mean sea level. The antenna height of...
47 CFR 22.1011 - Antenna height limitations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 2 2012-10-01 2012-10-01 false Antenna height limitations. 22.1011 Section 22... MOBILE SERVICES Offshore Radiotelephone Service § 22.1011 Antenna height limitations. The antenna height of offshore stations must not exceed 61 meters (200 feet) above mean sea level. The antenna height of...
47 CFR 22.1011 - Antenna height limitations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Antenna height limitations. 22.1011 Section 22... MOBILE SERVICES Offshore Radiotelephone Service § 22.1011 Antenna height limitations. The antenna height of offshore stations must not exceed 61 meters (200 feet) above mean sea level. The antenna height of...
47 CFR 22.1011 - Antenna height limitations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Antenna height limitations. 22.1011 Section 22... MOBILE SERVICES Offshore Radiotelephone Service § 22.1011 Antenna height limitations. The antenna height of offshore stations must not exceed 61 meters (200 feet) above mean sea level. The antenna height of...
47 CFR 22.1011 - Antenna height limitations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Antenna height limitations. 22.1011 Section 22... MOBILE SERVICES Offshore Radiotelephone Service § 22.1011 Antenna height limitations. The antenna height of offshore stations must not exceed 61 meters (200 feet) above mean sea level. The antenna height of...
NASA Astrophysics Data System (ADS)
Kergadallan, Xavier; Bernardara, Pietro; Benoit, Michel; Andreewsky, Marc; Weiss, Jérôme
2013-04-01
Estimating the probability of occurrence of extreme sea levels is a central issue for the protection of the coast. Return periods of sea level with wave set-up contribution are estimated here in one site : Cherbourg in France in the English Channel. The methodology follows two steps : the first one is computation of joint probability of simultaneous wave height and still sea level, the second one is interpretation of that joint probabilities to assess a sea level for a given return period. Two different approaches were evaluated to compute joint probability of simultaneous wave height and still sea level : the first one is multivariate extreme values distributions of logistic type in which all components of the variables become large simultaneously, the second one is conditional approach for multivariate extreme values in which only one component of the variables have to be large. Two different methods were applied to estimate sea level with wave set-up contribution for a given return period : Monte-Carlo simulation in which estimation is more accurate but needs higher calculation time and classical ocean engineering design contours of type inverse-FORM in which the method is simpler and allows more complex estimation of wave setup part (wave propagation to the coast for example). We compare results from the two different approaches with the two different methods. To be able to use both Monte-Carlo simulation and design contours methods, wave setup is estimated with an simple empirical formula. We show advantages of the conditional approach compared to the multivariate extreme values approach when extreme sea-level occurs when either surge or wave height is large. We discuss the validity of the ocean engineering design contours method which is an alternative when computation of sea levels is too complex to use Monte-Carlo simulation method.
2003-11-18
Some climate forecast models indicate there is an above average chance that there could be a weak to borderline El Niño by the end of November 2003. However, the trade winds, blowing from east to west across the equatorial Pacific Ocean, remain strong. Thus, there remains some uncertainty among climate scientists as to whether the warm temperature anomaly will form again this year. The latest remote sensing data from NASA's Jason satellite show near normal conditions across the equatorial Pacific. There are currently no visible signs in sea surface height of an impending El Niño. This equatorial quiet contrasts with the Bering Sea, Gulf of Alaska and U.S. West Coast where lower-than-normal sea surface levels and cool ocean temperatures continue (indicated by blue and purple areas). The image above is a global map of sea surface height, accurate to within 30 millimeters. The image represents data collected and composited over a 10-day period, ending on Nov. 3, 2003. The height of the water relates to the temperature of the water. As the ocean warms, its level rises; and as it cools, its level falls. Yellow and red areas indicate where the waters are relatively warmer and have expanded above sea level, green indicates near normal sea level, and blue and purple areas show where the waters are relatively colder and the surface is lower than sea level. The blue areas are between 5 and 13 centimeters (2 and 5 inches) below normal, whereas the purple areas range from 14 to 18 centimeters (6 to 7 inches) below normal. http://photojournal.jpl.nasa.gov/catalog/PIA04878
Pacific Dictates Droughts and Drenchings
2004-01-30
The latest remote sensing data from NASA's Jason satellite show that the equatorial Pacific sea surface levels are higher, indicating warmer sea surface temperatures in the central and west Pacific Ocean. This pattern has the appearance of La Niña rather than El Niño. This contrasts with the Bering Sea, Gulf of Alaska and U.S. West Coast where lower-than-normal sea surface levels and cool ocean temperatures continue (indicated by blue and purple areas). The image above is a global map of sea surface height, accurate to within 30 millimeters. The image represents data collected and composited over a 10-day period, ending on Jan 23, 2004. The height of the water relates to the temperature of the water. As the ocean warms, its level rises; and as it cools, its level falls. Yellow and red areas indicate where the waters are relatively warmer and have expanded above sea level, green indicates near normal sea level, and blue and purple areas show where the waters are relatively colder and the surface is lower than sea level. The blue areas are between 5 and 13 centimeters (2 and 5 inches) below normal, whereas the purple areas range from 14 to 18 centimeters (6 to 7 inches) below normal. http://photojournal.jpl.nasa.gov/catalog/PIA05071
Plant, Nathaniel G.
2016-01-01
Predictions of coastal evolution driven by episodic and persistent processes associated with storms and relative sea-level rise (SLR) are required to test our understanding, evaluate our predictive capability, and to provide guidance for coastal management decisions. Previous work demonstrated that the spatial variability of long-term shoreline change can be predicted using observed SLR rates, tide range, wave height, coastal slope, and a characterization of the geomorphic setting. The shoreline is not suf- ficient to indicate which processes are important in causing shoreline change, such as overwash that depends on coastal dune elevations. Predicting dune height is intrinsically important to assess future storm vulnerability. Here, we enhance shoreline-change predictions by including dune height as a vari- able in a statistical modeling approach. Dune height can also be used as an input variable, but it does not improve the shoreline-change prediction skill. Dune-height input does help to reduce prediction uncer- tainty. That is, by including dune height, the prediction is more precise but not more accurate. Comparing hindcast evaluations, better predictive skill was found when predicting dune height (0.8) compared with shoreline change (0.6). The skill depends on the level of detail of the model and we identify an optimized model that has high skill and minimal overfitting. The predictive model can be implemented with a range of forecast scenarios, and we illustrate the impacts of a higher future sea-level. This scenario shows that the shoreline change becomes increasingly erosional and more uncertain. Predicted dune heights are lower and the dune height uncertainty decreases.
NASA Technical Reports Server (NTRS)
Hayne, G. S.; Hancock, D. W., III
1990-01-01
Range estimates from a radar altimeter have biases which are a function of the significant wave height (SWH) and the satellite attitude angle (AA). Based on results of prelaunch Geosat modeling and simulation, a correction for SWH and AA was already applied to the sea-surface height estimates from Geosat's production data processing. By fitting a detailed model radar return waveform to Geosat waveform sampler data, it is possible to provide independent estimates of the height bias, the SWH, and the AA. The waveform fitting has been carried out for 10-sec averages of Geosat waveform sampler data over a wide range of SWH and AA values. The results confirm that Geosat sea-surface-height correction is good to well within the original dm-level specification, but that an additional height correction can be made at the level of several cm.
Seasonal Ice Zone Reconnaissance Surveys Coordination and Ocean Profiles
2015-09-30
Morison), UpTempO buoy measurements of sea surface temperature (SST), sea level atmospheric pressure ( SLP ), and velocity (Steele), and dropsonde...dropsondes, micro-aircraft), cloud top/base heights UpTempO buoys for understanding and prediction…. Steele UpTempO buoy drops for SLP , SST, SSS...Air Expendable Current Profiler, SLP = Sea Level atmospheric Pressure, SST= Seas Surface Temperature, A/C= aircraft, SIC=Sea Ice Concentration We
Harris, Daniel L; Rovere, Alessio; Casella, Elisa; Power, Hannah; Canavesio, Remy; Collin, Antoine; Pomeroy, Andrew; Webster, Jody M; Parravicini, Valeriano
2018-02-01
Coral reefs are diverse ecosystems that support millions of people worldwide by providing coastal protection from waves. Climate change and human impacts are leading to degraded coral reefs and to rising sea levels, posing concerns for the protection of tropical coastal regions in the near future. We use a wave dissipation model calibrated with empirical wave data to calculate the future increase of back-reef wave height. We show that, in the near future, the structural complexity of coral reefs is more important than sea-level rise in determining the coastal protection provided by coral reefs from average waves. We also show that a significant increase in average wave heights could occur at present sea level if there is sustained degradation of benthic structural complexity. Our results highlight that maintaining the structural complexity of coral reefs is key to ensure coastal protection on tropical coastlines in the future.
Harris, Daniel L.; Rovere, Alessio; Casella, Elisa; Power, Hannah; Canavesio, Remy; Collin, Antoine; Pomeroy, Andrew; Webster, Jody M.; Parravicini, Valeriano
2018-01-01
Coral reefs are diverse ecosystems that support millions of people worldwide by providing coastal protection from waves. Climate change and human impacts are leading to degraded coral reefs and to rising sea levels, posing concerns for the protection of tropical coastal regions in the near future. We use a wave dissipation model calibrated with empirical wave data to calculate the future increase of back-reef wave height. We show that, in the near future, the structural complexity of coral reefs is more important than sea-level rise in determining the coastal protection provided by coral reefs from average waves. We also show that a significant increase in average wave heights could occur at present sea level if there is sustained degradation of benthic structural complexity. Our results highlight that maintaining the structural complexity of coral reefs is key to ensure coastal protection on tropical coastlines in the future. PMID:29503866
Use of coastal altimeter and tide gauge data for a seamless land-sea vertical datum in Taiwan
NASA Astrophysics Data System (ADS)
Yen-Ti, C.; Hwang, C.
2017-12-01
Conventional topographic and hydrographic mappings use two separate reference surfaces, called orthometric datum (TWVD2001 in Taiwan) and chart datum. In Taiwan, land elevations are heights tied to a leveling control network with its zero height at the mean sea surface of Keelung Harbor (realized by the height of Benchmark K999). Ocean depths are counted from the lowest tidal surface defined by tidal measurements near the sites of depth measurements. This paper usesa new method to construct a unified vertical datum for land elevations and ocean depths around Taiwan. First, we determine an optimal mean sea surface model (MSSHM) using refined offshore altimeter data. Then, the ellipsoidal heights of the mean sea levels at 36 tide gauges around Taiwan are determined using GPS measurements at their nearby benchmarks, and are then combined with the altimeter-derived MSSHM to generate a final MSSHM that has a smooth transition from land to sea. We also construct an improved ocean tide model to obtain various tidal surfaces. Using the latest land, shipborne, airborne and altimeter-derived gravity data, we construct a hybrid geoid model to define a vertical datum on land. The final MSSHM is the zero surface that defines ocean tidal heights and lowest tidal values in a ellipsoidal system that is fully consistent with the geodetic system of GNSS. The use of the MSSHM and the hybrid geoid model enables a seamless connection to combine or compare coastal land and sea elevations from a wide range of sources.
Oddo, Perry C.; Keller, Klaus
2017-01-01
Rising sea levels increase the probability of future coastal flooding. Many decision-makers use risk analyses to inform the design of sea-level rise (SLR) adaptation strategies. These analyses are often silent on potentially relevant uncertainties. For example, some previous risk analyses use the expected, best, or large quantile (i.e., 90%) estimate of future SLR. Here, we use a case study to quantify and illustrate how neglecting SLR uncertainties can bias risk projections. Specifically, we focus on the future 100-yr (1% annual exceedance probability) coastal flood height (storm surge including SLR) in the year 2100 in the San Francisco Bay area. We find that accounting for uncertainty in future SLR increases the return level (the height associated with a probability of occurrence) by half a meter from roughly 2.2 to 2.7 m, compared to using the mean sea-level projection. Accounting for this uncertainty also changes the shape of the relationship between the return period (the inverse probability that an event of interest will occur) and the return level. For instance, incorporating uncertainties shortens the return period associated with the 2.2 m return level from a 100-yr to roughly a 7-yr return period (∼15% probability). Additionally, accounting for this uncertainty doubles the area at risk of flooding (the area to be flooded under a certain height; e.g., the 100-yr flood height) in San Francisco. These results indicate that the method of accounting for future SLR can have considerable impacts on the design of flood risk management strategies. PMID:28350884
Ruckert, Kelsey L; Oddo, Perry C; Keller, Klaus
2017-01-01
Rising sea levels increase the probability of future coastal flooding. Many decision-makers use risk analyses to inform the design of sea-level rise (SLR) adaptation strategies. These analyses are often silent on potentially relevant uncertainties. For example, some previous risk analyses use the expected, best, or large quantile (i.e., 90%) estimate of future SLR. Here, we use a case study to quantify and illustrate how neglecting SLR uncertainties can bias risk projections. Specifically, we focus on the future 100-yr (1% annual exceedance probability) coastal flood height (storm surge including SLR) in the year 2100 in the San Francisco Bay area. We find that accounting for uncertainty in future SLR increases the return level (the height associated with a probability of occurrence) by half a meter from roughly 2.2 to 2.7 m, compared to using the mean sea-level projection. Accounting for this uncertainty also changes the shape of the relationship between the return period (the inverse probability that an event of interest will occur) and the return level. For instance, incorporating uncertainties shortens the return period associated with the 2.2 m return level from a 100-yr to roughly a 7-yr return period (∼15% probability). Additionally, accounting for this uncertainty doubles the area at risk of flooding (the area to be flooded under a certain height; e.g., the 100-yr flood height) in San Francisco. These results indicate that the method of accounting for future SLR can have considerable impacts on the design of flood risk management strategies.
NASA Astrophysics Data System (ADS)
Garner, A. J.; Mann, M. E.; Emanuel, K.; Kopp, R. E.; Lin, N.; Alley, R. B.; Horton, B.; Deconto, R. M.; Donnelly, J. P.; Pollard, D.
2017-12-01
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the pre-industrial through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP 8.5 runs of three CMIP5 models. The sea-level rise projections include the collapse of the Antarctic ice sheet to assess future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared to pre-industrial or modern flood heights. We find that the 1-in-500-year flood event increases from 3.4 m above mean tidal level during 1970-2005 to 3.9 - 4.8 m above mean tidal level by 2080-2100, and ranges from 2.8 - 13.0 m above mean tidal level by 2280-2300. Further, we find that the return period of a 2.25 m flood has decreased from 500 years prior to 1800 to 25 years during 1970-2005, and further decreases to 5 years by 2030 - 2045 in 95% of our simulations.
Observations and estimates of wave-driven water level extremes at the Marshall Islands
NASA Astrophysics Data System (ADS)
Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.
2014-10-01
Wave-driven extreme water levels are examined for coastlines protected by fringing reefs using field observations obtained in the Republic of the Marshall Islands. The 2% exceedence water level near the shoreline due to waves is estimated empirically for the study sites from breaking wave height at the outer reef and by combining separate contributions from setup, sea and swell, and infragravity waves, which are estimated based on breaking wave height and water level over the reef flat. Although each component exhibits a tidal dependence, they sum to yield a 2% exceedence level that does not. A hindcast based on the breaking wave height parameterization is used to assess factors leading to flooding at Roi-Namur caused by an energetic swell event during December 2008. Extreme water levels similar to December 2008 are projected to increase significantly with rising sea level as more wave and tide events combine to exceed inundation threshold levels.
NASA Astrophysics Data System (ADS)
Palmer, M. D.; Cannaby, H.; Howard, T.; Bricheno, L.
2016-02-01
Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea-level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time mean sea level were evaluated using the process-based climate model data and methods presented in the IPCC AR5. Regional surge and wave solutions extending from 1980 to 2100 were generated using 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled ( 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980-2010, enabling a quantitative assessment of model skill. Simulated historical sea surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m(0.74 m) under the RCP 4.5(8.5) scenarios respectively. Trends in surge and significant wave height 2-year return levels were found to be statistically insignificant and/or physically very small under the more severe RCP8.5 scenario. We conclude that changes to long-term mean sea level constitute the dominant signal of change to the projected inundation risk for Singapore during the 21st century. We note that the largest recorded surge residual in the Singapore Strait of 84 cm lies between the central and upper estimates of sea level rise by 2100, highlighting the vulnerability of the region.
NASA Astrophysics Data System (ADS)
Cannaby, H.; Palmer, M. D.; Howard, T.; Bricheno, L.; Calvert, D.; Krijnen, J.; Wood, R.; Tinker, J.; Bunney, C.; Harle, J.; Saulter, A.; O'Neill, C.; Bellingham, C.; Lowe, J.
2015-12-01
Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea-level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time mean sea level were evaluated using the process-based climate model data and methods presented in the IPCC AR5. Regional surge and wave solutions extending from 1980 to 2100 were generated using ~ 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled (~ 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980-2010, enabling a quantitative assessment of model skill. Simulated historical sea surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m (0.74 m) under the RCP 4.5 (8.5) scenarios respectively. Trends in surge and significant wave height 2 year return levels were found to be statistically insignificant and/or physically very small under the more severe RCP8.5 scenario. We conclude that changes to long-term mean sea level constitute the dominant signal of change to the projected inundation risk for Singapore during the 21st century. We note that the largest recorded surge residual in the Singapore Strait of ~ 84 cm lies between the central and upper estimates of sea level rise by 2100, highlighting the vulnerability of the region.
Paleo-environment Simulation using GIS based on Shell Mounds
NASA Astrophysics Data System (ADS)
Uchiyama, T.; Asanuma, I.; Harada, E.
2016-02-01
Paleo-coastlines are simulated using the geographic information system (GIS) based on the shell mounds as the paleo-environment in the Tsubaki-no-umi, Ocean of Camellia in Japanese, the paleo-ocean, in Japan. The shell mounds, which are introduced in the paleo-study in the class history in junior and senior high, are used to estimate the paleo-coastlines. The paleo-coastlines are simulated as the function of sea levels relative to the current sea level for 6000 to 3000 BP on the digital elevation map of the GIS. The polygon of the simulated sea level height of 10 m extracted the shell mounds during 6000 to 5500 BP as the result of the spatial operation, and exhibited the consistency with the previous studies. The simulated sea level height of 5.5 m showed the paleo-coastline during 3600 to 3220 BP, while the Tsubaki-no-Umiturned into the brackish water lake, partly isolated from the ocean. The simulation of sea levels with GIS could be implemented to the class in the junior and senior high school with minimum efforts of teachers with the available computer and software environments.
Seasonal Ice Zone Reconnaissance Surveys Coordination
2016-03-30
sea surface temperature (SST), sea level atmospheric pressure ( SLP ), and velocity (Steele), and dropsonde measurements of atmospheric properties...aircraft), cloud top/base heights UpTempO buoys for understanding and prediction…. Steele UpTempO buoy drops for SLP , SST, SSS, & surface velocity...reflectance, skin temperature, visible imagery AXCTD= Air Expendable CTD, AXCP= Air Expendable Current Profiler, SLP = Sea Level atmospheric
Correlated environmental corrections in TOPEX/POSEIDON, with a note on ionospheric accuracy
NASA Technical Reports Server (NTRS)
Zlotnicki, V.
1994-01-01
Estimates of the effectiveness of an altimetric correction, and interpretation of sea level variability as a response to atmospheric forcing, both depend upon assuming that residual errors in altimetric corrections are uncorrelated among themselves and with residual sea level, or knowing the correlations. Not surprisingly, many corrections are highly correlated since they involve atmospheric properties and the ocean surface's response to them. The full corrections (including their geographically varying time mean values), show correlations between electromagnetic bias (mostly the height of wind waves) and either atmospheric pressure or water vapor of -40%, and between atmospheric pressure and water vapor of 28%. In the more commonly used collinear differences (after removal of the geographically varying time mean), atmospheric pressure and wave height show a -30% correlation, atmospheric pressure and water vapor a -10% correlation, both pressure and water vapor a 7% correlation with residual sea level, and a bit surprisingly, ionospheric electron content and wave height a 15% correlation. Only the ocean tide is totally uncorrelated with other corrections or residual sea level. The effectiveness of three ionospheric corrections (TOPEX dual-frequency, a smoothed version of the TOPEX dual-frequency, and Doppler orbitography and radiopositioning integrated by satellite (DORIS) is also evaluated in terms of their reduction in variance of residual sea level. Smooth (90-200 km along-track) versions of the dual-frequency altimeter ionosphere perform best both globally and within 20 deg in latitude from the equator. The noise variance in the 1/s TOPEX inospheric samples is approximately (11 mm) squared, about the same as noise in the DORIS-based correction; however, the latter has its error over scales of order 10(exp 3) km. Within 20 deg of the equator, the DORIS-based correction adds (14 mm) squared to the residual sea level variance.
The sea state bias in altimeter estimates of sea level from collinear analysis of TOPEX data
NASA Technical Reports Server (NTRS)
Chelton, Dudley B.
1994-01-01
The wind speed and significant wave height (H(sub 1/3)) dependencies of the sea state bias in altimeter estimates of sea level, expressed in the form (Delta)h(sub SSB) = bH(sub 1/3), are examined from least squares analysis of 21 cycles of collinear TOPEX data. The bias coefficient b is found to increase in magnitude with increasing wind speed up to about 12 m/s and decrease monotonically in magnitude with increasing H(sub 1/3). A parameterization of b as a quadratic function of wind speed only, as in the formation used to produce the TOPEX geophysical data records (GDRs), is significantly better than a parameterization purely in terms of H(sub 1/3). However, a four-parameter combined wind speed and wave height formulation for b (quadratic in wind speed plus linear in H(sub 1/3)) significantly improves the accuracy of the sea state bias correction. The GDR formulation in terms of wind speed only should therefore be expanded to account for a wave height dependence of b. An attempt to quantify the accuracy of the sea state bias correction (Delta)h(sub SSB) concludes that the uncertainty is a disconcertingly large 1% of H(sub 1/3).
NASA Astrophysics Data System (ADS)
Leijala, U.; Bjorkqvist, J. V.; Pellikka, H.; Johansson, M. M.; Kahma, K. K.
2017-12-01
Predicting the behaviour of the joint effect of sea level and wind waves is of great significance due to the major impact of flooding events in densely populated coastal regions. As mean sea level rises, the effect of sea level variations accompanied by the waves will be even more harmful in the future. The main challenge when evaluating the effect of waves and sea level variations is that long time series of both variables rarely exist. Wave statistics are also highly location-dependent, thus requiring wave buoy measurements and/or high-resolution wave modelling. As an initial approximation of the joint effect, the variables may be treated as independent random variables, to achieve the probability distribution of their sum. We present results of a case study based on three probability distributions: 1) wave run-up constructed from individual wave buoy measurements, 2) short-term sea level variability based on tide gauge data, and 3) mean sea level projections based on up-to-date regional scenarios. The wave measurements were conducted during 2012-2014 on the coast of city of Helsinki located in the Gulf of Finland in the Baltic Sea. The short-term sea level distribution contains the last 30 years (1986-2015) of hourly data from Helsinki tide gauge, and the mean sea level projections are scenarios adjusted for the Gulf of Finland. Additionally, we present a sensitivity test based on six different theoretical wave height distributions representing different wave behaviour in relation to sea level variations. As these wave distributions are merged with one common sea level distribution, we can study how the different shapes of the wave height distribution affect the distribution of the sum, and which one of the components is dominating under different wave conditions. As an outcome of the method, we obtain a probability distribution of the maximum elevation of the continuous water mass, which enables a flexible tool for evaluating different risk levels in the current and future climate.
NASA Astrophysics Data System (ADS)
Cannaby, Heather; Palmer, Matthew D.; Howard, Tom; Bricheno, Lucy; Calvert, Daley; Krijnen, Justin; Wood, Richard; Tinker, Jonathan; Bunney, Chris; Harle, James; Saulter, Andrew; O'Neill, Clare; Bellingham, Clare; Lowe, Jason
2016-05-01
Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time-mean sea level were evaluated using the process-based climate model data and methods presented in the United Nations Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). Regional surge and wave solutions extending from 1980 to 2100 were generated using ˜ 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled ( ˜ 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980 to 2010, enabling a quantitative assessment of model skill. Simulated historical sea-surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data, respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m (0.74 m) under the Representative Concentration Pathway (RCP)4.5 (8.5) scenarios. Trends in surge and significant wave height 2-year return levels were found to be statistically insignificant and/or physically very small under the more severe RCP8.5 scenario. We conclude that changes to long-term mean sea level constitute the dominant signal of change to the projected inundation risk for Singapore during the 21st century. We note that the largest recorded surge residual in the Singapore Strait of ˜ 84 cm lies between the central and upper estimates of sea level rise by 2100, highlighting the vulnerability of the region.
Upwelling Dynamic Based on Satellite and INDESO Data in the Flores Sea
NASA Astrophysics Data System (ADS)
Kurniawan, Reski; Suriamihardja, D. A.; Hamzah Assegaf, Alimuddin
2018-03-01
Upwelling phenomenon is crucial to be forecasted, mainly concerning the information of potential fishery areas. Utilization of calibrated model for recorded upwelling such as INDESO gives benefit for historical result up to the present time. The aim of this study is to estimate areas and seasons of upwelling occurrences in the Flores Sea using data assimilation of satellite and modeling result. This study uses sea surface temperature, chlorophyll-a data from level 3 of MODIS image and sea surface height from satellite Jason-2 monthly for three years (2014-2016) and INDESO model data for sea surface temperature, sea surface height, and chlorophyll-a daily for three years (2014-2016). The upwelling is indicated by declining of sea surface temperature, sea surface height and increasing of chlorophyll-a. Verification is conducted by comparing the model result with recorded MODIS satellite image. The result shows that the area of southern Makassar Strait having occurrences of upwelling phenomenon every year starting in June, extended to July and August. The strongest upwelling occurred in 2015 covering more or less the area of 23,000 km2. The relation of monthly data of satellite has significantly correlated with daily data of INDESO model
Unification of height systems in the frame of GGOS
NASA Astrophysics Data System (ADS)
Sánchez, Laura
2015-04-01
Most of the existing vertical reference systems do not fulfil the accuracy requirements of modern Geodesy. They refer to local sea surface levels, are stationary (do not consider variations in time), realize different physical height types (orthometric, normal, normal-orthometric, etc.), and their combination in a global frame presents uncertainties at the metre level. To provide a precise geodetic infrastructure for monitoring the Earth system, the Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG), promotes the standardization of the height systems worldwide. The main purpose is to establish a global gravity field-related vertical reference system that (1) supports a highly-precise (at cm-level) combination of physical and geometric heights worldwide, (2) allows the unification of all existing local height datums, and (3) guarantees vertical coordinates with global consistency (the same accuracy everywhere) and long-term stability (the same order of accuracy at any time). Under this umbrella, the present contribution concentrates on the definition and realization of a conventional global vertical reference system; the standardization of the geodetic data referring to the existing height systems; and the formulation of appropriate strategies for the precise transformation of the local height datums into the global vertical reference system. The proposed vertical reference system is based on two components: a geometric component consisting of ellipsoidal heights as coordinates and a level ellipsoid as the reference surface, and a physical component comprising geopotential numbers as coordinates and an equipotential surface defined by a conventional W0 value as the reference surface. The definition of the physical component is based on potential parameters in order to provide reference to any type of physical heights (normal, orthometric, etc.). The conversion of geopotential numbers into metric heights and the modelling of the reference surface (geoid or quasigeoid determination) are considered as steps of the realization. The vertical datum unification strategy is based on (1) the physical connection of height datums to determine their discrepancies, (2) joint analysis of satellite altimetry and tide gauge records to determine time variations of sea level at reference tide gauges, (3) combination of geometrical and physical heights in a well-distributed and high-precise reference frame to estimate the relationship between the individual vertical levels and the global one, and (4) analysis of GNSS time series at reference tide gauges to separate crustal movements from sea level changes. The final vertical transformation parameters are provided by the common adjustment of the observation equations derived from these methods.
Sea-Level Allowances along the World Coastlines
NASA Astrophysics Data System (ADS)
Vandewal, R.; Tsitsikas, C.; Reerink, T.; Slangen, A.; de Winter, R.; Muis, S.; Hunter, J. R.
2017-12-01
Sea level changes as a result of climate change. For projections we take ocean mass changes and volume changes into account. Including gravitational and rotational fingerprints this provide regional sea level changes. Hence we can calculate sea-level rise patterns based on CMIP5 projections. In order to take the variability around the mean state, which follows from the climate models, into account we use the concept of allowances. The allowance indicates the height a coastal structure needs to be increased to maintain the likelihood of sea-level extremes. Here we use a global reanalysis of storm surges and extreme sea levels based on a global hydrodynamic model in order to calculate allowances. It is shown that the model compares in most regions favourably with tide gauge records from the GESLA data set. Combining the CMIP5 projections and the global hydrodynamical model we calculate sea-level allowances along the global coastlines and expand the number of points with a factor 50 relative to tide gauge based results. Results show that allowances increase gradually along continental margins with largest values near the equator. In general values are lower at midlatitudes both in Northern and Southern Hemisphere. Increased risk for extremes are typically 103-104 for the majority of the coastline under the RCP8.5 scenario at the end of the century. Finally we will show preliminary results of the effect of changing wave heights based on the coordinated ocean wave project.
Three modes of interdecadal trends in sea surface temperature and sea surface height
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Pradal, M.
2013-12-01
It might be thought that sea surface height and sea surface temperature would be tightly related. We show that this is not necessarily the case on a global scale. We analysed this relationship in a suite of coupled climate models run under 1860 forcing conditions. The models are low-resolution variants of the GFDL Earth System Model, reported in Galbraith et al. (J. Clim. 2011). 1. Correlated changes in global sea surface height and global sea surface temperature. This mode corresponds to opening and closing of convective chimneys in the Southern Ocean. As the Southern Ocean destratifies, sea ice formation is suppressed during the winter and more heat is taken up during the summer. This mode of variability is highly correlated with changes in the top of the atmosphere radiative budget and weakly correlated with changes in the deep ocean circulation. 2. Uncorrelated changes in global sea surface height and global sea surface temperature. This mode of variability is associated with interdecadal variabliity in tropical winds. Changes in the advective flux of heat to the surface ocean play a critical role in driving these changes, which also result in significant local changes in sea level. Changes sea ice over the Southern Ocean still result in changes in solar absorption, but these are now largely cancelled by changes in outgoing longwave radiation. 3. Anticorrelated changes in global sea surface height and global sea surface temperatures. By varying the lateral diffusion coefficient in the ocean model, we are able to enhance and suppress convection in the Southern and Northern Pacific Oceans. Increasing the lateral diffusion coefficients shifts the balance sources of deep water away from the warm salty deep water of the North Atlantic and towards cold fresh deep water from the other two regions. As a result, even though the planet as a whole warms, the deep ocean cools and sea level falls, with changes of order 30 cm over 500 years. The increase in solar absorption in polar regions is more than compensated by an increase in outgoing longwave radiation. Relationship between global SSH trend over a decade and (A) local SSH change over a decade (m/m). (B) Global SST change over a decade (m/K) (C) Portion of decadal SST change correlated with net radiation at the top of the atmosphere (m/K) (D) Portion of decadal SST change not correlated with net radiation at the top of the atmosphere.
TOPEX/El Nino Watch - Satellite shows El Nino-related Sea Surface Height, Mar, 14, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Mar. 14, 1998 and sea surface height is an indicator of the heat content of the ocean. The image shows that the sea surface height along the central equatorial Pacific has returned to a near normal state. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition. Remnants of the El Nino warm water pool, shown in red and white, are situated to the north and south of the equator. These sea surface height measurements have provided scientists with a detailed view of how the 1997-98 El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through the spring.
47 CFR 24.53 - Calculation of height above average terrain (HAAT).
Code of Federal Regulations, 2012 CFR
2012-10-01
... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...
47 CFR 24.53 - Calculation of height above average terrain (HAAT).
Code of Federal Regulations, 2011 CFR
2011-10-01
... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...
47 CFR 24.53 - Calculation of height above average terrain (HAAT).
Code of Federal Regulations, 2010 CFR
2010-10-01
... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...
47 CFR 24.53 - Calculation of height above average terrain (HAAT).
Code of Federal Regulations, 2014 CFR
2014-10-01
... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...
47 CFR 24.53 - Calculation of height above average terrain (HAAT).
Code of Federal Regulations, 2013 CFR
2013-10-01
... height above mean sea level. (b) Average terrain elevation shall be calculated using elevation data from... Digital Chart of the World (DCW) may be used. (c) Radial average terrain elevation is calculated as the...
XXI century projections of wind-wave conditions and sea-level rise in the Black sea
NASA Astrophysics Data System (ADS)
Polonsky, A.; Garmashov, A.; Fomin, V.; Valchev, N.; Trifonova, E.
2012-04-01
Projection of regional climate changes for XXI century is one of the priorities of EC environmental programme. Potential worsening of the waves' statistics, sea level rise and extreme surges are the principal negative consequences of the climate change for marine environment. That is why the main purpose of this presentation is to discuss the above issue for the Black sea region (with a strong focus to the south-west subregion because the maximum heights of waves exceeding 10 m occur just here) using output of several global coupled models (GCM) for XXI century, wave simulation, long-term observations of sea level and statistical techniques. First of all we tried to choose the best coupled model (s) simulated the Black sea climate change and variability using the control experiments for 20 century (203). The principal result is as follows. There is not one model which is simulating adequately even one atmospheric parameter for all seasons. Therefore we considered (for the climate projection) different outputs form various models. When it was possible we calculated also the ensemble mean projection for the selected model (s) and emission scenarios. To calculate the wave projection we used the output of SWAN model forced by the GCM wind projection for 2010 to 2100. To estimate the sea level rise in XXI century and future surges statistics we extrapolate the observed sea level rise tendencies, statistical relation between wave heights and sea level and wave scenarios. Results show that in general, the climate change in XXI century doesn't lead to the catastrophic change of the Black sea wind-wave statistics including the extreme waves in the S-W Black sea. The typical atmospheric pattern leading to the intense storm in the S-W Black sea is characterized by the persistent anticyclonic area to the North of the Black sea and cyclonic conditions in the Southern Black sea region. Such pressure pattern causes persistent and strong eastern or north-eastern wind which generates the high waves in the S-E Black sea. The climate projections show that the frequency of such atmospheric pattern will not principally increase. The recent probability of the extreme wave height (exceeding 8 to10 m) in the S-W Black sea (~1 occurrence per 10 years) will not be much worse in XXI century. Similar conclusion is true for the storm surges along the Bulgarian coastline. Expected sea level rise in the Black sea basin for XXI century due to regional climate changes is about 2 mm per year (±50%). However, some Black sea subregions (such as Odessa and Varna bay) are characterized by fivefold sea level rise because of the local land subsidence. So, this geomorphologic effect is the most dangerous local consequence for the sustainable development and management of the coastal zone in such subregions. This study was supported by EC project "THESEUS".
A Powerful Method of Measuring Sea Wave Spectra and their Direction
NASA Astrophysics Data System (ADS)
Blasi, Christoph; Mai, Stephan; Wilhelmi, Jens; Zenz, Theodor; Barjenbruch, Ulrich
2014-05-01
Besides the need of precise measurements of water levels of the sea, there is an increasing demand for assessing waves in height and direction for different purposes like sea-wave modelling and coastal engineering. The design of coastal structures such as piles, breakwaters, and offshore structures like wind farms must take account of the direction of the impacting waves. To date, records of wave directions are scarce. The reason for this might be the high costs of purchasing and operating such measuring devices. These are usually buoys, which require regular maintenance. Against this background, the German Federal Institute of Hydrology (BfG) developed a low-cost directional sea-wave monitoring system that is based on commercially available liquid-level radar sensors. These sensors have the advantage that they have no contact to the fluid, i.e. the corrosive sea water. The newly developed device was tested on two sites. One is the tide gauge 'Borkum Südstrand' that is located in the southern North Sea off the island of Borkum. The other one is the 'Research Platform FINO1' approximately 45 km north of the island of Borkum. The main focus of these tests is the comparison of the data measured by the radar-based system with those of a conventional Directional Wave Rider Buoy. The general conditions at the testing sites are good for the tests. At the tide gauge 'Borkum Südstrand' waves propagate in different directions, strongly influenced by the morphological conditions like shallow waters of the Wadden Seas and the coast of the island of Borkum. Whereas on the open sea, at the site FINO1, the full physical conditions of the sea state, like heavy storms etc. play an important role. To determine and measure the direction of waves, the device has to be able to assess the wave movements in two dimensions. Therefore, an array of several radar sensors is required. Radar sensors are widely used and well established in measuring water levels, e.g. in tanks and basins. They operate by emitting a chain of electromagnetic pulses at a frequency of 26 GHz twice per second and, in turn, detect the backscatter information from the water surface. As the travelling time of each pulse is proportional to the distance between water surface and sensor, the height of the water surface can be easily calculated. To obtain the directional information of the sea state, all four radar sensors in the array have to collect simultaneously the wave profiles at fixed points. The Wave Rider Buoy works in a completely different way. Here, the wave height is calculated by the double integration of the measured vertical acceleration. By correlating the three-dimensional motion data, which are gained from gravity-stabilized vertical and horizontal accelerometers, the directional wave spectrum can be derived. Data of both devices were collected and analysed. During the hurricane Xaver, extreme water levels and heavy sea hit the North Sea coast on 5 and 6 December 2013. The radar array at the testing site FINO1 measured wave heights in the order of 15.5 meters. Furthermore, it was possible to detect significant wave heights, the mean wave direction, and the spread of the sea state. For the first time the accuracy of the wave height distribution could be determined as well.
NASA Astrophysics Data System (ADS)
Goncalves Neto, A.; Johnson, R. J.; Bates, N. R.
2016-02-01
Rising sea level is one of the main concerns for human life in a scenario with global atmosphere and ocean warming, which is of particular concern for oceanic islands. Bermuda, located in the center of the Sargasso Sea, provides an ideal location to investigate sea level rise since it has a long term tide gauge (1933-present) and is in close proximity to deep ocean time-series sites, namely, Hydrostation `S' (1954-present) and the Bermuda Atlantic Time-Series Study site (1988-present). In this study, we use the monthly CTD deep casts at BATS to compute the contribution of steric height (SH) to the local sea surface height (SSH) for the past 24 years. To determine the relative contribution from the various water masses we first define 8 layers (Surface Layer, Upper Thermocline, Subtropical Mode-Water, Lower Thermocline, Antarctic Intermediate Water, Labrador Sea Water, Iceland-Scotland Overflow Water, Denmark Strait Overflow Water) based on neutral density criteria for which SH is computed. Additionally, we calculate the thermosteric and halosteric components for each of the defined neutral density layers. Surprisingly, the results show that, despite a 3.3mm/yr sea level rise observed at the Bermuda tide gauge, the steric contribution to the SSH at BATS has decreased at a rate of -1.1mm/yr during the same period. The thermal component is found to account for the negative trend in the steric height (-4.4mm/yr), whereas the halosteric component (3.3mm/yr) partially compensates the thermal signal and can be explained by an overall cooling and freshening at the BATS site. Although the surface layer and the upper thermocline waters are warming, all the subtropical and polar water masses, which represent most of the local water column, are cooling and therefore drive the overall SH contribution to the local SSH. Hence, it suggests that the mass contribution to the local SSH plays an important role in the sea level rise, for which we investigate with GRACE data.
Portrait of a Warming Ocean and Rising Sea Levels: Trend of Sea Level Change 1993-2008
NASA Technical Reports Server (NTRS)
2008-01-01
Warming water and melting land ice have raised global mean sea level 4.5 centimeters (1.7 inches) from 1993 to 2008. But the rise is by no means uniform. This image, created with sea surface height data from the Topex/Poseidon and Jason-1 satellites, shows exactly where sea level has changed during this time and how quickly these changes have occurred. It's also a road map showing where the ocean currently stores the growing amount of heat it is absorbing from Earth's atmosphere and the heat it receives directly from the Sun. The warmer the water, the higher the sea surface rises. The location of heat in the ocean and its movement around the globe play a pivotal role in Earth's climate. Light blue indicates areas in which sea level has remained relatively constant since 1993. White, red, and yellow are regions where sea levels have risen the most rapidly up to 10 millimeters per year and which contain the most heat. Green areas have also risen, but more moderately. Purple and dark blue show where sea levels have dropped, due to cooler water. The dramatic variation in sea surface heights and heat content across the ocean are due to winds, currents and long-term changes in patterns of circulation. From 1993 to 2008, the largest area of rapidly rising sea levels and the greatest concentration of heat has been in the Pacific, which now shows the characteristics of the Pacific Decadal Oscillation (PDO), a feature that can last 10 to 20 years or even longer. In this 'cool' phase, the PDO appears as a horseshoe-shaped pattern of warm water in the Western Pacific reaching from the far north to the Southern Ocean enclosing a large wedge of cool water with low sea surface heights in the eastern Pacific. This ocean/climate phenomenon may be caused by wind-driven Rossby waves. Thousands of kilometers long, these waves move from east to west on either side of the equator changing the distribution of water mass and heat. This image of sea level trend also reveals a significant area of rising sea levels in the North Atlantic where sea levels are usually low. This large pool of rapidly rising warm water is evidence of a major change in ocean circulation. It signals a slow down in the sub-polar gyre, a counter-clockwise system of currents that loop between Ireland, Greenland and Newfoundland. Such a change could have an impact on climate since the sub-polar gyre may be connected in some way to the nearby global thermohaline circulation, commonly known as the global conveyor belt. This is the slow-moving circulation in which water sinks in the North Atlantic at different locations around the sub-polar gyre, spreads south, travels around the globe, and slowly up-wells to the surface before returning around the southern tip of Africa. Then it winds its way through the surface currents in the Atlantic and eventually comes back to the North Atlantic. It is unclear if the weakening of the North Atlantic sub-polar gyre is part of a natural cycle or related to global warming. This image was made possible by the detailed record of sea surface height measurements begun by Topex/Poseidon and continued by Jason-1. The recently launched Ocean Surface Topography Mission on the Jason-2 satellite (OSTM/Jason-2) will soon take over this responsibility from Jason-1. The older satellite will move alongside OSTM/Jason-2 and continue to measure sea surface height on an adjacent ground track for as long as it is in good health. Topex/Poseidon and Jason-1 are joint missions of NASA and the French space agency, CNES. OSTM/Jason-2 is collaboration between NASA; the National Oceanic and Atmospheric Administration; CNES; and the European Organisation for the Exploitation of Meteorological Satellites. JPL manages the U.S. portion of the missions for NASA's Science Mission Directorate, Washington, D.C.A note on sea level variability at Clipperton Island from GEOSAT and in-situ observations
NASA Astrophysics Data System (ADS)
Maul, George A.; Hansen, Donald V.; Bravo, Nicolas J.
During the 1986-1989 Exact Repeat Mission (ERM) of GEOSAT, in-situ observations of sea level at Clipperton Island (10°N/109°W) and satellite-tracked free-drifting drogued buoys in the eastern tropical Pacific Ocean are concurrently available. A map of the standard deviations of GEOSAT sea surface heights (2.9 years) shows a variance maximum along ˜12°N from Central America, past Clipperton to ˜160°W. Sea floor pressure gauge observations from a shallow (10m depth) site on Clipperton Island and an ERM crossover point in deep water nearby show a correlation of r = 0.76 with a residual of ±6.7 cm RMS. Approximately 17% of the difference (GEOSAT minus sea level) is characterized by a 4 cm amplitude 0° phase annual harmonic, which is probably caused by unaccounted-for tropospheric water vapor affecting the altimeter and/or ERM orbit error removal. Wintertime anticyclonic mesoscale eddies advecting past Clipperton Island each year have GEOSAT sea surface height and in-situ sea level signals of more than 30 cm, some of which are documented by the satellite-tracked drifters. Meridional profiles of the annual harmonic of zonal geostrophic current from GEOSAT and from the drifters both show synchronous maxima in the North Equatorial Countercurrent and the North Equatorial Current. Other Clipperton sea level maxima seen during late spring of each year may involve anticyclonic vortices formed along Central America the previous winter.
NASA Astrophysics Data System (ADS)
Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Xie, Jun; Ge, Qian
2017-02-01
Using statistically downscaled atmospheric forcing, we performed a numerical investigation to evaluate future climate's impact on storm surges along the Gulf of Mexico and U.S. east coast. The focus is on the impact of climatic changes in wind pattern and surface pressure while neglecting sea level rise and other factors. We adapted the regional ocean model system (ROMS) to the study region with a mesh grid size of 7-10 km in horizontal and 18 vertical layers. The model was validated by a hindcast of the coastal sea levels in the winter of 2008. Model's robustness was confirmed by the good agreement between model-simulated and observed sea levels at 37 tidal gages. Two 10-year forecasts, one for the IPCC Pre-Industry (PI) and the other for the A1FI scenario, were conducted. The differences in model-simulated surge heights under the two climate scenarios were analyzed. We identified three types of responses in extreme surge heights to future climate: a clear decrease in Middle Atlantic Bight, an increase in the western Gulf of Mexico, and non-significant response for the remaining area. Such spatial pattern is also consistent with previous projections of sea surface winds and ocean wave heights.
Airburst height computation method of Sea-Impact Test
NASA Astrophysics Data System (ADS)
Kim, Jinho; Kim, Hyungsup; Chae, Sungwoo; Park, Sungho
2017-05-01
This paper describes the ways how to measure the airburst height of projectiles and rockets. In general, the airburst height could be determined by using triangulation method or the images from the camera installed on the radar. There are some limitations in these previous methods when the missiles impact the sea surface. To apply triangulation method, the cameras should be installed so that the lines of sight intersect at angles from 60 to 120 degrees. There could be no effective observation towers to install the optical system. In case the range of the missile is more than 50km, the images from the camera of the radar could be useless. This paper proposes the method to measure the airburst height of sea impact projectile by using a single camera. The camera would be installed on the island near to the impact area and the distance could be computed by using the position and attitude of camera and sea level. To demonstrate the proposed method, the results from the proposed method are compared with that from the previous method.
Future Wave Height Situation estimated by the Latest Climate Scenario around Funafuti Atoll, Tuvalu
NASA Astrophysics Data System (ADS)
Sato, D.; Yokoki, H.; Kuwahara, Y.; Yamano, H.; Kayanne, H.; Okajima, H.; Kawamiya, M.
2012-12-01
Sea-level rise due to the global warming is significant phenomenon to coastal region in the world. Especially the atoll islands, which are low-lying and narrow, have high vulnerability against the sea-level rise. Recently the improved future climate projection (MIROC-ESM) was provided by JAMSTEC, which adopted the latest climate scenarios based on the RCP (Representative Concentration Pathway) of the green house gasses. Wave field simulation including the latest sea-level rise pathway by MIROC-ESM was conducted to understand the change of significant wave heights in Funafuti Atoll, Tuvalu, which was an important factor to manage the coast protection. MIROC-ESM provides monthly sea surface height in the fine gridded world (1.5 degree near the equator). Wave field simulation was conducted using the climate scenario of RCP45 in which the radioactive forcing of the end of 21st century was stabilized to 4.5 W/m2. Sea-level rise ratio of every 10 years was calculated based on the historical data set from 1850 to 2005 and the estimated data set from 2006 to 2100. In that case, the sea-level increases by 10cm after 100 years. In this study, the numerical simulation of wave field at the rate of sea-level rise was carried out using the SWAN model. The wave and wind conditions around Funafuti atoll is characterized by two seasons that are the trade (Apr. - Nov.) and non-trade (Jan. - Mar., Dec.) wind season. Then, we set up the two seasonal boundary conditions for one year's simulation, which were calculated from ECMWF reanalysis data. Simulated results of significant wave heights are analyzed by the increase rate (%) calculated from the base results (Average for 2000 - 2005) and the results of 2100. Calculated increase rate of the significant wave height for both seasons was extremely high on the reef-flat. Maximum increase rates of the trade and non-trade wind season were 1817% and 686%, respectively. The southern part of the atoll has high increasing rate through the two seasons. In the non-trade wind season, the northern tip and the southern part of the island were higher increase rate in the lagoon-side coasts, which was about 7%, and the average rate was 3.4%. On the other hand, the average rate in the trade wind season was 5.0%. Ocean side coast has high increase rate through the two seasons. Especially, the very large rate was calculated in the northern part of the Fongafale Island locally. The DEM data in the middle of Fongafale Island, which is most populated area in the island, showed that the northern oceanic coast has wide and high storm ridge and the increase rate was extremely large there. In such coasts, sea-level rise due to global warming has same effect as storm surge due to tropical cyclone in the point of increasing the sea-level, although the time scale of them is not same. Thus we can consider that the calculated area with large increase rate has already experienced the high wave due to tropical cyclone, which was enabled to construct the wide and high storm ridge. This result indicated that the effective coastal management under the sea-level rise needs to understand not only the quantitative estimation of the future situation but also the protect potential constructed by the present wave and wind condition.
A Preliminary Assessment of the S-3A SRAL Performances in SAR Mode
NASA Astrophysics Data System (ADS)
Dinardo, Salvatore; Scharroo, Remko; Bonekamp, Hans; Lucas, Bruno; Loddo, Carolina; Benveniste, Jerome
2016-08-01
The present work aims to assess and characterize the S3-A SRAL Altimeter performance in closed-loop tracking mode and in open ocean conditions. We have processed the Sentinel-3 SAR data products from L0 until L2 using an adaptation of the ESRIN GPOD CryoSat-2 Processor SARvatore.During the Delay-Doppler processing, we have chosen to activate the range zero-padding option.The L2 altimetric geophysical parameters, that are to be validated, are the sea surface height above the ellipsoid (SSH), sea level anomaly (SLA), the significant wave height (SWH) and wind speed (U10), all estimated at 20 Hz.The orbit files are the POD MOE, while the geo- corrections are extracted from the RADS database.In order to assess the accuracy of the wave&wind products, we have been using an ocean wave&wind speed model output (wind speed at 10 meter high above the sea surface) from the ECMWF.We have made a first order approximation of the sea state bias as -4.7% of the SWH.In order to assess the precision performance of SRAL SAR mode, we compute the level of instrumental noise (range, wave height and wind speed) for different conditions of sea state.
On the sea-state bias of the Geosat altimeter
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Koblinsky, Chester J.
1991-01-01
The sea-state bias in a satellite altimeter's range measurement is caused by the influence of ocean waves on the radar return pulse; it results in an estimate of sea level that is too low according to some function of the wave height. This bias is here estimated for Geosat by correlating collinear differences of altimetric sea-surface heights with collinear differences of significant wave heights (H1/3). Corrections for satellite orbit error are estimated simultaneously with the sea-state bias. Based on twenty 17-day repeat cycles of the Geosat Exact Repeat Mission, the solution for the sea-state bias is 2.6 + or - 0.2 percent of H1/3. The least-squares residuals, however, show a correlation with wind speed U, so the traditional model of the bias has been supplemented with a second term: H1/3 + alpha-2H1/3U. This second term produces a small, but statistically significant, reduction in variance of the residuals. Both systematic and random errors in H1/3 and U tend to bias the estimates of alpha-1 and alpha-2, which complicates comparisons of the results with ground-based measurements of the sea-state bias.
On the sea-state bias of the Geosat altimeter
NASA Astrophysics Data System (ADS)
Ray, Richard D.; Koblinsky, Chester J.
1991-06-01
The sea-state bias in a satellite altimeter's range measurement is caused by the influence of ocean waves on the radar return pulse; it results in an estimate of sea level that is too low according to some function of the wave height. This bias is here estimated for Geosat by correlating collinear differences of altimetric sea-surface heights with collinear differences of significant wave heights (H1/3). Corrections for satellite orbit error are estimated simultaneously with the sea-state bias. Based on twenty 17-day repeat cycles of the Geosat Exact Repeat Mission, the solution for the sea-state bias is 2.6 + or - 0.2 percent of H1/3. The least-squares residuals, however, show a correlation with wind speed U, so the traditional model of the bias has been supplemented with a second term: H1/3 + alpha-2H1/3U. This second term produces a small, but statistically significant, reduction in variance of the residuals. Both systematic and random errors in H1/3 and U tend to bias the estimates of alpha-1 and alpha-2, which complicates comparisons of the results with ground-based measurements of the sea-state bias.
Revisiting Tectonic Corrections Applied to Pleistocene Sea-Level Highstands
NASA Astrophysics Data System (ADS)
Creveling, J. R.; Mitrovica, J. X.; Hay, C.; Austermann, J.; Kopp, R. E.
2015-12-01
The robustness of stratigraphic- and geomorphic-based inferences of Quaternary peak interglacial sea levels — and equivalent minimum continental ice volumes — depends on the accuracy with which highstand markers can be corrected for vertical tectonic displacement. For sites that preserve a Marine Isotope Stage (MIS) 5e sea-level highstand marker, the customary method for estimating tectonic uplift/subsidence rate computes the difference between the local elevation of the highstand marker and a reference eustatic (i.e., global mean) MIS 5e sea-level height, typically assumed to be +6 m, and then divides this height difference by the age of the highstand marker. This rate is then applied to correct the elevation of other observed sea-level markers at that site for tectonic displacement. Subtracting a reference eustatic value from a local MIS 5e highstand marker elevation introduces two potentially significant errors. First, the commonly adopted peak eustatic MIS 5e sea-level value (i.e., +6 m) is likely too low; recent studies concluded that MIS 5e peak eustatic sea level was ~6-9 m. Second, local peak MIS 5e sea level was not globally uniform, but instead characterized by significant departures from eustasy due to glacial isostatic adjustment (GIA) in response to successive glacial-interglacial cycles and excess polar ice-sheet melt relative to present day. We present numerical models of GIA that incorporate both of these effects in order to quantify the plausible range in error of previous tectonic corrections. We demonstrate that, even far from melting ice sheets, local peak MIS 5e sea level may have departed from eustasy by 2-4 m, or more. Thus, adopting an assumed reference eustatic value to estimate tectonic displacement, rather than a site-specific GIA signal, can introduce significant error in estimates of peak eustatic sea level (and minimum ice volumes) during Quaternary highstands (e.g., MIS 11, MIS 5c and MIS 5a).
NASA Technical Reports Server (NTRS)
Song, Y. Tony; Colberg, Frank
2011-01-01
Observational surveys have shown significant oceanic bottom water warming, but they are too spatially and temporally sporadic to quantify the deep ocean contribution to the present-day sea level rise (SLR). In this study, altimetry sea surface height (SSH), Gravity Recovery and Climate Experiment (GRACE) ocean mass, and in situ upper ocean (0-700 m) steric height have been assessed for their seasonal variability and trend maps. It is shown that neither the global mean nor the regional trends of altimetry SLR can be explained by the upper ocean steric height plus the GRACE ocean mass. A non-Boussinesq ocean general circulation model (OGCM), allowing the sea level to rise as a direct response to the heat added into the ocean, is then used to diagnose the deep ocean steric height. Constrained by sea surface temperature data and the top of atmosphere (TOA) radiation measurements, the model reproduces the observed upper ocean heat content well. Combining the modeled deep ocean steric height with observational upper ocean data gives the full depth steric height. Adding a GRACE-estimated mass trend, the data-model combination explains not only the altimetry global mean SLR but also its regional trends fairly well. The deep ocean warming is mostly prevalent in the Atlantic and Indian oceans, and along the Antarctic Circumpolar Current, suggesting a strong relation to the oceanic circulation and dynamics. Its comparison with available bottom water measurements shows reasonably good agreement, indicating that deep ocean warming below 700 m might have contributed 1.1 mm/yr to the global mean SLR or one-third of the altimeter-observed rate of 3.11 +/- 0.6 mm/yr over 1993-2008.
Storm surges in the White and Barents Seas: formation, statistics, analysis
NASA Astrophysics Data System (ADS)
Korablina, Anastasia; Arkhipkin, Victor
2017-04-01
Arctic seas storm surges investigation are high priority in Russia due to the active development of offshore oil and gas, construction of facilities in the coastal zone, as well as for the navigation safety. It is important to study the surges variability, to predict this phenomena and subsequent economic losses, thus including such information into the Russian Arctic Development Program 2020. White and Barents Seas storm surges are caused mainly by deep cyclones of two types: "diving" from the north (88% of all cyclones) and Atlantic from the west. The surge height was defined as the excess of the level that was obtained as the difference between the observed level and subtracting tide level and low-frequency level. The period of low-frequency level oscillation was determined by spectral analysis of the in-situ data. ADCIRC model is used for calculating the storm surge height. We did the calculations on unstructured grid with variable step from 50 to 5000 m. The ADCIRC model was based on the data on wind field, the sea level pressure, the concentration of ice reanalysis CFSR (1979-2010) in increments 0.3°, CFSv2 (2011-2015) in increments 0.2°. On the boundary conditions harmonic constants from Finite Element Solution tide model 2004 (FES2004) in increments 1/8° were set. The following stations on the coast Varandey, Pechora Bay, Chosha Bay, Severodvinsk, Onega, Solovki and other were selected for the storm surges statistical analysis in the period 1979-2015. The number of storm surges (> 0.3 m) long-term variability was obtained, the number of surges at a height (m) range (0.3-0.6, 0.6-0.9, 0.9-1.2, >1.2) was estimated. It shows that 1980 and 1998 are the years with the fewest number storms. For example, the largest number of storm surge (53) was observed in 1995 in Varandey. The height of the surge, possible only once in 100 years, is counted. This maximum height (m) of the surge was noted in Varandey (4.1), Chosha Bay (3.4), Barents Sea, Onega Bay (2.4), White Sea. Quantitative assessment of the pressure and wind contributing to the surge formation was made. The analysis has shown that the wind has a larger contribution (90%) to surge formation in the study area. The study was performed in the framework of the Russian Science Foundation (project 14-37-00038).
Preparing for ICESat-2: Simulated Geolocated Photon Data for Cryospheric Data Products
NASA Astrophysics Data System (ADS)
Harbeck, K.; Neumann, T.; Lee, J.; Hancock, D.; Brenner, A. C.; Markus, T.
2017-12-01
ICESat-2 will carry NASA's next-generation laser altimeter, ATLAS (Advanced Topographic Laser Altimeter System), which is designed to measure changes in ice sheet height, sea ice freeboard, and vegetation canopy height. There is a critical need for data that simulate what certain ICESat-2 science data products will "look like" post-launch in order to aid the data product development process. There are several sources for simulated photon-counting lidar data, including data from NASA's MABEL (Multiple Altimeter Beam Experimental Lidar) instrument, and M-ATLAS (MABEL data that has been scaled geometrically and radiometrically to be more similar to that expected from ATLAS). From these sources, we are able to develop simulated granules of the geolocated photon cloud product; also referred to as ATL03. These simulated ATL03 granules can be further processed into the upper-level data products that report ice sheet height, sea ice freeboard, and vegetation canopy height. For ice sheet height (ATL06) and sea ice height (ATL07) simulations, both MABEL and M-ATLAS data products are used. M-ATLAS data use ATLAS engineering design cases for signal and background noise rates over certain surface types, and also provides large vertical windows of data for more accurate calculations of atmospheric background rates. MABEL data give a more accurate representation of background noise rates over areas of water (i.e., melt ponds, crevasses or sea ice leads) versus land or solid ice. Through a variety of data manipulation procedures, we provide a product that mimics the appearance and parameter characterization of ATL03 data granules. There are three primary goals for generating this simulated ATL03 dataset: (1) allowing end users to become familiar with using the large photon cloud datasets that will be the primary science data product from ICESat-2, (2) the process ensures that ATL03 data can flow seamlessly through upper-level science data product algorithms, and (3) the process ensures parameter traceability through ATL03 and upper-level data products. We will present a summary of how simulated data products are generated, the cryospheric data product applications for this simulated data (specifically ice sheet height and sea ice freeboard), and where these simulated datasets are available to the ICESat-2 data user community.
The absolute dynamic ocean topography (ADOT)
NASA Astrophysics Data System (ADS)
Bosch, Wolfgang; Savcenko, Roman
The sea surface slopes relative to the geoid (an equipotential surface) basically carry the in-formation on the absolute velocity field of the surface circulation. Pure oceanographic models may remain unspecific with respect to the absolute level of the ocean topography. In contrast, the geodetic approach to estimate the ocean topography as difference between sea level and the geoid gives by definition an absolute dynamic ocean topography (ADOT). This approach requires, however, a consistent treatment of geoid and sea surface heights, the first being usually derived from a band limited spherical harmonic series of the Earth gravity field and the second observed with much higher spectral resolution by satellite altimetry. The present contribution shows a procedure for estimating the ADOT along the altimeter profiles, preserving as much sea surface height details as the consistency w.r.t. the geoid heights will allow. The consistent treatment at data gaps and the coast is particular demanding and solved by a filter correction. The ADOT profiles are inspected for their innocent properties towards the coast and compared to external estimates of the ocean topography or the velocity field of the surface circulation as derived, for example, by ARGO floats.
Multi-decadal storminess fluctuations of Black Sea due to North Atlantic Oscillation
NASA Astrophysics Data System (ADS)
Kuznetsov, Sergey; Saprykina, Yana; Grigorieva, Victoria; Aydoǧan, Berna; Aydoǧan, Burak
2017-04-01
Storminess variability is of key importance for many marine applications, naval and coastal engineering. Studying the evolution of this phenomenon along with large scale atmospheric patterns and being able to predict them is crucial for in the context of rising sea level due to climate change what make the low-lying coasts in the Black Sea to become increasingly vulnerable to marine hazards. The aim of this work is to clarify the trends, statistics and reasons of variations of storminess in dependence of such climatic characteristic as NAO (North Atlantic Oscillation Index). The analysis of Black Sea storminess activity was performed on the base of visual wave observations (Voluntary Observing Ship or VOS) for the period 1970-2011. Annual means and maximum heights of wind-driven seas and swell waves averaging over whole Black Sea area were investigated separately. The both wind-driven seas and swell demonstrate the decreasing in heights about 10% the same as their periods for the chosen time frame. Parametric spectral analysis was performed. The periods of wave height fluctuations for wind-driven seas and swell were shown to coincide with each other and with periods of low frequency fluctuation of NOA: 14 and 4 year respectively. Correlation coefficients of wave height and NOA were 0.3 for swell and 0.4 for wind-driven sea. Nonlinear regularities of NAO fluctuations were investigated using wavelet and spavlet (spectra of modules of wavelet coefficients) analyses. Their influence on variability of storminess in Black Sea is discussed. The reported study was funded by RFBR (project No. 16-55-76002 ERA_a) and by TUBITAK (project No. 116M061) in frame of BS STEMA project.
A Bayesian Network to Predict Barrier Island Geomorphologic Characteristics
NASA Astrophysics Data System (ADS)
Gutierrez, B.; Plant, N. G.; Thieler, E. R.; Turecek, A.; Stippa, S.
2014-12-01
Understanding how barrier islands along the Atlantic and Gulf coasts of the United States respond to storms and sea-level rise is an important management concern. Although these threats are well recognized, quantifying the integrated vulnerability is challenging due to the range of time and space scalesover which these processes act. Developing datasets and methods to identify the physical vulnerabilities of coastal environments due to storms and sea-level rise thus is an important scientific focus that supports land management decision making. Here we employ a Bayesian Network (BN) to model the interactions between geomorphic variables sampled from existing datasets that capture both storm-and sea-level rise related coastal evolution. The BN provides a means of estimating probabilities of changes in specific geomorphic characteristics such as foredune crest height, beach width, beach height, given knowledge of barrier island width, maximum barrier island elevation, distance from an inlet, the presence of anthropogenic modifications, and long-term shoreline change rates, which we assume to be directly related to sea-level rise. We evaluate BN skill and explore how different constraints, such as shoreline change characteristics (eroding, stable, accreting), distance to nearby inlets and island width, affect the probability distributions of future morphological characteristics. Our work demonstrates that a skillful BN can be constructed and that factors such as distance to inlet, shoreline change rate, and the presence of human alterations have the strongest influences on network performance. For Assateague Island, Maryland/Virginia, USA, we find that different shoreline change behaviors affect the probabilities of specific geomorphic characteristics, such as dune height, which allows us to identify vulnerable locations on the barrier island where habitat or infrastructure may be vulnerable to storms and sea-level rise.
Storlazzi, Curt D.; Griggs, Gary B.
2000-01-01
Significant sea-cliff erosion and storm damage occurred along the central coast of California during the 1982–1983 and 1997–1998 El Niño winters. This generated interest among scientists and land-use planners in how historic El Niño–Southern Oscillation (ENSO) winters have affected the coastal climate of central California. A relative ENSO intensity index based on oceanographic and meteorologic data defines the timing and magnitude of ENSO events over the past century. The index suggests that five higher intensity (relative values 4–6) and 17 lower intensity (relative values 1–3) ENSO events took place between 1910 and 1995. The ENSO intensity index correlates with fluctuations in the time series of cyclone activity, precipitation, detrended sea level, wave height, sea-surface temperature, and sea-level barometric pressure. Wave height, sea level, and precipitation, which are the primary external forcing parameters in sea-cliff erosion, increase nonlinearly with increasing relative ENSO event intensity. The number of storms that caused coastal erosion or storm damage and the historic occurrence of large-scale sea-cliff erosion along the central coast also increase nonlinearly with increasing relative event intensity. These correlations and the frequency distribution of relative ENSO event intensities indicate that moderate- to high-intensity ENSO events cause the most sea-cliff erosion and shoreline recession over the course of a century.
Interactions of Estuarine Shoreline Infrastructure With Multiscale Sea Level Variability
NASA Astrophysics Data System (ADS)
Wang, Ruo-Qian; Herdman, Liv M.; Erikson, Li; Barnard, Patrick; Hummel, Michelle; Stacey, Mark T.
2017-12-01
Sea level rise increases the risk of storms and other short-term water-rise events, because it sets a higher water level such that coastal surges become more likely to overtop protections and cause floods. To protect coastal communities, it is necessary to understand the interaction among multiday and tidal sea level variabilities, coastal infrastructure, and sea level rise. We performed a series of numerical simulations for San Francisco Bay to examine two shoreline scenarios and a series of short-term and long-term sea level variations. The two shoreline configurations include the existing topography and a coherent full-bay containment that follows the existing land boundary with an impermeable wall. The sea level variability consists of a half-meter perturbation, with duration ranging from 2 days to permanent (i.e., sea level rise). The extent of coastal flooding was found to increase with the duration of the high-water-level event. The nonlinear interaction between these intermediate scale events and astronomical tidal forcing only contributes ˜1% of the tidal heights; at the same time, the tides are found to be a dominant factor in establishing the evolution and diffusion of multiday high water events. Establishing containment at existing shorelines can change the tidal height spectrum up to 5%, and the impact of this shoreline structure appears stronger in the low-frequency range. To interpret the spatial and temporal variability at a wide range of frequencies, Optimal Dynamic Mode Decomposition is introduced to analyze the coastal processes and an inverse method is applied to determine the coefficients of a 1-D diffusion wave model that quantify the impact of bottom roughness, tidal basin geometry, and shoreline configuration on the high water events.
A Computer-Based Atlas of Global Instrumental Climate Data (DB1003)
Bradley, Raymond S.; Ahern, Linda G.; Keimig, Frank T.
1994-01-01
Color-shaded and contoured images of global, gridded instrumental data have been produced as a computer-based atlas. Each image simultaneously depicts anomaly maps of surface temperature, sea-level pressure, 500-mbar geopotential heights, and percentages of reference-period precipitation. Monthly, seasonal, and annual composites are available in either cylindrical equidistant or northern and southern hemisphere polar projections. Temperature maps are available from 1854 to 1991, precipitation from 1851 to 1989, sea-level pressure from 1899 to 1991, and 500-mbar heights from 1946 to 1991. The source of data for the temperature images is Jones et al.'s global gridded temperature anomalies. The precipitation images were derived from Eischeid et al.'s global gridded precipitation percentages. Grids from the Data Support Section, National Center for Atmospheric Research (NCAR) were the sources for the sea-level-pressure and 500-mbar geopotential-height images. All images are in GIF files (1024 × 822 pixels, 256 colors) and can be displayed on many different computer platforms. Each annual subdirectory contains 141 images, each seasonal subdirectory contains 563 images, and each monthly subdirectory contains 1656 images. The entire atlas requires approximately 340 MB of disk space, but users may retrieve any number of images at one time.
On microseisms recorded near the Ligurian coast (Italy) and their relationship with sea wave height
NASA Astrophysics Data System (ADS)
Ferretti, G.; Zunino, A.; Scafidi, D.; Barani, S.; Spallarossa, D.
2013-07-01
In this study, microseism recordings from a near coast seismic station and concurrent significant sea wave heights (H_{1/3}) are analysed to calibrate an empirical relation for predicting sea wave height in the Ligurian Sea. The study stems from the investigation of the damaging sea storms occurred in the Ligurian Sea between 2008 October and November. Analysing data collected in this time frame allows identification of two types of microseism signal, one associated to the local sea wave motion and one attributable to a remote source area. The former is dominated by frequencies greater than 0.2 Hz and the latter by frequencies between 0.07 and 0.14 Hz. Moreover, comparison of microseism spectrogram and significant sea wave heights reveals a strong correlation in that the spectral energy content of microseism results proportional to the sea wave height observed in the same time window. Hence, an extended data set including also observations from January to December 2011 is used to calibrate an empirical predictive relation for sea wave height whose functional form is a modified version of the classical definition of H_{1/3}. By means of a Markov chain Monte Carlo algorithm we set up a procedure to investigate the inverse problem and to find a set of parameter values for predicting sea wave heights from microseism.
NASA Astrophysics Data System (ADS)
Lebedev, S. A.; Zilberstein, O. I.; Popov, S. K.; Tikhonova, O. V.
2003-04-01
The problem of retrieving of the sea level anomalies in the Barents and White Seas from satellite can be considered as two different problems. The first one is to calculate the anomalies of sea level along the trek taking into account all amendments including tidal heights. The second one is to obtain of fields of the sea level anomalies on the grid over one cycle of the exact repeat altimetry mission. Experience results show that there is preferable to use the regional tidal model for calculating tidal heights. To construct of the anomalies fields of the sea level during the exact repeat mission (cycle 35 days for ERS-1 and ERS-2), when a density of the coverage of the area of water of the Barents and White Seas by satellite measurements achieves maximum. It is necessary to solve the problem of the error minimum. This error is based by the temporal difference of the measurements over one cycle and by the specific of the hydrodynamic regime of the both seas (tidal, storm surge variations, tidal currents). To solve this problem it is assumed to use the results of the hydrodynamic modeling. The error minimum is preformed by the regression of the model results and satellite measurements. As a version it is considered the possibility of the utilizing of the neuronet obtained by the model results to construct maps of the sea level anomalies. The comparison of the model results and the calculation of the satellite altimetry variability of the sea level of Barents and White Seas shows a good coincidence between them. The satellite altimetry data of ERS-1/2 and TOPEX/POSEIDON of Ocean Altimeter Pathfinder Project (NASA/GSFC) has been used in this study. Results of the regional tidal model computations and three dimensional baroclinic model created in the Hydrometeocenter have been used as well. This study also exploited the atmosphere date of the Project REANALYSIS. The research was undertaken with partial support from the Russian Basic Research Foundation (Project No. 01-07-90106).
Correlation between continent area and elevation
NASA Astrophysics Data System (ADS)
Zhang, Y.
2004-12-01
This presentation is motivated by the following questions: (1) What factors determine the mean elevation and thickness of an individual continent? (2) How to explain the positive correlation between the mean height and area of individual continent? (3) Given total continental crust volume, what determines the mean thickness (and hence total area) of all continents? For example, Mean thickness of all continents is about 41 km. Mean land elevation is 874 m, and mean elevation of all continents (including land areas and continental shelves and slopes to 1000 meters below sea level) is about 800 m. Could mean continental thickness have doubled and continental area have halved in the geologic past? I present a first-order model to address these issues assuming that continental mean height is the steady state height controlled by uplift and erosion. The model predicts that it takes longer time to erode a larger continent. Hence mean continental height at steady state increases as continental area increases. This prediction is consistent with the general trend between present-day continental elevation and area (except for Antarctica), and can fit the trend well. This is the first time the relation between continental area and mean elevation is quantitatively explained. The model is further applied to investigate variations of mean thickness of continental crust over the last 600 Myr over which the continental crust mass and seawater volume are assumed to be constant. Because a change in the number of continents leads to change in the area of continents, it is predicted that the mean continental thickness increases as the number of continents decreases. Nevertheless, the thickness variation is small, amounts to about 10% from one continent to six continents. Change in the number of continents leads to a sea level fluctuation of about 0.3 km, with the lowest sea level coinciding with times of supercontinents. This prediction is consistent with prominent lows in sea level curves at the times of Pangea and Rodinia. It is concluded that the number of continents played a major role in Phanerozoic sea level changes.
NASA Astrophysics Data System (ADS)
Shu-Huei, Jhang; Chih-Chung, Wen; Dong-Jiing, Doong; Cheng-Han, Tsai
2017-04-01
Taiwan is an Island in the western Pacific Ocean and experienced more than 3 typhoons in a year. Typhoons bring intense rainfall, high waves, and storm surges, which often resulted in coastal flooding. The flooding can be aggravated by the sea level rise due to the global warming, which may subject Taiwan's coastal areas to more serious damage in the future than present. The objectives of this study are to investigate the flooding caused by typhoons in the Annan District, Tainan, a city on the southwest coast of Taiwan by numerical simulations, considering the effects of sea-level rises according to the level suggested by the 5th Assessment Report of IPCC (Intergovernmental Panel on Climate Change) for 2050 and 2100, respectively. The simulations were carried out by using MIKE21 HD (a hydrodynamic model) and MIKE21 SW (a spectral wave model). In our simulation, we used an intense typhoon, named Soudelor, as our base typhoon, which made its landfall on the east coast of Taiwan in the summer of 2015, traveled through the width of the island, and exited the island to the north of Tainan. The reasons we pick this typhoon are that it passed near our objective area, wind field data for this typhoon are available, and we have well documented coastal wave and water level measurements during the passage of Typhoon Soudelor. We firstly used ECMWF (European Centre for Medium-Range Weather Forecasts) wind field data to reconstruct typhoon waves and storm surges for this typhoon by using coupled MIKE21 SW and MIKE21 HD in a regional model. The resultant simulated wave height and sea-level height matched satisfactorily with the measured data. The wave height and storm surge calculated by the regional model provided the boundary conditions for our fine-grid domain. Then different sea-level rises suggested by the IPCC were incorporated into the fine-grid model. Since river discharge due to intense rainfall has also to be considered for coastal flooding, our fine-grid models encompass the estuary of River Yanshui, and measured upstream river discharges were used to simulate the interactions among tide, current, and wave near the estuary of Yanshui River. Our preliminary results showed that with only the effect of rainwater discharge, the maximum surface level of the river during the storm near the estuary was 1.4 m, which is not higher than the river embankments. With the storm surge, the river level at the same location was 2.2 m. With the storm surge and sea-level rise, the maximum river levels near the estuary were 3.6 m and 3.9 m for 2050 and 2100 scenarios, respective. These levels were higher than the embankment height of 3 m. This showed that due to higher sea-level, the area near the estuary will be flooded.
Coping with Higher Sea Levels and Increased Coastal Flooding in New York City. Chapter 13
NASA Technical Reports Server (NTRS)
Gornitz, Vivien; Horton, Radley; Bader, Daniel A.; Orton, Philip; Rosenzweig, Cynthia
2017-01-01
The 837 km New York City shoreline is lined by significant economic assets and dense population vulnerable to sea level rise and coastal flooding. After Hurricane Sandy in 2012, New York City developed a comprehensive plan to mitigate future climate risks, drawing upon the scientific expertise of the New York City Panel on Climate Change (NPCC), a special advisory group comprised of university and private-sector experts. This paper highlights current NPCC findings regarding sea level rise and coastal flooding, with some of the City's ongoing and planned responses. Twentieth century sea level rise in New York City (2.8 cm/decade) exceeded the global average (1.7 cm/decade), underscoring the enhanced regional risk to coastal hazards. NPCC (2015) projects future sea level rise at the Battery of 28 - 53 cm by the 2050s and 46 - 99 cm by the 2080s, relative to 2000 - 2004 (mid-range, 25th - 75th percentile). High-end SLR estimates (90th percentile) reach 76 cm by the 2050s, and 1.9 m by 2100. Combining these projections with updated FEMA flood return period curves, assuming static flood dynamics and storm behavior, flood heights for the 100-year storm (excluding waves) attain 3.9-4.5 m (mid-range), relative to the NAVD88 tidal datum, and 4.9 m (high end) by the 2080s, up from 3.4 m in the 2000s. Flood heights with a 1% annual chance of occurrence in the 2000s increase to 2.0 - 5.4% (mid-range) and 12.7% per year (high-end), by the 2080s. Guided by NPCC (2013, 2015) findings, New York City has embarked on a suite of initiatives to strengthen coastal defenses, employing various approaches tailored to specific neighborhood needs. NPCC continues its collaboration with the city to investigate vulnerability to extreme climate events, including heat waves, inland floods and coastal storms. Current research entails higher-resolution neighborhood-level coastal flood mapping, changes in storm characteristics, surge height interactions with sea level rise, and stronger engagement with stakeholders and community-based organizations.
The Development of a Sea Surface Height Climate Data Record from Multi-mission Altimeter Data
NASA Astrophysics Data System (ADS)
Beckley, B. D.; Ray, R. D.; Lemoine, F. G.; Zelensky, N. P.; Desai, S. D.; Brown, S.; Mitchum, G. T.; Nerem, R.; Yang, X.; Holmes, S. A.
2011-12-01
The determination of the rate of change of mean sea level (MSL) has undeniable societal significance. The science value of satellite altimeter observations has grown dramatically over time as improved models and technologies have increased the value of data acquired on both past and present missions enabling credible MSL estimates. With the prospect of an observational time series extending into several decades from TOPEX/Poseidon through Jason-1 and the Ocean Surface Topography Mission (OSTM), and further in time with a future set of operational altimeters, researchers are pushing the bounds of current technology and modeling capability in order to monitor global and regional sea level rates at an accuracy of a few tenths of a mm/yr. GRACE data analysis suggests that the ice melt from Alaska alone contributes 0.3 mm/y to global sea level rise. The measurement of MSL change from satellite altimetry requires an extreme stability of the altimeter measurement system since the signal being measured is at the level of a few mm/yr. This means that the orbit and reference frame within which the altimeter measurements are situated, and the associated altimeter corrections, must be stable and accurate enough to permit a robust MSL estimate. Foremost, orbit quality and consistency are critical not only to satellite altimeter measurement accuracy across one mission, but also for the seamless transition between missions (Beckley, et. al, 2005). The analysis of altimeter data for TOPEX/Poseidon, Jason-1, and OSTM requires that the orbits for all three missions be in a consistent reference frame, and calculated with the best possible standards to minimize error and maximize the data return from the time series, particularly with respect to the demanding application of measuring sea level trends. In this presentation we describe the development and utility of the MEaSURE's TPJAOS V1.0 sea surface height Climate Data Record (http://podaac.jpl.nasa.gov/dataset/MERGED_TP_J1_OSTM_OST_ALL). We provide an assessment of recent improvements to the accuracy of the 19-year sea surface height time series, describe continuing calibration/validation activities, and evaluate the subsequent impact on global and regional mean sea level estimates.
North Atlantic storm driving of extreme wave heights in the North Sea
NASA Astrophysics Data System (ADS)
Bell, R. J.; Gray, S. L.; Jones, O. P.
2017-04-01
The relationship between storms and extreme ocean waves in the North Sea is assessed using a long-period wave data set and storms identified in the Interim ECMWF Re-Analysis (ERA-Interim). An ensemble sensitivity analysis is used to provide information on the spatial and temporal forcing from mean sea-level pressure and surface wind associated with extreme ocean wave height responses. Extreme ocean waves in the central North Sea arise due to intense extratropical cyclone winds from either the cold conveyor belt (northerly-wind events) or the warm conveyor belt (southerly-wind events). The largest wave heights are associated with northerly-wind events which tend to have stronger wind speeds and occur as the cold conveyor belt wraps rearward round the cyclone to the cold side of the warm front. The northerly-wind events provide a larger fetch to the central North Sea to aid wave growth. Southerly-wind events are associated with the warm conveyor belts of intense extratropical cyclones that develop in the left upper tropospheric jet exit region. Ensemble sensitivity analysis can provide early warning of extreme wave events by demonstrating a relationship between wave height and high pressure to the west of the British Isles for northerly-wind events 48 h prior. Southerly-wind extreme events demonstrate sensitivity to low pressure to the west of the British Isles 36 h prior.
Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights
NASA Astrophysics Data System (ADS)
Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang
2017-04-01
The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.
Changes in the extreme wave heights over the Baltic Sea
NASA Astrophysics Data System (ADS)
Kudryavtseva, Nadia; Soomere, Tarmo
2017-04-01
Storms over the Baltic Sea and northwestern Europe have a large impact on the population, offshore industry, and shipping. The understanding of extreme events in sea wave heights and their change due to the climate change and variability is critical for assessment of flooding risks and coastal protection. The BACCII Assessment of Climate Change for the Baltic Sea Basin showed that the extreme events analysis of wind waves is currently not very well addressed, as well as satellite observations of the wave heights. Here we discuss the analysis of all existing satellite altimetry data over the Baltic Sea Basin regarding extremes in the wave heights. In this talk for the first time, we present an analysis of 100-yr return periods, fitted generalized Pareto and Weibull distributions, number, and frequency of extreme events in wave heights in the Baltic Sea measured by the multi-mission satellite altimetry. The data span more than 23 years and provide an excellent spatial coverage over the Baltic Sea, allowing to study in details spatial variations and changes in extreme wave heights. The analysis is based on an application of the Initial Distribution Method, Annual Maxima method and Peak-Over-Threshold approach to satellite altimetry data, all validated in comparison with in-situ wave height measurements. Here we show that the 100-yr return periods of wave heights show significant spatial changes over the Baltic Sea indicating a decrease in the southern part of the Baltic Sea and an increase in adjacent areas, which can significantly affect coast vulnerability. Here we compare the observed shift with storm track database data and discuss a spatial correlation and possible connection between the changes in the storm tracks over the Baltic Sea and the change in the extreme wave heights.
Gravity Field Changes due to Long-Term Sea Level Changes
NASA Astrophysics Data System (ADS)
Makarynskyy, O.; Kuhn, M.; Featherstone, W. E.
2004-12-01
Long-term sea level changes caused by climatic changes (e.g. global warming) will alter the system Earth. This includes the redistribution of ocean water masses due to the migration of cold fresh water from formerly ice-covered regions to the open oceans mainly caused by the deglaciation of polar ice caps. Consequently also a change in global ocean circulation patterns will occur. Over a longer timescale, such mass redistributions will be followed by isostatic rebound/depression due to the changed surface un/loading, resulting in variable sea level change around the world. These, in turn, will affect the gravity field, location of the geocentre, and the Earth's rotation vector. This presentation focuses mainly on gravity field changes induced by long-term (hundredths to many thousand years) sea level changes using an Earth System Climate Model (ESCM) of intermediate complexity. In this study, the coupled University of Victoria (Victoria, Canada) Earth System Climate Model (Uvic ESCM) was used, which embraces the primary thermodynamic and hydrological components of the climate system including sea and land-ice information. The model was implemented to estimate changes in global precipitation, ocean mass redistribution, seawater temperature and salinity on timescales from hundreds to thousands years under different greenhouse warming scenarios. The sea level change output of the model has been converted into real mass changes by removing the steric effect, computed from seawater temperature and salinity information at different layers also provided by Uvic ESCM. Finally the obtained mass changes have been converted into changes of the gravitational potential and subsequently of the geoid height using a spherical harmonic representation of the different data. Preliminary numerical results are provided for sea level change as well as change in geoid height.
Morphology of sea ice pressure ridges in the northwestern Weddell Sea in winter
NASA Astrophysics Data System (ADS)
Tan, Bing; Li, Zhi-Jun; Lu, Peng; Haas, Christian; Nicolaus, Marcel
2012-06-01
To investigate the morphology and distribution of pressure ridges in the northwestern Weddell Sea, ice surface elevation profiles were measured by a helicopter-borne laser altimeter during Winter Weddell Outflow Study with the German R/V Polarstern in 2006. An optimal cutoff height of 0.62 m, derived from the best fits between the measured and theoretical ridge height and spacing distributions, was first used to separate pressure ridges from other sea ice surface undulations. It was found that the measured ridge height distribution was well modeled by a negative exponential function, and the ridge spacing distribution by a lognormal function. Next, based on the ridging intensity Ri (the ratio of mean ridge sail height to mean spacing), all profiles were clustered into three regimes by an improved k-means clustering algorithm: Ri ≤ 0.01, 0.01 < Ri ≤ 0.026, and Ri > 0.026 (denoted as C1, C2, and C3 respectively). Mean (and standard deviation) of sail height was 0.99 (±0.07) m in Regime C1, 1.12 (±0.06) m in C2, and 1.17 (±0.04) m in C3, respectively, while the mean spacings (and standard deviations) were 232 (±240) m, 54 (±20) m, and 31 (±5.6) m. These three ice regimes coincided closely with distinct sea ice regions identified in a satellite radar image, where C1 corresponded to the broken ice in the marginal ice zone and level ice formed in the Larsen Polynya, C2 corresponded to the deformed first- and second-year ice formed by dynamic action in the center of the study region, and C3 corresponded to heavily deformed ice in the outflowing branch of the Weddell Gyre. The results of our analysis showed that the relationship between the mean ridge height and frequency was well modeled by a logarithmic function with a correlation coefficient of 0.8, although such correlation was weaker when considering each regime individually. The measured ridge height and frequency were both greater than those reported by others for the Ross Sea. Compared with reported values for other parts of the Antarctic, the present ridge heights were greater, but the ridge frequencies and ridging intensities were smaller than the most extreme of them. Meanwhile, average thickness of ridged ice in our study region was significantly larger than that of the Coastal Ross Sea showing the importance of deformation and ice age for ice conditions in the northwestern Weddell Sea.
NASA Astrophysics Data System (ADS)
Fitzgerald, S. S.; Walker, K. A.; Courtright, A. B.; Young, I. J.
2017-12-01
The United States Affiliated Pacific Islands (USAPI) are home to a population of low-lying coral atolls which are extremely vulnerable to sea level rise. Coastal infrastructure like groundwater reservoirs, harbor operations, and sewage systems, as well as natural coastal features such as reefs and beach ecosystems, are most vulnerable during inundation events. These Pacific Islanders face increasing hazards as coastal flooding infiltrates freshwater resources and may even lead to displacement. The two main components of inundation include tidal fluctuations and sea level anomalies; however, low-lying atolls are also vulnerable to the additional influence of waves. This study created a climatology of significant wave height in the Republic of the Marshall Islands (RMI), and incorporated this dataset with tides and sea level anomalies to create a novel approach to assessing inundation flood risk in the RMI. The risk metric was applied to the RMI as a study site with the goal of assessing wider-scale applicability across the rest of the USAPI. The inclusion of wave height and wave direction as a crucial component of the risk metric will better inform USAPI coastal-managers for future inundation events and disaster preparedness. In addition to the risk metric, a wave-rose atlas was created for decision-makers in the RMI. This study highlights the often-overlooked region of the Pacific and demonstrates the application of the risk metric to specific examples in the RMI.
Analyses of Sea Surface Height, Bottom Pressure and Acoustic Travel Time in the Japan/East Sea
2006-01-01
ANALYSES OF SEA SURFACE HEIGHT, BOTTOM PRESSURE AND ACOUSTIC TRAVEL TIME IN THE JAPAN/EAST SEA BY YONGSHENG XU A DISSERTATION SUBMITTED IN PARTIAL...COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE Analyses of Sea Surface Height, Bottom Pressure and Acoustic Travel Time in the Japan/East Sea...1999 to July 2001. The PIESs recorded hourly vertical acoustic travel time and pressure, which are respectively good proxies of baroclinic and
NASA Astrophysics Data System (ADS)
Soomere, Tarmo; Pindsoo, Katri
2016-03-01
We address the possibilities of a separation of the overall increasing trend in maximum water levels of semi-enclosed water bodies into associated trends in the heights of local storm surges and basin-scale components of the water level based on recorded and modelled local water level time series. The test area is the Baltic Sea. Sequences of strong storms may substantially increase its water volume and raise the average sea level by almost 1 m for a few weeks. Such events are singled out from the water level time series using a weekly-scale average. The trends in the annual maxima of the weekly average have an almost constant value along the entire eastern Baltic Sea coast for averaging intervals longer than 4 days. Their slopes are ~4 cm/decade for 8-day running average and decrease with an increase of the averaging interval. The trends for maxima of local storm surge heights represent almost the entire spatial variability in the water level maxima. Their slopes vary from almost zero for the open Baltic Proper coast up to 5-7 cm/decade in the eastern Gulf of Finland and Gulf of Riga. This pattern suggests that an increase in wind speed in strong storms is unlikely in this area but storm duration may have increased and wind direction may have rotated.
Reed, Andra J; Mann, Michael E; Emanuel, Kerry A; Lin, Ning; Horton, Benjamin P; Kemp, Andrew C; Donnelly, Jeffrey P
2015-10-13
In a changing climate, future inundation of the United States' Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (A.D. 1851 to present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sea level records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from A.D. 850 to A.D. 2005. We compare pre-anthropogenic era (A.D. 850-1800) and anthropogenic era (A.D.1970-2005) storm surge model results for New York City, exposing links between increased rates of sea level rise and storm flood heights. We find that mean flood heights increased by ∼1.24 m (due mainly to sea level rise) from ∼A.D. 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500-y return period for a ∼2.25-m flood height during the pre-anthropogenic era has decreased to ∼24.4 y in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies.
Reed, Andra J.; Mann, Michael E.; Emanuel, Kerry A.; Lin, Ning; Horton, Benjamin P.; Kemp, Andrew C.; Donnelly, Jeffrey P.
2015-01-01
In a changing climate, future inundation of the United States’ Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (A.D. 1851 to present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sea level records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from A.D. 850 to A.D. 2005. We compare pre-anthropogenic era (A.D. 850–1800) and anthropogenic era (A.D.1970–2005) storm surge model results for New York City, exposing links between increased rates of sea level rise and storm flood heights. We find that mean flood heights increased by ∼1.24 m (due mainly to sea level rise) from ∼A.D. 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500-y return period for a ∼2.25-m flood height during the pre-anthropogenic era has decreased to ∼24.4 y in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies. PMID:26417111
Sea Level Rise in Santa Clara County
NASA Technical Reports Server (NTRS)
Milesi, Cristina
2005-01-01
Presentation by Cristina Milesi, First Author, NASA Ames Research Center, Moffett Field, CA at the "Meeting the Challenge of Sea Level Rise in Santa Clara County" on June 19, 2005 Santa Clara County, bordering with the southern portion of the San Francisco Bay, is highly vulnerable to flooding and to sea level rise (SLR). In this presentation, the latest sea level rise projections for the San Francisco Bay will be discussed in the context of extreme water height frequency and extent of flooding vulnerability. I will also present preliminary estimations of levee requirements and possible mitigation through tidal restoration of existing salt ponds. The examples will draw mainly from the work done by the NASA Climate Adaptation Science Investigators at NASA Ames.
Estimation of sea level variations with GPS/GLONASS-reflectometry technique
NASA Astrophysics Data System (ADS)
Padokhin, A. M.; Kurbatov, G. A.; Andreeva, E. S.; Nesterov, I. A.; Nazarenko, M. O.; Berbeneva, N. A.; Karlysheva, A. V.
2017-11-01
In the present paper we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSSreceiver, which are based on the multipath propagation effects caused by the reflection of navigational signals from the sea surface. Such multipath propagation results in the appearance of the interference pattern in the Signal-to-Noise Ratio (SNR) of GNSS signals at small satellite elevation angles, which parameters are determined by the wavelength of the navigational signal and height of the antenna phase center above the reflecting sea surface. In current work we used GPS and GLONASS signals and measurements at two working frequencies of both systems to study sea level variations which almost doubles the amount of observations compared to GPS-only tide gauge. For UNAVCO sc02 station and collocated Friday Harbor NOAA tide gauge we show good agreement between GNSS-reflectometry and traditional mareograph sea level data.
NASA Astrophysics Data System (ADS)
Andersen, O. B.; Passaro, M.; Benveniste, J.; Piccioni, G.
2016-12-01
A new initiative within the ESA Sea Level Climate Change initiative (SL-cci) framework to improve the Arctic sea level record has been initiated as a combined effort to reprocess and retrack past altimetry to create a 25-year combined sea level record for sea level research studies. One of the objectives is to retracked ERS-2 dataset for the high latitudes based on the ALES retracking algorithm through adapting the ALES retracker for retracking of specular surfaces (leads). Secondly a reprocessing using tailored editing to Arctic Conditions will be carried out also focusing on the merging of the multi-mission data. Finally an effort is to combine physical and empirical retracked sea surface height information to derive an experimental spatio-temporal enhanced sea level product for high latitude. The first results in analysing Arctic Sea level variations on annual inter-annual scales for the 1992-2015 from a preliminar version of this dataset is presented. By including the GRACE water storage estimates and NOAA halo- and thermo-steric sea level variatios since 2002 a preliminary attempt to close the Arctic Sea level budget is presented here. Closing the Arctic sea level budget is by no mean trivial as both steric data and satellite altimetry is both sparse temporally and limited geographically.
NASA Astrophysics Data System (ADS)
Kuschenerus, Mieke; Cullen, Robert
2016-08-01
To ensure reliability and precision of wave height estimates for future satellite altimetry missions such as Sentinel 6, reliable parameter retrieval algorithms that can extract significant wave heights up to 20 m have to be established. The retrieved parameters, i.e. the retrieval methods need to be validated extensively on a wide range of possible significant wave heights. Although current missions require wave height retrievals up to 20 m, there is little evidence of systematic validation of parameter retrieval methods for sea states with wave heights above 10 m. This paper provides a definition of a set of simulated sea states with significant wave height up to 20 m, that allow simulation of radar altimeter response echoes for extreme sea states in SAR and low resolution mode. The simulated radar responses are used to derive significant wave height estimates, which can be compared with the initial models, allowing precision estimations of the applied parameter retrieval methods. Thus we establish a validation method for significant wave height retrieval for sea states causing high significant wave heights, to allow improved understanding and planning of future satellite altimetry mission validation.
Inversion of Solid Earth's Varying Shape 2: Using Self-Consistency to Infer Static Ocean Topography
NASA Astrophysics Data System (ADS)
Blewitt, G.; Clarke, P. J.
2002-12-01
We have developed a spectral approach to invert for the redistribution of mass on the Earth's surface given precise global geodetic measurements of the solid Earth's geometrical shape. We used the elastic load Love number formalism to characterize the redistributed mass as a spherical harmonic expansion, truncated at some degree and order n. [Clarke and Blewitt, this meeting]. Here we incorporate the additional physical constraint that the sea surface in hydrostatic equilibrium corresponds to an equipotential surface, to infer the non-steric component of static ocean topography. Our model rigorously accounts for self-gravitation of the ocean, continental surface mass, and the deformed solid Earth, such that the sea surface adopts a new equipotential surface consistent with ocean-land mass exchange, deformation of the geoid, deformation of the sea floor, and the geographical configuration of the oceans and continents. We develop a self-consistent spectral inversion method to solve for the distribution of continental surface mass that would generate geographic variations in relative mean sea level such that the total (ocean plus continental) mass distribution agrees with the original geodetic estimates to degree and order n. We apply this theory to study the contribution of seasonal inter-hemispheric (degree-1) mass transfer to seasonal variation in static ocean topography, using a published empirical seasonal model for degree-1 surface loading derived using GPS coordinate time series from the global IGS network [Blewitt et al., Science 294, 2,342-2,345, 2001]. The resulting predictions of seasonal variations of relative sea level strongly depend on location, with peak variations ranging from 3 mm to 19 mm. The largest peak variations are predicted in mid-August around Antarctica and the southern hemisphere in general; the lowest variations are predicted in the northern hemisphere. Corresponding maximum continental loading occurs in Canada and Siberia at the water-equivalent level of 200 mm. The RMS spatial variability about global mean sea level at any given time is 20% for geocentric sea level (as measured by satellite altimetry) versus relative sea level, which is a consequence of degree-1 sea floor displacement in the center of figure frame. While land-ocean mass exchange governs global mean relative sea level, at any given point the contribution of geoid deformation to relative sea level can be of similar magnitude, and so can almost cancel or double the effect of change in global mean sea level.While the sea surface takes on the shape of the deformed geoid, the sea surface everywhere seasonally oscillates about the deformed geoid with annual amplitude 6.1 mm. This effect is due mainly to an 8.0+/- 0.7~mm contribution from land-ocean mass exchange, which is then reduced by a 1.9 mm seasonal variation in the mean geoid height above the sea floor (to which a mass-conserved ocean cannot respond). Of this, 0.4 mm is due to the mean geocentric height of the sea floor, and 1.5 mm is due to the mean geocentric height of the geoid over oceanic areas. The seasonal gradients predicted by our inversion might be misinterpreted as basin-scale dynamics. Also, the oceans amplify a land degree-1 load by 20--30%, which suggests that deformation (and models of geocenter displacements) would be sensitive to the accuracy of ocean bottom pressure, particularly in the southern hemisphere.
Anticipating Future Sea Level Rise and Coastal Storms in New York City (Invited)
NASA Astrophysics Data System (ADS)
Horton, R. M.; Gornitz, V.; Bader, D.; Little, C. M.; Oppenheimer, M.; Patrick, L.; Orton, P. M.; Rosenzweig, C.; Solecki, W.
2013-12-01
Hurricane Sandy caused 43 fatalities in New York City and 19 billion in damages. Mayor Michael Bloomberg responded by convening the second New York City Panel on Climate Change (NPCC2), to provide up-to-date climate information for the City's Special Initiative for Rebuilding and Resiliency (SIRR). The Mayor's proposed 20 billion plan aims to strengthen the City's resilience to coastal inundation. Accordingly, the NPCC2 scientific and technical support team generated a suite of temperature, precipitation, and sea level rise and extreme event projections through the 2050s. The NPCC2 sea level rise projections include contributions from ocean thermal expansion, dynamic changes in sea surface height, mass changes in glaciers, ice caps, and ice sheets, and land water storage. Local sea level changes induced by changes in ice mass include isostatic, gravitational, and rotational effects. Results are derived from CMIP5 model-based outputs, expert judgment, and literature surveys. Sea level at the Battery, lower Manhattan, is projected to rise by 7-31 in (17.8-78.7cm) by the 2050s relative to 2000-2004 (10 to 90 percentile). As a result, flood heights above NAVD88 for the 100-year storm (stillwater plus waves) would rise from 15.0 ft (0.71 m) in the 2000s to 15.6-17.6 ft (4.8-5.4 m) by the 2050s (10-90 percentile). The annual chance of today's 100-year flood would increase from 1 to 1.4-5.0 percent by the 2050s.
Sea Level Variations in Gulf of Thailand.
1981-03-01
the astrono - mical tides alone. One purpose of thesis is to assess the importance of some of the non-astronomical factors in the Gulf of Thailand. 14...diurnal and diurnal tide components from the non-harmonic components of the hourly height. Then the non- astrono - mical part of the height change can be seen
Healthy coral reefs may assure coastal protection in face of climate change related sea level rise
NASA Astrophysics Data System (ADS)
Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.; Canavesio, R.; Collin, A.
2016-12-01
Coral reefs are diverse ecosystems that support millions of people worldwide providing crucial services, of which, coastal protection is one of the most relevant. The efficiency of coral reefs in protecting coastlines and dissipating waves is directly linked to the cover of living corals and three dimensional reef structural complexity. Climate change and human impacts are leading to severe global reductions in live coral cover, posing serious concerns regarding the capacity of degraded reef systems in protecting tropical coastal regions. Although it is known that the loss of structurally complex reefs may lead to greater erosion of coastlines, this process has rarely been quantified and it is still unknown whether the maintenance of healthy reefs through conservation will be enough to guarantee coastal protection during rising sea levels. We show that a significant loss of wave dissipation and a subsequent increase in back-reef wave height (up to 5 times present wave height) could occur even at present sea level if living corals are lost and reef structural complexity is reduced. Yet we also show that healthy reefs, measured by structural complexity and efficiency of vertical reef accretion, may maintain their present capacity of wave dissipation even under rising sea levels. Our results indicate that the health of coral reefs and not sea level rise will be the major determinant of the coastal protection services provided by coral reefs and calls for investments into coral reef conservation to ensure the future protection of tropical coastal communities.
Age accuracy and resolution of Quaternary corals used as proxies for sea level
NASA Astrophysics Data System (ADS)
Edinger, E. N.; Burr, G. S.; Pandolfi, J. M.; Ortiz, J. C.
2007-01-01
The accuracy of global eustatic sea level curves measured from raised Quaternary reefs, using radiometric ages of corals at known heights, may be limited by time-averaging, which affects the variation in coral age at a given height. Time-averaging was assessed in uplifted Holocene reef sequences from the Huon Peninsula, Papua New Guinea, using radiocarbon dating of coral skeletons in both horizontal transects and vertical sequences. Calibrated 2σ age ranges varied from 800 to 1060 years along horizontal transects, but weighted mean ages calculated from 15-18 dates per horizon were accurate to a resolution within 154-214 yr. Approximately 40% of the variability in age estimate resulted from internal variability inherent to 14C estimates, and 60% was due to time-averaging. The accuracy of age estimates of sea level change in studies using single dated corals as proxies for sea level is probably within 1000 yr of actual age, but can be resolved to ≤ 250 yr if supported by dates from analysis of a statistical population of corals at each stratigraphic interval. The range of time-averaging among reef corals was much less than that for shelly benthos. Ecological time-averaging dominated over sedimentological time averaging for reef corals, opposite to patterns reported from shelly benthos in siliciclastic environments.
NASA Astrophysics Data System (ADS)
Albrecht, F.; Pizarro, O.; Montecinos, A.
2016-12-01
The subtropical ocean gyre in the South Pacific is a large scale wind-driven ocean circulation, including the Peru-Chile Current, the westward South Equatorial Current, the East Australian Current, and the eastward South Pacific Current. Large scale ocean circulations play an essential role in the climate of the Earth over long and short term time scales.In the recent years a spin-up of this circulation has been recognized analyzing observations of sea level, temperature and salinity profiles, sea surface temperature and wind. Until now it is not clear whether this spin-up is decadal variability or whether it is a long-term trend introduced by anthropogenic forcing. This study aims to analyze whether and how anthropogenic forcing influences the position and the strength of the gyre in the 20th century. To determine that, yearly means of different variables of an ensemble of CMIP5 models are analyzed. The experiments 'historical' and 'historicalNat' are examined. The 'historical' experiment simulates the climate of the 20th century and the 'historicalNat' experiment covers the same time period, but only includes natural forcings. Comparing the outcomes of these two experiments is supposed to give information about the anthropogenic influence on the subtropical gyre of the South Pacific.The main variable we analyze is sea level change. This is directly related to the gyre circulation. The center of the gyre is characterized by a high pressure zone (high sea level) and the temporal and spatial variability of the sea level height field gives information about changes in the gyre circulation. The CMIP5 databank includes steric and dynamic sea level changes. Steric sea level, that is the contribution of temperature and salinity of the water, describes the major contribution to regional sea level change with respect to the global mean. Density changes contract or expand the water, which also changes the sea surface height. This does not only occur at the surface, but at all layers in the ocean. Sea level change thus integrates ocean variability throughout the depth of the ocean. Sea level simulations of the different experiments are compared using long-term trends, multi-year anomalies and EOF-Analysis. Changes in temperature and salinity in the deeper ocean are used to describe the development of the gyre below the surface.
2014-01-01
Background We sought to determine if adult residents living at high altitude have developed sufficient adaptation to a hypoxic environment to match the functional capacity of a similar population at sea level. To test this hypothesis, we compared the 6-min walk test distance (6MWD) in 334 residents living at sea level vs. at high altitude. Methods We enrolled 168 healthy adults aged ≥35 years residing at sea level in Lima and 166 individuals residing at 3,825 m above sea level in Puno, Peru. Participants completed a 6-min walk test, answered a sociodemographics and clinical questionnaire, underwent spirometry, and a blood test. Results Average age was 54.0 vs. 53.8 years, 48% vs. 43% were male, average height was 155 vs. 158 cm, average blood oxygen saturation was 98% vs. 90%, and average resting heart rate was 67 vs. 72 beats/min in Lima vs. Puno. In multivariable regression, participants in Puno walked 47.6 m less (95% CI -81.7 to -13.6 m; p < 0.01) than those in Lima. Other variables besides age and height that were associated with 6MWD include change in heart rate (4.0 m per beats/min increase above resting heart rate; p < 0.001) and percent body fat (-1.4 m per % increase; p = 0.02). Conclusions The 6-min walk test predicted a lowered functional capacity among Andean high altitude vs. sea level natives at their altitude of residence, which could be explained by an incomplete adaptation or a protective mechanism favoring neuro- and cardioprotection over psychomotor activity. PMID:24484777
2014-09-30
dropsondes, micro- aircraft), cloud top/base heights Arctic Ocean Surface Temperature project Steele Buoy drops for SLP , SST, SSS, & surface velocity...Colón & Vancas (NIC) Drop buoys for SLP , temperature and surface velocity Waves & Fetch in the MIZ Thompson SWIFTS buoys measuring wave energy...Expendable CTD, AXCP= Air Expendable Current Profiler, SLP = Sea Level atmospheric Pressure, SST= Seas Surface Temperature, A/C= aircraft, FSD= Floe Size Distribution, SIC=Sea Ice Concentration
TOPEX/El Nino Watch - El Nino Warm Water Pool Returns to Near Normal State, Mar, 14, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Mar. 14, 1998 and sea surface height is an indicator of the heat content of the ocean. The image shows that the sea surface height along the central equatorial Pacific has returned to a near normal state. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition. Remnants of the El Nino warm water pool, shown in red and white, are situated to the north and south of the equator. These sea surface height measurements have provided scientists with a detailed view of how the 1997-98 El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through the spring.
For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.govNASA Astrophysics Data System (ADS)
Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.
1990-03-01
Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.
North Sea Storm Driving of Extreme Wave Heights
NASA Astrophysics Data System (ADS)
Bell, Ray; Gray, Suzanne; Jones, Oliver
2017-04-01
The relationship between storms and extreme ocean waves in the North sea is assessed using a long-period wave dataset and storms identified in the Interim ECMWF Re-Analysis (ERA-Interim). An ensemble sensitivity analysis is used to provide information on the spatial and temporal forcing from mean sea-level pressure and surface wind associated with extreme ocean wave height responses. Extreme ocean waves in the central North Sea arise due to either the winds in the cold conveyor belt (northerly-wind events) or winds in the warm conveyor belt (southerly-wind events) of extratropical cyclones. The largest wave heights are associated with northerly-wind events which tend to have stronger wind speeds and occur as the cold conveyor belt wraps rearwards round the cyclone to the cold side of the warm front. The northerly-wind events also provide a larger fetch to the central North Sea. Southerly-wind events are associated with the warm conveyor belts of intense extratropical storms developing in the right upper-tropospheric jet exit region. There is predictability in the extreme ocean wave events up to two days before the event associated with a strengthening of a high pressure system to the west (northerly-wind events) and south-west (southerly-wind events) of the British Isles. This acts to increase the pressure gradient over the British Isles and therefore drive stronger wind speeds in the central North sea.
47 CFR 90.279 - Power limitations applicable to the 421-430 MHz band.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the 421-430 MHz band will be subject to Effective Radiated Power (ERP) and Effective Antenna Height (EAH) limitations as shown in the table below. ERP is defined as the product of the power supplied to... height above mean sea level. Limits of Effective Radiated Power (ERP) Corresponding to Effective Antenna...
47 CFR 22.627 - Effective radiated power limits.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... 76°52′07.9″ W. Long. (21) (c) Los Angeles area. This paragraph applies only to control transmitters in the Los Angeles urban area that utilize an antenna height of 457 or more meters (1500 or more feet) above mean sea level. The ERP of such transmitters must not exceed the following limits: Antenna height...
47 CFR 22.627 - Effective radiated power limits.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... 76°52′07.9″ W. Long. (21) (c) Los Angeles area. This paragraph applies only to control transmitters in the Los Angeles urban area that utilize an antenna height of 457 or more meters (1500 or more feet) above mean sea level. The ERP of such transmitters must not exceed the following limits: Antenna height...
47 CFR 22.627 - Effective radiated power limits.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... 76°52′07.9″ W. Long. (21) (c) Los Angeles area. This paragraph applies only to control transmitters in the Los Angeles urban area that utilize an antenna height of 457 or more meters (1500 or more feet) above mean sea level. The ERP of such transmitters must not exceed the following limits: Antenna height...
47 CFR 22.627 - Effective radiated power limits.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... 76°52′07.9″ W. Long. (21) (c) Los Angeles area. This paragraph applies only to control transmitters in the Los Angeles urban area that utilize an antenna height of 457 or more meters (1500 or more feet) above mean sea level. The ERP of such transmitters must not exceed the following limits: Antenna height...
Synoptic patterns leading to hailstorm in Chaharmahal and Bakhtiari province, Iran
NASA Astrophysics Data System (ADS)
Salahi, Bromand; Nohegar, Ahmad; Behrouzi, Mahmoud; Aalijahan, Mehdi
2018-03-01
The purpose of this study was to extract the synoptic patterns of 500 mb geopotential height and the sea level pressure leading to form hail in Chaharmahal and Bakhtiari province, Iran. To this end, at first, we explored hail occurrence in different areas of the province under investigation. Then, using sea level pressure and 500 mb geopotential height data, the patterns of hail occurrence were investigated through hierarchical clustering and Ward's method. The level of 500 mb patterns resulting in hail formation in the area include: (1) settlement of a cut-off low pressure blocking in Turkey and Iran's position in downstream of trough and injection of humidity coming from the Red Sea; (2) settlement of low ridge in northern Europe and Iran lying in downstream of the trough and injection of humidity of the Mediterranean Sea; (3) settlement of a cut-off low pressure in east of Europe and Iran lying in downstream of the trough; and (4) settlement of a deep trough in the Mediterranean Sea, formation of an omega-shaped blocking in Northern Europe and Iran lying in downstream of the trough. At sea level, the following patterns have caused hail formation in Chaharmahal and Bakhtiari province: (1) settlement of low pressure in Iran and Russia accompanying high pressure in Taklimakan Desert and east of Europe; (2) settlement of low pressure in Iran and high pressure in Egypt, northern Europe, and Taklimakan Desert; and (3) settlement of low pressure in Iran, Saudi Arabia and south of Italy and high pressure in Egypt and Siberia.
Sea-level changes before large earthquakes
Wyss, M.
1978-01-01
Changes in sea level have long been used as a measure of local uplift and subsidence associated with large earthquakes. For instance, in 1835, the British naturalist Charles Darwin observed that sea level dropped by 2.7 meters during the large earthquake in Concepcion, CHile. From this piece of evidence and the terraces along the beach that he saw, Darwin concluded that the Andes had grown to their present height through earthquakes. Much more recently, George Plafker and James C. Savage of the U.S Geological Survey have shown, from barnacle lines, that the great 1960 Chile and the 1964 Alaska earthquakes caused several meters of vertical displacement of the shoreline.
Soft computing methods for geoidal height transformation
NASA Astrophysics Data System (ADS)
Akyilmaz, O.; Özlüdemir, M. T.; Ayan, T.; Çelik, R. N.
2009-07-01
Soft computing techniques, such as fuzzy logic and artificial neural network (ANN) approaches, have enabled researchers to create precise models for use in many scientific and engineering applications. Applications that can be employed in geodetic studies include the estimation of earth rotation parameters and the determination of mean sea level changes. Another important field of geodesy in which these computing techniques can be applied is geoidal height transformation. We report here our use of a conventional polynomial model, the Adaptive Network-based Fuzzy (or in some publications, Adaptive Neuro-Fuzzy) Inference System (ANFIS), an ANN and a modified ANN approach to approximate geoid heights. These approximation models have been tested on a number of test points. The results obtained through the transformation processes from ellipsoidal heights into local levelling heights have also been compared.
NASA Technical Reports Server (NTRS)
Beckley, B. D.; Zelensky, N. P.; Holmes, S. A.; Lemoine, F. G.; Ray, R. D.; Mitchum, G. T.; Dedai, S. D.; Brown, S. T.
2010-01-01
The Jason-2 (OSTM) follow-on mission to Jason-I provides for the continuation of global and regional mean sea level estimates along the ground-track of the initial phase of the TOPEX/Poseidon mission. During the first several months, Jason-I and Jason-2 flew in formation separated by only 55 seconds, enabling the isolation of intermission instrument biases through direct collinear differencing of near simultaneous observations. The Jason-2 Ku-band range bias with respect to Jason-I is estimated to be -84 +/- 9 mm, based on the orbit altitudes provided on the Geophysical Data Records. Modest improved agreement is achieved with the GSFC replacement orbits, which further enables the isolation of subtle 1 cm) instrument-dependent range correction biases. Inter-mission bias estimates are confirmed with an independent assessment from comparisons to a 64-station tide-gauge network, also providing an estimate of the stability of the 17-year time series to be less than 0.1 mm/yr +/- 0.4 mm/yr. The global mean sea level derived from the multi-mission altimeter sea-surface height record from January 1993 through September 2009 is 3.3 +/- 0.4 mm/yr. Recent trends over the period from 2004 through 2008 are smaller and estimated to be 2.0 +/- 0.4 mm/yr.
Blended sea level anomaly fields with enhanced coastal coverage along the U.S. West Coast
Risien, C.M.; Strub, P.T.
2016-01-01
We form a new ‘blended’ data set of sea level anomaly (SLA) fields by combining gridded daily fields derived from altimeter data with coastal tide gauge data. Within approximately 55–70 km of the coast, the altimeter data are discarded and replaced by a linear interpolation between the tide gauge and remaining offshore altimeter data. To create a common reference height for altimeter and tide gauge data, a 20-year mean is subtracted from each time series (from each tide gauge and altimeter grid point) before combining the data sets to form a blended mean sea level anomaly (SLA) data set. Daily mean fields are produced for the 22-year period 1 January 1993–31 December 2014. The primary validation compares geostrophic velocities calculated from the height fields and velocities measured at four moorings covering the north-south range of the new data set. The blended data set improves the alongshore (meridional) component of the currents, indicating an improvement in the cross-shelf gradient of the mean SLA data set. PMID:26927667
Late Quaternary uplift rate across the Shimokita peninsula, northeastern Japan forearc
NASA Astrophysics Data System (ADS)
Matsu'Ura, T.
2009-12-01
I estimated the late Quaternary uplift rate across the northeastern Japan forearc (Shimokita peninsula) by using the height distribution of MIS 5.5 marine terraces as determined from tephra and cryptotephra stratigraphy. The heights of inner-margins (shoreline angles) of the MIS 5.5 marine terrace surface were previously reported to be 43-45 m and 30 m around Shiriyazaki and Gamanosawa, respectively. These heights decrease westward and are possibly due to a west-dipping offshore fault. But in some places, the heights of terrace inner-margins are probably overestimated by thick sediments. I found the MIS 5.5 wave-cut platform which is overlain by gravels and loess deposits containing a basal Toya tephra horizon (MIS 5.4) at Shiriyazaki by boring. The MIS 5.5 wave-cut platform (paleo sea level) is about 25 m above sea level, nearly half of the reported height of the terrace inner-margin. My result shows that the late Quaternary uplift rate across the Shimokita peninsula should be reconsidered. Further studies are also required whether or not the intra-plate (offshore) fault is a factor of the forearc uplifting at the peninsula. This research project has been conducted under the research contract with Nuclear and Industrial Safety Agency (NISA).
Modification of misovortices during landfall in the Japan Sea coastal region
NASA Astrophysics Data System (ADS)
Kato, Ryohei; Kusunoki, Kenichi; Inoue, Hanako Y.; Arai, Ken-ichiro; Nishihashi, Masahide; Fujiwara, Chusei; Shimose, Ken-ichi; Mashiko, Wataru; Sato, Eiichi; Saito, Sadao; Hayashi, Syugo; Yoshida, Satoru; Suzuki, Hiroto
2015-05-01
Misovortices frequently occur near the coastline of the Japan Sea during wintertime cold air outbreaks, generally developing over the sea and moving inland. To clarify the behavior of misovortices during landfall, temporal changes in the intensity and tilt of 12 misovortices over the coastal region of the Japan Sea were investigated during the winters of 2010/11 and 2011/12 using an X-band Doppler radar. For 11 vortices whose diameters were more than twice the effective radar beamwidth, the temporal change in the peak tangential velocity at lower levels (averaged below 400 m AGL) was analyzed. It was found that 8 out of the 11 vortices decreased after progressing between 0 and 6 km inland. For the remaining three vortices, the patterns of Doppler velocity couplet became unclear between 0 and 5 km inland, suggesting that these vortices also decayed soon after landfall. For four of the vortices, for which the analysis of the temporal evolution of tilt with height was made possible by several successive volume scans, the forward tilt with height increased after landfall. This study showed that modification to both the intensity and tilt with height of misovortices occurred after landfall.
Evaluation of the wave measurement in a stormy sea by the Along-Track interferometry SAR
NASA Astrophysics Data System (ADS)
Kojima, S.
2015-12-01
NICT developed the along-track interferometry SAR (AT-InSAR) system to detect the running cars and ships and measure sea surface velocity in 2011. The preliminary experiments for the running truck and ship were performed and it confirmed that the system performance was satisfactory to its specifications. In addition, a method to estimate the wave height from the sea surface velocity measured by the AT-InSAR was developed. The preliminary wave height observation was performed in a calm sea, and it was confirmed that the wave height could be estimated from the measured sea surface velocity. The purpose of this study is to check the capability of the ocean waves observation in a stormy sea by the AT-InSAR. Therefore, the ocean wave observation was performed under the low atmospheric pressure. The observation area is the sea surface at 10 km off the coast of Kushiro, south-east to Hokaido, JAPAN on the 4th of March 2015. The wind speed was 8〜10m/s during the observation, and the significant wave height and period were 1.5m and 6.0s. The observation was performed in 2 directions and the accuracy of the estimation results were checked. The significant wave height and period measured by the AT-InSAR agreed with it measured by the wave gage located close to this observation area. In addition, it was confirmed that there were no irregular wave heights in the distribution of the estimated wave height. As a result, it became clear that the AT-InSAR could observe the wave height in a stormy sea.
NASA Technical Reports Server (NTRS)
Brenner, Anita C.; Zwally, H. Jay; Bentley, Charles R.; Csatho, Bea M.; Harding, David J.; Hofton, Michelle A.; Minster, Jean-Bernard; Roberts, LeeAnne; Saba, Jack L.; Thomas, Robert H.;
2012-01-01
The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them.
Uncertainty estimates of altimetric Global Mean Sea Level timeseries
NASA Astrophysics Data System (ADS)
Scharffenberg, Martin; Hemming, Michael; Stammer, Detlef
2016-04-01
An attempt is being presented concerned with providing uncertainty measures for global mean sea level time series. For this purpose sea surface height (SSH) fields, simulated by the high resolution STORM/NCEP model for the period 1993 - 2010, were subsampled along altimeter tracks and processed similar to techniques used by five working groups to estimate GMSL. Results suggest that the spatial and temporal resolution have a substantial impact on GMSL estimates. Major impacts can especially result from the interpolation technique or the treatment of SSH outliers and easily lead to artificial temporal variability in the resulting time series.
Coastal vulnerability assessment of Olympic National Park to sea-level rise
Pendleton, Elizabeth A.; Hammar-Klose, Erika S.; Thieler, E. Robert; Williams, S. Jeffress
2004-01-01
A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Olympic National Park (OLYM), Washington. The CVI scores the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, shoreline change rates, mean tidal range and mean wave height. The rankings for each variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers. The Olympic National Park coast consists of rocky headlands, pocket beaches, glacial-fluvial features, and sand and gravel beaches. The Olympic coastline that is most vulnerable to sea-level rise are beaches in gently sloping areas.
NASA Astrophysics Data System (ADS)
Gilson, Gaëlle; Jiskoot, Hester
2017-04-01
Arctic sea fog hasn't been extensively studied despite its importance for environmental impact such as on traffic safety and on glacier ablation in coastal Arctic regions. Understanding fog processes can improve nowcasting of environmental impact in such remote regions where few observational data exist. To understand fog's physical, macrophysical and radiative properties, it is important to determine accurate Arctic fog climatology. Our previous study suggested that fog peaks in July over East Greenland and associates with sea ice break-up and a sea breeze with wind speeds between 1-4 m/s. The goal of this study is to understand Arctic coastal fog macrophysical properties and quantify its vertical extent. Radiosonde profiles were extracted from the Integrated Global Radiosonde Archive (IGRA) between 1980-2012, coincident with manual and automated fog observations at three synoptic weather stations along the coast of East Greenland. A new method using air mass saturation ratio and thermodynamic stability was developed to derive fog top height from IGRA radiosonde profiles. Soundings were classified into nine categories, based on surface and low-level saturation ratio, inversion type, and the fog top height relative to the inversion base. Results show that Arctic coastal fog mainly occurs under thermodynamically stable conditions characterized by deep and strong low-level inversions. Fog thickness is commonly about 100-400 m, often reaching the top of the boundary layer. Fog top height is greater at northern stations, where daily fog duration is also longer and often lasts throughout the day. Fog thickness is likely correlated to sea ice concentration density during sea ice break-up. Overall, it is hypothesized that our sounding classes represent development or dissipation stages of advection fog, or stratus lowering and fog lifting processes. With a new automated method, it is planned to retrieve fog height from IGRA data over Arctic terrain around the entire North Atlantic region. These results will serve as a basis for the incorporation of fog and temperature inversions into glacier surface energy balance models and can aid in improving the parameterization of fog for nowcasting methods for aviation applications.
Biophysical Variability in the Kuroshio Extension from Altimeter and SeaWiFS
2010-06-01
Prediction Laboratory Department of Oceanography Naval Postgraduate School Monterey, CA 93943 Abstract— Ten years (1998- 2007 ) of Sea Level Anomaly...heights have been measured by the ERS 1/2 and TOPEX/Poseidon satellites from 1 January 1998 to 31 December 2007 at 7-day intervals. Radar altimeters...3) from January 1998 to December 2007 (10 years period). Temporal variations of sea surface elevation residuals and Chl-a along the mean KE axis
Nudging Satellite Altimeter Data Into Quasi-Geostrophic Ocean Models
NASA Astrophysics Data System (ADS)
Verron, Jacques
1992-05-01
This paper discusses the efficiency of several variants of the nudging technique (derived from the technique of the same name developed by meteorologists) for assimilating altimeter data into numerical ocean models based on quasi-geostrophic formulation. Assimilation experiments are performed with data simulated in the nominal sampling conditions of the Topex-Poseidon satellite mission. Under experimental conditions it is found that nudging on the altimetric sea level is as efficient as nudging on the vorticity (second derivative in space of the dynamic topography), the technique used thus far in studies of this type. The use of altimetric residuals only, instead of the total altimetric sea level signal, is also explored. The critical importance of having an adequate reference mean sea level is largely confirmed. Finally, the possibility of nudging only the signal of sea level tendency (i.e., the successive time differences of the sea level height) is examined. Apart from the barotropic mode, results are not very successful compared with those obtained by assimilating the residuals.
A Bayesian network to predict vulnerability to sea-level rise: data report
Gutierrez, Benjamin T.; Plant, Nathaniel G.; Thieler, E. Robert
2011-01-01
During the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.
Importance of coastal change variables in determining vulnerability to sea- and lake-level change
Pendleton, E.A.; Thieler, E.R.; Williams, S.J.
2010-01-01
In 2001, the U.S. Geological Survey began conducting scientific assessments of coastal vulnerability to potential future sea- and lake-level changes in 22 National Park Service sea- and lakeshore units. Coastal park units chosen for the assessment included a variety of geological and physical settings along the U.S. Atlantic, Pacific, Gulf of Mexico, Gulf of Alaska, Caribbean, and Great Lakes shorelines. This research is motivated by the need to understand and anticipate coastal changes caused by accelerating sea-level rise, as well as lake-level changes caused by climate change, over the next century. The goal of these assessments is to provide information that can be used to make long-term (decade to century) management decisions. Here we analyze the results of coastal vulnerability assessments for several coastal national park units. Index-based assessments quantify the likelihood that physical changes may occur based on analysis of the following variables: tidal range, ice cover, wave height, coastal slope, historical shoreline change rate, geomorphology, and historical rate of relative sea- or lake-level change. This approach seeks to combine a coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, and it provides a measure of the system's potential vulnerability to the effects of sea- or lake-level change. Assessments for 22 park units are combined to evaluate relationships among the variables used to derive the index. Results indicate that Atlantic and Gulf of Mexico parks have the highest vulnerability rankings relative to other park regions. A principal component analysis reveals that 99% of the index variability can be explained by four variables: geomorphology, regional coastal slope, water-level change rate, and mean significant wave height. Tidal range, ice cover, and historical shoreline change are not as important when the index is evaluated at large spatial scales (thousands of kilometers). ?? 2010 Coastal Education and Research Foundation.
Snow depth on Arctic sea ice from historical in situ data
NASA Astrophysics Data System (ADS)
Shalina, Elena V.; Sandven, Stein
2018-06-01
The snow data from the Soviet airborne expeditions Sever in the Arctic collected over several decades in March, April and May have been analyzed in this study. The Sever data included more measurements and covered a much wider area, particularly in the Eurasian marginal seas (Kara Sea, Laptev Sea, East Siberian Sea and Chukchi Sea), compared to the Soviet North Pole drifting stations. The latter collected data mainly in the central part of the Arctic Basin. The following snow parameters have been analyzed: average snow depth on the level ice (undisturbed snow) height and area of sastrugi, depth of snow dunes attached to ice ridges and depth of snow on hummocks. In the 1970s-1980s, in the central Arctic, the average depth of undisturbed snow was 21.2 cm, the depth of sastrugi (that occupied about 30 % of the ice surface) was 36.2 cm and the average depth of snow near hummocks and ridges was about 65 cm. For the marginal seas, the average depth of undisturbed snow on the level ice varied from 9.8 cm in the Laptev Sea to 15.3 cm in the East Siberian Sea, which had a larger fraction of multiyear ice. In the marginal seas the spatial variability of snow depth was characterized by standard deviation varying between 66 and 100 %. The average height of sastrugi varied from 23 cm to about 32 cm with standard deviation between 50 and 56 %. The average area covered by sastrugi in the marginal seas was estimated to be 36.5 % of the total ice area where sastrugi were observed. The main result of the study is a new snow depth climatology for the late winter using data from both the Sever expeditions and the North Pole drifting stations. The snow load on the ice observed by Sever expeditions has been described as a combination of the depth of undisturbed snow on the level ice and snow depth of sastrugi weighted in proportion to the sastrugi area. The height of snow accumulated near the ice ridges was not included in the calculations because there are no estimates of the area covered by those features from the Sever expeditions. The effect of not including that data can lead to some underestimation of the average snow depth. The new climatology refines the description of snow depth in the central Arctic compared to the results by Warren et al. (1999) and provides additional detailed data in the marginal seas. The snow depth climatology is based on 94 % Sever data and 6 % North Pole data. The new climatology shows lower snow depth in the central Arctic comparing to Warren climatology and more detailed data in the Eurasian seas.
NASA Astrophysics Data System (ADS)
Mammadov, Ramiz
2013-04-01
The most characteristic feature of the Caspian Sea which difference it on relation other seas is its periodical fluctuating in its level. In many coastal regions of the world the problem of influence of change of a sea level on activities of the human is a problem of the long-term future, but in region of Caspian Sea, especially in its Azerbaijan sector, it is already actual. Also experience accumulated here, can be use at the decision of problems of optimization of wildlife management in conditions of significant change of a sea level as model of potential consequences of warming of a climate. Changeableness of the level of the Caspian sea over many years can be observed better on the basis of natural observations, a systematic basis of which has been put by the academician E. Lents in 1830 year in Baku coastal line. According these data in 1882 the average level has reached its level -25.2 m. the highest point over the observations, i.e. by 1.8 m. higher than today's level. The average level over 1830-1930 was about -25.83 m. In 1960 some stabilization in the level, about 28,4 meters, in 1970 was a sharp drop, in 1977 - sharp drop reached -29.00 rn. The drop over the whole period of observations totaled 3.8 m within diapason -25.2 -29.0 m. In 1978 the level of the sea began to increase and in 1995 its average yearly mark reach -26,62 rn. Intensiveness of the rise of the level ever that period totaled in average about 14 cm per year. As a result of this rise of a sea level about 800 km2 of a coastal zone it has been flooded, the ecological situation has worsened, and there were ecological refugees. The damage to a coastal zone of Azerbaijan was 2 billion USA dollars. Caspian sea also has within-year (seasonal) variability equal 32 sm and sleeve and pileup change of level. Its estimate in Azerbaijan coastal zone is 0.8-1.0 m. In the coastal zone also necessary take into height of the wave which in these coasts can be 3.0 m height. All these means that in the coastal areas at hydraulic engineering projects the sea level should be considered as multistage process, what we have considered by development of adaptation of a coastal zone The exact three-dimensional map of a coastal zone has been created. For different scenario sea levels, or example, -30.0; -29.0; -28.0; -27.0; -26.0; -25.0 and -24.0 exact coastal lines have been certain. Further maps of a vegetative cover, ground, social and economic and ecological conditions have been developed for different level and respective alterations are certain. More vulnerable coastal zone, flooded area and socio-economic damage were estimated.
Atmospheric model development in support of SEASAT. Volume 2: Analysis models
NASA Technical Reports Server (NTRS)
Langland, R. A.
1977-01-01
As part of the SEASAT program of NASA, two sets of analysis programs were developed for the Jet Propulsion Laboratory. One set of programs produce 63 x 63 horizontal mesh analyses on a polar stereographic grid. The other set produces 187 x 187 third mesh analyses. The parameters analyzed include sea surface temperature, sea level pressure and twelve levels of upper air temperature, height and wind analyses. The analysis output is used to initialize the primitive equation forecast models.
14 CFR 29.87 - Height-velocity envelope.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Weight from the maximum weight (at sea level) to the highest weight approved for takeoff and landing at each altitude. For helicopters, this weight need not exceed the highest weight allowing hovering out-of...
14 CFR 29.87 - Height-velocity envelope.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Weight from the maximum weight (at sea level) to the highest weight approved for takeoff and landing at each altitude. For helicopters, this weight need not exceed the highest weight allowing hovering out-of...
14 CFR 29.87 - Height-velocity envelope.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Weight from the maximum weight (at sea level) to the highest weight approved for takeoff and landing at each altitude. For helicopters, this weight need not exceed the highest weight allowing hovering out-of...
14 CFR 29.87 - Height-velocity envelope.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Weight from the maximum weight (at sea level) to the highest weight approved for takeoff and landing at each altitude. For helicopters, this weight need not exceed the highest weight allowing hovering out-of...
Changes of the Oceanic Long-term and seasonal variation in a Global-warming Climate
NASA Astrophysics Data System (ADS)
Xia, Q.; He, Y.; Dong, C.
2015-12-01
Abstract: Gridded absolute dynamic topography (ADT) from AVISO and outputs of sea surface height above geoid from a series of climate models run for CMIP5 are used to analysis global sea level variation. Variance has been calculated to determine the magnitude of change in sea level variation over two decades. Increasing trend of variance of ADT suggests an enhanced fluctuation as well as geostrophic shear of global ocean. To further determine on what scale does the increasing fluctuation dominate, the global absolute dynamic topography (ADT) has been separated into two distinguished parts: the global five-year mean sea surface (MSS) and the residual absolute dynamic topography (RADT). Increased variance of MSS can be ascribed to the nonuniform rising of global sea level and an enhancement of ocean gyres in the Pacific Ocean. While trend in the variance of RADT is found to be close to zero which suggests an unchanged ocean mesoscale variability. The Gaussian-like distribution of global ADT are used to study the change in extreme sea levels. Information entropy has also been adapted in our study. Increasing trend of information entropy which measures the degree of dispersion of a probability distribution suggests more appearance of extreme sea levels. Extreme high sea levels are increasing with a higher growing rate than the mean sea level rise.
NASA Astrophysics Data System (ADS)
Anarde, K.; Kameshwar, S.; Irza, N.; Lorenzo-Trueba, J.; Nittrouer, J. A.; Padgett, J.; Bedient, P. B.
2016-12-01
Predicting coastal infrastructure reliability during hurricane events is important for risk-based design and disaster planning, such as delineating viable emergency response routes. Previous research has focused on either infrastructure vulnerability to coastal flooding or the impact of changing sea level and landforms on surge dynamics. Here we investigate the combined impact of sea level, morphology, and coastal flooding on the reliability of highway bridges - the only access points between barrier islands and mainland communities - during future extreme storms. We forward model coastal flooding for static projections of geomorphic change using ADCIRC+SWAN. First-order parameters that are adjusted include sea level and elevation. These are varied for each storm simulation to evaluate relative impact on the reliability of bridges surrounding Freeport, TX. Simulated storms include both synthetic and historical events, which are classified by intensity using the storm's integrated kinetic energy, a metric for surge generation potential. Reliability is estimated through probability of failure - given wave and surge loads - and time inundated. Findings include that: 1) bridge reliability scales inversely with surge height, and 2) sea level rise reduces bridge reliability due to a monotonic increase in surge height. The impact of a shifting landscape on bridge reliability is more complex: barrier island rollback can increase or decrease inundation times for storms of different intensity due to changes in wind-setup and back-barrier bay interactions. Initial storm surge readily inundates the coastal landscape during large intensity storms, however the draining of inland bays following storm passage is significantly impeded by the barrier. From a coastal engineering standpoint, we determine that to protect critical infrastructure, efforts now implemented that nourish low-lying barriers may be enhanced by also armoring back-bay coastlines and elevating bridge approach ramps.
NASA Astrophysics Data System (ADS)
Castelle, Bruno; Dodet, Guillaume; Masselink, Gerd; Scott, Tim
2017-02-01
A pioneering and replicable method based on a 66-year numerical weather and wave hindcast is developed to optimize a climate index based on the sea level pressure (SLP) that best explains winter wave height variability along the coast of western Europe, from Portugal to UK (36-52°N). The resulting so-called Western Europe Pressure Anomaly (WEPA) is based on the sea level pressure gradient between the stations Valentia (Ireland) and Santa Cruz de Tenerife (Canary Islands). The WEPA positive phase reflects an intensified and southward shifted SLP difference between the Icelandic low and the Azores high, driving severe storms that funnel high-energy waves toward western Europe southward of 52°N. WEPA outscores by 25-150% the other leading atmospheric modes in explaining winter-averaged significant wave height, and even by a largest amount the winter-averaged extreme wave heights. WEPA is also the only index capturing the 2013/2014 extreme winter that caused widespread coastal erosion and flooding in western Europe.
NASA Astrophysics Data System (ADS)
Arkhipkin, Victor; Dobrolyubov, Sergey; Myslenkov, Stanislav; Korablina, Anastasia
2016-04-01
The implementation of the SWAN spectral wave model for the White Sea with using unstructured grid was presented. The main area of the Barents Sea was added to calculation region because it produces swell which incomes to the White Sea from the outside. Spatial resolution of unstructured grid is 500 m-5 km for the White Sea and 10-20 km for the Barents sea. NCEP/CFSR (~0.3°) input wind forcing was used. The results of the numerical modeling include wind wave fields for the White Sea with time step of 3 hours from 1979 to 2010. Spatial extreme value analysis of significant wave heights was performed. The storm situations, when the significant wave height exceeded 3 and 4 meters, were identified for the 32-year period. It allowed to analyze the variability of wind wave climate in the White Sea. The storminess of the White Sea tended to increase from 1979 to 1991, then decreased to minimum at 2000 and increased again till 2010. This work showed the following results. For example, in the Voronka (part of the White Sea) the synoptic situations with a wave height of more than 2 m (50-60 cases) took place about three times more than in the Basin (part of the White Sea), with heights of more than 3 m (25-40 cases) five or six times more. Cases with wave heights greater than 5 m in the Basin is extremely rare, while in the Voronka they occur 10 times a year. The significant wave height of a possible one time in 100 years is up to 7 meters in the Basin, up to 13 m in the Voronka, up to 3 m in the Onega Bay. In May, the smallest wavelength occurs in the Onega Bay, and is only 25 m. In the Basin wavelength is increased to 50 m. The longer wavelengths observed in the Voronka - 100 m. In November in the Basin (especially in the western part) and in the Voronka wavelength greatly increased to 75 and 200 m, respectively. In May, in the Onega Bay, Basin and Gorlo (part of the White Sea) swell height does not exceed 1 m. Only in the Voronka, it increases up to 3 meters. By November, there is an increase of swell height up to 3 m in the western part of the Basin and up to 9 meters in the Voronka. In the central part of the Gorlo, swell height remains the same. This feature proves impossibility of swell transit through the Gorlo into the White Sea. The work performed was supported by the RSCF (grant № 14-37-00038).
Coastal vulnerability assessment of Dry Tortugas National Park (DRTO) to sea-level rise
Pendleton, Elizabeth A.; Thieler, E. Robert; Williams, S. Jeffress
2005-01-01
A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Dry Tortugas National Park in Florida. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, historical shoreline change rates, mean tidal range and mean significant wave height. The rankings for each input variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers. Dry Tortugas National Park (DRTO) consists of relatively stable to washover-dominated portions of carbonate beach and man-made fortification. The areas within Dry Tortugas that are likely to be most vulnerable to sea-level rise are those with the highest rates of shoreline erosion and the highest wave energy.
Coastal vulnerability assessment of Cape Hatteras National Seashore (CAHA) to sea-level rise
Pendleton, Elizabeth A.; Theiler, E. Robert; Williams, S. Jeffress
2005-01-01
A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Cape Hatteras National Seashore (CAHA) in North Carolina. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, historical shoreline change rates, mean tidal range, and mean significant wave height. The rankings for each variable were combined and an index value was calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers. Cape Hatteras National Seashore consists of stable and washover dominated segments of barrier beach backed by wetland and marsh. The areas within Cape Hatteras that are likely to be most vulnerable to sea-level rise are those with the highest occurrence of overwash and the highest rates of shoreline change.
Coastal Vulnerability Assessment of Padre Island National Seashore (PAIS) to Sea-Level Rise
Pendleton, Elizabeth A.; Thieler, E. Robert; Williams, S. Jeffress; Beavers, Rebecca S.
2004-01-01
A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise within Padre Island National Seashore in Texas. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, shoreline change rates, mean tidal range and mean significant wave height. The rankings for each variable were combined and an index value calculated for 1-minute grid cells covering the park. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. This approach combines the coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, yielding a quantitative, although relative, measure of the park's natural vulnerability to the effects of sea-level rise. The CVI provides an objective technique for evaluation and long-term planning by scientists and park managers. Padre Island National Seashore consists of stable to washover dominated portions of barrier beach backed by wetland, marsh, tidal flat, or grassland. The areas within Padre that are likely to be most vulnerable to sea-level rise are those with the highest occurrence of overwash and the highest rates of shoreline change.
TOPEX/El Niño Watch - Satellite shows Pacific Stabilizing, July 11, 1998
1998-07-21
Height measurements taken by NASA U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on July 11, 1998; sea surface height is an indicator of the heat content of the ocean.
Warm Ocean Temperatures Blanket the Far-Western Pacific
NASA Technical Reports Server (NTRS)
2001-01-01
These data, taken during a 10-day collection cycle ending March 9, 2001, show that above-normal sea-surface heights and warmer ocean temperatures(indicated by the red and white areas) still blanket the far-western tropical Pacific and much of the north (and south) mid-Pacific. Red areas are about 10centimeters (4 inches) above normal; white areas show the sea-surface height is between 14 and 32 centimeters (6 to 13 inches) above normal.
This build-up of heat dominating the Western Pacific was first noted by TOPEX/Poseidon oceanographers more than two years ago and has outlasted the El Nino and La Nina events of the past few years. See: http://www.jpl.nasa.gov/elnino/990127.html . This warmth contrasts with the Bering Sea, Gulf of Alaska and tropical Pacific where lower-than-normal sea levels and cool ocean temperatures continue (indicated by blue areas). The blue areas are between 5 and 13centimeters (2 and 5 inches) below normal, whereas the purple areas range from 14 to 18 centimeters (6 to 7 inches) below normal. Actually, the near-equatorial ocean cooled through the fall of 2000 and into mid-winter and continues almost La Nina-like.Looking at the entire Pacific basin, the Pacific Decadal Oscillation's warm horseshoe and cool wedge pattern still dominates this sea-level height image. Most recent National Oceanic and Atmospheric Administration (NOAA) sea-surface temperature data also clearly illustrate the persistence of this basin-wide pattern. They are available at http://psbsgi1.nesdis.noaa.gov:8080/PSB/EPS/SST/climo.htmlThe U.S.-French TOPEX/Poseidon mission is managed by JPL for NASA's Earth Science Enterprise, Washington, D.C. JPL is a division of the California Institute of Technology in Pasadena. For more information on the TOPEX/Poseidon project, see: http://topex-www.jpl.nasa.gov2010-03-16
Recent sea-level height data from NASA Jason-2 oceanography satellite show a weakening of trade winds in western and central equatorial Pacific during late-January through February has triggered yet another strong, eastward-moving Kelvin wave.
NASA Technical Reports Server (NTRS)
Singh, Sandipa; Kelly, Kathryn A.
1997-01-01
Monthly Maps of sea surface height are constructed for the North Atlantic Ocean using TOPEX/Poseidon altimeter data. Mean sea surface height is reconstructed using a weighted combination of historical, hydrographic data and a synthetic mean obtained by fitting a Gaussian model of the Gulf Stream jet to altimeter data. The resultant mean shows increased resolution over the hydrographic mean, and incorporates recirculation information that is absent in the synthetic mean. Monthly maps, obtained by adding the mean field to altimeter sea surface height residuals, are used to derive a set of zonal indices that describe the annual cycle of meandering as well as position and strength of the Gulf Stream.
NASA Technical Reports Server (NTRS)
Mehra, Avichal; Anantharaj, Valentine; Payne, Steve; Kantha, Lakshmi
1996-01-01
This report documents an existing capability to produce operationally relevant products on sea level and currents from a tides/storm surge model for any coastal region around the world within 48 hours from the time of the request. The model is ready for transition to the Naval Oceanographic Office (NAVOCEANO) for potential contingency use anywhere around the world. A recent application to naval operations offshore Liberia illustrates this. Mississippi State University, in collaboration with the University of Colorado and NAVOCEANO, successfully deployed the Colorado University Rapidly Relocatable Nestable Tides and Storm Surge (CURReNTSS) model that predicts sea surface height, tidal currents and storm surge, and provided operational products on tidal sea level and currents in the littoral region off south-western coast of Africa. This report summarizes the results of this collaborative effort in an actual contingency use of the relocatable model, summarizes the lessons learned, and provides recommendations for further evaluation and transition of this modeling capability to operational use.
NASA Astrophysics Data System (ADS)
Xu, A. A.
2016-12-01
Existing research has shown consistent increase in global sea levels due to warming of the climate; since 1870, average global sea level has risen by about 20 cm. There are processes that scientists and coastal engineers can follow to estimate the erosion and flooding risk impacts for specific locations based on historical data. However, there are no methods available to assess the risk impacts for locations where little research has been conducted. In this study, we introduce a prototype to better predict sea level change and land loss using big data technology. Our approach combines cluster analysis and artificial intelligence to classify and calculate impacts for locations worldwide. Data from 235 locations (89 countries) on sea level change was gathered from NOAA data investigations and other research organizations, including beach profile data, shoreline length data, and GDP data. The rate of sea level rise varies from -18 to 21 mm/yr. We divide the data into 4 groups (Group A: +0 to 9mm, Group B: +10 to +20mm, Group C: -0 to -9mm, and Group D:-10 to -20mm). Our research focuses on types A and B only since both reflect increase on sea level rise. We find the correlation between the sea level rise and factors such as the economic parameter (α), sea level rise height (h), beach breaker wave (Hb), gravitational constant (g), period of wave (T), foreshore slope (i), and sand sizes (D). We conclude the sea level rise impact ($ lost) can be more scientifically and precisely predicted using our model.
Sea ice ridging in the eastern Weddell Sea
NASA Astrophysics Data System (ADS)
Lytle, V. I.; Ackley, S. F.
1991-10-01
In August 1986, sea ice ridge heights and spatial frequency in the eastern Weddell Sea were measured using a ship-based acoustical sounder. Using a minimum ridge sail height of 0.75 m, a total of 933 ridges were measured along a track length of 415 km. The ridge frequency varied from 0.4 to 10.5 ridges km-1. The mean height of the ridges was found to be about 1.1 m regardless of the ridge frequency. These results are compared to other ridging statistics from the Ross Sea and found to be similar. Comparison with Arctic data, however, indicates that the height and frequency of the ridges are considerably less in the Weddell Sea than in the Arctic. Whereas in the Arctic the mean ridge height tends to increase with the ridge frequency, we found that this was not the case in the Weddell Sea, where the mean ridge height remained constant irrespective of the ridge frequency. Estimates of the contribution of deformed ice to the total ice thickness are generally low except for a single 53-km section where the ridge frequency increased by an order of magnitude. This resulted in an increase in the equivalent mean ice thickness due to ridging from 0.04 m in the less deformed areas to 0.45 m in the highly deformed section. These values were found to be consistent with values obtained from drilled profile lines during the same cruise.
Experiments in Reconstructing Twentieth-Century Sea Levels
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Douglas, Bruce C.
2011-01-01
One approach to reconstructing historical sea level from the relatively sparse tide-gauge network is to employ Empirical Orthogonal Functions (EOFs) as interpolatory spatial basis functions. The EOFs are determined from independent global data, generally sea-surface heights from either satellite altimetry or a numerical ocean model. The problem is revisited here for sea level since 1900. A new approach to handling the tide-gauge datum problem by direct solution offers possible advantages over the method of integrating sea-level differences, with the potential of eventually adjusting datums into the global terrestrial reference frame. The resulting time series of global mean sea levels appears fairly insensitive to the adopted set of EOFs. In contrast, charts of regional sea level anomalies and trends are very sensitive to the adopted set of EOFs, especially for the sparser network of gauges in the early 20th century. The reconstructions appear especially suspect before 1950 in the tropical Pacific. While this limits some applications of the sea-level reconstructions, the sensitivity does appear adequately captured by formal uncertainties. All our solutions show regional trends over the past five decades to be fairly uniform throughout the global ocean, in contrast to trends observed over the shorter altimeter era. Consistent with several previous estimates, the global sea-level rise since 1900 is 1.70 +/- 0.26 mm/yr. The global trend since 1995 exceeds 3 mm/yr which is consistent with altimeter measurements, but this large trend was possibly also reached between 1935 and 1950.
Experimental Study on Tsunami Risk Reduction on Coastal Building Fronted by Sea Wall
Khan, M. T. R.; Shirazi, S. M.
2014-01-01
This experimental study was conducted to idealize the efficacy of sea wall in controlling the tsunami forces on onshore structures. Different types of sea walls were placed in front of the building model. The tsunami forces and the wave heights were measured with and without the sea wall conditions. Types of sea wall, wall height, and wall positions were varied simultaneously to quantify the force reductions. Maximum of 41% forces was reduced by higher sea wall, positioned closer proximity to the model whereas this reduction was about 27% when the wall height was half of the high wall. Experimental investigations revealed that wall with adequate height and placed closer to the structures enables a satisfactory predictor of the force reduction on onshore structures. Another set of tests were performed with perforated wall placing near the building model. Less construction cost makes the provision of perforated sea wall interesting. The overall results showed that the efficacy of perforated wall is almost similar to solid wall. Hence, it can be efficiently used instead of solid wall. Moreover, overtopped water that is stuck behind the wall is readily gone back to the sea through perforations releasing additional forces on the nearby structures. PMID:24790578
Using airborne laser scanning profiles to validate marine geoid models
NASA Astrophysics Data System (ADS)
Julge, Kalev; Gruno, Anti; Ellmann, Artu; Liibusk, Aive; Oja, Tõnis
2014-05-01
Airborne laser scanning (ALS) is a remote sensing method which utilizes LiDAR (Light Detection And Ranging) technology. The datasets collected are important sources for large range of scientific and engineering applications. Mostly the ALS is used to measure terrain surfaces for compilation of Digital Elevation Models but it can also be used in other applications. This contribution focuses on usage of ALS system for measuring sea surface heights and validating gravimetric geoid models over marine areas. This is based on the ALS ability to register echoes of LiDAR pulse from the water surface. A case study was carried out to analyse the possibilities for validating marine geoid models by using ALS profiles. A test area at the southern shores of the Gulf of Finland was selected for regional geoid validation. ALS measurements were carried out by the Estonian Land Board in spring 2013 at different altitudes and using different scan rates. The one wavelength Leica ALS50-II laser scanner on board of a small aircraft was used to determine the sea level (with respect to the GRS80 reference ellipsoid), which follows roughly the equipotential surface of the Earth's gravity field. For the validation a high-resolution (1'x2') regional gravimetric GRAV-GEOID2011 model was used. This geoid model covers the entire area of Estonia and surrounding waters of the Baltic Sea. The fit between the geoid model and GNSS/levelling data within the Estonian dry land revealed RMS of residuals ±1… ±2 cm. Note that such fitting validation cannot proceed over marine areas. Therefore, an ALS observation-based methodology was developed to evaluate the GRAV-GEOID2011 quality over marine areas. The accuracy of acquired ALS dataset were analyzed, also an optimal width of nadir-corridor containing good quality ALS data was determined. Impact of ALS scan angle range and flight altitude to obtainable vertical accuracy were investigated as well. The quality of point cloud is analysed by cross validation between overlapped flight lines and the comparison with tide gauge stations readings. The comparisons revealed that the ALS based profiles of sea level heights agree reasonably with the regional geoid model (within accuracy of the ALS data and after applying corrections due to sea level variations). Thus ALS measurements are suitable for measuring sea surface heights and validating marine geoid models.
NASA Astrophysics Data System (ADS)
Sheridan, S. C.; Lee, C. C.; Pirhalla, D.; Ransi, V.
2017-12-01
Sea-level fluctuations over time are a product of short-term weather events, as well as long-term secular trends in sea-level rise. With sea-levl rise, these fluctuations increasingly have substantial impacts upon coastal ecosystems and impact society through coastal flooding events. In this research, we assess the impact of short-term events, combined with sea-level rise, through synoptic climatological analysis, exploring whether circulation pattern identification can be used to enhance probabilistic forecasts of flood likelihood. Self-organizing maps (SOMs) were created for two discrete atmospheric variables: 700-hPa geopotential height (700z) and sea-level pressure (SLP). For each variable, a SOM array of patterns was created based on data spanning 25°-50°N and 60°-90°W for the period 1979-2014. Sea-level values were derived from tidal gauges between Cape May, New Jersey and Charleston, South Carolina, along the mid-Atlantic coast of the US. Both anomalous sea-level values, as well as nuisance flood occurrence (defined using the local gauge threshold), were assessed. Results show the impacts of both the inverted barometer effect as well as surface wind forcing on sea levels. With SLP, higher sea levels are associated with either patterns that were indicative of on-shore flow or cyclones. At 700z, ridges situated along the east coast are associated with higher sea levels. As the SOM matrix arranges atmospheric patterns in a continuum, the nodes of each SOM show a clear spatial pattern in terms of anomalous sea level, including some significant sea-level anomalies associated with relatively ambiguous pressure patterns. Further, multi-day transitions are also analyzed, showing rapidly deepening cyclones, or persistent onshore flow, can be associated with the greatest likelihood of nuisance floods. Results are weaker with 700z than SLP; however, in some cases, it is clear that the mid-tropospheric circulation can modulate the connection between sea-level anomalies and surface circulation.
NASA Astrophysics Data System (ADS)
Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean
2014-05-01
Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.
Sea level hazards: Altimetric monitoring of tsunamis and sea level rise
NASA Astrophysics Data System (ADS)
Hamlington, Benjamin Dillon
Whether on the short timescale of an impending tsunami or the much longer timescale of climate change-driven sea level rise, the threat stemming from rising and inundating ocean waters is a great concern to coastal populations. Timely and accurate observations of potentially dangerous changes in sea level are vital in determining the precautionary steps that need to be taken in order to protect coastal communities. While instruments from the past have provided in situ measurements of sea level at specific locations across the globe, satellites can be used to provide improved spatial and temporal sampling of the ocean in addition to producing more accurate measurements. Since 1993, satellite altimetry has provided accurate measurements of sea surface height (SSH) with near-global coverage. Not only have these measurements led to the first definitive estimates of global mean sea level rise, satellite altimetry observations have also been used to detect tsunami waves in the open ocean where wave amplitudes are relatively small, a vital step in providing early warning to those potentially affected by the impending tsunami. The use of satellite altimetry to monitor two specific sea level hazards is examined in this thesis. The first section will focus on the detection of tsunamis in the open ocean for the purpose of providing early warning to coastal inhabitants. The second section will focus on estimating secular trends using satellite altimetry data with the hope of improving our understanding of future sea level change. Results presented here will show the utility of satellite altimetry for sea level monitoring and will lay the foundation for further advancement in the detection of the two sea level hazards considered.
Holocene changes in sea level: Evidence in Micronesia
Shepard, F.P.; Curray, Joseph R.; Newman, W.A.; Bloom, A.L.; Newell, N.D.; Tracey, J.I.; Veeh, H.H.
1967-01-01
Investigation of 33 islands, scattered widely across the Caroline and Marshall Island groups in the Central Pacific revealed no emerged reefs in which corals had unquestionably formed in situ, or other direct evidence of postglacial high stands of sea level. Low unconsolidated rock terraces and ridges of reef-flat islands, mostly lying between tide levels, were composed of rubble conglomerates; carbon-14 dating of 11 samples from the conglomerates so far may suggest a former slightly higher sea level (nine samples range between 1890 and 3450 and one approaches 4500 years ago). However, recent hurricanes have produced ridges of comparable height and material, and in the same areas relics from World War II have been found cemented in place. Thus these datings do not in themselves necessarily indicate formerly higher sea levels. Rubble tracts are produced by storms under present conditions without any change in datum, and there seems to be no compelling evidence that they were not so developed during various periods in the past.
NASA Astrophysics Data System (ADS)
Ganeshan, M.; Wu, D. L.
2014-12-01
Due to recent changes in the Arctic environment, it is important to monitor the atmospheric boundary layer (ABL) properties over the Arctic Ocean, especially to explore the variability in ABL clouds (such as sensitivity and feedback to sea ice loss). For example, radiosonde and satellite observations of the Arctic ABL height (and low-cloud cover) have recently suggested a positive response to sea ice loss during October that may not occur during the melt season (June-September). Owing to its high vertical and spatiotemporal resolution, an independent ABL height detection algorithm using GPS Radio Occultation (GPS-RO) refractivity in the Arctic is explored. Similar GPS-RO algorithms developed previously typically define the level of the most negative moisture gradient as the ABL height. This definition is favorable for subtropical oceans where a stratocumulus-topped ABL is often capped by a layer of sharp moisture lapse rate (coincident with the temperature inversion). The Arctic Ocean is also characterized by stratocumulus cloud cover, however, the specific humidity does not frequently decrease in the ABL capping inversion. The use of GPS-RO refractivity for ABL height retrieval therefore becomes more complex. During winter months (December-February), when the total precipitable water in the troposphere is a minimum, a fairly straightforward algorithm for ABL height retrieval is developed. The applicability and limitations of this method for other seasons (Spring, Summer, Fall) is determined. The seasonal, interannual and spatial variability in the GPS-derived ABL height over the Arctic Ocean, as well as its relation to the underlying surface (ice vs. water), is investigated. The GPS-RO profiles are also explored for the evidence of low-level moisture transport in the cold Arctic environment.
Small-scale open ocean currents have large effects on wind wave heights
NASA Astrophysics Data System (ADS)
Ardhuin, Fabrice; Gille, Sarah T.; Menemenlis, Dimitris; Rocha, Cesar B.; Rascle, Nicolas; Chapron, Bertrand; Gula, Jonathan; Molemaker, Jeroen
2017-06-01
Tidal currents and large-scale oceanic currents are known to modify ocean wave properties, causing extreme sea states that are a hazard to navigation. Recent advances in the understanding and modeling capability of open ocean currents have revealed the ubiquitous presence of eddies, fronts, and filaments at scales 10-100 km. Based on realistic numerical models, we show that these structures can be the main source of variability in significant wave heights at scales less than 200 km, including important variations down to 10 km. Model results are consistent with wave height variations along satellite altimeter tracks, resolved at scales larger than 50 km. The spectrum of significant wave heights is found to be of the order of 70>
NASA Astrophysics Data System (ADS)
Zhu, C.; Zhang, S.; Xiao, F.; Li, J.; Yuan, L.; Zhang, Y.; Zhu, T.
2018-05-01
The NASA Operation IceBridge (OIB) mission is the largest program in the Earth's polar remote sensing science observation project currently, initiated in 2009, which collects airborne remote sensing measurements to bridge the gap between NASA's ICESat and the upcoming ICESat-2 mission. This paper develop an improved method that optimizing the selection method of Digital Mapping System (DMS) image and using the optimal threshold obtained by experiments in Beaufort Sea to calculate the local instantaneous sea surface height in this area. The optimal threshold determined by comparing manual selection with the lowest (Airborne Topographic Mapper) ATM L1B elevation threshold of 2 %, 1 %, 0.5 %, 0.2 %, 0.1 % and 0.05 % in A, B, C sections, the mean of mean difference are 0.166 m, 0.124 m, 0.083 m, 0.018 m, 0.002 m and -0.034 m. Our study shows the lowest L1B data of 0.1 % is the optimal threshold. The optimal threshold and manual selections are also used to calculate the instantaneous sea surface height over images with leads, we find that improved methods has closer agreement with those from L1B manual selections. For these images without leads, the local instantaneous sea surface height estimated by using the linear equations between distance and sea surface height calculated over images with leads.
Artist Concept of U.S.-European Jason-3 Ocean Altimetry Satellite over California
2013-05-23
Artist concept of the U.S.-European Jason-3 spacecraft over the California coast. Jason-3 will precisely measure the height of the ocean surface, allowing scientists to monitor ocean circulation and sea level.
Investigation Hydrometeorological Regime of the White Sea Based on Satellite Altimetry Data
NASA Astrophysics Data System (ADS)
Lebedev, Sergey A.
2016-08-01
The White Sea are the seas of the Arctic Ocean. Today complicated hydrodynamic, tidal, ice, and meteorological regimes of these seas may be investigated on the basis of remote sensing data, specifically of satellite altimetry data. Results of calibration and validation of satellite altimetry measurements (sea surface height and sea surface wind speed) and comparison with regional tidal model show that this type of data may be successfully used in scientific research and in monitoring of the environment. Complex analysis of the tidal regime of the White Sea and comparison between global and regional tidal models show advantages of regional tidal model for use in tidal correction of satellite altimetry data. Examples of using the sea level data in studying long-term variability of the Barents and White Seas are presented. Interannual variability of sea ice edge position is estimated on the basis of altimetry data.
NASA Astrophysics Data System (ADS)
Grombein, Thomas; Seitz, Kurt; Heck, Bernhard
2017-03-01
National height reference systems have conventionally been linked to the local mean sea level, observed at individual tide gauges. Due to variations in the sea surface topography, the reference levels of these systems are inconsistent, causing height datum offsets of up to ±1-2 m. For the unification of height systems, a satellite-based method is presented that utilizes global geopotential models (GGMs) derived from ESA's satellite mission Gravity field and steady-state Ocean Circulation Explorer (GOCE). In this context, height datum offsets are estimated within a least squares adjustment by comparing the GGM information with measured GNSS/leveling data. While the GNSS/leveling data comprises the full spectral information, GOCE GGMs are restricted to long wavelengths according to the maximum degree of their spherical harmonic representation. To provide accurate height datum offsets, it is indispensable to account for the remaining signal above this maximum degree, known as the omission error of the GGM. Therefore, a combination of the GOCE information with the high-resolution Earth Gravitational Model 2008 (EGM2008) is performed. The main contribution of this paper is to analyze the benefit, when high-frequency topography-implied gravity signals are additionally used to reduce the remaining omission error of EGM2008. In terms of a spectral extension, a new method is proposed that does not rely on an assumed spectral consistency of topographic heights and implied gravity as is the case for the residual terrain modeling (RTM) technique. In the first step of this new approach, gravity forward modeling based on tesseroid mass bodies is performed according to the Rock-Water-Ice (RWI) approach. In a second step, the resulting full spectral RWI-based topographic potential values are reduced by the effect of the topographic gravity field model RWI_TOPO_2015, thus, removing the long to medium wavelengths. By using the latest GOCE GGMs, the impact of topography-implied gravity signals on the estimation of height datum offsets is analyzed in detail for representative GNSS/leveling data sets in Germany, Austria, and Brazil. Besides considerable changes in the estimated offset of up to 3 cm, the conducted analyses show that significant improvements of 30-40% can be achieved in terms of a reduced standard deviation and range of the least squares adjusted residuals.
NASA Technical Reports Server (NTRS)
Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.
1995-01-01
The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.
NASA Astrophysics Data System (ADS)
Martucci, G.; Carniel, S.; Chiggiato, J.; Sclavo, M.; Lionello, P.; Galati, M. B.
2009-09-01
The study is a statistical analysis of sea states timeseries derived using the wave model WAM forced by the ERA-40 dataset in selected areas near the Italian coasts. For the period 1 January 1958 to 31 December 1999 the analysis yields: (i) the existence of a negative trend in the annual- and winter-averaged sea state heights; (ii) the existence of a turning-point in late 70's in the annual-averaged trend of sea state heights at a site in the Northern Adriatic Sea; (iii) the overall absence of a significant trend in the annual-averaged mean durations of sea states over thresholds; (iv) the assessment of the extreme values on a time-scale of thousand years. The analysis uses two methods to obtain samples of extremes from the independent sea states: the r-largest annual maxima and the peak-over-threshold. The two methods show statistical differences in retrieving the return values and more generally in describing the significant wave field. The study shows the existence of decadal negative trends in the significant wave heights and by this it conveys useful information on the wave climatology of the Italian seas during the second half of the 20th century.
Increasing the highest storm surge in Busan harbor
NASA Astrophysics Data System (ADS)
Oh, Sang Myeong; Moon, Il-Ju; Kwon, Suk Jae
2017-04-01
One of the most pronounced effects of climate change in coastal regions is sea level rise and storm surges. Busan in particular, the fifth largest container handling port in the world, has suffered from serious storm surges and experienced a remarkable mean sea level (MSL) rise. This study investigates a long-term variation of annual maximum surge height (AMSH) using sea level data observed in Busan over 53 years (1962 2014). The decomposition of astronomical tides and surge components shows that the AMSH has increased 18 cm over 53 years (i.e., 3.5 mm/year), which is much larger than the MSL trend (2.5 mm/year) in Busan. This significant increase in AMSH is mostly explained by the increased intensity of landfall typhoons over the Korean peninsula (KP), which is associated with the increase of sea surface temperature and the decrease of vertical wind shear at mid-latitudes of the western North Pacific. In a projected future warming environment, the combination of an increasing MSL and AMSH will accelerate the occurrence of record-breaking extreme sea levels, which will be a potential threat in Busan harbor.
NASA Astrophysics Data System (ADS)
Uebbing, Bernd; Roscher, Ribana; Kusche, Jürgen
2016-04-01
Satellite radar altimeters allow global monitoring of mean sea level changes over the last two decades. However, coastal regions are less well observed due to influences on the returned signal energy by land located inside the altimeter footprint. The altimeter emits a radar pulse, which is reflected at the nadir-surface and measures the two-way travel time, as well as the returned energy as a function of time, resulting in a return waveform. Over the open ocean the waveform shape corresponds to a theoretical model which can be used to infer information on range corrections, significant wave height or wind speed. However, in coastal areas the shape of the waveform is significantly influenced by return signals from land, located in the altimeter footprint, leading to peaks which tend to bias the estimated parameters. Recently, several approaches dealing with this problem have been published, including utilizing only parts of the waveform (sub-waveforms), estimating the parameters in two steps or estimating additional peak parameters. We present a new approach in estimating sub-waveforms using conditional random fields (CRF) based on spatio-temporal waveform information. The CRF piece-wise approximates the measured waveforms based on a pre-derived dictionary of theoretical waveforms for various combinations of the geophysical parameters; neighboring range gates are likely to be assigned to the same underlying sub-waveform model. Depending on the choice of hyperparameters in the CRF estimation, the classification into sub-waveforms can either be more fine or coarse resulting in multiple sub-waveform hypotheses. After the sub-waveforms have been detected, existing retracking algorithms can be applied to derive water heights or other desired geophysical parameters from particular sub-waveforms. To identify the optimal heights from the multiple hypotheses, instead of utilizing a known reference height, we apply a Dijkstra-algorithm to find the "shortest path" of all possible heights. We apply our approach to Jason-2 data in different coastal areas, such as the Bangladesh coast or in the North Sea and compare our sea surface heights to various existing retrackers. Using the sub-waveform approach, we are able to derive meaningful water heights up to a few kilometers off the coast, where conventional retrackers, such as the standard ocean retracker, no longer provide useful data.
NASA Astrophysics Data System (ADS)
Vergos, Georgios S.; Grebenitcharsky, Rossen S.; Natsiopoulos, Dimitrios A.; Al-Kherayef, Othman; Al-Muslmani, Bandar
2017-04-01
The availability of a unified and well-established national vertical system and frame is of outmost importance in support of everyday geodetic, surveying and engineering applications. Vertical reference system (VRS) modernization and unification has gained increased importance especially during the last years due to the advent of gravity-field dedicated missions and GOCE in particular, since it is the first time that an unprecedented in accuracy dataset of gravity field functionals has become available at a global scale. The Kingdom of Saudi Arabia VRS is outdated and exhibits significant tilts and biases, so that during the last couple of years an extensive effort has been put forth in order to: re-measure by traditional levelling the entire network, establish new benchmarks (BMs), perform high-quality absolute and relative gravity observations and construct new tide-gauge (TG) stations in both the Arab and Red Seas. The Current work focuses on the combined analysis of the existing, recently collected, terrestrial observations with satellite altimetry data and the latest GOCE-based Earth Geopotential Models (EGMs) in order to provide a pre-definition of the KSA VRS. To that respect, a 30-year satellite altimetry time-series is constructed for each TG station in order to derive both the Mean Sea Level (MSL) as well as the sea level trends. This information is analyzed, through Wavelet (WL) Multi-resolution Analysis (MRA), with the TG sea level records in order to determine annual, semi-annual and secular trends of the Red and Arab Sea variations. Finally, the so-derived trends and MSL are combined with local gravity observations at the TG BMs, levelling offsets between the TGs and the network BMs, levelling observations between the network BMs themselves and GOCE-based EGM-derived geoid heights and potential values. The validation of GOCE contribution and of the satellite altimetry derived MSL and trends is based on a simultaneous adjustment of the entire KSA vertical network, keeping fixed various TG stations and investigating the distortions introduced in the adjusted BM orthometric heights. Finally, a pre-definition of the KSA VRS is detailed as vertical offsets and potential differences δWo relative to the recently adopted conventional zero-level geopotential value by IAG. Conclusions regarding the contribution of satellite altimetry and GOCE are drown along with the necessary information for the definition of the KSA vertical datum and its connection to an International Height References System (IHRS).
Sea Ice Pressure Ridge Height Distributions for the Arctic Ocean in Winter, Just Prior to Melt
NASA Astrophysics Data System (ADS)
Duncan, K.; Farrell, S. L.; Richter-Menge, J.; Hutchings, J.; Dominguez, R.; Connor, L. N.
2016-12-01
Pressure ridges are one of the most dominant morphological features of the Arctic sea ice pack. An impediment to navigation, pressure ridges are also of climatological interest since they impact the mass, energy and momentum transfer budgets for the Arctic Ocean. Understanding the regional and seasonal distributions of ridge sail heights, and their variability, is important for quantifying total sea ice mass, and for improved treatment of sea ice dynamics in high-resolution numerical models. Observations of sail heights from airborne and ship-based platforms have been documented in previous studies, however studies with both high spatial and temporal resolution, across multiple regions of the Arctic, are only recently possible with the advent of dedicated airborne surveys of the Arctic Ocean. In this study we present results from the high-resolution Digital Mapping System (DMS), flown as part of NASA's Operation IceBridge missions. We use DMS imagery to calculate ridge sail heights, derived from the shadows they cast combined with the solar elevation angle and the known pixel size of each image. Our analyses describe sea ice conditions at the end of winter, during the months of March and April, over a period spanning seven years, from 2010 to 2016. The high spatial resolution (0.1m) and temporal extent (seven years) of the DMS data set provides, for the first time, the full sail-height distributions of both first-year and multi-year sea ice. We present the inter-annual variability in sail height distributions for both the Central Arctic and the Beaufort and Chukchi Seas. We validate our results via comparison with spatially coincident high-resolution SAR imagery and airborne laser altimeter elevations.
NASA Astrophysics Data System (ADS)
Kulawardhana, Ranjani W.; Feagin, Rusty A.; Popescu, Sorin C.; Boutton, Thomas W.; Yeager, Kevin M.; Bianchi, Thomas S.
2015-03-01
Spartina alterniflora salt marshes are among the most productive ecosystems on earth, and represent a substantial global carbon sink. Understanding the spatial heterogeneity in the distribution of both above- and below-ground carbon in these wetland ecosystems is especially important considering their potential in carbon sequestration projects, as well as for conservation efforts in the context of a changing climate and rising sea-level. Through the use of extensive field sampling and remote sensing data (Light Detection and Ranging - LiDAR, and aerial images), we sought to map and explain how vegetation biomass and soil carbon are related to elevation and relative sea-level change in a S. alterniflora dominated salt marsh on Galveston Island, Texas. The specific objectives of this study were to: 1) understand the relationship between elevation and the distribution of salt marsh vegetation percent cover, plant height, plant density, above-and below-ground biomass, and carbon, and 2) evaluate the temporal changes in relative sea-level history, vegetation transitions, and resulting changes in the patterns of soil carbon distribution. Our results indicated a clear zonation of terrain and vegetation characteristics (i.e., height, cover and biomass). In the soil profile, carbon concentrations and bulk densities showed significant and abrupt change at a depth of ∼10-15 cm. This apparent transition in the soil characteristics coincided temporally with a transformation of the land cover, as driven by a rapid increase in relative sea-level around this time at the sample locations. The amounts of soil carbon stored in recently established S. alterniflora intertidal marshes were significantly lower than those that have remained in situ for a longer period of time. Thus, in order to quantify and predict carbon in coastal wetlands, and also to understand the heterogeneity in the spatial distribution of carbon stocks, it is essential to understand not only the elevation, the relative sea-level rise rate, and the vertical accretion rate - but also the history of land cover change and vegetation transition.
Coral Reef Response to Marine Isotope Stage (MIS) 5e Sea Level Changes in the Granitic Seychelles
NASA Astrophysics Data System (ADS)
Vyverberg, K.; Dechnik, B.; Dutton, A.; Webster, J.; Zwartz, D.
2015-12-01
Sea-level position has a direct control on coral reef morphology and composition. Examining changes in these parameters in fossil reefs can inform reconstructions of past sea-level behavior and, indirectly, ice sheet dynamics. Here we provide a detailed examination of fossil reefs from Marine Isotope Stage (MIS) 5e. These fossil reefs are located in the granitic Seychelles, which is tectonically stable site and far-field from the former margins of Northern Hemisphere ice sheets. To reconstruct relative sea level (RSL), we combine RTK and Total Station elevation surveys with sedimentary and taxonomic evaluations of eight fossil reef sites. Carbonate coralgal reef buildups of the shallowest portion of the reef are preserved in limestone outcrops that are protected by granite boulder overhangs. Two primary outcrop morphologies were observed at these sites: plastering and massive. Plastering outcrops manifest as thin (~ 1 m height x 1 m width x 0.5 m depth) vertical successions of reef framework and detritus, while massive outcrops are larger (~ 2-6 m height x 2-6 m width x 1-2 m depth). The base of these limestone outcrops consistently record a period of reef growth, characterized by corals or coralline algae colonizing the surface or face of a granite boulder and building upwards. This lower reefal unit is capped by a disconformity that is commonly overlain by coral rubble or a ~10 cm thick layer of micrite. Rubble units contain coarse fragments of the coralgal reef buildups while micrite layers consist of a relatively homogeneous fine-grained carbonate, bearing coral-dwelling, Pyrgomatid barnacles. In many of the outcrops, this succession is repeated upsection with another unit of coralgal reef framework capped by a disconformity that is recognized by the sharp transition to coral rubble or micrite with barnacles. We identified four distinct fossil coralgal assemblages in the limestone outcrops. These assemblages are consistent with modern assemblages which constrain the paleo-water depth histories at each site. The combination of reef taxonomy as well as accretion hiatuses provides robust control on the reef, and thus sea-level, history of this region, and by extension, global mean sea level, during MIS 5e.
NASA Technical Reports Server (NTRS)
Halpern, D.; Zlotnicki, V.; Newman, J.; Brown, O.; Wentz, F.
1991-01-01
Monthly mean global distributions for 1988 are presented with a common color scale and geographical map. Distributions are included for sea surface height variation estimated from GEOSAT; surface wind speed estimated from the Special Sensor Microwave Imager on the Defense Meteorological Satellite Program spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer on NOAA spacecrafts; and the Cartesian components of the 10m height wind vector computed by the European Center for Medium Range Weather Forecasting. Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.
The influence of terrain forcing on the initiation of deep convection over Mediterranean islands
NASA Astrophysics Data System (ADS)
Barthlott, Christian; Kirshbaum, Daniel
2013-04-01
The influence of mountainous islands on the initiation of deep convection is investigated using the Consortium for Small-scale Modeling (COSMO) model. The study day is 26 August 2009 on which moist convection occurred over both the Corsica and Sardinia island in the Mediterranean Sea. Sensitivity runs with systematically modified topography are explored to evaluate the relative importance of the land-sea contrast and the terrain height for convection initiation. Whereas no island precipitation is simulated when the islands are completely removed, all simulations that represent these land surfaces develop convective precipitation. Although convection initiates progressively earlier in the day over taller islands, the precipitation rates and accumulations do not show a fixed relationship with terrain height. This is due to the competing effects of different physical processes. First, whereas the forcing for low-level ascent increases over taller islands, the boundary-layer moisture supply decreases, which diminishes the conditional instability and precipitable water. Second, whereas taller islands enhance the inland propagation speeds of sea-breeze fronts, they also mechanically block these fronts and prevent them from reaching the island interior. As a result, the island precipitation is rather insensitive to island terrain height except for one particular case in which the island precipitation increases considerably due to an optimal superposition of the sea breeze and upslope flow. These results demonstrate the complexity of interactions between sea breezes and orography and reinforce that an adequate representation of detailed topographic features is necessary to account for thermally induced wind systems that initiate deep convection.
Storlazzi, Curt D.; Berkowitz, Paul; Reynolds, Michelle H.; Logan, Joshua B.
2013-01-01
Two inundation events in 2011 underscored the potential for elevated water levels to damage infrastructure and affect terrestrial ecosystems on the low-lying Northwestern Hawaiian Islands in the Papahānaumokuākea Marine National Monument. The goal of this study was to compare passive "bathtub" inundation models based on geographic information systems (GIS) to those that include dynamic water levels caused by wave-induced set-up and run-up for two end-member island morphologies: Midway, a classic atoll with islands on the shallow (2-8 m) atoll rim and a deep, central lagoon; and Laysan, which is characterized by a deep (20-30 m) atoll rim and an island at the center of the atoll. Vulnerability to elevated water levels was assessed using hindcast wind and wave data to drive coupled physics-based numerical wave, current, and water-level models for the atolls. The resulting model data were then used to compute run-up elevations using a parametric run-up equation under both present conditions and future sea-level-rise scenarios. In both geomorphologies, wave heights and wavelengths adjacent to the island shorelines increased more than three times and four times, respectively, with increasing values of sea-level rise, as more deep-water wave energy could propagate over the atoll rim and larger wind-driven waves could develop on the atoll. Although these increases in water depth resulted in decreased set-up along the islands’ shorelines, the larger wave heights and longer wavelengths due to sea-level rise increased the resulting wave-induced run-up. Run-up values were spatially heterogeneous and dependent on the direction of incident wave direction, bathymetry, and island configuration. Island inundation was modeled to increase substantially when wave-driven effects were included, suggesting that inundation and impacts to infrastructure and terrestrial habitats will occur at lower values of predicted sea-level rise, and thus sooner in the 21st century, than suggested by passive GIS-based "bathtub" inundation models. Lastly, observations and the modeling results suggest that classic atolls with islands on a shallow atoll rim are more susceptible to the combined effects of sea-level rise and wave-driven inundation than atolls characterized by a deep atoll rim.
1997-12-08
This image of the Pacific Ocean was produced using sea surface height measurements taken by NASA U.S./French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Dec. 1, 1997.
NASA Astrophysics Data System (ADS)
Pindsoo, Katri; Soomere, Tarmo
2016-04-01
The water level time series and particularly temporal variations in water level extremes usually do not follow any simple rule. Still, the analysis of linear trends in extreme values of surge levels is a convenient tool to obtain a first approximation of the future projections of the risks associated with coastal floodings. We demonstrate how this tool can be used to extract essential information about concealed changes in the forcing factors of seas and oceans. A specific feature of the Baltic Sea is that sequences of even moderate storms may raise the average sea level by almost 1 m for a few weeks. Such events occur once in a few years. They substantially contribute to the extreme water levels in the eastern Baltic Sea: the most devastating coastal floodings occur when a strong storm from unfortunate direction arrives during such an event. We focus on the separation of subtidal (weekly-scale) processes from those which are caused by a single storm and on establishing how much these two kinds of events have contributed to the increase in the extreme water levels in the eastern Baltic Sea. The analysis relies on numerically reconstructed sea levels produced by the RCO (Rossby Center, Swedish Meteorological and Hydrological Institute) ocean model for 1961-2005. The reaction of sea surface to single storm events is isolated from the local water level time series using a running average over a fixed interval. The distribution of average water levels has an almost Gaussian shape for averaging lengths from a few days to a few months. The residual (total water level minus the average) can be interpreted as a proxy of the local storm surges. Interestingly, for the 8-day average this residual almost exactly follows the exponential distribution. Therefore, for this averaging length the heights of local storm surges reflect an underlying Poisson process. This feature is universal for the entire eastern Baltic Sea coast. The slopes of the exponential distribution for low and high water levels are different, vary markedly along the coast and provide a useful quantification of the vulnerability of single coastal segments with respect to coastal flooding. The formal linear trends in the extreme values of these water level components exhibit radically different spatial variations. The slopes of the trends in the weekly average are almost constant (~4 cm/decade for 8-day running average) along the entire eastern Baltic Sea coast. This first of all indicates that the duration of storm sequences has increased. The trends for maxima of local storm surge heights represent almost the entire spatial variability in the water level extremes. Their slopes are almost zero at the open Baltic Proper coasts of the Western Estonian archipelago. Therefore, an increase in wind speed in strong storms is unlikely in this area. In contrast, the slopes in question reach 5-7 cm/decade in the eastern Gulf of Finland and Gulf of Riga. This feature suggests that wind direction in strongest storms may have rotated in the northern Baltic Sea.
Display of historical and hypothetical tsunami on the coast of Sakhalin Island
NASA Astrophysics Data System (ADS)
Kostenko, Irina; Zaytsev, Andrey; Kurkin, Andrey; Yalciner, Ahmet
2014-05-01
Tsunami waves achieve the coast of the Sakhalin Island and their sources are located in the Japan Sea, in the Okhotsk Sea, in Kuril Islands region and in the Pacific Ocean. Study of tsunami generation characteristics and its propagation allows studying display of the tsunami on the various parts of the island coast. For this purpose the series of computational experiments of some historical tsunamis was carried out. Their sources located in Japan Sea and Kuril Islands region. The simulation results are compared with the observations. Analysis of all recorded historical tsunami on coast of Sakhalin Island was done. To identify the possible display of the tsunami on the coast of Sakhalin Island the series of computational experiments of hypothetical tsunamis was carried out. Their sources located in the Japan Sea and in the Okhotsk Sea. There were used hydrodynamic sources. There were used different parameters of sources (length, width, height, raising and lowering of sea level), which correspond to earthquakes of various magnitudes. The analysis of the results was carried out. Pictures of the distribution of maximum amplitudes from each tsunami were done. Areas of Okhotsk Sea, Japan Sea and offshore strip of Sakhalin Island with maximum tsunami amplitudes were defined. Graphs of the distribution of maximum tsunami wave heights along the coast of the Sakhalin Island were plotted. Based on shallow-water equation tsunami numerical code NAMI DANCE was used for numerical simulations. This work was supported by ASTARTE project.
Observations of sea ice ridging in the Weddell Sea
NASA Astrophysics Data System (ADS)
Granberg, Hardy B.; Leppaäranta, Matti
1999-11-01
Sea ice surface topography data were obtained by helicopter-borne laser profiling during the First Finnish Antarctic Expedition (FINNARP-89). The measurements were made near the ice margin at about 73°S, 27°W in the eastern Weddell Sea on December 31, 1989, and January 1, 1990. Five transects, ranging in length from 127 to 163 km and covering a total length of 724 km, are analyzed. With a lower cutoff of 0.91 m the overall ridge frequency was 8.4 ridges/km and the average ridge height was 1.32 m. The spatial variations in ridging were large; for 36 individual 20-km segments the frequencies were 2-16 ridges/km and the mean heights were 1.16-1.56 m. The frequencies and mean heights were weakly correlated. The distributions of the ridge heights followed the exponential distribution; the spacings did not pass tests for either the exponential or the lognormal distribution, but the latter was much closer. In the 20-km segments the areally averaged thickness of ridged ice was 0.51±0.28 m, ranging from 0.10 to 1.15 m. The observed ridge size and frequency are greater than those known for the Ross Sea. Compared with the central Arctic, the Weddell Sea ridging frequencies are similar but the ridge heights are smaller, possibly as a result of differences in snow accumulation.
NASA Technical Reports Server (NTRS)
Guest, DeNeice
2007-01-01
The Nation uses water-level data for a variety of practical purposes, including nautical charting, maritime navigation, hydrography, coastal engineering, and tsunami and storm surge warnings. Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years. NOAA s PORTS (Physical Oceanographic Real-Time System) DST (decision support tool), managed by the Center for Operational Oceanographic Products and Services, supports safe and cost-efficient navigation by providing ship masters and pilots with accurate real-time information required to avoid groundings and collisions. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s PORTS. NASA has a long heritage of collecting data for ocean research, including its current Terra and Aqua missions. Numerous other missions provide additional important information for coastal management issues, and data collection will continue in the coming decade with such missions as the OSTM (Ocean Surface Topography Mission). OSTM will provide data on sea-surface heights for determining ocean circulation, climate change, and sea-level rise. We suggest that NASA incorporate OSTM altimeter data (C- and Ku-band) into NOAA s PORTS DST in support of NASA s Coastal Management National Application with secondary support to the Disaster Management and Public Health National Applications.
NASA Astrophysics Data System (ADS)
Martucci, G.; Carniel, S.; Chiggiato, J.; Sclavo, M.; Lionello, P.; Galati, M. B.
2010-06-01
The study is a statistical analysis of sea states timeseries derived using the wave model WAM forced by the ERA-40 dataset in selected areas near the Italian coasts. For the period 1 January 1958 to 31 December 1999 the analysis yields: (i) the existence of a negative trend in the annual- and winter-averaged sea state heights; (ii) the existence of a turning-point in late 80's in the annual-averaged trend of sea state heights at a site in the Northern Adriatic Sea; (iii) the overall absence of a significant trend in the annual-averaged mean durations of sea states over thresholds; (iv) the assessment of the extreme values on a time-scale of thousand years. The analysis uses two methods to obtain samples of extremes from the independent sea states: the r-largest annual maxima and the peak-over-threshold. The two methods show statistical differences in retrieving the return values and more generally in describing the significant wave field. The r-largest annual maxima method provides more reliable predictions of the extreme values especially for small return periods (<100 years). Finally, the study statistically proves the existence of decadal negative trends in the significant wave heights and by this it conveys useful information on the wave climatology of the Italian seas during the second half of the 20th century.
TOPEX/El Nino Watch - Warm Water Pool is Thinning, Feb, 5, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Feb. 5, 1998 and sea surface height is an indicator of the heat content of the ocean. The area and volume of the El Nino warm water pool that is affecting global weather patterns remains extremely large, but the pool has thinned along the equator and near the coast of South America. This 'thinning' means that the warm water is not as deep as it was a few months ago. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition that they would expect to see during the ocean's gradual transition back to normal sea level. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through the spring.
For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.govAnalysis of the most recent data of Cascais Tide Gauge
NASA Astrophysics Data System (ADS)
Antunes, Carlos; Taborda, Rui; Mendes, Virgílio B.
2010-05-01
In order to meet international standards and to integrate sea level changes and tsunami monitoring networks, Cascais tide gauge, one of the oldest in the world, has been upgraded in 2003 with new acoustic equipment with digital data acquisition, temperature and air-pressure sensors, and internet connection for real time data. The new tide gauge is located very close to the old analogical gauge, which is still working. Datum links between both gauges and the permanent GPS station of Cascais were made and height differences between gauges and the GPS station have been monitored to verify site stability and to estimate the absolute vertical velocity of the site, and therefore, the absolute sea level changes. Tide gauge data from 2000 to 2009 has been analyzed and relative and absolute sea level rise rates have been estimated. The estimation of sea level rise rate with the short baseline of 10 years is made with the daily mean sea level data corrected from the inverse barometric effect. The relative sea level trend is obtained from a 60-day moving average run over the corrected daily mean sea level. The estimated rate has shown greater stability in contrast to the analysis of daily mean sea level raw data, which shows greater variability and uncertainty. Our results show a sea level rise rate of 2.6 mm/year (± 0.3 mm/year), higher than previous rates (2.1 mm/year for 1990 decade and 1.6 mm/year from 1920 to 2000), which is compatible with a sea level rise acceleration scenario. From the analysis of Cascais GPS data, for the period 1990.0 to 2010.0 we obtain an uplift rate of 0.3 mm/year leading to an absolute sea level rise of 2.9 mm/year for Cascais, under the assumption, as predicted by the ICE-5G model, that Cascais has no vertical displacement caused by the post-glacial isostatic adjustment.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Li, Yan; Shao, Hao; Zhong, Yaozhao; Zhang, Sai; Zhao, Zongxi
2012-06-01
Band structure and wave localization are investigated for sea surface water waves over large-scale sand wave topography. Sand wave height, sand wave width, water depth, and water width between adjacent sand waves have significant impact on band gaps. Random fluctuations of sand wave height, sand wave width, and water depth induce water wave localization. However, random water width produces a perfect transmission tunnel of water waves at a certain frequency so that localization does not occur no matter how large a disorder level is applied. Together with theoretical results, the field experimental observations in the Taiwan Bank suggest band gap and wave localization as the physical mechanism of sea surface water wave propagating over natural large-scale sand waves.
TOPEX/El Nino Watch - El Nino Warm Water Pool Decreasing, Jan, 08, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Jan. 8, 1998, and sea surface height is an indicator of the heat content of the ocean. The volume of the warm water pool related to the El Nino has decreased by about 40 percent since its maximum in early November, but the area of the warm water pool is still about one and a half times the size of the continental United States. The volume measurements are computed as the sum of all the sea surface height changes as compared to normal ocean conditions. In addition, the maximum water temperature in the eastern tropical Pacific, as measured by the National Oceanic and Atmospheric Administration (NOAA), is still higher than normal. Until these high temperatures diminish, the El Nino warm water pool still has great potential to disrupt global weather because the high water temperatures directly influence the atmosphere. Oceanographers believe the recent decrease in the size of the warm water pool is a normal part of El Nino's natural rhythm. TOPEX/Poseidon has been tracking these fluctuations of the El Nino warm pool since it began in early 1997. These sea surface height measurements have provided scientists with their first detailed view of how El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.
The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using these global data, limited regional measurements from buoys and ships, and a forecasting model of the ocean-atmosphere system, the National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration, (NOAA), has issued an advisory indicating the presence of a strong El Nino condition throughout the winter.For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.govPrecise mean sea level measurements using the Global Positioning System
NASA Technical Reports Server (NTRS)
Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian
1994-01-01
This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and temporal resolution higher than that available from altimeter data.
Allowances for evolving coastal flood risk under uncertain local sea-level rise
NASA Astrophysics Data System (ADS)
Buchanan, M. K.; Kopp, R. E.; Oppenheimer, M.; Tebaldi, C.
2015-12-01
Sea-level rise (SLR) causes estimates of flood risk made under the assumption of stationary mean sea level to be biased low. However, adjustments to flood return levels made assuming fixed increases of sea level are also inaccurate when applied to sea level that is rising over time at an uncertain rate. To accommodate both the temporal dynamics of SLR and their uncertainty, we develop an Average Annual Design Life Level (AADLL) metric and associated SLR allowances [1,2]. The AADLL is the flood level corresponding to a time-integrated annual expected probability of occurrence (AEP) under uncertainty over the lifetime of an asset; AADLL allowances are the adjustment from 2000 levels that maintain current risk. Given non-stationary and uncertain SLR, AADLL flood levels and allowances provide estimates of flood protection heights and offsets for different planning horizons and different levels of confidence in SLR projections in coastal areas. Allowances are a function primarily of local SLR and are nearly independent of AEP. Here we employ probabilistic SLR projections [3] to illustrate the calculation of AADLL flood levels and allowances with a representative set of long-duration tide gauges along U.S. coastlines. [1] Rootzen et al., 2014, Water Resources Research 49: 5964-5972. [2] Hunter, 2013, Ocean Engineering 71: 17-27. [3] Kopp et al., 2014, Earth's Future 2: 383-406.
Observing and Studying Extreme Low Pressure Events with Altimetry
Carrère, Loren; Mertz, Françoise; Dorandeu, Joel; Quilfen, Yves; Patoux, Jerome
2009-01-01
The ability of altimetry to detect extreme low pressure events and the relationship between sea level pressure and sea level anomalies during extra-tropical depressions have been investigated. Specific altimeter treatments have been developed for tropical cyclones and applied to obtain a relevant along-track sea surface height (SSH) signal: the case of tropical cyclone Isabel is presented here. The S- and C-band measurements are used because they are less impacted by rain than the Ku-band, and new sea state bias (SSB) and wet troposphere corrections are proposed. More accurate strong altimeter wind speeds are computed thanks to the Young algorithm. Ocean signals not related to atmospheric pressure can be removed with accuracy, even within a Near Real Time context, by removing the maps of sea level anomaly (SLA) provided by SSALTO/Duacs. In the case of Extra-Tropical Depressions, the classical altimeter processing can be used. Ocean signal not related to atmospheric pressure is along-track filtered. The sea level pressure (SLP)-SLA relationship is investigated for the North Atlantic, North Pacific and Indian oceans; three regression models are proposed allowing restoring an altimeter SLP with a mean error of 5 hPa if compared to ECMWF or buoys SLP. The analysis of barotropic simulation outputs points out the regional variability of the SLP/Model Sea Level relationship and the wind effects. PMID:22573955
Coastal vulnerability assessment of the Northern Gulf of Mexico to sea-level rise and coastal change
Pendleton, E.A.; Barras, J.A.; Williams, S.J.; Twichell, D.C.
2010-01-01
A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise along the Northern Gulf of Mexico from Galveston, TX, to Panama City, FL. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, historical shoreline change rate, mean tidal range, and mean significant wave height. The rankings for each variable are combined and an index value is calculated for 1-kilometer grid cells along the coast. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. The CVI assessment presented here builds on an earlier assessment conducted for the Gulf of Mexico. Recent higher resolution shoreline change, land loss, elevation, and subsidence data provide the foundation for a better assessment for the Northern Gulf of Mexico. The areas along the Northern Gulf of Mexico that are likely to be most vulnerable to sea-level rise are parts of the Louisiana Chenier Plain, Teche-Vermillion Basin, and the Mississippi barrier islands, as well as most of the Terrebonne and Barataria Bay region and the Chandeleur Islands. These very high vulnerability areas have the highest rates of relative sea-level rise and the highest rates of shoreline change or land area loss. The information provided by coastal vulnerability assessments can be used in long-term coastal management and policy decision making.
Projecting Future Sea Level Rise for Water Resources Planning in California
NASA Astrophysics Data System (ADS)
Anderson, J.; Kao, K.; Chung, F.
2008-12-01
Sea level rise is one of the major concerns for the management of California's water resources. Higher water levels and salinity intrusion into the Sacramento-San Joaquin Delta could affect water supplies, water quality, levee stability, and aquatic and terrestrial flora and fauna species and their habitat. Over the 20th century, sea levels near San Francisco Bay increased by over 0.6ft. Some tidal gauge and satellite data indicate that rates of sea level rise are accelerating. Sea levels are expected to continue to rise due to increasing air temperatures causing thermal expansion of the ocean and melting of land-based ice such as ice on Greenland and in southeastern Alaska. For water planners, two related questions are raised on the uncertainty of future sea levels. First, what is the expected sea level at a specific point in time in the future, e.g., what is the expected sea level in 2050? Second, what is the expected point of time in the future when sea levels will exceed a certain height, e.g., what is the expected range of time when the sea level rises by one foot? To address these two types of questions, two factors are considered: (1) long term sea level rise trend, and (2) local extreme sea level fluctuations. A two-step approach will be used to develop sea level rise projection guidelines for decision making that takes both of these factors into account. The first step is developing global sea level rise probability distributions for the long term trends. The second step will extend the approach to take into account the effects of local astronomical tides, changes in atmospheric pressure, wind stress, floods, and the El Niño/Southern Oscillation. In this paper, the development of the first step approach is presented. To project the long term sea level rise trend, one option is to extend the current rate of sea level rise into the future. However, since recent data indicate rates of sea level rise are accelerating, methods for estimating sea level rise that account for this acceleration are needed. One such method is an empirical relationship between air temperatures and global sea levels. The air temperature-sea level rise relationship was applied to the 12 climate change projections selected by the California Climate Action Team to estimate future sea levels. The 95% confidence level developed from the historical data was extrapolated to estimate the uncertainties in the future projections. To create sea level rise trend probability distributions, a lognormal probability distribution and a generalized extreme value probability distribution are used. Parameter estimations for these distributions are subjective and inevitably involve uncertainties, which will be improved as more research is conducted in this area.
New constraints on MIS 7 and 5 relative sea-level at Bermuda: a speleothem approach
NASA Astrophysics Data System (ADS)
Wainer, Karine; Henderson, Gideon; Mason, Andrew; Thomas, Alexander; Williams, Bruce; Rowe, Mark; van Hengstum, Peter; Chandler, Robert
2014-05-01
It is now widely accepted that a sea-level rise is associated with global warming [1]. However, its rate, and the height it might reach by the end of the century remain poorly constrained. This study aims to provide better information and precision on the rates and magnitudes of past sea-level change, for periods when sea-level is close to its modern value, using speleothems from Bermudian caves. Speleothems interrupt their growth when they are submerged by sea-water, so U-Th dating periods of growth in coastal sites allows the reconstruction of past sea-level variation versus absolute time [e.g. 2,3,4]. We will present new MC-ICP-MS U-Th ages, trace elements and isotopic data from a set of speleothems (stalagmites, stalactites, flowstones) collected from -14 to +12 m versus modern sea level from several caves in this northern Atlantic archipelago. Relative sea-level (RSL) at Bermuda is of particular interest because it is at a distance from northern hemisphere ice sheets where the isostatic response to ice-unloading is uncertain. RSL reconstruction therefore provides both an indicates of possible rates of sea level change, and a test for glacial-isostatic-adjustment (GIA) models. We will present new relative sea level data for late MIS7, and the different highstands of MIS5. The RSL at Bermuda for these episodes appears to be higher than present. For MIS5a, this is significantly distinct from what is expected from the eustatic sea level. These results will be considered in the context of previous assessments of eustatic change, and of GIA models. [1] Intergovernmental Panel on Climate Change (2007) Contribution of Working Group I to the Fourth Assessment Report, Cambridge Univ. Press. [2] Harmon et al. (1981) Nature 289, 357-360. [3] Richards et al. (1994) Nature 367, 481-483. [4] Bard (2002) EPSL 196, 135-146.
Monitoring Sea Level At L'Estartit, Spain
NASA Astrophysics Data System (ADS)
Martinez-Benjamin, J.; Ortiz Castellon, M.; Martinez-Garcia, M.; Talaya, J.; Rodriguez Velasco, G.; Perez, B.
2007-12-01
Sea level is an environmental variable which is widely recognised as being important in many scientific disciplines as a control parameter for coastal dynamical processes or climate processes in the coupled atmosphere-ocean systems, as well as engineering applications. A major source of sea-level data are the national networks of coastal tide gauges, in Spain belonging to different institutions as the Instituto Geográfico Nacional (IGN), Puertos del Estado (PE), Instituto Hidrográfico de la Marina (IHM), Ports de la Generalitat, etc. Three Begur Cape experiences on radar altimeter calibration and marine geoid mapping made on 1999, 2000 and 2002 are overviewed. The marine geoid has been used to relate the coastal tide gauge data from l'Estartit harbour to off-shore altimetric data. The necessity to validate and calibrate the satellite's altimeter due to increasing needs in accuracy and long term integrity implies establishing calibration sites with enhanced ground based methods for sea level monitoring. A technical Spanish contribution to the calibration experience has been the design of GPS buoys and GPS catamaran taking in account the University of Colorado at Boulder and Senetosa/Capraia designs. Altimeter calibration is essential to obtain an absolute measure of sea level, as are knowing the instrument's drifts and bias. Specially designed tidegauges are necessary to improve the quality of altimetric data, preferably near the satellite track. Further, due to systematic differences a month instruments onboard different satellites, several in-situ calibrations are essentials to tie their systematic differences. L'Estartit tide gauge is a classical floating tide gauge set up in l'Estartit harbour (NE Spain) in 1990. It provides good quality information about the changes in the sea heights at centimetre level, that is the magnitude of the common tides in theMediterranean. In the framework of a Spanish Space Project, ref:ESP2001- 4534-PE, the instrumentation of sea level measurements as been improved by providing this site with a radar tide gauge and with a continuous GPS station nearby. This will have a significant incidence in the satellite altimeter calibration activities. The radar tide gauge with data recorder and transmitter is a Datamar 3000C with 26 GHz frequency, 1mm resolution, 8º beam width incorporating a GPS receiver for automatic clock synchronization and a Thales Navigation Internet-Enabled GPS Continuous Geodetic Reference Station (iCGRS) with a choke ring antenna. It is intended that the overall system will constitute a CGPS Station of the ESEAS (European Sea Level) and TIGA (GPS Tide Gauge Benchmark Monitoring) networks. A Partenavia P-68 airborne LIDAR campaign carrying an Optech Lidar ALT-3025 has been made in June 2007 to test the potential of Lidar to connect sea level measurements from tide gauges at the coast with satellite (as Jason-1 or Envisat) altimetry measurements offshore. The calibrated airborne Lidar can then be used over ocean to detect the sea surface height. In consequence, the objective is to check that the coastal sea level can be observed with GPS buoys and may be Lidar campaigns for get detailed regional geoid and sea surface topography models for referencing satellite altimeter measurements.
Implementation of Barcelona, L'estartit and Ibiza Sites for Altimeter Calibration
NASA Astrophysics Data System (ADS)
Martinez-Benjamin, J. J.; Gili, J.; Lopez, R.; Tapia, A.; Bosch, E.; Perez, B.; Pros, F.
2012-12-01
A marine campaign to compute the sea surface data along the Spanish Mediterranean coastline and Balearic Islands is being prepared for 2013. Jason-2 (period ~10 days) and Saral/AltiKa (period of 35 days and expected launch in 2012) altimetric data and on-board GPS data will be used. Many GPS Buoy sessions along the ship route will be performed.Sea height estimates (instantaneous and mean sea levels) will be compared. Recently some geodetic improvements has been made in specific coastal spanish sites in the NW Mediterranean Sea for monitoring sea level. The goal is to maintain and improve the quality of the observation of the sea level change in the three sites. The information is coming from Puertos del Estado www.puertos.es L'Estartit tide gauge has been co-located with geodetic techniques (GPS measurements of XU, Utilitary Network, and XdA, Levelling Network,) and it is tied to the SPGIC (Integrated Geodetic Positioning System of Catalonia) project of the Cartographic Institute of Catalunya (ICC). In the past three calibration campaigns for Topex/Poseidon and Jason-1 in March 1999, August 2000 and July 2002 near Cape of Begur. At Barcelona harbour there is one MIROS radar tide gauge belonging to Puertos del Estado (Spanish Harbours).The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. The information includes wave forescast (mean period, significant wave height, sea level, etc.This sensor also measures agitation and sends wave parameters each 20 min. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna 1202. Bathymetric campaigns inside the harbour have been made. At Ibiza site new measurements and levelling between the GPS reference station and a Radar MIROS, both from Puertos del Estado, has been made recently. A calibration campaign for Jason-1 was made in June 2003 in the Ibiza area, main calibration site. The presentation is directed to the description of the actual situation of the geodetic infrastructure of Barcelona, l'Estartit sites for sea level determination and complementing Ibiza site for a new altimeter calibration campaign of Jason-2 and Saral/AltiKa satellites to be made in 2013. Specifications of the new marine calibration campaign will be presented.
TOPEX/El Nino Watch - La Nina Conditions Likely to Prevail, October 10, 1999
NASA Technical Reports Server (NTRS)
1999-01-01
A repeat of last year's mild La Nina conditions -- with a stormy winter in the Pacific Northwest and a dry winter in the southwestern United States -- will be the likely outcome of sea-surface heights observed by NASA's TOPEX/Poseidon satellite, scientists say.
TOPEX/Poseidon has detected lower than normal sea-surface heights in the eastern North Pacific and unusually high sea-surface heights in the western and mid-latitude Pacific. The height of the sea surface over a given area is an indicator of ocean temperature and other factors that influence climate.The latest measurements, taken during a 10-day data cycle October 5-15, are available at http://www.jpl.nasa.gov/elnino . Sea-surface height is shown relative to normal (green) and reveals cooler water (blue and purple) measuring about 14 centimeters (6 inches) lower in the eastern North Pacific, from the Gulf of Alaska to central Alaska, and along the equator. The cooling trend sets the stage for another La Nina this winter.'A mirror image of that oceanic profile prevails in the western and mid-latitude Pacific Ocean, where higher than normal sea-surface heights (red and white) are currently about 20 centimeters or 8 inches. Unusually warm temperatures (shown in red and white) have persisted and topped last year's temperatures,' said Dr. William Patzert, an oceanographer at NASA's Jet Propulsion Laboratory, Pasadena, CA.'These unbalanced conditions will undoubtedly exert a very strong influence on climate over North America this fall and winter,' Patzert said. 'Our profile of high sea-surface heights and warm temperatures in the western Pacific Ocean contrasts with low sea-surface heights and cool conditions in the eastern and equatorial Pacific. Those conditions will have a powerful impact on the weather system delivering jet streams out of the North Pacific.'Conditions are ripe for a stormy, wet winter in the Pacific Northwest and a dry, relatively rainless winter in Southern California and the Southwest, the data show. 'Clearly, these unusual conditions, which have persisted for 2 1/2 years, will not be returning to normal any time soon,' Patzert said. 'This climate imbalance is big and we're definitely going through a decade of wild climatic behavior. But when we look back at the climate record over the past century, we've seen behavior like this before.'The TOPEX/Poseidon satellite's measurements have provided scientists with a detailed view of the 1997-1999 El Nino/La Nina climate pattern by measuring the changing sea-surface height with unprecedented precision.For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.gov/El Ni?o Pumping Up, Warm Kelvin Wave Surges Toward South America
2009-11-12
ElNi?o is experiencing a late-fall resurgence. Sea-level height data from the NASA/European Ocean Surface Topography Mission/Jason-2 oceanography satellite show the equatorial Pacific has triggered a wave of warm water, known as a Kelvin wave.
El Niño Surges; Warm Kelvin Wave Headed for South America
2009-12-17
The most recent sea-level height data from the NASA/European Ocean Surface Topography Mission/Jason-2 oceanography satellite show the continued eastward progression of a strong wave of warm water, known as a Kelvin wave, now approaching South America.
Jason Celebrates 5th Anniversary as El Niño Builds, Warm Kelvin Wave Surges Toward South America
2006-12-07
Recent sea-level height data from NASA Jason-1 altimetric satellite show that continuing weaker-than-normal trade winds in the western and central equatorial Pacific have triggered another strong, eastward moving, warm Kelvin wave.
Larger Pacific Climate Event Helps Current La Niña Linger
2008-04-22
One of the strongest La Niñas in many years is slowly weakening but continues to blanket the Pacific Ocean near the equator, as shown by new sea-level height data collected by NASA U.S.-French Jason oceanographic satellite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Avraham, Z.; Nur, A.
The elevation above sea level of circum-Pacific volcanoes situated on continental crust varies greatly, not only between various chains but also within chains. Their edifice heights, however, are essentially constant with each chain. This pattern is reversed for oceanic volcanoes: The elevation circum-Pacific volcanoes situated on oceanic curst is constant within arcs, while edifice heights are greatly variable. In continents the depth to the root zones of volcanoes may be within the elastic part of the lithosphere, whereas in the oceans it may be well below the elastic part of the lithosphere. We suggest that melting, or the onset ofmore » the volcanic uprising, may be controlled in both cases primarily by pressure: in the continental lithosphere by the overburden pressure determined by depth below the local surface and in the oceanic lithosphere by the isostatically compensated pressure zone controlled by depth below sea level. The pattern seems to hold even in complex geological regions and may be used to identify the nature of the crust in such regions.« less
Pliocene shorelines and the deformation of passive margins.
NASA Astrophysics Data System (ADS)
Rovere, Alessio; Raymo, Maureen; Austermann, Jacqueline; Mitrovica, Jerry; Janßen, Alexander
2016-04-01
Characteristic geomorphology described from three Pliocene scarps in Rovere et al. [2014] was used to guide a global search for additional Pliocene age scarps that could be used to document former Pliocene shoreline locations. Each of the Rovere et al. [2014] paleo-shorelines was measured at the scarp toe abutting a flat coastal plain. In this study, nine additional such scarp-toe paleo-shorelines were identified. Each of these scarps has been independently dated to the Plio-Pleistocene; however, they were never unified by a single formation mechanism. Even when corrected for Glacial Isostatic Adjustment post-depositional effects, Post-Pliocene deformation of the inferred shorelines precludes a direct assessment of maximum Pliocene sea level height at the scarp toes. However, careful interpretation of the processes at the inferred paleo-shoreline suggests specific amplitudes of dynamic topography at each location, which could lead to a corrected maximum sea level height and provide a target dataset with which to compare dynamic topography model output.
Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2
NASA Astrophysics Data System (ADS)
Lee, Sanggyun; Im, Jungho; yoon, Hyeonjin; Shin, Minso; Kim, Miae
2014-05-01
Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation, provides a continuous insulating layer at air-sea interface, and reflects a large portion of the incoming solar radiation in Polar Regions. Sea ice extent has constantly declined since 1980s. Its area was the lowest ever recorded on 16 September 2012 since the satellite record began in 1979. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change, there has been a great effort to quantify them using various approaches. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter from National Aeronautics and Space Administration (NASA), provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) on April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness in 2012 and 2013 were estimated using CryoSat-2 SAR mode data that has sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard height, elevation difference between the top of sea ice surface and leads should be calculated. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, number of echoes, and significant wave height were examined to distinguish leads from sea ice. Several near-real time cloud-free MODIS images as CryoSat-2 data were used to identify leads. Rule-based machine learning approaches such as random forest and See5.0 and human-derived decision trees were used to produce rules to identify leads. With the freeboard height calculated from the lead analysis, sea ice thickness was finally estimated using the Archimedes' buoyancy principle with density of sea ice and sea water and the height of freeboard. The results were compared with Arctic sea ice thickness distribution retrieved from CryoSat-2 data by Alfred-Wegener-Institute.
NASA Astrophysics Data System (ADS)
Poulos, Serafim; George, Ghionis; Karditsa, Aikaterini
2017-04-01
The present investigation concerns the application of the Article 8-2 of the Mediterranean ICZM protocol in the environmentally sensitive coastal dune field of the central part of the Kyparissiakos Gulf (Ionian Sea, Greece). The Kyparissiakos dune field, comprising a set of coastal ecosystems of exceptional value, needs effective ICZM and, amongst all, has to consider the issue of Sea-Level Rise (SLR). The dune field consists of "parabolic" type dunes that are stable and subjected locally to human interference. It consists of four shore-parallel dune lines: the outer (and most recently formed) 1st dune line has formed during the last 500 years, the 2nd during the last 1000 years, whilst the 3rd and 4th lines have formed not later than 1600 years BP (Poulos et al., 2012). Moreover, the four dune lines (from the youngest to the oldest) lie at distances of approximately 60 m, 100 m, 200 m and 600 m from the coastline, having maximum heights of 4 m, 6 m, 10 m, and 10-12 m, respectively. The dune field, in general, is in equilibrium with the current nearshore hydrodynamics as the width of the beach zone is greater than the maximum run-up length (not included storm surge). The maximum wave run-up height (R), relative to the mean sea level, has been calculated by applying Komar's (1998) equation: R = 0.36 ṡ g0.5 ṡ S ṡ Ho0.5 ṡ T (g: acceleration of gravity; Ho: maximum offshore wave height; T: corresponding maximum wave period; S: tangential beach slope). Thus, the wave run-up due to the highest incoming waves can reach elevations of the order of 1.6m in the case of the NW waves (Ho=6m, T=9 s) and 2m in the case of W and SW waves (Ho=6.4m, T=6.4s). These elevations correspond to 25m and 40 m of tangential distances on the beach surface, which are less than the current beach width (> 60 m). However, if the maximum wave heights coincide with the maximum storm surge (0.5 m) observed in the area, wave action can reach and erode the foot of the 1st dune line. Thus, for the current sea level, the maximum wave excursion would reach the line along the foot of the 1st dune line. The application of the Barcelona 2008 protocol requires a free zone of 100 m, landwards of the maximum wave elevation, in this case reaching the 2nd dune line. If the moderate scenario of sea level rise ca. 0.4 m (IPCC, 2013) is realised, extensive erosion is expected to take place, leading to the destruction of the 1st dune line and the formation of a new shoreline close to the foot of the 2nd dune line, which might be partially destroyed and reshaped by the transgressive landward transfer of dune material. On the basis of the above, for this particular sensitive coastal environment, even the 100 m set-back line might be inadequate, even for the moderate sea level rise scenario for the year 2100.
NASA Astrophysics Data System (ADS)
Just, Janna; Hübscher, Christian; Betzler, Christian; Lüdmann, Thomas; Reicherter, Klaus
2011-02-01
High-resolution multi-channel seismic data from continental slopes with minor sediment input off southwest Mallorca Island, the Bay of Oran (Algeria) and the Alboran Ridge reveal evidence that the Messinian erosional surface is terraced at an almost constant depth interval between 320 and 380 m below present-day sea level. It is proposed that these several hundred- to 2,000-m-wide terraces were eroded contemporaneously and essentially at the same depth. Present-day differences in these depths result from subsidence or uplift in the individual realms. The terraces are thought to have evolved during one or multiple periods of sea-level stagnancy in the Western Mediterranean Basin. According to several published scenarios, a single or multiple periods of relative sea-level stillstand occurred during the Messinian desiccation event, generally known as the Messinian Salinity Crisis. Some authors suggest that the stagnancy started during the refilling phase of the Mediterranean basins. When the rising sea level reached the height of the Sicily Sill, the water spilled over this swell into the eastern basin. The stagnancy persisted until sea level in the eastern basin caught up with the western Mediterranean water level. Other authors assigned periods of sea-level stagnancy to drawdown phases, when inflowing waters from the Atlantic kept the western sea level constant at the depth of the Sicily Sill. Our findings corroborate all those Messinian sea-level reconstructions, forwarding that a single or multiple sea-level stagnancies at the depth of the Sicily Sill lasted long enough to significantly erode the upper slope. Our data also have implications for the ongoing debate of the palaeo-depth of the Sicily Sill. Since the Mallorcan plateau experienced the least vertical movement, the observed terrace depth of 380 m there is inferred to be close to the Messinian depth of this swell.
NASA Astrophysics Data System (ADS)
Adhikari, S.; Ivins, E. R.; Larour, E. Y.
2015-12-01
Perturbations in gravitational and rotational potentials caused by climate driven mass redistribution on the earth's surface, such as ice sheet melting and terrestrial water storage, affect the spatiotemporal variability in global and regional sea level. Here we present a numerically accurate, computationally efficient, high-resolution model for sea level. Unlike contemporary models that are based on spherical-harmonic formulation, the model can operate efficiently in a flexible embedded finite-element mesh system, thus capturing the physics operating at km-scale yet capable of simulating geophysical quantities that are inherently of global scale with minimal computational cost. One obvious application is to compute evolution of sea level fingerprints and associated geodetic and astronomical observables (e.g., geoid height, gravity anomaly, solid-earth deformation, polar motion, and geocentric motion) as a companion to a numerical 3-D thermo-mechanical ice sheet simulation, thus capturing global signatures of climate driven mass redistribution. We evaluate some important time-varying signatures of GRACE inferred ice sheet mass balance and continental hydrological budget; for example, we identify dominant sources of ongoing sea-level change at the selected tide gauge stations, and explain the relative contribution of different sources to the observed polar drift. We also report our progress on ice-sheet/solid-earth/sea-level model coupling efforts toward realistic simulation of Pine Island Glacier over the past several hundred years.
TOPEX/El Niño Watch - Warm Water Pool is Increasing, Nov. 10, 1997
1997-11-20
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S./French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Nov. 10, 1997.
Assimilating NOAA SST data into BSH operational circulation model for North and Baltic Seas
NASA Astrophysics Data System (ADS)
Losa, Svetlana; Schroeter, Jens; Nerger, Lars; Janjic, Tijana; Danilov, Sergey; Janssen, Frank
A data assimilation (DA) system is developed for BSH operational circulation model in order to improve forecast of current velocities, sea surface height, temperature and salinity in the North and Baltic Seas. Assimilated data are NOAA sea surface temperature (SST) data for the following period: 01.10.07 -30.09.08. All data assimilation experiments are based on im-plementation of one of the so-called statistical DA methods -Singular Evolutive Interpolated Kalman (SEIK) filter, -with different ways of prescribing assumed model and data errors statis-tics. Results of the experiments will be shown and compared against each other. Hydrographic data from MARNET stations and sea level at series of tide gauges are used as independent information to validate the data assimilation system. Keywords: Operational Oceanography and forecasting
Coral Microatolls and Their Role as Fixed Biological Indicators of Holocene Sea-Level Changes
NASA Astrophysics Data System (ADS)
Woodroffe, C. D.; Smithers, S. G.; McGregor, H. V.
2008-12-01
Corals microatolls are individual colonies of massive coral that have grown up to a level at which further upward growth is constrained by exposure at low tide, and which then continue to grow outwards, resulting in a flat-topped discoid morphology. Typically, microatolls comprise a single colony of massive Porites up to several metres in diameter. Modern microatolls are living on their outer margin but are predominantly dead on their upper surface. Microatolls are fixed biological sea-level indicators of the former upper limits to coral growth providing information on sea level at several temporal scales. Fossil microatolls have been used extensively to reconstruct broad patterns of Holocene sea-level trends in the Indo-Pacific reef province. Where they are preserved at a height above that of their living counterparts in the eastern Indian Ocean, Southeast Asia, northern Australia, and across much of the equatorial Pacific Ocean, they indicate that reef flats have experienced relatively higher sea levels in the mid- and late Holocene. Progressively lower corals have been interpreted to record the fall in sea level to its present position over millennial time scales. Large specimens of microatolls can reach several metres in diameter and contain a growth record of tens to hundreds of years; the upper surfaces of these can be used to track the pattern of sea-level variation over several decades. In this paper we explore the potential for using concentric annuli and subtle undulations preserved on microatoll upper surfaces to interpret sea-level changes over decadal to millennial time scales. We demonstrate that in the central Pacific modern microatolls preserve a surface morphology that reflects oscillations of sea level associated with El Niño. We evaluate the extent to which similar fluctuations may be recorded in the morphology of Indian Ocean microatolls, and the circumstances which promote the preservation of these morphological records of sea-level change over longer time scales. We discuss the potential to reconstruct extended records of sea-level change by using geochemical signatures preserved within microatoll skeletons to improve cross-correlations between colonies, and assess the precision with which sea level can be inferred.
NASA Astrophysics Data System (ADS)
Hermann, Albert J.; Curchitser, Enrique N.; Haidvogel, Dale B.; Dobbins, Elizabeth L.
2009-12-01
A set of spatially nested circulation models is used to explore interannual change in the northeast Pacific (NEP) during 1997-2002, and remote vs. local influence of the 1997-1998 El Niño on this region. Our nested set is based on the primitive equations of motion, and includes a basin-scale model of the north Pacific at ˜40-km resolution (NPac), and a regional model of the Northeast Pacific at ˜10-km resolution. The NEP model spans an area from Baja California through the Bering Sea, from the coast to ˜2000-km offshore. In this context, "remote influence" refers to effects driven by changes in ocean velocity and temperature outside of the NEP domain; "local influence" refers to direct forcing by winds and runoff within the NEP domain. A base run of this model using hindcast winds and runoff for 1996-2002 replicates the dominant spatial modes of sea-surface height anomalies from satellite data, and coastal sea level from tide gauges. We have performed a series of sensitivity runs with the NEP model for 1997-1998, which analyze the response of coastal sea level to: (1) hindcast winds and coastal runoff, as compared to their monthly climatologies and (2) hindcast boundary conditions (from the NPac model), as compared to their monthly climatologies. Results indicate penetration of sea-surface height (SSH) from the basin-scale model into the NEP domain (e.g., remote influence), with propagation as coastal trapped waves from Baja up through Alaska. Most of the coastal sea-level anomaly off Alaska in El Niño years appears due to direct forcing by local winds and runoff (local influence), and such anomalies are much stronger than those produced off California. We quantify these effects as a function of distance along the coastline, and consider how they might impact the coastal ecosystems of the NEP.
Aliased tidal errors in TOPEX/POSEIDON sea surface height data
NASA Technical Reports Server (NTRS)
Schlax, Michael G.; Chelton, Dudley B.
1994-01-01
Alias periods and wavelengths for the M(sub 2, S(sub 2), N(sub 2), K(sub 1), O(sub 1), and P(sub 1) tidal constituents are calculated for TOPEX/POSEIDON. Alias wavelenghts calculated in previous studies are shown to be in error, and a correct method is presented. With the exception of the K(sub 1) constituent, all of these tidal aliases for TOPEX/POSEIDON have periods shorter than 90 days and are likely to be confounded with long-period sea surface height signals associated with real ocean processes. In particular, the correspondence between the periods and wavelengths of the M(sub 2) alias and annual baroclinic Rossby waves that plagued Geosat sea surface height data is avoided. The potential for aliasing residual tidal errors in smoothed estimates of sea surface height is calculated for the six tidal constituents. The potential for aliasing the lunar tidal constituents M(sub 2), N(sub 2) and O(sub 1) fluctuates with latitude and is different for estimates made at the crossovers of ascending and descending ground tracks than for estimates at points midway between crossovers. The potential for aliasing the solar tidal constituents S(sub 2), K(sub 1) and P(sub 1) varies smoothly with latitude. S(sub 2) is strongly aliased for latitudes within 50 degress of the equator, while K(sub 1) and P(sub 1) are only weakly aliased in that range. A weighted least squares method for estimating and removing residual tidal errors from TOPEX/POSEIDON sea surface height data is presented. A clear understanding of the nature of aliased tidal error in TOPEX/POSEIDON data aids the unambiguous identification of real propagating sea surface height signals. Unequivocal evidence of annual period, westward propagating waves in the North Atlantic is presented.
NASA Astrophysics Data System (ADS)
Hatchett, Benjamin J.; Smith, Craig M.; Nauslar, Nicholas J.; Kaplan, Michael L.
2018-02-01
Downslope Sundowner winds in southern California's Santa Ynez Mountains favor wildfire growth. To explore differences between Sundowners and Santa Ana winds (SAWs), we use surface observations from 1979 to 2014 to develop a climatology of extreme Sundowner days. The climatology was compared to an existing SAW index from 1979 to 2012. Sundowner (SAW) occurrence peaks in late spring (winter). SAWs demonstrate amplified 500 hPa geopotential heights over western North America and anomalous positive inland mean sea-level pressures. Sundowner-only conditions display zonal 500 hPa flow and negative inland sea-level pressure anomalies. A low-level northerly coastal jet is present during Sundowners but not SAWs.
NASA Astrophysics Data System (ADS)
Hsu, C. W.; Velicogna, I.
2017-12-01
The mid-ocean geostrophic transport accounts for more than half of the seasonal and inter-annual variabilities in Atlantic meridional overturning circulation (AMOC) based on the in-situ measurement from RAPID MOC/MOCHA array since 2004. Here, we demonstrate that the mid-ocean geostrophic transport estimates derived from ocean bottom pressure (OBP) are affected by the sea level fingerprint (SLF), which is a variation of the equi-geopotential height (relative sea level) due to rapid mass unloading of the entire Earth system and in particular from glaciers and ice sheets. This potential height change, although it alters the OBP, should not be included in the derivation of the mid-ocean geostrophic transport. This "pseudo" geostrophic-transport due to the SLF is in-phase with the seasonal and interannual signal in the upper mid-ocean geostrophic transport. The east-west SLF gradient across the Atlantic basin could be mistaken as a north-south geostrophic transport that increases by 54% of its seasonal variability and by 20% of its inter-annual variability. This study demonstrates for the first time the importance of this pseudo transport in both the annual and interannual signals by comparing the SLF with in-situ observation from RAPID MOC/MOCHA array. The pseudo transport needs to be taken into account if OBP measurements and remote sensing are used to derive mid-ocean geostrophic transport.
Storm surges and coastal impacts at Mar del Plata, Argentina
NASA Astrophysics Data System (ADS)
Fiore, Mónica M. E.; D'Onofrio, Enrique E.; Pousa, Jorge L.; Schnack, Enrique J.; Bértola, Germán R.
2009-07-01
Positive storm surges (PSS) lasting for several days can raise the water level producing significant differences between the observed level and the astronomical tide. These storm events can be more severe if they coincide with a high tide or if they bracket several tidal cycles, particularly in the case of the highest astronomical tide. Besides, the abnormal sea-level elevation near the coast can cause the highest waves generated to attack the upper beach. This combination of factors can produce severe erosion, threatening sectors located along the coastline. These effects would be more serious if the storm surge height and duration increase as a result of a climatic change. The Mar del Plata (Argentina) coastline and adjacent areas are exposed to such effects. A statistical characterization of PSS based on their intensity, duration and frequency, including a surge event classification, was performed utilizing tide-gauge records over the period 1956-2005. A storm erosion potential index (SEPI) was calculated from observed levels based on hourly water level measurements. The index was related to beach profile responses to storm events. Also, a return period for extreme SEPI values was calculated. Results show an increase in the average number of positive storm surge events per decade. Considering all the events, the last decade (1996-2005) exhibits an average 7% increase compared to each one of the previous decades. A similar behavior was found for the decadal average of the heights of maximum annual positive storm surges. In this case the average height of the last two decades exceeds that of the previous decades by approximately 8 cm. The decadal average of maximum annual duration of these meteorological events shows an increase of 2 h in the last three decades. A possible explanation of the changes in frequency, height and duration of positive storm surges at Mar del Plata would seem to lie in the relative mean sea-level rise.
Warm Pacific Water Wave Heads East, But No El Niño Yet
2004-08-04
Sea-level height data from NASA U.S./France Jason altimetric satellite during a 10-day cycle ending July 27, 2004, show weaker than normal trade winds in the western and central equatorial Pacific have triggered an eastward moving, warm Kelvin wave.
Wave exposure of Corte Madera Marsh, Marin County, California-a field investigation
Lacy, Jessica R.; Hoover, Daniel J.
2011-01-01
Tidal wetlands provide valuable habitat, are an important source of primary productivity, and can help to protect the shoreline from erosion by attenuating approaching waves. These functions are threatened by the loss of tidal marshes, whether due to erosion, sea-level rise, or land-use practices. Erosion protection by wetlands is expected to vary geographically, because wave attenuation in marshes depends on vegetation type, density, and height and wave attenuation over mudflats depends on slope and sediment properties. In macrotidal northern European marshes, a 50 percent reduction in wave height within tens of meters of vegetated salt marsh has been observed. This study was designed to evaluate the role of mudflats and marshes in attenuating waves at a site in San Francisco Bay. In prehistoric times, the shoreline of San Francisco Bay was ringed with tidal wetlands, with mudflats at lower elevations and marshes above. Most of the marshes around the Bay emerged 2,000-4,000 years ago, after the rate of sea-level rise slowed to approximately 1 mm/year. Approximately 80 percent of the acreage of tidal marsh and 40 percent of the acreage of tidal mudflats in San Francisco Bay have been lost to filling and draining since 1800. Tidal wetlands are particularly susceptible to impacts from sea-level rise because the vegetation at each elevation is adapted to a specific tidal-inundation regime. The maintenance of suitable marsh-plain elevations depends on a supply of sediment that can keep up with the rate of sea-level rise. Sea-level rise, which according to recent projections may reach 75 to 190 cm by the year 2100, poses a significant threat to wetlands in San Francisco Bay, where landward migration is frequently impossible due to urbanization of the adjacent landscape. In this study, we collected data in Corte Madera Bay and Marsh to determine whether, and to what degree, waves are attenuated as they transit the Bay and, during high tides, the marsh. Corte Madera Bay was selected as a study site because of its exposure to wind waves, as well as its history of shoreline erosion and marsh restoration and monitoring. Data were collected in the winter of 2010, along a cross-shore transect extending from offshore of the subtidal mudflats into the tidal marsh. This study forms part of the Innovative Wetland Adaptation in the Lower Corte Madera Creek Watershed Project initiated by the Bay Conservation and Development Commission (BCDC) (http://www.bcdc.ca.gov/planning/climate_change/WetlandAdapt.shtml). Objectives- This study was designed to address the following questions: * What are the characteristics of waves and currents in the study area, and how do they vary over time? * Do wave heights or orbital velocities decrease, or wave periods change, as waves pass over the mudflats? * Do wave heights decrease, or wave periods change, as waves pass over the marsh?
The structure of the stably stratified internal boundary layer in offshore flow over the sea
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Ryan, B. F.
1989-04-01
Observations obtained mainly from a research aircraft are presented of the mean and turbulent structure of the stably stratified internal boundary layer (IBL) over the sea formed by warm air advection from land to sea. The potential temperature and humidity fields reveal the vertical extent of the IBL, for fetches out to several hundred of kilometres, geostrophic winds of 20 25 m s-1, and potential temperature differences between undisturbed continental air and the sea surface of 7 to 17 K. The dependence of IBL depth on these external parameters is discussed in the context of the numerical results of Garratt (1987), and some discrepancies are noted. Wind observations show the development of a low-level wind maximum (wind component normal to the coast) and rotation of the wind to smaller cross-isobar flow angles. Potential temperature (θ) profiles within the IBL reveal quite a different structure to that found in the nocturnal boundary layer (NBL) over land. Over the sea, θ profiles have large positive curvature with vertical gradients increasing monotonically with height; this reflects the dominance of turbulent cooling within the layer. The behaviour is consistent with known behaviour in the NBL over land where curvature becomes negative (vertical gradients of θ decreasing with height) as radiative cooling becomes dominant. Turbulent properties are discussed in terms of non-dimensional quantities, normalised by the surface friction velocity, as functions of normalised height using the IBL depth. Vertical profiles of these and the normalised wavelength of the spectral maximum agree well with known results for the stable boundary layer over land (Caughey et al., 1979).
Constraining Future Sea Level Rise Estimates from the Amundsen Sea Embayment, West Antarctica
NASA Astrophysics Data System (ADS)
Nias, I.; Cornford, S. L.; Edwards, T.; Gourmelen, N.; Payne, A. J.
2016-12-01
The Amundsen Sea Embayment (ASE) is the primary source of mass loss from the West Antarctic Ice Sheet. The catchment is particularly susceptible to grounding line retreat, because the ice sheet is grounded on bedrock that is below sea level and deepening towards its interior. Mass loss from the ASE ice streams, which include Pine Island, Thwaites and Smith glaciers, is a major uncertainty on future sea level rise, and understanding the dynamics of these ice streams is essential to constraining this uncertainty. The aim of this study is to construct a distribution of future ASE sea level contributions from an ensemble of ice sheet model simulations and observations of surface elevation change. A 284 member ensemble was performed using BISICLES, a vertically-integrated ice flow model with adaptive mesh refinement. Within the ensemble parameters associated with basal traction, ice rheology and sub-shelf melt rate were perturbed, and the effect of bed topography and sliding law were also investigated. Initially each configuration was run to 50 model years. Satellite observations of surface height change were then used within a Bayesian framework to assign likelihoods to each ensemble member. Simulations that better reproduced the current thinning patterns across the catchment were given a higher score. The resulting posterior distribution of sea level contributions is narrower than the prior distribution, although the central estimates of sea level rise are similar between the prior and posterior. The most extreme simulations were eliminated and the remaining ensemble members were extended to 200 years, using a simple melt rate forcing.
Using a Bayesian network to predict barrier island geomorphologic characteristics
Gutierrez, Ben; Plant, Nathaniel G.; Thieler, E. Robert; Turecek, Aaron
2015-01-01
Quantifying geomorphic variability of coastal environments is important for understanding and describing the vulnerability of coastal topography, infrastructure, and ecosystems to future storms and sea level rise. Here we use a Bayesian network (BN) to test the importance of multiple interactions between barrier island geomorphic variables. This approach models complex interactions and handles uncertainty, which is intrinsic to future sea level rise, storminess, or anthropogenic processes (e.g., beach nourishment and other forms of coastal management). The BN was developed and tested at Assateague Island, Maryland/Virginia, USA, a barrier island with sufficient geomorphic and temporal variability to evaluate our approach. We tested the ability to predict dune height, beach width, and beach height variables using inputs that included longer-term, larger-scale, or external variables (historical shoreline change rates, distances to inlets, barrier width, mean barrier elevation, and anthropogenic modification). Data sets from three different years spanning nearly a decade sampled substantial temporal variability and serve as a proxy for analysis of future conditions. We show that distinct geomorphic conditions are associated with different long-term shoreline change rates and that the most skillful predictions of dune height, beach width, and beach height depend on including multiple input variables simultaneously. The predictive relationships are robust to variations in the amount of input data and to variations in model complexity. The resulting model can be used to evaluate scenarios related to coastal management plans and/or future scenarios where shoreline change rates may differ from those observed historically.
A Bayesian network to predict coastal vulnerability to sea level rise
Gutierrez, B.T.; Plant, N.G.; Thieler, E.R.
2011-01-01
Sea level rise during the 21st century will have a wide range of effects on coastal environments, human development, and infrastructure in coastal areas. The broad range of complex factors influencing coastal systems contributes to large uncertainties in predicting long-term sea level rise impacts. Here we explore and demonstrate the capabilities of a Bayesian network (BN) to predict long-term shoreline change associated with sea level rise and make quantitative assessments of prediction uncertainty. A BN is used to define relationships between driving forces, geologic constraints, and coastal response for the U.S. Atlantic coast that include observations of local rates of relative sea level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline change rate. The BN is used to make probabilistic predictions of shoreline retreat in response to different future sea level rise rates. Results demonstrate that the probability of shoreline retreat increases with higher rates of sea level rise. Where more specific information is included, the probability of shoreline change increases in a number of cases, indicating more confident predictions. A hindcast evaluation of the BN indicates that the network correctly predicts 71% of the cases. Evaluation of the results using Brier skill and log likelihood ratio scores indicates that the network provides shoreline change predictions that are better than the prior probability. Shoreline change outcomes indicating stability (-1 1 m/yr) was not well predicted. We find that BNs can assimilate important factors contributing to coastal change in response to sea level rise and can make quantitative, probabilistic predictions that can be applied to coastal management decisions. Copyright ?? 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Heidarzadeh, Mohammad; Satake, Kenji
2014-12-01
We studied two tsunamis from 2012, one generated by the El Salvador earthquake of 27 August ( Mw 7.3) and the other generated by the Philippines earthquake of 31 August ( Mw 7.6), using sea level data analysis and numerical modeling. For the El Salvador tsunami, the largest wave height was observed in Baltra, Galapagos Islands (71.1 cm) located about 1,400 km away from the source. The tsunami governing periods were around 9 and 19 min. Numerical modeling indicated that most of the tsunami energy was directed towards the Galapagos Islands, explaining the relatively large wave height there. For the Philippines tsunami, the maximum wave height of 30.5 cm was observed at Kushimoto in Japan located about 2,700 km away from the source. The tsunami governing periods were around 8, 12 and 29 min. Numerical modeling showed that a significant part of the far-field tsunami energy was directed towards the southern coast of Japan. Fourier and wavelet analyses as well as numerical modeling suggested that the dominant period of the first wave at stations normal to the fault strike is related to the fault width, while the period of the first wave at stations in the direction of fault strike is representative of the fault length.
How climate and weather affect the erosion risk in the northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Wahl, T.; Plant, N. G.
2015-12-01
Oceanographic variables such as mean sea level, tides, storm surges, and waves are drivers of erosion, and they act on different time scales ranging from hours (associated with weather) to seasonal and decadal variations and trends (associated with climate). Here we explore how the related sea-state conditions affect the erosion risk in the northern Gulf of Mexico for past and future climate scenarios. From the climate perspective we find that long-term trends in the relevant variables have caused an increase of ~30% in the erosion risk since the 1980s; at least half of this increase was due to changes in the wave climate. In the next decades, sea level rise will likely become the dominating driver and may, in combination with ongoing changes in the wave climate (and depending on the emission scenario), escalate the erosion risk by up to 300% over the next 30 years. We also find significant changes in the seasonal cycles of sea level and significant wave height, which have in combination caused a considerable increase of the erosion risk in summer and decrease in winter (superimposed onto the long-term trends). The influence of weather is assessed with a copula-based multivariate sea storm model in a Monte-Carlo framework; i.e. we simulate hundreds of thousands of artificial but physically consistent sea-state conditions to quantify how different our understanding of the present day erosion risk would be if we had seen more or less extreme combinations of the different sea-state parameters over the last three decades. We find, for example, that total water levels (tide + surge + wave run-up) associated with 100-year return periods may be underestimated by up to 30% and that the average number of impact hours - when total water levels exceeded the height of the dune toe (collision) or dune crest (overwash) - could have been up to 50% higher than what we inferred based on the actually observed oceanographic conditions. Assessing erosion risk in such a probabilistic way while accounting for non-stationarity due to climate variability and change can help decision makers and planners to implement improved monitoring and adaptation strategies for long-term sustainability of the coastline and barrier islands.
Erosion risk in the northern Gulf of Mexico - the effects of climate and weather
NASA Astrophysics Data System (ADS)
Wahl, Thomas; Plant, Nathaniel G.; Long, Joseph W.
2016-04-01
Oceanographic variables such as mean sea level, tides, storm surges, and waves are drivers of erosion, and they act on different time scales ranging from hours (associated with weather) to seasonal and decadal variations and trends (associated with climate). Here we explore how the related sea-state conditions affect the erosion risk in the northern Gulf of Mexico for past and future climate scenarios. From the climate perspective we find that long-term trends in the relevant variables have caused an increase of ~30% in the erosion risk since the 1980s; at least half of this increase was due to changes in the wave climate. In the next decades, sea level rise will likely become the dominating driver and may, in combination with ongoing changes in the wave climate (and depending on the emission scenario), escalate the erosion risk by up to 300% over the next 30 years. We also find significant changes in the seasonal cycles of sea level and significant wave height, which have in combination caused a considerable increase of the erosion risk in summer and decrease in winter (superimposed onto the long-term trends). The influence of weather is assessed with a copula-based multivariate sea storm model in a Monte-Carlo framework; i.e. we simulate hundreds of thousands of artificial but physically consistent sea-state conditions to quantify how different our understanding of the present day erosion risk would be if we had seen more or less extreme combinations of the different sea-state parameters over the last three decades. We find, for example, that total water levels (tide + surge + wave run-up) associated with 100-year return periods may be underestimated by up to 30% and that the average number of impact hours - when total water levels exceeded the height of the dune toe (collision) or dune crest (overwash) - could have been up to 50% higher than what we inferred based on the actually observed oceanographic conditions. Assessing erosion risk in such a probabilistic way while accounting for non-stationarity due to climate variability and change can help decision makers and planners to implement improved monitoring and adaptation strategies for long-term sustainability of the coastline and barrier islands.
Hurricane Sandy's flood frequency increasing from year 1800 to 2100.
Lin, Ning; Kopp, Robert E; Horton, Benjamin P; Donnelly, Jeffrey P
2016-10-25
Coastal flood hazard varies in response to changes in storm surge climatology and the sea level. Here we combine probabilistic projections of the sea level and storm surge climatology to estimate the temporal evolution of flood hazard. We find that New York City's flood hazard has increased significantly over the past two centuries and is very likely to increase more sharply over the 21st century. Due to the effect of sea level rise, the return period of Hurricane Sandy's flood height decreased by a factor of ∼3× from year 1800 to 2000 and is estimated to decrease by a further ∼4.4× from 2000 to 2100 under a moderate-emissions pathway. When potential storm climatology change over the 21st century is also accounted for, Sandy's return period is estimated to decrease by ∼3× to 17× from 2000 to 2100.
Masterson, John P.; Fienen, Michael N.; Thieler, E. Robert; Gesch, Dean B.; Gutierrez, Benjamin T.; Plant, Nathaniel G.
2014-01-01
We used a numerical model to investigate how a barrier island groundwater system responds to increases of up to 60 cm in sea level. We found that a sea-level rise of 20 cm leads to substantial changes in the depth of the water table and the extent and depth of saltwater intrusion, which are key determinants in the establishment, distribution and succession of vegetation assemblages and habitat suitability in barrier islands ecosystems. In our simulations, increases in water-table height in areas with a shallow depth to water (or thin vadose zone) resulted in extensive groundwater inundation of land surface and a thinning of the underlying freshwater lens. We demonstrated the interdependence of the groundwater response to island morphology by evaluating changes at three sites. This interdependence can have a profound effect on ecosystem composition in these fragile coastal landscapes under long-term changing climatic conditions.
Hurricane Sandy’s flood frequency increasing from year 1800 to 2100
Horton, Benjamin P.; Donnelly, Jeffrey P.
2016-01-01
Coastal flood hazard varies in response to changes in storm surge climatology and the sea level. Here we combine probabilistic projections of the sea level and storm surge climatology to estimate the temporal evolution of flood hazard. We find that New York City’s flood hazard has increased significantly over the past two centuries and is very likely to increase more sharply over the 21st century. Due to the effect of sea level rise, the return period of Hurricane Sandy’s flood height decreased by a factor of ∼3× from year 1800 to 2000 and is estimated to decrease by a further ∼4.4× from 2000 to 2100 under a moderate-emissions pathway. When potential storm climatology change over the 21st century is also accounted for, Sandy’s return period is estimated to decrease by ∼3× to 17× from 2000 to 2100. PMID:27790992
Large sand waves in Navarinsky Canyon head, Bering Sea
Karl, Herman A.; Carlson, P.R.
1982-01-01
Sand waves are present in the heads of large submarine canyons in the northwestern Bering Sea. They vary in height between 2 to 15 m and have wavelengths of 600 m. They are not only expressed on the seafloor, but are also well defined in the subsurface and resemble enormous climbing bed forms. We conjecture that the sand waves originated during lower stands of sea level in the Pleistocene. Although we cannot explain the mechanics of formation of the sand waves, internal-wave generated currents are among four types of current that could account for these large structures. ?? 1982 A. M. Dowden, Inc.
An operational coupled wave-current forecasting system for the northern Adriatic Sea
NASA Astrophysics Data System (ADS)
Russo, A.; Coluccelli, A.; Deserti, M.; Valentini, A.; Benetazzo, A.; Carniel, S.
2012-04-01
Since 2005 an Adriatic implementation of the Regional Ocean Modeling System (AdriaROMS) is being producing operational short-term forecasts (72 hours) of some hydrodynamic properties (currents, sea level, temperature, salinity) of the Adriatic Sea at 2 km horizontal resolution and 20 vertical s-levels, on a daily basis. The main objective of AdriaROMS, which is managed by the Hydro-Meteo-Clima Service (SIMC) of ARPA Emilia Romagna, is to provide useful products for civil protection purposes (sea level forecasts, outputs to run other forecasting models as for saline wedge, oil spills and coastal erosion). In order to improve the forecasts in the coastal area, where most of the attention is focused, a higher resolution model (0.5 km, again with 20 vertical s-levels) has been implemented for the northern Adriatic domain. The new implementation is based on the Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST)and adopts ROMS for the hydrodynamic and Simulating WAve Nearshore (SWAN) for the wave module, respectively. Air-sea fluxes are computed using forecasts produced by the COSMO-I7 operational atmospheric model. At the open boundary of the high resolution model, temperature, salinity and velocity fields are provided by AdriaROMS while the wave characteristics are provided by an operational SWAN implementation (also managed by SIMC). Main tidal components are imposed as well, derived from a tidal model. Work in progress is oriented now on the validation of model results by means of extensive comparisons with acquired hydrographic measurements (such as CTDs or XBTs from sea-truth campaigns), currents and waves acquired at observational sites (including those of SIMC, CNR-ISMAR network and its oceanographic tower, located off the Venice littoral) and satellite-derived wave-heights data. Preliminary results on the forecast waves denote how, especially during intense storms, the effect of coupling can lead to significant variations in the wave heights. Part of the activity has been funded by the EU FP VII program (project "MICORE", contract n. 202798) and by the Regione Veneto regional law 15/2007 (Progetto "MARINA").
An Experimental Real-Time Ocean Nowcast/Forecast System for Intra America Seas
NASA Astrophysics Data System (ADS)
Ko, D. S.; Preller, R. H.; Martin, P. J.
2003-04-01
An experimental real-time Ocean Nowcast/Forecast System has been developed for the Intra America Seas (IASNFS). The area of coverage includes the Caribbean Sea, the Gulf of Mexico and the Straits of Florida. The system produces nowcast and up to 72 hours forecast the sea level variation, 3D ocean current, temperature and salinity fields. IASNFS consists an 1/24 degree (~5 km), 41-level sigma-z data-assimilating ocean model based on NCOM. For daily nowcast/forecast the model is restarted from previous nowcast. Once model is restarted it continuously assimilates the synthetic temperature/salinity profiles generated by a data analysis model called MODAS to produce nowcast. Real-time data come from satellite altimeter (GFO, TOPEX/Poseidon, ERS-2) sea surface height anomaly and AVHRR sea surface temperature. Three hourly surface heat fluxes, including solar radiation, wind stresses and sea level air pressure from NOGAPS/FNMOC are applied for surface forcing. Forecasts are produced with available NOGAPS forecasts. Once the nowcast/forecast are produced they are distributed through the Internet via the updated web pages. The open boundary conditions including sea surface elevation, transport, temperature, salinity and currents are provided by the NRL 1/8 degree Global NCOM which is operated daily. An one way coupling scheme is used to ingest those boundary conditions into the IAS model. There are 41 rivers with monthly discharges included in the IASNFS.
Establishing storm thresholds for the Spanish Gulf of Cádiz coast
NASA Astrophysics Data System (ADS)
Del Río, Laura; Plomaritis, Theocharis A.; Benavente, Javier; Valladares, María; Ribera, Pedro
2012-03-01
In this study critical thresholds are defined for storm impacts along the Spanish coast of the Gulf of Cádiz. The thresholds correspond to the minimum wave and tide conditions necessary to produce significant morphological changes on beaches and dunes and/or damage on coastal infrastructure or human occupation. Threshold definition was performed by computing theoretical sea-level variations during storms and comparing them with the topography of the study area and the location of infrastructure at a local level. Specifically, the elevations of the berm, the dune foot and the entrance of existing washovers were selected as threshold parameters. The total sea-level variation generated by a storm event was estimated as the sum of the tidal level, the wind-induced setup, the barometric setup and the wave-associated sea-level variation (wave setup and runup), assuming a minimum interaction between the different processes. These components were calculated on the basis of parameterisations for significant wave height (Hs) obtained for the oceanographic and environmental conditions of the Gulf of Cadiz. For this purpose real data and reanalysis time-series (HIPOCAS project) were used. Validation of the obtained results was performed for a range of coastal settings over the study area. The obtained thresholds for beach morphological changes in spring tide conditions range between a significant wave height of 1.5 m and 3.7 m depending on beach characteristics, while for dune foot erosion are around 3.3 to 3.7 m and for damage to infrastructure around 7.2 m. In case of neap tide conditions these values are increased on average by 50% over the areas with large tidal range. Furthermore, records of real damage in coastal infrastructure caused by storms were collected at a regional level from newspapers and other bibliographic sources and compared with the hydrodynamic conditions that caused the damage. These were extracted from the hindcast database of the HIPOCAS project, including parameters such as storm duration, mean and maximum wave height and wave direction. Results show that the duration of the storm is not critical in determining the occurrence of coastal damage in the regional study area. This way, the threshold would be defined as a duration ≥30 h, with moderate average wave height (≥3.3 m) and high maximum wave height (≥4.1 m) approaching from the 3rd and 4th quadrants, during mean or spring tide situation. The calculated thresholds constitute snapshots of risk conditions within a certain time framework. Beach and nearshore zones are extremely dynamic, and also the characteristics of occupation on the coast change over time, so critical storm thresholds will change accordingly and therefore will need to be updated.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Cullather, Richard I.; Nowicki, Sophie M.; Kim, Kyu-Myong
2017-01-01
The inter-relationship between subtropical western-central Pacific sea surface temperatures (STWCPSST), sea ice concentration in the Beaufort Sea (SICBS), and the North Atlantic Oscillation (NAO) are investigated for the last 37 summers and winters (1980-2016). Lag-correlation of the STWCPSST×(-1) in spring with the NAO phase and SICBS in summer increases over the last two decades, reaching r = 0.4-0.5 with significance at 5 percent, while winter has strong correlations in approximately 1985-2005. Observational analysis and the atmospheric general circulation model experiments both suggest that STWCPSST warming acts to increase the Arctic geopotential height and temperature in the following season. This atmospheric response extends to Greenland, providing favorable conditions for developing the negative phase of the NAO. SIC and surface albedo tend to decrease over the Beaufort Sea in summer, linked to the positive surface net shortwave flux. Energy balance considering radiative and turbulent fluxes reveal that available energy that can heat surface is larger over the Arctic and Greenland and smaller over the south of Greenland, in response to the STWCPSST warming in spring. XXXX Arctic & Atlantic: Positive upper-level height/T anomaly over the Arctic and Greenland, and a negative anomaly over the central-eastern Atlantic, resembling the (-) phase of the NAO. Pacific: The negative height/T anomaly over the mid-latitudes, along with the positive anomaly over the STWCP, where 1degC warming above climatology is prescribed. Discussion: It is likely that the Arctic gets warm and the NAO is in the negative phase in response to the STWCP warming. But, there are other factors (e.g., internal variability) that contribute to determination of the NAO phase: not always the negative phase of the NAO in the event of STWCP warming (e.g.: recent winters and near neutral NAO in 2017 summer).
Effects of sea state on offshore wind resourcing in Florida
NASA Astrophysics Data System (ADS)
Collier, Cristina
Offshore resource assessment relies on estimating wind speeds at turbine hub height using observations typically made at substantially lower height. The methods used to adjust from observed wind speeds to hub height can impact resource estimation. The importance of directional sea state is examined, both as seasonal averages and as a function of the diurnal cycle. A General Electric 3.6 MW offshore turbine is used as a model for a power production. Including sea state increases or decreases seasonally averaged power production by roughly 1%, which is found to be an economically significant change. These changes occur because the sea state modifies the wind shear (vector wind difference between the buoy height and the moving surface) and therefore the extrapolation from the observation to hub height is affected. These seemingly small differences in capacity can alter profits by millions of dollars depending upon the size of the farm and fluctuations in price per kWh throughout the year. A 2% change in capacity factor can lead to a 10 million dollar difference from total kWh produced from a wind farm of 100 3.6MW turbines. These economic impacts can be a deciding factor in determining whether a resource is viable for development. Modification of power output due to sea states are shown for seasonal and diurnal time scales. Three regions are examined herein: West Florida, East Florida, and Nantucket Sound. The average capacity after sea state is included suggests areas around Florida could provide substantial amounts of wind power throughout three-fourths of the calendar year. At certain times of day winter average produced capacity factors in West Florida can be up to 45% more than in summer when sea state is included. Nantucket Sound capacity factors are calculated for comparison to a region near a planned United States offshore wind farm. This study provides evidence to suggest including sea state in offshore wind resource assessment causes economically significant differences for offshore wind power siting.
Kay, S; Caesar, J; Wolf, J; Bricheno, L; Nicholls, R J; Saiful Islam, A K M; Haque, A; Pardaens, A; Lowe, J A
2015-07-01
Coastal flooding due to storm surge and high tides is a serious risk for inhabitants of the Ganges-Brahmaputra-Meghna (GBM) delta, as much of the land is close to sea level. Climate change could lead to large areas of land being subject to increased flooding, salinization and ultimate abandonment in West Bengal, India, and Bangladesh. IPCC 5th assessment modelling of sea level rise and estimates of subsidence rates from the EU IMPACT2C project suggest that sea level in the GBM delta region may rise by 0.63 to 0.88 m by 2090, with some studies suggesting this could be up to 0.5 m higher if potential substantial melting of the West Antarctic ice sheet is included. These sea level rise scenarios lead to increased frequency of high water coastal events. Any effect of climate change on the frequency and severity of storms can also have an effect on extreme sea levels. A shelf-sea model of the Bay of Bengal has been used to investigate how the combined effect of sea level rise and changes in other environmental conditions under climate change may alter the frequency of extreme sea level events for the period 1971 to 2099. The model was forced using atmospheric and oceanic boundary conditions derived from climate model projections and the future scenario increase in sea level was applied at its ocean boundary. The model results show an increased likelihood of extreme sea level events through the 21st century, with the frequency of events increasing greatly in the second half of the century: water levels that occurred at decadal time intervals under present-day model conditions occurred in most years by the middle of the 21st century and 3-15 times per year by 2100. The heights of the most extreme events tend to increase more in the first half of the century than the second. The modelled scenarios provide a case study of how sea level rise and other effects of climate change may combine to produce a greatly increased threat to life and property in the GBM delta by the end of this century.
Moving to a Modernized Height Reference System in Canada: Rationale, Status and Plans
NASA Astrophysics Data System (ADS)
Veronneau, M.; Huang, J.
2007-05-01
A modern society depends on a common coordinate reference system through which geospatial information can be interrelated and exploited reliably. For height measurements this requires the ability to measure mean sea level elevations easily, accurately, and at the lowest possible cost. The current national reference system for elevations, the Canadian Geodetic Vertical Datum of 1928 (CGVD28), offers only partial geographic coverage of the Canadian territory and is affected by inaccuracies that are becoming more apparent as users move to space- based technologies such as GPS. Furthermore, the maintenance and expansion of the national vertical network using spirit-levelling, a costly, time consuming and labour intensive proposition, has only been minimally funded over the past decade. It is now generally accepted that the most sustainable alternative for the realization of a national vertical datum is a gravimetric geoid model. This approach defines the datum in relation to an ellipsoid, making it compatible with space-based technologies for positioning. While simplifying access to heights above mean sea level all across the Canadian territory, this approach imposes additional demands on the quality of the geoid model. These are being met by recent and upcoming space gravimetry missions that have and will be measuring the Earth`s gravity field with increasing and unprecedented accuracy. To maintain compatibility with the CGVD28 datum materialized at benchmarks, the current first-order levelling can be readjusted by constraining geoid heights at selected stations of the Canadian Base Network. The new reference would change CGVD28 heights of benchmarks by up to 1 m across Canada. However, local height differences between benchmarks would maintain a relative precision of a few cm or better. CGVD28 will co-exist with the new height reference as long as it will be required, but it will undoubtedly disappear as benchmarks are destroyed over time. The adoption of GNSS technologies for positioning should naturally move users to the new height reference and offer the possibility of transferring heights over longer distances, within the precision of the geoid model. This transition will also reduce user dependency on a dense network of benchmarks and offer the possibility for geodetic agencies to provide the reference frame with a reduced number of 3D control points. While the rationale for moving to a modernized height system is easily understood, the acceptance of the new system by users will only occur gradually as they adopt new technologies and procedures to access the height reference. A stakeholder consultation indicates user readiness and an implementation plan is starting to unfold. This presentation will look at the current state of the geoid model and control networks that will support the modernized height system. Results of the consultation and the recommendations regarding the roles and responsibilities of the various stakeholders involved in implementing the transition will also be reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping; Leung, Lai-Yung R.
The northern coasts of the Gulf of Mexico are highly vulnerable to the direct threats of climate change, such as hurricane-induced storm surge, and such risks can be potentially exacerbated by land subsidence and global sea level rise. This paper presents an application of a coastal storm surge model to study the coastal inundation process induced by tide and storm surge, and its response to the effects of land subsidence and sea level rise in the northern Gulf coast. An unstructured-grid Finite Volume Coastal Ocean Model was used to simulate tides and hurricane-induced storm surges in the Gulf of Mexico.more » Simulated distributions of co-amplitude and co-phase of semi-diurnal and diurnal tides are in good agreement with previous modeling studies. The storm surges induced by four historical hurricanes (Rita, Katrina, Ivan and Dolly) were simulated and compared to observed water levels at National Oceanic and Atmospheric Administration tide stations. Effects of coastal subsidence and future global sea level rise on coastal inundation in the Louisiana coast were evaluated using a parameter “change of inundation depth” through sensitivity simulations that were based on a projected future subsidence scenario and 1-m global sea level rise by the end of the century. Model results suggested that hurricane-induced storm surge height and coastal inundation could be exacerbated by future global sea level rise and subsidence, and that responses of storm surge and coastal inundation to the effects of sea level rise and subsidence are highly nonlinear and vary on temporal and spatial scales.« less
NASA Astrophysics Data System (ADS)
Huang, Zhengkai; Wang, Haihong; Luo, Zhicai
2017-04-01
Due to the complex coastal topography and energetic ocean dynamics effect, the return echoes are contaminated while the satellite footprint approaches or leaves the coastline. Specular peaks are often induced in the trailing edges of contaminated waveforms, thus leading the error in the determination of the leading edge and associated track offset in the waveform retracking process. We propose an improved algorithm base on Tseng's modification method to decontaminated coastal (0-7 km from coastline) waveforms, thus improving both the utilization and precision of coastal sea surface height (SSH). Using the Envisat/Jason-2 SGDR data, the shortcoming of Tseng's method is pointed out and the novel algorithm is proposed by revising the strategy of selecting reference waveform and determining weight for removing outlier. The reference waveform of the decontaminated technology is closer to the real waveform of the offshore area, which avoids the over-modification problem of Tseng method. The sea-level measurements from tide gauge station and geoid height from EGM2008 model were used to validate the retracking strategy. Experimental results show that decontaminated waveform was more suitable than original and Tseng modified waveform and has uniform performance in both compare to the tide gauge and geoid. The retrieved altimetry data in the 0-1km and 1-7km coastal zone indicate that threshold retracker with decontaminated waveform have STD of 73.8cm and 33cm as compared with in situ gauge data,which correspond to 62.1% and 58% in precession compared to the unretracked altimetry measurements. The retracked SSHs are better in two coastal (0-1 km and 1-7km) zones, which have STD of 11.9cm and 22.7cm as compared with geoid height. Furthermore, the comparisons shows that the precision of decontaminated technology improve 0.3cm and 3.3cm than the best result of PISTACH product in coastal sea. This work is supported by the National Natural Science Foundation of China (Grant Nos. 41174020, 41174021, 41131067) and the open fund of Guangxi Key Laboratory of Spatial Information and Geometrics (Grant No. 15-140-07-26). Index Terms: retracking, Envisat, Jason-2, Coastal sea, decontamination.
NASA Astrophysics Data System (ADS)
Shope, J. B.; Storlazzi, C. D.; Hoeke, R. K.
2016-12-01
Atoll islands are dynamic features that respond to seasonal alterations in wave conditions and sea level. With sea level and wave climates projected to change over the next century, it is unclear how shoreline wave runup and erosion patterns along these low elevation islands will respond, making it difficult for communities to prepare for the future. To investigate this, extreme boreal winter and summer wave conditions under a variety of future sea-level rise (SLR) scenarios were modeled at two atolls, Wake and Midway, using Delft3D. Nearshore wave conditions were used to find the potential longshore sediment flux, and wave-driven shoreline erosion was calculated as the divergence of the longshore drift; runup and the locations where runup exceed the berm elevation were also found. Of the aforementioned parameters, SLR is projected to be the dominant force driving future island morphological change and flooding. Increased sea level reduces depth-limited breaking by the atoll reef, allowing larger waves to reach the shoreline, increasing runup height and driving greater inland flooding along most coastlines. Previously protected shorelines, such as lagoon shorelines or shorelines with comparably wide reef flats, are projected see the greatest relative increases in runup. Increases in inland flooding extent were greatest along seaward shorelines due to increases in runup. Changes in incident wave directions had a smaller effect on runup, and the projected changes to incident wave heights had a negligible effect. SLR also drove the greatest changes to island shoreline morphology. Windward islands are projected to become thinner as seaward and lagoonal shorelines erode, accreting toward more leeward shorelines and shorelines with comparably wider reef flats. Similarly, leeward islands are anticipated to become thinner and longer, accreting towards their longitudinal ends. The shorelines of these islands will likely change dramatically over the next century as SLR and altered wave climates drive new erosional regimes. It is vital to the sustainability of island communities that the relative magnitudes of these effects are addressed when planning for projected future climates.
NASA Astrophysics Data System (ADS)
Mills, W. B.; Costa-Cabral, M. C.; Bromirski, P. D.; Miller, N. L.; Coats, R. N.; Loewenstein, M.; Roy, S. B.; MacWilliams, M.
2012-12-01
This work evaluates the implications to flooding risk at the low-lying NASA Ames Research Center in South San Francisco Bay under historical and projected climate and sea level rise. Atmospheric circulation patterns over the Pacific Ocean, influenced by ENSO and PDO, can result in extended periods of higher mean coastal sea level in California. Simultaneously they originate a larger number of storms that make landfall and have higher mean intensity. These storms generate barometrically-induced high water anomalies, and winds that are sometimes capable of producing large coastal waves. Storm surges that propagate from the coast into the estuary and South Bay, and locally-generated waves, may compromise the discharge capacity of stream channels. These conditions also typically generate high intensity rainfall, and the reduced channel capacity may result in fluvial flooding. Such atmospheric circulation patterns may persist for many months, during which California experiences more precipitation events of longer mean duration and higher intensity, leading to large precipitation totals that saturate soils and may exceed the storage capacity of stormwater retention ponds. Future scenarios of sea level rise, that may surpass a meter in this century according to the projections recently published by the National Research Council for states of CA, OR and WA, and projected atmospheric circulation changes associated with anthropogenic climate change, may amplify these risks. We evaluate the impacts of these changes on NASA's Ames Research Center through four areas of study: (i) wetland accretion and evolution as mean sea level rises, with implications to the Bay's response to the sea level rise and storm surges, (ii) hydrodynamic modeling to simulate the propagation of tidal height and storm surges in the Bay and the influence of local winds on wave height, (iii) evaluation of historical data and future climate projections to identify extreme precipitation events, and (iv) regional climate models to identify moisture source areas and evaluate the role of moisture flux on projected California precipitation.;
Mississippi Delta, Radar Image with Colored Height
2005-08-29
The geography of the New Orleans and Mississippi delta region is well shown in this radar image from the Shuttle Radar Topography Mission. In this image, bright areas show regions of high radar reflectivity, such as from urban areas, and elevations have been coded in color using height data also from the mission. Dark green colors indicate low elevations, rising through yellow and tan, to white at the highest elevations. New Orleans is situated along the southern shore of Lake Pontchartrain, the large, roughly circular lake near the center of the image. The line spanning the lake is the Lake Pontchartrain Causeway, the world's longest over water highway bridge. Major portions of the city of New Orleans are below sea level, and although it is protected by levees and sea walls, flooding during storm surges associated with major hurricanes is a significant concern. http://photojournal.jpl.nasa.gov/catalog/PIA04175
Gravitational failure of sea cliffs in weakly lithified sediment
Hampton, M.A.
2002-01-01
Gravitational failure of sea cliffs eroded into weakly lithified sediment at several sites in California involves episodic stress-release fracturing and cantilevered block falls. The principal variables that influence the gravitational stability are tensional stresses generated during the release of horizontal confining stress and weakening of the sediment with increased saturation levels. Individual failures typically comprise less than a cubic meter of sediment, but large areas of a cliff face can be affected by sustained instability over a period of several days. Typically, only the outer meter or so of sediment is removed during a failure episode. In-place sediment saturation levels vary over time and space, generally being higher during the rainy season but moderate to high year-round. Laboratory direct-shear tests show that sediment cohesion decreases abruptly with increasing saturation level; the decrease is similar for all tested sediment if the cohesion is normalized by the maximum, dry-sediment cohesion. Large failures that extend over most or all of the height of the sea cliff are uncommon, but a few large wedge-shaped failures sometimes occur, as does separation of large blocks at sea cliff-gully intersections.
Effects of the water level on the flow topology over the Bolund island
NASA Astrophysics Data System (ADS)
Cuerva-Tejero, A.; Yeow, T. S.; Gallego-Castillo, C.; Lopez-Garcia, O.
2014-06-01
We have analyzed the influence of the actual height of Bolund island above water level on different full-scale statistics of the velocity field over the peninsula. Our analysis is focused on the database of 10-minute statistics provided by Risø-DTU for the Bolund Blind Experiment. We have considered 10-minut.e periods with near-neutral atmospheric conditions, mean wind speed values in the interval [5,20] m/s, and westerly wind directions. As expected, statistics such as speed-up, normalized increase of turbulent kinetic energy and probability of recirculating flow show a large dependence on the emerged height of the island for the locations close to the escarpment. For the published ensemble mean values of speed-up and normalized increase of turbulent kinetic energy in these locations, we propose that some ammount of uncertainty could be explained as a deterministic dependence of the flow field statistics upon the actual height of the Bolund island above the sea level.
NASA Astrophysics Data System (ADS)
I.; | J., Möller; | T., Mantilla-Contreras; | A., Spencer; Hayes
2011-05-01
This paper investigates the hydro-morphological controls on incident wind-generated waves at, and the transformation of such waves within, two Phragmites australis reed beds in the southern Baltic Sea. Meteorological conditions in combination with geomorphological controls result, over short (<2 km) distances, in significant differences in water level and wave climate to which fringing reed beds are exposed. Significant wave height attenuation reached a maximum of 2.6% m -1 and 11.8% m -1 at the transition from open water into the reed vegetation at the sheltered and exposed sites respectively. Wave attenuation through the emergent reed vegetation was significantly lower in greater water depths, suggesting (1) a reduced influence of bed friction by small shoots/roots and/or (2) drag reduction due to flexing of plants when the wave motion is impacting stems at a greater height above the bed. For a given water depth, wave dissipation increased with increasing incident wave height, however, suggesting that, despite their ability to flex, reed stems may be rigid enough to cause increased drag under greater wave forcing. The higher frequency part of the wave spectrum (>0.5 Hz) was preferentially reduced at the reed margin, confirming the theoretical wave frequency dependence of bottom friction. The possibility of physiological adaptation (differences in reed stem diameter) to water depth and wave exposure differences is discussed. The results have implications for the possible impact of environmental changes, both acute (e.g. storm surges) or chronic (e.g. sea level rise) in character, and for the appropriate management of reed bed sites and delivery of ecological goods and services.
NASA Astrophysics Data System (ADS)
Jrrar, Amna; Abraham, N. Luke; Pyle, John A.; Holland, David
2014-05-01
Changes in sea ice significantly modulate climate change because of its high reflective and insulating nature. While Arctic Sea Ice Extent (SIE) shows a negative trend. Antarctic SIE shows a weak but positive trend, estimated at 0.127 x 106 km2 per decade. The trend results from large regional cancellations, more ice in the Weddell and the Ross seas, and less ice in the Amundsen - Bellingshausen seas. A number of studies had demonstrated that stratospheric ozone depletion has had a major impact on the atmospheric circulation, causing a positive trend in the Southern Annular Mode (SAM), which has been linked to the observed positive trend in autumn sea ice in the Ross Sea. However, other modelling studies show that models forced with prescribed ozone hole simulate decreased sea ice in all regions comparative to a control run. A recent study has also shown that stratospheric ozone recovery will mitigate Antarctic sea ice loss. To verify this assumed relationship, it is important first to investigate the covariance between ozone's natural (dynamical) variability and Antarctic sea ice distribution in pre-industrial climate, to estimate the trend due to natural variability. We investigate the relationship between anomalous Antarctic ozone years and the subsequent changes in Antarctic sea ice distribution in a multidecadal control simulation using the AO-UMUKCA model. The model has a horizontal resolution of 3.75 X 2.5 degrees in longitude and latitude; and 60 hybrid height levels in the vertical, from the surface up to a height of 84 km. The ocean component is the NEMO ocean model on the ORCA2 tripolar grid, and the sea ice model is CICE. We evaluate the model's performance in terms of sea ice distribution, and we calculate sea ice extent trends for composites of anomalously low versus anomalously high SH polar ozone column. We apply EOF analysis to the seasonal anomalies of sea ice concentration, MSLP, and Z 500, and identify the leading climate modes controlling the variability of Antarctic sea ice in each case, and study their relationship with SH polar ozone column.
Revisiting the pole tide for and from satellite altimetry
NASA Astrophysics Data System (ADS)
Desai, Shailen; Wahr, John; Beckley, Brian
2015-12-01
Satellite altimeter sea surface height observations include the geocentric displacements caused by the pole tide, namely the response of the solid Earth and oceans to polar motion. Most users of these data remove these effects using a model that was developed more than 20 years ago. We describe two improvements to the pole tide model for satellite altimeter measurements. Firstly, we recommend an approach that improves the model for the response of the oceans by including the effects of self-gravitation, loading, and mass conservation. Our recommended approach also specifically includes the previously ignored displacement of the solid Earth due to the load of the ocean response, and includes the effects of geocenter motion. Altogether, this improvement amplifies the modeled geocentric pole tide by 15 %, or up to 2 mm of sea surface height displacement. We validate this improvement using two decades of satellite altimeter measurements. Secondly, we recommend that the altimetry pole tide model exclude geocentric sea surface displacements resulting from the long-term drift in polar motion. The response to this particular component of polar motion requires a more rigorous approach than is used by conventional models. We show that erroneously including the response to this component of polar motion in the pole tide model impacts interpretation of regional sea level rise by ± 0.25 mm/year.
The study of mesoscale phenomena, winter monsoon clouds and snow area. [Sea of Japan
NASA Technical Reports Server (NTRS)
Tsuchiya, K. (Principal Investigator)
1975-01-01
The author has identified the following significant results. The clouds under a moderate winter monsoon situation taken with S190A camera reveal existence of clouds with band structure of various wavelengths. The wavelength ranges from 0.4 to 3.5 kms. There was a good relationship between the longitudinal cloud band and vertical wind shear. There was a distinct difference in size of clouds between the Japan Sea side or upwind side and the Pacific Ocean side or downwind side of the Japanese mainland. Large solid cumulus clusters have the size of 20 x 35 sq km over the Japan Sea off the coast of Hokuriku District. It was found that S190A aerial color pictures showing shadows of fair weather cumuli over the sea could be successfully used in estimating cloud height while S190A station 1 picture was more useful over the land since it could more clearly distinguish shadow from vegetation. The height of fair weather cumuli estimated from shadows agree with the lifted condensation level. It was also found that these pictures were effectively used in delineating snow cover area. S192 data, especially IR channel, were found to be effective in finding topography of nimbostratus.
NASA Astrophysics Data System (ADS)
Smart, L.; Taillie, P. J.; Smith, J. W.; Meentemeyer, R. K.
2017-12-01
Sound coastal land-use policy and management decisions to mitigate or adapt to sea level rise impacts depend on understanding vegetation responses to sea level rise over large extents. Accurate methodologies to quantify these changes are necessary to understand the continued production of the ecosystem services upon which human health and well-being depend. This research quantifies spatio-temporal changes in aboveground biomass altered by sea level rise across North Carolina's coastal plain using a combination of repeat-acquisition lidar data and multi-temporal satellite imagery. Using field data from across the study area, we evaluated the reliability of multi-temporal lidar data with disparate densities and accuracies to detect changes along a coastal vegetation gradient from marsh to forested wetland. Despite an 18 fold increase in lidar point density between survey years (2001, 2014), the relationships between lidar-derived heights and field-measured heights were similar (adjusted r2; 0.6 -0.7). Random Forest, a machine learning algorithm, was used to separately predict above-ground biomass pools at the landscape-scale for the two time periods using the 98 field plots as reference data. Models performed well for both years (adjusted r2; 0.67-0.85). The 2001 model required the addition of Landsat spectral indices to meet the same adjusted r2 values as the 2014 model, which utilized lidar-derived metrics alone. Of the many potential lidar-derived predictor metrics, median and mean vegetation height were the best predictors in both time periods. To measure the spatial patterns of biomass change across the landscape, we subtracted the 2001 biomass model from the 2014 model and found significant spatial heterogeneity in biomass change across both the vegetation gradient and across the peninsula over the 12-year time period. In forested areas, we found a mean increase in aboveground biomass whereas in transition zones, marshes and freshwater emergent wetlands we found overall decreases in aboveground biomass. These changes were correlated with distance to estuarine shoreline - areas closest to the shoreline exhibiting the strongest biomass declines. Results from this study have allowed us to better understand climate change-related vegetation dynamics in a sensitive coastal region.
NASA Astrophysics Data System (ADS)
Bradley, Sarah L.; Milne, Glenn A.; Horton, Benjamin P.; Zong, Yongqiang
2016-04-01
This study presents a new model of Holocene ice-volume equivalent sea level (ESL), extending a previously published global ice sheet model (Bassett et al., 2005), which was unconstrained from 10 kyr BP to present. This new model was developed by comparing relative sea level (RSL) predictions from a glacial isostatic adjustment (GIA) model to a suite of Holocene sea level index points from China and Malay-Thailand. Three consistent data-model misfits were found using the Bassett et al. (2005) model: an over-prediction in the height of maximum sea level, the timing of this maximum, and the temporal variation of sea level from the time of the highstand to present. The data-model misfits were examined for a large suite of ESL scenarios and a range of earth model parameters to determine an optimum model of Holocene ESL. This model is characterised by a slowdown in melting at ∼7 kyr BP, associated with the final deglaciation of the Laurentide Ice Sheet, followed by a continued rise in ESL until ∼1 kyr BP of ∼5.8 m associated with melting from the Antarctic Ice Sheet. It was not possible to identify an earth viscosity model that provided good fits for both regions; with the China data preferring viscosity values in the upper mantle of less than 1.5 × 1020 Pa s and the Malay-Thailand data preferring greater values. We suggest that this inference of a very weak upper mantle for the China data originates from the nearby subduction zone and Hainan Plume. The low viscosity values may also account for the lack of a well-defined highstand at the China sites.
Lester, Lori A; Gutierrez Ramirez, Mariamar; Kneidel, Alan H; Heckscher, Christopher M
2016-01-01
Barrier islands on the north coast of the Gulf of Mexico are an internationally important coastal resource. Each spring hundreds of thousands of Nearctic-Neotropical songbirds crossing the Gulf of Mexico during spring migration use these islands because they provide the first landfall for individuals following a trans-Gulf migratory route. The effects of climate change, particularly sea level rise, may negatively impact habitat availability for migrants on barrier islands. Our objectives were (1) to confirm the use of St. George Island, Florida by trans-Gulf migrants and (2) to determine whether forested stopover habitat will be available for migrants on St. George Island following sea level rise. We used avian transect data, geographic information systems, remote sensing, and simulation modelling to investigate the potential effects of three different sea level rise scenarios (0.28 m, 0.82 m, and 2 m) on habitat availability for trans-Gulf migrants. We found considerable use of the island by spring trans-Gulf migrants. Migrants were most abundant in areas with low elevation, high canopy height, and high coverage of forests and scrub/shrub. A substantial percentage of forest (44%) will be lost by 2100 assuming moderate sea level rise (0.82 m). Thus, as sea level rise progresses, less forests will be available for migrants during stopover. Many migratory bird species' populations are declining, and degradation of barrier island stopover habitat may further increase the cost of migration for many individuals. To preserve this coastal resource, conservation and wise management of migratory stopover areas, especially near ecological barriers like the Gulf of Mexico, will be essential as sea levels rise.
Lester, Lori A.; Gutierrez Ramirez, Mariamar; Kneidel, Alan H.; Heckscher, Christopher M.
2016-01-01
Barrier islands on the north coast of the Gulf of Mexico are an internationally important coastal resource. Each spring hundreds of thousands of Nearctic-Neotropical songbirds crossing the Gulf of Mexico during spring migration use these islands because they provide the first landfall for individuals following a trans-Gulf migratory route. The effects of climate change, particularly sea level rise, may negatively impact habitat availability for migrants on barrier islands. Our objectives were (1) to confirm the use of St. George Island, Florida by trans-Gulf migrants and (2) to determine whether forested stopover habitat will be available for migrants on St. George Island following sea level rise. We used avian transect data, geographic information systems, remote sensing, and simulation modelling to investigate the potential effects of three different sea level rise scenarios (0.28 m, 0.82 m, and 2 m) on habitat availability for trans-Gulf migrants. We found considerable use of the island by spring trans-Gulf migrants. Migrants were most abundant in areas with low elevation, high canopy height, and high coverage of forests and scrub/shrub. A substantial percentage of forest (44%) will be lost by 2100 assuming moderate sea level rise (0.82 m). Thus, as sea level rise progresses, less forests will be available for migrants during stopover. Many migratory bird species’ populations are declining, and degradation of barrier island stopover habitat may further increase the cost of migration for many individuals. To preserve this coastal resource, conservation and wise management of migratory stopover areas, especially near ecological barriers like the Gulf of Mexico, will be essential as sea levels rise. PMID:26934343
Observations of Sea Surface Mean Square Slope During the Southern Ocean Waves Experiment
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Vandemark, D. C.; Wright, C. W.; Banner, M. L.; Chen, W.; Swift, R. N.; Scott, J. F.; Hines, D. E.; Jensen, J.; Lee, S.;
2001-01-01
For the Southern Ocean Waves Experiment (SOWEX), conducted in June 1992 out of Hobart, Tasmania, the NASA Scanning Radar Altimeter (SRA) was shipped to Australia and installed on a CSIRO Fokker F-27 research aircraft instrumented to make comprehensive surface layer measurements of air-sea interaction fluxes. The SRA sweeps a radar beam of P (two-way) half-power width across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 cross-track positions. In realtime, the slant ranges are multiplied by the cosine of the off-nadir incidence angles (including the effect of aircraft roll attitude) to determine the vertical distances from the aircraft to the sea surface. These distances are subtracted from the aircraft height to produce a sea-surface elevation map, which is displayed on a monitor in the aircraft to enable real-time assessments of data quality and wave properties. The sea surface mean square slope (mss), which is predominantly caused by the short waves, was determined from the backscattered power falloff with incidence angle measured by the SRA in the plane normal to the aircraft heading. On each flight, data were acquired at 240 m altitude while the aircraft was in a 7 degree roll attitude, interrogating off-nadir incidence angles from -15 degrees through nadir to +29 degrees. The aircraft turned azimuthally through 810 degrees in this attitude, mapping the azimuthal dependence of the backscattered power falloff with incidence angle. Two sets of turning data were acquired on each day, before and after the aircraft measured wind stress at low altitude (12 meters to 65 meters). Wave topography and backscattered power for mss were also acquired during those level flight segments whenever the aircraft altitude was above the SRA minimum range of 35 m. Data were collected over a wide range of wind and sea conditions, from quiescent to gale force winds with 9 meter wave height.
NASA Astrophysics Data System (ADS)
Cheriton, O. M.; Storlazzi, C. D.; Rosenberger, K. J.
2016-02-01
Low-lying, reef-fringed islands are susceptible to sea-level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, wave gauges and a current meter were deployed for 5 months across two shore-normal transects on Roi-Namur, an atoll island in the Republic of the Marshall Islands. These observations captured two large wave events that had maximum wave heights greater than 6 m and peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly-skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, exceeded 3.7 m at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3-hr time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along atoll and fringing reef-lined shorelines, such as island overwash. These observations lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of both extreme shoreline runup and island overwash, threatening the sustainability of these islands.
NASA Astrophysics Data System (ADS)
Cheriton, Olivia M.; Storlazzi, Curt D.; Rosenberger, Kurt J.
2016-05-01
Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04-0.004 Hz) and very low frequency (0.004-0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.
Cheriton, Olivia; Storlazzi, Curt; Rosenberger, Kurt
2016-01-01
Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04–0.004 Hz) and very low frequency (0.004–0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.
NASA Astrophysics Data System (ADS)
Kishcha, P.; Starobinets, B.; Bozzano, R.; Pensieri, S.; Canepa, E.; Nickovie, S.; di Sarra, A.; Udisti, R.; Becagli, S.; Alpert, P.
2012-03-01
Sea-salt aerosol (SSA) could influence the Earth's climate acting as cloud condensation nuclei. However, there were no regular measurements of SSA in the open sea. At Tel-Aviv University, the DREAM-Salt prediction system has been producing daily forecasts of 3-D distribution of sea-salt aerosol concentrations over the Mediterranean Sea (http://wind.tau.ac.il/saltina/ salt.html). In order to evaluate the model performance in the open sea, daily modeled concentrations were compared directly with SSA measurements taken at the tiny island of Lampedusa, in the Central Mediterranean. In order to further test the robustness of the model, the model performance over the open sea was indirectly verified by comparing modeled SSA concentrations with wave height measurements collected by the ODAS Italia 1 buoy and the Llobregat buoy. Model-vs.-measurement comparisons show that the model is capable of producing realistic SSA concentrations and their day-today variations over the open sea, in accordance with observed wave height and wind speed.
On the unification of geodetic leveling datums using satellite altimetry
NASA Technical Reports Server (NTRS)
Mather, R. S.; Rizos, C.; Morrison, T.
1978-01-01
Techniques are described for determining the height of Mean Sea Level (MSL) at coastal sites from satellite altimetry. Such information is of value in the adjustment of continental leveling networks. Numerical results are obtained from the 1977 GEOS-3 altimetry data bank at Goddard Space Flight Center using the Bermuda calibration of the altimeter. Estimates are made of the heights of MSL at the leveling datums for Australia and a hypothetical Galveston datum for central North America. The results obtained are in reasonable agreement with oceanographic estimates obtained by extrapolation. It is concluded that all gravity data in the Australian bank AUSGAD 76 and in the Rapp data file for central North America refer to the GEOS-3 altimeter geoid for 1976.0 with uncertainties which do not exceed + or - 0.1 mGal.
World's mountains over 5 miles above sea level as seen from the Apollo 7
NASA Technical Reports Server (NTRS)
1968-01-01
The world's dozen peaks which reach a height of greater than five miles above sea level are seen in this photograph from the Apollo 7 spacecraft at an altitude of 130 nautical miles. The 29,028 ft. high Mount Everest is at lower center. On the central horizon can be seen the 28,250 ft. high Mount Godwin-Austen (K-2) some 800 miles northwest of Mount Everest. In the lower right, Mount Kanchenjunga rises 28,208 ft. to separate Nepal from Sikkim. The snow line on the peaks was at 17,500 ft. In the upper right the lake-studded highlands of Tibet are visible.
A Coastal Hazards Data Base for the U.S. Gulf Coast (1993) (NDP-04bB)
Gornitz, Vivien M. [National Aeronautics and Space Administration, Goddard Institute for Space Studies, New York, NY (USA); White, Tammy W. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN (USA)
2008-01-01
This document describes the contents of a digital data base that may be used to identify coastlines along the U.S. Gulf Coast at risk to sea-level rise. The data base integrates point, line, and polygon data for the U.S. Gulf Coast into 0.25° latitude by 0.25° longitude grid cells and into 1:2,000,000 digitized line segments that can be used by raster or vector geographic information systems (GIS) as well as by non-GIS data base systems. Each coastal grid cell and line segment contains data on elevations, geology, geomorphology, sea-level trends, shoreline displacement (erosion/accretion), tidal ranges, and wave heights.
NASA Astrophysics Data System (ADS)
Kitazawa, Y.; Ichikawa, K.; Akiyama, H.; Ebinuma, T.; Isoguchi, O.; Kimura, N.; Konda, M.; Kouguchi, N.; Tamura, H.; Tomita, H.; Yoshikawa, Y.; Waseda, T.
2016-12-01
Global Navigation Satellite Systems (GNSS), such as GPS is a system of satellites that provide autonomous geo-spatial positioning with global coverage. It allows small electronic receivers to determine their location to high precision using radio signals transmitted from satellites, GNSS reflectometry (GNSS-R) involves making measurements from the reflections from the Earth of navigation signals from GNSS satellites. Reflected signals from sea surface are considered that those are useful to observe sea state and sea surface height. We have started a research program for GNSS-R applications on oceanographic observations under the contract with MEXT (Ministry of Education Culture, Sports, Science and Technology, JAPAN) and launched a Japanese research consortium, GROWTH (GNSS Reflectometry for Ocean Waves, Tides, and Height). It is aiming to evaluate the capabilities of GNSS-R observations for oceanographic phenomena with different time scales, such as ocean waves (1/10 to tens of seconds), tides (one or half days), and sea surface dynamic height (a few days to years). In situ observations of ocean wave spectrum, wind speed vertical profile, and sea surface height will be quantitatively compared with equivalent estimates from simultaneous GNSS-R measurements. The GROWTH project will utilize different types of observation platforms; marine observation towers (about 20 m height), multi-copters (about 100 to 150 m height), and much higher-altitude CYGNSS data. Cross-platform data, together with in situ oceanographic observations, will be compared after adequate temporal averaging that accounts differences of the footprint sizes and temporal and spatial scales of oceanographic phenomena. This paper will provide overview of the GROWTH project, preliminary test results, obtained by the multi-sensor platform at observation towers, suggest actual footprint sizes and identification of swell. Preparation status of a ground station which will be supplied to receive CYGNSS data at Japan, is also reported. Compatibility tests to CYGNSS data and refurbishment of the ground station were completed.
Physical mechanisms of the summer precipitation variations in the Taklimakan and Gobi Desert
NASA Astrophysics Data System (ADS)
Huang, W.; Feng, S.; Chen, J.; Chen, F.
2013-12-01
The Taklimakan and the adjacent Gobi Desert (TD in short) in northwestern China is one of the most arid regions in the middle latitudes, where water is scarce year round. Using observational precipitation and the reanalysis data, this study investigated the variations of summer precipitation in TD and their association with water vapor flux and atmospheric circulation. Though the long-term mean water vapor is mostly comes from the west, the variations of summer precipitation in TD is dominated by the water vapor flux from the south, originated from the Arabian Sea. The anomalous water vapor flux is closely associated with the meridional teleconnection pattern around 50-80°E and the zonal teleconection pattern along the Asian westerly jet in summer. The meridional teleconnection connecting the Central Asia and the tropical Indian Ocean, and the zonal pattern resembles the ';Silk Road pattern'. The two wave trains connected in Central Asia. The anomalous pressure gradient force between negative height anomalies in Central Asia and the positive height anomalies in Arabian Sea/India and North Central China lead to anomalous ascending motion in TD and bring more water vapor from the Arabian Sea to pass over the Tibetan Plateau to fuel the precipitation development in the study region. These mechanisms lead to out-of-phase relationship between TD precipitation and Indian summer monsoon in the instrumental period and the past 2000 years. The vertically integrated summer water vapor flux (arrows) and 300hPa geopotential height (contour) regressed against the summer precipitation in TD during 1960-2010. Shadings (blue arrows) indicate the correlations between the geopotential height (water vapor flux) and the TD precipitation are significant at the 95% confidence level. The Guliya ice core is marked as star and the proxy monsoon records in Arabian Sea (box cores 723A and RC2730) are marked as triangles. Summer climatological water vapor budget and the correaltion between the water vapor budget and TD precipitaiton during 1960-2010. For climatological water vapor budget, the results shown are the total water vapor across the boundaries. Positive (negative) numbers indicate northward/eastward (southward/westward) water vapor flows. '*' and '**' indicate the correaltions between TD precipitation and water budget are significant at 95% and 99% confidence levels, respectively.
Thorne, Karen M.; Buffington, Kevin J.; Swanson, Kathleen; Takekawa, John Y.
2013-01-01
Tidal marshes are dynamic ecosystems, which are influenced by oceanic and freshwater processes and daily changes in sea level. Projected sea-level rise and changes in storm frequency and intensity will affect tidal marshes by altering suspended sediment supply, plant communities, and the inundation duration and depth of the marsh platform. The objective of this research was to evaluate if regional weather conditions resulting in low-pressure storms changed tidal conditions locally within three tidal marshes. We hypothesized that regional storms will increase sea level heights locally, resulting in increased inundation of the tidal marsh platform and plant communities. Using site-level measurements of elevation, plant communities, and water levels, we present results from two storm events in 2010 and 2011 from the San Francisco Bay Estuary (SFBE), California, USA. The January 2010 storm had the lowest recorded sea level pressure in the last 30 years for this region. During the storm episodes, the duration of tidal marsh inundation was 1.8 and 3.1 times greater than average for that time of year, respectively. At peak storm surges, over 65% in 2010 and 93% in 2011 of the plant community was under water. We also discuss the implications of these types of storms and projected sea-level rise on the structure and function of the tidal marshes and how that will impact the hydro-geomorphic processes and marsh biotic communities.
Advanced development of atmospheric models. [SEASAT Program support
NASA Technical Reports Server (NTRS)
Kesel, P. G.; Langland, R. A.; Stephens, P. L.; Welleck, R. E.; Wolff, P. M.
1979-01-01
A set of atmospheric analysis and prediction models was developed in support of the SEASAT Program existing objective analysis models which utilize a 125x125 polar stereographic grid of the Northern Hemisphere, which were modified in order to incorporate and assess the impact of (real or simulated) satellite data in the analysis of a two-day meteorological scenario in January 1979. Program/procedural changes included: (1) a provision to utilize winds in the sea level pressure and multi-level height analyses (1000-100 MBS); (2) The capability to perform a pre-analysis at two control levels (1000 MBS and 250 MBS); (3) a greater degree of wind- and mass-field coupling, especially at these controls levels; (4) an improved facility to bogus the analyses based on results of the preanalysis; and (5) a provision to utilize (SIRS) satellite thickness values and cloud motion vectors in the multi-level height analysis.
Variations in freshwater pathways from the Arctic Ocean into the North Atlantic Ocean
NASA Astrophysics Data System (ADS)
Wang, Zeliang; Hamilton, James; Su, Jie
2017-06-01
Understanding the mechanisms that drive exchanges between the Arctic Ocean and adjacent oceans is critical to building our knowledge of how the Arctic is reacting to a warming climate, and how potential changes in Arctic Ocean freshwater export may impact the AMOC (Atlantic Meridional Overturning Circulation). Here, freshwater pathways from the Arctic Ocean to the North Atlantic are investigated using a 1 degree global model. An EOF analysis of modeled sea surface height (SSH) demonstrates that while the second mode accounts for only 15% of the variability, the associated geostrophic currents are strongly correlated with freshwater exports through CAA (Canadian Arctic Archipelago; r = 0.75), Nares Strait (r = 0.77) and Fram Strait (r = -0.60). Separation of sea level into contributing parts allows us to show that the EOF1 is primarily a barotropic mode reflecting variability in bottom pressure equivalent sea level, while the EOF2 mode reflects changes in steric height in the Arctic Basin. This second mode is linked to momentum wind driven surface current, and dominates the Arctic Ocean freshwater exports. Both the Arctic Oscillation and Arctic Dipole atmospheric indices are shown to be linked to Arctic Ocean freshwater exports, with the forcing associated with the Arctic Dipole reflecting the out-of-phase relationship between transports through the CAA and those through Fram Strait. Finally, observed freshwater transport variation through the CAA is found to be strongly correlated with tide gauge data from the Beaufort Sea coast (r = 0.81), and with the EOF2 mode of GRACE bottom pressure data (r = 0.85) on inter-annual timescales.
NASA Astrophysics Data System (ADS)
Fomin, Vladimir; Diansky, Nikolay; Gusev, Anatoly; Kabatchenko, Ilia; Panasenkova, Irina
2017-04-01
The diagnosis and forecast system for simulating hydrometeorological characteristics of the Russian Western Arctic seas is presented. It performs atmospheric forcing computation with the regional non-hydrostatic atmosphere model Weather Research and Forecasting model (WRF) with spatial resolution 15 km, as well as computation of circulation, sea level, temperature, salinity and sea ice with the marine circulation model INMOM (Institute of Numerical Mathematics Ocean Model) with spatial resolution 2.7 km, and the computation of wind wave parameters using the Russian wind-wave model (RWWM) with spatial resolution 5 km. Verification of the meteorological characteristics is done for air temperature, air pressure, wind velocity, water temperature, currents, sea level anomaly, wave characteristics such as wave height and wave period. The results of the hydrometeorological characteristic verification are presented for both retrospective and forecast computations. The retrospective simulation of the hydrometeorological characteristics for the White, Barents, Kara and Pechora Seas was performed with the diagnosis and forecast system for the period 1986-2015. The important features of the Kara Sea circulation are presented. Water exchange between Pechora and Kara Seas is described. The importance is shown of using non-hydrostatic atmospheric circulation model for the atmospheric forcing computation in coastal areas. According to the computation results, extreme values of hydrometeorological characteristics were obtained for the Russian Western Arctic seas.
NASA Technical Reports Server (NTRS)
Welch, Ronald M.
1993-01-01
A series of cloud and sea ice retrieval algorithms are being developed in support of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team objectives. These retrievals include the following: cloud fractional area, cloud optical thickness, cloud phase (water or ice), cloud particle effective radius, cloud top heights, cloud base height, cloud top temperature, cloud emissivity, cloud 3-D structure, cloud field scales of organization, sea ice fractional area, sea ice temperature, sea ice albedo, and sea surface temperature. Due to the problems of accurately retrieving cloud properties over bright surfaces, an advanced cloud classification method was developed which is based upon spectral and textural features and artificial intelligence classifiers.
Development of Operational Wave-Tide-Storm surges Coupling Prediction System
NASA Astrophysics Data System (ADS)
You, S. H.; Park, S. W.; Kim, J. S.; Kim, K. L.
2009-04-01
The Korean Peninsula is surrounded by the Yellow Sea, East China Sea, and East Sea. This complex oceanographic system includes large tides in the Yellow Sea and seasonally varying monsoon and typhoon events. For Korea's coastal regions, floods caused by wave and storm surges are among the most serious threats. To predict more accurate wave and storm surges, the development of coupling wave-tide-storm surges prediction system is essential. For the time being, wave and storm surges predictions are still made separately in KMA (Korea Meteorological Administration) and most operational institute. However, many researchers have emphasized the effects of tides and storm surges on wind waves and recommended further investigations into the effects of wave-tide-storm surges interactions and coupling module. In Korea, especially, tidal height and current give a great effect on the wave prediction in the Yellow sea where is very high tide and related research is not enough. At present, KMA has operated the wave (RWAM : Regional Wave Model) and storm surges/tide prediction system (STORM : Storm Surges/Tide Operational Model) for ocean forecasting. The RWAM is WAVEWATCH III which is a third generation wave model developed by Tolman (1989). The STORM is based on POM (Princeton Ocean Model, Blumberg and Mellor, 1987). The RWAM and STORM cover the northwestern Pacific Ocean from 115°E to 150°E and from 20°N to 52°N. The horizontal grid intervals are 1/12° in both latitudinal and longitudinal directions. These two operational models are coupled to simulate wave heights for typhoon case. The sea level and current simulated by storm surge model are used for the input of wave model with 3 hour interval. The coupling simulation between wave and storm surge model carried out for Typhoon Nabi (0514), Shanshan(0613) and Nari (0711) which were effected on Korea directly. We simulated significant wave height simulated by wave model and coupling model and compared difference between uncoupling and coupling cases for each typhoon. When the typhoon Nabi hit at southern coast of Kyushu, predicted significant wave height reached over 10 m. The difference of significant wave height between wave and wave-tide-storm surges model represents large variation at the southwestern coast of Korea with about 0.5 m. Other typhoon cases also show similar results with typhoon Nabi case. For typhoon Shanshan case the difference of significant wave height reached up to 0.3 m. When the typhoon Nari was affected in the southern coast of Korea, predicted significant wave height was about 5m. The typhoon Nari case also shows the difference of significant wave height similar with other typhoon cases. Using the observation from ocean buoy operated by KMA, we compared wave information simulated by wave and wave-storm surges coupling model. The significant wave height simulated by wave-tide-storm surges model shows the tidal modulation features in the western and southern coast of Korea. And the difference of significant wave height between two models reached up to 0.5 m. The coupling effect also can be identified in the wave direction, wave period and wave length. In addition, wave spectrum is also changeable due to coupling effect of wave-tide-storm surges model. The development, testing and application of a coupling module in which wave-tide-storm surges are incorporated within the frame of KMA Ocean prediction system, has been considered as a step forward in respect of ocean forecasting. In addition, advanced wave prediction model will be applicable to the effect of ocean in the weather forecasting system. The main purpose of this study is to show how the coupling module developed and to report on a series of experiments dealing with the sensitivities and real case prediction of coupling wave-tide-storm surges prediction system.
The source of 90-day oscillations at Wake Island
NASA Technical Reports Server (NTRS)
Mitchum, Gary T.
1995-01-01
Energetic 90-day oscillations of sea level have been intermittently observed at Wake Island in the western tropical Pacific during the past 2 decades. The oscillations tend to occur about 1.5 years after El Nino-Southern Oscillation events, to have amplitudes of 10-15 cm, and to persist for about 1 year. Sea surface heights from the Geosat altimeter are used to establish that these signals take the form of Rossby waves and have an energy source near the Big Island of Hawaii, which lies 40 deg of longitude to the east. Sea level and upper layer currents from an eddy-resolving numerical model are examined and suggest that the energy source is eddies generated off the Big Island of Hawaii. These eddies appear to be associated with westward currents that intermittently impinge on the island. Several alternate hypotheses are also discussed and rejected.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Chang, Yehui; Schubert, Siegfried D.; Lin, Shian-Jiann; Nebuda, Sharon; Shen, Bo-Wen
2001-01-01
This document describes the climate of version 1 of the NASA-NCAR model developed at the Data Assimilation Office (DAO). The model consists of a new finite-volume dynamical core and an implementation of the NCAR climate community model (CCM-3) physical parameterizations. The version of the model examined here was integrated at a resolution of 2 degrees latitude by 2.5 degrees longitude and 32 levels. The results are based on assimilation that was forced with observed sea surface temperature and sea ice for the period 1979-1995, and are compared with NCEP/NCAR reanalyses and various other observational data sets. The results include an assessment of seasonal means, subseasonal transients including the Madden Julian Oscillation, and interannual variability. The quantities include zonal and meridional winds, temperature, specific humidity, geopotential height, stream function, velocity potential, precipitation, sea level pressure, and cloud radiative forcing.
The Influence of the Terrestrial Reference Frame on Studies of Sea Level Change
NASA Astrophysics Data System (ADS)
Nerem, R. S.; Bar-Sever, Y. E.; Haines, B. J.; Desai, S.; Heflin, M. B.
2015-12-01
The terrestrial reference frame (TRF) provides the foundation for the accurate monitoring of sea level using both ground-based (tide gauges) and space-based (satellite altimetry) techniques. For the latter, tide gauges are also used to monitor drifts in the satellite instruments over time. The accuracy of the terrestrial reference frame (TRF) is thus a critical component for both types of sea level measurements. The TRF is central to the formation of geocentric sea-surface height (SSH) measurements from satellite altimeter data. The computed satellite orbits are linked to a particular TRF via the assumed locations of the ground-based tracking systems. The manner in which TRF errors are expressed in the orbit solution (and thus SSH) is not straightforward, and depends on the models of the forces underlying the satellite's motion. We discuss this relationship, and provide examples of the systematic TRF-induced errors in the altimeter derived sea-level record. The TRF is also crucial to the interpretation of tide-gauge measurements, as it enables the separation of vertical land motion from volumetric changes in the water level. TRF errors affect tide gauge measurements through GNSS estimates of the vertical land motion at each tide gauge. This talk will discuss the current accuracy of the TRF and how errors in the TRF impact both satellite altimeter and tide gauge sea level measurements. We will also discuss simulations of how the proposed Geodetic Reference Antenna in SPace (GRASP) satellite mission could reduce these errors and revolutionize how reference frames are computed in general.
Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn
NASA Astrophysics Data System (ADS)
Sato, K.; Inoue, J.; Kodama, Y.; Overland, J. E.
2012-12-01
Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999-2010 cruises of the Japanese R/V Mirai. To understand the recent change in cloud base height over the Arctic Ocean, these cloud-base height data were compared with the observation data under ice-covered situation during SHEBA (the Surface Heat Budget of the Arctic Ocean project in 1998). Our ice-free results showed a 30 % decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. This suggests that stratus cloud over the sea ice has been replaced as stratocumulus clouds with low cloud fraction due to the decrease in static stability induced by the sea-ice retreat. The relationship between cloud-base height and air-sea temperature difference (SST-Ts) was analyzed in detail using special section data during 2010 cruise data. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere. Frequency distribution of the cloud-base height (km) detected by a ceilometer/lidar (black bars) and radiosondes (gray bars), and profiles of potential temperature (K) for (a) ice-free cases (R/V Mirai during September) and (b) ice-covered case (SHEBA during September 1998). (c) Vertical profiles of air temperature from 1000 hPa to 150 hPa (solid lines: observations north of 75°N, and dashed lines: the ERA-Interim reanalysis over 75-82.5°N, 150-170°W). Green, blue, and red lines denote profiles derived from observations by NP stations (the 1980s), SHEBA (1998), and the R/V Mirai (the 2000s), respectively. (d) Temperature trend calculated by the ERA-Interim reanalysis over the area.
Changes in erosion and flooding risk due to long-term and cyclic oceanographic trends
Wahl, Thomas; Plant, Nathaniel G.
2015-01-01
We assess temporal variations in waves and sea level, which are driving factors for beach 23 erosion and coastal flooding in the northern Gulf of Mexico. We find that long-term trends in 24 the relevant variables have caused an increase of ~30% in the erosion/flooding risk since the 25 1980s. Changes in the wave climate-which have often been ignored in earlier assessments-26 were at least as important as sea-level rise (SLR). In the next decades, SLR will likely become 27 the dominating driver and may in combination with ongoing changes in the wave climate (and 28 depending on the emission scenario) escalate the erosion/flooding risk by up to 300% over the 29 next 30 years. We also find significant changes in the seasonal cycles of sea level and 30 significant wave height, which have in combination caused a considerable increase of the 31 erosion/flooding risk in summer and decrease in winter (superimposed onto the long-term 32 trends)
Storlazzi, Curt D.; Field, Michael E.; Elias, Edwin; Presto, M. Katherine
2011-01-01
While most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100, it is not clear how fluid flow and sediment transport on fringing reefs might change in response to this rapid sea-level rise. Field observations and numerical modeling suggest that an increase in water depth on the order of 0.5-1.0 m on a fringing reef flat would result in larger significant wave heights and wave-driven shear stresses, which, in turn, would result in an increase in both the size and quantity of sediment that can be resuspended from the seabed or eroded from coastal plain deposits. Greater wave- and wind-driven currents would develop on the reef flat with increasing water depth, increasing the offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest.
NASA Astrophysics Data System (ADS)
Petty, A.; Tsamados, M.; Kurtz, N. T.; Farrell, S. L.; Newman, T.; Harbeck, J.; Feltham, D. L.; Richter-Menge, J.
2015-12-01
Here we present a detailed analysis of Arctic sea ice topography using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. We derive novel ice topography statistics from 2009-2014 across both first-year and multiyear ice regimes - including the height, area coverage, orientation and spacing of distinct surface features. The sea ice topography exhibits strong spatial variability, including increased surface feature (e.g. pressure ridge) height and area coverage within the multi-year ice regions. The ice topography also shows a strong coastal dependency, with the feature height and area coverage increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. The ice topography data have also been used to explicitly calculate atmospheric drag coefficients over Arctic sea ice; utilizing existing relationships regarding ridge geometry and their impact on form drag. The results are being used to calibrate the recent drag parameterization scheme included in the sea ice model CICE.
Drivers of Holocene sea-level change in the Caribbean
Khan, Nicole; Ashe, Erica; Horton, Benjamin P.; Dutton, Andrea; Kopp, Robert E.; Brocard, Gilles; Engelhart, Simon E.; Hill, David F.; Peltier, W.R.; Vane, Christopher H.; Scatena, Fred N.
2017-01-01
We present a Holocene relative sea-level (RSL) database for the Caribbean region (5°N to 25°N and 55°W to 90°W) that consists of 499 sea-level index points and 238 limiting dates. The database was compiled from multiple sea-level indicators (mangrove peat, microbial mats, beach rock and acroporid and massive corals). We subdivided the database into 20 regions to investigate the influence of tectonics and glacial isostatic adjustment on RSL. We account for the local-scale processes of sediment compaction and tidal range change using the stratigraphic position (overburden thickness) of index points and paleotidal modeling, respectively. We use a spatio-temporal empirical hierarchical model to estimate RSL position and its rates of change in the Caribbean over 1-ka time slices. Because of meltwater input, the rates of RSL change were highest during the early Holocene, with a maximum of 10.9 ± 0.6 m/ka in Suriname and Guyana and minimum of 7.4 ± 0.7 m/ka in south Florida from 12 to 8 ka. Following complete deglaciation of the Laurentide Ice Sheet (LIS) by ∼7 ka, mid-to late-Holocene rates slowed to < 2.4 ± 0.4 m/ka. The hierarchical model constrains the spatial extent of the mid-Holocene highstand. RSL did not exceed the present height during the Holocene, except on the northern coast of South America, where in Suriname and Guyana, RSL attained a height higher than present by 6.6 ka (82% probability). The highstand reached a maximum elevation of +1.0 ± 1.1 m between 5.3 and 5.2 ka. Regions with a highstand were located furthest away from the former LIS, where the effects from ocean syphoning and hydro-isostasy outweigh the influence of subsidence from forebulge collapse.
Mapping coastal sea level at high resolution with radar interferometry: the SWOT Mission
NASA Astrophysics Data System (ADS)
Fu, L. L.; Chao, Y.; Laignel, B.; Turki, I., Sr.
2017-12-01
The spatial resolution of the present constellation of radar altimeters in mapping two-dimensional sea surface height (SSH) variability is approaching 100 km (in wavelength). At scales shorter than 100 km, the eddies and fronts are responsible for the stirring and mixing of the ocean, especially important in the various coastal processes. A mission currently in development will make high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT will carry a pair of interferometry radars and make 2-dimensional SSH measurements over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. The synthetic aperture radar of SWOT will make SSH measurement at extremely high resolution of 10-70 m. SWOT will also carry a nadir looking conventional altimeter and make 1-dimensional SSH measurements along the nadir gap. The temporal sampling varies from 2 repeats per 21 days at the equator to more than 4 repeats at mid latitudes and more than 6 at high latitudes. This new mission will allow a continuum of fine-scale observations from the open ocean to the coasts, estuaries and rivers, allowing us to investigate a number of scientific and technical questions in the coastal and estuarine domain to assess the coastal impacts of regional sea level change, such as the interaction of sea level with river flow, estuary inundation, storm surge, coastal wetlands, salt water intrusion, etc. As examples, we will illustrate the potential impact of SWOT to the studies of the San Francisco Bay Delta, and the Seine River estuary, etc. Preliminary results suggest that the SWOT Mission will provide fundamental data to map the spatial variability of water surface elevations under different hydrodynamic conditions and at different scales (local, regional and global) to improve our knowledge of the complex physical processes in the coastal and estuarine systems in response to global sea level changes.
Feasibility of synthetic aperture altimeter data in ice charting
NASA Astrophysics Data System (ADS)
Rinne, Eero; Kangas, Antti
We demonstrate the possibility to utilise synthetic aperture altimeter data in operational ice charting. Different waveform parameters from Cryosat-2 SIRAL measurements are compared to AARI ice charts over the Barents and Kara seas. It is shown that polygons of different ice types are distinguishable in the altimeter data. The most important sea ice application of satellite altimeters today is measuring the thickness of Arctic winter sea ice. However, the use of altimeters to support ice mapping has been suggested already more than 30 years ago. Due to advent of imaging instruments more suitable for ice charting, most notably the SAR, altimeters have remained tools for sea ice science. They are however used operationally to determine sea height anomaly and significant wave height. Our input data is the SAR mode Level 1B data of CryoSat-2. We only consider the waveform data and calculate simple parameters describing the shape of the waveform such as the pulse peakiness and backscatter coefficient sigma_0. We compare these to ice stages of development given in the ice chart. As expected, ice edge is clearly visible in the altimeter data. What is more promising for operational ice thickness, areas of old ice can be distinguished from areas of young ice and nilas. Altimeters provide an independent source of sea ice information to complement SAR and passive microwave data. Albeit low resolution, altimeter data may prove valuable at times and locations where other data sources are unavailable. SAR data is frequently available for our study area, but our methods are applicable to areas where SAR data is scarce such as the Southern ice covered seas. Furthermore, our results here are directly applicable to the future Sentinel-3 altimeter data.
Doubling Your Sunsets or How Anyone Can Measure the Earth's Size with Wristwatch and Meterstick.
ERIC Educational Resources Information Center
Rawlins, Dennis
1979-01-01
Describes a simple method to measure the size of the Earth to an accuracy of order of magnitude 10 percent. The procedure involves finding the time interval between two sunsets, a sunset observed at sea level while lying down, and a sunset viewed at eye height after standing up. (GA)
2016-01-01
148 Note: Shaded rows are deficiencies that were known prior to IOT&E, but not repaired. aSea state refers to the height, period, and character of...the cutter to transmit data. Source: GAO analysis of Navy and Coast Guard data. | GAO-16-148 aSea state refers to the height, period, and character of
NASA Astrophysics Data System (ADS)
Zhuang, Wei; Qiu, Bo; Du, Yan
2013-12-01
Interannual-to-decadal sea level and circulation changes associated with the oceanic connectivity around the Philippine Archipelago are studied using satellite altimeter sea surface height (SSH) data and a reduced gravity ocean model. SSHs in the tropical North Pacific, the Sulu Sea and the eastern South China Sea (ESCS) display very similar low-frequency oscillations that are highly correlated with El Niño and Southern Oscillation. Model experiments reveal that these variations are mainly forced by the low-frequency winds over the North Pacific tropical gyre and affected little by the winds over the marginal seas and the North Pacific subtropical gyre. The wind-driven baroclinic Rossby waves impinge on the eastern Philippine coast and excite coastal Kelvin waves, conveying the SSH signals through the Sibutu Passage-Mindoro Strait pathway into the Sulu Sea and the ESCS. Closures of the Luzon Strait, Karimata Strait, and ITF passages have little impacts on the low-frequency sea level changes in the Sulu Sea and the ESCS. The oceanic pathway west of the Philippine Archipelago modulates the western boundary current system in the tropical North Pacific. Opening of this pathway weakens the time-varying amplitudes of the North Equatorial Current bifurcation latitude and Kuroshio transport. Changes of the amplitudes can be explained by the conceptual framework of island rule that allows for baroclinic adjustment. Although it fails to capture the interannual changes in the strongly nonlinear Mindanao Current, the time-dependent island rule is nevertheless helpful in clarifying the role of the archipelago in regulating its multidecadal variations.
50 CFR 648.50 - Shell-height standard.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Shell-height standard. 648.50 Section 648... Atlantic Sea Scallop Fishery § 648.50 Shell-height standard. (a) Minimum shell height. The minimum shell height for in-shell scallops that may be landed, or possessed at or after landing, is 3.5 inches (8.9 cm...
50 CFR 648.50 - Shell-height standard.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Shell-height standard. 648.50 Section 648... Atlantic Sea Scallop Fishery § 648.50 Shell-height standard. (a) Minimum shell height. The minimum shell height for in-shell scallops that may be landed, or possessed at or after landing, is 3.5 inches (8.9 cm...
Effect of different simulated altitudes on repeat-sprint performance in team-sport athletes.
Goods P, S R; Dawson, Brian T; Landers, Grant J; Gore, Christopher J; Peeling, Peter
2014-09-01
This study aimed to assess the impact of 3 heights of simulated altitude exposure on repeat-sprint performance in team-sport athletes. Ten trained male team-sport athletes completed 3 sets of repeated sprints (9 × 4 s) on a nonmotorized treadmill at sea level and at simulated altitudes of 2000, 3000, and 4000 m. Participants completed 4 trials in a random order over 4 wk, with mean power output (MPO), peak power output (PPO), blood lactate concentration (Bla), and oxygen saturation (SaO2) recorded after each set. Each increase in simulated altitude corresponded with a significant decrease in SaO2. Total work across all sets was highest at sea level and correspondingly lower at each successive altitude (P < .05; sea level < 2000 m < 3000 m < 4000 m). In the first set, MPO was reduced only at 4000 m, but for subsequent sets, decreases in MPO were observed at all altitudes (P < .05; 2000 m < 3000 m < 4000 m). PPO was maintained in all sets except for set 3 at 4000 m (P < .05; vs sea level and 2000 m). BLa levels were highest at 4000 m and significantly greater (P < .05) than at sea level after all sets. These results suggest that "higher may not be better," as a simulated altitude of 4000 m may potentially blunt absolute training quality. Therefore, it is recommended that a moderate simulated altitude (2000-3000 m) be employed when implementing intermittent hypoxic repeat-sprint training for team-sport athletes.
NASA Astrophysics Data System (ADS)
Nursamsiah; Nugroho Sugianto, Denny; Suprijanto, Jusup; Munasik; Yulianto, Bambang
2018-02-01
The information of extreme wave height return level was required for maritime planning and management. The recommendation methods in analyzing extreme wave were better distributed by Generalized Pareto Distribution (GPD). Seasonal variation was often considered in the extreme wave model. This research aims to identify the best model of GPD by considering a seasonal variation of the extreme wave. By using percentile 95 % as the threshold of extreme significant wave height, the seasonal GPD and non-seasonal GPD fitted. The Kolmogorov-Smirnov test was applied to identify the goodness of fit of the GPD model. The return value from seasonal and non-seasonal GPD was compared with the definition of return value as criteria. The Kolmogorov-Smirnov test result shows that GPD fits data very well both seasonal and non-seasonal model. The seasonal return value gives better information about the wave height characteristics.
Woo, I.; Takekawa, John Y.
2012-01-01
In the San Francisco Bay Estuary, CA, USA, sea level rise (SLR) is projected to increase by 1.4 m during the next 90 years resulting in increased inundation and salt water intrusion up-estuary. Since inundation and salinity are critical factors that drive vegetation structure and composition in coastal wetlands, we asked whether inundation and salinity levels associated with SLR would reduce the survival, growth, and reproductive capacity of a dominant halophyte, Sarcocornia pacifica (pickleweed). We conducted a 4 × 4 factorial greenhouse experiment to examine the effects of a range of inundation periods (25, 50, 75, and 100%) and water salinities (0, 10, 20, 30 psu) on individual S. pacifica adults and seedlings. We found that inundation and salinity treatments affected the height of adults and seedlings combined. When examined separately, adult height was negatively affected by inundation ≥75%, while seedling height was affected by the interaction of both inundation and salinity. Adult belowground biomass was negatively affected by complete inundation. Seedling aboveground biomass decreased 46% at the highest salinity (30 psu) and belowground biomass decreased at salinities ≥20 psu. Adult flower production was not affected by treatments but was reduced by 38% at 30 psu salinity for seedlings. While adult survival was 99%, seedling survival was 56% with greatest mortality at low (25%) inundation, possibly because their roots were more susceptible to desiccation. Vegetation structure of the marsh platform comprised of S. pacifica adults will be susceptible to greater inundation rates associated with SLR. Our results suggest that adults may grow less tall, thus altering the vegetation structure and likely the tidal marsh wildlife that rely on these habitats.
Meridional displacement of the Antarctic Circumpolar Current
Gille, Sarah T.
2014-01-01
Observed long-term warming trends in the Southern Ocean have been interpreted as a sign of increased poleward eddy heat transport or of a poleward displacement of the entire Antarctic Circumpolar Current (ACC) frontal system. The two-decade-long record from satellite altimetry is an important source of information for evaluating the mechanisms governing these trends. While several recent studies have used sea surface height contours to index ACC frontal displacements, here altimeter data are instead used to track the latitude of mean ACC transport. Altimetric height contours indicate a poleward trend, regardless of whether they are associated with ACC fronts. The zonally averaged transport latitude index shows no long-term trend, implying that ACC meridional shifts determined from sea surface height might be associated with large-scale changes in sea surface height more than with localized shifts in frontal positions. The transport latitude index is weakly sensitive to the Southern Annular Mode, but is uncorrelated with El Niño/Southern Oscillation. PMID:24891396
Evidence of a Weakening Gulf Stream from In-situ Expendable Bathythermograph Data, 1996-2013
NASA Astrophysics Data System (ADS)
Roupe, L.; Baringer, M. O.
2014-12-01
A weakening of the Gulf Stream, the upper branch of the Atlantic Meridional Overturning Circulation system, has been hypothesized to accelerate sea level rise on the east coast of the United States, caused by changes in the Gulf Stream strength and, hence, sea level difference across the current. It still remains unclear if the Gulf Stream has in fact weakened or remains stable, along with the potential role of natural long-term variability. Tide gauges along the east coast show an accelerated sea level rise from Cape Hatteras to Cape Cod that is 3-4 times higher than global sea level rise. Satellite altimetry shows a weakening gradient in Gulf Stream sea surface height that is highly correlated (r=-0.85) with east coast sea level rise, however, direct velocity measurements showed no significant decrease in Gulf Stream strength over a similar time period. We introduce another in-situ dataset to examine the issues between these conflicting results. Expendable bathythermographs (XBTs) measure temperature at depth directly, and then depth and salinity can be inferred, along with geostrophic velocity and transport. XBT data has been used to measure transport in various current systems, however, the Gulf Stream transport has not been analyzed using the newest high-density XBT data made available since 1996. The trend in sea level difference is determined to be 3.3 +/- 3.2 mm/yr, resulting in an overall decrease of 5.2 cm in sea level from 1996-2013. This result agrees with satellite altimetry results that show a significant decrease in recent years. This data also shows a changing Gulf Stream core position, based on the 15°C isotherm at 200 m, of 0.03°N/yr that is negatively correlated with surface transport (r=-0.25). Issues remain in defining the core and width of the Gulf Stream and with eliminating the possibility of natural variability in the current system.
The wind sea and swell waves climate in the Nordic seas
NASA Astrophysics Data System (ADS)
Semedo, Alvaro; Vettor, Roberto; Breivik, Øyvind; Sterl, Andreas; Reistad, Magnar; Soares, Carlos Guedes; Lima, Daniela
2015-02-01
A detailed climatology of wind sea and swell waves in the Nordic Seas (North Sea, Norwegian Sea, and Barents Sea), based on the high-resolution reanalysis NORA10, developed by the Norwegian Meteorological Institute, is presented. The higher resolution of the wind forcing fields, and the wave model (10 km in both cases), along with the inclusion of the bottom effect, allowed a better description of the wind sea and swell features, compared to previous global studies. The spatial patterns of the swell-dominated regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering. Nevertheless, swell waves are still more prevalent and carry more energy in the Nordic Seas, with the exception of the North Sea. The influence of the North Atlantic Oscillation on the winter regional wind sea and swell patterns is also presented. The analysis of the decadal trends of wind sea and swell heights during the NORA10 period (1958-2001) shows that the long-term trends of the total significant wave height (SWH) in the Nordic Seas are mostly due to swell and to the wave propagation effect.
NASA Astrophysics Data System (ADS)
Passaro, Marcello; Dinardo, Salvatore; Quartly, Graham D.; Snaith, Helen M.; Benveniste, Jérôme; Cipollini, Paolo; Lucas, Bruno
2016-08-01
A regional cross-calibration between the first Delay-Doppler altimetry dataset from CryoSat-2 and a retracked Envisat dataset is here presented, in order to test the benefits of the Delay-Doppler processing and to expand the Envisat time series in the coastal ocean. The Indonesian Seas are chosen for the calibration, since the availability of altimetry data in this region is particularly beneficial due to the lack of in situ measurements and its importance for global ocean circulation. The Envisat data in the region are retracked with the Adaptive Leading Edge Subwaveform (ALES) retracker, which has been previously validated and applied successfully to coastal sea level research. The study demonstrates that CryoSat-2 is able to decrease the 1-Hz noise of sea level estimations by 0.3 cm within 50 km of the coast, when compared to the ALES-reprocessed Envisat dataset. It also shows that Envisat can be confidently used for detailed oceanographic research after the orbit change of October 2010. Cross-calibration at the crossover points indicates that in the region of study a sea state bias correction equal to 5% of the significant wave height is an acceptable approximation for Delay-Doppler altimetry. The analysis of the joint sea level time series reveals the geographic extent of the semiannual signal caused by Kelvin waves during the monsoon transitions, the larger amplitudes of the annual signal due to the Java Coastal Current and the impact of the strong La Niña event of 2010 on rising sea level trends.
NASA Astrophysics Data System (ADS)
Emanuelsson, B. Daniel; Bertler, Nancy A. N.; Neff, Peter D.; Renwick, James A.; Markle, Bradley R.; Baisden, W. Troy; Keller, Elizabeth D.
2018-01-01
Persistent positive 500-hPa geopotential height anomalies from the ECMWF ERA-Interim reanalysis are used to quantify Amundsen-Bellingshausen Sea (ABS) anticyclonic event occurrences associated with precipitation in West Antarctica (WA). We demonstrate that multi-day (minimum 3-day duration) anticyclones play a key role in the ABS by dynamically inducing meridional transport, which is associated with heat and moisture advection into WA. This affects surface climate variability and trends, precipitation rates and thus WA ice sheet surface mass balance. We show that the snow accumulation record from the Roosevelt Island Climate Evolution (RICE) ice core reflects interannual variability of blocking and geopotential height conditions in the ABS/Ross Sea region. Furthermore, our analysis shows that larger precipitation events are related to enhanced anticyclonic circulation and meridional winds, which cause pronounced dipole patterns in air temperature anomalies and sea ice concentrations between the eastern Ross Sea and the Bellingshausen Sea/Weddell Sea, as well as between the eastern and western Ross Sea.
Projections of extreme water level events for atolls in the western Tropical Pacific
NASA Astrophysics Data System (ADS)
Merrifield, M. A.; Becker, J. M.; Ford, M.; Yao, Y.
2014-12-01
Conditions that lead to extreme water levels and coastal flooding are examined for atolls in the Republic of the Marshall Islands based on a recent field study of wave transformations over fringing reefs, tide gauge observations, and wave model hindcasts. Wave-driven water level extremes pose the largest threat to atoll shorelines, with coastal levels scaling as approximately one-third of the incident breaking wave height. The wave-driven coastal water level is partitioned into a mean setup, low frequency oscillations associated with cross-reef quasi-standing modes, and wind waves that reach the shore after undergoing high dissipation due to breaking and bottom friction. All three components depend on the water level over the reef; however, the sum of the components is independent of water level due to cancelling effects. Wave hindcasts suggest that wave-driven water level extremes capable of coastal flooding are infrequent events that require a peak wave event to coincide with mid- to high-tide conditions. Interannual and decadal variations in sea level do not change the frequency of these events appreciably. Future sea-level rise scenarios significantly increase the flooding threat associated with wave events, with a nearly exponential increase in flooding days per year as sea level exceeds 0.3 to 1.0 m above current levels.
Relative Sea Level, Tidal Range, and Extreme Water Levels in Boston Harbor from 1825 to 2016
NASA Astrophysics Data System (ADS)
Talke, S. A.; Kemp, A.; Woodruff, J. D.
2017-12-01
Long time series of water-level measurements made by tide gauges provide a rich and valuable observational history of relative sea-level change, the frequency and height of extreme water levels and evolving tidal regimes. However, relatively few locations have available tide-gauge records longer than 100 years and most of these places are in northern Europe. This spatio-temporal distribution hinders efforts to understand global-, regional- and local-scale trends. Using newly-discovered archival measurements, we constructed a 200 year, instrumental record of water levels, tides, and storm surges in Boston Harbor. We detail the recovery, datum reconstruction, digitization, quality assurance, and analysis of this extended observational record. Local, decadally-averaged relative sea-level rose by 0.28 ± 0.05 m since the 1820s, with an acceleration of 0.023 ±0.009 mm/yr2. Approximately 0.13 ± 0.02 m of the observed RSL rise occurred due to ongoing glacial isostatic adjustment, and the remainder occurred due to changes in ocean mass and volume associated with the onset of modern mean sea-level rise. Change-point analysis of the new relative sea level record confirms that anthropogenic rise began in 1924-1932, which is in agreement with global mean sea level estimates from the global tide gauge network. Tide range decreased by 5.5% between 1830 and 1910, likely due in large part to anthropogenic development. Storm tides in Boston Harbor are produced primarily by extratropical storms during the November-April time frame. The three largest storm tides occurred in 1851, 1909, and 1978. Because 90% of the top 20 storm tides since 1825 occurred during a spring tide, the secular change in tide range contributes to a slight reduction in storm tide magnitudes. However, non-stationarity in storm hazard was historically driven primarily by local relative sea-level rise; a modest 0.2 m increase in relative sea level reduces the 100 year high water mark to a once-in-10 year event.
NASA Astrophysics Data System (ADS)
Tarragoni, C.; Bellotti, P.; Caputo, C.; Davoli, L.; Evangelista, S.; Pugliese, F.; Raffi, R.; Lupia Palmieri, E.
2012-04-01
Geomorphic processes induce rapid environmental changes especially along the coast that is highly susceptible to them. In addiction, the effects of storm or wave may be amplified by the expected relative sea level rise. In a context, like Italian coast, where the almost part of coast is densely populated and many infrastructures are presents, it is very important to have adequate tools to urban planning like the coastal vulnerability map. In this study the preliminary results of the ongoing SECOA project (Solution for Environmental contrasts in COastal Areas; 7th Framework Program) are presented, with reference to the Adriatic coast between Pescara and Ortona cities, in the Abruzzo region. In this work the same analytical model applied in the Venice Lagoon has been employed (Fontolan, 2001; 2005) involving the evaluation of the effective vulnerability (Ve). Ve is calculated as the difference between the potential vulnerability (Vp) and the defence elements present along the coast (D). (Ve = Vp - D) The data used to measure quantitative features are: high-resolution DEM (LiDAR), satellite images, aero photos, bathymetric profiles and topographic maps. The variables that contribute to the evaluation are: beach amplitude, berm height, seafloor gradient, seafloor evolution, recent and historical shorelines evolution for Vp; height, slope, vegetation cover, presence of passages, incipient dunes and windbreak barriers for the dune and anthropic barriers height. In this context, the potential vulnerability results from the sum of each variable (Vn) per the relative efficacy coefficient (Kn): Vp = V1K1+V2K2+ …VnKn In the same way the defences result from the sum of each kind of defence per the relative efficacy coefficient: D = D1K1+ …. DnKn The coastal area between Pescara and Ortona cities has been segmented in different sectors characterized by homogeneous values of the considered variables and for each of these the Ve values have been calculated and referred to one of the five corresponding standard vulnerability classes. In long-term vulnerability analyses (year 2100) the following aspects have been taken into account: sea level rise expected according to the IPCC and Rahmstorf hypothesis, local tectonic movement (compaction and sedimentary load) and local vertical movement due to isostasy. The height of defences have been decreased of relative sea level rise value and the efficacy coefficients have been modified according to the different long-term weight of morphological and morphodynamics variables. A coastal vulnerability map has been drawn both for the short-term (present day) and long-term; the vulnerability classes values have been represented by different colours from green to red respectively from lowest to highest values. In conclusion, the short-term results show Ve values belonging to the lowest class due to the considerable presence of the defence works, even if Vp values falling in the medium and medium-low classes. Similar results are obtained from the long-term analysis in the case of both the IPCC and Rahmstorf hypothesis, further evidencing the overwhelming employment of defence structures.
World's mountains over 5 miles above sea level as seen from the Apollo 7
1968-10-15
AS7-07-1748 (15 Oct. 1968) --- The world's dozen peaks which reach a height of greater than five miles above sea level are seen in this photograph from the Apollo 7 spacecraft at an altitude of approximately 130 nautical miles. The 29,028 ft. high Mount Everest is at lower center. On the central horizon can be seen the 28,250 ft. high Mount Godwin-Austen (K-2) some 800 miles northwest of Mount Everest. In the lower right, Mount Kanchenjunga rises 28,208 ft. to separate Nepal from Sikkim. The snow line on the peaks was at 17,500 ft. In the upper right the lake-studded highlands of Tibet are visible.
Dynamic Topography and Sea Level Anomalies of the Southern Ocean: Variability and Teleconnections
NASA Astrophysics Data System (ADS)
Armitage, Thomas W. K.; Kwok, Ron; Thompson, Andrew F.; Cunningham, Glenn
2018-01-01
This study combines sea surface height (SSH) estimates of the ice-covered Southern Ocean with conventional open-ocean SSH estimates from CryoSat-2 to produce monthly composites of dynamic ocean topography (DOT) and sea level anomaly (SLA) on a 50 km grid spanning 2011-2016. This data set reveals the full Southern Ocean SSH seasonal cycle for the first time; there is an antiphase relationship between sea level on the Antarctic continental shelf and the deeper basins, with coastal SSH highest in autumn and lowest in spring. As a result of this pattern of seasonal SSH variability, the barotropic component of the Antarctic Slope Current (ASC) has speeds that are regionally up to twice as fast in the autumn. Month-to-month circulation variability of the Ross and Weddell Gyres is strongly influenced by the local wind field, and is correlated with the local wind curl (Ross: -0.58; Weddell: -0.67). SSH variability is linked to both the Southern Oscillation and the Southern Annular Mode, dominant modes of southern hemisphere climate variability. In particular, during the strong 2015-2016 El Niño, a sustained negative coastal SLA of up to -6 cm, implying a weakening of the ASC, was observed in the Pacific sector of the Southern Ocean. The ability to examine sea level variability in the seasonally ice-covered regions of the Southern Ocean—climatically important regions with an acute sparsity of data—makes this new merged sea level record of particular interest to the Southern Ocean oceanography and glaciology communities.
Measuring sea surface height with a GNSS-Wave Glider
NASA Astrophysics Data System (ADS)
Morales Maqueda, Miguel Angel; Penna, Nigel T.; Foden, Peter R.; Martin, Ian; Cipollini, Paolo; Williams, Simon D.; Pugh, Jeff P.
2017-04-01
A GNSS-Wave Glider is a novel technique to measure sea surface height autonomously using the Global Navigation Satellite System (GNSS). It consists of an unmanned surface vehicle manufactured by Liquid Robotics, a Wave Glider, and a geodetic-grade GNSS antenna-receiver system, with the antenna installed on a mast on the vehicle's deck. The Wave Glider uses the differential wave motion through the water column for propulsion, thus guaranteeing an, in principle, indefinite autonomy. Solar energy is collected to power all on-board instrumentation, including the GNSS system. The GNSS-Wave Glider was first tested in Loch Ness in 2013, demonstrating that the technology is capable of mapping geoid heights within the loch with an accuracy of a few centimetres. The trial in Loch Ness did not conclusively confirm the reliability of the technique because, during the tests, the state of the water surface was much more benign than would normally be expect in the open ocean. We now report on a first deployment of a GNSS-Wave Glider in the North Sea. The deployment took place in August 2016 and lasted thirteen days, during which the vehicle covered a distance of about 350 nautical miles in the north western North Sea off Great Britain. During the experiment, the GNSS-Wave Glider experienced sea states between 1 (0-0.1 m wave heights) and 5 (2.5-4 m wave heights). The GNSS-Wave Glider data, recorded at 5 Hz frequency, were analysed using a post-processed kinematic GPS-GLONASS precise point positioning (PPP) approach, which were quality controlled using double difference GPS kinematic processing with respect to onshore reference stations. Filtered with a 900 s moving-average window, the PPP heights reveal geoid patterns in the survey area that are very similar to the EGM2008 geoid model, thus demonstrating the potential use of a GNSS-Wave Glider for marine geoid determination. The residual of subtracting the modelled or measured marine geoid from the PPP signal combines information about dynamic topography and sea state. GNSS-Wave Glider data will next be validated against concurrent and co-located satellite altimetry data from the Jason-1, Jason-2, CryoSat-2 and AltiKa missions.
Ju, Min-Wook; Kwon, Hyon-Jo; Kim, Seon-Hwan; Koh, Hyeon-Song; Youm, Jin-Young; Song, Shi-Hun
2015-01-01
Objective Spinal epidural abscess (SEA) can be fatal if untreated, so early diagnosis and treatment are essential. We conducted a retrospective study to define its clinical features and evaluate the risk factors of motor weakness. Methods We retrospectively analyzed the medical records and images of patients with SEA who had been hospitalized in our institute from January 2005 to June 2012. Pyogenic SEA patients were categorized as patients without motor weakness (Group A) and with motor weakness (Group B). Abscess volume was measured using the Gamma-Plan program. Intervertebral foramen height and posterior disc height were measured to evaluate degree of spinal stenosis. Results Of 48 patients with pyogenic SEA, 33 (68%) were treated surgically, and 15 (32%) were treated with antibiotics. Eleven patients had weakness and abscess volume was unrelated to motor weakness. Old age, 'spare room' (abscess volume subtracted from spinal volume) and intervertebral foramen height and posterior disc height were statistically significant. Among the 48 patients, 43 (85%) had good outcome and erythrocyte sedimentation rate (ESR) was the only meaningful prognostic factor (p=0.014). The cut-off value of ESR was 112mm/h with 80% sensitivity and 79% specificity and had borderline significance (p=0.062). Conclusion SEA needs emergent diagnosis and treatment. Motor weakness is the most important factor in treatment decision. By careful image reading, early surgical treatment can be an option for selected patients with severe spinal stenosis for prevent motor weakness. Inflammatory markers, especially ESR, are valuable to identify worsening of SEA. PMID:26512265
NASA Astrophysics Data System (ADS)
Lionello, P.; Galati, M. B.
2008-06-01
This study analyzes the link between the SWH (Significant Wave Height) distribution in the Mediterranean Sea during the second half of the 20th century and the Northern Hemisphere SLP (Sea Level Pressure) teleconnection patterns. The SWH distribution is computed using the WAM (WAve Model) forced by the surface wind fields provided by the ERA-40 reanalysis for the period 1958-2001. The time series of mid-latitude teleconnection patterns are downloaded from the NOAA web site. This study shows that several mid-latitude patterns are linked to the SWH field in the Mediterranean, especially in its western part during the cold season: East Atlantic Pattern (EA), Scandinavian Pattern (SCA), North Atlantic Oscillation (NAO), East Atlantic/West Russia Pattern (EA/WR) and East Pacific/ North Pacific Pattern (EP/NP). Though the East Atlantic pattern exerts the largest influence, it is not sufficient to characterize the dominant variability. NAO, though relevant, has an effect smaller than EA and comparable to other patterns. Some link results from possibly spurious structures. Patterns which have a very different global structure are associated to similar spatial features of the wave variability in the Mediterranean Sea. These two problems are, admittedly, shortcomings of this analysis, which shows the complexity of the response of the Mediterranean SWH to global scale SLP teleconnection patterns.
NASA Astrophysics Data System (ADS)
He, Lin; Li, Jiancheng; Chu, Yonghai; Zhang, Tengxu
2017-04-01
National height reference systems have conventionally been linked to the coastal local mean sea level, observed at one tide gauge, such as the China national height datum 1985. Due to the effect of the local sea surface topography, the reference level surface of local datum is inconsistent with the global datum or other local datum. In order to unify or connect the local datum to the global height datum, it is necessary to obtain the zero-height geopotential value of local datum or the height offset with respect to the global datum. The GRACE and GOCE satellite mission are promising for purposes of unification of local vertical datums because they have brought a significant improvement in modeling of low-frequency or rather medium-frequency part of the Earth's static gravity field in the past ten years. The focus of this work is directed to the evaluation of most available Global Geopotential Models (GGMs) from GOCE and GRACE, both satellite only as well as combined ones. From the evaluation with the 649 GPS/Levelling benchmarks (BMs) in China, the GOCE/GRACE GGMs provide the accuracy at 42-52cm level, up to their max degree and order. The latest release 5 DIR, TIM GGMs improve the accuracies by 6-10cm compared to the release 1 models. The DIR_R1 is based on the fewer GOCE data performs equally well with the DIR_R4 and DIR_R5 model, this is attributed to the fact that during its development which used a priori information from EIGEN-51C. The zero-height geopotential value W0LVD for the China Local Vertical Datum (LVD) is 62636855.1606m2s-2 from the originally GOCE/GRACE GGMs. Taking into account the GPS/Levelling data contains the full spectral information, and the GOCE-only or GRACE-GOCE combined model are limited to the long wavelengths. To improve the accuracy of the GGMs, it is indispensable to account for the remaining signal above this maximum degree, known as the omission error of the GGM. The effect of GRACE/GOCE omission error is investigated by extending the models with the high-resolution gravity field model EGM2008. In China, the effect of the GRACE/GOCE GGMs omission error is at the decimeter level. The combined GGMs (up to 2160 degree and order) could provide an accuracy at 20cm level, which is better than that from EGM2008. Meanwhile, if an appropriate degree and order is chosen for the GOCE-only or GRACE-GOCE combined GGMs to connect with the EGM2008, the extended GGMs provide an accuracy at 16cm level. From the extended GGMs, the geopotential value W0LVD determined for the China local vertical datum is 62636853.4351 m2s-2 indicates a bias of about 2.5649 m2/s-2 compared to the conventional value of 62,636,856.0 m2s-2. This is support by National key research and development program No:2016YFB0501702. Keywords: Global Geopotential Models; GRACE; GOCE; GPS/Levelling; zero-height geopotential
Gochicoa-Rangel, Laura; Pérez-Padilla, José Rogelio; Rodríguez-Moreno, Luis; Montero-Matamoros, Arturo; Ojeda-Luna, Nancy; Martínez-Carbajal, Gema; Hernández-Raygoza, Roberto; Ruiz-Pedraza, Dolores; Fernández-Plata, María Rosario; Torre-Bouscoulet, Luis
2015-01-01
Altitude above sea level and body mass index are well-recognized determinants of oxygen saturation in adult populations; however, the contribution of these factors to oxygen saturation in children is less clear. To explore the contribution of altitude above sea level and body mass index to oxygen saturation in children. A multi-center, cross-sectional study conducted in nine cities in Mexico. Parents signed informed consent forms and completed a health status questionnaire. Height, weight, and pulse oximetry were recorded. We studied 2,200 subjects (52% girls) aged 8.7 ± 3.0 years. Mean body mass index, z-body mass index, and oxygen saturation were 18.1 ± 3.6 kg·m-2, 0.58 ± 1.3, and 95.5 ± 2.4%, respectively. By multiple regression analysis, altitude proved to be the main predictor of oxygen saturation, with non-significant contributions of age, gender, and body mass index. According to quantile regression, the median estimate of oxygen saturation was 98.7 minus 1.7% per km of altitude above sea level, and the oxygen saturation fifth percentile 97.4 minus 2.7% per km of altitude. Altitude was the main determinant of oxygen saturation, which on average decreased 1.7% per km of elevation from a percentage of 98.7 at sea level. In contrast with adults, this study in children found no association between oxygen saturation and obesity or age.
NASA Technical Reports Server (NTRS)
Allen, C. P.; Martin, C. F.
1977-01-01
The SEAHT program is designed to process multiple passes of altimeter data with intersecting ground tracks, with the estimation of corrections for orbital errors to each pass such that the data has the best overall agreement at the crossover points. Orbit error for each pass is modeled as a polynomial in time, with optional orders of 0, 1, or 2. One or more passes may be constrained in the adjustment process, thus allowing passes with the best orbits to provide the overall level and orientation of the estimated sea surface heights. Intersections which disagree by more than an input edit level are not used in the error parameter estimation. In the program implementation, passes are grouped into South-North passes and North-South passes, with the North-South passes partitioned out for the estimation of orbit error parameters. Computer core utilization is thus dependent on the number of parameters estimated for the set of South-North arcs, but is independent on the number of North-South passes. Estimated corrections for each pass are applied to the data at its input data rate and an output tape is written which contains the corrected data.
Olson, Storrs L.; Hearty, Paul J.
2003-01-01
Albatrosses (Diomedeidae) do not occur in the North Atlantic Ocean today except as vagrants, although five species were present in the early Pliocene. No fossil breeding sites of albatrosses were known previously. The timing of extinction of albatrosses in the North Atlantic was likewise unknown. Deposits that formed near present-day sea level along the southeastern shore of Bermuda contain remains of a former breeding colony and include intact eggshells and bones of embryos, juveniles, and adults of Short-tailed Albatross (Phoebastria albatrus), a critically endangered species now confined to a few islets in the northwestern Pacific Ocean. These deposits are correlated with the middle Pleistocene Lower Town Hill Formation, which at other sites have a radiometric age of ≈405,000 years ago. This equates with the marine isotope stage 11 interglacial, which culminated in a rise in sea-level to >+20 m. Bones of a juvenile Short-tailed Albatross were also found in beach deposits at +21.3 m from this same interglacial. We interpret the extirpation of albatrosses on Bermuda as probably resulting from lack of nesting sites protected from storm surges over the little emergent land that remained at the height of the marine isotope stage 11 sea level rise. PMID:14566060
Olson, Storrs L; Hearty, Paul J
2003-10-28
Albatrosses (Diomedeidae) do not occur in the North Atlantic Ocean today except as vagrants, although five species were present in the early Pliocene. No fossil breeding sites of albatrosses were known previously. The timing of extinction of albatrosses in the North Atlantic was likewise unknown. Deposits that formed near present-day sea level along the southeastern shore of Bermuda contain remains of a former breeding colony and include intact eggshells and bones of embryos, juveniles, and adults of Short-tailed Albatross (Phoebastria albatrus), a critically endangered species now confined to a few islets in the northwestern Pacific Ocean. These deposits are correlated with the middle Pleistocene Lower Town Hill Formation, which at other sites have a radiometric age of 405,000 years ago. This equates with the marine isotope stage 11 interglacial, which culminated in a rise in sea-level to >+20 m. Bones of a juvenile Short-tailed Albatross were also found in beach deposits at +21.3 m from this same interglacial. We interpret the extirpation of albatrosses on Bermuda as probably resulting from lack of nesting sites protected from storm surges over the little emergent land that remained at the height of the marine isotope stage 11 sea level rise.
Impact of wave mixing on the sea ice cover
NASA Astrophysics Data System (ADS)
Rynders, Stefanie; Aksenov, Yevgeny; Madec, Gurvan; Nurser, George; Feltham, Daniel
2017-04-01
As information on surface waves in ice-covered regions becomes available in ice-ocean models, there is an opportunity to model wave-related processes more accurate. Breaking waves cause mixing of the upper water column and present mixing schemes in ocean models take this into account through surface roughness. A commonly used approach is to calculate surface roughness from significant wave height, parameterised from wind speed. We present results from simulations using modelled significant wave height instead, which accounts for the presence of sea ice and the effect of swell. The simulations use the NEMO ocean model coupled to the CICE sea ice model, with wave information from the ECWAM model of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new waves-in-ice module allows waves to propagate in sea ice and attenuates waves according to multiple scattering and non-elastic losses. It is found that in the simulations with wave mixing the mixed layer depth (MLD) under ice cover is reduced, since the parameterisation from wind speed overestimates wave height in the ice-covered regions. The MLD change, in turn, affects sea ice concentration and ice thickness. In the Arctic, reduced MLD in winter translates into increased ice thicknesses overall, with higher increases in the Western Arctic and decreases along the Siberian coast. In summer, shallowing of the mixed layer results in more heat accumulating in the surface ocean, increasing ice melting. In the Southern Ocean the meridional gradient in ice thickness and concentration is increased. We argue that coupling waves with sea ice - ocean models can reduce negative biases in sea ice cover, affecting the distribution of nutrients and, thus, biological productivity and ecosystems. This coupling will become more important in the future, when wave heights in a large part of the Arctic are expected to increase due to sea ice retreat and a larger wave fetch. Therefore, wave mixing constitutes a possible positive feedback mechanism.
High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography
NASA Astrophysics Data System (ADS)
Elosegui, P.; Wilkinson, J.; Olsson, M.; Rodwell, S.; James, A.; Hagan, B.; Hwang, B.; Forsberg, R.; Gerdes, R.; Johannessen, J.; Wadhams, P.; Nettles, M.; Padman, L.
2012-12-01
Project "Arctic Ocean sea ice and ocean circulation using satellite methods" (SATICE), is the first high-rate, high-precision, continuous GPS positioning experiment on sea ice in the Arctic Ocean. The SATICE systems collect continuous, dual-frequency carrier-phase GPS data while drifting on sea ice. Additional geophysical measurements also collected include ocean water pressure, ocean surface salinity, atmospheric pressure, snow-depth, air-ice-ocean temperature profiles, photographic imagery, and others, enabling sea ice drift, freeboard, weather, ice mass balance, and sea-level height determination. Relatively large volumes of data from each buoy are streamed over a satellite link to a central computer on the Internet in near real time, where they are processed to estimate the time-varying buoy positions. SATICE system obtains continuous GPS data at sub-minute intervals with a positioning precision of a few centimetres in all three dimensions. Although monitoring of sea ice motions goes back to the early days of satellite observations, these autonomous platforms bring out a level of spatio-temporal detail that has never been seen before, especially in the vertical axis. These high-resolution data allows us to address new polar science questions and challenge our present understanding of both sea ice dynamics and Arctic oceanography. We will describe the technology behind this new autonomous platform, which could also be adapted to other applications that require high resolution positioning information with sustained operations and observations in the polar marine environment, and present results pertaining to sea ice dynamics and physical oceanography.
Storlazzi, C.D.; Elias, E.; Field, M.E.; Presto, M.K.
2011-01-01
Most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100; it is not clear, however, how fluid flow and sediment dynamics on exposed fringing reefs might change in response to this rapid sea-level rise. Coupled hydrodynamic and sediment-transport numerical modeling is consistent with recent published results that suggest that an increase in water depth on the order of 0.5-1.0 m on a 1-2 m deep exposed fringing reef flat would result in larger significant wave heights and setup, further elevating water depths on the reef flat. Larger waves would generate higher near-bed shear stresses, which, in turn, would result in an increase in both the size and the quantity of sediment that can be resuspended from the seabed or eroded from adjacent coastal plain deposits. Greater wave- and wind-driven currents would develop with increasing water depth, increasing the alongshore and offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest. Sediment residence time on the fringing reef flat was modeled to decrease exponentially with increasing sea-level rise as the magnitude of sea-level rise approached the mean water depth over the reef flat. The model results presented here suggest that a 0.5-1.0 m rise in sea level will likely increase coastal erosion, mixing and circulation, the amount of sediment resuspended, and the duration of high turbidity on exposed reef flats, resulting in decreased light availability for photosynthesis, increased sediment-induced stress on the reef ecosystem, and potentially affecting a number of other ecological processes.
New Orleans Topography, Radar Image with Colored Height
2005-08-29
The city of New Orleans, situated on the southern shore of Lake Pontchartrain, is shown in this radar image from the Shuttle Radar Topography Mission (SRTM). In this image bright areas show regions of high radar reflectivity, such as from urban areas, and elevations have been coded in color using height data also from the SRTM mission. Dark green colors indicate low elevations, rising through yellow and tan, to white at the highest elevations. New Orleans is near the center of this scene, between the lake and the Mississippi River. The line spanning the lake is the Lake Pontchartrain Causeway, the world’s longest overwater highway bridge. Major portions of the city of New Orleans are actually below sea level, and although it is protected by levees and sea walls that are designed to protect against storm surges of 18 to 20 feet, flooding during storm surges associated with major hurricanes is a significant concern. http://photojournal.jpl.nasa.gov/catalog/PIA04174
Long-period sea-level variations in the Mediterranean
NASA Astrophysics Data System (ADS)
Zerbini, Susanna; Raicich, Fabio; Bruni, Sara; del Conte, Sara; Errico, Maddalena; Prati, Claudio; Santi, Efisio
2016-04-01
Since the beginning of its long-lasting lifetime, the Wegener initiative has devoted careful consideration to studying sea-level variations/changes across the Mediterranean Sea. Our study focuses on several long-period sea-level time series (from end of 1800 to 2012) acquired in the Mediterranean by tide gauge stations. In general, the analysis and interpretation of these data sets can provide an important contribution to research on climate change and its impacts. We have analyzed the centennial sea-level time series of six fairly well documented tide gauges. They are: Marseille, in France, Alicante in Spain, Genoa, Trieste, Venice and Marina di Ravenna (formerly Porto Corsini), in Italy. The data of the Italian stations of Marina di Ravenna and Venice clearly indicate that land subsidence is responsible for most of the observed rate of relative sea level rise. It is well known that, in the two areas, subsidence is caused by both natural processes and human activities. For these two stations, using levelling data of benchmarks at, and/or close to, the tide gauges, and for the recent years, also GPS and InSAR height time series, modelling of the long-period non-linear behavior of subsidence was successfully accomplished. After removing the land vertical motions, the estimate of the linear long-period sea-level rise at all six stations yielded remarkably consistent values, between +1,2 and +1,3 mm/yr, with associated errors ranging from ±0,2 to ±0,3 mm/yr (95% confidence interval), which also account for the statistical autocorrelation of the time series. These trends in the Mediterranean area are lower than the global mean rate of 1,7±0,2 mm/yr (1901-2010) presented by the IPCC in its 5th Assessment Report; however, they are in full agreement with a global mean sea-level rise estimate, over the period 1901-1990, recently published by Hay et al. (2015, doi:10.1038/nature14093) and obtained using probabilistic techniques that combine sea-level records with physics-based and model-derived geometries of the contributing processes. An EOF analysis (Empirical Orthogonal Functions) has also been carried out on the six sea-level time series to identify the dominant modes of variability.
Morphologic Quality of DSMs Based on Optical and Radar Space Imagery
NASA Astrophysics Data System (ADS)
Sefercik, U. G.; Bayik, C.; Karakis, S.; Jacobsen, K.
2011-09-01
Digital Surface Models (DSMs) are representing the visible surface of the earth by the height corresponding to its X-, Y-location and height value Z. The quality of a DSM can be described by the accuracy and the morphologic details. Both depend upon the used input information, the used technique and the roughness of the terrain. The influence of the topographic details to the DSM quality is shown for the test fields Istanbul and Zonguldak. Zonguldak has a rough mountainous character with heights from sea level up to 1640m, while Istanbul is dominated by rolling hills going up to an elevation of 435m. DSMs from SPOT-5, the SRTM C-band height models and ASTER GDEM have been investigated. The DSMs have been verified with height models from large scale aerial photos being more accurate and including morphologic details. It was necessary to determine and respect shifts of the height models caused by datum problems and orientation of the height models. The DSM quality is analyzed depending upon the terrain inclination. The DSM quality differs for both test fields. The morphologic quality depends upon the point spacing of the analyzed DSMs and the terrain characteristics.
NASA Astrophysics Data System (ADS)
Hongo, Chuki; Kurihara, Haruko; Golbuu, Yimnang
2018-03-01
Tropical cyclones (TCs) and sea level rise (SLR) cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater, reducing the risks of natural disasters to coastal communities. However, projections of change in the risk to coastal reefs under conditions of intensified TCs and SLR are poorly quantified. In this study we projected the wave height and water level on Melekeok reef in the Palau Islands by 2100, based on wave simulations under intensified TCs (significant wave height at the outer ocean: SWHo = 8.7-11.0 m; significant wave period at the outer ocean: SWPo = 13-15 s) and SLR (0.24-0.98 m). To understand effects of upward reef growth on the reduction of the wave height and water level, the simulation was conducted for two reef condition scenarios: a degraded reef and a healthy reef. Moreover, analyses of reef growth based on a drilled core provided an assessment of the coral community and rate of reef production necessary to reduce the risk from TCs and SLR on the coastal areas. According to our calculations under intensified TCs and SLR by 2100, significant wave heights at the reef flat (SWHr) will increase from 1.05-1.24 m at present to 2.14 m if reefs are degraded. Similarly, by 2100 the water level at the shoreline (WLs) will increase from 0.86-2.10 m at present to 1.19-3.45 m if reefs are degraded. These predicted changes will probably cause beach erosion, saltwater intrusion into groundwater, and damage to infrastructure, because the coastal village is located at ˜ 3 m above the present mean sea level. These findings imply that even if the SWHr is decreased by only 0.1 m by upward reef growth, it will probably reduce the risks of costal damages. Our results showed that a healthy reef will reduce a maximum of 0.44 m of the SWHr. According to analysis of drilled core, corymbose Acropora corals will be key to reducing the risks, and 2.6-5.8 kg CaCO3 m-2 yr-1, equivalent to > 8 % of coral cover, will be required to keep a healthy reef by 2100. This study highlights that the maintaining reef growth (as a function of coral cover) in the future is effective in reducing the risk of coastal damage arising from wave action. Although the present study focuses on Melekeok fringing reef, many coral reefs are in the same situation under conditions of intensified TCs and SLR, and therefore the results of this study are applicable to other reefs. These researches are critical in guiding policy development directed at disaster prevention for small island nations and for developing and developed countries.
Space-time extreme wind waves: Observation and analysis of shapes and heights
NASA Astrophysics Data System (ADS)
Benetazzo, Alvise; Barbariol, Francesco; Bergamasco, Filippo; Carniel, Sandro; Sclavo, Mauro
2016-04-01
We analyze here the temporal shape and the maximal height of extreme wind waves, which were obtained from an observational space-time sample of sea surface elevations during a mature and short-crested sea state (Benetazzo et al., 2015). Space-time wave data are processed to detect the largest waves of specific 3-D wave groups close to the apex of their development. First, maximal elevations of the groups are discussed within the framework of space-time (ST) extreme statistical models of random wave fields (Adler and Taylor, 2007; Benetazzo et al., 2015; Fedele, 2012). Results of ST models are also compared with observations and predictions of maxima based on time series of sea surface elevations. Second, the time profile of the extreme waves around the maximal crest height is analyzed and compared with the expectations of the linear (Boccotti, 1983) and second-order nonlinear extension (Arena, 2005) of the Quasi-Determinism (QD) theory. Main purpose is to verify to what extent, using the QD model results, one can estimate the shape and the crest-to-trough height of large waves in a random ST wave field. From the results presented, it emerges that, apart from the displacements around the crest apex, sea surface elevations of very high waves are greatly dispersed around a mean profile. Yet the QD model furnishes, on average, a fair prediction of the wave height of the maximal waves, especially when nonlinearities are taken into account. Moreover, the combination of ST and QD model predictions allow establishing, for a given sea condition, a framework for the representation of waves with very large crest heights. The results have also the potential to be implemented in a phase-averaged numerical wave model (see abstract EGU2016-14008 and Barbariol et al., 2015). - Adler, R.J., Taylor, J.E., 2007. Random fields and geometry. Springer, New York (USA), 448 pp. - Arena, F., 2005. On non-linear very large sea wave groups. Ocean Eng. 32, 1311-1331. - Barbariol, F., Alves, J.H.G.., Benetazzo, A., Bergamasco, F., Bertotti, L., Carniel, S., Cavaleri, L., Chao, Y.Y., Chawla, A., Ricchi, A., Sclavo, M., Tolman, H., 2015. Space-Time Wave Extremes in WAVEWATCH III: Implementation and Validation for the Adriatic Sea Case Study, in: 14th International Workshop on Wave Hindcasting and Forecasting. November, 8-13, Key West, Florida (USA). - Benetazzo, A., Barbariol, F., Bergamasco, F., Torsello, A., Carniel, S., Sclavo, M., 2015. Observation of extreme sea waves in a space-time ensemble. J. Phys. Oceanogr. 45, 2261-2275. - Boccotti, P., 1983. Some new results on statistical properties of wind waves. Appl. Ocean Res. 5, 134-140. - Fedele, F., 2012. Space-Time Extremes in Short-Crested Storm Seas. J. Phys. Oceanogr. 42, 1601-1615.
Estimates of tsunami damage for Russian coast of the Black Sea
NASA Astrophysics Data System (ADS)
Zaytsev, Andrey; Yalciner, Ahmet; Pelinovsky, Efim
2010-05-01
The historic database of tsunamis in the Black Sea contains 20 - 30 events with different level of validity, and at least six events occurred in 20th century. Numerical modeling of the last historic events is performed in the framework of shallow-water theory with use of code NAMI-DANCE. The computed tide-gauge records in Russian coastal locations are in good agreement with instrumental data for the 1939 and 1966 tsunamis. The tsunami of the landslide origin occurred in Sochi in 1970 is modeled in the framework of the two-layer model realized in TUNAMI. Also, some hypothetic tsunamis generated in the open part of the Black Sea are computed and the distribution of the tsunami height along the Russian and Turkish coast ais found. In particular, the tsunami amplification near Sochi is highest to compare with other coastal locations on the Russian coast of Black Sea.
Allan, Tom
2006-01-01
GANDER – for Global Altimeter Network Designed to Evaluate Risk – was an idea that was probably ahead of its time. Conceived at a time when ocean observing satellites were sometimes 10 years in the planning stage, the concept of affordable faster sampling through the use of altimeter-carrying microsats was primarily advanced as a way of detecting and tracking storms at sea on a daily basis. But, of course, a radar altimeter monitors changes in sea-level as well as surface wave height and wind speed. Here then is a system which, flown with more precise missions such as JASON 2, could meet the needs of ocean modellers by providing the greater detail required for tracking mesoscale eddies, whilst servicing forecasting centres and units at sea with near real-time sea state information. A tsunami mode, instantly activated when an undersea earthquake is detected by the global network of seismic stations, could also be incorporated.
Intraseasonal Characteristics Of North Atlantic Oscillation
NASA Astrophysics Data System (ADS)
Bojariu, R.; Gimeno, L..; de La Torre, L.; Nieto, R.
There is evidence of a temporal structure of regional response to the NAO variability in the cold season (e.g. NAO-related climate fluctuations reveal their strongest signal in January). To document the details of NAO intraseasonal characteristics we anal- ysed surface and upper air variables (air surface temperature, sea-ice concentration, sea surface temperature, and sea level pressure and geopotential heights at 700 hPa level) in individual months, from November to April. The data consist of 40 years of monthly reanalyses (1961-2000) extracted from the NCAR-NCEP data set. In ad- dition, snow cover data are used (monthly snow cover frequencies from the Climate Prediction Centre and number of days with snow cover from the Former Soviet Union Hydrological Snow Surveys available at the National Snow and Ice Data Centre). A NAO-related signal with predictive potential has been identified in November air surface temperature over Europe and SLP and geopotential heights over Eurasia. Neg- ative thermal anomalies over the Central Europe and positive geopotential anomalies at 700 hPa over a latitudinal belt from Arabic Peninsula to Pacific Ocean are associated with a high NAO index in the following winter. The November thermal anomalies that seem to be related to the NAO interannual persistence are also linked with the fluctu- ations of snow cover over Europe. Both tropical and high latitude influences may play a role in the onset of the November signal and in further NAO development.
Interannual Variability in Amundsen Sea Ice-Shelf Height Change Linked to ENSO
NASA Astrophysics Data System (ADS)
Paolo, F. S.; Fricker, H. A.; Padman, L.
2015-12-01
Atmospheric and sea-ice conditions around Antarctica, particularly in the Amundsen and Bellingshausen seas, respond to climate dynamics in the tropical Pacific Ocean on interannual time scales including the El Nino-Southern Oscillation (ENSO). It has been hypothesized that the mass balance of the Antarctic Ice Sheet, including its floating ice shelves, also responds to this climate signal; however, this has not yet been unambiguously demonstrated. We apply multivariate singular spectrum analysis (MSSA) to our 18-year (1994-2012) time series of ice-shelf height in the Amundsen Sea (AS) region. This advanced spectral method distinguishes between regular deterministic behavior ("cycles") at sub-decadal time scale and irregular behavior ("noise") at shorter time scales. Although the long-term trends of AS ice-shelf height changes are much larger than the range of interannual variability, the short-term rate of change dh/dt can vary about the trend by more than 50%. The mode of interannual variability in the AS ice-shelf height is strongly correlated with the low-frequency mode of ENSO (periodicity of ~4.5 years) as represented by the Southern Oscillation Index. The ice-shelf height in the AS is expected to respond to changes in precipitation and inflows of warm subsurface Circumpolar Deep Water (CDW) into the ocean cavities under the ice shelves, altering basal melt rates. Since both of these processes affecting ice-shelf mass balance respond to changes in wind fields for different ENSO states, we expect some correlation between them. We will describe the spatial structure of AS ice-shelf height response to ENSO, and attempt to distinguish the precipitation signal from basal mass balance due to changing CDW inflows.
Incorporating climate change and morphological uncertainty into coastal change hazard assessments
Baron, Heather M.; Ruggiero, Peter; Wood, Nathan J.; Harris, Erica L.; Allan, Jonathan; Komar, Paul D.; Corcoran, Patrick
2015-01-01
Documented and forecasted trends in rising sea levels and changes in storminess patterns have the potential to increase the frequency, magnitude, and spatial extent of coastal change hazards. To develop realistic adaptation strategies, coastal planners need information about coastal change hazards that recognizes the dynamic temporal and spatial scales of beach morphology, the climate controls on coastal change hazards, and the uncertainties surrounding the drivers and impacts of climate change. We present a probabilistic approach for quantifying and mapping coastal change hazards that incorporates the uncertainty associated with both climate change and morphological variability. To demonstrate the approach, coastal change hazard zones of arbitrary confidence levels are developed for the Tillamook County (State of Oregon, USA) coastline using a suite of simple models and a range of possible climate futures related to wave climate, sea-level rise projections, and the frequency of major El Niño events. Extreme total water levels are more influenced by wave height variability, whereas the magnitude of erosion is more influenced by sea-level rise scenarios. Morphological variability has a stronger influence on the width of coastal hazard zones than the uncertainty associated with the range of climate change scenarios.
Turbulence structure of the marine stable boundary layer over the Baltic Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smedman, A.S.; Hoegstroem, U.
For more than half of the year the land surfaces surrounding the Baltic Sea is warmer than the sea surface, and the marine boundary layer over the Baltic is stable. Observations, at various sites in the Baltic Sea area during the last decade. also indicate frequent occurrence of low-level jets at the top of the stable boundary layer. In many cases the marine jet can be considered as an analogy in space to the evolution of the nocturnal jet with time. The frictional decoupling occurs when warm air over the land is flowing out over the sea. Data from twomore » areas together with model simulations are used in this study to characterize turbulence structure in the marine boundary layer. The measurements include profiles of wind and temperature on towers situated at two isolated islands, together with turbulence recordings and aircraft measurements. Also wave height and water surface temperature have been measured. The model simulations are performed with a second-order closure model.« less
Holocene sea-level changes in the Falkland Islands
NASA Astrophysics Data System (ADS)
Newton, Tom; Gehrels, Roland; Daley, Tim; Long, Antony; Bentley, Mike
2014-05-01
In many locations in the southern hemisphere, relative sea level (RSL) reached its maximum position during the middle Holocene. This highstand is used by models of glacial isostatic adjustment (GIA) to constrain the melt histories of the large ice sheets, particularly Antarctica. In this paper we present the first Holocene sea-level record from the Falkland Islands (Islas Malvinas), an archipelago located on the Patagonian continental shelf about 500 km east of mainland South America at a latitude of ca. 52 degrees. Unlike coastal locations in southernmost South America, Holocene sea-level data from the Falklands are not influenced by tectonics, local ice loading effects and large tidal ranges such that GIA and ice-ocean mass flux are the dominant drivers of RSL change. Our study site is a salt marsh located in Swan Inlet in East Falkland, around 50 km southwest of Stanley. This is the largest and best developed salt marsh in the Falkland Islands. Cores were collected in 2005 and 2013. Lithostratigraphic analyses were complemented by analyses of foraminifera, testate amoebae and diatoms to infer palaeoenvironments. The bedrock, a Permian black shale, is overlain by grey-brown organic salt-marsh clay, up to 90 cm thick, which, in a landward direction, is replaced by freshwater organic sediments. Overlying these units are medium-coarse sands with occasional pebbles, up to 115 cm thick, containing tidal flat foraminifera. The sandy unit is erosively overlain by a grey-brown organic salt-marsh peat which extends up to the present surface. Further away from the sea this unit is predominantly of freshwater origin. Based on 13 radiocarbon dates we infer that prior to ~9.5 ka sea level was several metres below present. Under rising sea levels a salt marsh developed which was suddenly drowned around 8.4 ka, synchronous with a sea-level jump known from northern hemisphere locations. Following the drowning, RSL rose to its maximum position around 7 ka, less than 0.5 m above present sea level. RSL then fell slowly during the middle and late Holocene, eroding the elevated tidal flat deposits in places, and allowing development of thin salt marsh deposits and encroachment of freshwater marsh. Our new sea-level index points are roughly in agreement with GIA model predictions but place tight constraints on the timing of early Holocene RSL rise and the height and timing of the maximum Holocene RSL position.
Remote sensing of Gulf Stream using GEOS-3 radar altimeter
NASA Technical Reports Server (NTRS)
Leitao, C. D.; Huang, N. E.; Parra, C. G.
1978-01-01
Radar altimeter measurements from the GEOS-3 satellite to the ocean surface indicated the presence of expected geostrophic height differences across the the Gulf Stream. Dynamic sea surface heights were found by both editing and filtering the raw sea surface heights and then referencing these processed data to a 5 minute x 5 minute geoid. Any trend between the processed data and the geoid was removed by subtracting out a linear fit to the residuals in the open ocean. The mean current velocity of 107 + or - 29 cm/sec calculated from the dynamic heights for all orbits corresponded with velocities obtained from hydrographic methods. Also, dynamic topographic maps were produced for August, September, and October 1975. Results pointed out limitations in the accuracy of the geoid, height anomaly deteriorations due to filtering, and lack of dense time and space distribution of measurements.
The contribution of sea-level rise to flooding in large river catchments
NASA Astrophysics Data System (ADS)
Thiele-Eich, I.; Hopson, T. M.; Gilleland, E.; Lamarque, J.; Hu, A.; Simmer, C.
2012-12-01
Climate change is expected to both impact sea level rise as well as flooding. Our study focuses on the combined effect of climate change on upper catchment precipitation as well as on sea-level rise at the river mouths and the impact this will have on river flooding both at the coast and further upstream. We concentrate on the eight catchments of the Amazonas, Congo, Orinoco, Ganges/Brahmaputra/Meghna, Mississippi, St. Lawrence, Danube and Niger rivers. To assess the impact of climate change, upper catchment precipitation as well as monthly mean thermosteric sea-level rise at the river mouth outflow are taken from the four CCSM4 1° 20th Century ensemble members as well as from six CCSM4 1° ensemble members for the RCP scenarios RCP8.5, 6.0, 4.5 and 2.6. Continuous daily time series for average catchment precipitation and discharge are available for each of the catchments. To arrive at a future discharge time series, we used these observations to develop a simple statistical hydrological model which can be applied to the modelled future upper catchment precipitation values. The analysis of this surrogate discharge time series alone already yields significant changes in flood return levels as well as flood duration. Using the geometry of the river channel, the backwater effect of sea-level rise is incorporated in our analysis of both flood frequencies and magnitudes by calculating the effective additional discharge due to the increase in water level at the river mouth outflow, as well as its tapering impact upstream. By combining these effects, our results focus on the merged impact of changes in extreme precipitation with increases in river height due to sea-level rise at the river mouths. Judging from our preliminary results, the increase in effective discharge due to sea-level rise cannot be neglected when discussing late 21st century flooding in the respective river basins. In particular, we find that especially in countries with low elevation gradient, flood characteristics are impacted by changes in sea-level rise as far inland as 150 kilometers. Therefore, a larger population than the coastal inhabitants alone are exposed to risks of further projected increases of sea-level rise. A prime example for a megacity greatly put at risk by this is Dhaka City in Bangladesh, with a population of roughly 14 million people.
Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean
NASA Technical Reports Server (NTRS)
Wright, C. W.; Walsh, E. J.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.
1999-01-01
The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 deg half-power width (two-way) across the aircraft ground track over a swath equal to 0. 8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The data presented were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Wave heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction and at times there were wave fields traveling at right angles to each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 2-minute animation of the directional wave spectrum spatial variation over this period will be shown.
Marginal sea surface temperature variation as a pre-cursor of heat waves over the Korean Peninsula
NASA Astrophysics Data System (ADS)
Ham, Yoo-Geun; Na, Hye-Yun
2017-11-01
This study examines the role of the marginal sea surface temperature (SST) on heat waves over Korea. It is found that sea surface warming in the south sea of Korea/Japan (122-138°E, 24- 33°N) causes heat waves after about a week. Due to the frictional force, the positive geopotential height anomalies associated with the south sea warming induce divergent flows over the boundary layer. This divergent flow induces the southerly in Korea, which leads to a positive temperature advection. On the other hand, over the freeatmosphere, the geostrophic wind around high-pressure anomalies flows in a westerly direction over Korea during the south sea warming, which is not effective in temperature advection. Therefore, the positive temperature advection in Korea due to the south sea warming decreases with height. This reduces the vertical potential temperature gradient, which indicates a negative potential vorticity (PV) tendency over Korea. Therefore, the high-pressure anomaly over the south sea of Korea is propagated northward, which results in heat waves due to more incoming solar radiation.
Storm surges formation in the White and Barents Seas
NASA Astrophysics Data System (ADS)
Arkhipkin, Victor; Dobrolyubov, Sergey; Korablina, Anastasia; Myslenkov, Stanislav
2016-04-01
Investigation of storm surges in the Arctic seas are of high priority in Russia due to the active development of offshore oil and gas, construction of facilities in the coastal zone, as well as for the safety of navigation. It is important to study the variability of surges, to predict this phenomena and subsequent economic losses, thus including such information into the Russian Arctic Development Program 2020. Surges in the White and Barents Seas are caused mainly by deep cyclones of two types: "diving" from the north (88% of all cyclones) and western. The average height of the storm surges in the White Sea is 0.6-0.9 m. An average duration of storm surges is about 80 hours. Mathematical modeling is used to analyze the characteristics of storm surges formation in the Dvina Bay of the White Sea, and in the Varandey village on the Barents Sea coast. Calculating storm surge heights in the White and Barents seas is performed using the ADCIRC model on an unstructured grid with a step from 20 km in the Barents Sea to 100 m in the White Sea. Unstructured grids allowed keeping small features of the coastline of the White and Barents seas, small islands and shallow banks, and assessing their impact on the development and transformation of wind-generated waves. The ADCIRC model used data of wind field reanalysis CFSv2. The storm surges were simulated for the time period from 1979 to 2010 and included scenarios with / without direct atmospheric pressure forcing, waves and tides. Numerical experiments have revealed distribution of storm surges in channels of the Northern Dvina River delta. The storm surges spreads in the model from the north-north-west of the Dvina Bay. As storm surge moves from the wellhead to the seaside estuary of the Northern Dvina (district Solombala), its height increases from 0.5 to 2 m. We also found a non-linear interaction of the surge and tide during the phase of surge destruction. This phenomenon is the highest in the period of low water, and the smallest in the period full of water. Analysis of storm surges in the Varandey village (the southern part of the Barents Sea) showed that the maximum height of storm surge reached 2.9 m in this region in July, 2010. The work performed was supported by the RSCF (grant № 14-37-00038)
TOPEX/El Nino Watch - Satellite Shows Pacific Running Hot and Cold, September 12, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
This image of the Pacific Ocean was produced using sea-surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on September 12, 1998; these sea surface heights are an indicator of the changing amount of heat stored in the ocean. The tropical Pacific Ocean continues to exhibit the complicated characteristics of both a lingering El Nino, and a possibly waning La Nina situation. This image shows that the rapid cooling of the central tropical Pacific has slowed and this area of low sea level (shown in purple) has decreased slightly since last month. It is still uncertain, scientists say, that this cold pool will evolve into a long-lasting La Nina situation. Remnants of the El Nino warm water pool, shown here in red and white, are still lingering to the north and south of the equator. The coexistence of these two contrasting conditions indicates that the ocean and the climate system remain in transition. These strong patterns have remained in the climate system for many months and will continue to influence weather conditions around the world in the coming fall and winter. The satellite's sea-surface height measurements have provided scientists with a detailed view of the 1997-98 El Nino because the TOPEX/Poseidon satellite measures the changing sea-surface height with unprecedented precision. The purple areas are about 18 centimeters (7 inches) below normal, creating a deficit in the heat supply to the surface waters. The white areas show the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions. The purple areas are 14 to 18 centimeters (6 to 7 inches) below normal and the blue areas are 5 to 13 centimeters (2 to 5 inches) below normal. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. A La Nina situation is essentially the opposite of an El Nino condition, but during La Nina the trade winds are stronger than normal and the cold water that normally exists along the coast of South America extends to the central equatorial Pacific. A La Nina situation also changes global weather patterns, and is associated with less moisture in the air resulting in less rain along the west coasts of North and South America.
For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.govNASA Astrophysics Data System (ADS)
Gilson, G.; Jiskoot, H.
2016-12-01
Many Arctic glaciers terminate along coasts where temperature inversions and sea fog are frequent during summer. Both can influence glacier ablation, but the effects of fog may be complex. To understand fog's physical and radiative properties and its association to temperature inversions it is important to determine accurate Arctic coastal fog climatologies In previous research we determined that fog in East Greenland peaks in the melt season and can be spatially extensive over glacierized terrain. In this study we aim to understand which environmental factors influence fog occurrence in East Greenland; understand the association between fog and temperature inversions; and quantify fog height. We analyzed fog observations and other weather data from coastal synoptic weather stations, and extracted temperature inversions from the Integrated Global Radiosonde Archive radiosonde profiles. Fog height was calculated from radiosonde profiles, based on a method developed for radiation fog which we expanded to include advection and steam fog. Our results show that Arctic coastal fog requires sea ice breakup and a sea breeze with wind speed between 1-4 m/s. Fog is mostly advective, occurring under stable synoptic conditions characterized by deep and strong low-level temperature inversions. Steam fog may occur 5-30% of the time. Fog can occur under near-surface subsidence, with a subsaturated inversion base, or a saturated inversion base. We classified five types of fog based on their vertical sounding characteristics: only at the surface, below an inversion, capped by an inversion, inside a surface-based inversion, or inside a low-level inversion. Fog is commonly 100-400 m thick, often reaching the top of the boundary layer. Fog height is greater at northern stations, where daily fog duration is longer and relative humidity lower. Our results will be included in glacier energy-balance models to account for the influence of fog and temperature inversions on glacier melt.
Coastal Evolution Modeling at Multiple Scales in Regional Sediment Management Applications
2011-05-01
run-up height (including setup), ∆h is the surge level (including tide elevation relative to mean sea level (MSL)); zD is the dune toe elevation...interactive shoreline, dune , and inlet evolution, on the scale of hundreds of years, a regional and long-term perspective. The regional model...side by subscript r. Dune Erosion As waves run up on the beach and reach the foot of the dune , the dune will be subject to erosion. If it is assumed
NASA/French Satellite Data Reveal New Details of Tsunami
2005-01-12
Displayed in blue color is the height of sea surface (shown in blue) measured by the Jason satellite two hours after the initial magnitude 9 earthquake hit the region (shown in red) southwest of Sumatra on December 26, 2004. The data were taken by a radar altimeter onboard the satellite along a track traversing the Indian Ocean when the tsunami waves had just filled the entire Bay of Bengal (see the model simulation inset image). The data shown are the changes of sea surface height from previous observations made along the same track 20-30 days before the earthquake, reflecting the signals of the tsunami waves. The maximum height of the leading wave crest was about 50 cm (or 1.6 ft), followed by a trough of sea surface depression of 40 cm. The directions of wave propagation along the satellite track are shown by the blue arrows. http://photojournal.jpl.nasa.gov/catalog/PIA07219
Soren, Julian
1976-01-01
A rising water table following cessation of public-supply pumping has been causing basement flooding and building-foundation damage in the East New York section of Brooklyn, Kings County, Long Island, N.Y., since 1975. The water table in the central part of the area rose from a low of about 12 feet (3.7 meters) below sea level in 1936 to about 8 to 10 feet (2.4 to 3 meters) above sea level in March 1976. Public-supply pumping in Brooklyn ceased in 1947 and ceased in 1974 in the adjacent Woodhaven section of Queens County. A further water-table rise of about 2 feet (0.6 meter) is anticipated in the next several years in the central part of the East New York area, and the ultimate water-table height could be as much as about 15 feet (4.6 meters) above sea level. Relief from the flooding by dewatering operations is complicated by problems with disposal of pumped-out ground water. (Woodard-USGS)
A coastal hazards data base for the U.S. West Coast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gornitz, V.M.; Beaty, T.W.; Daniels, R.C.
1997-12-01
This document describes the contents of a digital data base that may be used to identify coastlines along the US West Coast that are at risk to sea-level rise. This data base integrates point, line, and polygon data for the US West Coast into 0.25{degree} latitude by 0.25{degree} longitude grid cells and into 1:2,000,000 digitized line segments that can be used by raster or vector geographic information systems (GIS) as well as by non-GIS data bases. Each coastal grid cell and line segment contains data variables from the following seven data sets: elevation, geology, geomorphology, sea-level trends, shoreline displacement (erosion/accretion),more » tidal ranges, and wave heights. One variable from each data set was classified according to its susceptibility to sea-level rise and/or erosion to form 7 relative risk variables. These risk variables range in value from 1 to 5 and may be used to calculate a Coastal Vulnerability Index (CVI). Algorithms used to calculate several CVIs are listed within this text.« less
The Last Interglacial sea level change: new evidence from the Abrolhos islands, West Australia
NASA Astrophysics Data System (ADS)
Eisenhauer, A.; Zhu, Z. R.; Collins, L. B.; Wyrwoll, K. H.; Eichstätter, R.
U-series ages measured by thermal ionisation mass spectrometry (TIMS) are reported for a Last Interglacial (LI) fossil coral core from the Turtle Bay, Houtman Abrolhos islands, western Australia. The core is 33.4m long the top of which is approximately 5ma.p.s.l. (above present sea level). From the 232Th concentrations and the reliability of the U-series ages, two sections in the core can be distinguished. Calculated U/Th ages in core sectionI (3.3ma.p.s.l to 11mb.p.s.l) vary between 124+/-1.7kaBP (3.3ma.p.s.l.) and 132.5+/-1.8ka (4mb.p.s.l., i.e. below present sea level), and those of sectionII (11-23mb.p.s.l.) between 140+/-3 and 214+/-5kaBP, respectively. The ages of core sectionI are in almost perfect chronological order, whereas for sectionII no clear age-depth relationship of the samples can be recognised. Further assessments based on the ∂234U(T) criteria reveal that none of the samples of core sectionII give reliable ages, whereas for core sectionI several samples can be considered to be moderately reliable within 2ka. The data of the Turtle Bay core complement and extend our previous work from the Houtman Abrolhos showing that the sea level reached a height of approximately 4mb.p.s.l at approximately 134kaBP and a sea level highstand of at least 3.3ma.p.s.l. at approximately 124kaBP. Sea level dropped below its present position at approximately 116kaBP. Although the new data are in general accord with the Milankovitch theory of climate change, a detailed comparison reveals considerable differences between the Holocenand LI sea level rise as monitored relative to the Houtman Abrolhos islands. These observation apparently add further evidence to the growing set of data that the LI sea level rise started earlier than recognised by SPECMAP chronology. A reconciliation of these contradictionary observations following the line of arguments presented by Crowley (1994) are discussed with respect to the Milankovitch theory.
NASA Astrophysics Data System (ADS)
Tanajura, C. A. S.; Lima, L. N.; Belyaev, K. P.
2015-09-01
The data of sea height anomalies calculated along the tracks of the Jason-1 and Jason-2 satellites are assimilated into the HYCOM hydrodynamic ocean model developed at the University of Miami, USA. We used a known method of data assimilation, the so-called ensemble method of the optimal interpolation scheme (EnOI). In this work, we study the influence of the assimilation of sea height anomalies on other variables of the model. The behavior of the time series of the analyzed and predicted values of the model is compared with a reference calculation (free run), i.e., with the behavior of model variables without assimilation but under the same initial and boundary conditions. The results of the simulation are also compared with the independent data of observations on moorings of the Pilot Research Array in the Tropical Atlantic (PIRATA) and the data of the ARGO floats using objective metrics. The investigations demonstrate that data assimilation under specific conditions results in a significant improvement of the 24-h prediction of the ocean state. The experiments also show that the assimilated fields of the ocean level contain a clearly pronounced mesoscale variability; thus they quantitatively differ from the dynamics obtained in the reference experiment.
NASA Astrophysics Data System (ADS)
Reyes, S. R. C.; Blanco, A. C.
2012-07-01
A number of studies assessing the vulnerability of Southeast Asia to climate change have classified the Philippines as one of the vulnerable countries in the region. Bolinao, Pangasinan is a municipality located in northwestern Luzon, situated in the western part of the Lingayen Gulf and is bounded on the north and west by the South China Sea (West Philippine Sea). Recent studies have verified the varying trends in sea level across the South China Sea, which is considered as one of the largest, semi-enclosed marginal seas in the northwest Pacific Ocean. Three barangays (villages) were included in the study: (1) Luciente 1.0, (2) Concordia and (3) Germinal. The Socioeconomic Vulnerability Index (SVI) was computed based on population, age, gender, employment, source of income and household size, which were gathered through a qualitative survey in the selected barangays. The Coastal Vulnerability Index (CVI) described the physical vulnerability of these coastal communities based on recorded sea level anomalies and significant wave heights of multiple satellite altimetry missions, coastal topography derived from the 25-m SRTM digital elevation model (DEM), bathymetry from WorldView-2 and additional elevation data from terrestrial laser scanning surveys. The research utilized merged satellite altimetry data downloaded from the Radar Altimetry Database System (RADS), which covered the period from 1991-2010. The SVI and CVI were calculated and evaluated in ArcGIS. The SVI and CVI were integrated to determine the Total Vulnerability Index (TVI), which characterized the vulnerability of the three barangays in five classes, from very low to very high vulnerability.
An observation of sea-spray microphysics by airborne Doppler radar
NASA Astrophysics Data System (ADS)
Fairall, C. W.; Pezoa, S.; Moran, K.; Wolfe, D.
2014-05-01
This paper describes observations and analysis of Doppler radar data from a down-looking 94 GHz (W-Band) system operated from a NOAA WP-3 Orion research aircraft in Tropical Storm (TS) Karen. The flight took place on 5 October 2013; Karen had weakened with maximum winds around 20 m s-1. Doppler spectral moments from the radar were processed to retrieve sea-spray microphysical properties (drop size and liquid water mass concentration) profiles in the height range 75-300 m above the sea surface. In the high wind speed regions of TS Karen (U10 > 15 m s-1), sea spray was observed with a nominal mass-mode radius of about 40 µm, a radar-weighted gravitational fall velocity of about 1 m s-1, and a mass concentration of about 10-3 gm-3 at 75 m. Spray-drop mass concentration declined with height to values of about 10-4 gm-3 at 300 m. Drop mass decreased slightly more slowly with increasing height than predicted by surface-layer similarity theory for a balance of turbulent diffusion vs fall velocity.
NASA Astrophysics Data System (ADS)
Birol, Florence; Delebecque, Caroline
2014-01-01
Satellite altimetry, measuring sea surface heights (SSHs), has unique capabilities to provide information about the ocean dynamics. In this paper, the skill of the original full rate (10/20 Hz) measurements, relative to conventional 1-Hz data, is evaluated in the context of coastal studies in the Northwestern Mediterranean Sea. The performance and the question of the measurement noise are quantified through a comparison with different tide gauge sea level time series. By applying a specific processing, closer than 30 km to the land, the number of valid data is higher for the 10/20-Hz than for the 1-Hz observations: + 4.5% for T/P, + 10.3 for Jason-1 and + 13% for Jason-2. By filtering higher sampling rate measurements (using a 30-km cut-off low-pass Lanczos filter), we can obtain the same level of sea level accuracy as we would using the classical 1-Hz altimeter data. The gain in near-shore data results in a better observation of the Liguro-Provençal-Catalan Current. The seasonal evolution of the currents derived from 20-Hz data is globally consistent with patterns derived from the corresponding 1-Hz observations. But the use of higher frequency altimeter measurements allows us to observe the variability of the regional flow closer to the coast (~ 10-15 km from land).
Sea Level Variability in the Mediterranean
NASA Astrophysics Data System (ADS)
Zerbini, S.; Bruni, S.; del Conte, S.; Errico, M.; Petracca, F.; Prati, C.; Raicich, F.; Santi, E.
2015-12-01
Tide gauges measure local sea-level relative to a benchmark on land, therefore the interpretation of these measurements can be limited by the lack of appropriate knowledge of vertical crustal motions. The oldest sea-level records date back to the 18th century; these observations are the only centuries-old data source enabling the estimate of historical sea-level trends/variations. In general, tide gauge benchmarks were not frequently levelled, except in those stations where natural and/or anthropogenic subsidence was a major concern. However, in most cases, it is difficult to retrieve the historical geodetic levelling data. Space geodetic techniques, such as GNSS, Doris and InSAR are now providing measurements on a time and space-continuous basis, giving rise to a large amount of different data sets. The vertical motions resulting from the various analyses need to be compared and best exploited for achieving reliable estimates of sea level variations. In the Mediterranean area, there are a few centennial tide gauge records; our study focuses, in particular, on the Italian time series of Genoa, Marina di Ravenna, Venice and Trieste. Two of these stations, Marina di Ravenna and Venice, are affected by both natural and anthropogenic subsidence, the latter was particularly intense during a few decades of the 20th century because of ground fluids withdrawal. We have retrieved levelling data of benchmarks at and/or close to the tide gauges from the end of 1800 and, for the last couple of decades, also GPS and InSAR height time series in close proximity of the stations. By using an ensemble of these data, modelling of the long-period non-linear behavior of subsidence was successfully accomplished. After removal of the land vertical motions, the linear long period sea-level rates of all stations are in excellent agreement. Over the last two decades, the tide gauge rates were also compared with those obtained by satellite radar altimetry data.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
...) to be located in the Tehachapi Mountains south of Tehachapi, Kern County, California. The sole... upper dam with a height of 50 feet, a crest length of 7,128 feet, and with a reservoir having a total storage capacity of 5,500 acre-feet at a normal maximum operating elevation of 7,860 feet mean sea level...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-15
... about each of these alternatives are described below. The sole purpose of a preliminary permit, if... being raised to a dam height of 337 feet, and a length of 1,442 feet; and (2) an existing impoundment... 247,000 acre-feet with a normal maximum water surface elevation of 767 feet above mean sea level (msl...
Effects of sea maturity on satellite altimeter measurements
NASA Technical Reports Server (NTRS)
Glazman, Roman E.; Pilorz, Stuart H.
1990-01-01
For equilibrium and near-equilibrium sea states, the wave slope variance is a function of wind speed U and of the sea maturity. The influence of both factors on the altimeter measurements of wind speed, wave height, and radar cross section is studied experimentally on the basis of 1 year's worth of Geosat altimeter observations colocated with in situ wind and wave measurements by 20 NOAA buoys. Errors and biases in altimeter wind speed and wave height measurements are investigted. A geophysically significant error trend correlated with the sea maturity is found in wind-speed measurements. This trend is explained by examining the effect of the generalized wind fetch on the curves of the observed dependence. It is concluded that unambiguous measurements of wind speed by altimeter, in a wide range of sea states, are impossible without accounting for the actual degree of wave development.
Importance of air-sea interaction on wind waves, storm surge and hurricane simulations
NASA Astrophysics Data System (ADS)
Chen, Yingjian; Yu, Xiping
2017-04-01
It was reported from field observations that wind stress coefficient levels off and even decreases when the wind speed exceeds 30-40 m/s. We propose a wave boundary layer model (WBLM) based on the momentum and energy conservation equations. Taking into account the physical details of the air-sea interaction process as well as the energy dissipation due to the presence of sea spray, this model successfully predicts the decreasing tendency of wind stress coefficient. Then WBLM is embedded in the current-wave coupled model FVCOM-SWAVE to simulate surface waves and storm surge under the forcing of hurricane Katrina. Numerical results based on WBLM agree well with the observed data of NDBC buoys and tide gauges. Sensitivity analysis of different wind stress evaluation methods also shows that large anomalies of significant wave height and surge elevation are captured along the passage of hurricane core. The differences of the local wave height are up to 13 m, which is in accordance with the general knowledge that the ocean dynamic processes under storm conditions are very sensitive to the amount of momentum exchange at the air-sea interface. In the final part of the research, the reduced wind stress coefficient is tested in the numerical forecast of hurricane Katrina. A parabolic formula fitted to WBLM is employed in the atmosphere-ocean coupled model COAWST. Considering the joint effects of ocean cooling and reduced wind drag, the intensity metrics - the minimum sea level pressure and the maximum 10 m wind speed - are in good inconsistency with the best track result. Those methods, which predict the wind stress coefficient that increase or saturate in extreme wind condition, underestimate the hurricane intensity. As a whole, we unify the evaluation methods of wind stress in different numerical models and yield reasonable results. Although it is too early to conclude that WBLM is totally applicable or the drag coefficient does decrease for high wind speed, our current research is considered to be a significant step for the application of air-sea interaction on the ocean and atmosphere modelling.
GPS Imaging of Global Vertical Land Motion for Sea Level Studies
NASA Astrophysics Data System (ADS)
Hammond, W. C.; Blewitt, G.; Hamlington, B. D.
2015-12-01
Coastal vertical land motion contributes to the signal of local relative sea level change. Moreover, understanding global sea level change requires understanding local sea level rise at many locations around Earth. It is therefore essential to understand the regional secular vertical land motion attributable to mantle flow, tectonic deformation, glacial isostatic adjustment, postseismic viscoelastic relaxation, groundwater basin subsidence, elastic rebound from groundwater unloading or other processes that can change the geocentric height of tide gauges anchored to the land. These changes can affect inferences of global sea level rise and should be taken into account for global projections. We present new results of GPS imaging of vertical land motion across most of Earth's continents including its ice-free coastlines around North and South America, Europe, Australia, Japan, parts of Africa and Indonesia. These images are based on data from many independent open access globally distributed continuously recording GPS networks including over 13,500 stations. The data are processed in our system to obtain solutions aligned to the International Terrestrial Reference Frame (ITRF08). To generate images of vertical rate we apply the Median Interannual Difference Adjusted for Skewness (MIDAS) algorithm to the vertical times series to obtain robust non-parametric estimates with realistic uncertainties. We estimate the vertical land motion at the location of 1420 tide gauges locations using Delaunay-based geographic interpolation with an empirically derived distance weighting function and median spatial filtering. The resulting image is insensitive to outliers and steps in the GPS time series, omits short wavelength features attributable to unstable stations or unrepresentative rates, and emphasizes long-wavelength mantle-driven vertical rates.
Evolution of potentially eroding events along the northern coast of the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Rasilla Álvarez, D.; García Codrón, J. C.
2009-09-01
The anthropogenic global warming is expected to result in a rise in sea-level, accompanied by changes in extreme climate events, such as the frequency and intensity of storms. Such scenario would result in an acceleration of coastal erosion. The aim of the present study is to assess the temporal evolution of potentially eroding events along the northern coast of the Iberian Peninsula during the second half of the 20th century, and to investigate changes in forcing processes such as the frequency and magnitude of storm surges and high wave events. To characterize the potentially eroding events, the total elevation of the water level was selected, being calculated as the sum of the contributions of the average water level, wave run up and the storm surges. Potentially eroding events were identified and quantified following a two-step procedure. Through the first step the potential flood induced by a given storm was estimated by simulating its effects on a theoretical beach profile (intermediate) using an empirical parameterization for extreme run-up approach. The second step consisted on characterizing the maximum storm surge registered during a storm. Those parameters were calculated from hindcasted data (storm surge, wave heights and period, wind speed and direction), retrieved from the SIMAR-44 database (Puertos del Estado), and validated against actual tide gauge measurements and buoy data (RedMar and RedExt networks). Analyses of total water levels showed a long term increase since 1958, resulting from the increase of mean sea level; conversely, a reduction of the frequency and the intensity of the storm events were deduced from the analysis of meteorological records. Since the impact of the storms on macro- and meso- tidal coast closely depend on the tides, a storm impact index was computed taking into account the storm surge magnitude, the wave heights and time duration during which a predefined threshold was exceeded by the sea level. The results are consistent with the analysis of the shoreline evolution on a specific sector of Cantabria (Oyambre) through the comparison of aerial photographs taken between 1957 and 2005. From the late 50´s to late 70’s, the shoreline significantly retreated, in correspondence with the period of maximum storm activity. Conversely, shoreline retreat slowed down during the late 1980s and 1990s while storm activity considerably decreased. Thus long-term coastal erosion, due to the occurrences of high water levels embedded into a long trend term of sea level rise, has been balanced by the reduction of the frequency and intensity of the Atlantic storms. Since relative sea-level will continue rising in the future, most of the coastal morphologies will probably be more frequently reached by the sea, increasing the flooding risk in low-lying sectors and promoting landslides along the cliffs.
NASA Technical Reports Server (NTRS)
Herzfeld, Ute C.; Trantow, Thomas M.; Harding, David; Dabney, Philip W.
2017-01-01
Glacial acceleration is a main source of uncertainty in sea-level-change assessment. Measurement of ice-surface heights with a spatial and temporal resolution that not only allows elevation-change calculation, but also captures ice-surface morphology and its changes is required to aid in investigations of the geophysical processes associated with glacial acceleration.The Advanced Topographic Laser Altimeter System aboard NASAs future ICESat-2 Mission (launch 2017) will implement multibeam micropulse photon-counting lidar altimetry aimed at measuring ice-surface heights at 0.7-m along-track spacing. The instrument is designed to resolve spatial and temporal variability of rapidly changing glaciers and ice sheets and the Arctic sea ice. The new technology requires the development of a new mathematical algorithm for the retrieval of height information.We introduce the density-dimension algorithm (DDA) that utilizes the radial basis function to calculate a weighted density as a form of data aggregation in the photon cloud and considers density an additional dimension as an aid in auto-adaptive threshold determination. The auto-adaptive capability of the algorithm is necessary to separate returns from noise and signal photons under changing environmental conditions. The algorithm is evaluated using data collected with an ICESat-2 simulator instrument, the Slope Imaging Multi-polarization Photon-counting Lidar, over the heavily crevassed Giesecke Braer in Northwestern Greenland in summer 2015. Results demonstrate that ICESat-2 may be expected to provide ice-surface height measurements over crevassed glaciers and other complex ice surfaces. The DDA is generally applicable for the analysis of airborne and spaceborne micropulse photon-counting lidar data over complex and simple surfaces.
NASA Technical Reports Server (NTRS)
Guest, DeNeice C.
2006-01-01
The Nation uses water-level data for a variety of practical purposes, including hydrography, nautical charting, maritime navigation, coastal engineering, and tsunami and storm surge warnings (NOAA, 2002; Digby et al., 1999). Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years (NOAA, 2006). NOAA s Tides & Currents DST (decision support tool, managed by the Center for Operational Oceanographic Products and Services, is the portal to a vast collection of oceanographic and meteorological data (historical and real-time), predictions, and nowcasts and forecasts. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s Tides & Currents.
Differential sea-state bias: A case study using TOPEX/POSEIDON data
NASA Technical Reports Server (NTRS)
Stewart, Robert H.; Devalla, B.
1994-01-01
We used selected data from the NASA altimeter TOPEX/POSEIDON to calculate differences in range measured by the C and Ku-band altimeters when the satellite overflew 5 to 15 m waves late at night. The range difference is due to free electrons in the ionosphere and to errors in sea-state bias. For the selected data the ionospheric influence on Ku range is less than 2 cm. Any difference in range over short horizontal distances is due only to a small along-track variability of the ionosphere and to errors in calculating the differential sea-state bias. We find that there is a barely detectable error in the bias in the geophysical data records. The wave-induced error in the ionospheric correction is less than 0.2% of significant wave height. The equivalent error in differential range is less than 1% of wave height. Errors in the differential sea-state bias calculations appear to be small even for extreme wave heights that greatly exceed the conditions on which the bias is based. The results also improved our confidence in the sea-state bias correction used for calculating the geophysical data records. Any error in the correction must influence Ku and C-band ranges almost equally.
Regional sea level variability in a high-resolution global coupled climate model
NASA Astrophysics Data System (ADS)
Palko, D.; Kirtman, B. P.
2016-12-01
The prediction of trends at regional scales is essential in order to adapt to and prepare for the effects of climate change. However, GCMs are unable to make reliable predictions at regional scales. The prediction of local sea level trends is particularly critical. The main goal of this research is to utilize high-resolution (HR) (0.1° resolution in the ocean) coupled model runs of CCSM4 to analyze regional sea surface height (SSH) trends. Unlike typical, lower resolution (1.0°) GCM runs these HR runs resolve features in the ocean, like the Gulf Stream, which may have a large effect on regional sea level. We characterize the variability of regional SSH along the Atlantic coast of the US using tide gauge observations along with fixed radiative forcing runs of CCSM4 and HR interactive ensemble runs. The interactive ensemble couples an ensemble mean atmosphere with a single ocean realization. This coupling results in a 30% decrease in the strength of the Atlantic meridional overturning circulation; therefore, the HR interactive ensemble is analogous to a HR hosing experiment. By characterizing the variability in these high-resolution GCM runs and observations we seek to understand what processes influence coastal SSH along the Eastern Coast of the United States and better predict future SLR.
NASA Technical Reports Server (NTRS)
Kocin, P. J.; Uccellini, L. W.
1985-01-01
Surface and upper-level characteristics of selected meteorological fields are summarized. Two major types of sea level development are described and applied to the cases at hand, with a few storm systems showing characteristics of both types. Aspects such as rapid sea level deepening, coastal frontogenesis, cold air damming, low level jet formation, the development of an S-shaped isotherm pattern, diffluence downwind of a negatively tilted upper level trough axis, upper level confluence and an increase of geopotential heights at the base of the upper level trough characterized the pre-cyclogenetic and cyclogenetic periods of many of the storm systems. Large variability was also observed, especially with regard to the spatial dimensions of the surface and upper level systems, as well as variations in trough/ridge amplification and the evolution of upper level jet streak systems. The influence of transverse circulations associated with a confluent jet streak entrance region and the diffluent exit region of a jet streak/trough system on the production of snowfall is also discussed.
NASA Astrophysics Data System (ADS)
Fu, Lee-Lueng; Morrow, Rosemary
2016-07-01
The global observations of the sea surface height (SSH) have revolutionized oceanography since the beginning of precision radar altimetry in the early 1990s. For the first time we have continuous records of SSH with spatial and temporal sampling for detecting the global mean sea level rise, the waxing and waning of El Niño, and the ocean circulation from gyres to ocean eddies. The limit of spatial resolution of the present constellation of radar altimeters in mapping SSH variability is approaching 100 km (in wavelength) with 3 or more simultaneous altimetric satellites in orbit. At scales shorter than 100 km, the circulation contains substantial amount of kinetic energy in currents, eddies and fronts that are responsible for the stirring and mixing of the ocean, especially from the vertical exchange of the upper ocean with the deep. A mission currently in development will use the technique of radar interferometry for making high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT promises the detection of SSH at scales approaching 15 km, depending on the sea state. SWOT will make SSH measurement over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. A conventional radar altimeter will provide measurement along the nadir. This is an exploratory mission with applications in oceanography and hydrology. The increased spatial resolution offers an opportunity to study ocean surface processes to address important questions about the ocean circulation. However, the limited temporal sampling poses challenges to map the evolution of the ocean variability that changes rapidly at the small scales. The measurement technique and the development of the mission will be presented with emphasis on its science program with outlook on the opportunities and challenges.
The reflection of airborne UV laser pulses from the ocean
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Krabill, W. B.; Swift, R. N.
1984-01-01
It is experimentally shown here for the first time that the normalized laser backscatter cross-section of the sea surface is a function of elevation or height position on teh ocean wave. All data were taken off-nadir, resulting in incidence angles of about 6.5 deg measured relative to the normal to mean sea level (MSL). In the limited data sets analyzed to date, the normalized backscatter cross-section was found to be higher in wave crest regions and lower in wave troughs for a swell-dominated sea over which the wind speed was 5 m/s. The reverse was found to be the case for a sea that was driven by a 14 m/s wind. These isolated results show that the MSL, as measured by an off-nadir and/or multibeam type satellite laser altimeter, will be found above, at, or below the true MSL, depending on the local sea conditions existing in the footprint of the altimeter. Airborne nadir-pointed laser altimeter data for a wide variety of sea conditions are needed before a final determination can be made of the effect of sea state on the backscatter cross-section as measured by a down-looking satellite laser system.
More than 70 years of continuous sea level records on the Santander Bay.
NASA Astrophysics Data System (ADS)
Lavín, Alicia; Tel, Elena; Molinero, Joaquin; Rodriguez, Carmen
2017-04-01
The knowledge of sea level height is important for many different sectors as navigation, transport, building infrastructures, tourism, or maritime sports, between others. Tides are mainly composed of an astronomical part and a meteorological one. Sometimes, their joined action is the responsible of extreme behaviors in the sea level. Influence of pressure differences, as well as related winds, is important in the behavior of sea level to analyze. The first system for reading the sea level was a tide board attached at the pier. In Spain the first modern tide gauge was installed in the Port of Alicante, Mediterranean Sea, in 1873 depending of the National Geographic Institute (IGN). Just the following year, a similar tide gauge was installed at the entrance of the Santander Bay. "La Magdalena" tide gauge was working during two periods 1876-1928 and 1963-1975. Together with Cádiz, the IGN tide gauges were used to determinate the national datum for terrestrial cartography. The Spanish Institute of Oceanography (IEO) tide gauge network was initiated in 1943 with the installation of tide gauges along the Spanish coast. One of them was located in Santander and has been working since then. At the beginning it was a float tide gauge connected to a graphical continuous recorder. Nowadays, it also has a digital encoder and a remote connection that allow using the recorded data for operational purposes. Later a Radar system was added. This tide gauge is referred to the Tide Gauge Zero and also calibrated to a benchmark in order to have a unique reference. This high quality sea level information is required for international and regional research activities, as Global Sea Level Observing System (GLOSS). In particular, long time series are widely used for climate change detection. The sea level long term variability studies require a very good quality data focus in the reference of the data along the whole period and also it will be more precisely if we can remove the crustal movements by monitoring the tide gauge benchmark. Increase in sea level detected in the Santander tide gauge is more than 2 mm/year. Annual and semi-annual cycles are detected in the monthly mean sea level. The amplitude of the annual cycle is 30 mm. and the semiannual 21 mm. Due to the good correlation between the NAO index and the monthly mean sea level we can assume that an important part of these cycles corresponds to the meteorological influence. The historical original records on paper are also digitalized images in order to avoid loses by paper degrading, facilitate the access to them, and in the future, keep a higher frequency record for systematic studies of extreme events.
Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean and at Landfall
NASA Technical Reports Server (NTRS)
Walsh, Edward J.; Wright, C. Wayne; Vandemark, Douglas C.; Krabill, William B.; Garcia, Andrew W.; Houston, Samuel H.; Powell, Mark D.; Black, Peter G.; Marks, Frank D.
2000-01-01
The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1' half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the off-nadir angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving toward 330 deg at about 5 m/s. Individual waves up to 18 m height were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the eye, and made five eye penetrations. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft flight lines included segments near and along the shoreline as well as far offshore. Animations of the directional wave spectrum spatial variation along the aircraft tracks on the two flights will be presented using a 100: 1 time compression.
Atmospheric precursors of and response to anomalous Arctic sea ice in CMIP5 models
NASA Astrophysics Data System (ADS)
Kelleher, Michael; Screen, James
2018-01-01
This study examines pre-industrial control simulations from CMIP5 climate models in an effort to better understand the complex relationships between Arctic sea ice and the stratosphere, and between Arctic sea ice and cold winter temperatures over Eurasia. We present normalized regressions of Arctic sea-ice area against several atmospheric variables at extended lead and lag times. Statistically significant regressions are found at leads and lags, suggesting both atmospheric precursors of, and responses to, low sea ice; but generally, the regressions are stronger when the atmosphere leads sea ice, including a weaker polar stratospheric vortex indicated by positive polar cap height anomalies. Significant positive midlatitude eddy heat flux anomalies are also found to precede low sea ice. We argue that low sea ice and raised polar cap height are both a response to this enhanced midlatitude eddy heat flux. The so-called "warm Arctic, cold continents" anomaly pattern is present one to two months before low sea ice, but is absent in the months following low sea ice, suggesting that the Eurasian cooling and low sea ice are driven by similar processes. Lastly, our results suggest a dependence on the geographic region of low sea ice, with low Barents-Kara Sea ice correlated with a weakened polar stratospheric vortex, whilst low Sea of Okhotsk ice is correlated with a strengthened polar vortex. Overall, the results support a notion that the sea ice, polar stratospheric vortex and Eurasian surface temperatures collectively respond to large-scale changes in tropospheric circulation.
Field Observations of Meteotsunami in Kami-koshiki Island, Japan
NASA Astrophysics Data System (ADS)
Asano, T.; Yamashiro, T.; Nishimura, N.
2012-12-01
BACKGROUND Meteotsunami; atmospherically induced destructive ocean waves in the tsunami frequency band, are known in Japan by the local term "abiki", literally meaning "net-dragging waves" in Japanese. Large abiki occur in bays and harbors along the west coast of Kyushu almost every year during winter and early spring. On 24-25 February, 2009, Urauchi Bay, located on west coast of Kami-Koshiki Island on the southeast coast of Kyushu, was subjected to a destructive meteotsunami. In this event, a maximum sea surface height of 3.1 m was observed at the inner part of the bay. At least 18 boats capsized and eight houses were flooded. This event surpassed the previous record height for an abiki in Japan: 278 cm in Nagasaki Bay, also located west coast of Kyushu, in 1979. Generally, such an elongated inlet with narrow mouth as Urauchi bay provides calm water conditions even when offshore weather is stormy. Therefore, the area is regarded as a suitable place for the farming of large fish with a high market value. Possible damage to the extensive fish cage system as a result of meteotsunami events is of concern, especially because aquaculture is the main industry in the isolated islands. Forecasting of meteotsunami is a serious request from the local people. AIMS The objectives of the present study are to detect a meteotsunami event in Urauchi Bay and to clarify the meteorological and hydrodynamic conditions related to its occurrence. This work attempts to observe the whole process of a meteotsunami event: generation offshore, resonance while it propagates, and finally amplification in the bay. Observations were conducted over a period of 82 days; 12 January to 4 April, 2010, aiming to record large secondary oscillations. A comprehensive measuring system for sea level, current and barometric pressure fluctuations was deployed covering not only inside and near Urauchi Bay but also further offshore in the vicinity of Mejima in the East China Sea. MAIN RESULTS 1) Large meteotsunami events with total height in excess of 150 cm were observed five times during the 82-day observation period. On 1 February, 2010, one such event coincided with the high water of a spring tide, which resulted in flooding. The present observations have revealed that meteotsunami events occur more frequently than previously estimated from existing records of flooding. Even if a meteotsunami event does not result in flooding (e.g., if it coincides with a low tide), attention should be paid to the seiche induced strong currents that may damage fishing boats or aquaculture installations. 2) Three dominant modes were found to exist in sea level fluctuation data in Urauchi Bay using spectra analysis, wavelet analysis and phase analysis of the extracted period band components. The node and anti-node structure for each node governs more energetic areas for sea level and the current velocity fluctuations. 3) Analyses of barometric pressure data show that abrupt pressure changes of 1-2 hPa are generated in the open sea area at Mejima when major meteotsunami events occur. The pressure waves propagated eastward or northeastward to reach Kami-Koshiki within 1-2 hours. The propagation speed was found to nearly coincide with ocean long waves over the East China Sea. This air-sea resonant coupling is considered to be a source mechanism of meteotsunami generation.
Atwater, Brian F.; Hedel, Charles W.; Helley, Edward J.
1977-01-01
Sediments collected for bridge foundation studies at southern San Francisco Bay, Calif., record estuaries that formed during Sangamon (100,000 years ago) and post-Wisconsin (less than 10,000 years ago) high stands of sea level. The estuarine deposits of Sangamon and post-Wisconsin ages are separated by alluvial and eolian deposits and by erosional unconformities and surfaces of nondeposition, features that indicate lowered base levels and oceanward migrations of the shoreline accompanying low stands of the sea. Estuarine deposits of mid-Wisconsin age appear to be absent, suggesting that sea level was not near its present height 30,000–40,000 years ago in central California. Holocene sea-level changes are measured from the elevations and apparent 14C ages of plant remains from 13 core samples. Uncertainties of ±2 to ±4 m in the elevations of the dated sea levels represent the sum of errors in determination of (1) sample elevation relative to present sea level, (2) sample elevation relative to sea level at the time of accumulation of the dated material, and (3) postdepositional subsidence of the sample due to compaction of underlying sediments. Sea level in the vicinity of southern San Francisco Bay rose about 2 cm/yr from 9,500 to 8,000 years ago. The rate of relative sea-level rise then declined about tenfold from 8,000 to 6,000 years ago, and it has averaged 0.1–0.2 cm/yr from 6,000 years ago to the present. This submergence history indicates that the rising sea entered the Golden Gate 10,000–11,000 years ago and spread across land areas as rapidly as 30 m/yr until 8,000 years ago. Subsequent shoreline changes were more gradual because of the decrease in rate of sea-level rise. Some of the sediments under southern San Francisco Bay appear to be below the level at which they initially accumulated. The vertical crustal movement suggested by these sediments may be summarized as follows: (1) Some Quaternary(?) sediments have sustained at least 100 m of tectonic subsidence in less than 1.5 million years (<0.07 mm/yr) relative to the likely elevation of the lowest Pleistocene land surface; (2) the deepest Sangamon estuarine deposits subsided tectonically about 20–40 m in about 0.1 million years (0.2±0.1–0.4±0.1 mm/yr) relative to the assumed initial elevations of the thalwegs buried by these sediments; and (3) Holocene salt-marsh deposits have undergone about 5 m of tectonic and possibly isostatic subsidence in about 6,000 years (0.8±.0.7 mm/yr) relative to elevations which might be expected from eustatic sea-level changes alone.
Parallel Computation of Ocean-Atmosphere-Wave Coupled Storm Surge Model
NASA Astrophysics Data System (ADS)
Kim, K.; Yamashita, T.
2003-12-01
Ocean-atmosphere interactions are very important in the formation and development of tropical storms. These interactions are dominant in exchanging heat, momentum, and moisture fluxes. Heat flux is usually computed using a bulk equation. In this equation air-sea interface supplies heat energy to the atmosphere and to the storm. Dynamical interaction is most often one way in which it is the atmosphere that drives the ocean. The winds transfer momentum to both ocean surface waves and ocean current. The wind wave makes an important role in the exchange of the quantities of motion, heat and a substance between the atmosphere and the ocean. Storm surges can be considered as the phenomena of mean sea-level changes, which are the result of the frictional stresses of strong winds blowing toward the land and causing the set level and the low atmospheric pressure at the centre of the cyclone can additionally raise the sea level. In addition to the rise in water level itself, another wave factor must be considered. A rise of mean sea level due to white-cap wave dissipation should be considered. In bounded bodies of water, such as small seas, wind driven sea level set up is much serious than inverted barometer effects, in which the effects of wind waves on wind-driven current play an important role. It is necessary to develop the coupled system of the full spectral third-generation wind-wave model (WAM or WAVEWATCH III), the meso-scale atmosphere model (MM5) and the coastal ocean model (POM) for simulating these physical interactions. As the component of coupled system is so heavy for personal usage, the parallel computing system should be developed. In this study, first, we developed the coupling system of the atmosphere model, ocean wave model and the coastal ocean model, in the Beowulf System, for the simulation of the storm surge. It was applied to the storm surge simulation caused by Typhoon Bart (T9918) in the Yatsushiro Sea. The atmosphere model and the ocean model have been made the parallel codes by SPMD methods. The wave-current interface model was developed by defining the wave breaking stresses. And we developed the coupling program to collect and distribute the exchanging data with the parallel system. Every models and coupler are executed at same time, and they calculate own jobs and pass data with organic system. MPMD method programming was performed to couple the models. The coupler and each models united by the separated group, and they calculated by the group unit. Also they passed message when exchanging data by global unit. The data are exchanged every 60-second model time that is the least common multiple time of the atmosphere model, the wave model and the ocean model. The model was applied to the storm surge simulation in the Yatsushiro Sea, in which we could not simulated the observed maximum surge height with the numerical model that did not include the wave breaking stress. It is confirmed that the simulation which includes the wave breaking stress effects can produce the observed maximum height, 450 cm, at Matsuai.
Arundinaria gigantea (Walt.) Muhl.
Kristina Connor
2004-01-01
Giant cane, also known as cane or switchcane, is a perennial monocot, a woody grass, and one of only two native bamboos. With its stem-like rhizomes and hard, âwoodyâ stems, giant cane can grow to a height of 8 to 9 m but is typically less. Giant cane is found at elevations ranging from sea level in southern floodplains to 610 m elevation in the Appalachian Mountains...
Application of Huang-Hilbert Transforms to Geophysical Datasets
NASA Technical Reports Server (NTRS)
Duffy, Dean G.
2003-01-01
The Huang-Hilbert transform is a promising new method for analyzing nonstationary and nonlinear datasets. In this talk I will apply this technique to several important geophysical datasets. To understand the strengths and weaknesses of this method, multi- year, hourly datasets of the sea level heights and solar radiation will be analyzed. Then we will apply this transform to the analysis of gravity waves observed in a mesoscale observational net.
Ozone concentration characteristics at a high-elevation forest site
G. Wooldridge; K. Zeller; R. Musselman
1997-01-01
Atmospheric ozone concentrations have been monitored at a subalpine forest ecosystem site, 3180m above mean sea level (msl), and at a 2680m msl forest-steppe ecotone site 15km to the southeast. Ozone concentrations were monitored at three heights above the ground on a 30m tower at the higher elevation site, and on a 10m tower in a large meadow downwind of this site....
1990-01-24
surfacing, the loadbearing capacity and dimensions of differences in height above sea level. Tablets or steel of bridges and overpasses, ammunition depots...here," says Lucjan Szafran- ests, names of localities and hamlets, and the adminis- ski, a master operator of offset presses. "A bridge must trative...still provisionally shaped in West Germany , and that CSSR factories are quite by the nomenclatura’s candidates, as he puts it. competitive in
NASA Astrophysics Data System (ADS)
Storlazzi, C. D.; Griffioen, D.; Cheriton, O. M.
2016-12-01
Coral reefs have been shown to significantly attenuate incident wave energy and thus provide protection for 100s of millions of people globally. To better constrain wave dynamics and wave-driven water levels over fringing coral reefs, a 4-month deployment of wave and tide gauges was conducted across two shore-normal transects on Roi-Namur Island and two transects on Kwajalein Island in the Republic of the Marshall Islands. At all locations, although incident wave (periods <25 s) heights were an order of magnitude greater than infragravity wave (periods > 250 s) heights on the outer reef flat just inshore of the zone of wave breaking, the infragravity wave heights generally equaled the incident wave heights by the middle of the reef flat and exceeded the incident wave heights on the inner reef flat by the shoreline. The infragravity waves generally were asymmetric, positively skewed, bore-like forms with incident-band waves riding the infragravity wave crest at the head of the bore; these wave packets have similar structure to high-frequency internal waves on an internal wave bore. Bore height was shown to scale with water depth, offshore wave height, and offshore wave period. For a given tidal elevation, with increasing offshore wave heights, such bores occurred more frequently on the middle reef flat, whereas they occurred less frequently on the inner reef flat. Skewed, asymmetric waves are known to drive large gradients in velocity and shear stress that can transport material onshore. Thus, a better understanding of these low-frequency, energetic bores on reef flats is critical to forecasting how coral reef-lined coasts may respond to sea-level rise and climate change.
NASA Astrophysics Data System (ADS)
Saenko, Oleg A.; Yang, Duo; Myers, Paul G.
2017-10-01
The response of the North Atlantic dynamic sea surface height (SSH) and ocean circulation to Greenland Ice Sheet (GrIS) meltwater fluxes is investigated using a high-resolution model. The model is forced with either present-day-like or projected warmer climate conditions. In general, the impact of meltwater on the North Atlantic SSH and ocean circulation depends on the surface climate. In the two major regions of deep water formation, the Labrador Sea and the Nordic Seas, the basin-mean SSH increases with the increase of the GrIS meltwater flux. This SSH increase correlates with the decline of the Atlantic meridional overturning circulation (AMOC). However, while in the Labrador Sea the warming forcing and GrIS meltwater input lead to sea level rise, in the Nordic Seas these two forcings have an opposite influence on the convective mixing and basin-mean SSH (relative to the global mean). The warming leads to less sea-ice cover in the Nordic Seas, which favours stronger surface heat loss and deep mixing, lowering the SSH and generally increasing the transport of the East Greenland Current. In the Labrador Sea, the increased SSH and weaker deep convection are reflected in the decreased transport of the Labrador Current (LC), which closes the subpolar gyre in the west. Among the two major components of the LC transport, the thermohaline and bottom transports, the former is less sensitive to the GrIS meltwater fluxes under the warmer climate. The SSH difference across the LC, which is a component of the bottom velocity, correlates with the long-term mean AMOC rate.
Midlatitude atmosphere-ocean interaction during El Nino. Part II. The northern hemisphere atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, M.A.
The influence of midlatitude air-sea interaction on the atmospheric anomalies associated with El Nino is investigated by coupling the Community Climate Model to a mixed-layer ocean model in the North Pacific. Prescribed El Nino conditions, warm sea surface temperatures (SST) in the tropical Pacific, cause a southward displacement and strengthening of the Aleutian Low. This results in enhanced (reduced) advection of cold Asian air over the west-central (northwest) Pacific and northward advection of warm air over the eastern Pacific. Allowing air-sea feedback in the North Pacific slightly modified the El Nino-induced near-surface wind, air temperature, and precipitation anomalies. The anomalousmore » cyclonic circulation over the North Pacific is more concentric and shifted slightly to the east in the coupled simulations. Air-sea feedback also damped the air temperature anomalies over most of the North Pacific and reduced the precipitation rate above the cold SST anomaly that develops in the central Pacific. The simulated North Pacific SST anomalies and the resulting Northern Hemisphere atmospheric anomalies are roughly one-third as large as those related to the prescribed El Nino conditions in a composite of five cases. The composite geopotential height anomalies associated with changes in the North Pacific SSTs have an equivalent barotropic structure and range from -65 m to 50 m at the 200-mb level. Including air-sea feedback in the North Pacific tended to damp the atmospheric anomalies caused by the prescribed El Nino conditions in the tropical Pacific. As a result, the zonally elongated geopotential height anomalies over the West Pacific are reduced and shifted to the east. However, the atmospheric changes associated with the North Pacific SST anomalies vary widely among the five cases.« less
NASA Technical Reports Server (NTRS)
Strub, P. Ted; James, Corinne
1988-01-01
Atmospheric events which force the spring and fall oceanic transitions in the coastal ocean off the west coast of North America were examined by analyzing the records of adjusted sea level (ASL), coastal wind stress, sea level atmospheric pressure (SLP), and 500-mbar heights for the years 1971-1975 and 1980-1983. The records cover periods of 91 days, centered on the dates of the spring and fall transitions as determined from coastal ASL data. It was found that the dominant mode of the ASL and coastal wind stress are similar around the times of both the spring and fall transitions, and that the time series for these modes are highly correlated with one another. Principal estimator patterns show the spatial patterns of SLP which force the ASL and coastal wind stress during the transitions.
Airborne geoid mapping of land and sea areas of East Malaysia
NASA Astrophysics Data System (ADS)
Jamil, H.; Kadir, M.; Forsberg, R.; Olesen, A.; Isa, M. N.; Rasidi, S.; Mohamed, A.; Chihat, Z.; Nielsen, E.; Majid, F.; Talib, K.; Aman, S.
2017-02-01
This paper describes the development of a new geoid-based vertical datum from airborne gravity data, by the Department of Survey and Mapping Malaysia, on land and in the South China Sea out of the coast of East Malaysia region, covering an area of about 610,000 square kilometres. More than 107,000 km flight line of airborne gravity data over land and marine areas of East Malaysia has been combined to provide a seamless land-to-sea gravity field coverage; with an estimated accuracy of better than 2.0 mGal. The iMAR-IMU processed gravity anomaly data has been used during a 2014-2016 airborne survey to extend a composite gravity solution across a number of minor gaps on selected lines, using a draping technique. The geoid computations were all done with the GRAVSOFT suite of programs from DTU-Space. EGM2008 augmented with GOCE spherical harmonic model has been used to spherical harmonic degree N = 720. The gravimetric geoid first was tied at one tide-gauge (in Kota Kinabalu, KK2019) to produce a fitted geoid, my_geoid2017_fit_kk. The fitted geoid was offset from the gravimetric geoid by +0.852 m, based on the comparison at the tide-gauge benchmark KK2019. Consequently, orthometric height at the six other tide gauge stations was computed from HGPS Lev = hGPS - Nmy_geoid2017_.t_kk. Comparison of the conventional (HLev) and GPS-levelling heights (HGPS Lev) at the six tide gauge locations indicate RMS height difference of 2.6 cm. The final gravimetric geoidwas fitted to the seven tide gauge stations and is known as my_geoid2017_fit_east. The accuracy of the gravimetric geoid is estimated to be better than 5 cm across most of East Malaysia land and marine areas
ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land
NASA Technical Reports Server (NTRS)
Zwally, H. J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D.;
2001-01-01
The Ice, Cloud and Land Elevation Satellite (ICESat) mission will measure changes in elevation of the Greenland and Antarctic ice sheets as part of NASA's Earth Observing System (EOS) of satellites. Time-series of elevation changes will enable determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. Other scientific objectives of ICESat include: global measurements of cloud heights and the vertical structure of clouds and aerosols; precise measurements of land topography and vegetation canopy heights; and measurements of sea ice roughness, sea ice thickness, ocean surface elevations, and surface reflectivity. The Geoscience Laser Altimeter System (GLAS) on ICESat has a 1064 nm laser channel for surface altimetry and dense cloud heights and a 532 nm lidar channel for the vertical distribution of clouds and aerosols. The accuracy of surface ranging is 10 cm, averaged over 60 m diameter laser footprints spaced at 172 m along-track. The orbital altitude will be around 600 km at an inclination of 94 deg with a 183-day repeat pattern. The onboard GPS receiver will enable radial orbit determinations to better than 5 cm, and star-trackers will enable footprints to be located to 6 m horizontally. The spacecraft attitude will be controlled to point the laser beam to within +/- 35 m of reference surface tracks at high latitudes. ICESat is designed to operate for 3 to 5 years and should be followed by successive missions to measure ice changes for at least 15 years.
Examining global extreme sea level variations on the coast from in-situ and remote observations
NASA Astrophysics Data System (ADS)
Menendez, Melisa; Benkler, Anna S.
2017-04-01
The estimation of extreme water level values on the coast is a requirement for a wide range of engineering and coastal management applications. In addition, climate variations of extreme sea levels on the coastal area result from a complex interacting of oceanic, atmospheric and terrestrial processes across a wide range of spatial and temporal scales. In this study, variations of extreme sea level return values are investigated from two available sources of information: in-situ tide-gauge records and satellite altimetry data. Long time series of sea level from tide-gauge records are the most valuable observations since they directly measure water level in a specific coastal location. They have however a number of sources of in-homogeneities that may affect the climate description of extremes when this data source is used. Among others, the presence of gaps, historical time in-homogeneities and jumps in the mean sea level signal are factors that can provide uncertainty in the characterization of the extreme sea level behaviour. Moreover, long records from tide-gauges are sparse and there are many coastal areas worldwide without in-situ available information. On the other hand, with the accumulating altimeter records of several satellite missions from the 1990s, approaching 25 recorded years at the time of writing, it is becoming possible the analysis of extreme sea level events from this data source. Aside the well-known issue of altimeter measurements very close to the coast (mainly due to corruption by land, wet troposphere path delay errors and local tide effects on the coastal area), there are other aspects that have to be considered when sea surface height values estimated from satellite are going to be used in a statistical extreme model, such as the use of a multi-mission product to get long observed periods and the selection of the maxima sample, since altimeter observations do not provide values uniform in time and space. Here, we have compared the extreme values of 'still water level' and 'non-tidal-residual' of in-situ records from the GESLA2 dataset (Woodworth et al. 2016) against the novel coastal altimetry datasets (Cipollini et al. 2016). Seasonal patterns, inter-annual variability and long-term trends are analyzed. Then, a time-dependent extreme model (Menendez et al. 2009) is applied to characterize extreme sea level return values and their variability on the coastal area around the world.
Wave climate simulation for southern region of the South China Sea
NASA Astrophysics Data System (ADS)
Mirzaei, Ali; Tangang, Fredolin; Juneng, Liew; Mustapha, Muzneena Ahmad; Husain, Mohd Lokman; Akhir, Mohd Fadzil
2013-08-01
This study investigates long-term variability and wave characteristic trends in the southern region of the South China Sea (SCS). We implemented the state-of-the art WAVEWATCH III spectral wave model to simulate a 31-year wave hindcast. The simulation results were used to assess the inter-annual variability and long-term changes in the SCS wave climate for the period 1979 to 2009. The model was forced with Climate Forecast System Reanalysis winds and validated against altimeter data and limited available measurements from an Acoustic Wave and Current recorder located offshore of Terengganu, Malaysia. The mean annual significant wave height and peak wave period indicate the occurrence of higher wave heights and wave periods in the central SCS and lower in the Sunda shelf region. Consistent with wind patterns, the wave direction also shows southeasterly (northwesterly) waves during the summer (winter) monsoon. This detailed hindcast demonstrates strong inter-annual variability of wave heights, especially during the winter months in the SCS. Significant wave height correlated negatively with Niño3.4 index during winter, spring and autumn seasons but became positive in the summer monsoon. Such correlations correspond well with surface wind anomalies over the SCS during El Nino events. During El Niño Modoki, the summer time positive correlation extends northeastwards to cover the entire domain. Although significant positive trends were found at 95 % confidence levels during May, July and September, there is significant negative trend in December covering the Sunda shelf region. However, the trend appears to be largely influenced by large El Niño signals.
NASA Astrophysics Data System (ADS)
Houser, Chris; Wernette, Phil; Weymer, Bradley A.
2018-02-01
The impact of storm surge on a barrier island tends to be considered from a single cross-shore dimension, dependent on the relative elevations of the storm surge and dune crest. However, the foredune is rarely uniform and can exhibit considerable variation in height and width at a range of length scales. In this study, LiDAR data from barrier islands in Texas and Florida are used to explore how shoreline position and dune morphology vary alongshore, and to determine how this variability is altered or reinforced by storms and post-storm recovery. Wavelet analysis reveals that a power law can approximate historical shoreline change across all scales, but that storm-scale shoreline change ( 10 years) and dune height exhibit similar scale-dependent variations at swash and surf zone scales (< 1000 m). The in-phase nature of the relationship between dune height and storm-scale shoreline change indicates that areas of greater storm-scale shoreline retreat are associated with areas of smaller dunes. It is argued that the decoupling of storm-scale and historical shoreline change at swash and surf zone scales is also associated with the alongshore redistribution of sediment and the tendency of shorelines to evolve to a more diffusive (or straight) pattern with time. The wavelet analysis of the data for post-storm dune recovery is also characterized by red noise at the smallest scales characteristic of diffusive systems, suggesting that it is possible that small-scale variations in dune height can be repaired through alongshore recovery and expansion if there is sufficient time between storms. However, the time required for dune recovery exceeds the time between storms capable of eroding and overwashing the dune. Correlation between historical shoreline retreat and the variance of the dune at swash and surf zone scales suggests that the persistence of the dune is an important control on transgression through island migration or shoreline retreat with relative sea-level rise.
NASA Astrophysics Data System (ADS)
Ismail, Nabil; Williams, Jeffress
2013-04-01
This paper presents an assessment of global sea level rise and the need to incorporate projections of rise into management plans for coastal adaptation. It also discusses the performance of a shoreline revetment; M. Ali Seawall, placed to protect the land against flooding and overtopping at coastal site, within Abu Qir Bay, East of Alexandria, Egypt along the Nile Delta coast. The assessment is conducted to examine the adequacy of the seawall under the current and progressive effects of climate change demonstrated by the anticipated sea level rise during this century. The Intergovernmental Panel on Climate Change (IPCC, 2007) predicts that the Mediterranean will rise 30 cm to 1 meter this century. Coastal zone management of the bay coastline is of utmost significance to the protection of the low agricultural land and the industrial complex located in the rear side of the seawall. Moreover this joint research work highlights the similarity of the nature of current and anticipated coastal zone problems, at several locations around the world, and required adaptation and protection measures. For example many barrier islands in the world such as that in the Atlantic and Gulf of Mexico coasts of the U.S., lowland and deltas such as in Italy and the Nile Delta, and many islands are also experiencing significant levels of erosion and flooding that are exacerbated by sea level rise. Global Climatic Changes: At a global scale, an example of the effects of accelerated climate changes was demonstrated. In recent years, the impacts of natural disasters are more and more severe on coastal lowland areas. With the threats of climate change, sea level rise storm surge, progressive storm and hurricane activities and potential subsidence, the reduction of natural disasters in coastal lowland areas receives increased attention. Yet many of their inhabitants are becoming increasingly vulnerable to flooding, and conversions of land to open ocean. These global changes were recently demonstrated in autumn 2010 when the storm Becky reached the Santander Bay, Spain. As reported by THESEUS, the FP-7 EU project (2009-2013), the peak of nearshore significant wave height was about 8 m, the storm surge reached 0.6 m, with tidal level of 90% of the tidal range. The latest storm in December 2010, which hit the Nile Delta and which was the severest in the last decades showed that generated surges, up to 1.0 m as well as a maximum of 7.5 m wave height in the offshore of Alexandria presented a major natural hazard in coastal zones in terms of wave run up and overtopping. Along the US Atlantic Coast, where Hurricane Sandy this autumn and Hurricane Irene in 2011 left chaos in their wakes, a perfect storm of rising sea levels and dense coastal development at high risk . Super storm Sandy sent a storm surge of 4-5 m onto New Jersey's and New York's fragile barrier island and urban shorelines, causing an estimated 70 billion (USD) in damages and widespread misery for coastal inhabitants. Sea Level Rise and Impact on Upgrade of Coastal Structures: Williams (2013) highlights in his recent paper that adaptation planning on national scales in the USA for projected sea-level rise of 0.5-2 m by A.D. 2100 is advisable. Further he points out that sea-level rise, as a major driving force of change for coastal regions, is becoming increasingly important as a hazard to humans and urban areas in the coastal zone worldwide as global climate change takes effect. During the 20th century, sea level began rising at a global average rate of 1.7 mm/yr (). The current average rise rate is 3.1 mm/yr, a 50% increase over the past two decades. Many regions are experiencing even greater rise rates due to local geophysical (e.g., Louisiana, Chesapeake Bay) and oceanographic (mid-Atlantic coast) forces. Further the Mississippi River Delta plain region of Louisiana has much higher than average rates of LRSL rise due to geologic factors such as subsidence and man-made alterations to the delta plain, wetlands, and coast. As a result the entire coast is highly erosional and highly vulnerable to sea-level rise and storms. Detailed mapping studies over the past two decades show that subject to sea-level rise, subsidence, frequent major storms, and reduced sediment budget. Sea-level rise, with high regional variability, is exhibiting acceleration and is expected to continue for centuries unless mitigation is enacted to reduce atmospheric carbon. Low lying coastal plain regions, deltas, and most islands are highly vulnerable. The assessment of Abu-Qir seawall included the review of the current-2011design and past upgrades since 1830. Hydrodynamic analyses were conducted to estimate wave height distributions, wave run up and overtopping over the seawall. Use has been made of the Modified ImSedTran-2D model (Ismail et.al, 2012) as well as universal design standards (EurOtop, 2008). Comparison of the predicted overtopping with the observed wave overtopping volumes during the 8hrs-2010 storm, allowed the verification of the used universal design tools. Based on the results for worst wave design scenarios and anticipated sea level rise after 50 years (50 cm), recommendations are given to increase the height of the seawall cap, to strengthen the beach top and back slope with a facility to drain storm water to increase coastal resilience. Recommendations: Protection of coastal fringes requires that new design alternatives to protect eroding lowland shorelines of deltas and barrier islands should be explored. These soft engineering alternatives are such as beach nourishment, sand dunes stabilization, and storm barriers. Use of integrated barrier island and coastal lagoons & wetlands would act as a buffer zone to defend main land. The sustainability of the integrated natural systems would require (1) barrier island and shoreline restoration (2) hydrologic and vegetation restoration of coastal lagoons, and (3) relocation of development in highly vulnerable areas. Such adaptation planning and restoration projects will require a major undertaking by national governments and international institutions. Joint research projects between international organizations such as: USA research centers ( USGS, NOAA, Corps of Engineers), EU sponsored project groups, EU coastal marine centers as well as other world wide coastal research institutes (CoRI, Alexandria) are encouraged to advance the state of the art on managing coasts to adapt to sea level rise employing cost-effective coastal protection technologies. References 1.Williams, S.J.,"Sea-Level Rise Implications for Coastal Regions", Journal of Coastal Research, Vol. 63, 2013. 2.Ismail, N.,Wiegel, R., "Sustainable Solutions for Coastal Zone Management of Lowland and River Delta Coastlines", Proc. International Conference- Littoral 2012, Ostende, Belgium, November 27-29, 2012. 3.Ismail, N., Iskander, M., and El-Sayed, W. "Assessment of Coastal Flooding at Southern Mediterranean with Global Outlook for Lowland Coastal Zones", Proc. International Conference on Coastal Engineering, ASCE, July 1-6, 2012, Santander, Spain. 4.Moser, S. C., Williams,J.S., and Boesch, D. F., " Wicked Challenges at Land's End: Managing Coastal Vulnerability Under Climate Change'', Annual. Review of Environmental Resources, 37:51-78, 2012.
Dual frequency scatterometer measurement of ocean wave height
NASA Technical Reports Server (NTRS)
Johnson, J. W.; Jones, W. L.; Swift, C. T.; Grantham, W. L.; Weissman, D. E.
1975-01-01
A technique for remotely measuring wave height averaged over an area of the sea surface was developed and verified with a series of aircraft flight experiments. The measurement concept involves the cross correlation of the amplitude fluctuations of two monochromatic reflected signals with variable frequency separation. The signal reflected by the randomly distributed specular points on the surface is observed in the backscatter direction at nadir incidence angle. The measured correlation coefficient is equal to the square of the magnitude of the characteristic function of the specular point height from which RMS wave height can be determined. The flight scatterometer operates at 13.9 GHz and 13.9 - delta f GHz with a maximum delta f of 40 MHz. Measurements were conducted for low and moderate sea states at altitudes of 2, 5, and 10 thousand feet. The experimental results agree with the predicted decorrelation with frequency separation and with off-nadir incidence angle.
Barrier island response to an elevated sea-level anomaly: Onslow Beach, North Carolina, USA
NASA Astrophysics Data System (ADS)
Theuerkauf, E. J.; Rodriguez, A. B.; Fegley, S. R.; Luettich, R.
2012-12-01
Variations in sea level over time scales ranging from hours to millennia influence coastal processes and evolution. At annual time scales, elevated sea-level anomalies produce coastal flooding and promote beach erosion. This study examines the coastal response of Onslow Beach, North Carolina to the summer 2009 East Coast sea-level anomaly. Onslow Beach is a 12-km-long wave-dominated barrier island with highly variable along-barrier morphology. The transgressive southern portion of the island is characterized by a narrow beach, low dunes, and multiple washover fans, while the regressive northern portion is characterized by a wide beach and continuous tall dunes. Hourly tide gauge data from adjacent NOAA stations (Beaufort and Wrightsville Beach) are used to determine the timing and extent of elevated water levels. The seasonal and longer term trends (relative sea level rise) are removed from both of the water level series and the sea-level anomaly is represented by a large residual between the observed and predicted water levels. Beach response is quantified using terrestrial laser scanning for morphology and from geoprobe cores to determine the maximum depth of erosion (MDOE). The mean high water (MHW) shoreline and dune toe are digitized from digital elevation models derived from the laser scans and analyzed using the Digital Shoreline Analysis System (DSAS). Landward (negative) movement of these contacts indicates erosion. Wave data collected from an Acoustic Wave and Current Meter (AWAC) located offshore of the southern end of Onslow Beach is used to characterize the wave regime throughout the study. Water level is elevated in the tide gauge data from June 2009 to March 2010. This sea-level anomaly corresponds with an increase in the maximum depth of erosion between 2009 and 2010. Landward movement of the MHW shoreline and the dunetoe increased during the period between September 2009 and May 2010 indicating an increase in beach erosion during the sea-level anomaly. No significant increase in wave height was observed during this period, suggesting that the increase in beach erosion resulted from the sea-level anomaly. The sites that were strongly impacted by the sea-level anomaly did not fully recover from the beach erosion and consequently experienced large amounts of erosion in response to Hurricane Irene in 2011. These results suggest that long duration (weeks to months) high water levels cause changes to the beach similar to those generally thought to occur only during large storms. Dune erosion from higher sea levels weakens a beaches defense to storms, leading to increased beach erosion and overwash if a storm occurs before the beach can recover. It is likely that similar high water events will increase in duration and magnitude with future climate change, leading to increased "fair-weather" beach erosion and priming the system for devastating hurricane impacts.
Wilma Trek Through Warm Caribbean/Gulf Waters
2005-10-21
This sea surface height map of the Gulf of Mexico and the northwestern Caribbean Sea, with the Florida peninsula on the upper right, is based on altimeter data from three satellites including NASA Jason-1.
Numerical modeling of space-time wave extremes using WAVEWATCH III
NASA Astrophysics Data System (ADS)
Barbariol, Francesco; Alves, Jose-Henrique G. M.; Benetazzo, Alvise; Bergamasco, Filippo; Bertotti, Luciana; Carniel, Sandro; Cavaleri, Luigi; Y. Chao, Yung; Chawla, Arun; Ricchi, Antonio; Sclavo, Mauro; Tolman, Hendrik
2017-04-01
A novel implementation of parameters estimating the space-time wave extremes within the spectral wave model WAVEWATCH III (WW3) is presented. The new output parameters, available in WW3 version 5.16, rely on the theoretical model of Fedele (J Phys Oceanogr 42(9):1601-1615, 2012) extended by Benetazzo et al. (J Phys Oceanogr 45(9):2261-2275, 2015) to estimate the maximum second-order nonlinear crest height over a given space-time region. In order to assess the wave height associated to the maximum crest height and the maximum wave height (generally different in a broad-band stormy sea state), the linear quasi-determinism theory of Boccotti (2000) is considered. The new WW3 implementation is tested by simulating sea states and space-time extremes over the Mediterranean Sea (forced by the wind fields produced by the COSMO-ME atmospheric model). Model simulations are compared to space-time wave maxima observed on March 10th, 2014, in the northern Adriatic Sea (Italy), by a stereo camera system installed on-board the "Acqua Alta" oceanographic tower. Results show that modeled space-time extremes are in general agreement with observations. Differences are mostly ascribed to the accuracy of the wind forcing and, to a lesser extent, to the approximations introduced in the space-time extremes parameterizations. Model estimates are expected to be even more accurate over areas larger than the mean wavelength (for instance, the model grid size).
Spaceborne Sensors Track Marine Debris Circulation in the Gulf of Mexico
NASA Technical Reports Server (NTRS)
Reahard, Ross; Mitchell, Brandie; Lee, Lucas; Pezold, Blaise; Brook, Chris; Mallett, Candis; Barrett, Shelby; Albin, Aaron
2011-01-01
Marine debris is a problem for coastal areas throughout the world, including the Gulf of Mexico. To aid the NOAA Marine Debris Program in monitoring marine debris dispersal and regulating marine debris practices, sea surface height and height anomaly data provided by the Colorado Center for Astrodynamics Research at the University of Colorado, Boulder, were utilized to help assess trash and other discarded items that routinely wash ashore in southeastern Texas, at Padre Island National Seashore. These data were generated from the NASA radar altimeter satellites TOPEX/Poseidon, Jason 1, and Jason 2, as well as the European altimeter satellites ERS-1, ERS-2 (European Remote Sensing Satellite), and ENVISAT (Environmental Satellite). Sea surface temperature data from MODIS were used to study of the dynamics of the Loop Current. Sea surface height and MODIS data analysis were used to show that warm water in the core of eddies, which periodically separate from the Loop Current, can be as high as 30 cm above the surrounding water. These eddies are known to directly transfer marine debris to the western continental shelf and the elevated area of water can be tracked using satellite radar altimeter data. Additionally, using sea surface height, geostrophic velocity, and particle path data, foretracking and backtracking simulations were created. These simulation runs demonstrated that marine debris on Padre Island National Seashore may arise from a variety of sources, such as commercial fishing/shrimping, the oil and gas industry, recreational boaters, and from rivers that empty into the Gulf of Mexico.
Gulf of Mexico Imagery - Satellite Products and Services Division/Office of
Satellite and Product Operations Skip Navigation Link NESDIS banner image and link to NESDIS Home Page Default Office of Satellite and Product Operations banner image and link to OSPO DOC / NOAA Bleaching -- Ocean Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface Temperatures -- Tropical
Southwest U.S. Imagery (GOES-WEST) - Satellite Services Division / Office
of Satellite Data Processing and Distribution Skip Navigation Link NESDIS banner image and link Information Service Home Page Default Office of Satellite and Product Operations banner image and link to OSPO Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface Temperatures -- Tropical Systems Product List
Tropical Pacific Imagery - Satellite Products and Services Division/Office
of Satellite and Product Operations Skip Navigation Link NESDIS banner image and link to NESDIS Home Page Default Office of Satellite and Product Operations banner image and link to OSPO DOC / NOAA Bleaching -- Ocean Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface Temperatures -- Tropical
Tropical West Pacific Imagery - Satellite Products and Services
Division/Office of Satellite and Product Operations Skip Navigation Link NESDIS banner image Information Service Home Page Default Office of Satellite and Product Operations banner image and link to OSPO MIRS MSPPS Ocean -- Coral Bleaching -- Ocean Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface
Tropical Atlantic Imagery - Satellite Products and Services Division/Office
of Satellite and Product Operations Skip Navigation Link NESDIS banner image and link to NESDIS Home Page Default Office of Satellite and Product Operations banner image and link to OSPO DOC / NOAA Bleaching -- Ocean Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface Temperatures -- Tropical
Attribution of the 1995 and 2006 storm surge events in the southern Baltic Sea
NASA Astrophysics Data System (ADS)
Klehmet, K.; Rockel, B.; von Storch, H.
2016-12-01
In November 1995 and 2006, the German Baltic Sea coast experienced severe storm surge conditions. Exceptional water level heights of about 1.8m above mean sea level were measured at German tide gauges. Extreme event attribution poses unique challenges trying to distinguish the role of anthropogenic influence, as e.g. greenhouse gas emissions or land-use changes, from natural variability. This study, which is part of the EUCLEIA project (EUropean CLimate and weather Events: Interpretation and Attribution, www. eucleia.eu), aims to estimate how the contribution of anthropogenic drivers has altered the probability of single extreme events such as the 1995 and 2006 storm surge events. We explore these aspects using two 7-member ensembles of Hadley Centre Global Environmental Model version 3-A (HadGEM3-A), the atmosphere only component of the HadGEM3, provided by the Met Office Hadley Centre. The ensemble of HadGEM3-A consists of two multi-decadal experiments from 1960-2013 - one with anthropogenic forcing factors and natural forcings representing the actual climate. The second experiment represents the natural climate including only natural forcing factors. These two 7-member ensembles of about 60km spatial resolution are used as atmospheric forcing data to drive the regional ocean model TRIM-NP in order to calculate water level in the Baltic Sea in 12.8km spatial resolution. Findings indicate some limitations of the regional model ensemble to reproduce the magnitude of extreme water levels well. It is tested whether increased spatial resolution of atmospheric forcing fields can improve the representation of Baltic Sea extreme water levels along the coast and thus add value in the attribution analysis.
Age and height distribution of holocene transgressive deposits in eastern North Island, New Zealand
Ota, Y.; Berryman, K.R.; Hull, A.G.; Miyauchi, T.; Iso, N.
1988-01-01
Holocene transgressive deposits are frequently exposed near the present-day coastline of the study area along eastern North Island, New Zealand. They occur in sites of former estuaries that were filled during the postglacial rise in sea level. We present one hundred radiocarbon dates of Holocene transgressive deposits from the study area, ranging in age from ca. 10,000 to 5500 yr B.P. Relative sea level curves up to ca. 6000 yr B.P. were reconstructed for six locations. The curves have similar slopes prior to about 7000 yr B.P., indicating that sea level rise was much more rapid than any tectonic uplift at that time. The postglacial rise in sea level in New Zealand is considered, in general, to have culminated at about 6500 yr B.P. but the upper limit ages of transgressive deposits in our study area vary from ca. 5500 to 7000 yr B.P. At sites where the uplift rate is high the postglacial transgression culminated rather earlier than ca. 6500 yr B.P., and at sites where there is subsidence or there is very low uplift the culmination is later than ca. 6500 yr B.P. Nine of fourteen dates from fossil trees in growth position, that grew in and were buried by estuarine silt, cluster in the age range ca. 8000-8400 yr B.P. These data support the view that there was a minor regression or stillstand in the eustatic sea level rise at that time. Eleven tectonic subregions are recognized in the study area on the basis of average uplift rate. Most of these subregions coincide with those established from the number and ages of younger Holocene marine terraces of probable coseismic origin. ?? 1988.
NASA Astrophysics Data System (ADS)
Choi, Hyun-Jung; Lee, Hwa Woon; Jeon, Won-Bae; Lee, Soon-Hwan
2012-01-01
This study evaluated an atmospheric and air quality model of the spatial variability in low-level coastal winds and ozone concentration, which are affected by sea surface temperature (SST) forcing with different thermal gradients. Several numerical experiments examined the effect of sea surface SST forcing on the coastal atmosphere and air quality. In this study, the RAMS-CAMx model was used to estimate the sensitivity to two different resolutions of SST forcing during the episode day as well as to simulate the low-level coastal winds and ozone concentration over a complex coastal area. The regional model reproduced the qualitative effect of SST forcing and thermal gradients on the coastal flow. The high-resolution SST derived from NGSST-O (New Generation Sea Surface Temperature Open Ocean) forcing to resolve the warm SST appeared to enhance the mean response of low-level winds to coastal regions. These wind variations have important implications for coastal air quality. A higher ozone concentration was forecasted when SST data with a high resolution was used with the appropriate limitation of temperature, regional wind circulation, vertical mixing height and nocturnal boundary layer (NBL) near coastal areas.
NASA Astrophysics Data System (ADS)
Wadey, M. P.; Brown, J. M.; Haigh, I. D.; Dolphin, T.; Wisse, P.
2015-10-01
The extreme sea levels and waves experienced around the UK's coast during the 2013/14 winter caused extensive coastal flooding and damage. Coastal managers seek to place such extremes in relation to the anticipated standards of flood protection, and the long-term recovery of the natural system. In this context, return periods are often used as a form of guidance. This paper provides these levels for the winter storms, and discusses their application to the given data sets for two UK case study sites: Sefton, northwest England, and Suffolk, east England. Tide gauge records and wave buoy data were used to compare the 2013/14 storms with return periods from a national data set, and also joint probabilities of sea level and wave heights were generated, incorporating the recent events. The 2013/14 high waters and waves were extreme due to the number of events, as well as the extremity of the 5 December 2013 "Xaver" storm, which had a high return period at both case study sites. The national-scale impact of this event was due to its coincidence with spring high tide at multiple locations. Given that this event is such an outlier in the joint probability analyses of these observed data sets, and that the season saw several events in close succession, coastal defences appear to have provided a good level of protection. This type of assessment could in the future be recorded alongside defence performance and upgrade. Ideally other variables (e.g. river levels at estuarine locations) would also be included, and with appropriate offsetting for local trends (e.g. mean sea-level rise) so that the storm-driven component of coastal flood events can be determined. This could allow long-term comparison of storm severity, and an assessment of how sea-level rise influences return levels over time, which is important for consideration of coastal resilience in strategic management plans.
Development of large Area Covering Height Model
NASA Astrophysics Data System (ADS)
Jacobsen, K.
2014-04-01
Height information is a basic part of topographic mapping. Only in special areas frequent update of height models is required, usually the update cycle is quite lower as for horizontal map information. Some height models are available free of charge in the internet; for commercial height models a fee has to be paid. Mostly digital surface models (DSM) with the height of the visible surface are given and not the bare ground height, as required for standard mapping. Nevertheless by filtering of DSM, digital terrain models (DTM) with the height of the bare ground can be generated with the exception of dense forest areas where no height of the bare ground is available. These height models may be better as the DTM of some survey administrations. In addition several DTM from national survey administrations are classified, so as alternative the commercial or free of charge available information from internet can be used. The widely used SRTM DSM is available also as ACE-2 GDEM corrected by altimeter data for systematic height errors caused by vegetation and orientation errors. But the ACE-2 GDEM did not respect neighbourhood information. With the worldwide covering TanDEM-X height model, distributed starting 2014 by Airbus Defence and Space (former ASTRIUM) as WorldDEM, higher level of details and accuracy is reached as with other large area covering height models. At first the raw-version of WorldDEM will be available, followed by an edited version and finally as WorldDEM-DTM a height model of the bare ground. With 12 m spacing and a relative standard deviation of 1.2 m within an area of 1° x 1° an accuracy and resolution level is reached, satisfying also for larger map scales. For limited areas with the HDEM also a height model with 6 m spacing and a relative vertical accuracy of 0.5 m can be generated on demand. By bathymetric LiDAR and stereo images also the height of the sea floor can be determined if the water has satisfying transparency. Another method of getting bathymetric height information is an analysis of the wave structure in optical and SAR-images. An overview about the absolute and relative accuracy, the consistency, error distribution and other characteristics as influence of terrain inclination and aspects is given. Partially by post processing the height models can or have to be improved.
Implementation of CGPS at Estartit, Ibiza and Barcelona harbours for sea level monitoring
NASA Astrophysics Data System (ADS)
Martinez-Benjamin, J. J.; Ortiz Castellon, M.; Martinez-Garcia, M.; Perez, B.; Bosch, E.; Termens, A.; Martinez de Oses, X.
2009-12-01
The determination of global and regional mean sea level variations with accura-cies better than 1 mm/yr is a critical problem, the resolution of which is central to the current debate on climate change and its impact on the environment. Highly accurate time series from both satellite altimetry and tide gauges are needed. Measuring the sea surface height with in-situ tide gauges and GPS receivers pro-vides an efficient way to control the long term stability of the radar altimeters and other applications as the vertical land motion and studies of sea level change. L’Estartit tide gauge is a classical floating tide gauge set up in l’Estartit harbour (NE Spain) in 1990. Data are taken in graphics registers from which each two hours the mean value is recorded in an electronic support and delivered to the Permanent Service for Mean Sea level (PSMSL). Periodic surveying campaigns along the year are carried out for monitoring possible vertical movement of the geodetic benchmark adjacent to the tide gauge. Puertos del Estado (Spanish Harbours) installed the tide gauge station at Ibiza har-bour in January 2003 and a near GPS reference station. The station belongs to the REDMAR network, composed at this moment by 21 stations distributed along the whole Spanish waters, including also the Canary islands (http://www.puertos.es). The tide gauge also belongs to the ESEAS (European Sea Level) network. A description of the actual infrastructure at Ibiza, Barcelona and l’Estartit har-bours is presented.The main objective is the implementation of these harbours as a precise geodetic areas for sea level monitoring and altimeter calibration. Actually is a CGPS with a radar tide gauge from Puertos del Estado and a GPS belonging to Puerto de Barcelona. A precise levelling has been made by the Cartographic Insti-tute of Catalonia, ICC. The instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge Datamar 3000C device and a Thales Navigation Internet-Enabled GPS Continuous Geodetic Ref-erence Station (iCGRS) with a choke ring antenna, located at the EPSEB of the Technical University of Catalonia, UPC. It is intended that the overall system will constitute a CGPS Station of the ESEAS and TIGA networks.
Earth Observation taken by the Expedition 33 crew
2012-11-03
ISS033-E-018010 (3 Nov. 2012) --- Volcanoes in central Kamchatka are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The snow-covered peaks of several volcanoes of the central Kamchatka Peninsula are visible standing above a fairly uniform cloud deck that obscures the surrounding lowlands. In addition to the rippled cloud patterns caused by interactions of air currents and the volcanoes, a steam and ash plume is visible at center extending north-northeast from the relatively low summit (2,882 meters above sea level) of Bezymianny volcano. Volcanic activity in this part of Russia is relatively frequent, and well monitored by Russia’s Kamchatka Volcanic Eruption Response Team (KVERT). The KVERT website provides updated information about the activity levels on the peninsula, including aviation alerts and webcams. Directly to the north and northeast of Bezymianny, the much larger and taller stratovolcanoes Kamen (4,585 meters above sea level) and Kliuchevskoi (4,835 meters above sea level) are visible. Kliuchevskoi, Kamchatka’s most active volcano, last erupted in 2011 whereas neighboring Kamen has not erupted during the recorded history of the region. An explosive eruption from the summit of the large volcanic massif of Ushkovsky (3,943 meters above sea level; left) northwest of Bezymianny occurred in 1890; this is the most recent activity at this volcano. To the south of Bezymianny, the peaks of Zimina (3,081 meters above sea level) and Udina (2,923 meters above sea level) volcanoes are just visible above the cloud deck; no historical eruptions are known from either volcanic center. While the large Tobalchik volcano to the southwest (bottom center) is largely formed from a basaltic shield volcano, its highest peak (3,682 meters above sea level) is formed from an older stratovolcano. Tobalchik last erupted in 1976. While this image may look like it was taken from the normal altitude of a passenger jet, the space station was located approximately 417 kilometers above the southeastern Sea of Okhotsk; projected downwards to Earth’s surface, the space station was located over 700 kilometers to the southwest of the volcanoes in the image. The combination of low viewing angle from the orbital outpost, shadows, and height and distance from the volcanoes contributes to the appearance of topographic relief visible in the image.
Quantifying Climate Change Hydrologic Risk at NASA Ames Research Center
NASA Astrophysics Data System (ADS)
Mills, W. B.; Bromirski, P. D.; Coats, R. N.; Costa-Cabral, M.; Fong, J.; Loewenstein, M.; Milesi, C.; Miller, N.; Murphy, N.; Roy, S.
2013-12-01
In response to 2009 Executive Order 13514 mandating U.S. federal agencies to evaluate infrastructure vulnerabilities due to climate variability and change we provide an analysis of future climate flood risk at NASA Ames Research Center (Ames) along South S.F. Bay. This includes likelihood analysis of large-scale water vapor transport, statistical analysis of intense precipitation, high winds, sea level rise, storm surge, estuary dynamics, saturated overland flooding, and likely impacts to wetlands and habitat loss near Ames. We use the IPCC CMIP5 data from three Atmosphere-Ocean General Circulation Models with Radiative Concentration Pathways of 8.5 Wm-2 and 4.5 Wm-2 and provide an analysis of climate variability and change associated with flooding and impacts at Ames. Intense storms impacting Ames are due to two large-scale processes, sub-tropical atmospheric rivers (AR) and north Pacific Aleutian low-pressure (AL) storm systems, both of which are analyzed here in terms of the Integrated Water Vapor (IWV) exceeding a critical threshold within a search domain and the wind vector transporting the IWV from southerly to westerly to northwesterly for ARs and northwesterly to northerly for ALs and within the Ames impact area during 1970-1999, 2040-2069, and 2070-2099. We also include a statistical model of extreme precipitation at Ames based on large-scale climatic predictors, and characterize changes using CMIP5 projections. Requirements for levee height to protect Ames are projected to increase and continually accelerate throughout this century as sea level rises. We use empirical statistical and analytical methods to determine the likelihood, in each year from present through 2099, of water level surpassing different threshold values in SF Bay near NASA Ames. We study the sensitivity of the water level corresponding to a 1-in-10 and 1-in-100 likelihood of exceedance to changes in the statistical distribution of storm surge height and ENSO height, in addition to increasing mean sea level. We examine the implications in the face of the CMIP5 projections. Storm intensification may result in increased flooding hazards at Ames. We analyze how the changes in precipitation intensity will impact the storm drainage system at Ames through continuous stormwater modeling of runoff with the EPA model SWMM 5 and projected downscaled daily precipitation data. Although extreme events will not adversely affect wetland habitats, adaptation projects--especially levee construction and improvement--will require filling of wetlands. Federal law mandates mitigation for fill placed in wetlands. We are currently calculating the potential mitigation burden by habitat type.
Investigation on the fine structure of sea-breeze during ESCOMPTE experiment
NASA Astrophysics Data System (ADS)
Puygrenier, V.; Lohou, F.; Campistron, B.; Saïd, F.; Pigeon, G.; Bénech, B.; Serça, D.
2005-03-01
Surface and remote-sensing instruments deployed during ESCOMPTE experiment over the Marseille area, along the Mediterranean coast, were used to investigate the fine structure of the atmospheric boundary layer (ABL) during sea-breeze circulation in relation to pollutant transport and diffusion. Six sea-breeze events are analyzed with a particular focus on 25 June 2001. Advection of cool and humid marine air over land has a profound influence on the daytime ABL characteristics. This impact decreases rapidly with the inland distance from the sea. Nearby the coast (3 km inland), the mixing height Zi rises up to 750 m and falls down after 15:00 (UT) when the breeze flow reaches its maximum intensity. A more classical evolution of the ABL is observed at only 11-km inland where Zi culminates in the morning and stabilizes in the afternoon at about 1000 m height. Fine inspection of the data revealed an oscillation of the sea-breeze with a period about 2 h 47 min. This feature, clearly discernable for 3 days at least, is present in several atmospheric variables such as wind, temperature, not only at the ground but also aloft in the ABL as observed by sodar/RASS and UHF wind profilers. In particular, the mixing height Zi deduced from UHF profilers observations is affected also by the same periodicity. This pulsated sea-breeze is observed principally above Marseille and, at the northern and eastern shores of the Berre pond. In summary, the periodic intrusion over land of cool marine air modifies the structure of the ABL in the vicinity of the coast from the point of view of stability, turbulent motions and pollutants concentration. An explanation of the source of this pulsated sea-breeze is suggested.
Remote sensing tools to study ocean biogeochemistry: state of the art
NASA Technical Reports Server (NTRS)
Carr, M. E.
2001-01-01
Remote sensing of the world ocean presently provides measurements of sea-surface temperature, sea surface height, wind speed and direction, and ocean color, from which chlorophyll concentration and aerosol optical thickness are obtained.
EU-Norsewind Using Envisat ASAR And Other Data For Offshore Wind Atlas
NASA Astrophysics Data System (ADS)
Hasager, Charlotte B.; Mouche, Alexis; Badger, Merete
2010-04-01
The EU project NORSEWIND - short for Northern Seas Wind Index Database - www.norsewind.eu has the aim to produce state-of-the-art wind atlas for the Baltic, Irish and North Seas using ground-based lidar, meteorological masts, satellite data and mesoscale modelling. So far CLS and Risø DTU have collected Envisat ASAR images for the area of interest and the first results: maps of wind statistics, Weibull scale and shape parameters, mean and energy density are presented. The results will be compared to a distributed network of high-quality in-situ observations and mesoscale model results during 2009-2011 as the in-situ data and model results become available. Wind energy is proportional with wind speed to the third power, thus even small improvements on wind speed mapping are important in this project. One challenge is to arrive at hub-height winds ~100 m above sea level.
Discussion on Height Systems in Stereoscopic Mapping Using the ZY-3 Satellite Images
NASA Astrophysics Data System (ADS)
Zhao, L.; Fu, X.; Zhu, G.; Zhang, J.; Han, C.; Cheng, L.
2018-04-01
The ZY-3 is the civil high-resolution optical stereoscopic mapping satellite independently developed by China. It is mainly used for 1 : 50,000 scale topographic mapping. One of the distinguishing features of the ZY-3 is that the panchromatic triplet camera can obtain thousands of kilometers of continuous strip stereo data. The working mode is suitable for wide-range stereoscopic mapping, in particular global DEM extraction. The ZY-3 constellation is operated in a sun-synchronous at an altitude 505 km, with a 10:30 AM equator crossing time and a 29-day revisiting period. The panchromatic triplet sensors have excellent base-to-height ratio, which is advantageous for obtaining good mapping accuracy. In this paper the China quasi-geoid, EGM2008 and the height conversion method are discussed. It is pointed out that according to the current surveying and mapping specifications, almost all maps and charts use mean sea level for elevation. Experiments on bundle adjustment and DEM extraction with different height systems have been carried out in Liaoning Province of China. The results show that the similar accuracy can be obtained using different elevation system. According to the principle of geodesy and photogrammetry, it is recommended to use ellipsoidal height for satellite photogrammetric calculation and use the orthometric height in mapping production.
NASA Astrophysics Data System (ADS)
Ramos, Noelynna T.; Maxwell, Kathrine V.; Tsutsumi, Hiroyuki; Chou, Yu-Chen; Duan, Fucai; Shen, Chuan-Chou; Satake, Kenji
2017-12-01
Recent 230Th dating of fossil corals in west Luzon has provided new insights on the emergence of late Quaternary marine terraces that fringe west Luzon Island facing the Manila Trench. Apart from regional sea level changes, accumulated uplift from aseismic and seismic processes may have influenced the emergence of sea level indicators such as coral terraces and notches. Varied elevations of middle-to-late Holocene coral terraces along the west Luzon coasts reveal the differential uplift that is probably associated with the movement of local onland faults or upper-plate structures across the Manila Trench forearc basin. In Badoc Island, offshore west of Luzon mainland, we found notably young fossil corals, dated at 945.1 ± 4.6 years BP and 903.1 ± 3.9 years BP, on top of a 5-m-high reef platform. To constrain the mechanism of emergence or emplacement of these fossil corals, we use field geomorphic data and wave inundation models to constrain an extreme wave event that affected west Luzon about 1000 years ago. Our preliminary tectonic and tsunami models show that a megathrust rupture will likely lead to subsidence of a large part of the west Luzon coast, while permanent coastal uplift is attributed to an offshore upper-plate rupture in the northern Manila Trench forearc region. The modeled source fault ruptures and tsunami lead to a maximum wave height of more than 3 m and inundation distance as far as 2 km along the coasts of western and northern Luzon. While emplacement of coral boulders by an unusually strong typhoon is also likely, modeled storm surge heights along west Luzon do not exceed 2 m even with Typhoon Haiyan characteristics. Whether tsunami or unusually strong typhoon, the occurrence of a prehistoric extreme wave event in west Luzon remains an important issue in future studies of coastal hazards in the South China Sea region.
A review of satellite radar altimetry applied to coastal ocean studies
NASA Astrophysics Data System (ADS)
Vignudelli, Stefano
2016-07-01
Satellite radar altimetry is today considered a mature technique in open ocean. The data stream from the various satellite missions are routinely used for a number of applications. In the last decade, significant research has been carried out into overcoming the problems to extend the capabilities of radar altimeters to the coastal zone, with the aim to integrate the altimeter-derived measurements of sea level, wind speed and significant wave height into coastal ocean observing systems. More/better (and new) datasets are being produced. Moreover, the advent of new satellite missions, both nadir-viewing (e.g., Sentinel-3) and wide-swath (e.g. SWOT), should globally improve both quantity and quality of coastal altimetry data. In this talk, after a brief review of the challenges in coastal altimetry and description of the new products, we showcase some application examples how the new products can be exploited, and we discuss directions for a global coastal altimetry dataset as an asset for long term monitoring of sea level and sea state in the coastal ocean.
2016-09-26
statistical analysis is done by not only examining the SSH forecast error across the entire do- main, but also by concentrating on the areamost densely covered...over (b) entire GoM domain and (d) GLAD region only. Statistics shown for FR (thin black), SSH1 (thick black), and VEL (gray) experiment 96-h SSH...coefficient. To statistically FIG. 9. Sea surface height (m) for AVISO (a) 1 Aug, (b) 20 Aug, (c) 10 Sep, and (d) 30 Sep; for SSH1 experiment (e) 1
Deterministic approach for multiple-source tsunami hazard assessment for Sines, Portugal
NASA Astrophysics Data System (ADS)
Wronna, M.; Omira, R.; Baptista, M. A.
2015-11-01
In this paper, we present a deterministic approach to tsunami hazard assessment for the city and harbour of Sines, Portugal, one of the test sites of project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). Sines has one of the most important deep-water ports, which has oil-bearing, petrochemical, liquid-bulk, coal, and container terminals. The port and its industrial infrastructures face the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING, a Non-linear Shallow Water model wIth Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages: MLLW (mean lower low water), MSL (mean sea level), and MHHW (mean higher high water). For each scenario, the tsunami hazard is described by maximum values of wave height, flow depth, drawback, maximum inundation area and run-up. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at the Sines test site considering the single scenarios at mean sea level, the aggregate scenario, and the influence of the tide on the aggregate scenario. The results confirm the composite source of Horseshoe and Marques de Pombal faults as the worst-case scenario, with wave heights of over 10 m, which reach the coast approximately 22 min after the rupture. It dominates the aggregate scenario by about 60 % of the impact area at the test site, considering maximum wave height and maximum flow depth. The HSMPF scenario inundates a total area of 3.5 km2.
NASA Astrophysics Data System (ADS)
Hill, E.; Qiu, Q.; Feng, L.; Lubis, A.; Meltzner, A. J.; Tsang, L. L.; Daly, P.; McCaughey, J.; Banerjee, P.; Rubin, C. M.; Sieh, K.
2013-12-01
Tectonic changes can have significant effects on crustal deformation, the geoid, and relative sea level (RSL). Indeed, the tectonic impacts on RSL in some regions can be greater than those predicted as a result of climate change. In the case of earthquakes, these changes can occur suddenly, as coastlines uplift or subside by up to many meters. The changes can also occur over many decades as a result of interseismic or postseismic processes, or periodically in the form of transient slow-slip events. Although these effects are (mostly) recovered elastically over the course of the earthquake cycle, they are occurring in the context of ever-increasing populations living along affected coastlines, particularly the case in areas such as SE Asia. The societal effects of these tectonic-induced sea-level changes are therefore becoming increasingly significant, and important to consider in future projections for sea-level change. Additionally, tide-gauge and gravity measurements made in tectonically active areas cannot be interpreted without consideration and modeling of the tectonic setting. These facts highlight the need for accurate geodetic measurements of land-height change. Along the Sumatra subduction zone, a series of great earthquakes have occurred over the last decade, along with numerous moderate and smaller earthquakes. These, and their ensuing postseismic deformation, have reshaped regional coastlines. We will show visualization of land height changes using a decade of Sumatra GPS Array (SuGAr) data, and related tectonic models, that demonstrate dramatically the ups and downs of land elevation close to the earthquake sources. Vertical coseismic displacements as large as ~2.9 m have been recorded by the SuGAr (an uplift at Nias, during the 2005 Mw 8.6 earthquake), and vertical postseismic rates on the order of tens of mm/yr or greater (e.g., in northern Aceh, one station has been uplifting at a rate of ~34 mm/yr since the 2004 Mw 9.2 earthquake, while in southern Simeulue a station has been subsiding, on average, by ~39 mm/yr since 2005, with higher rates immediately after the earthquake). Photos and stories from people in affected communities bring life to these coastline changes. Further afield, viscoelastic relaxation of the mantle causes widespread regional changes. For example, postseismic deformation following the 2004 Sumatra-Andaman earthquake has caused subsidence of 20-30 mm/yr along the Thai coastline. This subsidence - and therefore relative sea-level rise - will continue for many years to come. One question this raises is the degree to which countries close to tectonic plate boundaries should consider tectonic effects in their planning for future sea-level change. For example, in the event of an earthquake occurring on the Mentawai patch of the Sunda megathrust (an event which has been forecast based on paleogeodetic data), Singapore could face up to 15 cm of subsidence in the decades following the earthquake.
GOES Composite - El Niño Support Imagery - Satellite Products and Services
Division/Office of Satellite and Product Operations Skip Navigation Link NESDIS banner image Information Service Home Page Default Office of Satellite and Product Operations banner image and link to OSPO MIRS MSPPS Ocean -- Coral Bleaching -- Ocean Color -- Sea/Lake Ice -- Sea Surface Height -- Sea Surface
Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean and at Landfall
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.; Houston, S. H.; Powell, M. D.; Black, P. G.; Marks, F. D.; Busalacchi, Antonio J. (Technical Monitor)
2000-01-01
The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 E half-power width (two-way) across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The open-ocean data were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Individual waves with heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction. At some positions there were three different wave fields of comparable energy crossing each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 3-minute animation of the directional wave spectrum spatial variation over this period will be shown as well as summary plots of the wave field spatial variation. On 26 August 1998, the NOAA aircraft flew at 2.2 km height when hurricane Bonnie was making landfall near Wilmington, NC, documenting the directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.
NASA Technical Reports Server (NTRS)
1994-01-01
The classical method of observing the sea surface height has been to make shipboard measurements of the vertical - density profile, and then calculating the surface height relative to a deeper reference surface. Two methods (a moored vertical string of instruments and an inverted echo sounder) were subsequently developed to obtain longer time in situ measurements. The first of these can be thought of as an extension of the discrete bottle hydrocast while the second integrates acoustically over the water column. One purpose of this note is to compare the result when coincidental observations are made by these two methods. This was done at two sites in the western tropical Pacific. Two inverted echo sounders were deployed alongside two enhanced TOGA-COARE moorings to be used in an in situ evaluation of TOPEX/Poseidon altimetric measurements of sea surface height. The mooring and inverted echo sounder data reproduced one another, at low frequency, with a correlation of 0.93 and 0.95 and the altimeter correlated with each of the above values ranging from 0.84 to 0.94. It is concluded that the altimetric measurements are statistically equivalent to the in situ measurements in the area of study.
Spatio-temporal environmental data tide corrections for reconnaissance operations
NASA Astrophysics Data System (ADS)
Barbu, Costin; Avera, Will; Harris, Mike; Malpass, Kevyn
2005-06-01
Dynamic, accurate near-real time environmental data is critical to the success of the mine countermeasures operations. Bathymetric data acquired from the AQS-20 mine hunting sensor should be adjusted for local tide variations related to the specific geographic area and time interval. This problem can be overcome by a spatio-temporal estimate of tide corrections provided for the area and time of interest by the Naval Research Laboratory tide prediction code PCTides. For each geographic position of the AQS-20 sonar, a tide height relative to mean sea level is computed by interpolating the tidal information from the K - nearest neighbored stations for the corresponding time. The value is used to correct the measured depth generated by the AQS-20 sonar in that location to mean sea level for fusion with other bathymetric data products. It is argued that this paper provides a useful tool to the MCM decision factors during Mine Warfare operations.
A Coastal Hazards Data Base for the U.S. West Coast (1997) (NDP-043C)
Gomitz, Vivien M. [Columbia Univ., New York, NY (United States); Beaty, Tammy W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Daniels, Richard C. [The University of Tennessee, Knoville, TN (United States)
1997-01-01
This data base integrates point, line, and polygon data for the U.S. West Coast into 0.25 degree latitude by 0.25 degree longitude grid cells and into 1:2,000,000 digitized line segments that can be used by raster or vector geographic information systems (GIS) as well as by non-GIS data bases. Each coastal grid cell and line segment contains data variables from the following seven data sets: elevation, geology, geomorphology, sea-level trends, shoreline displacement (erosion/accretion), tidal ranges, and wave heights. One variable from each data set was classified according to its susceptibility to sea-level rise and/or erosion to form 7 relative risk variables. These risk variables range in value from 1 to 5 and may be used to calculate a Coastal Vulnerability Index (CVI). Algorithms used to calculate several CVIs are listed within this text.
Sequential webcam monitoring and modeling of marine debris abundance.
Kako, Shin'ichiro; Isobe, Atsuhiko; Kataoka, Tomoya; Yufu, Kei; Sugizono, Shuto; Plybon, Charlie; Murphy, Thomas A
2018-05-14
The amount of marine debris washed ashore on a beach in Newport, Oregon, USA was observed automatically and sequentially using a webcam system. To investigate potential causes of the temporal variability of marine debris abundance, its time series was compared with those of satellite-derived wind speeds and sea surface height off the Oregon coast. Shoreward flow induced by downwelling-favorable southerly winds increases marine debris washed ashore on the beach in winter. We also found that local sea-level rise caused by westerly winds, especially at spring tide, moved the high-tide line toward the land, so that marine debris littered on the beach was likely to re-drift into the ocean. Seasonal and sub-monthly fluctuations of debris abundance were well reproduced using a simple numerical model driven by satellite-derived wind data, with significant correlation at 95% confidence level. Copyright © 2018 Elsevier Ltd. All rights reserved.
Trend analysis of the wave storminess: the wave direction
NASA Astrophysics Data System (ADS)
Casas Prat, M.; Sierra, J. P.; Mösso, C.; Sánchez-Arcilla, A.
2009-09-01
Climate change has an important role in the current scientific research because of its possible future negative consequences. Concerning the climate change in the coastal engineering field, the apparent sea level rise is one of the key parameters as well as the wave height and the wave direction temporal variations. According to the IPCC (2007), during the last century the sea level has been increasing with a mean rate of 1.7 ± 0.5 mm/yr. However, at local/regional scale the tendency significantly differs from the global trend since the local pressure and wind field variations become more relevant. This appears to be particularly significant in semi-enclosed areas in the Mediterranean Sea (Cushman-Roisin et al., 2001). Even though the existing unsolved questions related to the sea level rise, the uncertainty concerning the wave height is even larger, in which stormy conditions are especially important because they are closely related to processes such as coastal erosion, flooding, etc. Therefore, it is necessary to identify possible existing tendencies of storm related parameters. In many studies, only the maximum wave height and storm duration are analysed, remaining the wave direction in a second term. Note that a possible rotation of the mean wave direction may involve severe consequences since most beach and harbour defence structures have been designed assuming a constant predominant wave incidence. Liste et al. (2004) illustrated this fact with an example in which a rotation of only 2 degrees of the mean energy flux vector could produce a beach retreat of 20 m. Another possible consequence would be a decrease of the harbour operability: increased frequency of storms in the same direction as the harbour entrance orientation would influence the navigability. The present study, which focuses in the Catalan coast (NW Mediterranean Sea), aims to improve the present knowledge of the wave storminess variations at regional scale, specially focusing on the wave directionality. It is based on 44 year hindcast model data (1958-2001) of the HIPOCAS project, enabling to work with a longer time series compared to the existing measured ones. 41 nodes of this database are used, containing 3 hourly simulated data of significant wave height and wave direction, among other parameters. For storm definition, the Peak Over Threshold (POT) method is used with some additional duration requirements in order to analyse statistically independent events (Mendoza & Jiménez, 2006). Including both wave height and storm duration, the wave storminess is characterised by the energy content (Mendoza & Jiménez, 2004), being in turn log-transformed because of its positive scale. Separately, the wave directionality itself is analysed in terms of different sectors and approaching their probability of occurrence by counting events and using Bayesian inference (Agresti, 2002). Therefore, the original data is transformed into compositional data and, before performing the trend analysis, the isometric logratio (ilr) transformation (Egozcue et al., 2003) is done. In general, the trend analysis methodology consists in two steps: 1) trend detection and 2) trend quantification. For 1) the Mann Kendall test is used in order to identify the nodes with significant trend. For these selected nodes, the trend quantification is done, comparing two methods: 1) a simple linear regression analysis complemented with the bootstrap technique and 2) a Bayesian analysis, assuming normally distributed data with linearly increasing mean. Preliminary results show no significant trend for both annual mean and maximum energy content except for some nodes located to the Northern Catalan coast. Regarding the wave direction (but not only considering stormy conditions) there is a tendency of North direction to decrease whereas South and Southeast direction seems to increase.
An Evaluation of CryoSat-2 SAR Mode Performance Around the UK Coasts
NASA Astrophysics Data System (ADS)
Cipollini, P.; Gommenginger, C.; Snaith, H. M.; Cotton, D.; Dinardo, S.; Benveniste, J.
2014-12-01
One of the objectives of ESA's CryoSat Plus for Ocean (CP4O) project is to demonstrate the excellent retrieval of Level 2 ocean geophysical parameters from CryoSat-2. Within CP4O we have carried out a comparison of sea surface height from CryoSat-2, reprocessed by ESRIN, against tide gauges from the UK Tide Gauge Network. This work has the specific objective to assess the performance in the coastal zone, and complements validation work over the open ocean (both for height and significant wave height) done elsewhere. We took updated corrections from the state-of-the-art RADS archive, computed the TWLE (total water level envelope, i.e. the sea level inclusive of ocean tides and atmospheric pressure and wind effect, a desirable quantity for validation), and then subset all segments of each pass within 50 km from a tide gauge, interpolating the tide gauge height (effectively a TWLE) on the time of the altimeter overpass to create match-up pairs. We first present the results of our attempt to correlate TWLE data over these multiple segments with the measurements from each nearby tide gauge, taking into account the distance of the altimetric measurements from the coastline. Results are dominated by large offsets, variable from match-up to match-up. Screening the data further based on the retracking misfit does not remove this bias, whose causes and possible impact are discussed. We then present an independent verification of the noise level in 20-Hz Cryosat-2 TWLEs and its variation as a function of distance from coast. The noise level is estimated by computing the absolute value of difference between consecutive TWLE values, as done in Passaro et al., Rem. Sens. Env, 2014. Remarkably, the median of that difference remains at ~5 cm up to 5Km from the coast, suggesting a noise level of that order for the 20-Hz data, which would correspond to ~1.1 cm for the 1-Hz data. At 3 km the median abs(diff) is ~7.3 cm. Finally we repeated the same analysis for only those points with retracking misfit below a threshold of 3. The median stays virtually flat at ~5cm all the way to the coast but obviously the fraction of points passing the misfit condition decreases quickly (it is about 60% at 5 km from the coast, and less than 25% at 3 km). These results demonstrate clearly that Cryosat-2 maintains an excellent performance of measurement well into in the coastal zone.
NASA Astrophysics Data System (ADS)
Zaitchik, B. F.; Russell, A.; Gnanadesikan, A.
2015-12-01
As the global climate warms, the height of the 0°C isotherm - aka the freezing level height (FLH) - rises, especially over mountainous regions. Over the past few decades, FLH in the tropical Andes Mountains of South America has been rising at a rate that is 2 to 3 times faster than would be expected considering the zonally-averaged upper troposphere temperature trends and the recent cooling of Pacific Ocean sea surface temperatures. Rising FLH could have devastating impacts in this region where most of the dry season runoff comes from seasonal snow melt and glacial melt. Yet, is unclear why FLH is rising so rapidly in this particular area and what the quantitative implications will be for tropical Andean water resources. Reanalysis products tend to disagree on the spatial pattern and strength of FLH changes which confounds the issue by making it difficult to uncover the driving mechanisms of these local changes in FLH. Indeed, there are several possible factors that may be contributing to the unprecedented rise in FLH over the Andes (above and beyond the normally expected effects of greenhouse gases) of which the most likely actors are: changes in the state of the tropical Pacific Ocean, changes in sea surface temperatures in the Atlantic Ocean, shifts in the Hadley cell, indirect effects of stratospheric ozone depletion and recent recovery, and local thermodynamic land-atmosphere feedbacks. To better understand the changes in FLH, which will ultimately contribute to the effort to predict effects on Andean water resources, we analyze FLH in several forcing-separated integrations of the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). By separating out the various forcings (greenhouse gases, sea surface temperatures, ozone depleting substances, volcanic eruptions, and solar fluctuations), we are able to develop hypotheses for mechanistic drivers of FLH changes which can be rigorously tested. These efforts will contribute to the understanding of climate change over the tropical Andes Mountains, and over South America more generally, while developing techniques and hypotheses that can be applied to the study of cryosphere environments in other mountainous regions.
NASA Astrophysics Data System (ADS)
Wandres, Moritz; Pattiaratchi, Charitha; Hemer, Mark A.
2017-09-01
Incident wave energy flux is responsible for sediment transport and coastal erosion in wave-dominated regions such as the southwestern Australian (SWA) coastal zone. To evaluate future wave climates under increased greenhouse gas concentration scenarios, past studies have forced global wave simulations with wind data sourced from global climate model (GCM) simulations. However, due to the generally coarse spatial resolution of global climate and wave simulations, the effects of changing offshore wave conditions and sea level rise on the nearshore wave climate are still relatively unknown. To address this gap of knowledge, we investigated the projected SWA offshore, shelf, and nearshore wave climate under two potential future greenhouse gas concentration trajectories (representative concentration pathways RCP4.5 and RCP8.5). This was achieved by downscaling an ensemble of global wave simulations, forced with winds from GCMs participating in the Coupled Model Inter-comparison Project (CMIP5), into two regional domains, using the Simulating WAves Nearshore (SWAN) wave model. The wave climate is modeled for a historical 20-year time slice (1986-2005) and a projected future 20-year time-slice (2081-2100) for both scenarios. Furthermore, we compare these scenarios to the effects of considering sea-level rise (SLR) alone (stationary wave climate), and to the effects of combined SLR and projected wind-wave change. Results indicated that the SWA shelf and nearshore wave climate is more sensitive to changes in offshore mean wave direction than offshore wave heights. Nearshore, wave energy flux was projected to increase by ∼10% in exposed areas and decrease by ∼10% in sheltered areas under both climate scenarios due to a change in wave directions, compared to an overall increase of 2-4% in offshore wave heights. With SLR, the annual mean wave energy flux was projected to increase by up to 20% in shallow water (< 30 m) as a result of decreased wave dissipation. In winter months, the longshore wave energy flux, which is responsible for littoral drift, is expected to increase by up to 39% (62%) under the RCP4.5 (RCP8.5) greenhouse gas concentration pathway with SLR. The study highlights the importance of using high-resolution wave simulations to evaluate future regional wave climates, since the coastal wave climate is more responsive to changes in wave direction and sea level than offshore wave heights.
Baldock, T E; Golshani, A; Atkinson, A; Shimamoto, T; Wu, S; Callaghan, D P; Mumby, P J
2015-08-15
A one-dimensional wave model is combined with an analytical sediment transport model to investigate the likely influence of sea-level rise on net cross-shore sediment transport on fetch-limited barrier reef and lagoon island beaches. The modelling considers if changes in the nearshore wave height and wave period in the lagoon induced by different water levels over the reef flat are likely to lead to net offshore or onshore movement of sediment. The results indicate that the effects of SLR on net sediment movement are highly variable and controlled by the bathymetry of the reef and lagoon. A significant range of reef-lagoon bathymetry, and notably shallow and narrow reefs, appears to lead hydrodynamic conditions and beaches that are likely to be stable or even accrete under SLR. Loss of reef structural complexity, particularly on the reef flat, increases the chance of sediment transport away from beaches and offshore. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dandou, A.; Tombrou, M.; Kalogiros, J.; Bossioli, E.; Biskos, G.; Mihalopoulos, N.; Coe, H.
2017-08-01
The spatial structure of the marine atmospheric boundary layer (MABL) over the Aegean Sea is investigated using the Weather Research and Forecasting (WRF) mesoscale model. Two `first-order' non-local and five `1.5-order' local planetary boundary-layer (PBL) parametrization schemes are used. The predictions from the WRF model are evaluated against airborne observations obtained by the UK Facility for Airborne Atmospheric Measurements BAe-14 research aircraft during the Aegean-GAME field campaign. Statistical analysis shows good agreement between measurements and simulations especially at low altitude. Despite the differences between the predicted and measured wind speeds, they reach an agreement index of 0.76. The simulated wind-speed fields close to the surface differ substantially among the schemes (maximum values range from 13 to 18 m s^{-1} at 150-m height), but the differences become marginal at higher levels. In contrast, all schemes show similar spatial variation patterns in potential temperature fields. A warmer (1-2 K) and drier (2-3 g kg^{-1}) layer than is observed, is predicted by almost all schemes under stable conditions (eastern Aegean Sea), whereas a cooler (up to 2 K) and moister (1-2 g kg^{-1}) layer is simulated under near-neutral to nearly unstable conditions (western Aegean Sea). Almost all schemes reproduce the vertical structure of the PBL and the shallow MABL (up to 300 m) well, including the low-level jet in the eastern Aegean Sea, with non-local schemes being closer to observations. The simulated PBL depths diverge (up to 500 m) due to the different criteria applied by the schemes for their calculation. Under stable conditions, the observed MABL depth corresponds to the height above the sea surface where the simulated eddy viscosity reaches a minimum; under neutral to slightly unstable conditions this is close to the top of the simulated entrainment layer. The observed sensible heat fluxes vary from -40 to 25 W m^{-2}, while the simulated fluxes range from -40 to 40 W m^{-2}; however, all of the schemes' predictions are close to the observations under unstable conditions. Finally, all schemes overestimate the friction velocity, although the simulated range (from 0.2 to 0.5 m s^{-1}) is narrower than that observed (from 0.1 to 0.7 m s^{-1}).
NASA Astrophysics Data System (ADS)
Furlani, Stefano; Antonioli, Fabrizio; Cavallaro, Danilo; Chirco, Pietro; Caldareri, Francesco; Martin, Franco Foresta; Morticelli, Maurizio Gasparo; Monaco, Carmelo; Sulli, Attilio; Quarta, Gianluca; Biolchi, Sara; Sannino, Gianmaria; de Vita, Sandro; Calcagnile, Lucio; Agate, Mauro
2017-12-01
In this paper we present and discuss data concerning the morphostructural evolution at Ustica Island (Tyrrhenian Sea, Italy) during Late Quaternary. New insights on the relative sea-level changes of Ustica are coming from data collected during a geomorphological field survey around the island, together with the bathymetric analysis of the surrounding seabed and 14C datings on samples of speleothems, flowstones and marine shells found inside three selected sea caves. The survey was mainly accomplished on June 2015 through the first complete snorkel investigation off the about 18 km-long volcanic coast of the island, which allowed to precisely define location, relationship and morphometric features of coastal landforms associated with modern sea level. This study highlights the occurrence, for the first time in the Mediterranean, of tidal notches in correspondence of carbonate inclusions in volcanic rocks. The elevation of the modern tidal notch suggests that no significant vertical deformations occurred in the southeastern and eastern sectors of Ustica in the last 100 years. However, the presence of pillow lavas along the coast demonstrates that Ustica was affected by a regional uplift since the Late Quaternary, as also confirmed by MIS5.5 deposits located at about 30 m a.s.l., which suggests an average uplift rate of 0.23 mm/y. Radiocarbon dating of fossil barnacles collected inside the Grotta Segreta cave indicate an age of 1823 ± 104 cal. BP. The difference in height with respect to living barnacles in the same site suggests that their present elevation could be related to stick-slip coseismic deformations caused by the four earthquake sequences (two of which with Mw = 4.63 ± 0.46) that strongly struck the island between 1906 and 1924.
Amplification of tsunami heights by delayed rupture of great earthquakes along the Nankai trough
NASA Astrophysics Data System (ADS)
Imai, K.; Satake, K.; Furumura, T.
2010-04-01
We investigated the effect of delayed rupture of great earthquakes along the Nankai trough on tsunami heights on the Japanese coast. As the tsunami source, we used a model of the 1707 Hoei earthquake, which consists of four segments: Tokai, Tonankai, and two Nankai segments. We first searched for the worst case, in terms of coastal tsunami heights, of rupture delay time on each segment, on the basis of superposition principle for the linear long wave theory. When the rupture starts on the Tonankai segment, followed by rupture on the Tokai segment 21 min later, as well as the eastern and western Nankai segments 15 and 28 min later, respectively, the average coastal tsunami height becomes the largest. To quantify the tsunami amplification, we compared the coastal tsunami heights from the delayed rupture with those from the simultaneous rupture model. Along the coasts of the sea of Hyu'uga and in the Bungo Channel, the tsunami heights become significantly amplified (>1.4 times larger) relative to the simultaneous rupture. Along the coasts of Tosa Bay and in the Kii Channel, the tsunami heights become amplified about 1.2 times. Along the coasts of the sea of Kumano and Ise Bay, and the western Enshu coast, the tsunami heights become slightly smaller for the delayed rupture. Along the eastern Enshu coast, the coast of Suruga Bay, and the west coast of Sagami Bay, the tsunami heights become amplified about 1.1 times.
NASA Astrophysics Data System (ADS)
Skourup, Henriette; Farrell, Sinéad Louise; Hendricks, Stefan; Ricker, Robert; Armitage, Thomas W. K.; Ridout, Andy; Andersen, Ole Baltazar; Haas, Christian; Baker, Steven
2017-11-01
State-of-the-art Arctic Ocean mean sea surface (MSS) models and global geoid models (GGMs) are used to support sea ice freeboard estimation from satellite altimeters, as well as in oceanographic studies such as mapping sea level anomalies and mean dynamic ocean topography. However, errors in a given model in the high-frequency domain, primarily due to unresolved gravity features, can result in errors in the estimated along-track freeboard. These errors are exacerbated in areas with a sparse lead distribution in consolidated ice pack conditions. Additionally model errors can impact ocean geostrophic currents, derived from satellite altimeter data, while remaining biases in these models may impact longer-term, multisensor oceanographic time series of sea level change in the Arctic. This study focuses on an assessment of five state-of-the-art Arctic MSS models (UCL13/04 and DTU15/13/10) and a commonly used GGM (EGM2008). We describe errors due to unresolved gravity features, intersatellite biases, and remaining satellite orbit errors, and their impact on the derivation of sea ice freeboard. The latest MSS models, incorporating CryoSat-2 sea surface height measurements, show improved definition of gravity features, such as the Gakkel Ridge. The standard deviation between models ranges 0.03-0.25 m. The impact of remaining MSS/GGM errors on freeboard retrieval can reach several decimeters in parts of the Arctic. While the maximum observed freeboard difference found in the central Arctic was 0.59 m (UCL13 MSS minus EGM2008 GGM), the standard deviation in freeboard differences is 0.03-0.06 m.
NASA Astrophysics Data System (ADS)
Ridder, Nina; de Vries, Hylke; Drijfhout, Sybren; van den Brink, Henk; van Meijgaard, Erik; de Vries, Hans
2018-02-01
This study shows that storm surge model performance in the North Sea is mostly unaffected by the application of temporal variations of surface drag due to changes in sea state provided the choice of a suitable constant Charnock parameter in the sea-state-independent case. Including essential meteorological features on smaller scales and minimising interpolation errors by increasing forcing data resolution are shown to be more important for the improvement of model performance particularly at the high tail of the probability distribution. This is found in a modelling study using WAQUA/DCSMv5 by evaluating the influence of a realistic air-sea momentum transfer parameterization and comparing it to the influence of changes in the spatial and temporal resolution of the applied forcing fields in an effort to support the improvement of impact and climate analysis studies. Particular attention is given to the representation of extreme water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5 is forced with ERA-Interim reanalysis data. Model results are obtained from a set of different forcing fields, which either (i) include a wave-state-dependent Charnock parameter or (ii) apply a constant Charnock parameter ( α C h = 0.032) tuned for young sea states in the North Sea, but differ in their spatial and/or temporal resolution. Increasing forcing field resolution from roughly 79 to 12 km through dynamically downscaling can reduce the modelled low bias, depending on coastal station, by up to 0.25 m for the modelled extreme water levels with a 1-year return period and between 0.1 m and 0.5 m for extreme surge heights.
Tsunami Risk Assessment Modelling in Chabahar Port, Iran
NASA Astrophysics Data System (ADS)
Delavar, M. R.; Mohammadi, H.; Sharifi, M. A.; Pirooz, M. D.
2017-09-01
The well-known historical tsunami in the Makran Subduction Zone (MSZ) region was generated by the earthquake of November 28, 1945 in Makran Coast in the North of Oman Sea. This destructive tsunami killed over 4,000 people in Southern Pakistan and India, caused great loss of life and devastation along the coasts of Western India, Iran and Oman. According to the report of "Remembering the 1945 Makran Tsunami", compiled by the Intergovernmental Oceanographic Commission (UNESCO/IOC), the maximum inundation of Chabahar port was 367 m toward the dry land, which had a height of 3.6 meters from the sea level. In addition, the maximum amount of inundation at Pasni (Pakistan) reached to 3 km from the coastline. For the two beaches of Gujarat (India) and Oman the maximum run-up height was 3 m from the sea level. In this paper, we first use Makran 1945 seismic parameters to simulate the tsunami in generation, propagation and inundation phases. The effect of tsunami on Chabahar port is simulated using the ComMIT model which is based on the Method of Splitting Tsunami (MOST). In this process the results are compared with the documented eyewitnesses and some reports from researchers for calibration and validation of the result. Next we have used the model to perform risk assessment for Chabahar port in the south of Iran with the worst case scenario of the tsunami. The simulated results showed that the tsunami waves will reach Chabahar coastline 11 minutes after generation and 9 minutes later, over 9.4 Km2 of the dry land will be flooded with maximum wave amplitude reaching up to 30 meters.
NASA Astrophysics Data System (ADS)
Lacerda, E. G.; Pires, L. B. M.; Pinto, V. K. E.
2015-12-01
Since the Industrial Revolution, man started to generate increasing amounts of waste and pollutants, which on a large scale in the long term is causing a series of climate change consequences, both globally as well as locally. One of the many effects of these changes has been reflected in the ocean levels, depending on various factors. Thus, the population living in coastal areas suffers from the negative effects of the advancement of ocean waters. The coast of northeastern Brazil is an example of this, especially the state of Ceará coast. The state of Ceará has 573 km of coastline, a region that has suffered extensive erosion, in which the Middle Sea Level (MSL) changes exert a significant influence. The coastal plain is a strip of land of small extent, with an average width of 2.5 km, formed depending on the availability of high sediment stocks provided through the action of wind, marine, or river processes, individually in combination with each other. In many beaches it is observed that the strip of beach is narrow due to the presence of topographic elevations carved into sharp cliffs. Between periods of high tide and low tide, often rocky beach features are observed that have recently formed. The waves control the stretches of beach which are mostly sandy. This paper presents a survey about the evidence already apparent on the rise in the MSL and correlates it with the advance of the sea on the coast of Ceará, as well as assesses the possible consequences of this process. Therefore, a literature search was conducted in relevant scientific publications. The data used are from the station "Global Sea Level Observing System - GLOSS" which maintains a tide gauge installed in Ceará in Fortaleza. The analyses show that the phenomenon has caused a lot of inconvenience to the people, streets have disappeared, as well as several buildings located along the coast. The sea advances destroyed beaches and have promoted an accelerated level of erosion, changing the landscape of the region significantly. Data collected between 1996 and 2006 show that the sea height demonstrated a significant increase, especially from 2000. Keywords: Climate Change, Middle Sea Level, Ceará Coastline.Since the Industrial Revolution, man started to generate increasing amounts of waste and pollutants, which on a large scale in the long term is causing a series of climate change consequences, both globally as well as locally. One of the many effects of these changes has been reflected in the ocean levels, depending on various factors. Thus, the population living in coastal areas suffers from the negative effects of the advancement of ocean waters. The coast of northeastern Brazil is an example of this, especially the state of Ceará coast. The state of Ceará has 573 km of coastline, a region that has suffered extensive erosion, in which the Middle Sea Level (MSL) changes exert a significant influence. The coastal plain is a strip of land of small extent, with an average width of 2.5 km, formed depending on the availability of high sediment stocks provided through the action of wind, marine, or river processes, individually in combination with each other. In many beaches it is observed that the strip of beach is narrow due to the presence of topographic elevations carved into sharp cliffs. Between periods of high tide and low tide, often rocky beach features are observed that have recently formed. The waves control the stretches of beach which are mostly sandy. This paper presents a survey about the evidence already apparent on the rise in the MSL and correlates it with the advance of the sea on the coast of Ceará, as well as assesses the possible consequences of this process. Therefore, a literature search was conducted in relevant scientific publications. The data used are from the station "Global Sea Level Observing System - GLOSS" which maintains a tide gauge installed in Ceará in Fortaleza. The analyses show that the phenomenon has caused a lot of inconvenience to the people, streets have disappeared, as well as several buildings located along the coast. The sea advances destroyed beaches and have promoted an accelerated level of erosion, changing the landscape of the region significantly. Data collected between 1996 and 2006 show that the sea height demonstrated a significant increase, especially from 2000. Keywords: Climate Change, Middle Sea Level, Ceará Coastline.
Mesoscale resolution capability of altimetry: Present and future
NASA Astrophysics Data System (ADS)
Dufau, Claire; Orsztynowicz, Marion; Dibarboure, Gérald; Morrow, Rosemary; Le Traon, Pierre-Yves
2016-07-01
Wavenumber spectra of along-track Sea Surface Height from the most recent satellite radar altimetry missions [Jason-2, Cryosat-2, and SARAL/Altika) are used to determine the size of ocean dynamical features observable with the present altimetry constellation. A global analysis of the along-track 1-D mesoscale resolution capability of the present-day altimeter missions is proposed, based on a joint analysis of the spectral slopes in the mesoscale band and the error levels observed for horizontal wavelengths lower than 20km. The global sea level spectral slope distribution provided by Xu and Fu with Jason-1 data is revisited with more recent altimeter missions, and maps of altimeter error levels are provided and discussed for each mission. Seasonal variations of both spectral slopes and altimeter error levels are also analyzed for Jason-2. SARAL/Altika, with its lower error levels, is shown to detect smaller structures everywhere. All missions show substantial geographical and temporal variations in their mesoscale resolution capabilities, with variations depending mostly on the error level change but also on slight regional changes in the spectral slopes. In western boundary currents where the signal to noise ratio is favorable, the along-track mesoscale resolution is approximately 40 km for SARAL/AltiKa, 45 km for Cryosat-2, and 50 km for Jason-2. Finally, a prediction of the future 2-D mesoscale sea level resolution capability of the Surface Water and Ocean Topography (SWOT) mission is given using a simulated error level.
NASA Astrophysics Data System (ADS)
Yu, Xiaolong; Pan, Weiran; Zheng, Xiangjing; Zhou, Shenjie; Tao, Xiaoqin
2017-08-01
The effects of wave-current interaction on storm surge are investigated by a two-dimensional wave-current coupling model through simulations of Typhoon Morakot in the Taiwan Strait. The results show that wind wave and slope of sea floor govern wave setup modulations within the nearshore surf zone. Wave setup during Morakot can contribute up to 24% of the total storm surge with a maximum value of 0.28 m. The large wave setup commonly coincides with enhanced radiation stress gradient, which is itself associated with transfer of wave momentum flux. Water levels are to leading order in modulating significant wave height inside the estuary. High water levels due to tidal change and storm surge stabilize the wind wave and decay wave breaking. Outside of the estuary, waves are mainly affected by the current-induced modification of wind energy input to the wave generation. By comparing the observed significant wave height and water level with the results from uncoupled and coupled simulations, the latter shows a better agreement with the observations. It suggests that wave-current interaction plays an important role in determining the extreme storm surge and wave height in the study area and should not be neglected in a typhoon forecast.
Cyclone Xaver seen by SARAL/AltiKa
NASA Astrophysics Data System (ADS)
Scharroo, Remko; Fenoglio, Luciana; Annunziato, Alessandro
2014-05-01
During the first week of December 2013, Cyclone Xaver pounded the coasts and the North Sea. On 6 December, all along the Wadden Sea, the barrier islands along the north of the Netherlands and the northwest of Germany experienced record storm surges. We show a comparison of the storm surge measured by the radar altimeter AltiKa on-board the SARAL satellite and various types of in-situ data and models. Two tide gauges along the German North Sea coast, one in the southern harbour of the island of Helgoland and one on an offshore lighthouse Alte Weser, confirmed that the storm drove sea level to about three meters above the normal tide level. Loading effects during the storm are also detected by the GPS measurements at several tide gauge stations. The altimeter in the mean time shows that the storm surge was noticeable as far as 400 km from the coast. The altimeter measured wind speeds of 20 m/s nearly monotonically throughout the North Sea. An offshore anemometer near the island of Borkum corroborated this value. A buoy near the FINO1 offshore platform measured wave heights of 8 m, matching quite well the measurements from the altimeter, ranging from 6 m near the German coast to 12 m further out into the North Sea. Furthermore we compare the altimeter-derived and in-situ sea level, wave height and wind speed products with outputs from the Operation Circulation and Forecast model of the Bundesamt für Seeschifffahrt und Hydrographie (BSH) and with a global storm surge forecast and inundation model of the Joint Research Centre (JRC) of the European Commission. The Operational circulation model of BSH (BSHcmod) and its component, the surge model (BSHsmod), perform daily predictions for the next 72 hours based on the meteorological model of the Deutsche Wetterdienst (DWD). The JRC Storm Surge Calculation System is a new development that has been established at the JRC in the framework of the Global Disasters Alerts and Coordination System (GDACS). The system uses meteorological forecasts produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) to estimate (with a 2-day lead time) potential storm surges due to cyclone or general storm events. Departure between model and altimeter-derived values, in particularly wind, are investigated and discussed. The qualitative agreement is satisfactory; the maximum storm surge peak is correctly estimated by BSH but underestimated by JRC due to insufficient wind forcing. The wind speed of SARAL/AltiKa agrees well with the ECMWF model wind speed but is lower than the DWD model estimate. The authors acknowledge the kind support from the BSH, the Bundesumweltministerium (BMU), Projectträger Jülich (PTJ), and the Wasser- und Schifffahrtsverwaltung des Bundes (WSV).
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base, the OSTM/Jason-2 satellite shipping container is being moved inside the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base, the OSTM/Jason-2 satellite shipping container has been moved inside the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. – The aircraft carrying the OSTM/Jason-2 spacecraft arrives at Vandenberg Air Force Base in California. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Steve Greenberg, JPL
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base, the truck carrying the OSTM/Jason-2 satellite arrives at the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base, the OSTM/Jason-2 satellite shipping container is being moved inside the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base, the truck carrying the OSTM/Jason-2 satellite arrives at the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
The Seasat commercial demonstration program
NASA Technical Reports Server (NTRS)
Mccandless, S. W.; Miller, B. P.; Montgomery, D. R.
1981-01-01
The background and development of the Seasat commercial demonstration program are reviewed and the Seasat spacecraft and its sensors (altimeter, wind field scatterometer, synthetic aperture radar, and scanning multichannel microwave radiometer) are described. The satellite data distribution system allows for selected sets of data, reformatted or tailored to specific needs and geographical regions, to be available to commercial users. Products include sea level and upper atmospheric pressure, sea surface temperature, marine winds, significant wave heights, primary wave direction and period, and spectral wave data. The results of a set of retrospective case studies performed for the commercial demonstration program are described. These are in areas of application such as marine weather and ocean condition forecasting, offshore resource exploration and development, commercial fishing, and marine transportation.
Can human activities alter the drowning fate of barrier islands?
NASA Astrophysics Data System (ADS)
Lorenzo-Trueba, J.; Ashton, A. D.; Jin, D.; Hoagland, P.; Kite-Powell, H.
2012-12-01
Low-lying coastal barriers face an uncertain future over the coming century and beyond as sea levels rise, with many projections suggesting end-of-century rates of sea-level rise as high or higher than 1 cm/yr. Geologically, such rates of sea-level rise have been experienced several thousand years ago and we can use our understanding of geological processes and sedimentary evidence to help unravel the dynamics of natural barriers experiencing sea-level rise. Along many modern coastal barriers, however, anthropic change, such as beach nourishment, dune construction, and emplacement of hard structures, plays a dominant role in coastline dynamics. A fundamental question to be addressed is whether human activities intended to preserve infrastructure and beach recreation may make wholesale collapse, or 'drowning,' of barrier systems more likely. Here we present a numerical modeling tool that couples natural processes and the human responses to these changes (and the subsequent of human responses on natural processes). Recent theoretical model development suggests that barriers are intrinsically morphodynamic features, responding to sea-level rise in complex ways through the interactions of marine processes and barrier overwash. Undeveloped coastal barriers would therefore respond to an accelerated sea-level rise in complex, less predictable manners than suggested by existing long-term models. We have developed a model that examines non-equilibrium cross-shore evolution of barrier systems at decadal to centennial temporal scales, focusing on the interactions between processes of shoreface evolution and overwash deposition. Model responses demonstrate two means of barrier collapse during sea-level rise: 'height drowning', which occurs when overwash fluxes are insufficient to maintain the landward migration rate required to keep in pace with sea-level rise, and 'width drowning', which occurs when the shoreface response is insufficient to maintain the barrier geometry during landward migration. The model also demonstrates the potential for discontinuous shoreline retreat, with alternating periods of barrier stability and rapid migration, even for constant rates of sea-level rise. Anthropic activities can strongly interact with these behaviors. In particular, considering only cross-shore processes, beach nourishment activities widen the beach and can affect shoreface fluxes, and dune building, which curtails the overwash process, can potentially enhance barrier drowning by reducing overwash fluxes. Furthermore, coastal protection activities of adjacent communities or even individual property holders can be uncoordinated or coordinated, with their effects coupled along the coast through coastal reorientation and gradients in alongshore sediment transport. In the coordinated framework, owners act in concert to alter the barrier based upon community benefits, whereas in the non-coordinated framework owners alter only their own property. Another important role in management is the perception of future sea-level-rise-associated losses—communities manage their coast differently depending on their adopted forecast for sea-level rise. We find that coordinated behavior coupled with natural processes can substantially affect the drowning scenarios from the individual decision-making process.
Using GPS and leveling data in local precise geoid determination and case study
NASA Astrophysics Data System (ADS)
Erol, B.; Çelik, R. N.; Erol, S.
2003-04-01
As an important result of developments in high technology, satellite based positioning system has become to use in geodesy and surveying professions. These developments made the measurement works more accurate, more practical and more economic. Today, one of the most recent used satellite based positioning system is GPS (Global Positioning System) and it serves to a very wide range of geodetic applications from monitoring earth crustal deformations till building the basis for a GIS (Geographical Information Systems). The most efficient way to utilize GPS measurement system for mentioned aims is having a reliable geodetic infrastructure in working area. Geodetic infrastructure is a extraterrestrial and time system and involved 4D geodetic reference networks. The forth element of mentioned geodetic reference system is time because having an accurate and reliable geodetic infrastructure is needed to up-date according to physical realities of the region. By the help of a well designed geodetic infrastructure accurate and reliable coordinates of a point can be generated economically every time in a global and up-to-date system. Geoid is one of the important parts of a geodetic infrastructure. As it is well known, geoid is the equipotential surface of the Earth's gravity field which best fits, in a least squares sense, global mean sea level and it is reference for physical height systems like orthometric and normal heights. In the most of the applications, vertical position of a point is expressed with orthometric or normal height. Orthometric or normal height is a physical concept and gives vertical position of a point uniquely. On the other hand, vertical position of a point is derived in a geometrical system according to GPS measurements. GPS datum is WGS84 and in this system, an ellipsoidal height of a point is calculated according to WGS84 ellipsoid. So, it is an necessity to transform the ellipsoidal heights to orthometric heights and this procedure is managed with the fundamental mathematical equation; N=h-H. In the equation, "h" is the ellipsoidal height of a point P, "H" is the orthometric height of the same point and "N" is "geoid undulation" value. Normally, "H" orthometric height derived from leveling measurements but these measurements are tiring applications. So, while having a geoid model in the region as the essential part of geodetic infrastructure, number leveling measurements can be reduced from the procedure and by this way time and labor is saved. Geoid determination is modeling of the data in such a way that geoid height can be obtained digital or analog at a point whose horizontal position is known. Geoid models can be developed for local, regional or global regions. Using satellite techniques, especially GPS, in geodetic measurements are increased importance of geoid. Because geoid is a natural tie between high precision geodetic coordinates and coordinates which obtained from satellites. There are several geoid determination methods according to used data and models. GPS/Leveling method, which is also known as geometric method, is one of these methods. This method is appropriate for local precise geoid determination in respectively small areas. In this paper, it is going to be given information about GPS/Leveling geoid determination method and mathematical models, which are used in geoid determination with this method. And Izmir local geoid model will be presented as a case study. Izmir is one of the west metropolitan cities of Turkey and located near Aegean Sea. The topography is extremely rough in the region. There are two different geoid determination studies which were carried out in 1996 and 2001 in Izmir. Both models were accomplished according to GPS/Leveling method. Those two geoid models of Izmir Metropolitan region are investigated in here, the conflict of them were discussed. The relation between distribution of common reference points and differences of geoid undulation values, which are calculated from both models separately, were analyzed and also effects of topography on conflict of both geoid model was investigated. The results of the study and suggestions are going to be given in the paper.
Inventory of File sref_em.t09z.pgrb212.ctl.grib2
Temperature [K] 002 10 m above ground UGRD 3 hour fcst U-Component of Wind [m/s] 003 10 m above ground VGRD 3 hour fcst V-Component of Wind [m/s] 004 mean sea level PRMSL 3 hour fcst Pressure Reduced to MSL [Pa mb HGT 3 hour fcst Geopotential Height [gpm] 012 250 mb UGRD 3 hour fcst U-Component of Wind [m/s
Raabe, E.A.; Stumpf, R.P.; Marth, N.J.; Shrestha, R.L.
1996-01-01
Elevation differences on the order of 10 cm within Florida's marsh system influence major variations in tidal flooding and in the associated plant communities. This low elevation gradient combined with sea level fluctuation of 5-to-10 cm over decadel and longer periods can generate significant alteration and erosion of marsh habitats along the Gulf Coast. Knowledge of precise and accurate elevations in the marsh is critical to the efficient monitoring and management of these habitats. Global positioning system (GPS) technology was employed to establish six new orthometric heights along the Gulf Coast from which kinematic surveys into the marsh interior are conducted. The vertical accuracy achieved using GPS technology was evaluated using two networks with 16 vertical and nine horizontal NGS published high accuracy positions. New positions were occupied near St. Marks National Wildlife Refuge and along the coastline of Levy County and Citrus County. Static surveys were conducted using four Ashtech dual frequency P-code receivers for 45-minute sessions and a data logging rate of 10 seconds. Network vector lengths ranged from 4 to 64 km and, including redundant baselines, totaled over 100 vectors. Analysis includes use of the GEOID93 model with a least squares network adjustment and reference to the National Geodetic Reference System (NGRS). The static surveys show high internal consistency and the desired centimeter-level accuracy is achieved for the local network. Uncertainties for the newly established vertical positions range from 0.8 cm to 1.8 cm at the 95% confidence level. These new positions provide sufficient vertical accuracy to achieve the project objectives of tying marsh surface elevations to long-term water level gauges recording sea level fluctuations along the coast.
A Comparison of Five Numerical Weather Prediction Analysis Climatologies in Southern High Latitudes.
NASA Astrophysics Data System (ADS)
Connolley, William M.; Harangozo, Stephen A.
2001-01-01
In this paper, numerical weather prediction analyses from four major centers are compared-the Australian Bureau of Meteorology (ABM), the European Centre for Medium-Range Weather Forecasts (ECMWF), the U.S. National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR), and The Met. Office (UKMO). Two of the series-ECMWF reanalysis (ERA) and NCEP-NCAR reanalysis (NNR)-are `reanalyses'; that is, the data have recently been processed through a consistent, modern analysis system. The other three-ABM, ECMWF operational (EOP), and UKMO-are archived from operational analyses.The primary focus in this paper is on the period of 1979-93, the period used for the reanalyses, and on climatology. However, ABM and NNR are also compared for the period before 1979, for which the evidence tends to favor NNR. The authors are concerned with basic variables-mean sea level pressure, height of the 500-hPa surface, and near-surface temperature-that are available from the basic analysis step, rather than more derived quantities (such as precipitation), which are available only from the forecast step.Direct comparisons against station observations, intercomparisons of the spatial pattern of the analyses, and intercomparisons of the temporal variation indicate that ERA, EOP, and UKMO are best for sea level pressure;that UKMO and EOP are best for 500-hPa height; and that none of the analyses perform well for near-surface temperature.
NASA Astrophysics Data System (ADS)
Kadioglu, Selma; Kagan Kadioglu, Yusuf
2016-04-01
Ordu-Giresun (OGU) is a newly-constructed airport, the first sea-filled airport in Turkey and in Europe, and the second airport in the world after Osaca-Japan. The airport is between Gulyalı district in Ordu city and Piraziz district in Giresun city in Black Sea -Turkey. A protection breakwater has been constructed by filling a rock approximately 7.435-m long and with an average height of 5.5 m. Then, the Black Sea has been filled until 1 m over the sea level, approximately the area is 1.770.000 m2 wide and includes a runway, aprons and taxiway covered by breakwater. The runway has a 1-m thickness, 3-km length and 45-m width, PCN84 strength, and stone mastic asphalt surface. The aprons has a 240 x 110 m length and PCN110 strength, the taxiway is 250 x 24 m wide. The airport was started to be constructed in July 2011 and it began to serve on 22th May 2015. The aim of this study was to determine the depth of the rock-filled layer and the amount of sinking of the bathymetry which has been determined before filling processing. In addition, before bathymetry determination, unconsolidated sediments had been removed from the bottom of the sea. There were four drilling points to control the sinking of the bathymetry. Therefore, six suitable Ground Penetrating Radar (GPR) profiles were measured, crossing these points with runway and aprons, using 250-MHz and 100-MHz shielded antennas. Starting points of the profiles were in the middle of the runway to merge between depth and thickness changing of the filled layer and bathymetry along the profiles. Surface topography changing was measured spaced 1 m apart with 1 cm sensitivity on each profile. At the same time, similarly the topography changing, bathymetry coordinates was re-arranged along the each profile. Topography corrections were applied to the processed radargrams and then the bottom boundary lines of the rock-filled layer were determined. The maximum height was 3.5 m according to the sea level, which was on the middle point of the runway, representing zero depth of the radargrams of the profiles. To determine the amount of the sinking of the rock filled layer, the first sea level were lined at 3.5 m in depth on the right side depth axes of the radargrams. The second, bathymetry changing lines were placed on the interested radargrams. Finally, differences between the bottom boundary lines of the filled layer and bathymetry lines were compared. The results showed that GPR method could be applied successfully to determine the depth of the rock filled layer in Black Sea and the small amount of the sinking of the bathymetry. Acknowledgement This project has been supported by Cengiz - Içtaş Joint Venture-Turkey. This study is a contribution to the EU funded COST action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu).
Habitat suitability of the Atlantic bluefin tuna by size class: An ecological niche approach
NASA Astrophysics Data System (ADS)
Druon, Jean-Noël; Fromentin, Jean-Marc; Hanke, Alex R.; Arrizabalaga, Haritz; Damalas, Dimitrios; Tičina, Vjekoslav; Quílez-Badia, Gemma; Ramirez, Karina; Arregui, Igor; Tserpes, George; Reglero, Patricia; Deflorio, Michele; Oray, Isik; Saadet Karakulak, F.; Megalofonou, Persefoni; Ceyhan, Tevfik; Grubišić, Leon; MacKenzie, Brian R.; Lamkin, John; Afonso, Pedro; Addis, Piero
2016-03-01
An ecological niche modelling (ENM) approach was used to predict the potential feeding and spawning habitats of small (5-25 kg, only feeding) and large (>25 kg) Atlantic bluefin tuna (ABFT), Thunnus thynnus, in the Mediterranean Sea, the North Atlantic and the Gulf of Mexico. The ENM was built bridging knowledge on ecological traits of ABFT (e.g. temperature tolerance, mobility, feeding and spawning strategy) with patterns of selected environmental variables (chlorophyll-a fronts and concentration, sea surface current and temperature, sea surface height anomaly) that were identified using an extensive set of precisely geo-located presence data. The results highlight a wider temperature tolerance for larger fish allowing them to feed in the northern - high chlorophyll levels - latitudes up to the Norwegian Sea in the eastern Atlantic and to the Gulf of Saint Lawrence in the western basin. Permanent suitable feeding habitat for small ABFT was predicted to be mostly located in temperate latitudes in the North Atlantic and in the Mediterranean Sea, as well as in subtropical waters off north-west Africa, while summer potential habitat in the Gulf of Mexico was found to be unsuitable for both small and large ABFTs. Potential spawning grounds were found to occur in the Gulf of Mexico from March-April in the south-east to April-May in the north, while favourable conditions evolve in the Mediterranean Sea from mid-May in the eastern to mid-July in the western basin. Other secondary potential spawning grounds not supported by observations were predicted in the Azores area and off Morocco to Senegal during July and August when extrapolating the model settings from the Gulf of Mexico into the North Atlantic. The presence of large ABFT off Florida and the Bahamas in spring was not explained by the model as is, however the environmental variables other than the sea surface height anomaly appeared to be favourable for spawning in part of this area. Defining key spatial and temporal habitats should further help in building spatially-explicit stock assessment models, thus improving the spatial management of bluefin tuna fisheries.
Sea ice ridging in the Ross Sea, Antarctica, as compared with sites in the Arctic
NASA Astrophysics Data System (ADS)
Weeks, W. F.; Ackley, S. F.; Govoni, J.
1989-04-01
At the end of the 1980 austral winter, surface roughness measurements were made by laser profilometer during a series of flights over the Ross Sea pack ice. The total track length was 2696 km, and 4365 ridges were counted. The frequency distribution of individual ridge heights was found to be well described by a negative exponential distribution. No clear-cut regional variation was noted in ridge heights. The distribution of ridge frequencies per kilometer showed a strong positive skew with a modal value of 1.88; the most frequent ridging occurred off the east coast of Victoria Land. Comparisons with similar data sets from the Arctic indicate that large ridges are significantly more likely in the Arctic Ocean than in the Ross Sea. Utilizing a reasonable model for the geometry of ridges, estimates are made of the average thickness of a hypothetical continuous layer composed only of the deformed ice from ridges. The noncoastal Ross Sea value of 0.09 m is less than half of the lowest comparable value from the Arctic (0.20 m, central Beaufort Sea) where values in excess of 1.0 m have been observed in the shear zones north of Greenland.
NASA Astrophysics Data System (ADS)
Rice, A. E.; Crout, R. L.
2017-12-01
Shallow water altimetry is an emerging field that in recent years has rapidly gained attention for both the numerous applications it can offer to the oceanographic community (e.g. assessment of climate change impacts to the coastal zone; quantification of sea state etc.) and, depending on the altimeter used, for the wealth of available historical data that can be employed for climatological studies. In this study we focus on the long-term analysis of regional sea surface height anomaly (SSHA) variability over the mid and outer shelf (≥ 16 km from the coast) for 18 selected coastal altimeter tracks located on the east coast of the US and Asia for a period of eight years (294 passes from July 2008 to July 2016) using Jason-2 20 Hz altimeter data from the L2 AVISO-PISTACH experimental products. After implementing geophysical corrections to the raw altimeter range, signal noise in the individual SSH passes was reduced by applying a median filter followed by a 60-point (18 km) low-pass filter as in Birol and Delebeque (2014). Since individual altimeter passes did not cease to collect data at the same distance from the coastline, a nearest-point-to-land (NPTL) was determined for each track for statistical analysis of the data. NPTL time series and SSHA envelopes, computed by subtracting mean SSHAs from individual passes, were used for the analysis. A comparison of wind and water level gauge data to a US east coast track reveals correlation between SSHA and winds and a relationship to subtidal water level frequencies. Time series of NPTL for all tracks show intra-annual and inter and intra-seasonal variability, with higher and lower water levels linked to seasons. Lastly, envelope plots display higher SSHA variability over the mid shelf than the outer shelf, revealing the location and magnitude (up to 0.5 m water level differences) of setup and set down occurrences. Various products derived from the analysis that are useful for oceanographic operations, including water level change percentages and width of coastal boundary layers, are discussed.
NASA Astrophysics Data System (ADS)
Abraha, K. E.; Teferle, F. N.; Hunegnaw, A.; Woodworth, P. L.; Williams, S. D. P.; Hibbert, A.; Smalley, R., Jr.; Dalziel, I.; Lawver, L.
2017-12-01
South Georgia Island in the Southern Atlantic Ocean has been a key location for the seismic, geomagnetic and oceanic global monitoring networks. However, no permanent geodetic monitoring station had been established there despite the lack of observations from this region within, for example, the International GNSS Service (IGS) network of Global Navigation Satellite System (GNSS) stations. Then, in 2013 the King Edward Point (KEP) Geodetic Observatory was established with a focus on sea level studies and in support of general geoscience applications. Currently, this observatory located roughly half-way along the main island along its northern coastline, consists of two GNSS stations (KEPA and KRSA) with local benchmark networks, allowing the height determinations from the GNSS antennas to be transferred to the KEP tide gauge (GLOSS ID 187) and forming a height reference within the International Terrestrial Reference Frame. In late 2014, three additional GNSS stations (SG01, SG02 and SG03) were established, all located on small islands at the perimeter of the main island. Together the stations provide the best possible geographic distribution to study various geophysical processes in the region. With the GNSS-derived position time series now partly reaching over 4.5 years in length, it has become possible to provide first estimates of vertical land movements for the island and, in particular, KEP with its surrounding area. Together with four precise levelling campaigns of the benchmark network in 2013, 2014 and two in 2017, it has also been possible to investigate the very local character of the vertical motions, ie. the stability of the jetty upon which the tide gauge is mounted. Our measurements show that while South Georgia Island and the area around KEP are rising, the jetty and tide gauge are subsiding. In this study, we will present the preliminary results from the GNSS and levelling measurements and will discuss their impact on the sea level record from the KEP tide gauge which is ideally situated in a mid-ocean location for satellite altimetry calibration over the Southern Atlantic and Southern Oceans.
NASA Astrophysics Data System (ADS)
Cheriton, O. M.; Storlazzi, C. D.; Rosenberger, K. J.; Quataert, E.; van Dongeren, A.
2014-12-01
The Republic of the Marshall Islands is comprised of 1156 islands on 29 low-lying atolls with a mean elevation of 2 m that are susceptible to sea-level rise and often subjected to overwash during large wave events. A 6-month deployment of wave and tide gauges across two shore-normal sections of north-facing coral reef on the Roi-Namur Island on Kwajalein Atoll was conducted during 2013-2014 to quantify wave dynamics and wave-driven water levels on the fringing coral reef. Wave heights and periods on the reef flat were strongly correlated to the water levels. On the fore reef, the majority of wave energy was concentrated in the incident band (5-25 s); due to breaking at the reef crest, however, the wave energy over the reef flat was dominated by infragravity-band (25-250 s) motions. Two large wave events with heights of 6-8 m at 15 s over the fore reef were observed. During these events, infragravity-band wave heights exceeded the incident band wave heights and approximately 1.0 m of set-up was established over the innermost reef flat. This set-up enabled the propagation of large waves across the reef flat, reaching maximum heights of nearly 2 m on the innermost reef flat adjacent to the toe of the beach. XBEACH models of the instrument transects were able to replicate the incident waves, infragravity waves, and wave-driven set-up across the reef when the hydrodynamic roughness of the reef was correctly parameterized. These events led to more than 3 m of wave-driven run-up and inundation of the island that drove substantial morphological change to the beach face.
Mechanisms of the 40-70 Day Variability in the Yucatan Channel Volume Transport
NASA Astrophysics Data System (ADS)
van Westen, René M.; Dijkstra, Henk A.; Klees, Roland; Riva, Riccardo E. M.; Slobbe, D. Cornelis; van der Boog, Carine G.; Katsman, Caroline A.; Candy, Adam S.; Pietrzak, Julie D.; Zijlema, Marcel; James, Rebecca K.; Bouma, Tjeerd J.
2018-02-01
The Yucatan Channel connects the Caribbean Sea with the Gulf of Mexico and is the main outflow region of the Caribbean Sea. Moorings in the Yucatan Channel show high-frequent variability in kinetic energy (50-100 days) and transport (20-40 days), but the physical mechanisms controlling this variability are poorly understood. In this study, we show that the short-term variability in the Yucatan Channel transport has an upstream origin and arises from processes in the North Brazil Current. To establish this connection, we use data from altimetry and model output from several high resolution global models. A significant 40-70 day variability is found in the sea surface height in the North Brazil Current retroflection region with a propagation toward the Lesser Antilles. The frequency of variability is generated by intrinsic processes associated with the shedding of eddies, rather than by atmospheric forcing. This sea surface height variability is able to pass the Lesser Antilles, it propagates westward with the background ocean flow in the Caribbean Sea and finally affects the variability in the Yucatan Channel volume transport.
Reddy, Sheila M W; Guannel, Gregory; Griffin, Robert; Faries, Joe; Boucher, Timothy; Thompson, Michael; Brenner, Jorge; Bernhardt, Joey; Verutes, Gregory; Wood, Spencer A; Silver, Jessica A; Toft, Jodie; Rogers, Anthony; Maas, Alexander; Guerry, Anne; Molnar, Jennifer; DiMuro, Johnathan L
2016-04-01
Businesses may be missing opportunities to account for ecosystem services in their decisions, because they do not have methods to quantify and value ecosystem services. We developed a method to quantify and value coastal protection and other ecosystem services in the context of a cost-benefit analysis of hurricane risk mitigation options for a business. We first analyze linked biophysical and economic models to examine the potential protection provided by marshes. We then applied this method to The Dow Chemical Company's Freeport, Texas facility to evaluate natural (marshes), built (levee), and hybrid (marshes and a levee designed for marshes) defenses against a 100-y hurricane. Model analysis shows that future sea-level rise decreases marsh area, increases flood heights, and increases the required levee height (12%) and cost (8%). In this context, marshes do not provide sufficient protection to the facility, located 12 km inland, to warrant a change in levee design for a 100-y hurricane. Marshes do provide some protection near shore and under smaller storm conditions, which may help maintain the coastline and levee performance in the face of sea-level rise. In sum, the net present value to the business of built defenses ($217 million [2010 US$]) is greater than natural defenses ($15 million [2010 US$]) and similar to the hybrid defense scenario ($229 million [2010 US$]). Examination of a sample of public benefits from the marshes shows they provide at least $117 million (2010 US$) in coastal protection, recreational value, and C sequestration to the public, while supporting 12 fisheries and more than 300 wildlife species. This study provides information on where natural defenses may be effective and a replicable approach that businesses can use to incorporate private, as well as public, ecosystem service values into hurricane risk management at other sites. © 2015 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of SETAC.
Rogue run-up events at the North Sea coast
NASA Astrophysics Data System (ADS)
Didenkulova, Ira; Blossier, Brice; Daly, Christopher; Herbst, Gabriel; Senichev, Dmitry; Winter, Christian
2015-04-01
On the 1st of January, 1995, the Statoil-operated "Draupner" platform located in the North Sea recorded the so-called "New Year wave". Since then, rogue waves have been the topic of active scientific discussions and investigations. Waves of extreme height appearing randomly at the sea surface have been measured in both deep and shallow waters and have been involved in a number of ship accidents. Nowadays rogue waves are frequently recorded all over the world with several different instruments (range finders installed on offshore platforms, deployed buoys, radars including SAR, etc.). Rogue wave also occur at the coast, where they appear as either sudden flooding of coastal areas or high splashes over steep banks or sea walls. These waves are especially dangerous for beach users and lead regularly to human injuries and fatalities. Despite numerous reports of human accidents, coastal rogue waves have not yet been recorded experimentally. In this paper we discuss the recording of rogue wave events at German North Sea coasts by using high-resolution beach cameras. The recorded rogue waves are observed during different tide levels and different weather conditions. Possible mechanisms of their generation are discussed.
The role of vertical land movements on late 19th century sea level rise at Cuxhaven, Germany
NASA Astrophysics Data System (ADS)
Niehüser, Sebastian; Jensen, Jürgen; Wahl, Thomas; Dangendorf, Sönke; Hofstede, Jacobus
2015-04-01
Tide gauges, located along the world's coastlines, represent one of the most important data sources with information about sea level change back into the 17th century, bridging the gap between paleo proxies and modern remote sensing data sources. While the worldwide coverage of tide gauges has increased considerably since the mid-20th century, there are only a few gauges available providing information about regional sea level changes before 1900. Furthermore, these tide gauge measurements are often contaminated by local vertical land movements (VLM) resulting from tectonic processes or local anthropogenic interventions. Such non-climatic effects need to be removed from the raw data to uncover climate signals, which are important, for instance, for answering the question whether and when sea level started to accelerate from the nearly constant rates over the past 2000 years. Here we focus on one of these long tide gauge records: Cuxhaven, which is located in the German Bight and provides uninterrupted digital time series of tidal high and low water levels since 1843. The record has been extensively studied during the past decades with respect to regional and global sea level rise. However, a question that still remains is the role of local subsidence before 1900 at the lighthouse of Cuxhaven, located close to the tide gauge. In 1855 Lentz installed a granite height mark at the lighthouse, which was later used as a proxy for VLMs of the tide gauge itself. The height of the control mark was derived by a levelling between Hamburg and Cuxhaven. These levellings were repeated five times between 1855 and 1900 and later evaluated by Siefert and Lassen (1985) with respect to the role of local subsidence. Based on a linear regression of individual levellings Siefert and Lassen (1985) concluded that the lighthouse subsided by an average rate of 2.8 mm/yr (1855-1875: 4.2 mm/yr; 1876-1890: 2 mm/yr; 1890-1900: 1.2 mm/yr). However, due to the massive uncertainties of these early levellings (especially the first by Lentz in 1855), the correction has been questioned several times in the recent years (e.g. Jensen et al. 1992; Wahl et al. 2011; Jensen et al. 2011). Here, we choose a different approach and compare the record of Cuxhaven to 18 nearby stations from the North and Baltic Sea region. Based on visual inspections, linear regression and correlation analyses before and after applying the correction we find that the Cuxhaven record compares best to the other sites if the correction is not applied. Therefore, we conclude that the correction remains still questionable and should not be applied to the raw data. References Jensen, J.; Mügge, H.-E. and Schönfeld, W.: Analyse der Wasserstandsentwicklung und Tidedynamik in der Deutschen Bucht, Die Küste, 53, 1992. Jensen, J.; Frank, T.; Wahl, T. and Dangendorf, S.: Analyse von hochaufgelösten Tidewasserständen und Ermittlung des MSL an der deutschen Nordseeküste (AMSeL), Abschlussbericht, Siegen, 2011. Siefert, W. and Lassen, H.: Gesamtdarstellung der Wasserstandsverhältnisse im Küstenvorfeld der Deutschen Bucht nach neuen Pegelaufzeichnungen, Die Küste, 42, 1985. Wahl, T.; Mudersbach, C. and Jensen J.: Assessing the hydrodynamic boundary conditions for risk analyses in coastal areas: A stochastic storm surge model, Nat. Hazards Earth Syst. Sci. 11, 2925-2939, doi:10.5194/nhess-11-2925-2011, 2011.
Another look at North Sea pole tide dynamics
NASA Technical Reports Server (NTRS)
Dickman, S. R.; Preisig, J. R.
1986-01-01
The mechanism proposed by Wunsch (1974) to explain pole tide observations in the North Sea is evaluated. Wunsch's equations governing pole tide in the North Sea are presented, and solutions for correcting the depth, stream function, and deviation of the tidal height from the equilibrium values are described. The similarity between the Stokes paradox and the tidal equations of the North Sea, and the need for inclusion of inertial terms in the tidal equations are discussed.
Sea-State Dependence of Aerosol Concentration in the Marine Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Lenain, L.; Melville, W. K.
2016-02-01
While sea spray aerosols represent a large portion of the aerosols present in the marine environment, and despite evidence of the importance of surface wave and wave-breaking related processes in the coupling of the ocean with the atmosphere, sea spray source generation functions are traditionally parameterized by the wind speed at 10m. It is clear that unless the wind and wave field are fully developed, the source function will be a function of both wind and wave parameters. In this study, we report on an air-sea interaction experiment, the ONR phase-resolved High-Resolution Air-Sea Interaction experiments (HIRES), conducted off the coast of Northern California in June 2010. Detailed measurements of aerosol number concentration in the Marine Atmospheric Boundary Layer (MABL), at altitudes ranging from as low as 30m and up to 800m AMSL over a broad range of environmental conditions (significant wave height, Hs, of 2 to 4.5m and wind speed at 10m height, U10, of 10 to 18 m/s) collected from an instrumented research aircraft, are presented. Aerosol number densities and volume are computed over a range of particle diameters from 0.1 to 200 µm, while the surface conditions, i.e. significant wave height, moments of the breaker length distribution Λ(c), and wave breaking dissipation, were measured by a suite of electro-optical sensors that included the NASA Airborne Topographic Mapper (ATM). The sea-state dependence of the aerosol concentration in the MABL is evident, ultimately stressing the need to incorporate wave and wave kinematics in the spray source generation functions that are traditionally primarily parameterized by surface winds. A scaling of the measured aerosol volume distribution by wave and atmospheric state variables is proposed.
Definition and Proposed Realization of the International Height Reference System (IHRS)
NASA Astrophysics Data System (ADS)
Ihde, Johannes; Sánchez, Laura; Barzaghi, Riccardo; Drewes, Hermann; Foerste, Christoph; Gruber, Thomas; Liebsch, Gunter; Marti, Urs; Pail, Roland; Sideris, Michael
2017-05-01
Studying, understanding and modelling global change require geodetic reference frames with an order of accuracy higher than the magnitude of the effects to be actually studied and with high consistency and reliability worldwide. The International Association of Geodesy, taking care of providing a precise geodetic infrastructure for monitoring the Earth system, promotes the implementation of an integrated global geodetic reference frame that provides a reliable frame for consistent analysis and modelling of global phenomena and processes affecting the Earth's gravity field, the Earth's surface geometry and the Earth's rotation. The definition, realization, maintenance and wide utilization of the International Terrestrial Reference System guarantee a globally unified geometric reference frame with an accuracy at the millimetre level. An equivalent high-precision global physical reference frame that supports the reliable description of changes in the Earth's gravity field (such as sea level variations, mass displacements, processes associated with geophysical fluids) is missing. This paper addresses the theoretical foundations supporting the implementation of such a physical reference surface in terms of an International Height Reference System and provides guidance for the coming activities required for the practical and sustainable realization of this system. Based on conceptual approaches of physical geodesy, the requirements for a unified global height reference system are derived. In accordance with the practice, its realization as the International Height Reference Frame is designed. Further steps for the implementation are also proposed.
Pacific Decadal Oscillation Influences Drought (June 27, 2004)
NASA Technical Reports Server (NTRS)
2004-01-01
Recent sea level height data from the U.S./France Jason altimetric satellite during a 10-day cycle ending June 27, 2004, shows that Pacific equatorial surface ocean heights and temperatures are near neutral, but perhaps tending towards a mild La Nina for this summer and into the fall. 'In the U.S. we are still under the influence of the larger than El Nino and La Nina Pacific Decadal Oscillation shift in Pacific Ocean heat content and temperature patterns.' Much of the nation's western farmland and forests are really dry as we continue to struggle with a severe 6-year drought. The reality is that the atmosphere is acting as though La Nina is present. This continuing oceanic pattern in the Pacific and atmospheric pattern over the western U.S. is also a precursor for an active hurricane season for the East and Gulf coasts for our coming summer and fall,' said JPL oceanographer Dr. Bill Patzert. These images show sea surface height anomalies with the seasonal cycle (the effects of summer, fall, winter, and spring) removed. The differences between what we see and what is normal for different times and regions are called anomalies, or residuals. When oceanographers and climatologists view these 'anomalies' they can identify unusual patterns and can tell us how heat is being stored in the ocean to influence future planetary climate events. Each image is a 10-day average of data, ending on the date indicated.Pacific Decadal Oscillation Influences Drought (June 15, 2004)
NASA Technical Reports Server (NTRS)
2004-01-01
Recent sea level height data from the U.S./France Jason altimetric satellite during a 10-day cycle ending June 15, 2004, shows that Pacific equatorial surface ocean heights and temperatures are near neutral, but perhaps tending towards a mild La Nina for this summer and into the fall. 'In the U.S. we are still under the influence of the larger than El Nino and La Nina Pacific Decadal Oscillation shift in Pacific Ocean heat content and temperature patterns.' Much of the nation's western farmland and forests are really dry as we continue to struggle with a severe 6-year drought. The reality is that the atmosphere is acting as though La Nina is present. This continuing oceanic pattern in the Pacific and atmospheric pattern over the western U.S. is also a precursor for an active hurricane season for the East and Gulf coasts for our coming summer and fall,' said JPL oceanographer Dr. Bill Patzert. These images show sea surface height anomalies with the seasonal cycle (the effects of summer, fall, winter, and spring) removed. The differences between what we see and what is normal for different times and regions are called anomalies, or residuals. When oceanographers and climatologists view these 'anomalies' they can identify unusual patterns and can tell us how heat is being stored in the ocean to influence future planetary climate events. Each image is a 10-day average of data, ending on the date indicated.NASA Astrophysics Data System (ADS)
Corbett, Caroline M.; Subrahmanyam, Bulusu; Giese, Benjamin S.
2017-11-01
Sea surface salinity (SSS) variability during the 1997-1998 El Niño event and the failed 2012-2013 and 2014-2015 El Niño events is explored using a combination of observations and ocean reanalyses. Previously, studies have mainly focused on the sea surface temperature (SST) and sea surface height (SSH) variability. This analysis utilizes salinity data from Argo and the Simple Ocean Data Assimilation (SODA) reanalysis to examine the SSS variability. Advective processes and evaporation minus precipitation (E-P) variability is understood to influence SSS variability. Using surface wind, surface current, evaporation, and precipitation data, we analyze the causes for the observed SSS variability during each event. Barrier layer thickness and upper level salt content are also examined in connection to subsurface salinity variability. Both advective processes and E-P variability are important during the generation and onset of a successful El Niño, while a lack of one or both of these processes leads to a failed ENSO event.
NASA Technical Reports Server (NTRS)
Mcmillan, J. D.
1976-01-01
A description of the input and output files and the data control cards for the altimeter residual computation (ARC) computer program is given. The program acts as the final altimeter preprocessor before the data is reformatted for external users. It calculates all parameters necessary for the computation of the altimeter observation residuals and the sea surface height. Mathematical models used for calculating tropospheric refraction, geoid height, tide height, ephemeris, and orbit geometry are described.
Wall, Marlene; Schmidt, Gertraud Maria; Janjang, Pornpan; Khokiattiwong, Somkiat; Richter, Claudio
2012-01-01
The Andaman Sea and other macrotidal semi-enclosed tropical seas feature large amplitude internal waves (LAIW). Although LAIW induce strong fluctuations i.e. of temperature, pH, and nutrients, their influence on reef development is so far unknown. A better-known source of disturbance is the monsoon affecting corals due to turbulent mixing and sedimentation. Because in the Andaman Sea both, LAIW and monsoon, act from the same westerly direction their relative contribution to reef development is difficult to discern. Here, we explore the framework development in a number of offshore island locations subjected to differential LAIW- and SW-monsoon impact to address this open question. Cumulative negative temperature anomalies - a proxy for LAIW impact - explained a higher percentage of the variability in coral reef framework height, than sedimentation rates which resulted mainly from the monsoon. Temperature anomalies and sediment grain size provided the best correlation with framework height suggesting that so far neglected subsurface processes (LAIW) play a significant role in shaping coral reefs.
A generalized multivariate regression model for modelling ocean wave heights
NASA Astrophysics Data System (ADS)
Wang, X. L.; Feng, Y.; Swail, V. R.
2012-04-01
In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.
Calculations of the heights, periods, profile parameters, and energy spectra of wind waves
NASA Technical Reports Server (NTRS)
Korneva, L. A.
1975-01-01
Sea wave behavior calculations require the precalculation of wave elements as well as consideration of the spectral functions of ocean wave formation. The spectrum of the random wave process is largely determined by the distribution of energy in the actual wind waves observed on the surface of the sea as expressed in statistical and spectral characteristics of the sea swell.
Tropospheric ozone maxima observed over the Arabian Sea during the pre-monsoon
NASA Astrophysics Data System (ADS)
Jia, Jia; Ladstätter-Weißenmayer, Annette; Hou, Xuewei; Rozanov, Alexei; Burrows, John P.
2017-04-01
An enhancement of the tropospheric ozone column (TOC) over Arabian Sea (AS) during the pre-monsoon season is reported in this study. The potential sources of the AS spring ozone pool are investigated by use of multiple data sets (e.g., SCIAMACHY Limb-Nadir-Matching TOC, OMI/MLS TOC, TES TOC, MACC reanalysis data, MOZART-4 model and HYSPLIT model). Three-quarters of the enhanced ozone concentrations are attributed to the 0-8 km height range. The main source of the ozone enhancement is considered to be caused by long-range transport of ozone pollutants from India (˜ 50 % contributions to the lowest 4 km, ˜ 20 % contributions to the 4-8 km height range), the Middle East, Africa and Europe (˜ 30 % in total). In addition, the vertical pollution accumulation in the lower troposphere, especially at 4-8 km, was found to be important for the AS spring ozone pool formation. Local photochemistry, on the other hand, plays a negligible role in producing ozone at the 4-8 km height range. In the 0-4 km height range, ozone is quickly removed by wet deposition. The AS spring TOC maxima are influenced by the dynamical variations caused by the sea surface temperature (SST) anomaly during the El Niño period in 2005 and 2010 with a ˜ 5 DU decrease.
NASA Astrophysics Data System (ADS)
Long, Antony J.; Strzelecki, Mateusz C.; Lloyd, Jerry M.; Bryant, Charlotte L.
2012-08-01
High Arctic raised beaches provide evidence for changes in relative sea-level (RSL), sea-ice extent, storminess, and variations in sediment supply. In many High Arctic areas, driftwood and whale bone are usually the preferred targets for radiocarbon dating, with marine shells a third choice because of their often large age and height uncertainties with respect to former sea level. Here we detail a new approach to sampling marine shells that reduces these problems by targeting juvenile, articulated specimens of Astarte borealis that are washed onto the beach under storm conditions and become incorporated into the beach crest. Radiocarbon dates from articulated valves of A. borealis from eight raised beaches from Billefjorden, Svalbard, provide a chronology for Holocene beach ridge formation and RSL change that compares favourably to the most precise records developed from elsewhere in Svalbard using driftwood or whale bone. We demonstrate the value of this new approach by comparing our record with previously published RSL data from eastern Svalbard to test different models of Late Weichselian ice load in this region. We find support for a major ice dome centred south and east of Kong Karls Land but no evidence for a significant ice dome located over easternmost Spitsbergen or southern Hinlopen Strait as proposed from recent marine geophysical survey. The approach is potentially applicable elsewhere in Svalbard and the High Arctic to address questions of RSL change and beach ridge chronology, and hence wider questions regarding palaeoclimate and ice load history.
Sea surface height and dynamic topography of the ice-covered oceans from CryoSat-2: 2011-2014
NASA Astrophysics Data System (ADS)
Kwok, Ron; Morison, James
2016-01-01
We examine 4 years (2011-2014) of sea surface heights (SSH) from CryoSat-2 (CS-2) over the ice-covered Arctic and Southern Oceans. Results are from a procedure that identifies and determines the heights of sea surface returns. Along 25 km segments of satellite ground tracks, variability in the retrieved SSHs is between ˜2 and 3 cm (standard deviation) in the Arctic and is slightly higher (˜3 cm) in the summer and the Southern Ocean. Average sea surface tilts (along these 25 km segments) are 0.01 ± 3.8 cm/10 km in the Arctic, and slightly lower (0.01 ± 2.0 cm/10 km) in the Southern Ocean. Intra-seasonal variability of CS-2 dynamic ocean topography (DOT) in the ice-covered Arctic is nearly twice as high as that of the Southern Ocean. In the Arctic, we find a correlation of 0.92 between 3 years of DOT and dynamic heights (DH) from hydrographic stations. Further, correlation of 4 years of area-averaged CS-2 DOT near the North Pole with time-variable ocean-bottom pressure from a pressure gauge and from GRACE, yields coefficients of 0.83 and 0.77, with corresponding differences of <3 cm (RMS). These comparisons contrast the length scale of baroclinic and barotropic features and reveal the smaller amplitude barotropic signals in the Arctic Ocean. Broadly, the mean DOT from CS-2 for both poles compares well with those from the ICESat campaigns and the DOT2008A and DTU13MDT fields. Short length scale topographic variations, due to oceanographic signals and geoid residuals, are especially prominent in the Arctic Basin but less so in the Southern Ocean.
Arctic PBL Cloud Height and Motion Retrievals from MISR and MINX
NASA Technical Reports Server (NTRS)
Wu, Dong L.
2012-01-01
How Arctic clouds respond and feedback to sea ice loss is key to understanding of the rapid climate change seen in the polar region. As more open water becomes available in the Arctic Ocean, cold air outbreaks (aka. off-ice flow from polar lows) produce a vast sheet of roll clouds in the planetary boundary layer (PBl). The cold air temperature and wind velocity are the critical parameters to determine and understand the PBl structure formed under these roll clouds. It has been challenging for nadir visible/IR sensors to detect Arctic clouds due to lack of contrast between clouds and snowy/icy surfaces. In addition) PBl temperature inversion creates a further problem for IR sensors to relate cloud top temperature to cloud top height. Here we explore a new method with the Multiangle Imaging Spectro-Radiometer (MISR) instrument to measure cloud height and motion over the Arctic Ocean. Employing a stereoscopic-technique, MISR is able to measure cloud top height accurately and distinguish between clouds and snowy/icy surfaces with the measured height. We will use the MISR INteractive eXplorer (MINX) to quantify roll cloud dynamics during cold-air outbreak events and characterize PBl structures over water and over sea ice.
NASA Astrophysics Data System (ADS)
Nishi, N.; Hamada, A.; Hirose, H.; Hotta, S.; Suzuki, J.
2016-12-01
We have made a quantitative research of the clouds and precipitation during Baiu: the rainy season within the East Asia, using recent satellite observation datasets. As the precipitation dataset, we utilized the Global Satellite Mapping of Precipitation (GSMaP), whose primary source is passive microwave observations. As the cloud dataset, we used our original database CTOP, in which the cloud top height and optical depth are estimated only with the infrared split-window channels of the geostationary satellites. Lookup tables are made by training the infrared observations with the direct cloud observation by CloudSat and CALIPSO. This technique was originally developed only for the tropics but we extended it to the mid-latitude by estimating temperature at the cloud top instead of the height. We analyzed the properties of northward shift of the Baiu precipitation zone over the East China Sea. Abrupt northward shift in mid-June has already been reported. We showed here that the abrupt shift is limited to the western half of the East China Sea. We also analyzed the zonal difference of the precipitation amount in the East China Sea. In the central latitudinal range (30-33N), the amount is larger in the eastern part of the sea. There is no significant zonal contrast in both the activity of the low pressure and the front, while the sea surface temperature in the eastern part is slightly larger than in the western part. The zonal gradient is much smaller than that in the southern region near the Kuroshio Current, but may possibly affect the zonal contrast of the precipitation. By using CTOP cloud top data, we also calculated the occurrence ratio of the cloud with various thresholds of the top height. The ratio of clouds with the tops higher than 12 km in the East China Sea is clearly lower than those over the Continental area and the main Japanese islands.
Significant Wave Height under Hurricane Irma derived from SAR Sentinel-1 Data
NASA Astrophysics Data System (ADS)
Lehner, S.; Pleskachevsky, A.; Soloviev, A.; Fujimura, A.
2017-12-01
The 2017 Atlantic hurricane season was with three major hurricanes a particular active one. The Category 4 hurricane Irma made landfall on the Florida Keys on September 10th 2017 and was imaged several times by ESAs Sentinel-1 satellites in C-band and the TerraSAR-X satellite in X-band. The high resolution TerraSAR-X imagery showed the footprint of individual tornadoes on the sea surface together with their turbulent wake imaged as a dark line due to increased turbulence. The water-cloud structures of the tornadoes are analyzed and their sea surface structure is compared to optical and IR cloud imagery. An estimate of the wind field using standard XMOD algorithms is provided, although saturating under the strong rain and high wind speed conditions. Imaging the hurricanes by space radar gives the opportunity to observe the sea surface and thus measure the wind field and the sea state under hurricane conditions through the clouds even in this severe weather, although rain features, which are usually not observed in SAR become visible due to damping effects. The Copernicus Sentinel-1 A and B satellites, which are operating in C-band provided several images of the sea surface under hurricane Irma, Jose and Maria. The data were acquired daily and converted into measurements of sea surface wind field u10 and significant wave height Hs over a swath width of 280km about 1000 km along the orbit. The wind field of the hurricanes as derived by CMOD is provided by NOAA operationally on their web server. In the hurricane cases though the wind speed saturates at 20 m/sec and is thus too low in the area of hurricane wind speed. The technique to derive significant wave height is new though and does not show any calibration issues. This technique provides for the first time measurements of the areal coverage and distribution of the ocean wave height as caused by a hurricane on SAR wide swath images. Wave heights up to 10 m were measured under the forward quadrant of the hurricane while making landfall on Cuba and the Florida Keys, where IRMA still hit as a category 3 to 4 hurricane. Results are compared to the WW3 model, which could not be validated over an area under strong and variable wind conditions before. A new theory on hurricane intensification based on Kelvin-Helmholtz instability is discussed and a first comparison to the SAR data is given.
NASA Technical Reports Server (NTRS)
Wunsch, Carl; Stammer, Detlef
1995-01-01
Two years of altimetric data from the TOPEX/POSEIDON spacecraft have been used to produce preliminary estimates of the space and time spectra of global variability for both sea surface height and slope. The results are expressed in terms of both degree variances from spherical harmonic expansions and in along-track wavenumbers. Simple analytic approximations both in terms of piece-wise power laws and Pade fractions are provided for comparison with independent measurements and for easy use of the results. A number of uses of such spectra exist, including the possibility of combining the altimetric data with other observations, predictions of spatial coherences, and the estimation of the accuracy of apparent secular trends in sea level.
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the shipping container is removed from the OSTM/Jason-2 spacecraft. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- A closeup of the OSTM/Jason-2 spacecraft after removal of the shipping container in the Astrotech processing facility at Vandenberg Air Force Base. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, a technician oversees the attaching of the OSTM/Jason-2 spacecraft to a tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. – The shipping container with the OSTM/Jason-2 spacecraft inside is offloaded from the aircraft at Vandenberg Air Force Base in California. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Steve Greenberg, JPL
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base, the truck carrying the OSTM/Jason-2 satellite is ready to transport the cargo to the Astrotech processing facility. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Another view of the OSTM/Jason-2 spacecraft after removal of the shipping container in the Astrotech processing facility at Vandenberg Air Force Base. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, technicians examine the attachment of the OSTM/Jason-2 spacecraft to a tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. – The aircraft carrying the OSTM/Jason-2 spacecraft taxis past the Astrotech processing facility at Vandenberg Air Force Base in California. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Stephen Greenberg, JPL
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the OSTM/Jason-2 spacecraft is lifted from its stand to be moved to a tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, technicians check the OSTM/Jason-2 spacecraft before it is moved to a tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the OSTM/Jason-2 spacecraft is revealed after removal of the shipping container. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- In front of the Astrotech processing facility at Vandenberg Air Force Base, the OSTM/Jason-2 satellite shipping container is on the ground, ready to be moved inside. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the shipping container is removed from the OSTM/Jason-2 spacecraft. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. – The shipping container with the OSTM/Jason-2 spacecraft inside is offloaded from the aircraft at Vandenberg Air Force Base in California. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Steve Greenberg, JPL
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- The shipping container with the OSTM/Jason-2 spacecraft inside is offloaded from the aircraft at Vandenberg Air Force Base in California. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the OSTM/Jason-2 spacecraft is lifted to a vertical position on the tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the OSTM/Jason-2 spacecraft is lifted to a near-45-degree angle on the tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the OSTM/Jason-2 spacecraft has been lifted to a vertical position on the tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, an overhead crane is moved over the OSTM/Jason-2 spacecraft to lift off the shipping container. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- In front of the Astrotech processing facility at Vandenberg Air Force Base, a forklift has removed the OSTM/Jason-2 satellite shipping container off the flatbed truck. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, an overhead crane is attached to the OSTM/Jason-2 spacecraft shipping container to remove it. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, a technician (right) checks the OSTM/Jason-2 spacecraft before it is moved to a tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech processing facility at Vandenberg Air Force Base, the OSTM/Jason-2 spacecraft is moved to a tilt dolly. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- In front of the Astrotech processing facility at Vandenberg Air Force Base, a forklift begins to lift the OSTM/Jason-2 satellite shipping container off the flatbed truck. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-29
VANDENBERG AIR FORCE BASE, Calif. -- The shipping container with the OSTM/Jason-2 spacecraft inside is offloaded from the aircraft at Vandenberg Air Force Base in California. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
Hatch, Shaylyn K.; Connelly, Emily E.; Divoll, Timothy J.; Stenhouse, Iain J.; Williams, Kathryn A.
2013-01-01
Little is known about the migration and movements of migratory tree-roosting bat species in North America, though anecdotal observations of migrating bats over the Atlantic Ocean have been reported since at least the 1890s. Aerial surveys and boat-based surveys of wildlife off the Atlantic Seaboard detected a possible diurnal migration event of eastern red bats (Lasiurus borealis) in September 2012. One bat was sighted approximately 44 km east of Rehoboth Beach, Delaware during a boat-based survey. Eleven additional bats were observed between 16.9 and 41.8 km east of New Jersey, Delaware, and Virginia in high definition video footage collected during digital aerial surveys. Observations were collected incidentally as part of a large baseline study of seabird, marine mammal, and sea turtle distributions and movements in the offshore environment. Digital survey methods also allowed for altitude estimation for several of these bats at >100 m above sea level. These observations provide new evidence of bat movements offshore, and offer insight into their flight heights above sea level and the times of day at which such migrations may occur. PMID:24367614
NASA Technical Reports Server (NTRS)
Fukumori, Ichiro
1995-01-01
Sea surface height variability measured by TOPEX is analyzed in the tropical Pacific Ocean by way of assimilation into a wind-driven, reduced-gravity, shallow water model using an approximate Kalman filter and smoother. The analysis results in an optimal fit of the dynamic model to the observations, providing it dynamically consistent interpolation of sea level and estimation of the circulation. Nearly 80% of the expected signal variance is accounted for by the model within 20 deg of the equator, and estimation uncertainty is substantially reduced by the voluminous observation. Notable features resolved by the analysis include seasonal changes associated with the North Equatorial Countercurrent and equatorial Kelvin and Rossby waves. Significant discrepancies are also found between the estimate and TOPEX measurements, especially near the eastern boundary. Improvements in the estimate made by the assimilation are validated by comparisons with independent tide gauge and current meter observations. The employed filter and smoother are based on approximately computed estimation error covariance matrices, utilizing a spatial transformation and an symptotic approximation. The analysis demonstrates the practical utility of a quasi-optimal filter and smoother.
A probabilistic storm surge risk model for the German North Sea and Baltic Sea coast
NASA Astrophysics Data System (ADS)
Grabbert, Jan-Henrik; Reiner, Andreas; Deepen, Jan; Rodda, Harvey; Mai, Stephan; Pfeifer, Dietmar
2010-05-01
The German North Sea coast is highly exposed to storm surges. Due to its concave bay-like shape mainly orientated to the North-West, cyclones from Western, North-Western and Northern directions together with astronomical tide cause storm surges accumulating the water in the German bight. Due to the existence of widespread low-lying areas (below 5m above mean sea level) behind the defenses, large areas including large economic values are exposed to coastal flooding including cities like Hamburg or Bremen. The occurrence of extreme storm surges in the past like e.g. in 1962 taking about 300 lives and causing widespread flooding and 1976 raised the awareness and led to a redesign of the coastal defenses which provide a good level of protection for today's conditions. Never the less the risk of flooding exists. Moreover an amplification of storm surge risk can be expected under the influence of climate change. The Baltic Sea coast is also exposed to storm surges, which are caused by other meteorological patterns. The influence of the astronomical tide is quite low instead high water levels are induced by strong winds only. Since the exceptional extreme event in 1872 storm surge hazard has been more or less forgotten. Although such an event is very unlikely to happen, it is not impossible. Storm surge risk is currently (almost) non-insurable in Germany. The potential risk is difficult to quantify as there are almost no historical losses available. Also premiums are difficult to assess. Therefore a new storm surge risk model is being developed to provide a basis for a probabilistic quantification of potential losses from coastal inundation. The model is funded by the GDV (German Insurance Association) and is planned to be used within the German insurance sector. Results might be used for a discussion of insurance cover for storm surge. The model consists of a probabilistic event driven hazard and a vulnerability module, furthermore an exposure interface and a financial module to account for specific (re-) insurance conditions. This contribution will mainly concentrate on the hazard module. The hazard is covered by an event simulation engine enabling Monte Carlo simulations. The event generation is done on-the-fly. A classification of historical storm surges is used based on observed sea water levels at gauging stations and extended literature research. To characterize the origin of storm events and storm surges caused by those, also meteorological parameters like wind speed and wind direction are being used. If high water levels along the coast are mainly caused by strong wind from particular directions as observed at the North Sea, there is a clear empirical relationship between wind and surge (where surge is defined as the wind-driven component of the sea water level) which can be described by the ATWS (Average Transformed Wind speed). The parameters forming the load at the coastal defense elements are water level and wave parameters like significant wave height, wave period and wave direction. To assess the wave characteristics at the coast the numerical model SWAN (Simulating Waves Near Shore) from TU Delft has been used. To account for different probabilities of failure and inundation the coast is split into segments with similar defense characteristics like type of defense, height, width, orientation and others. The chosen approach covers the most relevant failure mechanisms for coastal dikes induced by wave overtopping and overflow. Dune failure is also considered in the model. Inundation of the hinterland after defense failure is modeled using a simple dynamical 2d-approach resulting in distributed water depths and flood outlines for each segment. Losses can be estimated depending on the input exposure data either coordinate based for single buildings or aggregated on postal code level using a set of depths-damage functions.
NASA Astrophysics Data System (ADS)
Ganske, Anette; Hüttl-Kabus, Sabine; Möller, Jens; Schade, Nils; Heinrich, Hartmut; Tinz, Birger
2017-04-01
The Kiel Canal is the most frequented artificial waterway in the world. It connects the North Sea and the Hamburg Harbor with the Baltic Sea and has a length of about 100 km. The Canal receives its water from the upper catchment of the river Eider. Discharge from the Canal towards the North Sea is via the sluices at Brunsbüttel (90%) into river Elbe and into the Baltic Sea via the sluices at Kiel-Holtenau. A risk of closure of the Canal occurs when high precipitation in the catchment meets high water levels in the river Elbe and/or the Baltic preventing the discharge of excess Canal water. Future sea level rise jointly with other effects such as possibly increasing wind surge and precipitation will close the gap between the inner and outer water levels, so that someday the outside levels will surmount the inner one. The German Federal Ministry of Transport and Digital Infrastructure (BMVI) tasked its internal Network of Experts to run a case study on the evolution of critical water levels in order to estimate risks and vulnerabilities for adaptation measures. First step of the investigation is a search for factors or combination of factors responsible for closures in the past. Candidates are factors such as higher water levels at low tides, high precipitation events on land, soil moisture and human factors like preventive water management measures. Second step will be the search for the natural criteria in climate projections. Here we report on the results of the first step of the case study with a focus on the exit towards the North Sea. There, discharge is possible only during low tide. Presently still sufficient difference in height exists between the levels in the Canal and the river Elbe allowing for a free flow of excess Canal water. Shipping is ceased when levels in the Canal surpass safety limits due to high precipitation events in the catchment jointly with high outer water levels. We used atmospheric data from ERA-Interim reanalysis instead of gauge data for reconstructing the history in order to provide metrics that in the second step can be searched in Atmosphere Regional Climate Model runs. Water levels at Brunsbüttel were determined with hourly resolution using atmospheric conditions and astronomical tide. Ocean Model results were and will be excluded because of the small number of runs with astronomical tides and sufficient resolution. Past inflow from the tributary rivers into the Canal was simulated via antecedent and event precipitation derived from the REGNIE data set. Finally, the potential of critical situations in the past was calculated by combining both results and compared their occurrences with the recordings of the responsible waterway authority. In the second step we will analyze the proxies elaborated in step one in regional climate projections and combine them with expected changes of the sea levels in the North and Baltic Seas.
Airborne gravity measurement over sea-ice: The western Weddel Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brozena, J.; Peters, M.; LaBrecque, J.
1990-10-01
An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative ofmore » the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.« less
Role of Western Hemisphere Warm Pool in Rapid Climate Changes over the Western North Pacific
NASA Astrophysics Data System (ADS)
Kug, Jong-Seong; Park, Jae-Heung; An, Soon-Il
2017-04-01
Oceanic states over the western North Pacific (WNP), which is surrounded by heavily populated countries, are closely tied to the lives of the people in East Asia in regards to both climate and socioeconomics. As global warming continues, remarkable increases in sea surface temperature (SST) and sea surface height (SSH) have been observed in the WNP in recent decades. Here, we show that the SST increase in the western hemisphere warm pool (WHWP), which is the second largest warm pool on the globe, has contributed considerably to the rapid surface warming and sea level rise in the WNP via its remote teleconnection along the Pacific Intertropical Convergence Zone (ITCZ). State-of-the-art climate models strongly support the role of the WHWP not only on interannual time sales but also in long-term climate projections. We expect that understanding the processes initiated by the WHWP-SST could permit better forecasts of western North Pacific climate and the further development of the socioeconomics of East Asia.
NASA Astrophysics Data System (ADS)
Kolendowicz, Leszek; Półrolniczak, Marek; Szyga-Pluta, Katarzyna; Bednorz, Ewa
2017-10-01
The paper focuses on bioclimatic conditions in the southern part of the Baltic coast based on universal thermal climate index values. Taking into consideration the observational data from coastline stations as well as reanalysis data from the National Center for Environmental Prediction and National Center for Atmospheric Research (sea level pressure and the 500 hPa geopotential height), the authors attempt to explain which of the synoptic situations are responsible for the occurrence of days with very strong and extreme cold or heat stress. The obtained results confirm that the extreme thermal heat and cold stress conditions are for the most part associated with high-pressure systems. The researched area is usually situated in the western or southern periphery of the anticyclones. The cold stress also occurs during the advection from west or northwest, caused by the direct influence of a low-pressure system whose center is situated over the North Sea, southern Scandinavia, or the southern Baltic Sea.
Regional and Coastal Prediction with the Relocatable Ocean Nowcast/Forecast System
2014-09-01
and those that may be resolved with a suite of satellite altimeters when several are present and operational (~ 100 km). The altimeter data provide...September 2014 47 The observational data used for assimilation include satellite sea surface temperature (SST), satellite altimeter sea surface height...anomaly (SSHA), satellite microwave-derived sea ice concentration, and in situ surface and profile data from sensors on ships; drifters; fixed buoys
Flux measurements in the surface Marine Atmospheric Boundary Layer over the Aegean Sea, Greece.
Kostopoulos, V E; Helmis, C G
2014-10-01
Micro-meteorological measurements within the surface Marine Atmospheric Boundary Layer took place at the shoreline of two islands at northern and south-eastern Aegean Sea of Greece. The primary goal of these experimental campaigns was to study the momentum, heat and humidity fluxes over this part of the north-eastern Mediterranean Sea, characterized by limited spatial and temporal scales which could affect these exchanges at the air-sea interface. The great majority of the obtained records from both sites gave higher values up to factor of two, compared with the estimations from the most widely used parametric formulas that came mostly from measurements over open seas and oceans. Friction velocity values from both campaigns varied within the same range and presented strong correlation with the wind speed at 10 m height while the calculated drag coefficient values at the same height for both sites were found to be constant in relation with the wind speed. Using eddy correlation analysis, the heat flux values were calculated (virtual heat fluxes varied from -60 to 40 W/m(2)) and it was found that they are affected by the limited spatial and temporal scales of the responding air-sea interaction mechanism. Similarly, the humidity fluxes appeared to be strongly influenced by the observed intense spatial heterogeneity of the sea surface temperature. Copyright © 2014 Elsevier B.V. All rights reserved.
Boundary Layer Depth In Coastal Regions
NASA Astrophysics Data System (ADS)
Porson, A.; Schayes, G.
The results of earlier studies performed about sea breezes simulations have shown that this is a relevant feature of the Planetary Boundary Layer that still requires effort to be diagnosed properly by atmospheric models. Based on the observations made during the ESCOMPTE campaign, over the Mediterranean Sea, different CBL and SBL height estimation processes have been tested with a meso-scale model, TVM. The aim was to compare the critical points of the BL height determination computed using turbulent kinetic energy profile with some other standard evaluations. Moreover, these results have been analysed with different mixing length formulation. The sensitivity of formulation is also analysed with a simple coastal configuration.
Research on vulnerability assessments of the Huanghe (Yellow River) delta
NASA Astrophysics Data System (ADS)
qiao, shuqing; shi, xuefa
2014-05-01
Coastal zone located at the juncture of the sea, river and land, and under the influence of both land and ocean (including atmosphere), especially the sea-level rise and human activities, are vulnerable to environment and ecology. At highest risk are coastal zone of South, Southeast and East Asia with dense populations, low elevations and inadequate adaptive capacity. In China, more than 40% of the population live on the 15% of the land in coastal area and more than 70% cities located around the coastal area. The Chinese coastal region, especially river delta area has been experienced erosion, seawater intrusion and decrease in biodiversity under the combined influence of sea-level rise, tectonic subsidence and flooding. Furthermore, some kinds of human activity, such as land use, building, dam construction, reclamation from the sea and waste dumping strengthen the vulnerability of environment and ecosystem in coastal region. The coastal hazards (e.g. coastal erosion, seawater intrusion, land subsidence) and vulnerability of the Huanghe (Yelllow River) delta area are studied during the past several years. A systematic coastal assessment index is built and an evaluation model is developed using the development platform of Visual studio.Net 2005. The assessment index system includes two parts, inherent (sea level rise rate, elevation, morphology, water and sediment discharge, mean tidal range, mean wave height etc) and specific vulnerability index (population density, GDP, land utilization, protection structures etc). The assessment index are determined the weight using Analytic hierarchy process (AHP) method. Based on the research results, we better understand the current status and future change of coastal vulnerability and hazards, discuss the impact of the natural possess and human activities. Furthermore, we provide defending strategies for coastal zone vulnerability and typical coastal hazards.
Wang, Yafeng; Čufar, Katarina; Eckstein, Dieter; Liang, Eryuan
2012-01-01
Little is known about tree height and height growth (as annual shoot elongation of the apical part of vertical stems) of coniferous trees growing at various altitudes on the Tibetan Plateau, which provides a high-elevation natural platform for assessing tree growth performance in relation to future climate change. We here investigated the variation of maximum tree height and annual height increment of Smith fir (Abies georgei var. smithii) in seven forest plots (30 m×40 m) along two altitudinal transects between 3,800 m and 4,200/4,390 m above sea level (a.s.l.) in the Sygera Mountains, southeastern Tibetan Plateau. Four plots were located on north-facing slopes and three plots on southeast-facing slopes. At each site, annual shoot growth was obtained by measuring the distance between successive terminal bud scars along the main stem of 25 trees that were between 2 and 4 m high. Maximum/mean tree height and mean annual height increment of Smith fir decreased with increasing altitude up to the tree line, indicative of a stress gradient (the dominant temperature gradient) along the altitudinal transect. Above-average mean minimum summer (particularly July) temperatures affected height increment positively, whereas precipitation had no significant effect on shoot growth. The time series of annual height increments of Smith fir can be used for the reconstruction of past climate on the southeastern Tibetan Plateau. In addition, it can be expected that the rising summer temperatures observed in the recent past and anticipated for the future will enhance Smith fir's growth throughout its altitudinal distribution range.
Estimation of subsurface thermal structure using sea surface height and sea surface temperature
NASA Technical Reports Server (NTRS)
Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)
2012-01-01
A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.
Wind Wave Climate of the Baltic Sea
NASA Astrophysics Data System (ADS)
Medvedeva, Alisa
2017-04-01
Storms in the Baltic Sea in autumn and winter are very frequent. In this research the goal is to estimate decadal and interannual changes of the wave fields for the entire Baltic Sea. The wave parameters, such as significant wave heights and periods, were simulated for the period 1979-2015 years based on NCEP/CFSR Reanalysis data fields and for the period 1948-2010 years based on NCEP/NCAR Reanalysis data. For accuracy estimation of the model the statistical characteristics, such as correlation coefficient, bias, scatter index and RMSE were calculated. Also two computational meshes were compared: rectangular and triangulated. In this study the third generation spectral wind-wave model SWAN was used for simulations. For wind input data two types of wind reanalysis were chosen: NCEP/CFSR with 1-hour time step and NCEP/NCAR with time step of 6 hours. The final computational grid for rectangular mesh for the Baltic Sea is 0.05×0.05°. The simulated data were compared with instrumental data of the Sweden buoys and of the acoustic wave recorder fixed at the Russian oil platform. The results reveal that for the Baltic Sea it is more efficient to use rectangular mesh for the deep open area and irregular mesh near the coast. Simulations using wind data from NCEP/NCAR significantly decreases the quality of the results compared with NCEP/CFSR wind data: Bias increases in 10 times (-0.730), RMSE - in 2-3 times (0.89). The following results of numerical modeling using NCEP/NCAR the storm situations, when the significant wave height exceeded 2 meters, were identified for the 63-year period. An average of about 50 storms per year happened in the Baltic Sea in this time period. The storminess of the Baltic Sea tends to increase. The twenty-year periodicity with the increase in the 70-s and 90-s years of XX century was revealed. The average yearly significant wave height increases in the second part of the century too and differs from 2.4 to 3.3 m. Storm cyclones are connected with the global atmosphere circulation patterns. According to similar research of the other west seas of Russia by the analogous methods, such kind of twenty-year periodicity was identified for the Caspian Sea and the Sea of Azov, but the storminess there for the period from 1948 to 2010 decreases.
Tsunami Risk for the Caribbean Coast
NASA Astrophysics Data System (ADS)
Kozelkov, A. S.; Kurkin, A. A.; Pelinovsky, E. N.; Zahibo, N.
2004-12-01
The tsunami problem for the coast of the Caribbean basin is discussed. Briefly the historical data of tsunami in the Caribbean Sea are presented. Numerical simulation of potential tsunamis in the Caribbean Sea is performed in the framework of the nonlinear-shallow theory. The tsunami wave height distribution along the Caribbean Coast is computed. These results are used to estimate the far-field tsunami potential of various coastal locations in the Caribbean Sea. In fact, five zones with tsunami low risk are selected basing on prognostic computations, they are: the bay "Golfo de Batabano" and the coast of province "Ciego de Avila" in Cuba, the Nicaraguan Coast (between Bluefields and Puerto Cabezas), the border between Mexico and Belize, the bay "Golfo de Venezuela" in Venezuela. The analysis of historical data confirms that there was no tsunami in the selected zones. Also, the wave attenuation in the Caribbean Sea is investigated; in fact, wave amplitude decreases in an order if the tsunami source is located on the distance up to 1000 km from the coastal location. Both factors wave attenuation and wave height distribution should be taken into account in the planned warning system for the Caribbean Sea.
Observations of the Sea Ice Cover Using Satellite Radar Interferometry
NASA Technical Reports Server (NTRS)
Kwok, Ronald
1995-01-01
The fringes observed in repeat pass interferograms are expressions of surface relief and relative displacements. The limiting condition in the application of spaceborne radar interferometry to the remote sensing of the sea ice cover is the large magnitude of motion between repeat passes. The translation and rotation of ice floes tend to decorrelate the observations rendering radar interferometry ineffective. In our study, we have located three images in the high Arctic during a period when there was negligible motion between repeat observations. The fringes obtained from these images show a wealth of information about the sea ice cover which is important in atmosphere-ice interactions and sea ice mechanics. These measurements provide the first detailed remote sensing view of the sea ice cover. Ridges can be observed and their heights estimated if the interferometric baseline allows. We have observed ridges with heights greater than 4m. The variability in the phase measurements over an area provides an indication of the large scale roughness. Relative centimetric displacements between rigid ice floes have been observed. We illustrate these observations with examples extracted from the interferograms formed from this set of ERS-1 SAR images.
TOPEX/El Nino Watch - Warm Water Pool is Increasing, Nov. 10, 1997
NASA Technical Reports Server (NTRS)
1997-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S./French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Nov. 10, 1997. The volume of extra warm surface water (shown in white) in the core of the El Nino continues to increase, especially in the area between 15 degrees south latitude and 15 degrees north latitude in the eastern Pacific Ocean. The area of low sea level (shown in purple) has decreased somewhat from late October. The white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 centimeters and 32 cm (6 inches to 13 inches) above normal; in the red areas, it is about 10 centimeters (4 inches) above normal. The surface area covered by the warm water mass is about one-and-one-half times the size of the continental United States. The added amount of oceanic warm water near the Americas, with a temperature between 21 to 30 degrees Celsius (70 to 85 degrees Fahrenheit), is about 30 times the volume of water in all the U.S. Great Lakes combined. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.
The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white areas) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using these global data, limited regional measurements from buoys and ships, and a forecasting model of the ocean-atmospheric system, the National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric Administration (NOAA) has issued an advisory indicating the presence of a strong El Nino condition throughout the winter.For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.gov/Tsunami Wave Height Estimation from GPS-Derived Ionospheric Data
NASA Astrophysics Data System (ADS)
Rakoto, Virgile; Lognonné, Philippe; Rolland, Lucie; Coïsson, P.
2018-05-01
Large underwater earthquakes (Mw>7) can transmit part of their energy to the surrounding ocean through large seafloor motions, generating tsunamis that propagate over long distances. The forcing effect of tsunami waves on the atmosphere generates internal gravity waves that, when they reach the upper atmosphere, produce ionospheric perturbations. These perturbations are frequently observed in the total electron content (TEC) measured by multifrequency Global Navigation Satellite Systems (GNSS) such as GPS, GLONASS, and, in the future, Galileo. This paper describes the first inversion of the variation in sea level derived from GPS TEC data. We used a least squares inversion through a normal-mode summation modeling. This technique was applied to three tsunamis in far field associated to the 2012 Haida Gwaii, 2006 Kuril Islands, and 2011 Tohoku events and for Tohoku also in close field. With the exception of the Tohoku far-field case, for which the tsunami reconstruction by the TEC inversion is less efficient due to the ionospheric noise background associated to geomagnetic storm, which occurred on the earthquake day, we show that the peak-to-peak amplitude of the sea level variation inverted by this method can be compared to the tsunami wave height measured by a DART buoy with an error of less than 20%. This demonstrates that the inversion of TEC data with a tsunami normal-mode summation approach is able to estimate quite accurately the amplitude and waveform of the first tsunami arrival.
TOPEX/El Niño Watch - La Niña Barely Has a Pulse, June 18, 1999
1999-08-23
Lingering just a month ago in the eastern Pacific Ocean, the La Niña phenomenon, with its large volume of chilly water, barely has a pulse this month, according to new satellite data from NASA U.S.-French TOPEX/Poseidon mission. The data, taken during a 10-day cycle of data collection ending June 18, show that the equatorial Pacific Ocean is warming up and returning to normal (green) as La Niña all but vanishes. The warming trend is most apparent in the equatorial Pacific Ocean, where only a few patches of cooler, low sea levels (seen in blue and purple) remain. The blue areas are between 5 and 13 centimeters (2 and 5 inches) below normal, whereas the purple areas range from 14 to 18 centimeters (6 to 7 inches) below normal. Like its counterpart, El Niño, a La Niña condition will influence global climate and weather until it has completely subsided. As summer begins in the northern hemisphere, lower-than-normal sea surface levels and cool ocean temperatures persist in the northeastern Gulf of Alaska and along the western coast of North America. In contrast, the trend is the opposite over most of the Pacific, where above-normal sea surface heights and warmer ocean temperatures (indicated by the red and white areas) appear to be increasing and dominating the overall Pacific Ocean. Red areas are about 10 centimeters (4 inches) above normal; white areas show the sea surface height is between 14 and 32 centimeters (6 and 13 inches) above normal. Scientists are not ready to administer last rites to La Niña, though. In the last 12 months, the pool of unusually cold water in the Pacific has shrunk (warmed) several times before cooling (expanding) again. This summer's altimeter data will help them determine whether La Niña has truly dissipated or whether they will see another resurgence of cool water in the Pacific. http://photojournal.jpl.nasa.gov/catalog/PIA01586
High Altitude Launch for a Practical SSTO
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.; Denis, Vincent; Lyons, Valerie (Technical Monitor)
2003-01-01
Existing engineering materials allow the construction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31% increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).
High Altitude Launch for a Practical SSTO
NASA Astrophysics Data System (ADS)
Landis, Geoffrey A.; Denis, Vincent
2003-01-01
Existing engineering materials allow the constuction of towers to heights of many kilometers. Orbital launch from a high altitude has significant advantages over sea-level launch due to the reduced atmospheric pressure, resulting in lower atmospheric drag on the vehicle and allowing higher rocket engine performance. High-altitude launch sites are particularly advantageous for single-stage to orbit (SSTO) vehicles, where the payload is typically 2% of the initial launch mass. An earlier paper enumerated some of the advantages of high altitude launch of SSTO vehicles. In this paper, we calculate launch trajectories for a candidate SSTO vehicle, and calculate the advantage of launch at launch altitudes 5 to 25 kilometer altitudes above sea level. The performance increase can be directly translated into increased payload capability to orbit, ranging from 5 to 20% increase in the mass to orbit. For a candidate vehicle with an initial payload fraction of 2% of gross lift-off weight, this corresponds to 31% increase in payload (for 5-km launch altitude) to 122% additional payload (for 25-km launch altitude).
Mean Dynamic Topography of the Arctic Ocean
NASA Technical Reports Server (NTRS)
Farrell, Sinead Louise; Mcadoo, David C.; Laxon, Seymour W.; Zwally, H. Jay; Yi, Donghui; Ridout, Andy; Giles, Katherine
2012-01-01
ICESat and Envisat altimetry data provide measurements of the instantaneous sea surface height (SSH) across the Arctic Ocean, using lead and open water elevation within the sea ice pack. First, these data were used to derive two independent mean sea surface (MSS) models by stacking and averaging along-track SSH profiles gathered between 2003 and 2009. The ICESat and Envisat MSS data were combined to construct the high-resolution ICEn MSS. Second, we estimate the 5.5-year mean dynamic topography (MDT) of the Arctic Ocean by differencing the ICEn MSS with the new GOCO02S geoid model, derived from GRACE and GOCE gravity. Using these satellite-only data we map the major features of Arctic Ocean dynamical height that are consistent with in situ observations, including the topographical highs and lows of the Beaufort and Greenland Gyres, respectively. Smaller-scale MDT structures remain largely unresolved due to uncertainties in the geoid at short wavelengths.
Short pulse radar used to measure sea surface wind speed and SWH. [Significant Wave Height
NASA Technical Reports Server (NTRS)
Hammond, D. L.; Mennella, R. A.; Walsh, E. J.
1977-01-01
A joint airborne measurement program is being pursued by NRL and NASA Wallops Flight Center to determine the extent to which wind speed and sea surface significant wave height (SWH) can be measured quantitatively and remotely with a short pulse (2 ns), wide-beam (60 deg), nadir-looking 3-cm radar. The concept involves relative power measurements only and does not need a scanning antenna, Doppler filters, or absolute power calibration. The slopes of the leading and trailing edges of the averaged received power for the pulse limited altimeter are used to infer SWH and surface wind speed. The interpretation is based on theoretical models of the effects of SWH on the leading edge shape and rms sea-surface slope on the trailing-edge shape. The models include the radar system parameters of antenna beam width and pulsewidth.
Advanced application flight experiment breadboard pulse compression radar altimeter program
NASA Technical Reports Server (NTRS)
1976-01-01
Design, development and performance of the pulse compression radar altimeter is described. The high resolution breadboard system is designed to operate from an aircraft at 10 Kft above the ocean and to accurately measure altitude, sea wave height and sea reflectivity. The minicomputer controlled Ku band system provides six basic variables and an extensive digital recording capability for experimentation purposes. Signal bandwidths of 360 MHz are obtained using a reflective array compression line. Stretch processing is used to achieve 1000:1 pulse compression. The system range command LSB is 0.62 ns or 9.25 cm. A second order altitude tracker, aided by accelerometer inputs is implemented in the system software. During flight tests the system demonstrated an altitude resolution capability of 2.1 cm and sea wave height estimation accuracy of 10%. The altitude measurement performance exceeds that of the Skylab and GEOS-C predecessors by approximately an order of magnitude.