Sample records for sea rainfall variability

  1. An assessment of Indian monsoon seasonal forecasts and mechanisms underlying monsoon interannual variability in the Met Office GloSea5-GC2 system

    NASA Astrophysics Data System (ADS)

    Johnson, Stephanie J.; Turner, Andrew; Woolnough, Steven; Martin, Gill; MacLachlan, Craig

    2017-03-01

    We assess Indian summer monsoon seasonal forecasts in GloSea5-GC2, the Met Office fully coupled subseasonal to seasonal ensemble forecasting system. Using several metrics, GloSea5-GC2 shows similar skill to other state-of-the-art seasonal forecast systems. The prediction skill of the large-scale South Asian monsoon circulation is higher than that of Indian monsoon rainfall. Using multiple linear regression analysis we evaluate relationships between Indian monsoon rainfall and five possible drivers of monsoon interannual variability. Over the time period studied (1992-2011), the El Niño-Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) are the most important of these drivers in both observations and GloSea5-GC2. Our analysis indicates that ENSO and its teleconnection with Indian rainfall are well represented in GloSea5-GC2. However, the relationship between the IOD and Indian rainfall anomalies is too weak in GloSea5-GC2, which may be limiting the prediction skill of the local monsoon circulation and Indian rainfall. We show that this weak relationship likely results from a coupled mean state bias that limits the impact of anomalous wind forcing on SST variability, resulting in erroneous IOD SST anomalies. Known difficulties in representing convective precipitation over India may also play a role. Since Indian rainfall responds weakly to the IOD, it responds more consistently to ENSO than in observations. Our assessment identifies specific coupled biases that are likely limiting GloSea5-GC2 Indian summer monsoon seasonal prediction skill, providing targets for model improvement.

  2. Southern Hemisphere rainfall variability over the past 200 years

    NASA Astrophysics Data System (ADS)

    Gergis, Joëlle; Henley, Benjamin J.

    2017-04-01

    This study presents an analysis of three palaeoclimate rainfall reconstructions from the Southern Hemisphere regions of south-eastern Australia (SEA), southern South Africa (SAF) and southern South America (SSA). We provide a first comparison of rainfall variations in these three regions over the past two centuries, with a focus on identifying synchronous wet and dry periods. Despite the uncertainties associated with the spatial and temporal limitations of the rainfall reconstructions, we find evidence of dynamically-forced climate influences. An investigation of the twentieth century relationship between regional rainfall and the large-scale climate circulation features of the Pacific, Indian and Southern Ocean regions revealed that Indo-Pacific variations of the El Niño-Southern Oscillation (ENSO) and the Indian Ocean dipole dominate rainfall variability in SEA and SAF, while the higher latitude Southern Annular Mode (SAM) exerts a greater influence in SSA. An assessment of the stability of the regional rainfall-climate circulation modes over the past two centuries revealed a number of non-stationarities, the most notable of which occurs during the early nineteenth century around 1820. This corresponds to a time when the influence of ENSO on SEA, SAF and SSA rainfall weakens and there is a strengthening of the influence of SAM. We conclude by advocating the use of long-term palaeoclimate data to estimate decadal rainfall variability for future water resource management.

  3. Interannual Rainfall Variability in North-East Brazil: Observation and Model Simulation

    NASA Astrophysics Data System (ADS)

    Harzallah, A.; Rocha de Aragão, J. O.; Sadourny, R.

    1996-08-01

    The relationship between interannual variability of rainfall in north-east Brazil and tropical sea-surface temperature is studied using observations and model simulations. The simulated precipitation is the average of seven independent realizations performed using the Laboratoire de Météorologie Dynamique atmospheric general model forced by the 1970-1988 observed sea-surface temperature. The model reproduces very well the rainfall anomalies (correlation of 091 between observed and modelled anomalies). The study confirms that precipitation in north-east Brazil is highly correlated to the sea-surface temperature in the tropical Atlantic and Pacific oceans. Using the singular value decomposition method, we find that Nordeste rainfall is modulated by two independent oscillations, both governed by the Atlantic dipole, but one involving only the Pacific, the other one having a period of about 10 years. Correlations between precipitation in north-east Brazil during February-May and the sea-surface temperature 6 months earlier indicate that both modes are essential to estimate the quality of the rainy season.

  4. The local and global climate forcings induced inhomogeneity of Indian rainfall.

    PubMed

    Nair, P J; Chakraborty, A; Varikoden, H; Francis, P A; Kuttippurath, J

    2018-04-16

    India is home for more than a billion people and its economy is largely based on agrarian society. Therefore, rainfall received not only decides its livelihood, but also influences its water security and economy. This situation warrants continuous surveillance and analysis of Indian rainfall. These kinds of studies would also help forecasters to better tune their models for accurate weather prediction. Here, we introduce a new method for estimating variability and trends in rainfall over different climate regions of India. The method based on multiple linear regression helps to assess contributions of different remote and local climate forcings to seasonal and regional inhomogeneity in rainfall. We show that the Indian Summer Monsoon Rainfall (ISMR) variability is governed by Eastern and Central Pacific El Niño Southern Oscillation, equatorial zonal winds, Atlantic zonal mode and surface temperatures of the Arabian Sea and Bay of Bengal, and the North East Monsoon Rainfall variability is controlled by the sea surface temperature of the North Atlantic and extratropial oceans. Also, our analyses reveal significant positive trends (0.43 mm/day/dec) in the North West for ISMR in the 1979-2017 period. This study cautions against the significant changes in Indian rainfall in a perspective of global climate change.

  5. Secular spring rainfall variability at local scale over Ethiopia: trend and associated dynamics

    NASA Astrophysics Data System (ADS)

    Tsidu, Gizaw Mengistu

    2017-10-01

    Spring rainfall secular variability is studied using observations, reanalysis, and model simulations. The joint coherent spatio-temporal secular variability of gridded monthly gauge rainfall over Ethiopia, ERA-Interim atmospheric variables and sea surface temperature (SST) from Hadley Centre Sea Ice and SST (HadISST) data set is extracted using multi-taper method singular value decomposition (MTM-SVD). The contemporaneous associations are further examined using partial Granger causality to determine presence of causal linkage between any of the climate variables. This analysis reveals that only the northwestern Indian Ocean secular SST anomaly has direct causal links with spring rainfall over Ethiopia and mean sea level pressure (MSLP) over Africa inspite of the strong secular covariance of spring rainfall, SST in parts of subtropical Pacific, Atlantic, Indian Ocean and MSLP. High secular rainfall variance and statistically significant linear trend show consistently that there is a massive decline in spring rain over southern Ethiopia. This happened concurrently with significant buildup of MSLP over East Africa, northeastern Africa including parts of the Arabian Peninsula, some parts of central Africa and SST warming over all ocean basins with the exception of the ENSO regions. The east-west pressure gradient in response to the Indian Ocean warming led to secular southeasterly winds over the Arabian Sea, easterly over central Africa and equatorial Atlantic. These flows weakened climatological northeasterly flow over the Arabian Sea and southwesterly flow over equatorial Atlantic and Congo basins which supply moisture into the eastern Africa regions in spring. The secular divergent flow at low level is concurrent with upper level convergence due to the easterly secular anomalous flow. The mechanisms through which the northwestern Indian Ocean secular SST anomaly modulates rainfall are further explored in the context of East Africa using a simplified atmospheric general circulation model (AGCM) coupled to mixed-layer oceanic model. The rainfall anomaly (with respect to control simulation), forced by the northwestern Indian Ocean secular SST anomaly and averaged over the 30-year period, exhibits prevalence of dry conditions over East and equatorial Africa in agreement with observation. The atmospheric response to secular SST warming anomaly led to divergent flow at low levels and subsidence at the upper troposphere over regions north of 5° S on the continent and vice versa over the Indian Ocean. This surface difluence over East Africa, in addition to its role in suppressing convective activity, deprives the region of moisture supply from the Indian Ocean as well as the Atlantic and Congo basins.

  6. NASA Tropical Rainfall Measurement Mission (TRMM): Effects of tropical rainfall on upper ocean dynamics, air-sea coupling and hydrologic cycle

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary; Busalacchi, Antonio J.; Liu, W. Timothy; Lukas, Roger B.; Niiler, Pern P.; Swift, Calvin T.

    1995-01-01

    This was a Tropical Rainfall Measurement Mission (TRMM) modeling, analysis and applications research project. Our broad scientific goals addressed three of the seven TRMM Priority Science Questions, specifically: What is the monthly average rainfall over the tropical ocean areas of about 10(exp 5) sq km, and how does this rain and its variability affect the structure and circulation of the tropical oceans? What is the relationship between precipitation and changes in the boundary conditions at the Earth's surface (e.g., sea surface temperature, soil properties, vegetation)? How can improved documentation of rainfall improve understanding of the hydrological cycle in the tropics?

  7. Interannual and intra-annual variability of rainfall in Haiti (1905-2005)

    NASA Astrophysics Data System (ADS)

    Moron, Vincent; Frelat, Romain; Jean-Jeune, Pierre Karly; Gaucherel, Cédric

    2015-08-01

    The interannual variability of annual and monthly rainfall in Haiti is examined from a database of 78 rain gauges in 1905-2005. The spatial coherence of annual rainfall is rather low, which is partly due to Haiti's rugged landscape, complex shoreline, and surrounding warm waters (mean sea surface temperatures >27 °C from May to December). The interannual variation of monthly rainfall is mostly shaped by the intensity of the low-level winds across the Caribbean Sea, leading to a drier- (or wetter-) than-average rainy season associated with easterly (or westerly) anomalies, increasing (or decreasing) winds. The varying speed of low-level easterlies across the Caribbean basin may reflect at least four different processes during the year: (1) an anomalous trough/ridge over the western edge of the Azores high from December to February, peaking in January; (2) a zonal pressure gradient between Eastern Pacific and the tropical Northern Atlantic from May/June to September, with a peak in August (i.e. lower-than-average rainfall in Haiti is associated with positive sea level pressure anomalies over the tropical North Atlantic and negative sea level pressure anomalies over the Eastern Pacific); (3) a local ocean-atmosphere coupling between the speed of the Caribbean Low Level Jet and the meridional sea surface temperature (SST) gradient across the Caribbean basin (i.e. colder-than-average SST in the southern Caribbean sea is associated with increased easterlies and below-average rainfall in Haiti). This coupling is triggered when the warmest Caribbean waters move northward toward the Gulf of Mexico; (4) in October/November, a drier- (or wetter-) than-usual rainy season is related to an almost closed anticyclonic (or cyclonic) anomaly located ENE of Haiti on the SW edge of the Azores high. This suggests a main control of the interannual variations of rainfall by intensity, track and/or recurrence of tropical depressions traveling northeast of Haiti. During this period, the teleconnection of Haitian rainfall with synchronous Atlantic and Eastern Pacific SST is at a minimum.

  8. Rainfall Morphology in Semi-Tropical Convergence Zones

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Ferrier, Brad S.; Ray, Peter S.

    2000-01-01

    Central Florida is the ideal test laboratory for studying convergence zone-induced convection. The region regularly experiences sea breeze fronts and rainfall-induced outflow boundaries. The focus of this study is the common yet poorly-studied convergence zone established by the interaction of the sea breeze front and an outflow boundary. Previous studies have investigated mechanisms primarily affecting storm initiation by such convergence zones. Few have focused on rainfall morphology yet these storms contribute a significant amount precipitation to the annual rainfall budget. Low-level convergence and mid-tropospheric moisture have both been shown to correlate with rainfall amounts in Florida. Using 2D and 3D numerical simulations, the roles of low-level convergence and mid-tropospheric moisture in rainfall evolution are examined. The results indicate that time-averaged, vertical moisture flux (VMF) at the sea breeze front/outflow convergence zone is directly and linearly proportional to initial condensation rates. This proportionality establishes a similar relationship between VMF and initial rainfall. Vertical moisture flux, which encompasses depth and magnitude of convergence, is better correlated to initial rainfall production than surface moisture convergence. This extends early observational studies which linked rainfall in Florida to surface moisture convergence. The amount and distribution of mid-tropospheric moisture determines how rainfall associated with secondary cells develop. Rainfall amount and efficiency varied significantly over an observable range of relative humidities in the 850- 500 mb layer even though rainfall evolution was similar during the initial or "first-cell" period. Rainfall variability was attributed to drier mid-tropospheric environments inhibiting secondary cell development through entrainment effects. Observationally, 850-500 mb moisture structure exhibits wider variability than lower level moisture, which is virtually always present in Florida. A likely consequence of the variability in 850-500 moisture is a stronger statistical correlation to rainfall, which observational studies have noted. The study indicates that vertical moisture flux forcing at convergence zones is critical in determining rainfall in the initial stage of development but plays a decreasing role in rainfall evolution as the system matures. The mid-tropospheric moisture (e.g. environment) plays an increasing role in rainfall evolution as the system matures. This suggests the need to improve measurements of magnitude/depth of convergence and mid-tropospheric moisture distribution. It also highlights the need for better parameterization of entrainment and vertical moisture distribution in larger-scale models.

  9. SMMR-SSM/I derived Greenland Sea ice variability: links with Indian and Korean Monsoons

    NASA Astrophysics Data System (ADS)

    Prabhu, Amita; Oh, Jaiho; Kim, In-won; Kripalani, R. H.; Pandithurai, G.

    2018-02-01

    Greenland Sea ice area (GRESIA) in boreal autumn and its association with the subsequent summer monsoon rainfall over India and South Korea is assessed for the period 1983-2013. It is found that GRESIA in the month of October has a significant positive relation (correlation coefficient (cc) = 0.45) with the subsequent Indian monsoon rainfall (IMR) while having a significant negative relation (cc = -0.40) with the ensuing Korean monsoon rainfall (KMR). GRESIA episodes in the preceding autumn impact the ensuing summer monsoon rainfall over India (South Korea) adversely (favourably). While central Pacific sea surface temperatures (SSTs) play a mediating role in transmitting the GRESIA signal towards the Indian subcontinent, snow over eastern Eurasia, just north of the Korea-Japan peninsula, plays a mediating role in transmitting the GRESIA signal towards the Korean peninsula. Although, the anomalies of equatorial central Pacific SSTs and eastern Eurasian snow play a crucial role in modulating IMR and KMR respectively, the GRESIA variability also plays a dominant role in modulating the monsoon variability over both the regions. Thus, a combination of autumn GRESIA along with SSTs over the central Pacific and snow over the eastern Eurasia, may possibly serve as a unique precursor to presage Asia's two diverse regional subsystems.

  10. Variability and Predictability of West African Droughts. A Review in the Role of Sea Surface Temperature Anomalies

    NASA Technical Reports Server (NTRS)

    Rodriguez-Fonseca, Belen; Mohino, Elsa; Mechoso, Carlos R.; Caminade, Cyril; Biasutti, Michela; Gaetani, Marco; Garcia-Serrano, J.; Vizy, Edward K.; Cook, Kerry; Xue, Yongkang; hide

    2015-01-01

    The Sahel experienced a severe drought during the 1970s and 1980s after wet periods in the 1950s and 1960s. Although rainfall partially recovered since the 1990s, the drought had devastating impacts on society. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface-atmosphere interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interannual to decadal time scales. At interannual time scales, a warming of the equatorial Atlantic and Pacific/Indian Oceans results in rainfall reduction over the Sahel, and positive SST anomalies over the Mediterranean Sea tend to be associated with increased rainfall. At decadal time scales, warming over the tropics leads to drought over the Sahel, whereas warming over the North Atlantic promotes increased rainfall. Prediction systems have evolved from seasonal to decadal forecasting. The agreement among future projections has improved from CMIP3 to CMIP5, with a general tendency for slightly wetter conditions over the central part of the Sahel, drier conditions over the western part, and a delay in the monsoon onset. The role of the Indian Ocean, the stationarity of teleconnections, the determination of the leader ocean basin in driving decadal variability, the anthropogenic role, the reduction of the model rainfall spread, and the improvement of some model components are among the most important remaining questions that continue to be the focus of current international projects.

  11. Describing rainfall in northern Australia using multiple climate indices

    NASA Astrophysics Data System (ADS)

    Wilks Rogers, Cassandra Denise; Beringer, Jason

    2017-02-01

    Savanna landscapes are globally extensive and highly sensitive to climate change, yet the physical processes and climate phenomena which affect them remain poorly understood and therefore poorly represented in climate models. Both human populations and natural ecosystems are highly susceptible to precipitation variation in these regions due to the effects on water and food availability and atmosphere-biosphere energy fluxes. Here we quantify the relationship between climate phenomena and historical rainfall variability in Australian savannas and, in particular, how these relationships changed across a strong rainfall gradient, namely the North Australian Tropical Transect (NATT). Climate phenomena were described by 16 relevant climate indices and correlated against precipitation from 1900 to 2010 to determine the relative importance of each climate index on seasonal, annual and decadal timescales. Precipitation trends, climate index trends and wet season characteristics have also been investigated using linear statistical methods. In general, climate index-rainfall correlations were stronger in the north of the NATT where annual rainfall variability was lower and a high proportion of rainfall fell during the wet season. This is consistent with a decreased influence of the Indian-Australian monsoon from the north to the south. Seasonal variation was most strongly correlated with the Australian Monsoon Index, whereas yearly variability was related to a greater number of climate indices, predominately the Tasman Sea and Indonesian sea surface temperature indices (both of which experienced a linear increase over the duration of the study) and the El Niño-Southern Oscillation indices. These findings highlight the importance of understanding the climatic processes driving variability and, subsequently, the importance of understanding the relationships between rainfall and climatic phenomena in the Northern Territory in order to project future rainfall patterns in the region.

  12. Ocean eddies and climate predictability

    NASA Astrophysics Data System (ADS)

    Kirtman, Ben P.; Perlin, Natalie; Siqueira, Leo

    2017-12-01

    A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.

  13. Ocean eddies and climate predictability.

    PubMed

    Kirtman, Ben P; Perlin, Natalie; Siqueira, Leo

    2017-12-01

    A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.

  14. Seasonal precipitation forecasting for the Melbourne region using a Self-Organizing Maps approach

    NASA Astrophysics Data System (ADS)

    Pidoto, Ross; Wallner, Markus; Haberlandt, Uwe

    2017-04-01

    The Melbourne region experiences highly variable inter-annual rainfall. For close to a decade during the 2000s, below average rainfall seriously affected the environment, water supplies and agriculture. A seasonal rainfall forecasting model for the Melbourne region based on the novel approach of a Self-Organizing Map has been developed and tested for its prediction performance. Predictor variables at varying lead times were first assessed for inclusion within the model by calculating their importance via Random Forests. Predictor variables tested include the climate indices SOI, DMI and N3.4, in addition to gridded global sea surface temperature data. Five forecasting models were developed: an annual model and four seasonal models, each individually optimized for performance through Pearson's correlation r and the Nash-Sutcliffe Efficiency. The annual model showed a prediction performance of r = 0.54 and NSE = 0.14. The best seasonal model was for spring, with r = 0.61 and NSE = 0.31. Autumn was the worst performing seasonal model. The sea surface temperature data contributed fewer predictor variables compared to climate indices. Most predictor variables were supplied at a minimum lead, however some predictors were found at lead times of up to a year.

  15. A further assessment of vegetation feedback on decadal Sahel rainfall variability

    NASA Astrophysics Data System (ADS)

    Kucharski, Fred; Zeng, Ning; Kalnay, Eugenia

    2013-03-01

    The effect of vegetation feedback on decadal-scale Sahel rainfall variability is analyzed using an ensemble of climate model simulations in which the atmospheric general circulation model ICTPAGCM ("SPEEDY") is coupled to the dynamic vegetation model VEGAS to represent feedbacks from surface albedo change and evapotranspiration, forced externally by observed sea surface temperature (SST) changes. In the control experiment, where the full vegetation feedback is included, the ensemble is consistent with the observed decadal rainfall variability, with a forced component 60 % of the observed variability. In a sensitivity experiment where climatological vegetation cover and albedo are prescribed from the control experiment, the ensemble of simulations is not consistent with the observations because of strongly reduced amplitude of decadal rainfall variability, and the forced component drops to 35 % of the observed variability. The decadal rainfall variability is driven by SST forcing, but significantly enhanced by land-surface feedbacks. Both, local evaporation and moisture flux convergence changes are important for the total rainfall response. Also the internal decadal variability across the ensemble members (not SST-forced) is much stronger in the control experiment compared with the one where vegetation cover and albedo are prescribed. It is further shown that this positive vegetation feedback is physically related to the albedo feedback, supporting the Charney hypothesis.

  16. Interannual variability of Indian monsoon rainfall

    NASA Technical Reports Server (NTRS)

    Paolino, D. A.; Shukla, J.

    1984-01-01

    The interannual variability of the Indian summer monsoon and its relationships with other atmospheric fluctuations were studied in hopes of gaining some insight into the predicability of the rainfall. Rainfall data for 31 meteorological subdivisions over India were provided by the India Meteorological Department (IMD). Fifty-three years of seasonal mean anomaly sea-level pressure (SLP) fields were used to determine if any relationships could be detected between fluctuations in Northern Hemisphere surface pressure and Indian monsoon rainfall. Three month running mean sea-level pressure anomalies at Darwin (close to one of the centers of the Southern Oscillation) were compiled for months preceding and following extreme years for rainfall averaged over all of India. Anomalies are small before the monsoon, but are quite large in months following the summer season. However, there is a large decrease in Darwin pressure for months preceding a heavy monsoon, while a deficient monsoon is preceded by a sharp increase in Darwin pressure. If a time series is constructed of the tendency of Darwin SLP between the Northern Hemisphere winter (DJF) and spring (MAM) and a correlation coefficient is computed between it and 81 years of rainfall average over all of India, one gets a C. C. of -.46, which is higher than any other previously computed predictor of the monsoon rainfall. This relationship can also be used to make a qualitative forecast for rainfall over the whole of India by considering the sign of the tendency in extreme monsoon years.

  17. Prediction of early summer rainfall over South China by a physical-empirical model

    NASA Astrophysics Data System (ADS)

    Yim, So-Young; Wang, Bin; Xing, Wen

    2014-10-01

    In early summer (May-June, MJ) the strongest rainfall belt of the northern hemisphere occurs over the East Asian (EA) subtropical front. During this period the South China (SC) rainfall reaches its annual peak and represents the maximum rainfall variability over EA. Hence we establish an SC rainfall index, which is the MJ mean precipitation averaged over 72 stations over SC (south of 28°N and east of 110°E) and represents superbly the leading empirical orthogonal function mode of MJ precipitation variability over EA. In order to predict SC rainfall, we established a physical-empirical model. Analysis of 34-year observations (1979-2012) reveals three physically consequential predictors. A plentiful SC rainfall is preceded in the previous winter by (a) a dipole sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (b) a tripolar SST tendency in North Atlantic Ocean, and (c) a warming tendency in northern Asia. These precursors foreshadow enhanced Philippine Sea subtropical High and Okhotsk High in early summer, which are controlling factors for enhanced subtropical frontal rainfall. The physical empirical model built on these predictors achieves a cross-validated forecast correlation skill of 0.75 for 1979-2012. Surprisingly, this skill is substantially higher than four-dynamical models' ensemble prediction for 1979-2010 period (0.15). The results here suggest that the low prediction skill of current dynamical models is largely due to models' deficiency and the dynamical prediction has large room to improve.

  18. Identification of MJO Signal on Various Elevation Station Rainfall in Southern Papua, Indonesia

    NASA Astrophysics Data System (ADS)

    Sakya, A. E.; Permana, D.; Makmur, E. E. S.; Handayani, A. S.; Hanggoro, W.; Setyadi, G.

    2016-12-01

    The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in tropical rainfall on the large scale, but its signal is often obscured in individual station data, where effects are most directly felt at the local level. The characteristic of the MJO during its propagation through the Maritime Continent has always been a challenge to comprehend despite decades of research attempts in that region. Unique topography over the Maritime Continent is believed to act as one of the vanguard of precipitation triggered by the MJO. Such condition leads to a maximize amplitude of the diurnal cycle of precipitation over land on phase 2 and 5, even before the arrival of the MJO. Papua in Indonesia is one of the wettest regions on Earth and is at the heart of the MJO envelope. Aiming to investigate the effect of topography and coastline distance on MJO in southern Papua, 14 years of rainfall data from 12 stations in PTFI AWS network at various elevations (9 meters to 4400 meters above sea level) have been utilized. The results show a strong MJO modulation in rainfall variability with variance of 30 - 100 days in the region. These results suggest a strong impact of MJO on rainfall at various elevations in southern Papua which confirm the previous studies. The peak rainfall rates were observed at phase 3 at lower elevation and coastline stations and phase 4 at middle and high elevation stations. The study also investigated the relationship between MJO phases and diurnal precipitation cycle at all stations. At low elevation and coastline stations, diurnal rainfall variation is more variable with high rainfall observed at afternoon to midnight and after midnight. This is due to the local effect of land-sea breeze system. While in middle and high elevation stations, rainfall peak was observed at afternoon to midnight. The results show the impact of MJO in diurnal rainfall variation at all stations.

  19. Thermodynamic ocean-atmosphere Coupling and the Predictability of Nordeste rainfall

    NASA Astrophysics Data System (ADS)

    Chang, P.; Saravanan, R.; Giannini, A.

    2003-04-01

    The interannual variability of rainfall in the northeastern region of Brazil, or Nordeste, is known to be very strongly correlated with sea surface temperature (SST) variability, of Atlantic and Pacific origin. For this reason the potential predictability of Nordeste rainfall is high. The current generation of state-of-the-art atmospheric models can replicate the observed rainfall variability with high skill when forced with the observed record of SST variability. The correlation between observed and modeled indices of Nordeste rainfall, in the AMIP-style integrations with two such models (NSIPP and CCM3) analyzed here, is of the order of 0.8, i.e. the models explain about 2/3 of the observed variability. Assuming that thermodynamic, ocean-atmosphere heat exchange plays the dominant role in tropical Atlantic SST variability on the seasonal to interannual time scale, we analyze its role in Nordeste rainfall predictability using an atmospheric general circulation model coupled to a slab ocean model. Predictability experiments initialized with observed December SST show that thermodynamic coupling plays a significant role in enhancing the persistence of SST anomalies, both in the tropical Pacific and in the tropical Atlantic. We show that thermodynamic coupling is sufficient to provide fairly accurate forecasts of tropical Atlantic SST in the boreal spring that are significantly better than the persistence forecasts. The consequences for the prediction of Nordeste rainfall are analyzed.

  20. Vegetation Interaction Enhances Interdecadal Climate Variability in the Sahel

    NASA Technical Reports Server (NTRS)

    Zeng, Ning; Neelin, J. David; Lau, William K.-M.

    1999-01-01

    The role of naturally varying vegetation in influencing the climate variability in the Sahel is explored in a coupled atmosphere-land-vegetation model. The Sahel rainfall variability is influenced by sea surface temperature (SST) variations in the oceans. Land-surface feedback is found to increase this variability both on interannual and interdecadal time scales. Interactive vegetation enhances the interdecadal variation significantly, but can reduce year to year variability due to a phase lag introduced by the relatively slow vegetation adjustment time. Variations in vegetation accompany the changes in rainfall, in particular, the multi-decadal drying trend from the 1950s to the 80s.

  1. Coherent response of the Indo-African boreal summer monsoon to Pacific SST captured in Ethiopian rain δ18O

    NASA Astrophysics Data System (ADS)

    Madhavan, M.; Palliyil, L. R.; Ramesh, R.

    2017-12-01

    Pacific Sea Surface Temperature (SST) plays an important role in the inter-annual to inter-decadal variability of boreal monsoons. We identified a common mode of inter annual variability in the Indian and African boreal summer monsoon (June to September) rainfalls, which is linked to Pacific SSTs, using Empirical Orthogonal Function (EOF) analysis. Temporal coefficients (Principle component: PC1) of the leading mode of variability (EOF-1) is well correlated with the Indian summer monsoon rainfall and Sahel rainfall. About forty year long monthly observations of δ18O (and δD) at Addis Ababa, Ethiopia show a strong association with PC1 (r=0.69 for δ18O and r=0.75 for δD). Analysis of SST, sea level pressure and lower tropospheric winds suggest that 18O depletion in Ethiopian rainfall (and wet phases of PC1) is associated with cooler eastern tropical Pacific and warmer western Pacific and strengthening of Pacific subtropical high in both the hemispheres. Associated changes in the trade winds cause enhanced westerly moisture transport into the Indian subcontinent and northern Africa and cause enhanced rainfall. The intrusion of Atlantic westerly component of moisture transport at Addis Ababa during wet phases of PC1 is clearly recorded in δ18O of rain. We also observe the same common mode of variability (EOF1) of Indo-African boreal summer monsoon rain on decadal time scales. A 100 year long δ18O record of actively growing speleothem from the Mechara cave, Ethiopia, matches very well with the PC1 on the decadal time scale. This highlights the potential of speleothem δ18O and leaf wax δD from Ethiopia to investigate the natural variability and teleconnections of Indo-African boreal monsoon.

  2. Linkages Between Multiscale Global Sea Surface Temperature Change and Precipitation Variabilities in the US

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Weng, Heng-Yi

    1999-01-01

    A growing number of evidence indicates that there are coherent patterns of variability in sea surface temperature (SST) anomaly not only at interannual timescales, but also at decadal-to-inter-decadal timescale and beyond. The multi-scale variabilities of SST anomaly have shown great impacts on climate. In this work, we analyze multiple timescales contained in the globally averaged SST anomaly with and their possible relationship with the summer and winter rainfall in the United States over the past four decades.

  3. Current and Future Urban Stormwater Flooding Scenarios in the Southeast Florida Coasts

    NASA Astrophysics Data System (ADS)

    Huq, E.; Abdul-Aziz, O. I.

    2016-12-01

    This study computed rainfall-fed stormwater flooding under the historical and future reference scenarios for the Southeast Coasts Basin of Florida. A large-scale, mechanistic rainfall-runoff model was developed using the U.S. E.P.A. Storm Water Management Model (SWMM 5.1). The model parameterized important processes of urban hydrology, groundwater, and sea level, while including hydroclimatological variables and land use features. The model was calibrated and validated with historical streamflow data. It was then used to estimate the sensitivity of stormwater runoff to the reference changes in hydroclimatological variables (rainfall and evapotranspiration) and different land use/land cover features (imperviousness, roughness). Furthermore, historical (1970-2000) and potential 2050s stormwater budgets were also estimated for the Florida Southeast Coasts Basin by incorporating climatic projections from different GCMs and RCMs, as well as by using relevant projections of sea level and land use/cover. Comparative synthesis of the historical and future scenarios along with the results of sensitivity analysis can aid in efficient management of stormwater flooding for the southeast Florida coasts and similar urban centers under a changing regime of climate, sea level, land use/cover and hydrology.

  4. Indian summer monsoon variability forecasts in the North American multimodel ensemble

    NASA Astrophysics Data System (ADS)

    Singh, Bohar; Cash, Ben; Kinter, James L., III

    2018-04-01

    The representation of the seasonal mean and interannual variability of the Indian summer monsoon rainfall (ISMR) in nine global ocean-atmosphere coupled models that participated in the North American Multimodal Ensemble (NMME) phase 1 (NMME:1), and in nine global ocean-atmosphere coupled models participating in the NMME phase 2 (NMME:2) from 1982-2009, is evaluated over the Indo-Pacific domain with May initial conditions. The multi-model ensemble (MME) represents the Indian monsoon rainfall with modest skill and systematic biases. There is no significant improvement in the seasonal forecast skill or interannual variability of ISMR in NMME:2 as compared to NMME:1. The NMME skillfully predicts seasonal mean sea surface temperature (SST) and some of the teleconnections with seasonal mean rainfall. However, the SST-rainfall teleconnections are stronger in the NMME than observed. The NMME is not able to capture the extremes of seasonal mean rainfall and the simulated Indian Ocean-monsoon teleconnections are opposite to what are observed.

  5. Indian Monsoon Rainfall Variability During the Common Era: Implications on the Ancient Civilization

    NASA Astrophysics Data System (ADS)

    Pothuri, D.

    2017-12-01

    Indian monsoon rainfall variability was reconstructed during last two millennia by using the δ18Ow from a sediment core in the Krishna-Godavari Basin. Higher δ18Ow values during Dark Age Cold Period (DACP) (1550 to 1250 years BP) and Little Ice Age (LIA) (700 to 200 years BP) represent less Indian monsoon rainfall. Whereas during Medieval Warm Period (MWP) (1200 to 800 years BP) and major portion of Roman Warm Period (RWP) 2000 to 1550 years BP) document more rainfall in the Indian subcontinent as evident from lower δ18Ow values. A significant correlation exist between the Bay of Bengal (BoB) sea surface temperature (SST) and Indian monsoon proxy (i.e. δ18Ow), which suggests that; (i) the forcing mechanism of the Indian monsoon rainfall variability during last two millennia was controlled by the thermal contrast between the Indian Ocean and Asian Land Mass, and (ii) the evaporation processes in the BoB and associated SST are strongly coupled with the Indian Monsoon variability over the last two millennia.

  6. Spatial averaging of oceanic rainfall variability using underwater sound: Ionian Sea rainfall experiment 2004.

    PubMed

    Nystuen, Jeffrey A; Amitai, Eyal; Anagnostou, Emmanuel N; Anagnostou, Marios N

    2008-04-01

    An experiment to evaluate the inherent spatial averaging of the underwater acoustic signal from rainfall was conducted in the winter of 2004 in the Ionian Sea southwest of Greece. A mooring with four passive aquatic listeners (PALs) at 60, 200, 1000, and 2000 m was deployed at 36.85 degrees N, 21.52 degrees E, 17 km west of a dual-polarization X-band coastal radar at Methoni, Greece. The acoustic signal is classified into wind, rain, shipping, and whale categories. It is similar at all depths and rainfall is detected at all depths. A signal that is consistent with the clicking of deep-diving beaked whales is present 2% of the time, although there was no visual confirmation of whale presence. Co-detection of rainfall with the radar verifies that the acoustic detection of rainfall is excellent. Once detection is made, the correlation between acoustic and radar rainfall rates is high. Spatial averaging of the radar rainfall rates in concentric circles over the mooring verifies the larger inherent spatial averaging of the rainfall signal with recording depth. For the PAL at 2000 m, the maximum correlation was at 3-4 km, suggesting a listening area for the acoustic rainfall measurement of roughly 30-50 km(2).

  7. Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations

    NASA Astrophysics Data System (ADS)

    Zou, Liwei; Zhou, Tianjun; Peng, Dongdong

    2016-02-01

    The FROALS (flexible regional ocean-atmosphere-land system) model, a regional ocean-atmosphere coupled model, has been applied to the Coordinated Regional Downscaling Experiment (CORDEX) East Asia domain. Driven by historical simulations from a global climate system model, dynamical downscaling for the period from 1980 to 2005 has been conducted at a uniform horizontal resolution of 50 km. The impacts of regional air-sea couplings on the simulations of East Asian summer monsoon rainfall have been investigated, and comparisons have been made to corresponding simulations performed using a stand-alone regional climate model (RCM). The added value of the FROALS model with respect to the driving global climate model was evident in terms of both climatology and the interannual variability of summer rainfall over East China by the contributions of both the high horizontal resolution and the reasonably simulated convergence of the moisture fluxes. Compared with the stand-alone RCM simulations, the spatial pattern of the simulated low-level monsoon flow over East Asia and the western North Pacific was improved in the FROALS model due to its inclusion of regional air-sea coupling. The results indicated that the simulated sea surface temperature (SSTs) resulting from the regional air-sea coupling were lower than those derived directly from the driving global model over the western North Pacific north of 15°N. These colder SSTs had both positive and negative effects. On the one hand, they strengthened the western Pacific subtropical high, which improved the simulation of the summer monsoon circulation over East Asia. On the other hand, the colder SSTs suppressed surface evaporation and favored weaker local interannual variability in the SST, which led to less summer rainfall and weaker interannual rainfall variability over the Korean Peninsula and Japan. Overall, the reference simulation performed using the FROALS model is reasonable in terms of rainfall over the land area of East Asia and will become the basis for the generation of climate change scenarios for the CORDEX East Asia domain that will be described in future reports.

  8. A dependence modelling study of extreme rainfall in Madeira Island

    NASA Astrophysics Data System (ADS)

    Gouveia-Reis, Délia; Guerreiro Lopes, Luiz; Mendonça, Sandra

    2016-08-01

    The dependence between variables plays a central role in multivariate extremes. In this paper, spatial dependence of Madeira Island's rainfall data is addressed within an extreme value copula approach through an analysis of maximum annual data. The impact of altitude, slope orientation, distance between rain gauge stations and distance from the stations to the sea are investigated for two different periods of time. The results obtained highlight the influence of the island's complex topography on the spatial distribution of extreme rainfall in Madeira Island.

  9. Diagnostics of Rainfall Anomalies in the Nordeste During the Global Weather Experiment

    NASA Technical Reports Server (NTRS)

    Sikdar, D. M.

    1984-01-01

    The relationship of the daily variability of large-scale pressure, cloudiness and upper level wind patterns over the Brazil-Atlantic sector during March/April 1979 to rainfall anomalies in northern Nordeste was investigated. The experiment divides the rainy season (March/April) of 1979 into wet and dry days, then composites bright cloudiness, sea level pressure, and upper level wind fields with respect to persistent rainfall episodes. Wet and dry anomalies are analyzed along with seasonal mean conditions.

  10. Teleconnection between sea ice in the Barents Sea in June and the Silk Road, Pacific-Japan and East Asian rainfall patterns in August

    NASA Astrophysics Data System (ADS)

    He, Shengping; Gao, Yongqi; Furevik, Tore; Wang, Huijun; Li, Fei

    2018-01-01

    In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall pattern, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to midlatitudes. Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces zonally oriented overturning circulation along the subtropical jet stream, exhibiting the east-west Rossby wave train known as the Silk Road pattern. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road pattern to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific-Japan pattern. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly pattern is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.

  11. Teleconnection between Sea Ice in the Barents Sea in June and the Silk Road, Pacific-Japan and East Asian Rainfall Patterns in August

    NASA Astrophysics Data System (ADS)

    He, S.; Gao, Y.; Furevik, T.; Huijun, W.; Li, F.

    2017-12-01

    In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall pattern, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to midlatitudes. Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces zonally oriented overturning circulation along the subtropical jet stream, exhibiting the east-west Rossby wave train known as the Silk Road pattern. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road pattern to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific-Japan pattern. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly pattern is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.

  12. Utilizing TRMM to Analyze Sea Breeze Thunderstorm Patterns During El Nino Southern Oscillations and Their Effects upon Available Fresh Water for South Florida Agricultural Planning and Management

    NASA Technical Reports Server (NTRS)

    Cooley, Clayton; Billiot, Amanda; Lee, Lucas; McKee, Jake

    2010-01-01

    Water is in high demand for farmers regardless of where you go. Unfortunately, farmers in southern Florida have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. There is an interest by the agricultural community about the effect weather has on usable surface water, however, research into viable weather patterns during La Nina and El Nino has yet to be researched. Using rainfall accumulation data from NASA Tropical Rainfall Measurement Mission (TRMM) satellite, this project s purpose was to assess the influence of El Nino and La Nina Oscillations on sea breeze thunderstorm patterns, as well as general rainfall patterns during the summer season in South Florida. Through this research we were able to illustrate the spatial and temporal variations in rainfall accumulation for each oscillation in relation to major agricultural areas. The study period for this project is from 1998, when TRMM was first launched, to 2009. Since sea breezes in Florida typically occur in the months of May through October, these months were chosen to be the months of the study. During this time, there were five periods of El Nino and two periods of La Nina, with a neutral period separating each oscillation. In order to eliminate rainfall from systems other than sea breeze thunderstorms, only days that were conducive to the development of a sea breeze front were selected.

  13. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices

    USGS Publications Warehouse

    Funk, Christopher C.; Hoell, Andrew; Shukla, Shraddhanand; Blade, Ileana; Liebmann, Brant; Roberts, Jason B.; Robertson, Franklin R.

    2014-01-01

    In southern Ethiopia, Eastern Kenya, and southern Somalia poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009 and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers support disaster risk reduction while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we explore the dominant modes of East African rainfall variability, links between these modes and sea surface temperatures, and a simple index-based monitoring-prediction system suitable for drought early warning.

  14. Boreal summer sub-seasonal variability of the South Asian monsoon in the Met Office GloSea5 initialized coupled model

    NASA Astrophysics Data System (ADS)

    Jayakumar, A.; Turner, A. G.; Johnson, S. J.; Rajagopal, E. N.; Mohandas, Saji; Mitra, A. K.

    2017-09-01

    Boreal summer sub-seasonal variability in the Asian monsoon, otherwise known as the monsoon intra-seasonal oscillation (MISO), is one of the dominant modes of intraseasonal variability in the tropics, with large impacts on total monsoon rainfall and India's agricultural production. However, our understanding of the mechanisms involved in MISO is incomplete and its simulation in various numerical models is often flawed. In this study, we focus on the objective evaluation of the fidelity of MISO simulation in the Met Office Global Seasonal forecast system version 5 (GloSea5), an initialized coupled model. We analyze a series of nine-member hindcasts from GloSea5 over 1996-2009 during the peak monsoon period (July-August) over the South-Asian monsoon domain focusing on aspects of the time-mean background state and air-sea interaction processes pertinent to MISO. Dominant modes during this period are evident in power spectrum analysis, but propagation and evolution characteristics of the MISO are not realistic. We find that simulated air-sea interactions in the central Indian Ocean are not supportive of MISO initiation in that region, likely a result of the low surface wind variance there. As a consequence, the expected near-quadrature phase relationship between SST and convection is not represented properly over the central equatorial Indian Ocean, and northward propagation from the equator is poorly simulated. This may reinforce the equatorial rainfall mean state bias in GloSea5.

  15. Is the Aquarius sea surface salinity variability representative?

    NASA Astrophysics Data System (ADS)

    Carton, J.; Grodsky, S.

    2016-12-01

    The leading mode of the Aquarius monthly anomalous sea surface salinity (SSS) is evaluated within the 50S-50N belt, where SSS retrieval accuracy is higher. This mode accounts for about 18% of the variance and resembles a pattern of the ENSO-induced anomalous rainfall. The leading mode of SSS variability deducted from a longer JAMSTEC analysis also accounts for about 17% of the variance and has very similar spatial pattern and almost a perfect correspondence of its temporal principal component to the SOI index. In that sense, the Aquarius SSS variability at low and middle latitudes is representative of SSS variability that may be obtained from longer records. This is explained by the fact that during the Aquarius period (2011-2015), the SOI index changed significantly from La Nina toward El Nino state, thus spanning a significant range of its characteristic variations. Multivariate EOF analysis of anomalous SSS and SST suggests that ENSO-induced shift in the tropical Pacific rainfall produces negatively correlated variability of temperature and salinity, which are expected if the anomalous surface flux (stronger rainfall coincident with less downward radiation) drives the system. But, anomalous SSS and SST are positively correlated in some areas including the northwestern Atlantic shelf (north of the Gulfstream) and the Pacific sector adjusting to the California peninsula. This positive correlation is indicative of an advection driven regime that is analyzed separately.

  16. Prediction of Meiyu rainfall in Taiwan by multi-lead physical-empirical models

    NASA Astrophysics Data System (ADS)

    Yim, So-Young; Wang, Bin; Xing, Wen; Lu, Mong-Ming

    2015-06-01

    Taiwan is located at the dividing point of the tropical and subtropical monsoons over East Asia. Taiwan has double rainy seasons, the Meiyu in May-June and the Typhoon rains in August-September. To predict the amount of Meiyu rainfall is of profound importance to disaster preparedness and water resource management. The seasonal forecast of May-June Meiyu rainfall has been a challenge to current dynamical models and the factors controlling Taiwan Meiyu variability has eluded climate scientists for decades. Here we investigate the physical processes that are possibly important for leading to significant fluctuation of the Taiwan Meiyu rainfall. Based on this understanding, we develop a physical-empirical model to predict Taiwan Meiyu rainfall at a lead time of 0- (end of April), 1-, and 2-month, respectively. Three physically consequential and complementary predictors are used: (1) a contrasting sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (2) the tripolar SST tendency in North Atlantic that is associated with North Atlantic Oscillation, and (3) a surface warming tendency in northeast Asia. These precursors foreshadow an enhanced Philippine Sea anticyclonic anomalies and the anomalous cyclone near the southeastern China in the ensuing summer, which together favor increasing Taiwan Meiyu rainfall. Note that the identified precursors at various lead-times represent essentially the same physical processes, suggesting the robustness of the predictors. The physical empirical model made by these predictors is capable of capturing the Taiwan rainfall variability with a significant cross-validated temporal correlation coefficient skill of 0.75, 0.64, and 0.61 for 1979-2012 at the 0-, 1-, and 2-month lead time, respectively. The physical-empirical model concept used here can be extended to summer monsoon rainfall prediction over the Southeast Asia and other regions.

  17. Maritime continent coastlines controlling Earth's climate

    NASA Astrophysics Data System (ADS)

    Yamanaka, Manabu D.; Ogino, Shin-Ya; Wu, Pei-Ming; Jun-Ichi, Hamada; Mori, Shuichi; Matsumoto, Jun; Syamsudin, Fadli

    2018-12-01

    During the Monsoon Asian Hydro-Atmosphere Scientific Research and Prediction Initiative (MAHASRI; 2006-16), we carried out two projects over the Indonesian maritime continent (IMC), constructing the Hydrometeorological Array for Intraseasonal Variation-Monsoon Automonitoring (HARIMAU; 2005-10) radar network and setting up a prototype institute for climate studies, the Maritime Continent Center of Excellence (MCCOE; 2009-14). Here, we review the climatological features of the world's largest "regional" rainfall over the IMC studied in these projects. The fundamental mode of atmospheric variability over the IMC is the diurnal cycle generated along coastlines by land-sea temperature contrast: afternoon land becomes hotter than sea by clear-sky insolation before noon, with the opposite contrast before sunrise caused by evening rainfall-induced "sprinkler"-like land cooling (different from the extratropical infrared cooling on clear nights). Thus, unlike the extratropics, the diurnal cycle over the IMC is more important in the rainy season. The intraseasonal, seasonal to annual, and interannual climate variabilities appear as amplitude modulations of the diurnal cycle. For example, in Jawa and Bali the rainy season is the southern hemispheric summer, because land heating in the clear morning and water vapor transport by afternoon sea breeze is strongest in the season of maximum insolation. During El Niño, cooler sea water surrounding the IMC makes morning maritime convection and rainfall weaker than normal. Because the diurnal cycle is almost the only mechanism generating convective clouds systematically near the equator with little cyclone activity, the local annual rainfall amount in the tropics is a steeply decreasing function of coastal distance ( e-folding scale 100-300 km), and regional annual rainfall is an increasing function of "coastline density" (coastal length/land area) measured at a horizontal resolution of 100 km. The coastline density effect explains why rainfall and latent heating over the IMC are twice the global mean for an area that makes up only 4% of the Earth's surface. The diurnal cycles appearing almost synchronously over the whole IMC generate teleconnections between the IMC convection and the global climate. Thus, high-resolution (<< 100 km; << 1 day) observations and models over the IMC are essential to improve both local disaster prevention and global climate prediction.

  18. Peak-summer East Asian rainfall predictability and prediction part I: Southeast Asia

    NASA Astrophysics Data System (ADS)

    Xing, Wen; Wang, Bin; Yim, So-Young

    2016-07-01

    The interannual variation of East Asia summer monsoon (EASM) rainfall exhibits considerable differences between early summer [May-June (MJ)] and peak summer [July-August (JA)]. The present study focuses on peak summer. During JA, the mean ridge line of the western Pacific subtropical High (WPSH) divides EASM domain into two sub-domains: the tropical EA (5°N-26.5°N) and subtropical-extratropical EA (26.5°N-50°N). Since the major variability patterns in the two sub-domains and their origins are substantially different, the Part I of this study concentrates on the tropical EA or Southeast Asia (SEA). We apply the predictable mode analysis approach to explore the predictability and prediction of the SEA peak summer rainfall. Four principal modes of interannual rainfall variability during 1979-2013 are identified by EOF analysis: (1) the WPSH-dipole sea surface temperature (SST) feedback mode in the Northern Indo-western Pacific warm pool associated with the decay of eastern Pacific El Niño/Southern Oscillation (ENSO), (2) the central Pacific-ENSO mode, (3) the Maritime continent SST-Australian High coupled mode, which is sustained by a positive feedback between anomalous Australian high and sea surface temperature anomalies (SSTA) over Indian Ocean, and (4) the ENSO developing mode. Based on understanding of the sources of the predictability for each mode, a set of physics-based empirical (P-E) models is established for prediction of the first four leading principal components (PCs). All predictors are selected from either persistent atmospheric lower boundary anomalies from March to June or the tendency from spring to early summer. We show that these four modes can be predicted reasonably well by the P-E models, thus they are identified as the predictable modes. Using the predicted PCs and the corresponding observed spatial patterns, we have made a 35-year cross-validated hindcast, setting up a bench mark for dynamic models' predictions. The P-E hindcast prediction skill represented by domain-averaged temporal correlation coefficient is 0.44, which is twice higher than the skill of the current dynamical hindcast, suggesting that the dynamical models have large rooms to improve. The maximum potential attainable prediction skills for the peak summer SEA rainfall is also estimated and discussed by using the PMA. High predictability regions are found over several climatological rainfall centers like Indo-China peninsula, southern coast of China, southeastern SCS, and Philippine Sea.

  19. Rainfall variability over southern Africa: an overview of current research using satellite and climate model data

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, satellite-derived rainfall data are used as a basis for undertaking model experiments using a state-of-the-art climate model, run at both high and low spatial resolution. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, a brief overview is given of the authors' research to date, pertaining to southern African rainfall. This covers (i) a description of present-day rainfall variability over southern Africa; (ii) a comparison of model simulated daily rainfall with the satellite-derived dataset; (iii) results from sensitivity testing of the model's domain size; and (iv) results from the idealised SST experiments.

  20. Skilful Seasonal Predictions of Summer European Rainfall

    NASA Astrophysics Data System (ADS)

    Dunstone, Nick; Smith, Doug; Scaife, Adam; Hermanson, Leon; Fereday, David; O'Reilly, Chris; Stirling, Alison; Eade, Rosie; Gordon, Margaret; MacLachlan, Craig; Woollings, Tim; Sheen, Katy; Belcher, Stephen

    2018-04-01

    Year-to-year variability in Northern European summer rainfall has profound societal and economic impacts; however, current seasonal forecast systems show no significant forecast skill. Here we show that skillful predictions are possible (r 0.5, p < 0.001) using the latest high-resolution Met Office near-term prediction system over 1960-2017. The model predictions capture both low-frequency changes (e.g., wet summers 2007-2012) and some of the large individual events (e.g., dry summer 1976). Skill is linked to predictable North Atlantic sea surface temperature variability changing the supply of water vapor into Northern Europe and so modulating convective rainfall. However, dynamical circulation variability is not well predicted in general—although some interannual skill is found. Due to the weak amplitude of the forced model signal (likely caused by missing or weak model responses), very large ensembles (>80 members) are required for skillful predictions. This work is promising for the development of European summer rainfall climate services.

  1. Uganda rainfall variability and prediction

    NASA Astrophysics Data System (ADS)

    Jury, Mark R.

    2018-05-01

    This study analyzes large-scale controls on Uganda's rainfall. Unlike past work, here, a May-October season is used because of the year-round nature of agricultural production, vegetation sensitivity to rainfall, and disease transmission. The Uganda rainfall record exhibits steady oscillations of ˜3 and 6 years over 1950-2013. Correlation maps at two-season lead time resolve the subtropical ridge over global oceans as an important feature. Multi-variate environmental predictors include Dec-May south Indian Ocean sea surface temperature, east African upper zonal wind, and South Atlantic wind streamfunction, providing a 33% fit to May-Oct rainfall time series. Composite analysis indicates that cool-phase El Niño Southern Oscillation supports increased May-Oct Uganda rainfall via a zonal overturning lower westerly/upper easterly atmospheric circulation. Sea temperature anomalies are positive in the east Atlantic and negative in the west Indian Ocean in respect of wet seasons. The northern Hadley Cell plays a role in limiting the northward march of the equatorial trough from May to October. An analysis of early season floods found that moist inflow from the west Indian Ocean converges over Uganda, generating diurnal thunderstorm clusters that drift southwestward producing high runoff.

  2. Observed Oceanic and Terrestrial Drivers of North African Climate

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y.

    2015-12-01

    Hydrologic variability can pose a serious threat to the poverty-stricken regions of North Africa. Yet, the current understanding of oceanic versus terrestrial drivers of North African droughts/pluvials is largely model-based, with vast disagreement among models. In order to identify the observed drivers of North African climate and develop a benchmark for model evaluations, the multivariate Generalized Equilibrium Feedback Assessment (GEFA) is applied to observations, remotely sensed data, and reanalysis products. The identified primary oceanic drivers of North African rainfall variability are the Atlantic, tropical Indian, and tropical Pacific Oceans and Mediterranean Sea. During the summer monsoon, positive tropical eastern Atlantic sea-surface temperature (SST) anomalies are associated with a southward shift of the Inter-Tropical Convergence Zone, enhanced ocean evaporation, and greater precipitable water across coastal West Africa, leading to increased West African monsoon (WAM) rainfall and decreased Sahel rainfall. During the short rains, positive SST anomalies in the western tropical Indian Ocean and negative anomalies in the eastern tropical Indian Ocean support greater easterly oceanic flow, evaporation over the western ocean, and moisture advection to East Africa, thereby enhancing rainfall. The sign, magnitude, and timing of observed vegetation forcing on rainfall vary across North Africa. The positive feedback of leaf area index (LAI) on rainfall is greatest during DJF for the Horn of Africa, while it peaks in autumn and is weakest during the summer monsoon for the Sahel. Across the WAM region, a positive LAI anomaly supports an earlier monsoon onset, increased rainfall during the pre-monsoon, and decreased rainfall during the wet season. Through unique mechanisms, positive LAI anomalies favor enhanced transpiration, precipitable water, and rainfall across the Sahel and Horn of Africa, and increased roughness, ascent, and rainfall across the WAM region. The current study represents the first attempt to separate the observed roles of oceanic and vegetation feedbacks across North Africa, and provides observational benchmark for model evaluation.

  3. Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans

    NASA Astrophysics Data System (ADS)

    Ronchail, Josyane; Cochonneau, Gérard; Molinier, Michel; Guyot, Jean-Loup; Chaves, Adriana Goretti De Miranda; Guimarães, Valdemar; de Oliveira, Eurides

    2002-11-01

    Rainfall variability in the Amazon basin is studied in relation to sea-surface temperatures (SSTs) in the equatorial Pacific and the northern and southern tropical Atlantic during the 1977-99 period, using the HiBAm original rainfall data set and complementary cluster and composite analyses.The northeastern part of the basin, north of 5 °S and east of 60 °W, is significantly related with tropical SSTs: a rainier wet season is observed when the equatorial Pacific and the northern (southern) tropical Atlantic are anomalously cold (warm). A shorter and drier wet season is observed during El Niño events and negative rainfall anomalies are also significantly associated with a warm northern Atlantic in the austral autumn and a cold southern Atlantic in the spring. The northeastern Amazon rainfall anomalies are closely related with El Niño-southern oscillation during the whole year, whereas the relationships with the tropical Atlantic SST anomalies are mainly observed during the autumn. A time-space continuity is observed between El Niño-related rainfall anomalies in the northeastern Amazon, those in the northern Amazon and south-eastern Amazon, and those in northern South America and in the Nordeste of Brazil.A reinforcement of certain rainfall anomalies is observed when specific oceanic events combine. For instance, when El Niño and cold SSTs in the southern Atlantic are associated, very strong negative anomalies are observed in the whole northern Amazon basin. Nonetheless, the comparison of the cluster and the composite analyses results shows that the rainfall anomalies in the northeastern Amazon are not always associated with tropical SST anomalies.In the southern and western Amazon, significant tropical SST-related rainfall anomalies are very few and spatially variable. The precipitation origins differ from those of the northeastern Amazon: land temperature variability, extratropical perturbations and moisture advection are important rainfall factors, as well as SSTs. This could partially explain why: (a) the above-mentioned signals weaken or disappear, with the exception of the relative dryness that is observed at the peak of an El Niño event and during the dry season when northern Atlantic SSTs are warmer than usual; (b) rainfall anomalies tend to resemble those of southeastern South America, noticeably at the beginning and the end of El Niño and La Niña events; (c) some strong excesses of rain are not associated with any SST anomalies and merit further investigation.

  4. Florida Agriculture - Utilizing TRMM to Analyze Sea Breeze Thunderstorm Patterns During El Nino Southern Oscillations and Their Effects Upon Available Fresh Water for South Florida Agricultural Planning and Management

    NASA Technical Reports Server (NTRS)

    Billiot, Amanda; Lee, Lucas; McKee, Jake; Cooley, Zachary Clayton; Mitchell, Brandie

    2010-01-01

    This project utilizes Tropical Rainfall Measuring Mission (TRMM) and Landsat satellite data to assess the impact of sea breeze precipitation upon areas of agricultural land use in southern Florida. Water is a critical resource to agriculture, and the availability of water for agricultural use in Florida continues to remain a key issue. Recent projections of statewide water use by 2020 estimate that 9.3 billion gallons of water per day will be demanded, and agriculture represents 47% of this demand (Bronson 2003). Farmers have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. Sea breeze thunderstorms are responsible for much of the rainfall delivered to Florida during the wet season (May-October) and have been recognized as an important overall contributor of rainfall in southern Florida (Almeida 2003). TRMM satellite data was used to analyze how sea breeze-induced thunderstorms during El Nino and La Nina affected interannual patterns of precipitation in southern Florida from 1998-2009. TRMM's Precipitation Radar and Microwave Imager provide data to quantify water vapor in the atmosphere, precipitation rates and intensity, and the distribution of precipitation. Rainfall accumulation data derived from TRMM and other microwave sensors were used to analyze the temporal and spatial variations of rainfall during each phase of the El Nino Southern Oscillation (ENSO). Through the use of TRMM and Landsat, slight variations were observed, but it was determined that neither sea breeze nor total rainfall patterns in South Florida were strongly affected by ENSO during the study period. However, more research is needed to characterize the influence of ENSO on summer weather patterns in South Florida. This research will provide the basis for continued observations and study with the Global Precipitation Measurement Mission.

  5. Intrinsic Coupled Ocean-Atmosphere Modes of the Asian Summer Monsoon: A Re-assessment of Monsoon-ENSO Relationships

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Wu, H. T.

    2000-01-01

    Using global rainfall and sea surface temperature (SST) data for the past two decades (1979-1998), we have investigated the intrinsic modes of Asian summer monsoon (ASM) and ENSO co-variability. Three recurring ASM rainfall-SST coupled modes were identified. The first is a basin scale mode that features SST and rainfall variability over the entire tropics (including the ASM region), identifiable with those occurring during El Nino or La Nina. This mode is further characterized by a pronounced biennial variation in ASM rainfall and SST associated with fluctuations of the anomalous Walker circulation that occur during El Nino/La Nina transitions. The second mode comprises mixed regional and basin-scale rainfall and SST signals, with pronounced intraseasonal and interannual variabilities. This mode features a SST pattern associated with a developing La Nina, with a pronounced low level anticyclone in the subtropics of the western Pacific off the coast of East Asia. The third mode depicts an east-west rainfall and SST dipole across the southern equatorial Indian Ocean, most likely stemming from coupled ocean-atmosphere processes within the ASM region. This mode also possesses a decadal time scale and a linear trend, which are not associated with El Nino/La Nina variability. Possible causes of year-to-year rainfall variability over the ASM and sub-regions have been evaluated from a reconstruction of the observed rainfall from singular eigenvectors of the coupled modes. It is found that while basin-scale SST can account for portions of ASM rainfall variability during ENSO events (up to 60% in 1998), regional processes can accounts up to 20-25% of the rainfall variability in typical non-ENSO years. Stronger monsoon-ENSO relationship tends to occur in the boreal summer immediately preceding a pronounced La Nina, i.e., 1998, 1988 and 1983. Based on these results, we discuss the possible impacts of the ASM on ENSO variability via the west Pacific anticyclone and articulate a hypothesis that anomalous wind forcings derived from the anticyclone may be instrumental in inducing a strong biennial modulation to natural ENSO cycles.

  6. Response of Tropical Forests to Intense Climate Variability and Rainfall Anomaly over the Last Decade

    NASA Astrophysics Data System (ADS)

    Saatchi, S.; Asefi, S.

    2012-04-01

    During the last decade, strong precipitation anomalies resulted from increased sea surface temperature in the tropical Atlantic, have caused extensive drying trends in rainforests of western Amazonia, exerting water stress, tree mortality, biomass loss, and large-scale fire disturbance. In contrast, there have been no reports on large-scale disturbance in rainforests of west and central Africa, though being exposed to similar intensity of climate variability. Using data from Tropical Rainfall Mapping Mission (TRMM) (1999-2010), and time series of rainfall observations from meteorological stations (1971-2000), we show that both Amazonian and African rainforest experienced strong precipitation anomalies from 2005-2010. We monitored the response of forest to the climate variability by analyzing the canopy water content observed by SeaWinds Ku-band Scatterometer (QSCAT) (1999-2009) and found that more than 70 million ha of forests in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy backscatter that persisted until the next major drought in 2010. This decline in backscatter has been attributed to loss of canopy water content and large-scale tree mortality corroborated by ground and airborne observations. However, no strong impacts was observed on tropical forests of Africa, suggesting that the African rainforest may have more resilience to droughts. We tested this hypothesis by examining the seasonal rainfall patterns, maximum water deficit, and the surface temperature variations. Results show that there is a complex pattern of low annual rainfall, moderate seasonality, and lower surface temperature in Central Africa compared to Amazonia, indicating potentially a lower evapotranspiration circumventing strong water deficits

  7. Response of Tropical Forests to Intense Climate Variability and Rainfall Anomaly of Last Decade

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.; Asefi Najafabady, S.

    2011-12-01

    During the last decade, strong precipitation anomalies resulted from increased sea surface temperature in the tropical Atlantic, have caused extensive drying trends in rainforests of western Amazonia, exerting water stress, tree mortality, biomass loss, and large-scale fire disturbance. In contrast, there have been no reports on large-scale disturbance in rainforests of west and central Africa, though being exposed to similar intensity of climate variability. Using data from Tropical Rainfall Mapping Mission (TRMM) (1999-2010), and time series of rainfall observations from meteorological stations (1971-2000), we show that both Amazonian and African rainforest experienced strong precipitation anomalies from 2005-2010. We monitored the response of forest to the climate variability by analyzing the canopy water content observed by SeaWinds Ku-band Scatterometer (QSCAT) (1999-2009) and found that more than 70 million ha of forests in western Amazonia experienced a strong water deficit during the dry season of 2005 and a closely corresponding decline in canopy backscatter that persisted until the next major drought in 2010. This decline in backscatter has been attributed to loss of canopy water content and large-scale tree mortality corroborated by ground and airborne observations. However, no strong impacts was observed on tropical forests of Africa, suggesting that the African rainforest may have more resilience to droughts. We tested this hypothesis by examining the seasonal rainfall patterns, maximum water deficit, and the surface temperature variations. Results show that there is a complex pattern of low annual rainfall, moderate seasonality, and lower surface temperature in Central Africa compared to Amazonia, indicating potentially a lower evapotranspiration circumventing strong water deficits.

  8. Development of flood probability charts for urban drainage network in coastal areas through a simplified joint assessment approach

    NASA Astrophysics Data System (ADS)

    Archetti, R.; Bolognesi, A.; Casadio, A.; Maglionico, M.

    2011-04-01

    The operating conditions of urban drainage networks during storm events certainly depend on the hydraulic conveying capacity of conduits but also on downstream boundary conditions. This is particularly true in costal areas where the level of the receiving water body is directly or indirectly affected by tidal or wave effects. In such cases, not just different rainfall conditions (varying intensity and duration), but also different sea-levels and their effects on the network operation should be considered. This paper aims to study the behaviour of a seaside town storm sewer network, estimating the threshold condition for flooding and proposing a simplified method to assess the urban flooding severity as a function of either climate variables. The case study is a portion of the drainage system of Rimini (Italy), implemented and numerically modelled by means of InfoWorks CS code. The hydraulic simulation of the sewerage system has therefore allowed to identify the percentage of nodes of the drainage system where flooding is expected to occur. Combining these percentages with both climate variables values has lead to the definition charts representing the combined degree of risk "sea-rainfall" for the drainage system under investigation. A final comparison between such charts and the results obtained from a one-year sea-rainfall time series has confirmed the reliability of the analysis.

  9. Development of flood probability charts for urban drainage network in coastal areas through a simplified joint assessment approach

    NASA Astrophysics Data System (ADS)

    Archetti, R.; Bolognesi, A.; Casadio, A.; Maglionico, M.

    2011-10-01

    The operating conditions of urban drainage networks during storm events depend on the hydraulic conveying capacity of conduits and also on downstream boundary conditions. This is particularly true in coastal areas where the level of the receiving water body is directly or indirectly affected by tidal or wave effects. In such cases, not just different rainfall conditions (varying intensity and duration), but also different sea-levels and their effects on the network operation should be considered. This paper aims to study the behaviour of a seaside town storm sewer network, estimating the threshold condition for flooding and proposing a simplified method to assess the urban flooding severity as a function of climate variables. The case study is a portion of the drainage system of Rimini (Italy), implemented and numerically modelled by means of InfoWorks CS code. The hydraulic simulation of the sewerage system identified the percentage of nodes of the drainage system where flooding is expected to occur. Combining these percentages with both climate variables' values has lead to the definition of charts representing the combined degree of risk "rainfall-sea level" for the drainage system under investigation. A final comparison between such charts and the results obtained from a one-year rainfall-sea level time series has demonstrated the reliability of the analysis.

  10. Global Climatic Indices Influence on Rainfall Spatiotemporal Distribution : A Case Study from Morocco

    NASA Astrophysics Data System (ADS)

    Elkadiri, R.; Zemzami, M.; Phillips, J.

    2017-12-01

    The climate of Morocco is affected by the Mediterranean Sea, the Atlantic Ocean the Sahara and the Atlas mountains, creating a highly variable spatial and temporal distribution. In this study, we aim to decompose the rainfall in Morocco into global and local signals and understand the contribution of the climatic indices (CIs) on rainfall. These analyses will contribute in understanding the Moroccan climate that is typical of other Mediterranean and North African climatic zones. In addition, it will contribute in a long-term prediction of climate. The constructed database ranges from 1950 to 2013 and consists of monthly data from 147 rainfall stations and 37 CIs data provided mostly by the NOAA Climate Prediction Center. The next general steps were followed: (1) the study area was divided into 9 homogenous climatic regions and weighted precipitation was calculated for each region to reduce the local effects. (2) Each CI was decomposed into nine components of different frequencies (D1 to D9) using wavelet multiresolution analysis. The four lowest frequencies of each CI were selected. (3) Each of the original and resulting signals were shifted from one to six months to account for the effect of the global patterns. The application of steps two and three resulted in the creation of 1225 variables from the original 37 CIs. (4) The final 1225 variables were used to identify links between the global and regional CIs and precipitation in each of the nine homogenous regions using stepwise regression and decision tree. The preliminary analyses and results were focused on the north Atlantic zone and have shown that the North Atlantic Oscillation (PC-based) from NCAR (NAOPC), the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), the Western Mediterranean Oscillation (WMO) and the Extreme Eastern Tropical Pacific Sea Surface Temperature (NINO12) have the highest correlation with rainfall (33%, 30%, 27%, 21% and -20%, respectively). In addition the 4-months lagged NINO12 and the 6-months lagged NAOPC and WMO have a collective contribution of more than 45% of the rainfall signal. Low frequencies are also represented in the rainfall; especially the 5th and 4th components of the decomposed CIs (48% and 42% of the frequencies, respectively) suggesting their potential contribution in the interannual rainfall variability.

  11. Mixing to Monsoons: Air-Sea Interactions in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Lucas, A. J.; Shroyer, E. L.; Wijesekera, H. W.; Fernando, H. J. S.; D'Asaro, E.; Ravichandran, M.; Jinadasa, S. U. P.; MacKinnon, J. A.; Nash, J. D.; Sharma, R.; Centurioni, L.; Farrar, J. T.; Weller, R.; Pinkel, R.; Mahadevan, A.; Sengupta, D.; Tandon, A.

    2014-07-01

    More than 1 billion people depend on rainfall from the South Asian monsoon for their livelihoods. Summertime monsoonal precipitation is highly variable on intraseasonal time scales, with alternating "active" and "break" periods. These intraseasonal oscillations in large-scale atmospheric convection and winds are closely tied to 1°C-2°C variations of sea surface temperature in the Bay of Bengal.

  12. On the Predictability of Northeast Monsoon Rainfall over South Peninsular India in General Circulation Models

    NASA Astrophysics Data System (ADS)

    Nair, Archana; Acharya, Nachiketa; Singh, Ankita; Mohanty, U. C.; Panda, T. C.

    2013-11-01

    In this study the predictability of northeast monsoon (Oct-Nov-Dec) rainfall over peninsular India by eight general circulation model (GCM) outputs was analyzed. These GCM outputs (forecasts for the whole season issued in September) were compared with high-resolution observed gridded rainfall data obtained from the India Meteorological Department for the period 1982-2010. Rainfall, interannual variability (IAV), correlation coefficients, and index of agreement were examined for the outputs of eight GCMs and compared with observation. It was found that the models are able to reproduce rainfall and IAV to different extents. The predictive power of GCMs was also judged by determining the signal-to-noise ratio and the external error variance; it was noted that the predictive power of the models was usually very low. To examine dominant modes of interannual variability, empirical orthogonal function (EOF) analysis was also conducted. EOF analysis of the models revealed they were capable of representing the observed precipitation variability to some extent. The teleconnection between the sea surface temperature (SST) and northeast monsoon rainfall was also investigated and results suggest that during OND the SST over the equatorial Indian Ocean, the Bay of Bengal, the central Pacific Ocean (over Nino3 region), and the north and south Atlantic Ocean enhances northeast monsoon rainfall. This observed phenomenon is only predicted by the CCM3v6 model.

  13. Performance of ICTP's RegCM4 in Simulating the Rainfall Characteristics over the CORDEX-SEA Domain

    NASA Astrophysics Data System (ADS)

    Neng Liew, Ju; Tangang, Fredolin; Tieh Ngai, Sheau; Chung, Jing Xiang; Narisma, Gemma; Cruz, Faye Abigail; Phan Tan, Van; Thanh, Ngo-Duc; Santisirisomboon, Jerasron; Milindalekha, Jaruthat; Singhruck, Patama; Gunawan, Dodo; Satyaningsih, Ratna; Aldrian, Edvin

    2015-04-01

    The performance of the RegCM4 in simulating rainfall variations over the Southeast Asia regions was examined. Different combinations of six deep convective parameterization schemes, namely i) Grell scheme with Arakawa-Schubert closure assumption, ii) Grell scheme with Fritch-Chappel closure assumption, iii) Emanuel MIT scheme, iv) mixed scheme with Emanuel MIT scheme over the Ocean and the Grell scheme over the land, v) mixed scheme with Grell scheme over the land and Emanuel MIT scheme over the ocean and (vi) Kuo scheme, and three ocean flux treatments were tested. In order to account for uncertainties among the observation products, four different gridded rainfall products were used for comparison. The simulated climate is generally drier over the equatorial regions and slightly wetter over the mainland Indo-China compare to the observation. However, simulation with MIT cumulus scheme used over the land area consistently produces large amplitude of positive rainfall biases, although it simulates more realistic annual rainfall variations. The simulations are found less sensitive to treatment of ocean fluxes. Although the simulations produced the rainfall climatology well, all of them simulated much stronger interannual variability compare to that of the observed. Nevertheless, the time evolution of the inter-annual variations was well reproduced particularly over the eastern part of maritime continent. Over the mainland Southeast Asia (SEA), unrealistic rainfall anomalies processes were simulated. The lacking of summer season air-sea interaction results in strong oceanic forcings over the regions, leading to positive rainfall anomalies during years with warm ocean temperature anomalies. This incurs much stronger atmospheric forcings on the land surface processes compare to that of the observed. A score ranking system was designed to rank the simulations according to their performance in reproducing different aspects of rainfall characteristics. The result suggests that the simulation with Emanuel MIT convective scheme and BATs land surface scheme produces better collective performance compare to the rest of the simulations.

  14. Seasonal and interannual variability of the Mid-Holocene East Asian monsoon in coral δ18O records from the South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, Donghuai; Gagan, Michael K.; Cheng, Hai; Scott-Gagan, Heather; Dykoski, Carolyn A.; Edwards, R. Lawrence; Su, Ruixia

    2005-08-01

    Understanding the full range of past monsoon variability, with reference to specific monsoon seasons, is essential to test coupled climate models and improve their predictive capabilities. We present a 54-year long, high-resolution skeletal oxygen isotope (δ18O) record extracted from a well-preserved, massive Porites sp. coral at Hainan Island, South China Sea, to investigate East Asian monsoon variability during summer and winter ∼4400 calendar yr ago. Analysis of modern coral δ18O confirms that Porites from Hainan Island are well positioned to record winter monsoon forcing of sea surface temperature (SST), as well as the influence of summer monsoon rainfall on sea surface salinity (SSS). The coral record for ∼4400 yr ago shows ∼9% amplification of the annual cycle of δ18O, in good agreement with coupled ocean-atmosphere models showing higher summer rainfall (lower coral δ18O) and cooler winter SSTs (higher coral δ18O) in response to greater Northern Hemisphere insolation seasonality during the Middle Holocene. Mean SSTs in the South China Sea during the Mid-Holocene were within 0.5 °C of modern values, yet the mean δ18O for the fossil coral is ∼0.6‰ higher than that for the modern coral, suggesting that the δ18O of surface seawater was higher by at least ∼0.5‰, relative to modern values. The 18O-enrichment is likely to be driven by greater advection of moisture towards the Asian landmass, enhanced monsoon wind-induced evaporation and vertical mixing, and/or invigorated advection of saltier 18O-enriched Pacific water into the relatively fresh South China Sea. The 18O-enrichment of the northern South China Sea ∼4400 yr ago contributes to mounting evidence for recent freshening of the tropical Western Pacific. Today, winter SST and summer SSS variability in the South China Sea reflect the interannual influence of ENSO and the biennial variability inherent to monsoon precipitation. Spectral analysis of winter SSTs ∼4400 yr ago reveals a strong ENSO cycle at 6.7 y, which is significantly longer than the average 3.6 y cycle observed since 1970. The results suggest that the influence of ENSO on winter SSTs in the South China Sea was well established by ∼4400 yr ago. However, spectral analysis of summer SSS ∼4400 yr ago shows no significant ENSO cycle, suggesting that teleconnections between ENSO and summer monsoon rainfall were restricted. Taken together, the results indicate marked differences in ENSO-monsoon interactions during the winter and summer monsoon seasons in the past. The fossil coral δ18O record also shows that the amplitude of interannual SST and SSS variability was stronger ∼4400 yr ago, despite ENSO variability being significantly weaker in the Pacific region. Thus it appears that the strengthened Mid-Holocene monsoon was sensitive to forces, other than ENSO, that acted as alternative drivers of interannual monsoon variability. If this is the case, greater interannual climate variability could accompany the strengthening of the Asian monsoon predicted to occur during the 21st century as transient greenhouse warming preferentially warms Eurasia, even if ENSO perturbations remain relatively stable.

  15. Enhancement of vegetation-rainfall feedbacks on the Australian summer monsoon by the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Notaro, Michael

    2018-01-01

    A regional climate modeling analysis of the Australian monsoon system reveals a substantial modulation of vegetation-rainfall feedbacks by the Madden Julian Oscillation (MJO), both of which operate at similar sub-seasonal time scales, as evidence that the intensity of land-atmosphere interactions is sensitive to the background atmospheric state. Based on ensemble experiments with imposed modification of northern Australian leaf area index (LAI), the atmospheric responses to LAI anomalies are composited for negative and positive modes of the propagating MJO. In the regional climate model (RCM), northern Australian vegetation feedbacks are characterized by evapotranspiration (ET)-driven rainfall responses, with the moisture feedback mechanism dominating over albedo and roughness feedback mechanisms. During November-April, both Tropical Rainfall Measuring Mission and RCM data reveal MJO's pronounced influence on rainfall patterns across northern Australia, tropical Indian Ocean, Timor Sea, Arafura Sea, and Gulf of Carpentaria, with the MJO dominating over vegetation feedbacks in terms of regulating monsoon rainfall variability. Convectively-active MJO phases support an enhancement of positive vegetation feedbacks on monsoon rainfall. While the MJO imposes minimal regulation of ET responses to LAI anomalies, the vegetation feedback-induced responses in precipitable water, cloud water, and rainfall are greatly enhanced during convectively-active MJO phases over northern Australia, which are characterized by intense low-level convergence and efficient precipitable water conversion. The sub-seasonal response of vegetation-rainfall feedback intensity to the MJO is complex, with significant enhancement of rainfall responses to LAI anomalies in February during convectively-active MJO phases compared to minimal modulation by the MJO during prior and subsequent calendar months.

  16. Inter-annual rainfall variability in the eastern Antilles and coupling with the regional and intra-seasonal circulation

    NASA Astrophysics Data System (ADS)

    Jury, Mark R.

    2016-11-01

    Climate variability in the eastern Antilles island chain is analyzed via principal component analysis of high-resolution monthly rainfall in the period 1981-2013. The second mode reflecting higher rainfall in July-October season between Martinique and Grenada is the focus of this study. Higher rainfall corresponds with a weakened trade wind and boundary current along the southern edge of the Caribbean. This quells the coastal upwelling off Venezuela and builds the freshwater plume east of Trinidad. There is corresponding upper easterly wind flow that intensifies passing tropical waves. During a storm event over the Antilles on 4-5 October 2010, there was inflow from east of Guyana where low salinity and high sea temperatures enable surplus latent heat fluxes. A N-S convective rain band forms ˜500 km east of the cyclonic vortex. Many features at the weather timescale reflect the seasonal correlation and composite difference maps and El Nino Southern Oscillation (ENSO) modulation of oceanic inter-basin transfers.

  17. Effects of ambient air temperature, humidity and rainfall on annual survival of adult little penguins Eudyptula minor in southeastern Australia

    NASA Astrophysics Data System (ADS)

    Ganendran, L. B.; Sidhu, L. A.; Catchpole, E. A.; Chambers, L. E.; Dann, P.

    2016-08-01

    Seabirds are subject to the influences of local climate variables during periods of land-based activities such as breeding and, for some species, moult; particularly if they undergo a catastrophic moult (complete simultaneous moult) as do penguins. We investigated potential relationships between adult penguin survival and land-based climate variables (ambient air temperature, humidity and rainfall) using 46 years of mark-recapture data of little penguins Eudyptula minor gathered at a breeding colony on Phillip Island in southeastern Australia. Our results showed that adult penguin survival had a stronger association with land-based climate variables during the moult period, when birds were unable to go to sea for up to 3 weeks, than during the breeding period, when birds could sacrifice breeding success in favour of survival. Annual adult survival probability was positively associated with humidity during moult and negatively associated with rainfall during moult. Prolonged heat during breeding and moult had a negative association with annual adult survival. Local climate projections suggest increasing days of high temperatures, fewer days of rainfall which will result in more droughts (and by implication, lower humidity) and more extreme rainfall events. All of these predicted climate changes are expected to have a negative impact on adult penguin survival.

  18. Effects of ambient air temperature, humidity and rainfall on annual survival of adult little penguins Eudyptula minor in southeastern Australia.

    PubMed

    Ganendran, L B; Sidhu, L A; Catchpole, E A; Chambers, L E; Dann, P

    2016-08-01

    Seabirds are subject to the influences of local climate variables during periods of land-based activities such as breeding and, for some species, moult; particularly if they undergo a catastrophic moult (complete simultaneous moult) as do penguins. We investigated potential relationships between adult penguin survival and land-based climate variables (ambient air temperature, humidity and rainfall) using 46 years of mark-recapture data of little penguins Eudyptula minor gathered at a breeding colony on Phillip Island in southeastern Australia. Our results showed that adult penguin survival had a stronger association with land-based climate variables during the moult period, when birds were unable to go to sea for up to 3 weeks, than during the breeding period, when birds could sacrifice breeding success in favour of survival. Annual adult survival probability was positively associated with humidity during moult and negatively associated with rainfall during moult. Prolonged heat during breeding and moult had a negative association with annual adult survival. Local climate projections suggest increasing days of high temperatures, fewer days of rainfall which will result in more droughts (and by implication, lower humidity) and more extreme rainfall events. All of these predicted climate changes are expected to have a negative impact on adult penguin survival.

  19. Ajustement statistique des simulations climatiques : l'exemple des précipitations saisonnières de l'Amérique tropicaleStatistical adjustment of simulated climate: example of seasonal rainfall of tropical America.

    NASA Astrophysics Data System (ADS)

    Moron, Vincent; Navarra, Antonio

    2000-05-01

    This study presents the skill of the seasonal rainfall of tropical America from an ensemble of three 34-year general circulation model (ECHAM 4) simulations forced with observed sea surface temperature between 1961 and 1994. The skill gives a first idea of the amount of potential predictability if the sea surface temperatures are perfectly known some time in advance. We use statistical post-processing based on the leading modes (extracted from Singular Value Decomposition of the covariance matrix between observed and simulated rainfall fields) to improve the raw skill obtained by simple comparison between observations and simulations. It is shown that 36-55 % of the observed seasonal variability is explained by the simulations on a regional basis. Skill is greatest for Brazilian Nordeste (March-May), but also for northern South America or the Caribbean basin in June-September or northern Amazonia in September-November for example.

  20. Interannual variability and predictability over the Arabian Penuinsula Winter monsoon region

    NASA Astrophysics Data System (ADS)

    Adnan Abid, Muhammad; Kucharski, Fred; Almazroui, Mansour; Kang, In-Sik

    2016-04-01

    Interannual winter rainfall variability and its predictability are analysed over the Arabian Peninsula region by using observed and hindcast datasets from the state-of-the-art European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal prediction System 4 for the period 1981-2010. An Arabian winter monsoon index (AWMI) is defined to highlight the Arabian Peninsula as the most representative region for the Northern Hemispheric winter dominating the summer rainfall. The observations show that the rainfall variability is relatively large over the northeast of the Arabian Peninsula. The correlation coefficient between the Nino3.4 index and rainfall in this region is 0.33, suggesting potentially some modest predictability, and indicating that El Nino increases and La Nina decreases the rainfall. Regression analysis shows that upper-level cyclonic circulation anomalies that are forced by El Nino Southern Oscillation (ENSO) are responsible for the winter rainfall anomalies over the Arabian region. The stronger (weaker) mean transient-eddy activity related to the upper-level trough induced by the warm (cold) sea-surface temperatures during El Nino (La Nina) tends to increase (decrease) the rainfall in the region. The model hindcast dataset reproduces the ENSO-rainfall connection. The seasonal mean predictability of the northeast Arabian rainfall index is 0.35. It is shown that the noise variance is larger than the signal over the Arabian Peninsula region, which tends to limit the prediction skill. The potential predictability is generally increased in ENSO years and is, in particular, larger during La Nina compared to El Nino years in the region. Furthermore, central Pacific ENSO events and ENSO events with weak signals in the Indian Ocean tend to increase predictability over the Arabian region.

  1. Malaria epidemics and the influence of the tropical South Atlantic on the Indian monsoon

    NASA Astrophysics Data System (ADS)

    Cash, B. A.; Rodó, X.; Ballester, J.; Bouma, M. J.; Baeza, A.; Dhiman, R.; Pascual, M.

    2013-05-01

    The existence of predictability in the climate system beyond the relatively short timescales of synoptic weather has provided significant impetus to investigate climate variability and its consequences for society. In particular, relationships between the relatively slow changes in sea surface temperature (SST) and climate variability at widely removed points across the globe provide a basis for statistical and dynamical efforts to predict numerous phenomena, from rainfall to disease incidence, at seasonal to decadal timescales. We describe here a remote influence, identified through observational analysis and supported through numerical experiments with a coupled atmosphere-ocean model, of the tropical South Atlantic (TSA) on both monsoon rainfall and malaria epidemics in arid northwest India. Moreover, SST in the TSA is shown to provide the basis for an early warning of anomalous hydrological conditions conducive to malaria epidemics four months later, therefore at longer lead times than those afforded by rainfall. We find that the TSA is not only significant as a modulator of the relationship between the monsoon and the El Niño/Southern Oscillation, as has been suggested by previous work, but for certain regions and temporal lags is in fact a dominant driver of rainfall variability and hence malaria outbreaks.

  2. Role of monsoon intraseasonal oscillation and its interannual variability in simulation of seasonal mean in CFSv2

    NASA Astrophysics Data System (ADS)

    Pillai, Prasanth A.; Aher, Vaishali R.

    2018-01-01

    Intraseasonal oscillation (ISO), which appears as "active" and "break" spells of rainfall, is an important component of Indian summer monsoon (ISM). The present study investigates the potential of new National Centre for Environmental Prediction (NCEP) climate forecast system version 2 (CFSv2) in simulating the ISO with emphasis to its interannual variability (IAV) and its possible role in the seasonal mean rainfall. The present analysis shows that the spatial distribution of CFSv2 rainfall has noticeable differences with observations in both ISO and IAV time scales. Active-break cycle of CFSv2 has similar evolution during both strong and weak years. Regardless of a reasonable El Niño Southern Oscillation (ENSO)-monsoon teleconnection in the model, the overestimated Arabian Sea (AS) sea surface temperature (SST)-convection relationship hinters the large-scale influence of ENSO over the ISM region and adjacent oceans. The ISO scale convections over AS and Bay of Bengal (BoB) have noteworthy contribution to the seasonal mean rainfall, opposing the influence of boundary forcing in these areas. At the same time, overwhelming contribution of ISO component over AS towards the seasonal mean modifies the effect of slow varying boundary forcing to large-scale summer monsoon. The results here underline that, along with the correct simulation of monsoon ISO, its IAV and relationship with the boundary forcing also need to be well captured in coupled models for the accurate simulation of seasonal mean anomalies of the monsoon and its teleconnections.

  3. Effects of Uncertainty in TRMM Precipitation Radar Path Integrated Attenuation on Interannual Variations of Tropical Oceanic Rainfall

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Fitzjarrald, Dan E.; Kummerow, Christian D.; Arnold, James E. (Technical Monitor)

    2002-01-01

    Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30 deg N/S) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Time series of rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM Precipitation Radar (PR) over the tropical oceans show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. We show that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series. Further analysis of the frequency distribution of PR (2A25 product) rain rates suggests that the algorithm incorporates the attenuation measurement in a very conservative fashion so as to optimize the instantaneous rain rates. Such an optimization appears to come at the expense of monitoring interannual climate variability.

  4. A south equatorial African precipitation dipole and the associated atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Dezfuli, A. K.; Zaitchik, B.; Gnanadesikan, A.

    2013-12-01

    South Equatorial Africa (SEA) is a climatically diverse region that includes a dramatic topographic and vegetation contrast between the lowland, humid Congo basin to the west and the East African Plateau to the east. Due to lack of conventional weather data and a tendency for researchers to treat East and western Africa as separate regions, dynamics of the atmospheric water cycle across SEA have received relatively little attention, particularly at subseasonal timescales. Both western and eastern sectors of SEA are affected by large-scale drivers of the water cycle associated with Atlantic variability (western sector), Indian Ocean variability (eastern sector) and Pacific variability (both sectors). However, a specific characteristic of SEA is strong heterogeneity in interannual rainfall variability that cannot be explained by large-scale climatic phenomena. For this reason, this study examines regional climate dynamics on daily time-scale with a focus on the role that the abrupt topographic contrast between the lowland Congo and the East African highlands plays in driving rainfall behavior on short timescales. Analysis of daily precipitation data during November-March reveals a zonally-oriented dipole mode over SEA that explains the leading pattern of weather-scale precipitation variability in the region. The separating longitude of the two poles is coincident with the zonal variation of topography. An anomalous counter-clockwise atmospheric circulation associated with the dipole mode appears over the entire SEA. The circulation is triggered by its low-level westerly component, which is in turn generated by an interhemispheric pressure gradient. These enhanced westerlies hit the East African highlands and produce topographically-driven low-level convergence and convection that further intensifies the circulation. Recent studies have shown that under climate change the position and intensity of subtropical highs in both hemispheres and the intensity of precipitation over equatorial Africa are projected to change. Both of these trends have implications for the manner in which large-scale dynamics will interact with regional topography, affecting the intensity and frequency of the dipole mode characterized in this study and the occurrence of extreme wet and dry spells in the region.

  5. Relationships between southeastern Australian rainfall and sea surface temperatures examined using a climate model

    NASA Astrophysics Data System (ADS)

    Watterson, I. G.

    2010-05-01

    Rainfall in southeastern Australia has declined in recent years, particularly during austral autumn over the state of Victoria. A recent study suggests that sea surface temperature (SST) variations in both the Indonesian Throughflow (ITF) region and in a meridional dipole in the central Indian Ocean have influenced Victorian late autumn rainfall since 1950. However, it remains unclear to what extent SSTs in these and other regions force such a teleconnection. Analysis of a 1080 year simulation by the climate model CSIRO Mk3.5 shows that the model Victorian rainfall is correlated rather realistically with SSTs but that part of the above relationships is due to the model ENSO. Furthermore, the remote patterns of pressure, rainfall, and land temperature greatly diminish when the data are lagged by 1 month, suggesting that the true forcing by the persisting SSTs is weak. In a series of simulations of the atmospheric Mk3.5 with idealized SST anomalies, raised SSTs to the east of Indonesia lower the simulated Australian rainfall, while those to the west raise it. A positive ITF anomaly lowers pressure over Australia, but with little effect on Victorian rainfall. The meridional dipole and SSTs to the west and southeast of Australia have little direct effect on southeastern Australia in the model. The results suggest that tropical SSTs predominate as an influence on Victorian rainfall. However, the SST indices appear to explain only a fraction of the observed trend, which in the case of decadal means remains within the range of unforced variability simulated by Mk3.5.

  6. Possible connection between large volcanic eruptions and level rise episodes in the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Bookman, R.; Filin, S.; Avni, Y.; Rosenfeld, D.; Marco, S.

    2014-12-01

    The June 1991 Pinatubo volcanic eruption perturbed the atmosphere, triggering short-term worldwide changes in climate. The following winter was anomalously wet in the Levant, with a ~2-meter increase in the Dead Sea level that created a morphological terrace along the lake's shore. Given the global effects of volcanogenic aerosols, we tested the hypothesis that the 1991-92 shore terrace is a modern analogue to the linkage between past volcanic eruptions and a sequence of shore terraces in the Dead Sea Basin. Analysis of precipitation series from Jerusalem showed a significant positive correlation between the Dust Veil Index (DVI) of the modern eruptions and annual rainfall. The DVI was found to explain nearly 50% of the variability in the annual rainfall, such that greater DVI means more rainfall. Other factors that may affect the annual rainfall in the region as the Southern Oscillation Index (SOI) and the North Atlantic oscillations (NAO) were incorporated along with the DVI in a linear multiple regression model. It was found that the NAO did not contribute anything except for increased noise, but the added SOI increased the explained variability of rainfall to more than 60%. Volcanic eruptions with a VEI of 6, as in the Pinatubo, occurred about once a century during the Holocene and the last glacial-interglacial cycle. This occurrence is similar to the frequency of shore terrace build-up during the Lake Lisan desiccation. Sixteen shore terraces, detected using airborne laser scanning data, were interpreted as indicating short-term level rises due to episodes of enhanced precipitation and runoff during the dramatic drop in Lake Lisan's (palaeo-Dead Sea) level at the end of the LGM. The terraces were compared with a time series of volcanogenic sulfate from the GISP2 record, and similar numbers of sulfate concentration peaks and terraces were found. Furthermore, a significant correlation was found between SO4 concentration peaks and the terraces heights. This correlation may indicate a link between the explosivity, magnitude of stratospheric injection, and the impact on the northern hemisphere water balance. The record of such short-term climato-hydrological effects is made possible by the dramatic desiccation of Lake Lisan. Detailed records of such events provide a demonstration of global climatic teleconnections.

  7. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices

    NASA Astrophysics Data System (ADS)

    Funk, C.; Hoell, A.; Shukla, S.; Bladé, I.; Liebmann, B.; Roberts, J. B.; Robertson, F. R.; Husak, G.

    2014-03-01

    In southern Ethiopia, Eastern Kenya, and southern Somalia, poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009, and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers implement disaster risk reduction measures while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts in that region to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we show that the two dominant modes of East African boreal spring rainfall variability are tied, respectively, to western-central Pacific and central Indian Ocean SST. Variations in these rainfall modes can be predicted using two previously defined SST indices - the West Pacific Gradient (WPG) and Central Indian Ocean index (CIO), with the WPG and CIO being used, respectively, to predict the first and second rainfall modes. These simple indices can be used in concert with more sophisticated coupled modeling systems and land surface data assimilations to help inform early warning and guide climate outlooks.

  8. Interdecadal change of the controlling mechanisms for East Asian early summer rainfall variation around the mid-1990s

    NASA Astrophysics Data System (ADS)

    Yim, So-Young; Wang, Bin; Kwon, MinHo

    2014-03-01

    East Asian (EA) summer monsoon shows considerable differences in the mean state and principal modes of interannual variation between early summer (May-June, MJ) and late summer (July-August, JA). The present study focuses on the early summer (MJ) precipitation variability. We find that the interannual variation of the MJ precipitation and the processes controlling the variation have been changed abruptly around the mid-1990s. The rainfall anomaly represented by the leading empirical orthogonal function has changed from a dipole-like pattern in pre-95 epoch (1979-1994) to a tripole-like pattern in post-95 epoch (1995-2010); the prevailing period of the corresponding principal component has also changed from 3-5 to 2-3 years. These changes are concurrent with the changes of the corresponding El Nino-Southern Oscillation (ENSO) evolutions. During the pre-95 epoch, the MJ EA rainfall anomaly is coupled to a slow decay of canonical ENSO events signified by an eastern Pacific warming, which induces a dipole rainfall feature over EA. On the other hand, during the post-95 epoch the anomalous MJ EA rainfall is significantly linked to a rapid decay of a central Pacific warming and a distinct tripolar sea surface temperature (SST) in North Atlantic. The central Pacific warming-induced Philippine Sea anticyclone induces an increased rainfall in southern China and decreased rainfall in central eastern China. The North Atlantic Oscillation-related tripolar North Atlantic SST anomaly induces a wave train that is responsible for the increase northern EA rainfall. Those two impacts form the tripole-like rainfall pattern over EA. Understanding such changes is important for improving seasonal to decadal predictions and long-term climate change in EA.

  9. Latitudinal variation in summer monsoon rainfall over Western Ghat of India and its association with global sea surface temperatures.

    PubMed

    Revadekar, J V; Varikoden, Hamza; Murumkar, P K; Ahmed, S A

    2018-02-01

    The Western Ghats (WG) of India are basically north-south oriented mountains having narrow zonal width with a steep rising western face. The summer monsoon winds during June to September passing over the Arabian Sea are obstructed by the WG and thus orographically uplift to produce moderate-to-heavy precipitation over the region. However, it is seen that characteristic features of rainfall distribution during the season vary from north to south. Also its correlation with all-India summer monsoon rainfall increases from south to north. In the present study, an attempt is also made to examine long-term as well as short-term trends and variability in summer monsoon rainfall over different subdivisions of WG using monthly rainfall data for the period 1871-2014. Konkan & Goa and Coastal Karnataka show increase in rainfall from 1871 to 2014 in all individual summer monsoon months. Short-term trend analysis based on 31-year sliding window indicates that the trends are not monotonous, but has epochal behavior. In recent epoch, magnitudes of negative trends are consistently decreasing and have changed its sign to positive during 1985-2014. It has been observed that Indian Ocean Dipole (IOD) plays a dominant positive role in rainfall over entire WG in all summer monsoon months, whereas role of Nino regions are asymmetric over WG rainfall. Indian summer monsoon is known for its negative relationship with Nino SST. Negative correlations are also seen for WG rainfall with Nino regions but only during onset and withdrawal phase. During peak monsoon months July and August subdivisions of WG mostly show positive correlation with Nino SST. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Studies of regional-scale climate variability and change. Hidden Markov models and coupled ocean-atmosphere modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghil, M.; Kravtsov, S.; Robertson, A. W.

    2008-10-14

    This project was a continuation of previous work under DOE CCPP funding, in which we had developed a twin approach of probabilistic network (PN) models (sometimes called dynamic Bayesian networks) and intermediate-complexity coupled ocean-atmosphere models (ICMs) to identify the predictable modes of climate variability and to investigate their impacts on the regional scale. We had developed a family of PNs (similar to Hidden Markov Models) to simulate historical records of daily rainfall, and used them to downscale GCM seasonal predictions. Using an idealized atmospheric model, we had established a novel mechanism through which ocean-induced sea-surface temperature (SST) anomalies might influencemore » large-scale atmospheric circulation patterns on interannual and longer time scales; we had found similar patterns in a hybrid coupled ocean-atmosphere-sea-ice model. The goal of the this continuation project was to build on these ICM results and PN model development to address prediction of rainfall and temperature statistics at the local scale, associated with global climate variability and change, and to investigate the impact of the latter on coupled ocean-atmosphere modes. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling together with the development of associated software; new intermediate coupled models; a new methodology of inverse modeling for linking ICMs with observations and GCM results; and, observational studies of decadal and multi-decadal natural climate results, informed by ICM results.« less

  11. Numerical simulation diagnostics of a flash flood event in Jeddah, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Samman, Ahmad

    On 26 January 2011, a severe storm hit the city of Jeddah, the second largest city in the Kingdom of Saudi Arabia. The storm resulted in heavy rainfall, which produced a flash flood in a short period of time. This event caused at least eleven fatalities and more than 114 injuries. Unfortunately, the observed rainfall data are limited to the weather station at King Abdul Aziz International airport, which is north of the city, while the most extreme precipitation occurred over the southern part of the city. This observation was useful to compare simulation result even though it does not reflect the severity of the event. The Regional Atmospheric Modeling System (RAMS) developed at Colorado State University was used to study this storm event. RAMS simulations indicted that a quasi-stationary Mesoscale convective system developed over the city of Jeddah and lasted for several hours. It was the source of the huge amount of rainfall. The model computed a total rainfall of more than 110 mm in the southern part of the city, where the flash flood occurred. This precipitation estimation was confirmed by the actual observation of the weather radar. While the annual rainfall in Jeddah during the winter varies from 50 to 100 mm, the amount of the rainfall resulting from this storm event exceeded the climatological total annual rainfall. The simulation of this event showed that warm sea surface temperature, combined with high humidity in the lower atmosphere and a large amount of convective available potential energy (CAPE) provided a favorable environment for convection. It also showed the presence of a cyclonic system over the north and eastern parts of the Mediterranean Sea, and a subtropical anti-cyclone over Northeastern Africa that contributed to cold air advection bringing cold air to the Jeddah area. In addition, an anti-cyclone (blocking) centered over east and southeastern parts of the Arabian Peninsula and the Arabian Sea produced a low level jet over the southern part of the Red Sea, which transported large water vapor amounts over Jeddah. The simulation results showed that the main driver behind the storm was the interaction between these systems over the city of Jeddah (an urban heat island) that produced strong low-level convergence. Several sensitivity experiments were carried out showed that other variables could have contributed to storm severity as well. Those sensitivity experiments included several simulations in which the following variables were changed: physiographic properties were altered by removing the water surfaces, removing the urban heat island environment from the model, and changing the concentration of cloud condensation nuclei. The results of these sensitivity experiments showed that these properties have significant effects on the storm formation and severity.

  12. The influence of El Niño-Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario

    NASA Astrophysics Data System (ADS)

    Fer, Istem; Tietjen, Britta; Jeltsch, Florian; Wolff, Christian

    2017-09-01

    The El Niño-Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature-eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security.

  13. Application of Wavelet Analysis on Variability, Teleconnectivity, and Predictability November-January Taiwan rainfall

    NASA Astrophysics Data System (ADS)

    T.; Gan, Y.

    2009-04-01

    First the wavelet analysis was used to analyze the variability of winter (November-January) rainfall (1974-2006) of Taiwan and seasonal sea surface temperature (SST) in selected domains of the Pacific Ocean. From the scale average wavelet power (SAWP) computed for the seasonal rainfall and seasonal SST, it seems that these data exhibit interannual oscillations at 2-4-year period. Correlations between rainfall and SST SAWP were further estimated. Next the SST in selected sectors of the western Pacific Ocean (around 5°N-30°N, 120°E-150°E) was used as predictors to predict the winter rainfall of Taiwan at one season lead time using an Artificial Neural Network calibrated by Genetic Algorithm (ANN-GA). The ANN-GA was first calibrated using the 1974-1998 data and independently validated using 1999-2005 data. In terms of summary statistics such as the correlation coefficient, root-mean-square errors (RMSE), and Hansen-Kuipers (HK) scores, the seasonal prediction for northern and western Taiwan are generally good for both calibration and validation stages, but not so in some stations located in southeast Taiwan and Central Mountain.

  14. How much of the interannual variability of East Asian summer rainfall is forced by SST?

    NASA Astrophysics Data System (ADS)

    He, Chao; Wu, Bo; Li, Chunhui; Lin, Ailan; Gu, Dejun; Zheng, Bin; Zhou, Tianjun

    2016-07-01

    It is widely accepted that the interannual variability of East Asian summer rainfall is forced by sea surface temperature (SST), and SST anomalies are widely used as predictors of East Asian summer rainfall. But it is still not very clear what percentage of the interannual rainfall variability is contributed by SST anomalies. In this study, Atmospheric general circulation model simulations forced by observed interannual varying SST are compared with those forced by the fixed annual cycle of SST climatology, and their ratios of interannual variance (IAV) are analyzed. The output of 12 models from the 5th Phase of Coupled Model Intercomparison Project (CMIP5) are adopted, and idealized experiments are done by Community Atmosphere Model version 4 (CAM4). Both the multi-model median of CMIP5 models and CAM4 experiments show that only about 18 % of the IAV of rainfall over East Asian land (EAL) is explained by SST, which is significantly lower than the tropical western Pacific, but comparable to the mid-latitude western Pacific. There is no significant difference between the southern part and the northern part of EAL in the percentages of SST contribution. The remote SST anomalies regulates rainfall over EAL probably by modulating the horizontal water vapor transport rather than the vertical motion, since the horizontal water vapor transport into EAL is strongly modulated by SST but the vertical motion over EAL is not. Previous studies argued about the relative importance of tropical Indian Ocean and tropical Pacific Ocean to East Asian summer rainfall anomalies. Our idealized experiments performed by CAM4 suggest that the contributions from these two ocean basins are comparable to each other, both of which account for approximately 6 % of the total IAV of rainfall over EAL.

  15. Effects of ocean-atmosphere coupling on rainfall over the Indian Ocean and northwestern Pacific Ocean during boreal summer

    NASA Astrophysics Data System (ADS)

    Zhou, Z. Q.; Xie, S. P.; Zhou, W.

    2016-12-01

    Atmosphere general circulation model (AGCM), forced with specified SST, has been widely used in climate studies. On one hand, AGCM is much faster to run compared to coupled general circulation model (CGCM). Also, the identical SST forcing allows a clean evaluation of the atmospheric component of CGCM. On the other hand, the coupling between atmosphere and ocean is missed in such atmosphere-only simulations. It is not clear how such simplification could affect the simulate of the atmosphere. In this study, the impact of ocean-atmosphere coupling is studied by comparing a CGCM simulation with an AGCM simulation which is forced with monthly SSTs specified from the CGCM simulation. Particularly, we focus on the climatology and interannual variability of rainfall over the IONWP during boreal summer. The IONWP is a unique region with a strong negative correlation between sea surface temperature (SST) and rainfall during boreal summer on the interannual time scale. The lead/lag correlation analysis suggests a negative feedback of rainfall on SST, which is only reasonably captured by CGCMs. We find that the lack of the negative feedback in AGCM not only enhances the climatology and interannual variability of rainfall but also increases the internal variability of rainfall over the IONWP. A simple mechanism is proposed to explain such enhancement. In addition, AGCM is able to capture the large-scale rainfall pattern over the IONWP during boreal summer, this is because that rainfall here is caused by remote ENSO effect on the interannual time scale. Our results herein suggest that people should be more careful when using an AGCM for climate change studies.

  16. Downscaling of Global Climate Change Estimates to Regional Scales: An Application to Iberian Rainfall in Wintertime.

    NASA Astrophysics Data System (ADS)

    von Storch, Hans; Zorita, Eduardo; Cubasch, Ulrich

    1993-06-01

    A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique.The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It is shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM).The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous `2 C02' doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of 1 mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the Iberian Peninsula, the change is 10 mm/month, with a minimum of 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ("business as usual") increase Of C02, the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different.

  17. The Roles of Climate Change and El Niño in the Record Low Rainfall in October 2015 in Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Karoly, David; Black, Mitchell; Grose, Michael; King, Andrew

    2017-04-01

    The island state of Tasmania, in southeast Australia, received record low average rainfall of 21 mm in October 2015, 17% of the 1961-90 normal. This had major impacts across the state, affecting agriculture and hydroelectric power generation and preconditioning the landscape for major bushfires the following summer. Rainfall in Tasmania is normally high throughout the year, with variations in Austral spring associated with mean sea level pressure (MSLP) and circulation variations due to El Niño, the Indian Ocean dipole (IOD), and the southern annular mode (SAM). Spring rainfall is declining and projected to decrease further in Tasmania We have investigated the roles of anthropogenic climate change, the 2015/16 El Niño, and internal atmospheric variability on this record low October rainfall using observational data, regional climate simulations driven by specified sea surface temperatures (SSTs) from the weather@home Australia and New Zealand (w@h ANZ) project, and coupled climate model simulations from the Coupled Model Intercomparison Project phase 5. Anthropogenic climate change and the strong El Niño in 2015 very likely increased the chances of breaking the previous record low rainfall in 1965. In terms of contributions to the magnitude of this rainfall deficit, internal atmospheric variability as indicated by the Pacific-South American MSLP pattern was likely the main contributor, with El Niño next and a smaller but significant contribution from anthropogenic climate change. In this case, it was the MSLP and circulation changes associated with anthropogenic climate change in the Southern Hemisphere middle and high latitudes and not the thermodynamic effects of anthropogenic climate change that contributed to this event. Karoly, D. J., M.T. Black, M.R. Grose and A. D. King (2016) The roles of climate change and El Niño in the record low rainfall in October 2015 in Tasmania, Australia [in "Explaining Extremes of 2015 from a Climate Perspective"]. Bull. Am. Met. Soc., 97, S127-S130.

  18. The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability

    NASA Astrophysics Data System (ADS)

    Rai, P.; Joshi, M.; Dimri, A. P.; Turner, A. G.

    2017-08-01

    The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean-atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.

  19. The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability

    NASA Astrophysics Data System (ADS)

    Rai, P.; Joshi, M.; Dimri, A. P.; Turner, A. G.

    2018-06-01

    The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean-atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.

  20. Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño

    NASA Astrophysics Data System (ADS)

    Chowdary, Jasti S.; Harsha, H. S.; Gnanaseelan, C.; Srinivas, G.; Parekh, Anant; Pillai, Prasanth; Naidu, C. V.

    2017-04-01

    In general the Indian summer monsoon (ISM) rainfall is near normal or excess during the El Niño decay phase. Nevertheless the impact of large variations in decaying El Niño on the ISM rainfall and circulation is not systematically examined. Based on the timing of El Niño decay with respect to boreal summer season, El Niño decay phases are classified into three types in this study using 142 years of sea surface temperature (SST) data, which are as follows: (1) early-decay (ED; decay during spring), (2) mid-summer decay (MD; decay by mid-summer) and (3) no-decay (ND; no decay in summer). It is observed that ISM rainfall is above normal/excess during ED years, normal during MD years and below normal/deficit in ND years, suggesting that the differences in El Niño decay phase display profound impact on the ISM rainfall. Tropical Indian Ocean (TIO) SST warming, induced by El Niño, decays rapidly before the second half of the monsoon season (August and September) in ED years, but persists up to the end of the season in MD years, whereas TIO warming maintained up to winter in ND case. Analysis reveals the existence of strong sub-seasonal ISM rainfall variations in the summer following El Niño years. During ED years, strong negative SST anomalies develop over the equatorial central-eastern Pacific by June and are apparent throughout the summer season accompanied by anomalous moisture divergence and high sea level pressure (SLP). The associated moisture convergence and low SLP over ISM region favour excess rainfall (mainly from July onwards). This circulation and rainfall anomalies are highly influenced by warm TIO SST and Pacific La Niña conditions in ED years. Convergence of southwesterlies from Arabian Sea and northeasterlies from Bay of Bengal leads to positive rainfall over most part of the Indian subcontinent from August onwards in MD years. ND years are characterized by negative rainfall anomaly spatial pattern and weaker circulation over India throughout the summer season, which are mainly due to persisting El Niño related warm SST anomalies over the Pacific. Atmospheric general circulation model simulation supports our hypothesis that El Niño decay variations modulate ISM rainfall and circulation.

  1. Nonlinear responses of southern African rainfall to forcing from Atlantic SST in a high-resolution regional climate model

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, high resolution satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA) are used as a basis for undertaking model experiments using a state-of-the-art regional climate model. The MIRA dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the regional climate model's domain size are briefly presented, before a comparison of simulated daily rainfall from the model with the satellite-derived dataset. Secondly, simulations of current climate and rainfall extremes from the model are compared to the MIRA dataset at daily timescales. Finally, the results from the idealised SST experiments are presented, suggesting highly nonlinear associations between rainfall extremes remote SST anomalies.

  2. Pattern Analysis of El Nino and La Nina Phenomenon Based on Sea Surface Temperature (SST) and Rainfall Intensity using Oceanic Nino Index (ONI) in West Java Area

    NASA Astrophysics Data System (ADS)

    Prasetyo, Yudo; Nabilah, Farras

    2017-12-01

    Climate change occurs in 1998-2016 brings significant alteration in the earth surface. It is affects an extremely anomaly temperature such as El Nino and La Nina or mostly known as ENSO (El Nino Southern Oscillation). West Java is one of the regions in Indonesia that encounters the impact of this phenomenon. Climate change due to ENSO also affects food production and other commodities. In this research, processing data method is conducted using programming language to process SST data and rainfall data from 1998 to 2016. The data are sea surface temperature from NOAA satellite, SST Reynolds (Sea Surface Temperature) and daily rainfall temperature from TRMM satellite. Data examination is done using analysis of rainfall spatial pattern and sea surface temperature (SST) where is affected by El Nino and La Nina phenomenon. This research results distribution map of SST and rainfall for each season to find out the impacts of El Nino and La Nina around West Java. El Nino and La Nina in Java Sea are occurring every August to February. During El Nino, sea surface temperature is between 27°C - 28°C with average temperature on 27.71°C. Rainfall intensity is 1.0 mm/day - 2.0 mm/day and the average are 1.63 mm/day. During La Nina, sea surface temperature is between 29°C - 30°C with average temperature on 29.06°C. Rainfall intensity is 9.0 mm/day - 10 mm/day, and the average is 9.74 mm/day. The correlation between rainfall and SST is 0,413 which is expresses a fairly strong correlation between parameters. The conclusion is, during La Nina SST and rainfall increase. While during El Nino SST and rainfall decrease. Hopefully this research could be a guideline to plan disaster mitigation in West Java region that is related extreme climate change.

  3. Analysis of the nonlinearity of Asian summer monsoon intraseasonal variability using spherical PDFs

    NASA Astrophysics Data System (ADS)

    Jajcay, Nikola; Hannachi, Abdel

    2013-04-01

    The Asian summer monsoon (ASM) is a high-dimensional and highly complex phenomenon affecting more than one fifth of the world population. The intraseasonal component of the ASM undergoes periods of active and break phases associated respectively with enhanced and reduced rainfall over the Indian subcontinent and surroundings. In this paper the nonlinear nature of the intraseasonal monsoon variability is investigated using the leading EOFs of ERA-40 sea level pressure reanalyses field over the ASM region. The probability density function is then computed in spherical coordinates using a Epaneshnikov kernel method. Three significant modes are identified. They represent respectively (i) East - West mode with above normal sea level pressure over East China sea and below normal pressure over Himalayas, (ii) mode with above normal sea level pressure over East China sea (without compensating centre of opposite sign as in (i)) and (iii) mode with below normal sea level pressure over East China sea (same as (ii) but with opposite sign). Relationship to large scale flow are also investigated and discussed.

  4. Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms

    NASA Astrophysics Data System (ADS)

    Lu, Fuzhi; Ma, Chunmei; Zhu, Cheng; Lu, Huayu; Zhang, Xiaojian; Huang, Kangyou; Guo, Tianhong; Li, Kaifeng; Li, Lan; Li, Bing; Zhang, Wenqing

    2018-03-01

    Projecting how the East Asian summer monsoon (EASM) rainfall will change with global warming is essential for human sustainability. Reconstructing Holocene climate can provide critical insight into its forcing and future variability. However, quantitative reconstructions of Holocene summer precipitation are lacking for tropical and subtropical China, which is the core region of the EASM influence. Here we present high-resolution annual and summer rainfall reconstructions covering the whole Holocene based on the pollen record at Xinjie site from the lower Yangtze region. Summer rainfall was less seasonal and 30% higher than modern values at 10-6 cal kyr BP and gradually declined thereafter, which broadly followed the Northern Hemisphere summer insolation. Over the last two millennia, however, the summer rainfall has deviated from the downward trend of summer insolation. We argue that greenhouse gas forcing might have offset summer insolation forcing and contributed to the late Holocene rainfall anomaly, which is supported by the TraCE-21 ka transient simulation. Besides, tropical sea-surface temperatures could modulate summer rainfall by affecting evaporation of seawater. The rainfall pattern concurs with stalagmite and other proxy records from southern China but differs from mid-Holocene rainfall maximum recorded in arid/semiarid northern China. Summer rainfall in northern China was strongly suppressed by high-northern-latitude ice volume forcing during the early Holocene in spite of high summer insolation. In addition, the El Niño/Southern Oscillation might be responsible for droughts of northern China and floods of southern China during the late Holocene. Furthermore, quantitative rainfall reconstructions indicate that the Paleoclimate Modeling Intercomparison Project (PMIP) simulations underestimate the magnitude of Holocene precipitation changes. Our results highlight the spatial and temporal variability of the Holocene EASM precipitation and potential forcing mechanisms, which are very helpful for calibration of paleoclimate models and prediction of future precipitation changes in East Asia in the scenario of global warming.

  5. Markov modulated Poisson process models incorporating covariates for rainfall intensity.

    PubMed

    Thayakaran, R; Ramesh, N I

    2013-01-01

    Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.

  6. Analysis of rainfall and temperature time series to detect long-term climatic trends and variability over semi-arid Botswana

    NASA Astrophysics Data System (ADS)

    Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.; Moalafhi, D. B.

    2018-03-01

    Arid and semi-arid environments have been identified with locations prone to impacts of climate variability and change. Investigating long-term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible inhomogeneities and years of intervention are analysed using four absolute homogeneity tests. Trends in the climatic variables were determined using Mann-Kendall and Sen's Slope estimator statistics. Association of El Niño Southern Oscillation (ENSO) with local climate is also investigated through multivariate analysis. Results from the study show that rainfall time series are fully homogeneous with 78.6 and 50% of the stations for maximum and minimum temperature, respectively, showing homogeneity. Trends also indicate a general decrease of 5.8, 7.4 and 18.1% in annual, summer and winter rainfall, respectively. Warming trends are observed in annual and winter temperature at 0.3 and 1.5% for maximum temperature and 1.7 and 6.5% for minimum temperature, respectively. Rainfall reported a positive correlation with Southern Oscillation Index (SOI) and at the same time negative association with Sea Surface Temperatures (SSTs). Strong relationships between SSTs and maximum temperature are observed during the El Niño and La Niña years. These study findings could facilitate planning and management of agricultural and water resources in Botswana.

  7. Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations

    NASA Astrophysics Data System (ADS)

    Joshi, Sneh; Kar, Sarat C.

    2018-02-01

    Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.

  8. Tree-Ring Reconstruction of Wet Season Rainfall Totals in the Amazon

    NASA Astrophysics Data System (ADS)

    Stahle, D. W.; Lopez, L.; Granato-Souza, D.; Barbosa, A. C. M. C.; Torbenson, M.; Villalba, R.; Pereira, G. D. A.; Feng, S.; Schongart, J.; Cook, E. R.

    2017-12-01

    The Amazon Basin is a globally important center of deep atmospheric convection, energy balance, and biodiversity, but only a handful of weather stations in this vast Basin have recorded rainfall measurements for at least 50 years. The available rainfall and river level observations suggest that the hydrologic cycle in the Amazon may have become amplified in the last 40-years, with more extreme rainfall and streamflow seasonality, deeper droughts, and more severe flooding. These changes in the largest hydrological system on earth may be early evidence of the expected consequences of anthropogenic climate change and deforestation in the coming century. Placing these observed and simulated changes in the context of natural climate variability during the late Holocene is a significant challenge for high-resolution paleoclimatology. We have developed exactly dated and well-replicated annual tree-ring chronologies from two native Amazonian tree species (Cedrela sp and Centrolobium microchaete). These moisture sensitive chronologies have been used to compute two reconstructions of wet season rainfall totals, one in the southern Amazon based on Centrolobium and another in the eastern equatorial Amazon using Cedrela. Both reconstructions are over 200-years long and extend the available instrumental observations in each region by over 150-years. These reconstructions are well correlated with the same regional and large-scale climate dynamics that govern the inter-annual variability of the instrumental wet season rainfall totals. Increased multi-decadal variability is reconstructed after 1950 with the Centrolobium chronologies in the southern Amazon. The Cedrela reconstruction from the eastern Amazon exhibits changes in the spatial pattern of correlation with regional rainfall stations and the large-scale sea surface temperature field after 1990 that may be consistent with recent changes in the mean position of the Inter-Tropical Convergence Zone in March over the western Atlantic and South American sector.

  9. Modelled rainfall skill assessment against a 1000-year time/space isotope dendro-climatology for southern Africa

    NASA Astrophysics Data System (ADS)

    Woodborne, Stephan; Hall, Grant; Zhang, Qiong

    2016-04-01

    Palaeoclimate reconstruction using isotopic analysis of tree growth increments has yielded a 1000-year record of rainfall variability in southern Africa. Isotope dendro-climatology reconstructions from baobab trees (Adansonia digitata) provide evidence for rainfall variability from the arid Namib Desert and the Limpopo River Valley. Isotopic analysis of a museum specimen of a yellowwood tree (Podocarps falcatus) yields another record from the southwestern part of the subcontinent. Combined with the limited classic denro-climatologies available in the region these records yield palaeo-rainfall variability in the summer and winter rainfall zones as well as the hyper-arid zone over the last 1000 years. Coherent shifts in all of the records indicate synoptic changes in the westerlies, the inter-tropical convergence zone, and the Congo air boundary. The most substantial rainfall shift takes place at about 1600 CE at the onset of the Little Ice Age. Another distinctive feature of the record is a widespread phenomenon that occurs shortly after 1810 CE that in southern Africa corresponds with a widespread social upheaval known as the Difequane or Mfekane. Large scale forcing of the system includes sea-surface temperatures in the Agulhas Current, the El Nino Southern Oscillation and the Southern Annular Mode. The Little Ice Age and Mfekane climate shifts result from different forcing mechanisms, and the rainfall response in the different regions at these times do not have a fixed phase relationship. This complexity provides a good scenario to test climate models. A first order (wetter versus drier) comparison between each of the tree records and a 1000-year palaeoclimate model simulation for the Little Ice Age and Mfekane transitions demonstrates a generally good correspondence.

  10. Interannual Tropical Rainfall Variability in General Circulation Model Simulations Associated with the Atmospheric Model Intercomparison Project.

    NASA Astrophysics Data System (ADS)

    Sperber, K. R.; Palmer, T. N.

    1996-11-01

    The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979-88 as part of the Atmospheric Model Intercomparison Project (AMIP). The interannual variations of Nordeste rainfall are the most readily captured, owing to the intimate link with Pacific and Atlantic sea surface temperatures. The precipitation variations over India and the Sahel are less well simulated. Additionally, an Indian monsoon wind shear index was calculated for each model. Evaluation of the interannual variability of a wind shear index over the summer monsoon region indicates that the models exhibit greater fidelity in capturing the large-scale dynamic fluctuations than the regional-scale rainfall variations. A rainfall/SST teleconnection quality control was used to objectively stratify model performance. Skill scores improved for those models that qualitatively simulated the observed rainfall/El Niño- Southern Oscillation SST correlation pattern. This subset of models also had a rainfall climatology that was in better agreement with observations, indicating a link between systematic model error and the ability to simulate interannual variations.A suite of six European Centre for Medium-Range Weather Forecasts (ECMWF) AMIP runs (differing only in their initial conditions) have also been examined. As observed, all-India rainfall was enhanced in 1988 relative to 1987 in each of these realizations. All-India rainfall variability during other years showed little or no predictability, possibly due to internal chaotic dynamics associated with intraseasonal monsoon fluctuations and/or unpredictable land surface process interactions. The interannual variations of Nordeste rainfall were best represented. The State University of New York at Albany/National Center for Atmospheric Research Genesis model was run in five initial condition realizations. In this model, the Nordeste rainfall variability was also best reproduced. However, for all regions the skill was less than that of the ECMWF model.The relationships of the all-India and Sahel rainfall/SST teleconnections with horizontal resolution, convection scheme closure, and numerics have been evaluated. Models with resolution T42 performed more poorly than lower-resolution models. The higher resolution models were predominantly spectral. At low resolution, spectral versus gridpoint numerics performed with nearly equal verisimilitude. At low resolution, moisture convergence closure was slightly more preferable than other convective closure techniques. At high resolution, the models that used moisture convergence closure performed very poorly, suggesting that moisture convergence may be problematic for models with horizontal resolution T42.

  11. Prediction model for peninsular Indian summer monsoon rainfall using data mining and statistical approaches

    NASA Astrophysics Data System (ADS)

    Vathsala, H.; Koolagudi, Shashidhar G.

    2017-01-01

    In this paper we discuss a data mining application for predicting peninsular Indian summer monsoon rainfall, and propose an algorithm that combine data mining and statistical techniques. We select likely predictors based on association rules that have the highest confidence levels. We then cluster the selected predictors to reduce their dimensions and use cluster membership values for classification. We derive the predictors from local conditions in southern India, including mean sea level pressure, wind speed, and maximum and minimum temperatures. The global condition variables include southern oscillation and Indian Ocean dipole conditions. The algorithm predicts rainfall in five categories: Flood, Excess, Normal, Deficit and Drought. We use closed itemset mining, cluster membership calculations and a multilayer perceptron function in the algorithm to predict monsoon rainfall in peninsular India. Using Indian Institute of Tropical Meteorology data, we found the prediction accuracy of our proposed approach to be exceptionally good.

  12. Improve projections of changes in southern African summer rainfall through comprehensive multi-timescale empirical statistical downscaling

    NASA Astrophysics Data System (ADS)

    Dieppois, B.; Pohl, B.; Eden, J.; Crétat, J.; Rouault, M.; Keenlyside, N.; New, M. G.

    2017-12-01

    The water management community has hitherto neglected or underestimated many of the uncertainties in climate impact scenarios, in particular, uncertainties associated with decadal climate variability. Uncertainty in the state-of-the-art global climate models (GCMs) is time-scale-dependant, e.g. stronger at decadal than at interannual timescales, in response to the different parameterizations and to internal climate variability. In addition, non-stationarity in statistical downscaling is widely recognized as a key problem, in which time-scale dependency of predictors plays an important role. As with global climate modelling, therefore, the selection of downscaling methods must proceed with caution to avoid unintended consequences of over-correcting the noise in GCMs (e.g. interpreting internal climate variability as a model bias). GCM outputs from the Coupled Model Intercomparison Project 5 (CMIP5) have therefore first been selected based on their ability to reproduce southern African summer rainfall variability and their teleconnections with Pacific sea-surface temperature across the dominant timescales. In observations, southern African summer rainfall has recently been shown to exhibit significant periodicities at the interannual timescale (2-8 years), quasi-decadal (8-13 years) and inter-decadal (15-28 years) timescales, which can be interpret as the signature of ENSO, the IPO, and the PDO over the region. Most of CMIP5 GCMs underestimate southern African summer rainfall variability and their teleconnections with Pacific SSTs at these three timescales. In addition, according to a more in-depth analysis of historical and pi-control runs, this bias is might result from internal climate variability in some of the CMIP5 GCMs, suggesting potential for bias-corrected prediction based empirical statistical downscaling. A multi-timescale regression based downscaling procedure, which determines the predictors across the different timescales, has thus been used to simulate southern African summer rainfall. This multi-timescale procedure shows much better skills in simulating decadal timescales of variability compared to commonly used statistical downscaling approaches.

  13. Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Singh, G. P.; Singh, Vikas

    2015-04-01

    The performance of 11 Asia-Pacific Economic Cooperation Climate Center (APCC) global climate models (coupled and uncoupled both) in simulating the seasonal summer (June-August) monsoon rainfall variability over Asia (especially over India and East Asia) has been evaluated in detail using hind-cast data (3 months advance) generated from APCC which provides the regional climate information product services based on multi-model ensemble dynamical seasonal prediction systems. The skill of each global climate model over Asia was tested separately in detail for the period of 21 years (1983-2003), and simulated Asian summer monsoon rainfall (ASMR) has been verified using various statistical measures for Indian and East Asian land masses separately. The analysis found a large variation in spatial ASMR simulated with uncoupled model compared to coupled models (like Predictive Ocean Atmosphere Model for Australia, National Centers for Environmental Prediction and Japan Meteorological Agency). The simulated ASMR in coupled model was closer to Climate Prediction Centre Merged Analysis of Precipitation (CMAP) compared to uncoupled models although the amount of ASMR was underestimated in both models. Analysis also found a high spread in simulated ASMR among the ensemble members (suggesting that the model's performance is highly dependent on its initial conditions). The correlation analysis between sea surface temperature (SST) and ASMR shows that that the coupled models are strongly associated with ASMR compared to the uncoupled models (suggesting that air-sea interaction is well cared in coupled models). The analysis of rainfall using various statistical measures suggests that the multi-model ensemble (MME) performed better compared to individual model and also separate study indicate that Indian and East Asian land masses are more useful compared to Asia monsoon rainfall as a whole. The results of various statistical measures like skill of multi-model ensemble, large spread among the ensemble members of individual model, strong teleconnection (correlation analysis) with SST, coefficient of variation, inter-annual variability, analysis of Taylor diagram, etc. suggest that there is a need to improve coupled model instead of uncoupled model for the development of a better dynamical seasonal forecast system.

  14. A 1000-Year Carbon Isotope Rainfall Proxy Record from South African Baobab Trees (Adansonia digitata L.)

    PubMed Central

    2015-01-01

    A proxy rainfall record for northeastern South Africa based on carbon isotope analysis of four baobab (Adansonia digitata L.) trees shows centennial and decadal scale variability over the last 1,000 years. The record is in good agreement with a 200-year tree ring record from Zimbabwe, and it indicates the existence of a rainfall dipole between the summer and winter rainfall areas of South Africa. The wettest period was c. AD 1075 in the Medieval Warm Period, and the driest periods were c. AD 1635, c. AD 1695 and c. AD1805 during the Little Ice Age. Decadal-scale variability suggests that the rainfall forcing mechanisms are a complex interaction between proximal and distal factors. Periods of higher rainfall are significantly associated with lower sea-surface temperatures in the Agulhas Current core region and a negative Dipole Moment Index in the Indian Ocean. The correlation between rainfall and the El Niño/Southern Oscillation Index is non-static. Wetter conditions are associated with predominantly El Niño conditions over most of the record, but since about AD 1970 this relationship inverted and wet conditions are currently associated with la Nina conditions. The effect of both proximal and distal oceanic influences are insufficient to explain the rainfall regime shift between the Medieval Warm Period and the Little Ice Age, and the evidence suggests that this was the result of a northward shift of the subtropical westerlies rather than a southward shift of the Intertropical Convergence Zone. PMID:25970402

  15. A 1000-Year Carbon Isotope Rainfall Proxy Record from South African Baobab Trees (Adansonia digitata L.).

    PubMed

    Woodborne, Stephan; Hall, Grant; Robertson, Iain; Patrut, Adrian; Rouault, Mathieu; Loader, Neil J; Hofmeyr, Michele

    2015-01-01

    A proxy rainfall record for northeastern South Africa based on carbon isotope analysis of four baobab (Adansonia digitata L.) trees shows centennial and decadal scale variability over the last 1,000 years. The record is in good agreement with a 200-year tree ring record from Zimbabwe, and it indicates the existence of a rainfall dipole between the summer and winter rainfall areas of South Africa. The wettest period was c. AD 1075 in the Medieval Warm Period, and the driest periods were c. AD 1635, c. AD 1695 and c. AD1805 during the Little Ice Age. Decadal-scale variability suggests that the rainfall forcing mechanisms are a complex interaction between proximal and distal factors. Periods of higher rainfall are significantly associated with lower sea-surface temperatures in the Agulhas Current core region and a negative Dipole Moment Index in the Indian Ocean. The correlation between rainfall and the El Niño/Southern Oscillation Index is non-static. Wetter conditions are associated with predominantly El Niño conditions over most of the record, but since about AD 1970 this relationship inverted and wet conditions are currently associated with la Nina conditions. The effect of both proximal and distal oceanic influences are insufficient to explain the rainfall regime shift between the Medieval Warm Period and the Little Ice Age, and the evidence suggests that this was the result of a northward shift of the subtropical westerlies rather than a southward shift of the Intertropical Convergence Zone.

  16. Relative roles of aerosols, SST, and snow impurity on snowmelt over the Tibetan Plateau and its their impacts on South Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Kim, K. M.; Tsay, S. C.; Lau, W. K. M.; Yasunari, T. J.; Mahanama, S. P. P.; Koster, R. D.; daSilva, A.

    2017-12-01

    We examine the relative roles of atmospheric aerosol radiative forcing, year-to-year SST (sea surface temperature) variability, and surface radiative forcing by snow impurity on snowmelt over the Tibetan Plateau and their impacts on rainfall and circulation of South Asian summer monsoon. Five-member ensemble experiments are conducted with NASA's GEOS-5 (Goddard Earth Observing System model version 5), equipped with a snow darkening module - GOSWIM (GOddard SnoW Impurity Module), on the Water-Year 2008 (October 2007 to September 2008). Asian summer monsoon in 2008 was near normal in terms of monsoon rainfall over India subcontinent. However, rainfall was excessive in the North while the southern India suffered from the rainfall deficit. The 2008 summer monsoon was accompanied with high loading of aerosols in the Arabian Sea and La Niña condition in the tropical Pacific. To examine the roles high aerosol loading and La Niña condition on the north-south dipole in Indian monsoon rainfall, two sets of experiments, in addition to control runs (CNTRL), are conducted without SST anomalies (CSST) and aerosol radiative feedback (NRF), respectively. Results show that increased aerosol loading in early summer is associated with the increased dust transport during La Niña years. Increased aerosols over the northern India induces EHP-like (elevated heat pump) circulation and increases rainfall over the India subcontinent. Aerosol radiative forcing feedback (CNTRL-NRF) strengthens the EHP-like monsoon circulation even more. Results indicate that anomalous circulation associated with La Niña condition increases aerosol loading by enhancing dust transport as well as by increasing aerosol lifetime. Increased aerosols induces EHP-like feedback processes and increases rainfall over the India subcontinent.

  17. Analysis of spatial autocorrelation patterns of heavy and super-heavy rainfall in Iran

    NASA Astrophysics Data System (ADS)

    Rousta, Iman; Doostkamian, Mehdi; Haghighi, Esmaeil; Ghafarian Malamiri, Hamid Reza; Yarahmadi, Parvane

    2017-09-01

    Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord G i statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.

  18. Satellite time-series data for vegetation phenology detection and environmental assessment in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Suepa, Tanita

    The relationship between temporal and spatial data is considered the major advantage of remote sensing in research related to biophysical characteristics. With temporally formatted remote sensing products, it is possible to monitor environmental changes as well as global climate change through time and space by analyzing vegetation phenology. Although a number of different methods have been developed to determine the seasonal cycle using time series of vegetation indices, these methods were not designed to explore and monitor changes and trends of vegetation phenology in Southeast Asia (SEA). SEA is adversely affected by impacts of climate change, which causes considerable environmental problems, and the increase in agricultural land conversion and intensification also adds to those problems. Consequently, exploring and monitoring phenological change and environmental impacts are necessary for a better understanding of the ecosystem dynamics and environmental change in this region. This research aimed to investigate inter-annual variability of vegetation phenology and rainfall seasonality, analyze the possible drivers of phenological changes from both climatic and anthropogenic factors, assess the environmental impacts in agricultural areas, and develop an enhanced visualization method for phenological information dissemination. In this research, spatio-temporal patterns of vegetation phenology were analyzed by using MODIS-EVI time series data over the period of 2001-2010. Rainfall seasonality was derived from TRMM daily rainfall rate. Additionally, this research assessed environmental impacts of GHG emissions by using the environmental model (DNDC) to quantify emissions from rice fields in Thailand. Furthermore, a web mapping application was developed to present the output of phenological and environmental analysis with interactive functions. The results revealed that satellite time-series data provided a great opportunity to study regional vegetation variability and internal climatic fluctuation. The EVI and phenological patterns varied spatially according to climate variations and human management. The overall regional mean EVI value in SEA from 2001 to 2010 has gradually decreased and phenological trends appeared to shift towards a later and slightly longer growing season. Regional vegetation dynamics over SEA exhibited patterns associated with major climate events such as El Nino in 2005. The rainy season tended to start early and end late and the length of rainy season was slightly longer. However, the amount of rainfall has decreased from 2001 to 2010. The relationship between phenology and rainfall varied among different ecosystems. Additionally, the local scale results indicated that rainfall is a dominant force of phenological changes in naturally vegetated areas and rainfed croplands, whereas human management is a key factor in heavily agricultural areas with irrigated systems. The results of estimating GHG emissions from rice fields in Thailand demonstrated that human management, climate variation, and physical geography had a significant influence on the change in GHG emissions. In addition, the complexity of spatio-temporal patterns in phenology and related variables were displayed on the visualization system with effective functions and an interactive interface. The information and knowledge in this research are useful for local and regional environmental management and for identifying mitigation strategies in the context of climate change and ecosystem dynamics in this region.

  19. Large-scale atmospheric conditions associated with heavy rainfall episodes in Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Lima, Kellen Carla; Satyamurty, Prakki; Fernández, Júlio Pablo Reyes

    2010-07-01

    Heavy rainfall events in austral summer are responsible for almost all the natural disasters in Southeast Brazil. They are mostly associated with two types of atmospheric perturbations: Cold Front (53%) and the South Atlantic Convergence Zone (47%). The important question of what synoptic characteristics distinguish a heavy rainfall event (HRE) from a normal rainfall event (NRE) is addressed in this study. Here, the evolutions of such characteristics are identified through the anomalies with respect to climatology of the composite fields of atmospheric variables. The anomalies associated with HRE are significantly more intense than those associated with NRE in all fundamental atmospheric variables such as outgoing long-wave radiation, sea-level pressure, 500-hPa geopotential, lower and upper tropospheric winds. The moisture flux convergence over Southeast Brazil in the HRE composites is 60% larger than in the NRE composites. The energetics calculations for the HRE that occurred in the beginning of February 1988 strongly suggest that the barotropic instability played an important role in the intensification of the perturbation. These results, especially the intensities of the wind, pressure anomalies, and the moisture convergence are useful for the meteorologists of the Southeast Brazil for forecasting heavy precipitation.

  20. Challenges in predicting and simulating summer rainfall in the eastern China

    NASA Astrophysics Data System (ADS)

    Liang, Ping; Hu, Zeng-Zhen; Liu, Yunyun; Yuan, Xing; Li, Xiaofan; Jiang, Xingwen

    2018-05-01

    To demonstrate the challenge of summer rainfall prediction and simulation in the eastern China, in this work, we examine the skill of the state-of-the-art climate models, evaluate the impact of sea surface temperature (SST) on forecast skill and estimate the predictability by using perfect model approach. The challenge is further demonstrated by assessing the ability of various reanalyses in capturing the observed summer rainfall variability in the eastern China and by examining the biases in reanalyses and in a climate model. Summer rainfall forecasts (hindcasts) initiated in May from eight seasonal forecast systems have low forecast skill with linear correlation of - 0.3 to 0.5 with observations. The low forecast skill is consistent with the low perfect model score ( 0.1-0.3) of atmospheric model forced by observed SST, due to the fact that external forcing (SST) may play a secondary role in the summer rainfall variation in the eastern China. This is a common feature for the climate variation over the middle and high latitude lands, where the internal dynamical processes dominate the rainfall variation in the eastern China and lead to low predictability, and external forcing (such as SST) plays a secondary role and is associated with predictable fraction. Even the reanalysis rainfall has some remarkable disagreements with the observation. Statistically, more than 20% of the observed variance is not captured by the mean of six reanalyses. Among the reanalyses, JRA55 stands out as the most reliable one. In addition, the reanalyses and climate model have pronounced biases in simulating the mean rainfall. These defaults mean an additional challenge in predicting the summer rainfall variability in the eastern China that has low predictability in nature.

  1. The Sahel Region of West Africa: Examples of Climate Analyses Motivated By Drought Management Needs

    NASA Astrophysics Data System (ADS)

    Ndiaye, O.; Ward, M. N.; Siebert, A. B.

    2011-12-01

    The Sahel is one of the most drought-prone regions in the world. This paper focuses on climate sources of drought, and some new analyses mostly driven by users needing climate information to help in drought management strategies. The Sahel region of West Africa is a transition zone between equatorial climate and vegetation to the south, and desert to the north. The climatology of the region is dominated by dry conditions for most of the year, with a single peak in rainfall during boreal summer. The seasonal rainfall total contains both interannual variability and substantial decadal to multidecadal variability (MDV). This brings climate analysis and drought management challenges across this range of timescales. The decline in rainfall from the wet decades of the 1950s and 60s to the dry decades of the 1970s and 80s has been well documented. In recent years, a moderate recovery has emerged, with seasonal totals in the period 1994-2010 significantly higher than the average rainfall 1970-1993. These MDV rainfall fluctuations have expression in large-scale sea-surface temperature fluctuations in all ocean basins, placing the changes in drought frequency within broader ocean-atmosphere climate fluctuation. We have evaluated the changing character of low seasonal rainfall total event frequencies in the Sahel region 1950-2010, highlighting the role of changes in the mean, variance and distribution shape of seasonal rainfall totals as the climate has shifted through the three observed phases. We also consider the extent to which updating climate normals in real-time can damp the bias in expected event frequency, an important issue for the feasibility of index insurance as a drought management tool in the presence of a changing climate. On the interannual timescale, a key factor long discussed for agriculture is the character of rainfall onset. An extended dry spell often occurs early in the rainy season before the crop is fully established, and this often leads to crop failure. This can be viewed as a special case of agricultural drought. Therefore, improving climate information around the time of planting can play a key role in agricultural risk management. Rainfall onset indices have been calculated for stations across Senegal. The problem is climatically challenging because the physical processes that impact rainfall onset appear to span aspects normally studied separately: weather system character, propagating intraseasonal features, and large-scale sea-surface temperature influence. We present aspects of all these, and ideas on how to combine them into seamless information to support agriculture.

  2. Precipitation Climatology over Mediterranean Basin from Ten Years of TRMM Measurements

    NASA Technical Reports Server (NTRS)

    Mehta, Amita V.; Yang, Song

    2008-01-01

    Climatological features of mesoscale rain activities over the Mediterranean region between 5 W-40 E and 28 N-48 N are examined using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 2A25 rain products. The 3B42 rainrates at 3-hourly, 0.25 deg x 0.25 deg spatial resolution for the last 10 years (January 1998 to July 2007) are used to form and analyze the 5-day mean and monthly mean climatology of rainfall. Results show considerable regional and seasonal differences of rainfall over the Mediterranean Region. The maximum rainfall (3-5 mm/day) occurs over the mountain regions of Europe, while the minimum rainfall is observed over North Africa (approximately 0.5 mm/day). The main rainy season over the Mediterranean Sea extends from October to March, with maximum rainfall occurring during November-December. Over the Mediterranean Sea, an average rainrate of approximately 1-2 mm/day is observed, but during the rainy season there is 20% larger rainfall over the western Mediterranean Sea than that over the eastern Mediterranean Sea. During the rainy season, mesoscale rain systems generally propagate from west to east and from north to south over the Mediterranean region, likely to be associated with Mediterranean cyclonic disturbances resulting from interactions among large-scale circulation, orography, and land-sea temperature contrast.

  3. The preconditioning role of Tropical Atlantic Variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall

    NASA Astrophysics Data System (ADS)

    Giannini, A.; Saravanan, R.; Chang, P.

    A comparison of rainfall variability in the semi-arid Brazilian Nordeste in observations and in two sets of model simulations leads to the conclusion that the evolving interaction between Tropical Atlantic Variability (TAV) and the El Niño-Southern Oscillation (ENSO) phenomenon can explain two puzzling features of ENSO's impact on the Nordeste: (1) the event-to-event unpredictability of ENSO's impact; (2) the greater impact of cold rather than warm ENSO events during the past 50 years. The explanation is in the `preconditioning' role of Tropical Atlantic Variability. When, in seasons prior to the mature phase of ENSO, the tropical Atlantic happens to be evolving consistently with the development expected of the ENSO teleconnection, ENSO and TAV add up to force large anomalies in Nordeste rainfall. When it happens to be evolving in opposition to the canonical development of ENSO, then the net outcome is less obvious, but also less anomalous. The more frequent occurrence of tropical Atlantic conditions consistent with those that develop during a cold ENSO event, i.e. of a negative meridional sea surface temperature gradient, explains the weaker warm ENSO and stronger cold ENSO anomalies in Nordeste rainfall of the latter part of the twentieth century. Close monitoring of the evolution of the tropical Atlantic in seasons prior to the mature phase of ENSO should lead to an enhanced forecast potential.

  4. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials

    NASA Astrophysics Data System (ADS)

    Meng, Xianqiang; Liu, Lianwen; Wang, Xingchen T.; Balsam, William; Chen, Jun; Ji, Junfeng

    2018-03-01

    The East Asian summer monsoon (EASM) is an important component of the global climate system. A better understanding of EASM rainfall variability in the past can help constrain climate models and better predict the response of EASM to ongoing global warming. The warm early Pleistocene, a potential analog of future climate, is an important period to study EASM dynamics. However, existing monsoon proxies for reconstruction of EASM rainfall during the early Pleistocene fail to disentangle monsoon rainfall changes from temperature variations, complicating the comparison of these monsoon records with climate models. Here, we present three 2.6 million-year-long EASM rainfall records from the Chinese Loess Plateau (CLP) based on carbonate dissolution, a novel proxy for rainfall intensity. These records show that the interglacial rainfall on the CLP was lower during the early Pleistocene and then gradually increased with global cooling during the middle and late Pleistocene. These results are contrary to previous suggestions that a warmer climate leads to higher monsoon rainfall on tectonic timescales. We propose that the lower interglacial EASM rainfall during the early Pleistocene was caused by reduced sea surface temperature gradients across the equatorial Pacific, providing a testable hypothesis for climate models.

  5. Precipitation measurements for earth-space communications: Accuracy requirements and ground-truth techniques

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.; Kaul, R.

    1981-01-01

    Rainfall which is regarded as one of the more important observations for the measurements of this most variable parameter was made continuously, across large areas and over the sea. Ships could not provide the needed resolution nor could available radars provide the needed breadth of coverage. Microwave observations from the Nimbus-5 satellite offered some hope. Another possibility was suggested by the results of many comparisons between rainfall and the clouds seen in satellite pictures. Sequences of pictures from the first geostationary satellites were employed and a general correspondence between rain and the convective clouds visible in satellite pictures was found. It was demonstrated that the agreement was best for growing clouds. The development methods to infer GATE rainfall from geostationary satellite images are examined.

  6. Seasonal Evolution and Variability Associated with the West African Monsoon System

    NASA Technical Reports Server (NTRS)

    Gu, Guojun; Adler, Robert F.

    2003-01-01

    In this study, we investigate the seasonal variations in surface rainfall and associated large-scale processes in the tropical eastern Atlantic and West African region. The 5-yr (1998-2002) high-quality TRMM rainfall, sea surface temperature (SST), water vapor and cloud liquid water observations are applied along with the NCEP/NCAR reanalysis wind components and a 3-yr (2000-2002) Quickscat satellite-observed surface wind product. Major mean rainfall over West Africa tends to be concentrated in two regions and is observed in two different seasons, manifesting an abrupt shift of the mean rainfall zone during June-July. (i) Near the Gulf of Guinea (about 5 degN), intense convection and rainfall are seen during April-June and roughly follow the seasonality of SST in the tropical eastern Atlantic. (ii) Along the latitudes of about 10 deg. N over the interior West African continent, a second intense rain belt begins to develop from July and remains there during the later summer season. This belt co-exists with a northwardmoved African Easterly Jet (AEJ) and its accompanying horizonal and vertical shear zones, the appearance and intensification of an upper tropospheric Tropical Easterly Jet (TEJ), and a strong low-level westerly flow. Westward-propagating wave signals [ i e . , African easterly waves (AEWs)] dominate the synoptic-scale variability during July-September, in contrast to the evident eastward-propagating wave signals during May- June. The abrupt shift of mean rainfall zone thus turns out to be a combination of two different physical processes: (i) Evident seasonal cycles in the tropical eastern Atlantic ocean which modulate convection and rainfall in the Gulf of Guinea by means of SST thermal forcing and SST-related meridional gradient; (ii) The interaction among the AEJ, TEJ, low-level westerly flow, moist convection and AEWs during July-September which modulates rainfall variability in the interior West Africa, primarily within the ITCZ rain band. Evident seasonality in synoptic-scale wave signals is shown to be a good evidence for this seasonal evolution.

  7. Downscaling of global climate change estimates to regional scales: An application to Iberian rainfall in wintertime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Storch, H.; Zorita, E.; Cubasch, U.

    A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique. The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It ismore » shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM). The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous [open quotes]2 CO[sub 2][close quotes] doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of I mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the lberian Peninsula, the change is - 10 mm/month, with a minimum of - 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ([open quotes]business as usual[close quotes]) increase of CO[sub 2], the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different. 17 refs., 10 figs.« less

  8. Provisionally corrected surface wind data, worldwide ocean-atmosphere surface fields, and Sahelian rainfall variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, M.N.

    Worldwide ship datasets of sea surface temperature (SST), sea level pressure (SLP), and surface vector wind are analyzed for a July-September composite of five Sahelian wet years (1950, 1952, 1953, 1954, 1958) minus five Sahelian dry years (1972, 1973, 1982, 1983, 1984) (W - D). The results are compared with fields for a number of individual years and for 1988 minus 1987 (88 - 87); Sahelian rainfall in 1988 was near the 1951-80 normal, whereas 1987 was very dry. An extensive study of the geostrophic consistency of trends in pressure gradients and observed wind was undertaken. The results suggest, duringmore » the period 1949-88, a mean increase in reported wind speed of about 16% that cannot be explained by trends in geostrophic winds derived from seasonal mean SLP. Estimates of the wind bias are averaged for 18 ocean regions. A map of correlations between Sahelian rainfall and SLP in all available ocean regions is shown to be field significant. Remote atmospheric associations with Sahelian rainfall are consistent with recent suggestions that SST forcing from the tropical Atlantic and the other ocean basins may contribute to variability in seasonal Sahelian rainfall. It is suggested that wetter years in the Sahel are often accompanied by a stronger surface monsoonal flow over the western Indian Ocean and low SLP in the tropical western Pacific near New Guinea, and that there is increased cyclonicity over the extratropical eastern North Atlantic and northwest Europe. In the tropical Atlantic, W - D shows many of the features identified by previous authors. However, the 88-87 fields do not reflect these large-scale tropical Atlantic changes. Instead there is only local strengthening of the pressure gradient and wind flow from Brazil to Senegal. Further individual years are presented (1958, 1972, 1975) to provide specific examples.« less

  9. Peak-summer East Asian rainfall predictability and prediction part II: extratropical East Asia

    NASA Astrophysics Data System (ADS)

    Yim, So-Young; Wang, Bin; Xing, Wen

    2016-07-01

    The part II of the present study focuses on northern East Asia (NEA: 26°N-50°N, 100°-140°E), exploring the source and limit of the predictability of the peak summer (July-August) rainfall. Prediction of NEA peak summer rainfall is extremely challenging because of the exposure of the NEA to midlatitude influence. By examining four coupled climate models' multi-model ensemble (MME) hindcast during 1979-2010, we found that the domain-averaged MME temporal correlation coefficient (TCC) skill is only 0.13. It is unclear whether the dynamical models' poor skills are due to limited predictability of the peak-summer NEA rainfall. In the present study we attempted to address this issue by applying predictable mode analysis method using 35-year observations (1979-2013). Four empirical orthogonal modes of variability and associated major potential sources of variability are identified: (a) an equatorial western Pacific (EWP)-NEA teleconnection driven by EWP sea surface temperature (SST) anomalies, (b) a western Pacific subtropical high and Indo-Pacific dipole SST feedback mode, (c) a central Pacific-El Nino-Southern Oscillation mode, and (d) a Eurasian wave train pattern. Physically meaningful predictors for each principal component (PC) were selected based on analysis of the lead-lag correlations with the persistent and tendency fields of SST and sea-level pressure from March to June. A suite of physical-empirical (P-E) models is established to predict the four leading PCs. The peak summer rainfall anomaly pattern is then objectively predicted by using the predicted PCs and the corresponding observed spatial patterns. A 35-year cross-validated hindcast over the NEA yields a domain-averaged TCC skill of 0.36, which is significantly higher than the MME dynamical hindcast (0.13). The estimated maximum potential attainable TCC skill averaged over the entire domain is around 0.61, suggesting that the current dynamical prediction models may have large rooms to improve. Limitations and future work are also discussed.

  10. Dependence of winter precipitation over Portugal on NAO and baroclinic wave activity

    NASA Astrophysics Data System (ADS)

    Ulbrich, U.; Christoph, M.; Pinto, J. G.; Corte-Real, J.

    1999-03-01

    The relationship between winter (DJF) rainfall over Portugal and the variable large scale circulation is addressed. It is shown that the poles of the sea level pressure (SLP) field variability associated with rainfall variability are shifted about 15° northward with respect to those used in standard definitions of the North Atlantic Oscillation (NAO). It is suggested that the influence of NAO on rainfall dominantly arises from the associated advection of humidity from the Atlantic Ocean. Rainfall is also related to different aspects of baroclinic wave activity, the variability of the latter quantity in turn being largely dependent on the NAO.A negative NAO index (leading to increased westerly surface geostrophic winds into Portugal) is associated with an increased number of deep (ps<980 hPa) surface lows over the central North Atlantic and of intermediate (980

  11. Climate science and famine early warning

    USGS Publications Warehouse

    Verdin, James P.; Funk, Chris; Senay, Gabriel B.; Choularton, R.

    2005-01-01

    Food security assessment in sub-Saharan Africa requires simultaneous consideration of multiple socio-economic and environmental variables. Early identification of populations at risk enables timely and appropriate action. Since large and widely dispersed populations depend on rainfed agriculture and pastoralism, climate monitoring and forecasting are important inputs to food security analysis. Satellite rainfall estimates (RFE) fill in gaps in station observations, and serve as input to drought index maps and crop water balance models. Gridded rainfall time-series give historical context, and provide a basis for quantitative interpretation of seasonal precipitation forecasts. RFE are also used to characterize flood hazards, in both simple indices and stream flow models. In the future, many African countries are likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased climate variability is forecast, with more frequent extreme events. Ethiopia requires special attention. Already facing a food security emergency, troubling persistent dryness has been observed in some areas, associated with a positive trend in Indian Ocean sea surface temperatures. Increased African capacity for rainfall observation, forecasting, data management and modelling applications is urgently needed. Managing climate change and increased climate variability require these fundamental technical capacities if creative coping strategies are to be devised.

  12. Climate science and famine early warning.

    PubMed

    Verdin, James; Funk, Chris; Senay, Gabriel; Choularton, Richard

    2005-11-29

    Food security assessment in sub-Saharan Africa requires simultaneous consideration of multiple socio-economic and environmental variables. Early identification of populations at risk enables timely and appropriate action. Since large and widely dispersed populations depend on rainfed agriculture and pastoralism, climate monitoring and forecasting are important inputs to food security analysis. Satellite rainfall estimates (RFE) fill in gaps in station observations, and serve as input to drought index maps and crop water balance models. Gridded rainfall time-series give historical context, and provide a basis for quantitative interpretation of seasonal precipitation forecasts. RFE are also used to characterize flood hazards, in both simple indices and stream flow models. In the future, many African countries are likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased climate variability is forecast, with more frequent extreme events. Ethiopia requires special attention. Already facing a food security emergency, troubling persistent dryness has been observed in some areas, associated with a positive trend in Indian Ocean sea surface temperatures. Increased African capacity for rainfall observation, forecasting, data management and modelling applications is urgently needed. Managing climate change and increased climate variability require these fundamental technical capacities if creative coping strategies are to be devised.

  13. Climate science and famine early warning

    PubMed Central

    Verdin, James; Funk, Chris; Senay, Gabriel; Choularton, Richard

    2005-01-01

    Food security assessment in sub-Saharan Africa requires simultaneous consideration of multiple socio-economic and environmental variables. Early identification of populations at risk enables timely and appropriate action. Since large and widely dispersed populations depend on rainfed agriculture and pastoralism, climate monitoring and forecasting are important inputs to food security analysis. Satellite rainfall estimates (RFE) fill in gaps in station observations, and serve as input to drought index maps and crop water balance models. Gridded rainfall time-series give historical context, and provide a basis for quantitative interpretation of seasonal precipitation forecasts. RFE are also used to characterize flood hazards, in both simple indices and stream flow models. In the future, many African countries are likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased climate variability is forecast, with more frequent extreme events. Ethiopia requires special attention. Already facing a food security emergency, troubling persistent dryness has been observed in some areas, associated with a positive trend in Indian Ocean sea surface temperatures. Increased African capacity for rainfall observation, forecasting, data management and modelling applications is urgently needed. Managing climate change and increased climate variability require these fundamental technical capacities if creative coping strategies are to be devised. PMID:16433101

  14. A Decade in Climate Changes and Marine Fisheries: Assessing the Catchment Volume in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Kamal, A. H. M.

    2016-12-01

    Global climate change variations over the past 30 years have produced numerous impacts in the abundance and production performance of marine fish and fisheries worldwide. The consequences in terms of flooding of low-lying estuarine habitats due to over rainfall, fluctuation of temperature, dilution of water parameters, devastation of feeding and breeding habitats, salinity fluctuations and acidification of waters, high siltation in coastal area, changes in the sea water table and breeding triggers have raised serious concerns for the well-being of marine fisheries and their production. This study shows that the overall total catchment of marine fisheries was decreased 38% in 2009 compared to 1998 while considers the fishing gears and vessels number used in Peninsular Malaysia. Registered vessels number was increased up to 92% in 2009 compared to 1998 which eventually increased the total catchment volume of marine fisheries. In 2009, the catching efforts and performance was far low as per vessels compared to 1998. Analysis of climate change variables shows that temperature was decreased as rainfall was increased within the year from 1998 to 2009. However, it is still early to conclude that whether climate change variables could have unpleasant impacts on fish production in the tropical seas like Malaysia. In spite of that it is predicted that the prolong exists of monsoon and increases of rainfall in this area resulting the stresses and sometimes interfering on the habitat, reproductive cycle and their related ecosystems in this coastal marine environment in tropics.

  15. A 130 ka reconstruction of rainfall on the Bolivian Altiplano

    NASA Astrophysics Data System (ADS)

    Placzek, C. J.; Quade, J.; Patchett, P. J.

    2013-02-01

    New efforts to link climate reconstructions from shoreline deposits and sediment cores yield an improved and more detailed lake history from the Bolivian Altiplano. On the Southern Altiplano, 10 lake oscillations have been identified from this new unified chronology, each coincident with North Atlantic cold events such as Heinrich Events H5, H2, H1, and the Younger Dryas. By coupling this new lake history to a hydrologic budget model we are able to evaluate precipitation variability on the Southern Bolivian Altiplano over the last 130 ka. These modeling efforts underscore the relative aridity of the Altiplano during the rare and small lake cycles occurring between 80 and 20 ka, when colder temperatures combined with little or no change in rainfall produced smaller paleolakes. Relative aridity between 80 and 20 ka contrasts with the immense Tauca lake cycle (18.1-14.1 ka), which was six times larger than modern Lake Titicaca and coincided with Heinrich Event 1. This improved paleolake record from the Southern Altiplano reveals a strong link between central Andean climate and Atlantic sea-surface temperature gradients during the late Pleistocene, even though today rainfall variability is driven mostly by Pacific sea-surface temperature anomalies associated with El Niño/Southern Oscillation. However, not all Heinrich Events appear to result in lake expansions, most conspicuously during the global cold interval between 80 and 20 ka when the Altiplano and Amazon Basin were relatively arid.

  16. Role of cold surge and MJO on rainfall enhancement over indonesia during east asian winter monsoon

    NASA Astrophysics Data System (ADS)

    Fauzi, R. R.; Hidayat, R.

    2018-05-01

    Intensity of precipitation in Indonesia is influenced by convection and propagation of southwest wind. Objective of this study is to analyze the relationship between cold surge and the phenomenon of intra-seasonal climate variability Madden-julian Oscillation (MJO) for affecting precipitation in Indonesia. The data used for identifying the occurrence of cold surge are meridional wind speed data from the ERA-Interim. In addition, this study also used RMM1 and RMM2 index data from Bureau of Meteorology (BOM) for identifying MJO events. The results showed that during East Asian Winter Monsoon (EAWM) in 15 years (2000-2015), there are 362 cold surge events, 186 MJO events, and 113 cold surge events were associated with MJO events. The spread of cold surge can penetrate to equator and brought mass of water vapor that causes dominant precipitation in the Indonesian Sea up to 50-75% from climatological precipitation during EAWM. The MJO convection activity that moves from west to east also increases precipitation, but the distribution of rainfall is wider than cold surge, especially in Eastern Indonesia. MJO and cold surge simultaneously can increase rainfall over 100-150% in any Indonesian region that affected by MJO and cold surge events. The mechanism of heavy rainfall is illustrated by high activity of moisture transport in areas such as Java Sea and coastal areas of Indonesia.

  17. Variability in rainfall over tropical Australia during summer and relationships with the Bilybara High

    NASA Astrophysics Data System (ADS)

    Reason, C. J. C.

    2018-04-01

    Variability in summer rainfall over tropical Australia, defined here as that part of the continent north of 25° S, and its linkages with regional circulation are examined. In particular, relationships with the mid-level anticyclone (termed the Bilybara High) that exists over the northwestern Australia/Timor Sea region between August and April are considered. This High forms to the southwest of the upper-level anticyclone via a balance between the upper-level divergence over the region of tropical precipitation maximum and planetary vorticity advection and moves south and strengthens during the spring and summer. It is shown that variations in the strength and position of the Bilybara High are related to anomalies in precipitation and temperature over large parts of tropical Australia as well as some areas in the south and southeast of the landmass. Some of the interannual variations in the High are related to ENSO, but there are also a number of neutral years with large anomalies in the High and hence in rainfall. On decadal time scales, a strong relationship exists between the leading mode of tropical Australian rainfall and the Bilybara High. On both interannual and decadal scales, the relationships between the High and the regional rainfall involve changes in the monsoonal northwesterlies blowing towards northern Australia, and further south, in the easterly trade winds over the region.

  18. Co-evolution of monsoonal precipitation in East Asia and the tropical Pacific ENSO system since 2.36 Ma: New insights from high-resolution clay mineral records in the West Philippine Sea

    NASA Astrophysics Data System (ADS)

    Yu, Zhaojie; Wan, Shiming; Colin, Christophe; Yan, Hong; Bonneau, Lucile; Liu, Zhifei; Song, Lina; Sun, Hanjie; Xu, Zhaokai; Jiang, Xuejun; Li, Anchun; Li, Tiegang

    2016-07-01

    Clay mineralogical analysis and scanning electron microscope (SEM) analysis were performed on deep-sea sediments cored on the Benham Rise (core MD06-3050) in order to reconstruct long-term evolution of East Asian Summer Monsoon (EASM) rainfall in the period since 2.36 Ma. Clay mineralogical variations are due to changes in the ratios of smectite, which derive from weathering of volcanic rocks in Luzon Island during intervals of intensive monsoon rainfall, and illite- and chlorite-rich dusts, which are transported from East Asia by winds associated with the East Asian Winter Monsoon (EAWM). Since Luzon is the main source of smectite to the Benham Rise, long-term consistent variations in the smectite/(illite + chlorite) ratio in core MD06-3050 as well as ODP site 1146 in the Northern South China Sea suggest that minor contributions of eolian dust played a role in the variability of this mineralogical ratio and indicate strengthening EASM precipitation in SE Asia during time intervals from 2360 to 1900 kyr, 1200 to 600 kyr, and after 200 kyr. The EASM rainfall record displays a 30 kyr periodicity suggesting the influence of El Niño-Southern Oscillation (ENSO). These intervals of rainfall intensification on Luzon Island are coeval with a reduction in precipitation over central China and an increase in zonal SST gradient in the equatorial Pacific Ocean, implying a reinforcement of La Niña-like conditions. In contrast, periods of reduced rainfall on Luzon Island are associated with higher precipitation in central China and a weakening zonal SST gradient in the equatorial Pacific Ocean, thereby suggesting the development of dominant El Niño-like conditions. Our study, therefore, highlights for the first time a long-term temporal and spatial co-evolution of monsoonal precipitation in East Asia and of the tropical Pacific ENSO system over the past 2.36 Ma.

  19. Using Empirical Orthogonal Teleconnections to Analyze Interannual Precipitation Variability in China

    NASA Astrophysics Data System (ADS)

    Stephan, C.; Klingaman, N. P.; Vidale, P. L.; Turner, A. G.; Demory, M. E.; Guo, L.

    2017-12-01

    Interannual rainfall variability in China affects agriculture, infrastructure and water resource management. A consistent and objective method, Empirical Orthogonal Teleconnection (EOT) analysis, is applied to precipitation observations over China in all seasons. Instead of maximizing the explained space-time variance, the method identifies regions in China that best explain the temporal variability in domain-averaged rainfall. It produces known teleconnections, that include high positive correlations with ENSO in eastern China in winter, along the Yangtze River in summer, and in southeast China during spring. New findings include that variability along the southeast coast in winter, in the Yangtze valley in spring, and in eastern China in autumn, are associated with extratropical Rossby wave trains. The same analysis is applied to six climate simulations of the Met Office Unified Model with and without air-sea coupling and at various horizontal resolutions of 40, 90 and 200 km. All simulations reproduce the observed patterns of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are all patterns associated with the observed physical mechanism. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. Finer resolution does not improve the fidelity of these patterns or their associated mechanisms. Evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient; attention must be paid to associated mechanisms.

  20. Vertical Motion Changes Related to North-East Brazil Rainfall Variability: a GCM Simulation

    NASA Astrophysics Data System (ADS)

    Roucou, Pascal; Oribe Rocha de Aragão, José; Harzallah, Ali; Fontaine, Bernard; Janicot, Serge

    1996-08-01

    The atmospheric structure over north-east Brazil during anomalous rainfall years is studied in the 11 levels of the outputs of the Laboratoire de Météorologie Dynamique atmospheric general circulation model (LMD AGCM). Seven 19-year simulations were performed using observed sea-surface temperature (SST) corresponding to the period 1970- 1988. The ensemble mean is calculated for each month of the period, leading to an ensemble-averaged simulation. The simulated March-April rainfall is in good agreement with observations. Correlations of simulated rainfall and three SST indices relative to the equatorial Pacific and northern and southern parts of the Atlantic Ocean exhibit stronger relationships in the simulation than in the observations. This is particularly true with the SST gradient in the Atlantic (Atlantic dipole). Analyses on 200 ;hPa velocity potential, vertical velocity, and vertical integral of the zonal component of mass flux are performed for years of abnormal rainfall and positive/negative SST anomalies in the Pacific and Atlantic oceans in March-April during the rainy season over the Nordeste region. The results at 200 hPa show a convergence anomaly over Nordeste and a divergence anomaly over the Pacific concomitant with dry seasons associated with warm SST anomalies in the Pacific and warm (cold) waters in the North (South) Atlantic. During drought years convection inside the ITCZ indicated by the vertical velocity exhibits a displacement of the convection zone corresponding to a northward migration of the ITCZ. The east-west circulation depicted by the zonal divergent mass flux shows subsiding motion over Nordeste and ascending motion over the Pacific in drought years, accompanied by warm waters in the eastern Pacific and warm/cold waters in northern/southern Atlantic. Rainfall variability of the Nordeste rainfall is linked mainly to vertical motion and SST variability through the migration of the ITCZ and the east-west circulation.

  1. Potential Predictability and Prediction Skill for Southern Peru Summertime Rainfall

    NASA Astrophysics Data System (ADS)

    WU, S.; Notaro, M.; Vavrus, S. J.; Mortensen, E.; Block, P. J.; Montgomery, R. J.; De Pierola, J. N.; Sanchez, C.

    2016-12-01

    The central Andes receive over 50% of annual climatological rainfall during the short period of January-March. This summertime rainfall exhibits strong interannual and decadal variability, including severe drought events that incur devastating societal impacts and cause agricultural communities and mining facilities to compete for limited water resources. An improved seasonal prediction skill of summertime rainfall would aid in water resource planning and allocation across the water-limited southern Peru. While various underlying mechanisms have been proposed by past studies for the drivers of interannual variability in summertime rainfall across southern Peru, such as the El Niño-Southern Oscillation (ENSO), Madden Julian Oscillation (MJO), and extratropical forcings, operational forecasts continue to be largely based on rudimentary ENSO-based indices, such as NINO3.4, justifying further exploration of predictive skill. In order to bridge this gap between the understanding of driving mechanisms and the operational forecast, we performed systematic studies on the predictability and prediction skill of southern Peru summertime rainfall by constructing statistical forecast models using best available weather station and reanalysis datasets. At first, by assuming the first two empirical orthogonal functions (EOFs) of summertime rainfall are predictable, the potential predictability skill was evaluated for southern Peru. Then, we constructed a simple regression model, based on the time series of tropical Pacific sea-surface temperatures (SSTs), and a more advanced Linear Inverse Model (LIM), based on the EOFs of tropical ocean SSTs and large-scale atmosphere variables from reanalysis. Our results show that the LIM model consistently outperforms the more rudimentary regression models on the forecast skill of domain averaged precipitation index and individual station indices. The improvement of forecast correlation skill ranges from 10% to over 200% for different stations. Further analysis shows that this advantage of LIM is likely to arise from its representation of local zonal winds and the position of Intertropical Convergence Zone (ITCZ).

  2. Local sea surface temperatures add to extreme precipitation in northeast Australia during La Niña

    NASA Astrophysics Data System (ADS)

    Evans, Jason P.; Boyer-Souchet, Irène

    2012-05-01

    This study examines the role played by high sea surface temperatures around northern Australia, in producing the extreme precipitation which occurred during the strong La Niña in December 2010. These extreme rains produced floods that impacted almost 1,300,000 km2, caused billions of dollars in damage, led to the evacuation of thousands of people and resulted in 35 deaths. Through the use of regional climate model simulations the contribution of the observed high sea surface temperatures to the rainfall is quantified. Results indicate that the large-scale atmospheric circulation changes associated with the La Niña event, while associated with above average rainfall in northeast Australia, were insufficient to produce the extreme rainfall and subsequent flooding observed. The presence of high sea surface temperatures around northern Australia added ˜25% of the rainfall total.

  3. Untangling Trends and Drivers of Changing River Discharge Along Florida's Gulf Coast

    NASA Astrophysics Data System (ADS)

    Glodzik, K.; Kaplan, D. A.; Klarenberg, G.

    2017-12-01

    Along the relatively undeveloped Big Bend coastline of Florida, discharge in many rivers and springs is decreasing. The causes are unclear, though they likely include a combination of groundwater extraction for water supply, climate variability, and altered land use. Saltwater intrusion from altered freshwater influence and sea level rise is causing transformative ecosystem impacts along this flat coastline, including coastal forest die-off and oyster reef collapse. A key uncertainty for understanding river discharge change is predicting discharge from rainfall, since Florida's karstic bedrock stores large amounts of groundwater, which has a long residence time. This study uses Dynamic Factor Analysis (DFA), a multivariate data reduction technique for time series, to find common trends in flow and reveal hydrologic variables affecting flow in eight Big Bend rivers since 1965. The DFA uses annual river flows as response time series, and climate data (annual rainfall and evapotranspiration by watershed) and climatic indices (El Niño Southern Oscillation [ENSO] Index and North Atlantic Oscillation [NAO] Index) as candidate explanatory variables. Significant explanatory variables (one evapotranspiration and three rainfall time series) explained roughly 50% of discharge variation across rivers. Significant trends (representing unexplained variation) were shared among rivers, with geographical grouping of five northern rivers and three southern rivers, along with a strong downward trend affecting six out of eight systems. ENSO and NAO had no significant impact. Advancing knowledge of these dynamics is necessary for forecasting how altered rainfall and temperatures from climate change may impact flows. Improved forecasting is especially important given Florida's reliance on groundwater extraction to support its growing population.

  4. Nonlinear Meridional Moisture Advection and the ENSO-Southern China Rainfall Teleconnection

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Cai, Wenju; Zeng, Lili; Wang, Dongxiao

    2018-05-01

    In the boreal cooler months of 2015, southern China (SC) experienced the largest rainfall since 1950, exceeding 4 times the standard deviation of SC rainfall. Although an El Niño typically induces a positive SC rainfall anomaly during these months, the unprecedented rainfall increase cannot be explained by the strong El Niño of 2015/2016, and the dynamics is unclear. Here we show that a nonlinear meridional moisture advection contributes substantially to the unprecedented rainfall increase. During cooler months of 2015, the meridional flow anomaly over the South China Sea region, which acts on an El Niño-induced anomalous meridional moisture gradient, is particularly large and is supported by an anomalous zonal sea surface temperature gradient over the northwestern Pacific, which recorded its largest value in 2015 since 1950. Our study highlights, for the first time, the importance of the nonlinear process associated with the combined impact of a regional sea surface temperature gradient and large-scale El Niño anomalies in forcing El Niño rainfall teleconnection.

  5. Global warming induced hybrid rainy seasons in the Sahel

    NASA Astrophysics Data System (ADS)

    Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald

    2016-10-01

    The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.

  6. A dipole pattern of summertime rainfall across the Indian subcontinent and the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Ting, M.

    2017-12-01

    The Tibetan Plateau (TP) has long been regarded as a key driver for the formation and variations of the Indian summer monsoon (ISM). Recent studies, however, indicated that the ISM also exerts a considerable impact on rainfall variations in the TP, suggesting that the ISM and the TP should be considered as an interactive system. From this perspective, we investigate the co-variability of the July-August mean rainfall across the Indian subcontinent (IS) and the TP. We found that the interannual variation of IS and TP rainfall exhibits a dipole pattern in which rainfall in the central and northern IS tends to be out of phase with that in the southeastern TP. This dipole pattern is associated with significant anomalies in rainfall, atmospheric circulation, and water vapor transport over the Asian continent and nearby oceans. Rainfall anomalies and the associated latent heating in the central and northern IS tend to induce changes in regional circulation -that suppress rainfall in the southeastern TP and vice versa. Furthermore, the sea surface temperature anomalies in the tropical southeastern Indian Ocean can trigger the dipole rainfall pattern by suppressing convection over the central IS and the northern Bay of Bengal, which further induces anomalous anticyclonic circulation to the south of TP that favors more rainfall in the southeastern TP by transporting more water vapor to the region. The dipole pattern is also linked to the Silk-Road wave train due to its link to rainfall over the northwestern IS.

  7. Mapping extreme rainfall in the Northwest Portugal region: statistical analysis and spatial modelling

    NASA Astrophysics Data System (ADS)

    Santos, Monica; Fragoso, Marcelo

    2010-05-01

    Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude, latitude, distance from sea and distance to the highest orographic barrier) on the rainfall behaviours described by the studied variables. The techniques of spatial interpolation evaluated include univariate and multivariate methods: cokriging, kriging, IDW (inverse distance weighted) and multiple linear regression. Validation procedures were used, assessing the estimated errors in the analysis of descriptive statistics of the models. Multiple linear regression models produced satisfactory results in relation to 70% of the rainfall parameters, suggested by lower average percentage of error. However, the results also demonstrates that there is no an unique and ideal model, depending on the rainfall parameter in consideration. Probably, the unsatisfactory results obtained in relation to some rainfall parameters was motivated by constraints as the spatial complexity of the precipitation patterns, as well as to the deficient spatial coverage of the territory by the rain-gauges network. References Diodato, N. (2005). The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Internacional Journal of Climatology, 25(3), 351-363. Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113 - 129.

  8. Possible connection between large volcanic eruptions and level rise episodes in the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Bookman, Revital; Filin, Sagi; Avni, Yoav; Rosenfeld, Daniel; Marco, Shmuel

    2014-05-01

    The June 1991 Pinatubo volcanic eruption perturbed the atmosphere, triggering short-term worldwide changes in surface and lower troposphere temperatures, precipitation, and runoff. The following winter was anomalously wet in the Levant, with a ~2-meter increase in the Dead Sea level that created a distinct morphological terrace along the lake's shore. Given the global radiative and chemical effects of volcanogenic aerosols on climatic systems, we tested the hypothesis that the 1991-92 winter shore terrace is a modern analogue to the linkage between past volcanic eruptions and a sequence of shore terraces on the cliffs around the Dead Sea Basin. Analysis of historical annual precipitation series from Jerusalem showed a significant positive correlation between the Dust Veil Index (DVI) of the modern largest eruptions and corresponding annual rainfall. The DVI was found to explain nearly 50% of the variability in the annual rainfall, such that greater DVI means more rainfall. Other factors that may affect the annual rainfall in the region as the Southern Oscillation Index (SOI) and the North Atlantic oscillations (NAO) were incorporated along with the DVI in a linear multiple regression model. It was found that the NAO did not contribute anything except for increased noise, but the added SOI increased the explained variability of rainfall to more than 60%. The atmospheric effect of the volcanic aerosol cloud produced after the Mt. Pinatubo eruption shows responses in the climate system on a hemispherical to global scale. Volcanic eruptions with a VEI of 6, as in the Pinatubo, occurred about once a century during the Holocene period at a rate that persisted throughout the last glacial-interglacial cycle, though with large variations in the mean. This occurrence is similar to the frequency of shore terrace build-up during the Lake Lisan desiccation. Sixteen shore terraces, detected using airborne laser scanning data, were interpreted as indicating short-term level rises due to episodes of enhanced precipitation and runoff during the dramatic drop in Lake Lisan's (palaeo-Dead Sea) level at the end of the Last Glacial Maximum. The terraces were compared with a dated time series of volcanogenic sulfate from the GISP2 ice core, and similar numbers of sulfate concentration peaks and shore terraces were found. Furthermore, a significant correlation was found between SO4 concentration peaks and the heights of the terraces. This correlation may indicate a link between the explosivity of past eruptions, the magnitude of stratospheric injection, and their impact on the northern hemisphere water balance. The record of such short-term climato-hydrological effects is made possible by the dramatic desiccation of Lake Lisan. Detailed records of such events, albeit rare because of their vulnerability and short longevity, provide an important demonstration of global climatic teleconnections.

  9. Effects of Atlantic warm pool variability over climate of South America tropical transition zone

    NASA Astrophysics Data System (ADS)

    Ricaurte Villota, Constanza; Romero-Rodríguez, Deisy; Andrés Ordoñez-Zuñiga, Silvio; Murcia-Riaño, Magnolia; Coca-Domínguez, Oswaldo

    2016-04-01

    Colombia is located in the northwestern corner of South America in a climatically complex region due to the influence processes modulators of climate both the Pacific and Atlantic region, becoming in a transition zone between phenomena of northern and southern hemisphere. Variations in the climatic conditions of this region, especially rainfall, have been attributed to the influence of the El Nino Southern Oscillation (ENSO), but little is known about the interaction within Atlantic Ocean and specifically Caribbean Sea with the environmental conditions of this region. In this work We studied the influence of the Atlantic Warm Pool (AWP) on the Colombian Caribbean (CC) climate using data of Sea Surface Temperature (SST) between 1900 - 2014 from ERSST V4, compared with in situ data SIMAC (National System for Coral Reef Monitoring in Colombia - INVEMAR), rainfall between 1953-2013 of meteorological stations located at main airports in the Colombian Caribbean zone, administered by IDEAM, and winds data between 2003 - 2014 from WindSat sensor. The parameters analyzed showed spatial differences throughout the study area. SST anomalies, representing the variability of the AWP, showed to be associated with Multidecadal Atlantic Oscillation (AMO) and with the index of sea surface temperature of the North-tropical Atlantic (NTA), the variations was on 3 to 5 years on the ENSO scale and of approximately 11 years possibly related to solar cycles. Rainfall anomalies in the central and northern CC respond to changes in SST, while in the south zone these are not fully engage and show a high relationship with the ENSO. Finally, the winds also respond to changes in SST and showed a signal approximately 90 days possibly related to the Madden-Julian Oscillation, whose intensity depends on the CC region being analyzed. The results confirm that region is a transition zone in which operate several forcing, the variability of climate conditions is difficult to attribute only one, as ENSO, since the role of the AWP in the climate of this region and especially in the central part proves to be decisive, probably due to changes in moisture and heat flows transferred to the atmosphere.

  10. Observed modes of sea surface temperature variability in the South Pacific region

    NASA Astrophysics Data System (ADS)

    Saurral, Ramiro I.; Doblas-Reyes, Francisco J.; García-Serrano, Javier

    2018-02-01

    The South Pacific (SP) region exerts large control on the climate of the Southern Hemisphere at many times scales. This paper identifies the main modes of interannual sea surface temperature (SST) variability in the SP which consist of a tropical-driven mode related to a horseshoe structure of positive/negative SST anomalies within midlatitudes and highly correlated to ENSO and Interdecadal Pacific Oscillation (IPO) variability, and another mode mostly confined to extratropical latitudes which is characterized by zonal propagation of SST anomalies within the South Pacific Gyre. Both modes are associated with temperature and rainfall anomalies over the continental regions of the Southern Hemisphere. Besides the leading mode which is related to well known warmer/cooler and drier/moister conditions due to its relationship with ENSO and the IPO, an inspection of the extratropical mode indicates that it is associated with distinct patterns of sea level pressure and surface temperature advection. These relationships are used here as plausible and partial explanations to the observed warming trend observed within the Southern Hemisphere during the last decades.

  11. Spatio-temporal modelling of dengue fever incidence in Malaysia

    NASA Astrophysics Data System (ADS)

    Che-Him, Norziha; Ghazali Kamardan, M.; Saifullah Rusiman, Mohd; Sufahani, Suliadi; Mohamad, Mahathir; @ Kamariah Kamaruddin, Nafisah

    2018-04-01

    Previous studies reported significant relationship between dengue incidence rate (DIR) and both climatic and non-climatic factors. Therefore, this study proposes a generalised additive model (GAM) framework for dengue risk in Malaysia by using both climatic and non-climatic factors. The data used is monthly DIR for 12 states of Malaysia from 2001 to 2009. In this study, we considered an annual trend, seasonal effects, population, population density and lagged DIR, rainfall, temperature, number of rainy days and El Niño-Southern Oscillation (ENSO). The population density is found to be positively related to monthly DIR. There are generally weak relationships between monthly DIR and climate variables. A negative binomial GAM shows that there are statistically significant relationships between DIR with climatic and non-climatic factors. These include mean rainfall and temperature, the number of rainy days, sea surface temperature and the interaction between mean temperature (lag 1 month) and sea surface temperature (lag 6 months). These also apply to DIR (lag 3 months) and population density.

  12. Interannual rainfall variability over China in the MetUM GA6 and GC2 configurations

    NASA Astrophysics Data System (ADS)

    Stephan, Claudia Christine; Klingaman, Nicholas P.; Vidale, Pier Luigi; Turner, Andrew G.; Demory, Marie-Estelle; Guo, Liang

    2018-05-01

    Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyse the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ˜ 200, 90 and 40 km in the zonal direction at the equator, respectively) are analysed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China but improve with finer resolution and coupling. Empirical orthogonal teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal mean time series. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.

  13. Rainfall variability over South-east Asia - connections with Indian monsoon and ENSO extremes: new perspectives

    NASA Astrophysics Data System (ADS)

    Kripalani, R. H.; Kulkarni, Ashwini

    1997-09-01

    Seasonal and annual rainfall data for 135 stations for periods varying from 25 to 125 years are utilized to investigate and understand the interannual and short-term (decadal) climate variability over the South-east Asian domain. Contemporaneous relations during the summer monsoon period (June to September) reveal that the rainfall variations over central India, north China, northern parts of Thailand, central parts of Brunei and Borneo and the Indonesian region east of 120°E vary in phase. However, the rainfall variations over the regions surrounding the South China Sea, in particular the north-west Philippines, vary in the opposite phase. Possible dynamic causes for the spatial correlation structure obtained are discussed.Based on the instrumental data available and on an objective criteria, regional rainfall anomaly time series for contiguous regions over Thailand, Malaysia, Singapore, Brunei, Indonesia and Philippines are prepared. Results reveal that although there are year-to-year random fluctuations, there are certain epochs of the above- and below-normal rainfall over each region. These epochs are not forced by the El Niño/La Nina frequencies. Near the equatorial regions the epochs tend to last for about a decade, whereas over the tropical regions, away from the Equator, epochs last for about three decades. There is no systematic climate change or trend in any of the series. Further, the impact of El Niño (La Nina) on the rainfall regimes is more severe during the below (above) normal epochs than during the above (below) normal epochs. Extreme drought/flood situations tend to occur when the epochal behaviour and the El Niño/La Nina events are phase-locked.

  14. The western Pacific monsoon in CMIP5 models: Model evaluation and projections

    NASA Astrophysics Data System (ADS)

    Brown, Josephine R.; Colman, Robert A.; Moise, Aurel F.; Smith, Ian N.

    2013-11-01

    ability of 35 models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to simulate the western Pacific (WP) monsoon is evaluated over four representative regions around Timor, New Guinea, the Solomon Islands and Palau. Coupled model simulations are compared with atmosphere-only model simulations (with observed sea surface temperatures, SSTs) to determine the impact of SST biases on model performance. Overall, the CMIP5 models simulate the WP monsoon better than previous-generation Coupled Model Intercomparison Project Phase 3 (CMIP3) models, but some systematic biases remain. The atmosphere-only models are better able to simulate the seasonal cycle of zonal winds than the coupled models, but display comparable biases in the rainfall. The CMIP5 models are able to capture features of interannual variability in response to the El Niño-Southern Oscillation. In climate projections under the RCP8.5 scenario, monsoon rainfall is increased over most of the WP monsoon domain, while wind changes are small. Widespread rainfall increases at low latitudes in the summer hemisphere appear robust as a large majority of models agree on the sign of the change. There is less agreement on rainfall changes in winter. Interannual variability of monsoon wet season rainfall is increased in a warmer climate, particularly over Palau, Timor and the Solomon Islands. A subset of the models showing greatest skill in the current climate confirms the overall projections, although showing markedly smaller rainfall increases in the western equatorial Pacific. The changes found here may have large impacts on Pacific island countries influenced by the WP monsoon.

  15. The Mean State and Inter-annual Variability of East Asian Summer Monsoon in CMIP5 Coupled Models: Does Air-Sea Coupling Improve the Simulations?

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Song, F.

    2014-12-01

    The climatology and inter-annual variability of East Asian summer monsoon (EASM) simulated by 34 Coupled Model Intercomparison Project phase 5 (CMIP5) coupled general circulation models (CGCMs) are evaluated. To estimate the role of air-sea coupling, 17 CGCMs are compared to their corresponding atmospheric general circulation models (AGCMs). The climatological low-level monsoon circulation and mei-yu/changma/baiu rainfall band are improved in CGCMs from AGCMs. The improvement is at the cost of the local cold sea surface temperature (SST) biases in CGCMs, since they decrease the surface evaporation and enhance the circulation. The inter-annual EASM pattern is evaluated by a skill formula and the highest/lowest 8 models are selected to investigate the skill origins. The observed Indian Ocean (IO) warming, tropical eastern Indian Ocean (TEIO) rainfall anomalies and Kelvin wave response are captured well in high-skill models, while these features are not present in low-skill models. Further, the differences in the IO warming between high-skill and low-skill models are rooted in the preceding ENSO simulation. Hence, the IO-WPAC teleconnection is important for CGCMs, similar to AGCMs. However, compared to AGCMs, the easterly anomalies in the southern flank of the WPAC make the TEIO warmer in CGCMs by reducing the climatological monsoon westerlies and decreasing the surface evaporation. The warmer TEIO induces the stronger precipitation anomalies and intensifies the teleconnection. Hence, the inter-annual EASM pattern is better simulated in CGCMs than that in AGCMs. Key words: CMIP5, CGCMs, air-sea coupling, AGCMs, inter-annual EASM pattern, ENSO, IO-WPAC teleconnection

  16. On the nature of rainfall in dry climate: Space-time patterns of convective rain cells over the Dead Sea region and their relations with synoptic state and flash flood generation

    NASA Astrophysics Data System (ADS)

    Belachsen, Idit; Marra, Francesco; Peleg, Nadav; Morin, Efrat

    2017-04-01

    Space-time patterns of rainfall are important climatic characteristics that influence runoff generation and flash flood magnitude. Their derivation requires high-resolution measurements to adequately represent the rainfall distribution, and is best provided by remote sensing tools. This need is further emphasized in dry climate regions, where rainfall is scarce and, often, local and highly variable. Our research is focused on understanding the nature of rainfall events in the dry Dead Sea region (Eastern Mediterranean) by identifying and characterizing the spatial structure and the dynamics of convective storm cores (known as rain cells). To do so, we take advantage of 25 years of corrected and gauge-adjusted weather radar data. A statistical analysis of convective rain-cells spatial and temporal characteristics was performed with respect to synoptic pattern, geographical location, and flash flood generation. Rain cells were extracted from radar data using a cell segmentation method and a tracking algorithm and were divided into rain events. A total of 10,500 rain cells, 2650 cell tracks and 424 rain events were elicited. Rain cell properties, such as mean areal and maximal rain intensity, area, life span, direction and speed, were derived. Rain events were clustered, according to several ERA-Interim atmospheric parameters, and associated with three main synoptic patterns: Cyprus Low, Low to the East of the study region and Active Red Sea Trough. The first two originate from the Mediterranean Sea, while the third is an extension of the African monsoon. On average, the convective rain cells in the region are 90 km2 in size, moving from West to East in 13 ms-1 and living 18 minutes. Several significant differences between rain cells of the various synoptic types were observed. In particular, Active Red Sea Trough rain cells are characterized by higher rain intensities and lower speeds, suggesting a higher flooding potential for small catchments. The north-south negative gradient of mean annual rainfall in the study region was found to be negatively correlated with rain cells intensity and positively correlated with rain cells area. Additional analysis was done for convective rain cells over two nearby catchments located in the central part of the study region, by ascribing some of the rain events to observed flash-flood events. It was found that rain events associated with flash-floods have higher maximal rain cell intensity and lower minimal cell speed than rain events that did not lead to a flash-flood in the watersheds. This information contributes to our understanding of rain patterns over the dry area of the Dead Sea and their connection to flash-floods. The statistical distributions of rain cells properties can be used for high space-time resolution stochastic simulations of rain storms that can serve as an input to hydrological models.

  17. Sources of Sahelian-Sudan moisture: Insights from a moisture-tracing atmospheric model

    NASA Astrophysics Data System (ADS)

    Salih, Abubakr A. M.; Zhang, Qiong; Pausata, Francesco S. R.; Tjernström, Michael

    2016-07-01

    The summer rainfall across Sahelian-Sudan is one of the main sources of water for agriculture, human, and animal needs. However, the rainfall is characterized by large interannual variability, which has attracted extensive scientific efforts to understand it. This study attempts to identify the source regions that contribute to the Sahelian-Sudan moisture budget during July through September. We have used an atmospheric general circulation model with an embedded moisture-tracing module (Community Atmosphere Model version 3), forced by observed (1979-2013) sea-surface temperatures. The result suggests that about 40% of the moisture comes with the moisture flow associated with the seasonal migration of the Intertropical Convergence Zone (ITCZ) and originates from Guinea Coast, central Africa, and the Western Sahel. The Mediterranean Sea, Arabian Peninsula, and South Indian Ocean regions account for 10.2%, 8.1%, and 6.4%, respectively. Local evaporation and the rest of the globe supply the region with 20.3% and 13.2%, respectively. We also compared the result from this study to a previous analysis that used the Lagrangian model FLEXPART forced by ERA-Interim. The two approaches differ when comparing individual regions, but are in better agreement when neighboring regions of similar atmospheric flow features are grouped together. Interannual variability with the rainfall over the region is highly correlated with contributions from regions that are associated with the ITCZ movement, which is in turn linked to the Atlantic Multidecadal Oscillation. Our result is expected to provide insights for the effort on seasonal forecasting of the rainy season over Sahelian Sudan.

  18. Reconstructing East African rainfall and Indian Ocean sea surface temperatures over the last centuries using data assimilation

    NASA Astrophysics Data System (ADS)

    Klein, François; Goosse, Hugues

    2018-06-01

    The relationship between the East African rainfall and Indian Ocean sea-surface temperatures (SSTs) is well established. The potential interest of this covariance to improve reconstructions of both variables over the last centuries is examined here. This is achieved through an off-line method of data assimilation based on a particle filter, using hydroclimate-related records at four East African sites (Lake Naivasha, Lake Challa, Lake Malawi and Lake Masoko) and SSTs-related records at six oceanic sites spread over the Indian Ocean to constrain the Last Millennium Ensemble of simulations performed by CESM1. Skillful reconstructions of the Indian SSTs and East African rainfall can be obtained based on the assimilation of only one of these variables, when assimilating pseudo-proxy data deduced from the model CESM1. The skill of these reconstructions increases with the number of particles selected in the particle filter, although the improvement becomes modest beyond 99 particles. When considering a more realistic framework, the skill of the reconstructions is strongly deteriorated because of the model biases and the uncertainties of the real proxy-based reconstructions. However, it is still possible to obtain a skillful reconstruction of SSTs over most of the Indian Ocean only based on the assimilation of the six SST-related proxy records selected, as far as a local calibration is applied at all individual sites. This underlines once more the critical role of an adequate integration of the signal inferred from proxy records into the climate models for reconstructions based on data assimilation.

  19. Influence of Madden-Julian Oscillation on water budget transported by the Somali low-level jet and the associated Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Ordonez, Paulina; Ribera, Pedro; Gallego, David; Pena-Ortiz, Cristina

    2013-10-01

    Recent studies suggest that there is a strong linkage between the moisture uptake over the equatorial area of the Somali low level jet (SLLJ) and the rainfall variability over most of continental India. Additionally, the Madden-Julian Oscillation (MJO) strongly modulates the intraseasonal variability of the Indian summer monsoon rainfall, since the northward propagation of the boreal summer MJO is closely associated with the active and break phases of monsoon rainfall. But a question remains open: is there a relationship between the moisture transported by the SLLJ and the MJO evolution? In this paper, a Lagrangian approach is used to track the evaporation minus precipitation (E - P) evolution along trajectories of particles initially situated over the equatorial region of SLLJ. The impact of the MJO on the water budget transport of the SLLJ is examined by making composites of the obtained (E-P) fields for the different MJO phases. The spatial structures of the boreal summer intraseasonal oscillation are revealed in our results, which strongly suggest that the main responsible for the rainfall variability associated to the MJO in these regions are the changes in the moisture advected by the SLLJ. In order to assess the MJO-SLLJ interaction, an analysis of the total-column mass and the total-column specific humidity transported by the SLLJ during the MJO life cycle is performed. While a systematic difference between air mass advected to India during active and break phases of MJO is not detected, changes in the moisture of particles are found, with wet (dry) anomalies over enhanced (suppressed) convection region. This result implicitly leads to assume air-sea interaction processes.

  20. Predictability of Seasonal Rainfall over the Greater Horn of Africa

    NASA Astrophysics Data System (ADS)

    Ngaina, J. N.

    2016-12-01

    The El Nino-Southern Oscillation (ENSO) is a primary mode of climate variability in the Greater of Africa (GHA). The expected impacts of climate variability and change on water, agriculture, and food resources in GHA underscore the importance of reliable and accurate seasonal climate predictions. The study evaluated different model selection criteria which included the Coefficient of determination (R2), Akaike's Information Criterion (AIC), Bayesian Information Criterion (BIC), and the Fisher information approximation (FIA). A forecast scheme based on the optimal model was developed to predict the October-November-December (OND) and March-April-May (MAM) rainfall. The predictability of GHA rainfall based on ENSO was quantified based on composite analysis, correlations and contingency tables. A test for field-significance considering the properties of finiteness and interdependence of the spatial grid was applied to avoid correlations by chance. The study identified FIA as the optimal model selection criterion. However, complex model selection criteria (FIA followed by BIC) performed better compared to simple approach (R2 and AIC). Notably, operational seasonal rainfall predictions over the GHA makes of simple model selection procedures e.g. R2. Rainfall is modestly predictable based on ENSO during OND and MAM seasons. El Nino typically leads to wetter conditions during OND and drier conditions during MAM. The correlations of ENSO indices with rainfall are statistically significant for OND and MAM seasons. Analysis based on contingency tables shows higher predictability of OND rainfall with the use of ENSO indices derived from the Pacific and Indian Oceans sea surfaces showing significant improvement during OND season. The predictability based on ENSO for OND rainfall is robust on a decadal scale compared to MAM. An ENSO-based scheme based on an optimal model selection criterion can thus provide skillful rainfall predictions over GHA. This study concludes that the negative phase of ENSO (La Niña) leads to dry conditions while the positive phase of ENSO (El Niño) anticipates enhanced wet conditions

  1. Tropical cyclone rainfall area controlled by relative sea surface temperature

    PubMed Central

    Lin, Yanluan; Zhao, Ming; Zhang, Minghua

    2015-01-01

    Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates. PMID:25761457

  2. Interdecadal Change in SST Anomalies Associated with Winter Rainfall over South China

    NASA Astrophysics Data System (ADS)

    Liantong, Z.

    2012-04-01

    The present study investigates the interdecadal change in winter (January-February-March, or "JFM") rainfall over South China and in South China JFM rainfall-sea surface temperature (SST) relationship by using station observations for the period of 1958-2002, the Met Office Hadley Center's SST data for the period of 1900-2008, and the ERA-40 re-analysis for the period of 1958-2002. It is found that the relationship between South China JFM rainfall and SST experienced an obvious interdecadal change around the year 1978. The analyses show that the JFM rainfall anomalies during 1960-1977 and 1978-2002 were closely associated with the South China Sea (SCS) SST and El Niño-Southern Oscillation (ENSO), respectively. Moreover, southwesterly anomalies at 700 hPa dominate over the South China Sea for positive SCS SST anomaly years during 1960-1977, and for El Niño years during 1978-2002, respectively. These wind anomalies, which are associated with the enhancement of the western Pacific subtropical high, transport more moisture into South China, favoring increases in rainfall. KEY WORDS: ENSO; SCS SST; South China winter rainfall, western Pacific subtropical high.

  3. The Eastern Pacific ITCZ during the Boreal Spring

    NASA Technical Reports Server (NTRS)

    Gu, Guojun; Adler, Robert F.; Sobel, Adam H.

    2004-01-01

    The 6-year (1998-2003) rainfall products from the Tropical Rainfall Measuring Mission (TRMM) are used to quantify the Intertropical Convergence Zone (ITCZ) in the eastern Pacific (defined by longitudinal averages over 90 degrees W-130 degrees W) during boreal spring (March-April). The double ITCZ phenomenon, represented by the occurrence of two maxima with respect to latitude in monthly mean rainfall, is observed in most but not all of the years studied. The relative spatial locations of maxima in sea surface temperature (SST), rainfall, and surface pressure are examined. Interannual and weekly variability are characterized in SST, rainfall, surface convergence, total column water vapor, and cloud water. There appears to be a competition for rainfall between the two hemispheres during this season. When one of the two rainfall maxima is particularly strong, the other tends to be weak, with the total rainfall integrated over the two varying less than does the difference between the rainfall integrated over each separately. There is some evidence for a similar competition between the SST maxima in the two hemispheres, but this is more ambiguous, and there is evidence that some variations in the relative strengths of the two rainfall maxima may be independent of SST. Using a 25-year (1979-2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP), four distinct ITCZ types during March-April are defined, based on the relative strengths of rainfall peaks north and south of, and right over the equator. Composite meridional profiles and spatial distributions of rainfall and SST are documented for each type. Consistent with previous studies, an equatorial cold tongue is essential to the existence of the double ITCZs. However, too strong a cold tongue may dampen either the southern or northern rainfall maximum, depending on the magnitude of SST north of the equator.

  4. Salinity of the Delaware Estuary

    USGS Publications Warehouse

    Cohen, Bernard; McCarthy, Leo T.

    1962-01-01

    The purpose of this investigation was to obtain data on and study the factors affecting the salinity of the Delaware River from Philadelphia, Pa., to the Appoquinimink River, Del. The general chemical quality of water in the estuary is described, including changes in salinity in the river cross section and profile, diurnal and seasonal changes, and the effects of rainfall, sea level, and winds on salinity. Relationships are established of the concentrations of chloride and dissolved solids to specific conductance. In addition to chloride profiles and isochlor plots, time series are plotted for salinity or some quantity representing salinity, fresh-water discharge, mean river level, and mean sea level. The two major variables which appear to have the greatest effect on the salinity of the estuary are the fresh-water flow of the river and sea level. The most favorable combination of these variables for salt-water encroachment occurs from August to early October and the least favorable combination occurs between December and May.

  5. Has the prediction of the South China Sea summer monsoon improved since the late 1970s?

    NASA Astrophysics Data System (ADS)

    Fan, Yi; Fan, Ke; Tian, Baoqiang

    2016-12-01

    Based on the evaluation of state-of-the-art coupled ocean-atmosphere general circulation models (CGCMs) from the ENSEMBLES (Ensemble-based Predictions of Climate Changes and Their Impacts) and DEMETER (Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction) projects, it is found that the prediction of the South China Sea summer monsoon (SCSSM) has improved since the late 1970s. These CGCMs show better skills in prediction of the atmospheric circulation and precipitation within the SCSSM domain during 1979-2005 than that during 1960-1978. Possible reasons for this improvement are investigated. First, the relationship between the SSTs over the tropical Pacific, North Pacific and tropical Indian Ocean, and SCSSM has intensified since the late 1970s. Meanwhile, the SCSSM-related SSTs, with their larger amplitude of interannual variability, have been better predicted. Moreover, the larger amplitude of the interannual variability of the SCSSM and improved initializations for CGCMs after the late 1970s contribute to the better prediction of the SCSSM. In addition, considering that the CGCMs have certain limitations in SCSSM rainfall prediction, we applied the year-to-year increment approach to these CGCMs from the DEMETER and ENSEMBLES projects to improve the prediction of SCSSM rainfall before and after the late 1970s.

  6. Importance of the Annual Cycles of SST and Solar Irradiance for Circulation and Rainfall: A Climate Model Simulation Study

    NASA Technical Reports Server (NTRS)

    Sud, Yogesh C.; Lau, William K. M.; Walker, G. K.; Mehta, V. M.

    2001-01-01

    Annual cycle of climate and precipitation is related to annual cycle of sunshine and sea-surface temperatures. Understanding its behavior is important for the welfare of humans worldwide. For example, failure of Asian monsoons can cause widespread famine and grave economic disaster in the subtropical regions. For centuries meteorologists have struggled to understand the importance of the summer sunshine and associated heating and the annual cycle of sea-surface temperatures (SSTs) on rainfall in the subtropics. Because the solar income is pretty steady from year to year, while SSTs depict large interannual variability as consequence of the variability of ocean dynamics, the influence of SSTs on the monsoons are better understood through observational and modeling studies whereas the relationship of annual rainfall to sunshine remains elusive. However, using NASA's state of the art climate model(s) that can generate realistic climate in a computer simulation, one can answer such questions. We asked the question: if there was no annual cycle of the sunshine (and its associated land-heating) or the SST and its associated influence on global circulation, what will happen to the annual cycle of monsoon rains? By comparing the simulation of a 4-year integration of a baseline Control case with two parallel anomaly experiments: 1) with annual mean solar and 2) with annual mean sea-surface temperatures, we were able to draw the following conclusions: (1) Tropical convergence zone and rainfall which moves with the Sun into the northern and southern hemispheres, specifically over the Indian, African, South American and Australian regions, is strongly modulated by the annual cycles of SSTs as well as solar forcings. The influence of the annual cycle of solar heating over land, however, is much stronger than the corresponding SST influence for almost all regions, particularly the subtropics; (2) The seasonal circulation patterns over the vast land-masses of the Northern Hemisphere at mid and high latitudes also get strongly influenced by the annual cycles of solar heating. The SST influence is largely limited to the oceanic regions of these latitudes; (3) The annual mode of precipitation over Amazonia has an equatorial regime revealing a maxima in the month of March associated with SST, and another maxima in the month of January associated with the solar annual cycles, respectively. The baseline simulation, which has both annual cycles, depicts both annual modes and its rainfall is virtually equal to the sum of those two modes; (4) Rainfall over Sahelian-Africa is significantly reduced (increased) in simulations lacking (invoking) solar irradiation with (without) the annual cycle. In fact, the dominant influence of solar irradiation emerges in almost all monsoonal-land regions: India, Southeast Asia, as well as Australia. The only exception is the Continental United States, where solar annual cycle shows only a relatively minor influence on the annual mode of rainfall.

  7. Sodium and chloride levels in rainfall, mist. streamwater and groundwater at the Plynlimon catchments, mid-Wales: inferences on hydrological and chemical controls

    NASA Astrophysics Data System (ADS)

    Neal, C.; Kirchner, J. W.

    Variations in sodium and chloride in atmospheric inputs (rainfall and mist), stream runoff and groundwater stores are documented for the upper Severn River (Afon Hafren and Afon Hore catchments), Plynlimon, mid-Wales. The results show five salient features.

    1. Sodium and chloride concentrations are highly variable and highly correlated in rainfall and mist. The sodium-chloride relationship in rainfall has a slope close to the sodium/chloride ratio in sea-water, and an intercept that is not significantly different from zero. This indicates that sea-salt is the dominant source of both sodium and chloride in rainfall, which would be expected given the maritime nature of the metrology. For mist, there is also a straight line with near-zero intercept, but with a slightly higher gradient than the sea-salt ratio, presumably due to small additional sodium inputs from other sources.
    2. There is an approximate input-output balance for both sodium and chloride, with the exception of one groundwater well, in which high chemical weathering results in an anomalous high Na/Cl ratio. Thus, atmospheric deposition is the dominant source of both sodium and chloride in groundwater and streamflow.
    3. The fluctuations in sodium and chloride concentrations in the streams and groundwaters are strongly damped compared to those in the rain and the mist, reflecting the storage and mixing of waters in the subsurface.
    4. On all timescales, from weeks to years, sodium fluctuations are more strongly damped than chloride fluctuations in streamflow. The additional damping of sodium is consistent with ion exchange buffering of sodium in the catchment soils.
    5. Sodium and chloride concentrations are linearly correlated in the streams and groundwaters, but the slope is almost universally less than the sea-salt ratio and there is a non-zero intercept. The Na/Cl ratio in streamflow and groundwater is higher than the sea-salt ratio when salinity is low and lower than the sea-salt ratio when salinity is high. This pattern of behaviour is again consistent with ion exchange buffering of sodium in the catchment soils.
    The core features of this study are two fold. Firstly, sodium and chloride concentrations are highly damped within the streams and groundwaters relative to the atmospheric input. Secondly, streamflow sodium and chloride respond in similar ways across the catchments, except for the added cation exchange damping of the sodium signal. These findings are remarkable given the heterogeneous nature of the catchments and the complexity of the chemical time series signals in the streams.

  8. Trend and variability in western and central Africa streamflow, and their relation to climate variability between 1950 and 2010

    NASA Astrophysics Data System (ADS)

    Sidibe, Moussa; Dieppois, Bastien; Mahé, Gil; Paturel, Jean-Emmanuel; Rouché, Nathalie; Amoussou, Ernest; Anifowose, Babatunde; Lawler, Damian

    2017-04-01

    Unprecedented drought episodes that struck western and central Africa between the late 1960s and 1980s. This triggered many studies investigating rainfall variability and its impacts on food production systems. However, most studies were focused at the catchment scale. In this study, we examine how rainfall variability has impacted on river flow at the subcontinental scale between 1950 and 2010, as well as the key large-scale controls on this relationship. For the first time, we establish a complete, gap-filled, monthly streamflow data set, which extends from 1950 to 2010, over the western and central African region. To achieve this, we used linear regression modelling across and between 600 flow gauging stations (see initial database information at http://www.hydrosciences.fr/sierem/index_en.htm). Streamflow trend and variability are then seasonally assessed at this subcontinental scale and compared to those observed in three different rainfall data sets (i.e. CRU TS3.24, GPCC V7, IRD-HSM). Long-term trends and variability in streamflow are mainly consistent with trends in rainfall. However, these relationships may have been moderated by: i) changes in land use; and ii) contributions from groundwater resources. In particular, we note that the recent post 1990s partial recovery in Sahel rainfall could have, at least partially, positively impacted river flows (e.g. the Senegal and Niger rivers). Using multi-temporal trend and continuous wavelet analysis, the time-evolution of western and central African river flows are analysed, and are all characterized by very strong decadal fluctuations, which can be interpreted as modulations in the baseflow. These decadal fluctuations, which are also significantly detected in rainfall, are likely related to large-scale sea-surface temperature (SST) anomaly patterns, such as the tropical Atlantic SST variability, the Atlantic Multidecadal Oscillation, the Interdecadal Pacific Oscillation and/or the Pacific Decadal Oscillation. Furthermore, hitherto-poorly understood hydroclimatic processes related to these teleconnections at decadal timescales will be examined in this study. Influences of the catchment properties (e.g. size, shape, vegetation and landuse cover, soil type, ground-water level, direction of stream flow across climate zones) on these decadal fluctuations in river flows will also be assessed. This study therefore aims to improve the ability of current regional and global climate models to simulate such ranges of variability, to significantly improve regional hydroclimate understanding, as a means for improving the development of future scenarios for water resources in western and central Africa.

  9. Role of moisture transport for Central American precipitation

    NASA Astrophysics Data System (ADS)

    María Durán-Quesada, Ana; Gimeno, Luis; Amador, Jorge

    2017-02-01

    A climatology of moisture sources linked with Central American precipitation was computed based upon Lagrangian trajectories for the analysis period 1980-2013. The response of the annual cycle of precipitation in terms of moisture supply from the sources was analysed. Regional precipitation patterns are mostly driven by moisture transport from the Caribbean Sea (CS). Moisture supply from the eastern tropical Pacific (ETPac) and northern South America (NSA) exhibits a strong seasonal pattern but weaker compared to CS. The regional distribution of rainfall is largely influenced by a local signal associated with surface fluxes during the first part of the rainy season, whereas large-scale dynamics forces rainfall during the second part of the rainy season. The Caribbean Low Level Jet (CLLJ) and the Chocó Jet (CJ) are the main conveyors of regional moisture, being key to define the seasonality of large-scale forced rainfall. Therefore, interannual variability of rainfall is highly dependent of the regional LLJs to the atmospheric variability modes. The El Niño-Southern Oscillation (ENSO) was found to be the dominant mode affecting moisture supply for Central American precipitation via the modulation of regional phenomena. Evaporative sources show opposite anomaly patterns during warm and cold ENSO phases, as a result of the strengthening and weakening, respectively, of the CLLJ during the summer months. Trends in both moisture supply and precipitation over the last three decades were computed, results suggest that precipitation trends are not homogeneous for Central America. Trends in moisture supply from the sources identified show a marked north-south seesaw, with an increasing supply from the CS Sea to northern Central America. Long-term trends in moisture supply are larger for the transition months (March and October). This might have important implications given that any changes in the conditions seen during the transition to the rainy season may induce stronger precipitation trends.

  10. Rainfall Predictions From Global Salinity Anomalies

    NASA Astrophysics Data System (ADS)

    Schmitt, R. W.; Li, L.; Liu, T.

    2016-12-01

    We have discovered that sea surface salinity (SSS) is a better seasonal predictor of terrestrial rainfall than sea surface temperature (SST) or the usual pressure modes of atmospheric variability. In many regions, a 3-6 month lead of SSS over rainfall on land can be seen. While some lead is guaranteed due to the simple conservation of water and salt, the robust seasonal lead for SSS in some places is truly remarkable, often besting traditional SST and pressure predictors by a very significant margin. One mechanism for the lead has been identified in the recycling of water on land through soil moisture in regional ocean to land moisture transfers. However, a global search has yielded surprising long-range SSS-rainfall teleconnections. It is suggested that these teleconnections indicate a marked sensitivity of the atmosphere to where rain falls on the ocean. That is, the latent heat of evaporation is by far the largest energy transfer from ocean to atmosphere and where the atmosphere cashes in this energy in the form of precipitation is well recorded in SSS. SSS also responds to wind driven advection and mixing. Thus, SSS appears to be a robust indicator of atmospheric energetics and moisture transport and the timing and location of rainfall events is suggested to influence the subsequent evolution of the atmospheric circulation. In a sense, if the fall of a rain drop is at least equivalent to the flap of a butterfly's wings, the influence of a billion butterfly rainstorm allows for systematic predictions beyond the chaotic nature of the turbulent atmosphere. SSS is found to be particularly effective in predicting extreme precipitation or droughts, which makes its continued monitoring very important for building societal resilience against natural disasters.

  11. Observed changes in the characteristics of Active and Break Spells in the Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Singh, D.; Tsiang, M.; Rajaratnam, B.; Diffenbaugh, N. S.

    2013-12-01

    South Asia is home to about 24% of the world's population and is one of the world's most disaster prone regions. The majority of the people in this region depend on agriculture for their livelihood. Substantial variability in the South Asian Summer Monsoon occurs on an intraseasonal timescale (30-60 day) during which it fluctuates between spells of heavy (active spells) and low rainfall (breaks or weak spells). Considering the potentially severe implications of such rainfall variations, we quantify historical changes in the active and break spell characteristics in an effort to understand how these events are likely to respond to future anthropogenic forcings using the 1degx1deg gridded rainfall dataset. We find a decreasing trend in peak season rainfall since 1951 and a statistically significant shift in the rainfall distribution, suggesting greater extremes. Consequently, our results suggest an intensification of the active spells and more frequent occurrence of break spells at the 95% significance level. To understand the cause of these changes, we explore the environmental parameters in the North Indian Ocean and the Western Pacific that influence the occurrence of such events over the core monsoon region. We use the NCEP/NCAR Reanalysis 1 (1948-present) to do a composite analysis for two periods - 1951-1980 and 1981-2011. First, we examine the energetics of the baroclinic instabilities that initiate cyclonic depressions in the northern Bay of Bengal and the net moisture flux into the region. Further, sea surface temperatures are known to influence the characteristics of active and break spells. Therefore, next, we study sea surface temperature patterns in the Bay of Bengal and the equatorial western Pacific preceding breaks. We also examine the persistence of breaks through the diabatic heating anomalies over this region.

  12. Physical climatology of Indonesian maritime continent: An outline to comprehend observational studies

    NASA Astrophysics Data System (ADS)

    Yamanaka, Manabu D.

    2016-09-01

    The Indonesian maritime continent (IMC) is a miniature of our land-sea coexisting planet Earth. Firstly, without interior activity, the Earth becomes an even-surfaced "aqua-planet" with both atmosphere and ocean flowing almost zonally, and solar differential heating generates (global thermal tides and) Hadley's meridional circulations with the inter-tropical convergence zone (ITCZ) along the equator as observed actually over the open (Indian and Pacific) oceans on the both sides of the IMC. The ITCZ involves intraseasonal variations or super cloud clusters moving eastward with hierarchical substructures moving also westward. Secondly, the lands and seas over the actual Earth have been keeping the area ratio of 3:7 (similar to that of islands and inland/surrounding seas in the IMC), but their displacements have produced the IMC near the equator, which turns equatorial Pacific easterly ocean current northward (Kuroshio) and reflects equatorial oceanic waves that affect coupled ocean-atmosphere interannual variations such as ENSO and IOD, or displacements of Walker's zonal circulations. Thirdly, because the IMC consists of many large/small islands with very long coastlines, many narrow straits control the global (Pacific to Indian) ocean circulation, and the land-sea heat capacity contrasts along the coastlines generate the world's largest rainfall with diurnal cycles (sea-land breeze circulations). The diurnal cycles are dominant even in the rainy season (austral summer in Jawa and Bali), because rainfall-induced sprinkler-like land cooling reverses the trans-coastal temperature gradient before sunrise, and subsequent clear sky on land until around noon provides solar heating dependent on season. These processes lead to rapid land/hydrosphere-atmosphere water exchange, local air pollutant washout, and transequatorial boreal winter monsoon (cold surge). In El Niño years, for example, the cooler sea-surface temperature suppresses the morning coastal-sea rainfall, and induces often serious smog diffused from land over the IMC. Lastly, high-resolution observations/models covering both over islands and seas are necessary. A radar-profiler network (HARIMAU) has been constructed during FY2005-09, and capacity building on radar operations and buoy manufacturing has been promoted during FY2009-13 by Japan-Indonesia collaboration projects, which are taken over by an Indonesian national center (MCCOE) established in November 2013. Through these projects, variabilities of local circulations and precipitations with diurnal cycles have been recognized as important targets both in science and application.

  13. Area and shape metrics of rainfall fields associated with tropical cyclones landfalling over the western Gulf of Mexico and Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Zhou, Y.

    2017-12-01

    The rainfall associated with TCs making landfall over western Gulf Coast and Caribbean Sea Coast caused numerous fatalities and divesting damage, however, few studies have been done over these regions. This study examines spatial pattern of rain fields associated with TCs making landfall over western Gulf Coast and Caribbean Sea Coast during 1998-2015 through a Geographic Information System (GIS)-based analysis of satellite-estimated rain rates. Regions of light rainfall (rain rate > 2.5 mm/h) and moderate rainfall (rain rate > 5.0 mm/h) during entire life cycle of each TC are converted into polygons and measurements are made of their area, dispersion and displacement during entire life cycle. The metric of dispersion is calculated for the entire rain field as defined by outlining light and moderate rain rates. The displacement to east and north is calculated by area weighted methods. There are three main objectives of this study. The first goal is to measure the area and spatial distribution of rain fields of TCs making landfall over the western Gulf and Caribbean Sea coastlines. We examine in which regions, the light and moderate rainfall area, dispersion and displacement of rainfall have higher values, and how they change during the entire TC life cycle. The second goal is to determine to determine which environmental conditions are associated with the spatial configuration of light and moderate rain rates. The conditions include storm intensity, motion direction and speed, total precipitable water and wind shear. Last, we determine the time that rainfall reaches land relative to the time that the storm's center makes landfall and durations of rainfall from TCs over land.

  14. Observed climate variability over Chad using multiple observational and reanalysis datasets

    NASA Astrophysics Data System (ADS)

    Maharana, Pyarimohan; Abdel-Lathif, Ahmat Younous; Pattnayak, Kanhu Charan

    2018-03-01

    Chad is the largest of Africa's landlocked countries and one of the least studied region of the African continent. The major portion of Chad lies in the Sahel region, which is known for its rapid climate change. In this study, multiple observational datasets are analyzed from 1950 to 2014, in order to examine the trend of precipitation and temperature along with their variability over Chad to understand possible impacts of climate change over this region. Trend analysis of the climatic fields has been carried out using Mann-Kendall test. The precipitation over Chad is mostly contributed during summer by West African Monsoon, with maximum northward limit of 18° N. The Atlantic Ocean as well as the Mediterranean Sea are the major source of moisture for the summer rainfall over Chad. Based on the rainfall time series, the entire study period has been divided in to wet (1950 to 1965), dry (1966 to 1990) and recovery period (1991 to 2014). The rainfall has decreased drastically for almost 3 decades during the dry period resulted into various drought years. The temperature increases at a rate of 0.15 °C/decade during the entire period of analysis. The seasonal rainfall as well as temperature plays a major role in the change of land use/cover. The decrease of monsoon rainfall during the dry period reduces the C4 cover drastically; this reduction of C4 grass cover leads to increase of C3 grass cover. The slow revival of rainfall is still not good enough for the increase of shrub cover but it favors the gradual reduction of bare land over Chad.

  15. Influence of different rates of rainfall in the basin of the Uruguay River

    NASA Astrophysics Data System (ADS)

    Bohrer, M.; Zaparoli, B.; Saldanha, C. B.

    2013-04-01

    In the state of Rio Grande do Sul, the rainfall pattern is fairly regular and precipitation is well distributed throughout the year. The aim of this study was to evaluate the spatial and temporal distribution of precipitation in the Uruguay River basin from the determination of homogeneous regions based on the rainfall pattern. Values of 47 meteorological stations of the ANA (National Water Agency) from 1975 to 2005 were used, and values of Pacific sea surface temperature were collected from the National Oceanic and Atmospheric Administration, which is based on observed anomalies for different regions' niños (1 + niño 2, 3 niño, niño 4, niño 3 + 4). From the analysis of the results it was found that the study region showed five homogeneous regions. Knowing the time series of each region, it was possible to verify the regional variability in precipitation, indicating which regions have values above and below the climatological normal, and how the different indexes influence the rainfall pattern in the region.

  16. The asymmetric response of Yangtze river basin summer rainfall to El Niño/La Niña

    NASA Astrophysics Data System (ADS)

    Hardiman, Steven C.; Dunstone, Nick J.; Scaife, Adam A.; Bett, Philip E.; Li, Chaofan; Lu, Bo; Ren, Hong-Li; Smith, Doug M.; Stephan, Claudia C.

    2018-02-01

    The Yangtze river basin, in South East China, experiences anomalously high precipitation in summers following El Niño. This can lead to extensive flooding and loss of life. However, the response following La Niña has not been well documented. In this study, the response of Yangtze summer rainfall to El Niño/La Niña is found to be asymmetric, with no significant response following La Niña. The nature of this asymmetric response is found to be in good agreement with that simulated by the Met Office seasonal forecast system. Yangtze summer rainfall correlates positively with spring sea surface temperatures in the Indian Ocean and northwest Pacific. Indian Ocean sea surface temperatures are found to respond linearly to El Niño/La Niña, and to have a linear impact on Yangtze summer rainfall. However, northwest Pacific sea surface temperatures respond much more strongly following El Niño and, further, correlate more strongly with positive rainfall years. It is concluded that, whilst delayed Indian Ocean signals may influence summer Yangtze rainfall, it is likely that they do not lead to the asymmetric nature of the rainfall response to El Niño/La Niña.

  17. Variability of Extreme Precipitation Events in Tijuana, Mexico During ENSO Years

    NASA Astrophysics Data System (ADS)

    Cavazos, T.; Rivas, D.

    2007-05-01

    We present the variability of daily precipitation extremes (top 10 percecnt) in Tijuana, Mexico during 1950-2000. Interannual rainfall variability is significantly modulated by El Nino/Southern Oscillation. The interannual precipitation variability exhibits a large change with a relatively wet period and more variability during 1976- 2000. The wettest years and the largest frequency of daily extremes occurred after 1976-1977, with 6 out of 8 wet years characterized by El Nino episodes and 2 by neutral conditions. However, more than half of the daily extremes during 1950-2000 occurred in non-ENSO years, evidencing that neutral conditions also contribute significantly to extreme climatic variability in the region. Extreme events that occur in neutral (strong El Nino) conditions are associated with a pineapple express and a neutral PNA (negative TNH) teleconnection pattern that links an anomalous tropical convective forcing west (east) of the date line with a strong subtropical jet over the study area. At regional scale, both types of extremes are characterized by a trough in the subtropical jet over California/Baja California, which is further intensified by thermal interaction with an anomalous warm California Current off Baja California, low-level moisture advection from the subtropical warm sea-surface region, intense convective activity over the study area and extreme rainfall from southern California to Baja California.

  18. East Asian Summer Monsoon Rainfall: A Historical Perspective of the 1998 Flood over Yangtze River

    NASA Technical Reports Server (NTRS)

    Weng, H.-Y.; Lau, K.-M.

    1999-01-01

    One of the main factors that might have caused the disastrous flood in China during 1998 summer is long-term variations that include a trend indicating increasing monsoon rainfall over the Yangtze River Valley. China's 160-station monthly rainfall anomaly for the summers of 1955-98 is analyzed for exploring such long-term variations. Singular value decomposition (SVD) between the summer rainfall and the global sea surface temperature (SST) anomalies reveals that the rainfall over Yangtze River Valley is closely related to global and regional SST variabilities at both interannual and interdecadal timescales. SVD1 mode links the above normal rainfall condition in central China to an El Nino-like SSTA distribution, varying on interannual timescale modified by a trend during the period. SVD3 mode links positive rainfall anomaly in Yangtze River Valley to the warm SST anomaly in the subtropical western Pacific, varying on interannual timescales modified by interdecadal timescales. This link tends to be stronger when the Nino3 area becomes colder and the western subtropical Pacific becomes warmer. The 1998 summer is a transition season when the 1997/98 El Nino event was in its decaying phase, and the SST in the Nino3 area emerged below normal anomaly while the subtropical western Pacific SST above normal. Thus, the first and third SVD modes become dominant in 1998 summer, favoring more Asian summer monsoon rainfall over the Yangtze River Valley.

  19. Trend and variability in western and central Africa streamflow, and major drivers of variability between 1950 and 2005

    NASA Astrophysics Data System (ADS)

    Dieppois, B.; Sidibe, M.; Mahe, G. M.; Paturel, J. E.; Anifowose, B. A.; Lawler, D.; Amoussou, E.

    2017-12-01

    Unprecedented drought episodes that struck western and central Africa between the late 1960s and 1980s, triggered many studies investigating rainfall variability and its impacts on water resources and food production systems. However, most studies were focused at the catchment scale. In this study, we aim at investigating the key large-scale controls determining and modulating climate-river flows relationships at the subcontinental scale between 1950 and 2005. Using the first complete monthly streamflow data set (1950-2005) over western and central Africa, streamflow trend and variability are seasonally assessed at this subcontinental scale and compared to those observed in other hydroclimatic variables (precipitation, temperature and potential evapotranspiration). Long-term trends and variability in streamflow are mainly consistent with trends in rainfall. In particular, the recent post-1990s partial recovery in Sahel rainfall could have, at least partially, positively impacted river flows (e.g. the Senegal and Niger rivers). However, these relationships may have been moderated by: i) changes in land use; and ii) contributions from groundwater resources. In addition, the time-evolution of river flows is shown to be primarily driven by very strong decadal fluctuations, which can be interpreted as modulations in the baseflow, as determined using multi-temporal trend and continuous wavelet analysis. These decadal fluctuations, which are also significantly detected in rainfall, are likely related to large-scale sea-surface temperature (SST) anomaly patterns (such as the tropical Atlantic SST variability, the Atlantic Multidecadal Oscillation, the Interdecadal Pacific Oscillation and the Pacific Decadal Oscillation), which are together modulating the West African monsoon. Furthermore, influences of the catchment properties (e.g. size, vegetation and land use cover, soil properties, direction of stream flow across climate zones) on these decadal fluctuations in river flows have been examined. This study therefore aims to improve the ability of current global to regional climate models to simulate such ranges of variability and understand regional hydroclimate, as a means for improving the development of future scenarios for water resources in western and central Africa.

  20. Influence of southern oscillation on autumn rainfall in Iran (1951-2011)

    NASA Astrophysics Data System (ADS)

    Roghani, Rabbaneh; Soltani, Saeid; Bashari, Hossein

    2016-04-01

    This study aimed to investigate the relationships between southern oscillation and autumn (October-December) rainfall in Iran. It also sought to identify the possible physical mechanisms involved in the mentioned relationships by analyzing observational atmospheric data. Analyses were based on monthly rainfall data from 50 synoptic stations with at least 35 years of records up to the end of 2011. Autumn rainfall time series were grouped by the average Southern Oscillation Index (SOI) and SOI phase methods. Significant differences between rainfall groups in each method were assessed by Kruskal-Wallis and Kolmogorov-Smirnov non-parametric tests. Their relationships were also validated using the linear error in probability space (LEPS) test. The results showed that average SOI and SOI phases during July-September were related with autumn rainfall in some regions located in the west and northwest of Iran, west coasts of the Caspian Sea and southern Alborz Mountains. The El Niño (negative) and La Niña (positive) phases were associated with increased and decreased autumn rainfall, respectively. Our findings also demonstrated the persistence of Southern Pacific Ocean's pressure signals on autumn rainfall in Iran. Geopotential height patterns were totally different in the selected El Niño and La Niña years over Iran. During the El Niño years, a cyclone was formed over the north of Iran and an anticyclone existed over the Mediterranean Sea. During La Niña years, the cyclone shifted towards the Mediterranean Sea and an anticyclone developed over Iran. While these El Niño conditions increased autumn rainfall in Iran, the opposite conditions during the La Niña phase decreased rainfall in the country. In conclusion, development of rainfall prediction models based on the SOI can facilitate agricultural and water resources management in Iran.

  1. North Atlantic influence on 19th-20th century rainfall in the Dead Sea watershed, teleconnections with the Sahel, and implication for Holocene climate fluctuations

    NASA Astrophysics Data System (ADS)

    Kushnir, Yochanan; Stein, Mordechai

    2010-12-01

    The importance of understanding processes that govern the hydroclimate of the Mediterranean Basin is highlighted by the projected significant drying of the region in response to the increase in greenhouse gas concentrations. Here we study the long-term hydroclimatic variability of the central Levant region, situated in the eastern boundary of the Basin, as reveled by instrumental observations and the Holocene record of Dead Sea level variations. Observations of 19th and 20th century precipitation in the Dead Sea watershed region display a multidecadal, anti-phase relationship to North Atlantic (NAtl) sea surface temperature (SST) variability, such that when the NAtl is relatively cold, Jerusalem experiences higher than normal precipitation and vice versa. This association is underlined by a negative correlation to precipitation in the sub-Saharan Sahel and a positive correlation to precipitation in western North America, areas that are also affected by multidecadal NAtl SST variability. These observations are consistent with a broad range of Holocene hydroclimatic fluctuations from the epochal, to the millennial and centennial time scales, as displayed by the Dead Sea lake level, by lake levels in the Sahel, and by direct and indirect proxy indicators of NAtl SSTs. On the epochal time scale, the gradual cooling of NAtl SSTs throughout the Holocene in response to precession-driven reduction of summer insolation is associated with previously well-studied wet-to-dry transition in the Sahel and with a general increase in Dead Sea lake levels from low stands after the Younger Dryas to higher stands in the mid- to late-Holocene. On the millennial and centennial time scales there is also evidence for an anti-phase relationship between Holocene variations in the Dead Sea and Sahelian lake levels and with proxy indicators of NAtl SSTs. However the records are punctuated by abrupt lake-level drops, which appear to be in-phase and which occur during previously documented abrupt major cooling events in the Northern Hemisphere. We propose that the mechanisms by which NAtl SSTs affect precipitation in the central Levant is related to the tendency for high (low) pressure anomalies to persist over the eastern North Atlantic/Western Mediterranean region when the Basin is cold (warm). This, in turn, affects the likelihood of cold air outbreaks and cyclogenesis in the Eastern Mediterranean and, consequently, rainfall in the central Levant region. Depending on its phase, this natural mechanism can alleviate or exacerbate the anthropogenic impact on the regions' hydroclimatic future.

  2. Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan

    NASA Astrophysics Data System (ADS)

    Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen

    2017-10-01

    Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.

  3. Historical analysis of interannual rainfall variability and trends in southeastern Brazil based on observational and remotely sensed data

    NASA Astrophysics Data System (ADS)

    Vásquez P., Isela L.; de Araujo, Lígia Maria Nascimento; Molion, Luiz Carlos Baldicero; de Araujo Abdalad, Mariana; Moreira, Daniel Medeiros; Sanchez, Arturo; Barbosa, Humberto Alves; Rotunno Filho, Otto Corrêa

    2018-02-01

    The Brazilian Southeast is considered a humid region. It is also prone to landslides and floods, a result of significant increases in rainfall during spring and summer caused by the South Atlantic Convergence Zone (SACZ). Recently, however, the region has faced a striking rainfall shortage, raising serious concerns regarding water availability. The present work endeavored to explain the meteorological drought that has led to hydrological imbalance and water scarcity in the region. Hodrick-Prescott smoothing and wavelet transform techniques were applied to long-term hydrologic and sea surface temperature (SST)—based climate indices monthly time series data in an attempt to detect cycles and trends that could help explain rainfall patterns and define a framework for improving the predictability of extreme events in the region. Historical observational hydrologic datasets available include monthly precipitation amounts gauged since 1888 and 1940 and stream flow measured since the 1930s. The spatial representativeness of rain gauges was tested against gridded rainfall satellite estimates from 2000 to 2015. The analyses revealed variability in four time scale domains—infra-annual, interannual, quasi-decadal and inter-decadal or multi-decadal. The strongest oscillations periods revealed were: for precipitation—8 months, 2, 8 and 32 years; for Pacific SST in the Niño-3.4 region—6 months, 2, 8 and 35.6 years, for North Atlantic SST variability—6 months, 2, 8 and 32 years and for Pacific Decadal Oscillation (PDO) index—6.19 months, 2.04, 8.35 and 27.31 years. Other periodicities less prominent but still statistically significant were also highlighted.

  4. Entropy of stable seasonal rainfall distribution in Kelantan

    NASA Astrophysics Data System (ADS)

    Azman, Muhammad Az-zuhri; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Radi, Noor Fadhilah Ahmad

    2017-05-01

    Investigating the rainfall variability is vital for any planning and management in many fields related to water resources. Climate change can gives an impact of water availability and may aggravate water scarcity in the future. Two statistics measurements which have been used by many researchers to measure the rainfall variability are variance and coefficient of variation. However, these two measurements are insufficient since rainfall distribution in Malaysia especially in the East Coast of Peninsular Malaysia is not symmetric instead it is positively skewed. In this study, the entropy concept is used as a tool to measure the seasonal rainfall variability in Kelantan and ten rainfall stations were selected. In previous studies, entropy of stable rainfall (ESR) and apportionment entropy (AE) were used to describe the rainfall amount variability during years for Australian rainfall data. In this study, the entropy of stable seasonal rainfall (ESSR) is suggested to model rainfall amount variability during northeast monsoon (NEM) and southwest monsoon (SWM) seasons in Kelantan. The ESSR is defined to measure the long-term average seasonal rainfall amount variability within a given year (1960-2012). On the other hand, the AE measures the rainfall amounts variability across the months. The results of ESSR and AE values show that stations in east coastline are more variable as compared to other stations inland for Kelantan rainfall. The contour maps of ESSR for Kelantan rainfall stations are also presented.

  5. Rainfall as a trigger for stratification and winter phytoplankton growth in temperate shelf seas

    NASA Astrophysics Data System (ADS)

    Jardine, Jenny; Palmer, Matthew; Mahaffey, Claire; Holt, Jason; Mellor, Adam; Wakelin, Sarah

    2017-04-01

    We present new data from ocean gliders to investigate physical controls on stratification and phytoplankton dynamics, collected in the Celtic Sea between November 2014 and August 2015 as part of the UK Shelf Sea Biogeochemistry programme. This presentation focuses on the winter period (Jan-March) when the diurnal heating cycle results in regular but weak near surface stratification followed by night-time convection. Despite low light conditions, this daily cycle often promotes a daytime increase in observed chlorophyll fluorescence, indicative of phytoplankton growth. This daily cycle is occasionally interrupted when buoyancy inputs are sufficient to outcompete night-time convection and result in short-term periods of sustained winter stratification, typically lasting 2-3 days. Sustained stratification often coincides with periods of heavy rainfall, suggesting freshwater input from precipitation may play a role on these events by producing a subtle yet significant freshening of the surface layer of the order of 0.005 PSU. Comparing rainfall estimates with observed salinity changes confirms rainfall to often be the initiator of these winter stratification periods. As winter winds subside and solar heating increases towards spring, the water column becomes more susceptible to periods of halo-stratification, such that heavy rainfall during the winter-spring transition is likely to promote sustained stratification. The timing and extent of a heavy rainfall event in March 2015 does suggest it may be the critical trigger for shelf-wide stratification that eventually instigates the spring bloom. We propose that the timing of these downpours relative to the daily heating cycle can be a triggering mechanism for both short term and seasonal stratification in shelf seas, and so play a critical role in winter and early spring phytoplankton growth and the shelf sea carbon cycle. We further test the importance of this process using historical data, and results from the NEMO-AMM7 model to test how rainfall events have affected previous winter and spring conditions.

  6. The Role of Low-Level, Terrain-Induced Jets in Rainfall Variability in Tigris Euphrates Headwaters

    NASA Technical Reports Server (NTRS)

    Dezfuli, Amin K.; Zaitchik, Benjamin F.; Badr, Hamada S.; Evans, Jason; Peters-Lidard, Christa D.

    2017-01-01

    Rainfall variability in the Tigris Euphrates headwaters is a result of interaction between topography and meteorological features at a range of spatial scales. Here, the Weather Research and Forecasting (WRF) Model, driven by the NCEP-DOE AMIP-II reanalysis (R-2), has been implemented to better understand these interactions. Simulations were performed over a domain covering most of the Middle East. The extended simulation period (1983 - 2013) enables us to study seasonality, interannual variability, spatial variability, and extreme events of rainfall. Results showed that the annual cycle of precipitation produced by WRF agrees much more closely with observations than does R-2. This was particularly evident during the transition months of April and October, which were further examined to study the underlying physical mechanisms. In both months, WRF improves representation of interannual variability relative to R-2, with a substantially larger benefit in April. This improvement results primarily from WRFs ability to resolve two low-level, terrain-induced flows in the region that are either absent or weak in R-2: one parallel to the western edge of the Zagros Mountains, and one along the east Turkish highlands. The first shows a complete reversal in its direction during wet and dry days, when flowing southeasterly it transports moisture from the Persian Gulf to the region, and when flowing northwesterly it blocks moisture and transports it away from the region. The second is more directly related to synoptic-scale systems and carries moist, warm air from the Mediterranean and Red Seas toward the region. The combined contribution of these flows explains about 50 of interannual variability in both WRF and observations for April and October precipitation.

  7. The role of low-level terrain-induced jets in rainfall variability in Tigris-Euphrates Headwaters

    PubMed Central

    Zaitchik, Benjamin F.; Badr, Hamada S.; Evans, Jason; Peters-Lidard, Christa D.

    2018-01-01

    Rainfall variability in the Tigris-Euphrates Headwaters is a result of interaction between topography and meteorological features at a range of spatial scales. Here, we have implemented the Weather Research and Forecasting (WRF) model, driven by NCEP/DOE R2, to better understand these interactions. Simulations were performed over a domain covering most of the Middle-East. The extended simulation period (1983–2013) enables us to study seasonality, interannual variability, spatial variability and extreme events of rainfall. Results showed that the annual cycle of precipitation produced by WRF agrees much more closely with observations than does R2. This was particularly evident during the transition months of April and October, which were further examined to study the underlying physical mechanisms. In both months, WRF improves representation of interannual variability relative to R2, with a substantially larger benefit in April. This improvement results primarily from WRF’s ability to resolve two low-level terrain-induced flows in the region that are either absent or weak in NCEP/DOE: one parallel to western edge of the Zagros Mountains, and one along the East Turkish Highlands. The first shows a complete reversal in its direction during wet and dry days: when flowing southeasterly it transports moisture from the Persian Gulf to the region, and when flowing northwesterly it blocks moisture and transports it away from the region. The second is more directly related to synoptic-scale systems and carries moist, warm air from the Mediterranean and Red Seas toward the region. The combined contribution of these flows explains about 50% of interannual variability in both WRF and observations for April and October precipitation. PMID:29726552

  8. The Role of Low-Level Terrain-Induced Jets in Rainfall Variability in Tigris-Euphrates Headwaters

    NASA Technical Reports Server (NTRS)

    Dezfuli, Amin K.; Zaitchik, Benjamin F.; Badr, Hamada S.; Evans, Jason; Peters-Lidard, Christa D.

    2017-01-01

    Rainfall variability in the Tigris-Euphrates headwaters is a result of interaction between topography and meteorological features at a range of spatial scales. Here, the Weather Research and Forecasting (WRF) Model, driven by the NCEPDOE AMIP-II reanalysis (R-2), has been implemented to better understand these interactions. Simulations were performed over a domain covering most of the Middle East. The extended simulation period (19832013) enables us to study seasonality, interannual variability, spatial variability, and extreme events of rainfall. Results showed that the annual cycle of precipitation produced by WRF agrees much more closely with observations than does R-2. This was particularly evident during the transition months of April and October, which were further examined to study the underlying physical mechanisms. In both months, WRF improves representation of interannual variability relative to R-2, with a substantially larger benefit in April. This improvement results primarily from WRFs ability to resolve two low-level, terrain-induced flows in the region that are either absent or weak in R-2: one parallel to the western edge of the Zagros Mountains, and one along the east Turkish highlands. The first shows a complete reversal in its direction during wet and dry days: when flowing southeasterly it transports moisture from the Persian Gulf to the region, and when flowing northwesterly it blocks moisture and transports it away from the region. The second is more directly related to synoptic-scale systems and carries moist, warm air from the Mediterranean and Red Seas toward the region. The combined contribution of these flows explains about 50 of interannual variability in both WRF and observations for April and October precipitation.

  9. Reconstruction of precipitation variability in the Strait of Yucatan associated with latitudinal shifts in the position of the Intertropical Convergence Zone since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Staines-Urías, Francisca; Seidenkrantz, Marit-Solveig; Fischel, Andrea; Kuijpers, Antoon

    2017-04-01

    The elemental composition of sediments from gravity core HOLOVAR11-03 provides a ca. 40 ka record of past climate variability in the Strait of Yucatan, between the Caribbean Sea and the Gulf of Mexico, a region where precipitation variability is determined by the seasonal position of the Intertropical Convergence Zone (ITCZ). Within this region, sea level pressure decreases and rainfall increases as the ITCZ moves north of the equator in response to increased solar insolation in the Northern Hemisphere during boreal summer. In contrast, as the ITCZ retracts southward towards the equator during boreal winter, rainfall diminishes and the regional sea level pressure gradient strengthens. On interannual, multidecadal and millennial timescales, fluctuations in the average latitudinal position of the ITCZ in response to insolation forcing modulate the intensity and duration of the seasonal regimens, determining average regional precipitation and, ultimately, the elemental composition of the marine sedimentary record. Regionally, higher titanium and iron content in marine sediments reflect greater terrigenous input from inland runoff, indicating greater precipitation, hence a more northerly position of the ITCZ. Correspondingly, Ti and Fe concentration data were used to reconstruct regional rainfall variability since the Last Glacial Maxima (LGM ˜24 cal ka BP). HOLOVAR11-03 age model (based on 4 AMS 14C dates obtained from multi-specific samples of planktic foraminifera) shows stable sedimentation rates in the area throughout the cored period. Nonetheless, higher terrestrial mineral input is observed since the LGM and all through the last glacial termination (24 to 12 cal ka BP), indicating a period of increased precipitation. In contrast, lower Ti and Fe values are typical for the period between 12 and 8 cal ka BP, indicating reduced precipitation. A positive trend characterizes the following interval, showing a return to wetter conditions lasting until 5 cal ka BP. Notably, records of sea-surface temperature from the Caribbean indicate similar variability, with among others, colder than present conditions in the early Holocene indicating a more northerly mean ITCZ position, followed by warmer surface waters and a weaker tradewind associated with a southward displacement of the ITCZ, further illustrating the strong link between precipitation variability and oceanographic conditions in the region. After 5 cal ka BP, Ti and Fe values remain fairly stable at an intermediate level until shortly after 2 cal ka BP, when a sudden increase in Fe content is observed. At this time, a significant increase in precipitation has also been inferred from the δ18O signal of ostracods and gastropods in lake sediments from the Yucatan Peninsula and a stalagmite δ18O monsoon reconstruction from mainland Mexico. The drastic increment in Fe content also marks the beginning of a shift towards rapidly decreasing Ti and Fe values, suggesting an increasingly drier climate. Decrease inland runoff/precipitation during the late Holocene has also been observed in stalagmite and lacustrine δ18O signals from nearby locations, altogether indicating a southward displacement of the ITCZ.

  10. Atmospheric Signature of the Agulhas Current

    NASA Astrophysics Data System (ADS)

    Nkwinkwa Njouodo, Arielle Stela; Koseki, Shunya; Keenlyside, Noel; Rouault, Mathieu

    2018-05-01

    Western boundary currents play an important role in the climate system by transporting heat poleward and releasing it to the atmosphere. While their influence on extratropical storms and oceanic rainfall is becoming appreciated, their coastal influence is less known. Using satellite and climate reanalysis data sets and a regional atmospheric model, we show that the Agulhas Current is a driver of the observed band of rainfall along the southeastern African coast and above the Agulhas Current. The Agulhas current's warm core is associated with sharp gradients in sea surface temperature and sea level pressure, a convergence of low-level winds, and a co-located band of precipitation. Correlations among wind convergence, sea level pressure, and sea surface temperature indicate that these features show high degree of similarity to those in the Gulf Stream region. Model experiments further indicate that the Agulhas Current mostly impacts convective rainfall.

  11. Rainfall pattern variability as climate change impact in The Wallacea Region

    NASA Astrophysics Data System (ADS)

    Pujiastuti, I.; Nurjani, E.

    2018-04-01

    The objective of the study is to observe the characteristic variability of rainfall pattern in the city located in every rainfall type, local (Kendari), monsoon (Manado), and equatorial (Palu). The result will be compared to determine which has the most significantly precipitation changing due to climate change impact. Rainfall variability in Indonesia illustrates precipitation variation thus the important variability is the variability of monthly rainfall. Monthly precipitation data for the period of 1961-2010 are collected from Indonesian Agency for Meteorological, Climatological, and Geophysical Agency. This data is calculated with the normal test statistical method to analyze rainfall variability. The result showed the pattern of trend and variability of rainfall in every city with the own characteristic which determines the rainfall type. Moreover, there is comparison of rainfall pattern changing between every rainfall type. This information is useful for climate change mitigation and adaptation strategies especially in water resource management form precipitation as well as the occurrence of meteorological disasters.

  12. Rainfall trends in the South Asian summer monsoon and its related large-scale dynamics with focus over Pakistan

    NASA Astrophysics Data System (ADS)

    Latif, M.; Syed, F. S.; Hannachi, A.

    2017-06-01

    The study of regional rainfall trends over South Asia is critically important for food security and economy, as both these factors largely depend on the availability of water. In this study, South Asian summer monsoon rainfall trends on seasonal and monthly (June-September) time scales have been investigated using three observational data sets. Our analysis identify a dipole-type structure in rainfall trends over the region north of the Indo-Pak subcontinent, with significant increasing trends over the core monsoon region of Pakistan and significant decreasing trends over the central-north India and adjacent areas. The dipole is also evident in monthly rainfall trend analyses, which is more prominent in July and August. We show, in particular, that the strengthening of northward moisture transport over the Arabian Sea is a likely reason for the significant positive trend of rainfall in the core monsoon region of Pakistan. In contrast, over the central-north India region, the rainfall trends are significantly decreasing due to the weakening of northward moisture transport over the Bay of Bengal. The leading empirical orthogonal functions clearly show the strengthening (weakening) patterns of vertically integrated moisture transport over the Arabian Sea (Bay of Bengal) in seasonal and monthly interannual time scales. The regression analysis between the principal components and rainfall confirm the dipole pattern over the region. Our results also suggest that the extra-tropical phenomena could influence the mean monsoon rainfall trends over Pakistan by enhancing the cross-equatorial flow of moisture into the Arabian Sea.

  13. Household perceptions of coastal hazards and climate change in the Central Philippines.

    PubMed

    Combest-Friedman, Chelsea; Christie, Patrick; Miles, Edward

    2012-12-15

    As a tropical archipelagic nation, the Philippines is particularly susceptible to coastal hazards, which are likely to be exacerbated by climate change. To improve coastal hazard management and adaptation planning, it is imperative that climate information be provided at relevant scales and that decision-makers understand the causes and nature of risk in their constituencies. Focusing on a municipality in the Central Philippines, this study examines local meteorological information and explores household perceptions of climate change and coastal hazard risk. First, meteorological data and local perceptions of changing climate conditions are assessed. Perceived changes in climate include an increase in rainfall and rainfall variability, an increase in intensity and frequency of storm events and sea level rise. Second, factors affecting climate change perceptions and perceived risk from coastal hazards are determined through statistical analysis. Factors tested include social status, economic standing, resource dependency and spatial location. Results indicate that perceived risk to coastal hazards is most affected by households' spatial location and resource dependency, rather than socio-economic conditions. However, important differences exist based on the type of hazard and nature of risk being measured. Resource dependency variables are more significant in determining perceived risk from coastal erosion and sea level rise than flood events. Spatial location is most significant in determining households' perceived risk to their household assets, but not perceived risk to their livelihood. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The impact of sea surface temperature on winter wheat in Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Capa-Morocho, Mirian; Rodríguez-Fonseca, Belen; Ruiz-Ramos, Margarita

    2016-04-01

    Climate variability is the main driver of changes in crops yield, especially for rainfed production systems. This is also the case of Iberian Peninsula (IP) (Capa-Morocho et al., 2014), where wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. Previous works have shown that large-scale oceanic patterns have a significant impact on precipitation over IP (Rodriguez-Fonseca and de Castro, 2002; Rodríguez-Fonseca et al., 2006). The existence of some predictability of precipitation has encouraged us to analyze the possible predictability of the wheat yield in the IP using sea surface temperature (SST) anomalies as predictor. For this purpose, a crop model site specific calibrated for the Northeast of IP and several reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that wheat yield anomalies are associated with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) SST. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures and precipitation experienced by the crop during flowering and grain filling. Results from this study could have important implications for predictability issues in agricultural planning and management, such as insurance coverage, changes in sowing dates and choice of species and varieties.

  15. Underestimated interannual variability of East Asian summer rainfall under climate change

    NASA Astrophysics Data System (ADS)

    Ren, Yongjian; Song, Lianchun; Xiao, Ying; Du, Liangmin

    2018-02-01

    This study evaluates the performance of climate models in simulating the climatological mean and interannual variability of East Asian summer rainfall (EASR) using Coupled Model Intercomparison Project Phase 5 (CMIP5). Compared to the observation, the interannual variability of EASR during 1979-2005 is underestimated by the CMIP5 with a range of 0.86 16.08%. Based on bias correction of CMIP5 simulations with historical data, the reliability of future projections will be enhanced. The corrected EASR under representative concentration pathways (RCPs) 4.5 and 8.5 increases by 5.6 and 7.5% during 2081-2100 relative to the baseline of 1986-2005, respectively. After correction, the areas with both negative and positive anomalies decrease, which are mainly located in the South China Sea and central China, and southern China and west of the Philippines, separately. In comparison to the baseline, the interannual variability of EASR increases by 20.8% under RCP4.5 but 26.2% under RCP8.5 in 2006-2100, which is underestimated by 10.7 and 11.1% under both RCPs in the original CMIP5 simulation. Compared with the mean precipitation, the interannual variability of EASR is notably larger under global warming. Thus, the probabilities of floods and droughts may increase in the future.

  16. Internal Dynamics and Boundary Forcing Characteristics Associated with Interannual Variability of the Asian Summer Monsoon

    NASA Technical Reports Server (NTRS)

    Lau, K.- M.; Kim, K.-M.; Yang, S.

    1998-01-01

    In this paper, we present a description of the internal dynamics and boundary forcing characteristics of two major components of the Asian summer monsoon (ASM), i.e., the South Asian (SAM) and the Southeast-East Asian monsoon (SEAM). The description is based on a new monsoon-climate paradigm in which the variability of ASM is considered as the outcome of the interplay of a "fast" and an "intermediate" monsoon subsystem, under the influenced of the "slow" varying external forcings. Two sets of regional monsoon indices derived from dynamically consistent rainfall and wind data are used in this study. For SAM, the internal dynamics is represented by that of a "classical" monsoon system where the anomalous circulation is governed by Rossby-wave dynamics, i.e., generation of anomalous vorticity induced by an off-equatorial heat source is balanced by planetary vorticity advection. On the other hand, the internal dynamics of SEAM is characterized by a "hybrid" monsoon system featuring multi-cellular meridional circulation over the East Asian section, extending from the deep tropics to midlatitudes. These meridional-cells link tropical heating to extratropical circulation system via the East Asian jetstream, and are responsible for the characteristic occurrences of zonally oriented anomalous rainfall patterns over East Asian and the subtropical western Pacific. In the extratropical regions, the major upper level vorticity balance is by anomalous vorticity advection and generation by the anomalous divergent circulation. A consequence of this is that compared to SAM, the SEAM is associated with stronger teleconnection patterns to regions outside the ASM. A strong SAM is linked to basin-scale sea surface temperature (SST) fluctuation with significant signal in the equatorial eastern Pacific. During the boreal spring SST warming in the Arabian Sea and the subtropical western Pacific may lead to a strong SAM. For SEAM, interannual variability is tied to SSTA over the Sea of Japan and the South China Sea regions, while the linkage to equatorial basin-scale SSTA is weak at best. A large scale SSTA dipole with warming (cooling) in the subtropical central (eastern) Pacific foreshadows a strong SEAM.

  17. Input Uncertainty and its Implications on Parameter Assessment in Hydrologic and Hydroclimatic Modelling Studies

    NASA Astrophysics Data System (ADS)

    Chowdhury, S.; Sharma, A.

    2005-12-01

    Hydrological model inputs are often derived from measurements at point locations taken at discrete time steps. The nature of uncertainty associated with such inputs is thus a function of the quality and number of measurements available in time. A change in these characteristics (such as a change in the number of rain-gauge inputs used to derive spatially averaged rainfall) results in inhomogeneity in the associated distributional profile. Ignoring such uncertainty can lead to models that aim to simulate based on the observed input variable instead of the true measurement, resulting in a biased representation of the underlying system dynamics as well as an increase in both bias and the predictive uncertainty in simulations. This is especially true of cases where the nature of uncertainty likely in the future is significantly different to that in the past. Possible examples include situations where the accuracy of the catchment averaged rainfall has increased substantially due to an increase in the rain-gauge density, or accuracy of climatic observations (such as sea surface temperatures) increased due to the use of more accurate remote sensing technologies. We introduce here a method to ascertain the true value of parameters in the presence of additive uncertainty in model inputs. This method, known as SIMulation EXtrapolation (SIMEX, [Cook, 1994]) operates on the basis of an empirical relationship between parameters and the level of additive input noise (or uncertainty). The method starts with generating a series of alternate realisations of model inputs by artificially adding white noise in increasing multiples of the known error variance. The alternate realisations lead to alternate sets of parameters that are increasingly biased with respect to the truth due to the increased variability in the inputs. Once several such realisations have been drawn, one is able to formulate an empirical relationship between the parameter values and the level of additive noise present. SIMEX is based on theory that the trend in alternate parameters can be extrapolated back to the notional error free zone. We illustrate the utility of SIMEX in a synthetic rainfall-runoff modelling scenario and an application to study the dependence of uncertain distributed sea surface temperature anomalies with an indicator of the El Nino Southern Oscillation, the Southern Oscillation Index (SOI). The errors in rainfall data and its affect is explored using Sacramento rainfall runoff model. The rainfall uncertainty is assumed to be multiplicative and temporally invariant. The model used to relate the sea surface temperature anomalies (SSTA) to the SOI is assumed to be of a linear form. The nature of uncertainty in the SSTA is additive and varies with time. The SIMEX framework allows assessment of the relationship between the error free inputs and response. Cook, J.R., Stefanski, L. A., Simulation-Extrapolation Estimation in Parametric Measurement Error Models, Journal of the American Statistical Association, 89 (428), 1314-1328, 1994.

  18. A monsoon-like Southwest Australian circulation and its relation with rainfall in Southwest Western Australia

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Li, Jianping; Li, Yun

    2010-05-01

    Using the NCEP/NCAR, ERA-40 reanalysis, and precipitation data from CMAP and Australian Bureau of Meteorology, the variability and circulation features influencing the southwest Western Australia (SWWA) winter rainfall are investigated. It is found that the climate of southwest Australia bears a strong seasonality in the annual cycle and exhibits a monsoon-like atmospheric circulation, which is termed as the southwest Australian circulation (SWAC) for its several distinct features characterizing a monsoonal circulation: the seasonal reversal of winds, alternate wet and dry seasons, and an evident land-sea thermal contrast. The seasonal march of the SWAC in extended winter (May to October) is demonstrated by pentad data. An index based on the dynamics normalized seasonality was introduced to describe the behavior and variation of the winter SWAC. It is found that the winter rainfall over SWWA has a significant positive correlation with the SWAC index in both early (May to July) and late (August to October) winter. In weaker winter SWAC years there is an anti-cyclonic anomaly over southern Indian Ocean resulting in weaker westerlies and northerlies which are not favorable for more rainfall over SWWA, and the opposite combination is true in the stronger winter SWAC years. The SWAC explains not only a large portion of the interannual variability of SWWA rainfall in both early and late winter, but also the long term drying trend over SWWA in early winter. The well-coupled SWAC-SWWA rainfall relationship seems to be largely independent of the well-known effects of large-scale atmospheric circulations such as the Southern Hemisphere Annular Mode (SAM), El Niño/Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and ENSO Modoki (EM). The result offers qualified support for the argument that the monsoon-like circulation may contribute to the rainfall decline in early winter over SWWA.

  19. Freshwater monsoon related inputs in the Japan Sea: a diatom record from IODP core U1427

    NASA Astrophysics Data System (ADS)

    Ventura, C. P. L.; Lopes, C.

    2016-12-01

    Monsoon rainfall is the life-blood of more than half the world's population. Extensive research is being conducted in order to refine projections regarding the impact of anthropogenic climate change on these systems. The East Asian monsoon (EAM) plays a significant role in large-scale climate variability. Due to its importance to global climate and world's population, there is an urgent need for greater understanding of this system, especially during past climate changes. The input of freshwater from the monsoon precipitation brings specific markers, such as freshwater diatoms and specific diatom ecological assemblages that are preserved in marine sediments. Freshwater diatoms are easily identifiable and have been used in the North Pacific to reconstruct environmental conditions (Lopes et al 2006) and flooding episodes (Lopes and Mix, 2009). Here we show preliminary results of freshwater diatoms records that are linked with river discharge due to increase land rainfall that can be derived from Monsoon rainfall. We extend our preliminary study to the past 400ky.

  20. Monitoring Changes of Tropical Extreme Rainfall Events Using Differential Absorption Barometric Radar (DiBAR)

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrah, Steven; Lawrence, R. Wes; Hu, Yongxiang; Min, Qilong

    2015-01-01

    This work studies the potential of monitoring changes in tropical extreme rainfall events such as tropical storms from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 gigahertz O2 absorption band to remotely measure sea surface air pressure. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 5 millibars (approximately 1 millibar) under all weather conditions. With these sea level pressure measurements, the forecasts, analyses and understanding of these extreme events in both short and long time scales can be improved. Severe weathers, especially hurricanes, are listed as one of core areas that need improved observations and predictions in WCRP (World Climate Research Program) and NASA Decadal Survey (DS) and have major impacts on public safety and national security through disaster mitigation. Since the development of the DiBAR concept about a decade ago, our team has made substantial progress in advancing the concept. Our feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. We have developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with our instrumentation goals. Observational system simulation experiments for space DiBAR performance show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on tropical extreme rainfall weather and climate conditions.

  1. Effects of Climate Change and Fisheries Bycatch on Shy Albatross (Thalassarche cauta) in Southern Australia

    PubMed Central

    2015-01-01

    The impacts of climate change on marine species are often compounded by other stressors that make direct attribution and prediction difficult. Shy albatrosses (Thalassarche cauta) breeding on Albatross Island, Tasmania, show an unusually restricted foraging range, allowing easier discrimination between the influence of non-climate stressors (fisheries bycatch) and environmental variation. Local environmental conditions (rainfall, air temperature, and sea-surface height, an indicator of upwelling) during the vulnerable chick-rearing stage, have been correlated with breeding success of shy albatrosses. We use an age-, stage- and sex-structured population model to explore potential relationships between local environmental factors and albatross breeding success while accounting for fisheries bycatch by trawl and longline fisheries. The model uses time-series of observed breeding population counts, breeding success, adult and juvenile survival rates and a bycatch mortality observation for trawl fishing to estimate fisheries catchability, environmental influence, natural mortality rate, density dependence, and productivity. Observed at-sea distributions for adult and juvenile birds were coupled with reported fishing effort to estimate vulnerability to incidental bycatch. The inclusion of rainfall, temperature and sea-surface height as explanatory variables for annual chick mortality rate was statistically significant. Global climate models predict little change in future local average rainfall, however, increases are forecast in both temperatures and upwelling, which are predicted to have detrimental and beneficial effects, respectively, on breeding success. The model shows that mitigation of at least 50% of present bycatch is required to offset losses due to future temperature changes, even if upwelling increases substantially. Our results highlight the benefits of using an integrated modeling approach, which uses available demographic as well as environmental data within a single estimation framework, to provide future predictions. Such predictions inform the development of management options in the face of climate change. PMID:26057739

  2. Effects of Climate Change and Fisheries Bycatch on Shy Albatross (Thalassarche cauta) in Southern Australia.

    PubMed

    Thomson, Robin B; Alderman, Rachael L; Tuck, Geoffrey N; Hobday, Alistair J

    2015-01-01

    The impacts of climate change on marine species are often compounded by other stressors that make direct attribution and prediction difficult. Shy albatrosses (Thalassarche cauta) breeding on Albatross Island, Tasmania, show an unusually restricted foraging range, allowing easier discrimination between the influence of non-climate stressors (fisheries bycatch) and environmental variation. Local environmental conditions (rainfall, air temperature, and sea-surface height, an indicator of upwelling) during the vulnerable chick-rearing stage, have been correlated with breeding success of shy albatrosses. We use an age-, stage- and sex-structured population model to explore potential relationships between local environmental factors and albatross breeding success while accounting for fisheries bycatch by trawl and longline fisheries. The model uses time-series of observed breeding population counts, breeding success, adult and juvenile survival rates and a bycatch mortality observation for trawl fishing to estimate fisheries catchability, environmental influence, natural mortality rate, density dependence, and productivity. Observed at-sea distributions for adult and juvenile birds were coupled with reported fishing effort to estimate vulnerability to incidental bycatch. The inclusion of rainfall, temperature and sea-surface height as explanatory variables for annual chick mortality rate was statistically significant. Global climate models predict little change in future local average rainfall, however, increases are forecast in both temperatures and upwelling, which are predicted to have detrimental and beneficial effects, respectively, on breeding success. The model shows that mitigation of at least 50% of present bycatch is required to offset losses due to future temperature changes, even if upwelling increases substantially. Our results highlight the benefits of using an integrated modeling approach, which uses available demographic as well as environmental data within a single estimation framework, to provide future predictions. Such predictions inform the development of management options in the face of climate change.

  3. Tropical warm pool rainfall variability and impact on upper ocean variability throughout the Madden-Julian oscillation

    NASA Astrophysics Data System (ADS)

    Thompson, Elizabeth J.

    Heating and rain freshening often stabilize the upper tropical ocean, bringing the ocean mixed layer depth to the sea surface. Thin mixed layer depths concentrate subsequent fluxes of heat, momentum, and freshwater in a thin layer. Rapid heating and cooling of the tropical sea surface is important for controlling or triggering atmospheric convection. Ocean mixed layer depth and SST variability due to rainfall events have not been as comprehensively explored as the ocean's response to heating or momentum fluxes, but are very important to understand in the tropical warm pool where precipitation exceeds evaporation and many climate phenomena such as ENSO and the MJO (Madden Julian Oscillation) originate. The first part of the dissertation investigates tropical, oceanic convective and stratiform rainfall variability and determines how to most accurately estimate rainfall accumulation with radar from each rain type. The second, main part of the dissertation uses central Indian Ocean salinity and temperature microstructure measurements and surrounding radar-derived rainfall maps throughout two DYNAMO MJO events to determine the impact of precipitating systems on upper-ocean mixed layer depth and resulting SST variability. The ocean mixed layer was as shallow as 0-5 m during 528/1071 observation hours throughout 2 MJOs (54% of the data record). Out of 43 observation days, thirty-eight near-surface mixed layer depth events were attributed to freshwater stabilization, called rain-formed mixed layers (RFLs). Thirty other mixed layer stratification events were classified as diurnal warm layers (DWLs) due to stable temperature stratification by daytime heating. RFLs and DWLs were observed to interact in two ways: 1) RFLs fill preexisting DWLs and add to total near-surface mixed layer stratification, which occurred ten times; 2) RFLs last long enough to heat, creating a new DWL on top of the RFL, which happened nine times. These combination stratification events were responsible for the highest SST warming rates and some of the highest SSTs leading up to the most active precipitation and wind stage of the each MJO. DWLs without RFL interaction helped produce the highest SSTs in suppressed MJO conditions. As storm intensity, frequency, duration, and the ability of storms to maintain stratiform rain areas increased, RFLS became more common in the disturbed and active MJO phases. Along with the barrier layer, DWL and RFL stratification events helped suppress wind-mixing, cooling, and mixed layer deepening throughout the MJO. We hypothesize that both salinity and temperature stratification events, and their interactions, are important for controlling SST variability and therefore MJO initiation in the Indian Ocean. Most RFLs were caused by submesoscale and mesoscale convective systems with stratiform rain components and local rain accumulations above 10 mm but with winds mostly below 8 m s-1. We hypothesize that the stratiform rain components of storms helped stratify the ocean by providing weak but widespread, steady, long-lived freshwater fluxes. Although generally limited to rain rates ≤ 10 mm hr-1, it is demonstrated that stratiform rain can exert a strong buoyancy flux into the ocean, i.e. as high as maximum daytime solar heating. Storm morphology and the preexisting vertical structure of ocean stability were critical in determining ocean mixed layer depth variability in the presence of rain. Therefore, we suggest that high spatial and temporal resolution coupled ocean-atmosphere models that can parameterize or resolve storm morphology as well as ocean mixed layer and barrier layer evolution are needed to reproduce the diurnal and intraseasonal SST variability documented throughout the MJO.

  4. Early summer southern China rainfall variability and its oceanic drivers

    NASA Astrophysics Data System (ADS)

    Li, Weijing; Ren, Hong-Chang; Zuo, Jinqing; Ren, Hong-Li

    2018-06-01

    Rainfall in southern China reaches its annual peak in early summer (May-June) with strong interannual variability. Using a combination of observational analysis and numerical modeling, the present study investigates the leading modes of this variability and its dynamic drivers. A zonal dipole pattern termed the southern China Dipole (SCD) is found to be the dominant feature in early summer during 1979-2014, and is closely related to a low-level anomalous anticyclone over the Philippine Sea (PSAC) and a Eurasian wave-train pattern over the mid-high latitudes. Linear regressions based on observations and numerical experiments using the CAM5 model suggest that the associated atmospheric circulation anomalies in early summer are linked to decaying El Niño-Southern Oscillation-like sea surface temperature (SST) anomalies in the tropical Pacific, basin-scale SST anomalies in the tropical Indian Ocean, and meridional tripole-like SST anomalies in the North Atlantic in the previous winter to early summer. The tropical Pacific and Indian Ocean SST anomalies primarily exert an impact on the SCD through changing the polarity of the PSAC, while the North Atlantic tripole-like SST anomalies mainly exert a downstream impact on the SCD by inducing a Eurasian wave-train pattern. The North Atlantic tripole-like SST anomalies also make a relatively weak contribution to the variations of the PSAC and SCD through a subtropical teleconnection. Modeling results indicate that the three-basin combined forcing has a greater impact on the SCD and associated circulation anomalies than the individual influence from any single oceanic basin.

  5. In the hot seat : Insolation and ENSO controls on vegetation productivity in tropical Africa inferred from NDVI

    NASA Astrophysics Data System (ADS)

    Ivory, S.; Russell, J. L.; Cohen, A. S.

    2010-12-01

    Threats to tropical biodiversity with serious and costly implications for both ecosystems and human well-being in Africa have led the IPCC to classify this region as vulnerable to negative impacts from climate change. Yet little is known about how vegetation communities respond to altered patterns of rainfall and evaporation. Paleoclimate records within the tropics can help answer questions about how vegetation response to climate forcing changes over time. However, sparse spatial extent of records and uncertainty surrounding the climate-vegetation relationship complicate these insights. Understanding the climatic mechanisms involved in landscape change at all temporal scales creates the need for quantitative constraints of the modern relationship between climatic controls, hydrology, and vegetation. Though modern observational data can help elucidate this relationship, low resolution and complicated rainfall/vegetation associations make them less than ideal. Satellite data of vegetation productivity (NDVI) with continuous high-resolution spatial coverage provides a robust and elegant tool for identifying the link between global and regional controls and vegetation. We use regression analyses of variables either previously proposed or potentially important in regulating Afro-tropical vegetation (insolation, out-going long-wave radiation, geopotential height, Southern Oscillation Index, Indian Ocean Dipole, Indian Monsoon precipitation, sea-level pressure, surface wind, sea-surface temperature) on continuous, time-varying spatial fields of 8km NDVI for sub-Saharan Africa. These analyses show the importance of global atmospheric controls in producing regional intra-annual and inter-annual vegetation variability. Dipole patterns emerge primarily correlated with both the seasonal and inter-annual extent of the Intertropical Convergence Zone (ITCZ). Inter-annual ITCZ variability drives patterns in African vegetation resulting from the effect of insolation anomalies and ENSO events on atmospheric circulation rather than sea surface temperatures or teleconnections to mid/high latitudes. Global controls on tropical atmospheric circulation regulate vegetation throughout sub-Saharan Africa on many time scales through alteration of dry season length and moisture convergence, rather than precipitation amount.

  6. Analysis of Darwin Rainfall Data: Implications on Sampling Strategy

    NASA Technical Reports Server (NTRS)

    Rafael, Qihang Li; Bras, Rafael L.; Veneziano, Daniele

    1996-01-01

    Rainfall data collected by radar in the vicinity of Darwin, Australia, have been analyzed in terms of their mean, variance, autocorrelation of area-averaged rain rate, and diurnal variation. It is found that, when compared with the well-studied GATE (Global Atmospheric Research Program Atlantic Tropical Experiment) data, Darwin rainfall has larger coefficient of variation (CV), faster reduction of CV with increasing area size, weaker temporal correlation, and a strong diurnal cycle and intermittence. The coefficient of variation for Darwin rainfall has larger magnitude and exhibits larger spatial variability over the sea portion than over the land portion within the area of radar coverage. Stationary, and nonstationary models have been used to study the sampling errors associated with space-based rainfall measurement. The nonstationary model shows that the sampling error is sensitive to the starting sampling time for some sampling frequencies, due to the diurnal cycle of rain, but not for others. Sampling experiments using data also show such sensitivity. When the errors are averaged over starting time, the results of the experiments and the stationary and nonstationary models match each other very closely. In the small areas for which data are available for I>oth Darwin and GATE, the sampling error is expected to be larger for Darwin due to its larger CV.

  7. Classic Maya civilization collapse associated with reduction in tropical cyclone activity

    NASA Astrophysics Data System (ADS)

    Medina, M. A.; Polanco-Martinez, J. M.; Lases-Hernández, F.; Bradley, R. S.; Burns, S. J.

    2013-12-01

    In light of the increased destructiveness of tropical cyclones observed over recent decades one might assume that an increase and not a decrease in tropical cyclone activity would lead to societal stress and perhaps collapse of ancient cultures. In this study we present evidence that a reduction in the frequency and intensity of tropical Atlantic cyclones could have contributed to the collapse of the Maya civilization during the Terminal Classic Period (TCP, AD. 800-950). Statistical comparisons of a quantitative precipitation record from the Yucatan Peninsula (YP) Maya lowlands, based on the stalagmite known as Chaac (after the Mayan God of rain and agriculture), relative to environmental proxy records of El Niño/Southern Oscillation (ENSO), tropical Atlantic sea surface temperatures (SSTs), and tropical Atlantic cyclone counts, suggest that these records share significant coherent variability during the TCP and that summer rainfall reductions between 30 and 50% in the Maya lowlands occurred in association with decreased Atlantic tropical cyclones. Analysis of modern instrumental hydrological data suggests cyclone rainfall contributions to the YP equivalent to the range of rainfall deficits associated with decreased tropical cyclone activity during the collapse of the Maya civilization. Cyclone driven precipitation variability during the TCP, implies that climate change may have triggered Maya civilization collapse via freshwater scarcity for domestic use without significant detriment to agriculture. Pyramid in Tikal, the most prominent Maya Kingdom that collapsed during the Terminal Classic Period (circa C.E. 800-950) Rainfall feeding stalagmites inside Rio Secreto cave system, Yucatan, Mexico.

  8. Mesoscale Simulations of a Florida Sea Breeze Using the PLACE Land Surface Model Coupled to a 1.5-Order Turbulence Parameterization

    NASA Technical Reports Server (NTRS)

    Lynn, Barry H.; Stauffer, David R.; Wetzel, Peter J.; Tao, Wei-Kuo; Perlin, Natal; Baker, R. David; Munoz, Ricardo; Boone, Aaron; Jia, Yiqin

    1999-01-01

    A sophisticated land-surface model, PLACE, the Parameterization for Land Atmospheric Convective Exchange, has been coupled to a 1.5-order turbulent kinetic energy (TKE) turbulence sub-model. Both have been incorporated into the Penn State/National Center for Atmospheric Research (PSU/NCAR) mesoscale model MM5. Such model improvements should have their greatest effect in conditions where surface contrasts dominate over dynamic processes, such as the simulation of warm-season, convective events. A validation study used the newly coupled model, MM5 TKE-PLACE, to simulate the evolution of Florida sea-breeze moist convection during the Convection and Precipitation Electrification Experiment (CaPE). Overall, eight simulations tested the sensitivity of the MM5 model to combinations of the new and default model physics, and initialization of soil moisture and temperature. The TKE-PLACE model produced more realistic surface sensible heat flux, lower biases for surface variables, more realistic rainfall, and cloud cover than the default model. Of the 8 simulations with different factors (i.e., model physics or initialization), TKE-PLACE compared very well when each simulation was ranked in terms of biases of the surface variables and rainfall, and percent and root mean square of cloud cover. A factor separation analysis showed that a successful simulation required the inclusion of a multi-layered, land surface soil vegetation model, realistic initial soil moisture, and higher order closure of the planetary boundary layer (PBL). These were needed to realistically model the effect of individual, joint, and synergistic contributions from the land surface and PBL on the CAPE sea-breeze, Lake Okeechobee lake breeze, and moist convection.

  9. Climate change impact assessment on food security in Indonesia

    NASA Astrophysics Data System (ADS)

    Ettema, Janneke; Aldrian, Edvin; de Bie, Kees; Jetten, Victor; Mannaerts, Chris

    2013-04-01

    As Indonesia is the world's fourth most populous country, food security is a persistent challenge. The potential impact of future climate change on the agricultural sector needs to be addressed in order to allow early implementation of mitigation strategies. The complex island topography and local sea-land-air interactions cannot adequately be represented in large scale General Climate Models (GCMs) nor visualized by TRMM. Downscaling is needed. Using meteorological observations and a simple statistical downscaling tool, local future projections are derived from state-of-the-art, large-scale GCM scenarios, provided by the CMIP5 project. To support the agriculture sector, providing information on especially rainfall and temperature variability is essential. Agricultural production forecast is influenced by several rain and temperature factors, such as rainy and dry season onset, offset and length, but also by daily and monthly minimum and maximum temperatures and its rainfall amount. A simple and advanced crop model will be used to address the sensitivity of different crops to temperature and rainfall variability, present-day and future. As case study area, Java Island is chosen as it is fourth largest island in Indonesia but contains more than half of the nation's population and dominates it politically and economically. The objective is to identify regions at agricultural risk due to changing patterns in precipitation and temperature.

  10. The analysis of dependence between extreme rainfall and storm surge in the coastal zone

    NASA Astrophysics Data System (ADS)

    Zheng, F.; Westra, S.

    2012-12-01

    Flooding in coastal catchments can be caused by runoff generated by an extreme rainfall event, elevated sea levels due to an extreme storm surge event, or the combination of both processes occurring simultaneously or in close succession. Dependence in extreme rainfall and storm surge arises because common meteorological forcings often drive both variables; for example, cyclonic systems may produce extreme rainfall, strong onshore winds and an inverse barometric effect simultaneously, which the former factor influencing catchment discharge and the latter two factors influencing storm surge. Nevertheless there is also the possibility that only one of the variables is extreme at any given time, so that the dependence between rainfall and storm surge is not perfect. Quantification of the strength of dependence between these processes is critical in evaluating the magnitude of flood risk in the coastal zone. This may become more important in the future as the majority of the coastal areas are threatened by the sea level rise due to the climate change. This research uses the most comprehensive record of rainfall and storm surge along the coastline of Australia collected to-date to investigate the strength of dependence between the extreme rainfall and storm surge along the Australia coastline. A bivariate logistic threshold-excess model was employed to this end to carry out the dependence analysis. The strength of the estimated dependence is then evaluated as a function of several factors including: the distance between the tidal gauge and the rain gauge; the lag between the extreme precipitation event and extreme surge event; and the duration of the maximum storm burst. The results show that the dependence between the extreme rainfall and storm surge along the Australia coastline is statistically significant, although some locations clearly exhibit stronger dependence than others. We hypothesize that this is due to a combination of large-scale meteorological effects as well as local scale bathymetry. Additionally, significant dependence can be observed over spatial distances of up to several hundred kilometers, implying that meso-scale meteorological forcings may play an important role in driving the dependence. This is also consistent with the result which shows that significant dependence often remaining for lags of up to one or two days between extremal rainfall and storm surge events. The influence of storm burst duration can also be observed, with rainfall extremes lasting more than several hours typically being more closely associated with storm surge compared with sub-hourly rainfall extremes. These results will have profound implications for how flood risk is evaluated along the coastal zone in Australia, with the strength of dependence varying depending on: (1) the dominant meteorological conditions; (2) the local estuary configuration, influencing the strength of the surge; and (3) the catchment attributes, influencing the duration of the storm burst that will deliver the peak flood events. Although a strong random component remains, we show that the probability of an extreme storm surge during an extreme rainfall event (or vice versa) can be up to ten times greater than under the situation under which there is no dependence, suggesting that failure to account for these interactions can result in a substantial underestimation of flood risk.

  11. Interannual Variability of Boreal Summer Rainfall in the Equatorial Atlantic

    NASA Technical Reports Server (NTRS)

    Gu, Guojun; Adler, Robert F.

    2007-01-01

    Tropical Atlantic rainfall patterns and variation during boreal summer [June-July-August (JJA)] are quantified by means of a 28-year (1979-2006) monthly precipitation dataset from the Global Precipitation Climatology Project (GPCP). Rainfall variability during boreal spring [March-April-May (MAM)] is also examined for comparison in that the most intense interannual variability is usually observed during this season. Comparable variabilities in the Intertropical Convergence Zone (ITCZ) strength and the basin-mean rainfall are found during both seasons. Interannual variations in the ITCZ's latitudinal location during JJA however are generally negligible, in contrasting to intense year-to-year fluctuations during MAM. Sea surface temperature (SST) oscillations along the equatorial region (usually called the Atlantic Nino events) and in the tropical north Atlantic (TNA) are shown to be the two major local factors modulating the tropical Atlantic climate during both seasons. During MAM, both SST modes tend to contribute to the formation of an evident interhemispheric SST gradient, thus inducing anomalous shifting of the ITCZ and then forcing a dipolar structure of rainfall anomalies across the equator primarily in the western basin. During JJA the impacts however are primarily on the ITCZ strength likely due to negligible changes in the ITCZ latitudinal location. The Atlantic Nino reaches its peak in JJA, while much weaker SST anomalies appear north of the equator in JJA than in MAM, showing decaying of the interhemispheric SST mode. SST anomalies in the tropical central-eastern Pacific (the El Nino events) have a strong impact on tropical Atlantic including both the tropical north Atlantic and the equatorial-southern Atlantic. However, anomalous warming in the tropical north Atlantic following positive SST anomalies in the tropical Pacific disappears during JJA because of seasonal changes in the large-scale circulation cutting off the ENSO influence passing through the mid-latitudes. Hence the anomalies associated with the tropical Pacific during JJA are forced through an anomalous Walker circulation primarily working on the western basin, and likely a lagged oceanic response in the equatorial region.

  12. A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events

    NASA Astrophysics Data System (ADS)

    Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir

    2017-12-01

    The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.

  13. Short-term modulation of Indian summer monsoon rainfall by West Asian dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinoj, V.; Rasch, Philip J.; Wang, Hailong

    The Indian summer monsoon is the result of a complex interplay between radiative heating, dynamics and cloud and aerosol interactions. Despite increased scientific attention, the effect of aerosols on monsoons still remains uncertain. Here we present both observational evidence and numerical modeling results demonstrating a remote aerosol link to Indian summer monsoon rainfall. Rainfall over central India is positively correlated to natural aerosols over the Arabian Sea and West Asia. Simulations using a state-of-the-art global climate model support this remote aerosol link and indicate that dust aerosols induce additional moisture transport and convergence over Central India, producing increased monsoon rainfall.more » The convergence is driven through solar heating and latent heating within clouds over West Asia that increases surface winds over the Arabian Sea. On the other hand, sea-salt aerosol tends to counteract the effect of dust and reduces rainfall. Our findings highlight the importance of natural aerosols in modulating the strength of the Indian summer monsoon, and motivate additional research in how changes in background aerosols of natural origin may be influencing long-term trends in monsoon precipitation.« less

  14. Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2017-03-01

    The performance of urban drainage systems is typically examined using hydrological and hydrodynamic models where rainfall input is uniformly distributed, i.e., derived from a single or very few rain gauges. When models are fed with a single uniformly distributed rainfall realization, the response of the urban drainage system to the rainfall variability remains unexplored. The goal of this study was to understand how climate variability and spatial rainfall variability, jointly or individually considered, affect the response of a calibrated hydrodynamic urban drainage model. A stochastic spatially distributed rainfall generator (STREAP - Space-Time Realizations of Areal Precipitation) was used to simulate many realizations of rainfall for a 30-year period, accounting for both climate variability and spatial rainfall variability. The generated rainfall ensemble was used as input into a calibrated hydrodynamic model (EPA SWMM - the US EPA's Storm Water Management Model) to simulate surface runoff and channel flow in a small urban catchment in the city of Lucerne, Switzerland. The variability of peak flows in response to rainfall of different return periods was evaluated at three different locations in the urban drainage network and partitioned among its sources. The main contribution to the total flow variability was found to originate from the natural climate variability (on average over 74 %). In addition, the relative contribution of the spatial rainfall variability to the total flow variability was found to increase with longer return periods. This suggests that while the use of spatially distributed rainfall data can supply valuable information for sewer network design (typically based on rainfall with return periods from 5 to 15 years), there is a more pronounced relevance when conducting flood risk assessments for larger return periods. The results show the importance of using multiple distributed rainfall realizations in urban hydrology studies to capture the total flow variability in the response of the urban drainage systems to heavy rainfall events.

  15. The influence of atmospheric circulation types on regional patterns of precipitation in Marmara (NW Turkey)

    NASA Astrophysics Data System (ADS)

    Baltacı, H.; Kındap, T.; Ünal, A.; Karaca, M.

    2017-02-01

    In this study, regional patterns of precipitation in Marmara are described for the first time by means of Ward's hierarchical cluster analysis. Daily values of winter precipitation data based on 19 meteorological stations were used for the period from 1960 to 2012. Five clusters of coherent zones were determined, namely Black Sea-Marmara, Black Sea, Marmara, Thrace, and Aegean sub-regions. To investigate the prevailing atmospheric circulation types (CTs) that cause precipitation occurrence and intensity in these five different rainfall sub-basins, objective Lamb weather type (LWT) methodology was applied to National Centers of Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis of daily mean sea level pressure (MSLP) data. Precipitation occurrence suggested that wet CTs (i.e. N, NE, NW, and C) offer a high chance of precipitation in all sub-regions. For the eastern (western) part of the region, the high probability of rainfall occurrence is shown under the influence of E (SE, S, SW) atmospheric CTs. In terms of precipitation intensity, N and C CTs had the highest positive gradients in all the sub-basins of the Marmara. In addition, although Marmara and Black Sea sub-regions have the highest daily rainfall potential during NE types, high daily rainfall totals are recorded in all sub-regions except the Black Sea during NW types.

  16. Possible impacts of the pre-monsoon dry line and sea breeze front on nocturnal rainfall over northeast Bangladesh

    NASA Astrophysics Data System (ADS)

    Stiller-Reeve, Mathew; Toniazzo, Thomas; Kolstad, Erik; Spengler, Thomas

    2017-04-01

    The northeast region of Bangladesh receives a large amount of rainfall before the large-scale monsoon circulation begins. For example, in April (a "pre-monsoon" month) 2010, 804 mm of rain fell in the regional capital Sylhet. It was the second wettest month of the entire year. From our conversations with the local people, we know that this pre-monsoon rainfall is extremely important to their livelihoods. We therefore need to understand it's triggering mechanisms. Several theories have been published, all of which are likely to be at play. However, in this work we look more closely at how the sea breeze front and prominent pre-monsoonal dry line in this region may play a role. If these mechanisms play a role in the convection, then it is likely that they trigger convection further afield, and then the resulting systems then propagate towards northeast Bangladesh. We believe this because rainfall associated with dry line/sea-breeze front convection often occurs during the late afternoon, but the rainfall over northeast Bangladesh shows a clear late-night/early-morning maxima. At present, the temporal and spatial resolution of the regional observations is inappropriate for examining these possible mechanisms. We therefore use a numerical model (WRF) to investigate the possible links between the convection and the sea breeze front and dry line. We use April 2010 as a case study since it was such a wet pre-monsoon month. The simulation shows that a sea breeze circulation often develops during the day in the coastal zone of Bangladesh and northeast India. After sunset the sea breeze front propagates inland pushing back the hot, dry air over India. On several days during the simulation, convection is triggered along the sea breeze front, which then propagates towards northeast Bangladesh and intensifies across the topography surrounding the Sylhet region. From our simulations, it appears that nocturnal convection over northeast Bangladesh is triggered by several mechanisms, but that the dry line and sea breeze front could also be an active contributor.

  17. A Tibetan lake sediment record of Holocene Indian summer monsoon variability

    NASA Astrophysics Data System (ADS)

    Bird, Broxton W.; Polisar, Pratigya J.; Lei, Yanbin; Thompson, Lonnie G.; Yao, Tandong; Finney, Bruce P.; Bain, Daniel J.; Pompeani, David P.; Steinman, Byron A.

    2014-08-01

    Sedimentological data and hydrogen isotopic measurements of leaf wax long-chain n-alkanes (δDwax) from an alpine lake sediment archive on the southeastern Tibetan Plateau (Paru Co) provide a Holocene perspective of Indian summer monsoon (ISM) activity. The sedimentological data reflect variations in lake level and erosion related to local ISM rainfall over the Paru Co catchment, whereas δDwax reflects integrated, synoptic-scale ISM dynamics. Our results indicate that maximum ISM rainfall occurred between 10.1 and ˜5.2 ka, during which time there were five century-scale high and low lake stands. After 5.2 ka, the ISM trended toward drier conditions to the present, with the exception of a pluvial event centered at 0.9 ka. The Paru Co results share similarities with paleoclimate records from across the Tibetan Plateau, suggesting millennial-scale ISM dynamics were expressed coherently. These millennial variations largely track gradual decreases in orbital insolation, the southward migration of the Intertropical Convergence Zone (ITCZ), decreasing zonal Pacific sea surface temperature (SST) gradients and cooling surface air temperatures on the Tibetan Plateau. Centennial ISM and lake-level variability at Paru Co closely track reconstructed surface air temperatures on the Tibetan Plateau, but may also reflect Indian Ocean Dipole events, particularly during the early Holocene when ENSO variability was attenuated. Variations in the latitude of the ITCZ during the early and late Holocene also appear to have exerted an influence on centennial ISM rainfall.

  18. Convection anomalies associated with warm eddy at the coastal area

    NASA Astrophysics Data System (ADS)

    Shi, R.; Wang, D.

    2017-12-01

    A possible correlation between a warm eddy and thunderstorms and convective precipitations are investigated at the coastal area in the northwestern South China Sea. Compared to the climatological mean in August from 2006 to 2013, an extreme enhancement of thunderstorm activities and precipitation rate are identified at the southern offshore area of Hainan island in August 2010 when a strong and long-live warm eddy was observed near the coastline at the same time. The 3 hourly satellite data (TRMM) indicate that the nocturnal convections is strong offshore and that could be responsible for the extreme positive anomalies of thunderstorms and rainfall in August 2010. The TRMM data also show a small reduction of thunderstorm activities and rainfall on the island in the afternoon. Meanwhile, the Weather Research and Forecasting (WRF) model was applied to simulate the change of rainfall in August 2010. The WRF simulation of rainfall rate is comparable with the observation results while there is some difference in the spatial distribution. The WRF simulation successfully captured the strong offshore rainfall and the diurnal variation of rainfall in August 2010. The WRF simulation indicated that the different convergence induced by sea/land breeze could be one essential reason for the adjustment of thunderstorms and rainfall in 2010. The substantial connection between sea/land breeze and upper layer heat content modified by the warm eddy is still on ongoing and will be reported in the future work.

  19. Towards flash-flood prediction in the dry Dead Sea region utilizing radar rainfall information

    NASA Astrophysics Data System (ADS)

    Morin, Efrat; Jacoby, Yael; Navon, Shilo; Bet-Halachmi, Erez

    2009-07-01

    Flash-flood warning models can save lives and protect various kinds of infrastructure. In dry climate regions, rainfall is highly variable and can be of high-intensity. Since rain gauge networks in such areas are sparse, rainfall information derived from weather radar systems can provide useful input for flash-flood models. This paper presents a flash-flood warning model which utilizes radar rainfall data and applies it to two catchments that drain into the dry Dead Sea region. Radar-based quantitative precipitation estimates (QPEs) were derived using a rain gauge adjustment approach, either on a daily basis (allowing the adjustment factor to change over time, assuming available real-time gauge data) or using a constant factor value (derived from rain gauge data) over the entire period of the analysis. The QPEs served as input for a continuous hydrological model that represents the main hydrological processes in the region, namely infiltration, flow routing and transmission losses. The infiltration function is applied in a distributed mode while the routing and transmission loss functions are applied in a lumped mode. Model parameters were found by calibration based on the 5 years of data for one of the catchments. Validation was performed for a subsequent 5-year period for the same catchment and then for an entire 10-year record for the second catchment. The probability of detection and false alarm rates for the validation cases were reasonable. Probabilistic flash-flood prediction is presented applying Monte Carlo simulations with an uncertainty range for the QPEs and model parameters. With low probability thresholds, one can maintain more than 70% detection with no more than 30% false alarms. The study demonstrates that a flash-flood warning model is feasible for catchments in the area studied.

  20. Towards flash flood prediction in the dry Dead Sea region utilizing radar rainfall information

    NASA Astrophysics Data System (ADS)

    Morin, E.; Jacoby, Y.; Navon, S.; Bet-Halachmi, E.

    2009-04-01

    Flash-flood warning models can save lives and protect various kinds of infrastructure. In dry climate regions, rainfall is highly variable and can be of high-intensity. Since rain gauge networks in such areas are sparse, rainfall information derived from weather radar systems can provide useful input for flash-flood models. This paper presents a flash-flood warning model utilizing radar rainfall data and applies it to two catchments that drain into the dry Dead Sea region. Radar-based quantitative precipitation estimates (QPEs) were derived using a rain gauge adjustment approach, either on a daily basis (allowing the adjustment factor to change over time, assuming available real-time gauge data) or using a constant factor value (derived from rain gauge data) over the entire period of the analysis. The QPEs served as input for a continuous hydrological model that represents the main hydrological processes in the region, namely infiltration, flow routing and transmission losses. The infiltration function is applied in a distributed mode while the routing and transmission loss functions are applied in a lumped mode. Model parameters were found by calibration based on five years of data for one of the catchments. Validation was performed for a subsequent five-year period for the same catchment and then for an entire ten year record for the second catchment. The probability of detection and false alarm rates for the validation cases were reasonable. Probabilistic flash-flood prediction is presented applying Monte Carlo simulations with an uncertainty range for the QPEs and model parameters. With low probability thresholds, one can maintain more than 70% detection with no more than 30% false alarms. The study demonstrates that a flash-flood-warning model is feasible for catchments in the area studied.

  1. Climate extremes in Malaysia and the equatorial South China Sea

    NASA Astrophysics Data System (ADS)

    Salahuddin, Ahmed; Curtis, Scott

    2011-08-01

    The southern extent of the South China Sea (SCS) is an important natural resource epicenter for Malaysia which experiences climate extremes. This paper documents the variability of extremes in the equatorial SCS through selected ground-based observations of precipitation in Malaysia and ship-based observations of wind data in the Maritime Continent region, to elucidate the interrelationship between precipitation variability over Malaysia and wind variability over the ocean. The data have been carefully inspected and analyzed, and related to the real-time multivariate Madden-Julian Oscillation (MJO) time series. The analysis suggests that the northeast or boreal winter monsoon dominates extreme rainfall in eastern Malaysian cities. Further, the west coast of Peninsular Malaysia and Borneo Malaysia are affected by the MJO differently than the east coast of Peninsular Malaysia. From the wind analysis we found that average zonal wind is westerly from May to September and easterly from November to April. When the active (convective) phase of the MJO is centered over the Maritime Continent, the strong westerly wind bursts are more frequent in the South China Sea. While more investigation is needed, these results suggest that the status of the Madden-Julian Oscillation can be used to help forecast climate extremes in areas of Malaysia.

  2. Indian summer monsoon rainfall variability during 2014 and 2015 and associated Indo-Pacific upper ocean temperature patterns

    NASA Astrophysics Data System (ADS)

    Kakatkar, Rashmi; Gnanaseelan, C.; Chowdary, J. S.; Parekh, Anant; Deepa, J. S.

    2018-02-01

    In this study, factors responsible for the deficit Indian Summer Monsoon (ISM) rainfall in 2014 and 2015 and the ability of Indian Institute of Tropical Meteorology-Global Ocean Data Assimilation System (IITM-GODAS) in representing the oceanic features are examined. IITM-GODAS has been used to provide initial conditions for seasonal forecast in India during 2014 and 2015. The years 2014 and 2015 witnessed deficit ISM rainfall but were evolved from two entirely different preconditions over Pacific. This raises concern over the present understanding of the role of Pacific Ocean on ISM variability. Analysis reveals that the mechanisms associated with the rainfall deficit over the Indian Subcontinent are different in the two years. It is found that remote forcing in summer of 2015 due to El Niño is mostly responsible for the deficit monsoon rainfall through changes in Walker circulation and large-scale subsidence. In the case of the summer of 2014, both local circulation with anomalous anticyclone over central India and intrusion of mid-latitude dry winds from north have contributed for the deficit rainfall. In addition to the above, Tropical Indian Ocean (TIO) sea surface temperature (SST) and remote forcing from Pacific Ocean also modulated the ISM rainfall. It is observed that Pacific SST warming has extended westward in 2014, making it a basin scale warming unlike the strong El Niño year 2015. The eastern equatorial Indian Ocean is anomalously warmer than west in summer of 2014, and vice versa in 2015. These differences in SST in both tropical Pacific and TIO have considerable impact on ISM rainfall in 2014 and 2015. The study reveals that initializing coupled forecast models with proper upper ocean temperature over the Indo-Pacific is therefore essential for improved model forecast. It is important to note that the IITM-GODAS which assimilates only array for real-time geostrophic oceanography (ARGO) temperature and salinity profiles could capture most of the observed surface and subsurface temperature variations from early spring to summer during the years 2014 and 2015 over the Indo-Pacific region. This study highlights the importance of maintaining observing systems such as ARGO for accurate monsoon forecast.

  3. Assessment of summer rainfall forecast skill in the Intra-Americas in GFDL high and low-resolution models

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Lakshmi; Muñoz, Ángel G.; Vecchi, Gabriel A.; Msadek, Rym; Wittenberg, Andrew T.; Stern, Bill; Gudgel, Rich; Zeng, Fanrong

    2018-05-01

    The Caribbean low-level jet (CLLJ) is an important component of the atmospheric circulation over the Intra-Americas Sea (IAS) which impacts the weather and climate both locally and remotely. It influences the rainfall variability in the Caribbean, Central America, northern South America, the tropical Pacific and the continental Unites States through the transport of moisture. We make use of high-resolution coupled and uncoupled models from the Geophysical Fluid Dynamics Laboratory (GFDL) to investigate the simulation of the CLLJ and its teleconnections and further compare with low-resolution models. The high-resolution coupled model FLOR shows improvements in the simulation of the CLLJ and its teleconnections with rainfall and SST over the IAS compared to the low-resolution coupled model CM2.1. The CLLJ is better represented in uncoupled models (AM2.1 and AM2.5) forced with observed sea-surface temperatures (SSTs), emphasizing the role of SSTs in the simulation of the CLLJ. Further, we determine the forecast skill for observed rainfall using both high- and low-resolution predictions of rainfall and SSTs for the July-August-September season. We determine the role of statistical correction of model biases, coupling and horizontal resolution on the forecast skill. Statistical correction dramatically improves area-averaged forecast skill. But the analysis of spatial distribution in skill indicates that the improvement in skill after statistical correction is region dependent. Forecast skill is sensitive to coupling in parts of the Caribbean, Central and northern South America, and it is mostly insensitive over North America. Comparison of forecast skill between high and low-resolution coupled models does not show any dramatic difference. However, uncoupled models show improvement in the area-averaged skill in the high-resolution atmospheric model compared to lower resolution model. Understanding and improving the forecast skill over the IAS has important implications for highly vulnerable nations in the region.

  4. Regional intensity-duration-frequency analysis in the Eastern Black Sea Basin, Turkey, by using L-moments and regression analysis

    NASA Astrophysics Data System (ADS)

    Ghiaei, Farhad; Kankal, Murat; Anilan, Tugce; Yuksek, Omer

    2018-01-01

    The analysis of rainfall frequency is an important step in hydrology and water resources engineering. However, a lack of measuring stations, short duration of statistical periods, and unreliable outliers are among the most important problems when designing hydrology projects. In this study, regional rainfall analysis based on L-moments was used to overcome these problems in the Eastern Black Sea Basin (EBSB) of Turkey. The L-moments technique was applied at all stages of the regional analysis, including determining homogeneous regions, in addition to fitting and estimating parameters from appropriate distribution functions in each homogeneous region. We studied annual maximum rainfall height values of various durations (5 min to 24 h) from seven rain gauge stations located in the EBSB in Turkey, which have gauging periods of 39 to 70 years. Homogeneity of the region was evaluated by using L-moments. The goodness-of-fit criterion for each distribution was defined as the ZDIST statistics, depending on various distributions, including generalized logistic (GLO), generalized extreme value (GEV), generalized normal (GNO), Pearson type 3 (PE3), and generalized Pareto (GPA). GLO and GEV determined the best distributions for short (5 to 30 min) and long (1 to 24 h) period data, respectively. Based on the distribution functions, the governing equations were extracted for calculation of intensities of 2, 5, 25, 50, 100, 250, and 500 years return periods (T). Subsequently, the T values for different rainfall intensities were estimated using data quantifying maximum amount of rainfall at different times. Using these T values, duration, altitude, latitude, and longitude values were used as independent variables in a regression model of the data. The determination coefficient ( R 2) value indicated that the model yields suitable results for the regional relationship of intensity-duration-frequency (IDF), which is necessary for the design of hydraulic structures in small and medium sized catchments.

  5. Revisiting the Observed Correlation Between Weekly Averaged Indian Monsoon Precipitation and Arabian Sea Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Sharma, D.; Miller, R. L.

    2017-12-01

    Dust influences the Indian summer monsoon on seasonal timescales by perturbing atmospheric radiation. On weekly time scales, aerosol optical depth retrieved by satellite over the Arabian Sea is correlated with Indian monsoon precipitation. This has been interpreted to show the effect of dust radiative heating on Indian rainfall on synoptic (few-day) time scales. However, this correlation is reproduced by Earth System Model simulations, where dust is present but its radiative effect is omitted. Analysis of daily variability suggests that the correlation results from the effect of precipitation on dust through the associated cyclonic circulation. Boundary layer winds that deliver moisture to India are responsible for dust outbreaks in source regions far upwind, including the Arabian Peninsula. This suggests that synoptic variations in monsoon precipitation over India enhance dust emission and transport to the Arabian Sea. The effect of dust radiative heating upon synoptic monsoon variations remains to be determined.

  6. Revisiting the observed correlation between weekly averaged Indian monsoon precipitation and Arabian Sea aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sharma, Disha; Miller, Ron L.

    2017-10-01

    Dust influences the Indian summer monsoon on seasonal time scales by perturbing atmospheric radiation. On weekly time scales, aerosol optical depth retrieved by satellite over the Arabian Sea is correlated with Indian monsoon precipitation. This has been interpreted to show the effect of dust radiative heating on Indian rainfall on synoptic (few-day) time scales. However, this correlation is reproduced by Earth System Model simulations, where dust is present but its radiative effect is omitted. Analysis of daily variability suggests that the correlation results from the effect of precipitation on dust through the associated cyclonic circulation. Boundary layer winds that deliver moisture to India are responsible for dust outbreaks in source regions far upwind, including the Arabian Peninsula. This suggests that synoptic variations in monsoon precipitation over India enhance dust emission and transport to the Arabian Sea. The effect of dust radiative heating upon synoptic monsoon variations remains to be determined.

  7. How spatial and temporal rainfall variability affect runoff across basin scales: insights from field observations in the (semi-)urbanised Charlotte watershed

    NASA Astrophysics Data System (ADS)

    Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.

    2017-12-01

    Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.

  8. South Pacific hydrologic and cyclone variability during the last 3000 years

    NASA Astrophysics Data System (ADS)

    Toomey, Michael R.; Donnelly, Jeffrey P.; Tierney, Jessica E.

    2016-04-01

    Major excursions in the position of the South Pacific Convergence Zone (SPCZ) and/or changes in its intensity are thought to drive tropical cyclone (TC) and precipitation variability across much of the central South Pacific. A lack of conventional sites typically used for multimillennial proxy reconstructions has limited efforts to extend observational rainfall/TC data sets and our ability to fully assess the risks posed to central Pacific islands by future changes in fresh water availability or the frequency of storm landfalls. Here we use the sedimentary record of Apu Bay, offshore the island of Tahaa, French Polynesia, to explore the relationship between SPCZ position/intensity and tropical cyclone overwash, resolved at decadal time scales, since 3200 years B.P. Changes in orbital precession and Pacific sea surface temperatures best explain evidence for a coordinated pattern of rainfall variability at Tahaa and across the Pacific over the late Holocene. Our companion record of tropical cyclone activity from Tahaa suggests major storm activity was higher between 2600-1500 years B.P., when decadal scale SPCZ variability may also have been stronger. A transition to lower storm frequency and a shift or expansion of the SPCZ toward French Polynesia around 1000 years B.P. may have prompted Polynesian migration into the central Pacific.

  9. Analysis of Oceans' Influence on Spring Time Rainfall Variability Over Southeastern South America during the 20th Century

    NASA Astrophysics Data System (ADS)

    Martín, Verónica; Barreiro, Marcelo

    2015-04-01

    Southeastern South America (SESA) rainfall presents large variability from interannual to multidecadal times scales and is influenced by the tropical Pacific, Atlantic and Indian oceans. At the same time, these tropical oceans interact with each other inducing sea surface temperature anomalies in remote basins through atmospheric and oceanic teleconnections. In this study we employ a tool from complex networks to analyze the collective influence of the three tropical oceans on austral spring rainfall variability over SESA during the 20th century. To do so we construct a climate network considering as nodes the observed Niño3.4, Tropical North Atlantic (TNA), and Indian Ocean Dipole (IOD) indices, together with an observed or simulated precipitation (PCP) index over SESA. The mean network distance is considered as a measure of synchronization among all these phenomena during the 20th century. The approach allowed to uncover large interannual and interdecadal variability in the interaction among nodes. In particular, there are two main synchronization periods characterized by different interactions among the oceanic and precipitation nodes. Whereas in the '30s El Niño and the TNA were the main tropical oceanic phenomena that influenced SESA precipitation variability, during the '70s they were El Niño and the IOD. Simulations with an Atmospheric General Circulation Model reproduced the overall behavior of the collective influence of the tropical oceans on rainfall over SESA, and allowed to study the circulation anomalies that characterized the synchronization periods. In agreement with previous studies, the influence of El Niño on SESA precipitation variability might be understood through an increase of the northerly transport of moisture in lower levels and advection of cyclonic vorticity in upper levels. On the other hand, the interaction between the IOD and PCP can be interpreted in two possible ways. One possibility is that both nodes (IOD and PCP) are forced by El Niño. Another possibility is that the Indian Ocean warming influences rainfall over Southeastern South America through the eastward propagation of Rossby waves as suggested previously. Finally, the influence of TNA on SESA precipitation persists even when El Niño signal is removed, suggesting that SST anomalies in the tropical north Atlantic can directly influence SESA precipitation and further studies are needed to elucidate this connection. KEY WORDS: climate networks, synchronization events, climate variability, tropical ocean teleconnections, tropic-extratropic teleconnections, precipitation over SESA.

  10. Prognostic Aspects of Sub-seasonal Rainfall Characteristics using the Outputs of General Circulation Model: An Application of Statistical Downscaling and Temporal Disaggregation

    NASA Astrophysics Data System (ADS)

    Singh, A.; Mohanty, U. C.; Ghosh, K.

    2015-12-01

    Most regions of India experience varied rainfall duration during the southwest monsoon, changes in which exhibit major impact not only agriculture, but also other sectors like hydrology, agriculture, food and fodder storage etc. In addition, changes in sub-seasonal rainfall characteristics highly impact the rice production. As part of the endeavor seasonal climate outlook, as well as information for weather within climate may be helpful for advance planning and risk management in agriculture. The General Circulation Model (GCM) provide an alternative to gather information for weather within climate but variability is very low in comparison to observation. On the other hand, the spatial resolution of GCM predicted rainfall is not found at the observed station/grid point. To tackle the problem, initially a statistical downscaling over 19 station of Odisha state is undertaken using the atmospheric parameters predicted by a GCM (NCEP-CFSv2). For the purpose, an extended domain is taken for analyzing the significant zone for the atmospheric parameters like zonal wind at 850hPa, Sea Surface Temperature (SST), geopotential height. A statistical model using the pattern projection method is further developed based on empirical orthogonal function. The downscaled rainfall is found better in association with station observation in comparison to raw GCM prediction in view of deterministic and probabilistic skill measure. Further, the sub-seasonal and seasonal forecast from the GCMs can be used at different time steps for risk management. Therefore, downscaled seasonal/monthly rainfall is further converted to sub-seasonal/daily time scale using a non-homogeneous markov model. The simulated weather sequences are further compared with the observed sequence in view of categorical rainfall events. The outcomes suggest that the rainfall amount are overestimated for excess rainfall and henceforth larger excess rainfall events can be realized. The skill for prediction of rainfall events corresponding to lower thresholds is found higher. A detail discussion regarding skill of spatial downscale rainfall at observed stations and its further representation of sub-seasonal characteristics (spells, less rainfall, heavy rainfall, and moderate rainfall events) of rainfall for disaggregated outputs will be presented.

  11. Impact of atmospheric circulation types on southwest Asian dust and Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Houssos, E. E.; Solmon, F.; Legrand, M.; Rashki, A.; Dumka, U. C.; Francois, P.; Gautam, R.; Singh, R. P.

    2018-03-01

    This study examines the meteorological feedback on dust aerosols and rainfall over the Arabian Sea and India during the summer monsoon using satellite data, re-analysis and a regional climate model. Based on days with excess aerosol loading over the central Ganges basin during May - September, two distinct atmospheric circulation types (weather clusters) are identified, which are associated with different dust-aerosol and rainfall distributions over south Asia, highlighting the role of meteorology on dust emissions and monsoon rainfall. Each cluster is characterized by different patterns of mean sea level pressure (MSLP), geopotential height at 700 hPa (Z700) and wind fields at 1000 hPa and at 700 hPa, thus modulating changes in dust-aerosol loading over the Arabian Sea. One cluster is associated with deepening of the Indian/Pakistan thermal low leading to (i) increased cyclonicity and thermal convection over northwestern India and Arabian Peninsula, (ii) intensification of the southwest monsoon off the Horn of Africa, iii) increase in dust emissions from Rub-Al-Khali and Somalian deserts, (iv) excess dust accumulation over the Arabian Sea and, (v) strengthening of the convergence of humid air masses and larger precipitation over Indian landmass compared to the other cluster. The RegCM4.4 model simulations for dust-aerosol and precipitation distributions support the meteorological fields and satellite observations, while the precipitation over India is positively correlated with the aerosol loading over the Arabian Sea on daily basis for both weather clusters. This study highlights the key role of meteorology and atmospheric dynamics on dust life cycle and rainfall over the monsoon-influenced south Asia.

  12. Atmospheric circulation feedback on west Asian dust and Indian monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, Dimitris; Houssos, Elias; Gautam, Ritesh; Singh, Ramesh; Rashki, Alireza; Dumka, Umesh

    2016-04-01

    Classification of the atmospheric circulation patterns associated with high aerosol loading events over the Ganges valley, via the synergy of Factor and Cluster analysis techniques, has indicated six different synoptic weather patterns, two of which mostly occur during late pre-monsoon and monsoon seasons (May to September). The current study focuses on examining these two specific clusters that are associated with different mean sea level pressure (MSLP), geopotential height at 700 hPa (Z700) and wind fields that seem to affect the aerosol (mostly dust) emissions and precipitation distribution over the Indian sub-continent. Furthermore, the study reveals that enhanced aerosol presence over the Arabian Sea is positively associated with increased rainfall over the Indian landmass. The increased dust over the Arabian Sea and rainfall over India are associated with deepening of the northwestern Indian and Arabian lows that increase thermal convection and convergence of humid air masses into Indian landmass, resulting in larger monsoon precipitation. For this cluster, negative MSLP and Z700 anomalies are observed over the Arabian Peninsula that enhance the dust outflow from Arabia and, concurrently, the southwesterly air flow resulting in increase in monsoon precipitation over India. The daily precipitation over India is found to be positively correlated with the aerosol loading over the Arabian Sea for both weather clusters, thus verifying recent results from satellite observations and model simulations concerning the modulation of the Indian summer monsoon rainfall by the Arabian dust. The present work reveals that in addition to the radiative impacts of dust on modulating the monsoon rainfall, differing weather patterns favor changes in dust emissions, accumulation as well as rainfall distribution over south Asia.

  13. Spatial variability of extreme rainfall at radar subpixel scale

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Marra, Francesco; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2018-01-01

    Extreme rainfall is quantified in engineering practice using Intensity-Duration-Frequency curves (IDF) that are traditionally derived from rain-gauges and more recently also from remote sensing instruments, such as weather radars. These instruments measure rainfall at different spatial scales: rain-gauge samples rainfall at the point scale while weather radar averages precipitation on a relatively large area, generally around 1 km2. As such, a radar derived IDF curve is representative of the mean areal rainfall over a given radar pixel and neglects the within-pixel rainfall variability. In this study, we quantify subpixel variability of extreme rainfall by using a novel space-time rainfall generator (STREAP model) that downscales in space the rainfall within a given radar pixel. The study was conducted using a unique radar data record (23 years) and a very dense rain-gauge network in the Eastern Mediterranean area (northern Israel). Radar-IDF curves, together with an ensemble of point-based IDF curves representing the radar subpixel extreme rainfall variability, were developed fitting Generalized Extreme Value (GEV) distributions to annual rainfall maxima. It was found that the mean areal extreme rainfall derived from the radar underestimate most of the extreme values computed for point locations within the radar pixel (on average, ∼70%). The subpixel variability of rainfall extreme was found to increase with longer return periods and shorter durations (e.g. from a maximum variability of 10% for a return period of 2 years and a duration of 4 h to 30% for 50 years return period and 20 min duration). For the longer return periods, a considerable enhancement of extreme rainfall variability was found when stochastic (natural) climate variability was taken into account. Bounding the range of the subpixel extreme rainfall derived from radar-IDF can be of major importance for different applications that require very local estimates of rainfall extremes.

  14. Evaluation and prediction of anomalous El Niño generated rainfalls in Peruvian and Ecuadorian coastal zone

    NASA Astrophysics Data System (ADS)

    Cadier, E.; Rossel, F.; Pouyaud, B.; Raymond, M.

    2003-04-01

    Coastal regions of Southern Ecuador and Northern Peru rainfalls are well known for their sensitivity to the El Niño/Southern Oscillation (ENSO) phenomenon. New monthly rainfall index series were set up from a network of 200 rainfall stations in the Ecuadorian and Peruvian coastal region. Throughout the study, rainfall was modelled keeping a distinction between a "dependent" data set used as a training period and an "independent" portion of the record reserved for validation. Multiple regression models were proposed to predict monthly rainfall in the Guayaquil and in northern coastal Peru, using as predictors, sea surface temperature, precipitation, meridional and zonal wind in the eastern equatorial Pacific. Then, the resulting equations were used to predict rainfall anomalies in the independent data set. In the Guayaquil zone, there is considerable predictable expertise for the rainy months of the year, the best predictability being assessed from March to May. The multiple linear correlations explain 60 to 82% of the monthly-precipitation variance. Northern coastal Ecuadorian region's preseason rainfall is the most powerful predictor for the rainy season peak in Guayaquil, while the eastern equatorial Pacific sea surface temperature is the most powerful predictor for the end of rainy season. KEY WORDS: El Niño, Rainfall Prediction, Ecuador.

  15. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    NASA Astrophysics Data System (ADS)

    Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.

    2017-09-01

    Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.

  16. Investigation of summer monsoon rainfall variability in Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Mian Sabir; Lee, Seungho

    2016-08-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  17. Convective Systems over the South China Sea: Cloud-Resolving Model Simulations.

    NASA Astrophysics Data System (ADS)

    Tao, W.-K.; Shie, C.-L.; Simpson, J.; Braun, S.; Johnson, R. H.; Ciesielski, P. E.

    2003-12-01

    The two-dimensional version of the Goddard Cumulus Ensemble (GCE) model is used to simulate two South China Sea Monsoon Experiment (SCSMEX) convective periods [18 26 May (prior to and during the monsoon onset) and 2 11 June (after the onset of the monsoon) 1998]. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum are used as the main forcing in governing the GCE model in a semiprognostic manner. The June SCSMEX case has stronger forcing in both temperature and water vapor, stronger low-level vertical shear of the horizontal wind, and larger convective available potential energy (CAPE).The temporal variation of the model-simulated rainfall, time- and domain-averaged heating, and moisture budgets compares well to those diagnostically determined from soundings. However, the model results have a higher temporal variability. The model underestimates the rainfall by 17% to 20% compared to that based on soundings. The GCE model-simulated rainfall for June is in very good agreement with the Tropical Rainfall Measuring Mission (TRMM), precipitation radar (PR), and the Global Precipitation Climatology Project (GPCP). Overall, the model agrees better with observations for the June case rather than the May case.The model-simulated energy budgets indicate that the two largest terms for both cases are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening). These two terms are opposite in sign, however. The model results also show that there are more latent heat fluxes for the May case. However, more rainfall is simulated for the June case. Net radiation (solar heating and longwave cooling) are about 34% and 25%, respectively, of the net condensation (condensation minus evaporation) for the May and June cases. Sensible heat fluxes do not contribute to rainfall in either of the SCSMEX cases. Two types of organized convective systems, unicell (May case) and multicell (June case), are simulated by the model. They are determined by the observed mean U wind shear (unidirectional versus reverse shear profiles above midlevels).Several sensitivity tests are performed to examine the impact of the radiation, microphysics, and large-scale mean horizontal wind on the organization and intensity of the SCSMEX convective systems.

  18. Land use change exacerbates tropical South American drought by sea surface temperature variability

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Eun; Lintner, Benjamin R.; Boyce, C. Kevin; Lawrence, Peter J.

    2011-10-01

    Observations of tropical South American precipitation over the last three decades indicate an increasing rainfall trend to the north and a decreasing trend to the south. Given that tropical South America has experienced significant land use change over the same period, it is of interest to assess the extent to which changing land use may have contributed to the precipitation trends. Simulations of the National Center for Atmospheric Research Community Atmosphere Model (NCAR CAM3) analyzed here suggest a non-negligible impact of land use on this precipitation behavior. While forcing the model by imposed historical sea surface temperatures (SSTs) alone produces a plausible north-south precipitation dipole over South America, NCAR CAM substantially underestimates the magnitude of the observed southern decrease in rainfall unless forcing associated with human-induced land use change is included. The impact of land use change on simulated precipitation occurs primarily during the local dry season and in regions of relatively low annual-mean rainfall, as the incidence of very low monthly-mean accumulations (<10 mm/month) increases significantly when land use change is imposed. Land use change also contributes to the simulated temperature increase by shifting the surface turbulent flux partitioning to favor sensible over latent heating. Moving forward, continuing pressure from deforestation in tropical South America will likely increase the occurrence of significant drought beyond what would be expected by anthropogenic warming alone and in turn compound biodiversity decline from habitat loss and fragmentation.

  19. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices

    NASA Astrophysics Data System (ADS)

    Funk, C.; Hoell, A.; Shukla, S.; Bladé, I.; Liebmann, B.; Roberts, J. B.; Robertson, F. R.; Husak, G.

    2014-12-01

    In eastern East Africa (the southern Ethiopia, eastern Kenya and southern Somalia region), poor boreal spring (long wet season) rains in 1999, 2000, 2004, 2007, 2008, 2009, and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers implement disaster risk reduction measures while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent East African droughts to a stronger Walker circulation, resulting from warming in the Indo-Pacific warm pool and an increased east-to-west sea surface temperature (SST) gradient in the western Pacific, we show that the two dominant modes of East African boreal spring rainfall variability are tied to SST fluctuations in the western central Pacific and central Indian Ocean, respectively. Variations in these two rainfall modes can thus be predicted using two SST indices - the western Pacific gradient (WPG) and central Indian Ocean index (CIO), with our statistical forecasts exhibiting reasonable cross-validated skill (rcv ≈ 0.6). In contrast, the current generation of coupled forecast models show no skill during the long rains. Our SST indices also appear to capture most of the major recent drought events such as 2000, 2009 and 2011. Predictions based on these simple indices can be used to support regional forecasting efforts and land surface data assimilations to help inform early warning and guide climate outlooks.

  20. Borneo vortex and meso-scale convective rainfall

    NASA Astrophysics Data System (ADS)

    Koseki, S.; Koh, T.-Y.; Teo, C.-K.

    2013-08-01

    We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite datasets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a "perpetual" cold surge. The Borneo vortex is manifested as a meso-α cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth of the meso-α cyclone was achieved mainly by vortex stretching. The comma-shaped rainband consists of clusters of meso-β scale rainfall patches. The warm and wet cyclonic southeasterly flow meets with the cold and dry northeasterly surge forming a confluence front in the northeastern sector of the cyclone. Intense upward motion and heavy rainfall result both due to the low-level convergence and the favourable thermodynamic profile at the confluence front. At both meso-α and meso-β scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is much enhanced by nonlinear self-enhancement dynamics.

  1. Meteorological impact assessment of possible large scale irrigation in Southwest Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ter Maat, H. W.; Hutjes, R. W. A.; Ohba, R.; Ueda, H.; Bisselink, B.; Bauer, T.

    2006-11-01

    On continental to regional scales feedbacks between landuse and landcover change and climate have been widely documented over the past 10-15 years. In the present study we explore the possibility that also vegetation changes over much smaller areas may affect local precipitation regimes. Large scale (˜ 10 5 ha) irrigated plantations in semi-arid environments under particular conditions may affect local circulations and induce additional rainfall. Capturing this rainfall 'surplus' could then reduce the need for external irrigation sources and eventually lead to self-sustained water cycling. This concept is studied in the coastal plains in South West Saudi Arabia where the mountains of the Asir region exhibit the highest rainfall of the peninsula due to orographic lifting and condensation of moisture imported with the Indian Ocean monsoon and with disturbances from the Mediterranean Sea. We use a regional atmospheric modeling system (RAMS) forced by ECMWF analysis data to resolve the effect of complex surface conditions in high resolution (Δ x = 4 km). After validation, these simulations are analysed with a focus on the role of local processes (sea breezes, orographic lifting and the formation of fog in the coastal mountains) in generating rainfall, and on how these will be affected by large scale irrigated plantations in the coastal desert. The validation showed that the model simulates the regional and local weather reasonably well. The simulations exhibit a slightly larger diurnal temperature range than those captured by the observations, but seem to capture daily sea-breeze phenomena well. Monthly rainfall is well reproduced at coarse resolutions, but appears more localized at high resolutions. The hypothetical irrigated plantation (3.25 10 5 ha) has significant effects on atmospheric moisture, but due to weakened sea breezes this leads to limited increases of rainfall. In terms of recycling of irrigation gifts the rainfall enhancement in this particular setting is rather insignificant.

  2. A note on Bjerkne's hypothesis for North Atlantic variability

    NASA Astrophysics Data System (ADS)

    Bryan, Kirk; Stouffer, Ron

    1991-01-01

    On decadal time-scales the historical surface temperature record over land in the Northern Hemisphere is dominated by polar amplified variations. These variations are coherent with SST anomalies concentrated in the Northwest Atlantic, but extending with lesser amplitude into the North Pacific as well. Bierknes suggested that multi-year SST anomalies in the subpolar North Atlantic were due to irregular changes in the intensity of the thermohaline circulation. In support of the Bjerknes hypothesis there is evidence that winter overturning in the Labrador Sea was suppressed for a brief period from 1967-1969 by a cap of relative fresh water at the surface. Cause and effect are unclear, but this event was associated with a marked cooling of the entire Northern Hemisphere. The difference in SST averaged over the Northern Hemisphere oceans and SST averaged over the Southern Hemisphere oceans from the equator to 40°S is coherent with Sahel summer rainfall on decadal time scales. Empirical evidence is supported by numerical experiments with the British Meteorological Office atmospheric climate model which simulate augmented monsoonal rainfall in the Sahel region of Africa in response to realistic warm SST anomalies in the Northwest Atlantic. A coupled ocean-atmosphere global model exhibits two equilibrium climate states. One has an active thermohaline circulation in the North Atlantic and the other does not. The two climate states provide an extreme example which illustrates the type of large scale air sea interaction Bjerknes visualized as a mechanism for North Atlantic climate variability on decadal time-scales.

  3. Indo-Pacific sea surface temperature influences on failed consecutive rainy seasons over eastern Africa

    USGS Publications Warehouse

    Hoell, Andrew; Funk, Christopher C.

    2014-01-01

    Rainfall over eastern Africa (10°S–10°N; 35°E–50°E) is bimodal, with seasonal maxima during the "long rains" of March–April–May (MAM) and the "short rains" of October–November–December (OND). Below average precipitation during consecutive long and short rains seasons over eastern Africa can have devastating long-term impacts on water availability and agriculture. Here, we examine the forcing of drought during consecutive long and short rains seasons over eastern Africa by Indo-Pacific sea surface temperatures (SSTs). The forcing of eastern Africa precipitation and circulation by SSTs is tested using ten ensemble simulations of a global weather forecast model forced by 1950–2010 observed global SSTs. Since the 1980s, Indo-Pacific SSTs have forced more frequent droughts spanning consecutive long and short rains seasons over eastern Africa. The increased frequency of dry conditions is linked to warming SSTs over the Indo-west Pacific and to a lesser degree to Pacific Decadal Variability. During MAM, long-term warming of tropical west Pacific SSTs from 1950–2010 has forced statistically significant precipitation reductions over eastern Africa. The warming west Pacific SSTs have forced changes in the regional lower tropospheric circulation by weakening the Somali Jet, which has reduced moisture and rainfall over the Horn of Africa. During OND, reductions in precipitation over recent decades are oftentimes overshadowed by strong year-to-year precipitation variability forced by the Indian Ocean Dipole and the El Niño–Southern Oscillation.

  4. Simulation of Rainfall Variability Over West Africa

    NASA Astrophysics Data System (ADS)

    Bader, J.; Latif, M.

    The impact of sea surface temperature (SST) and vegetation on precipitation over West Africa is investigated with the atmospheric general circulation model ECHAM4.x/T42. Ensemble experiments -driven with observed SST- show that At- lantic SST has a significant influence on JJA precipitation over West Africa. Four- teen experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropi- cal Atlantic only caused significant changes along the Guinea Coast, with a positive SSTA increasing rainfall and a negative reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, es- pecially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. Four simulations with a coupled model (the simple dynamic vegetation model (SVege) and the ECHAM4-AGCM were coupled) were also performed, driven with observed SST from 1945 to 1998. The standard ECHAM-AGCM -forced by the same observed SST- was able to reproduce the drying trend from the fifties to the mid-eighties in the Sahel, but failed to mirror the magnitude of the rainfall anomalies. The coupled model was not only able to reproduce this drying trend, but was also able to better reproduce the amplitudes of the rainfall anomalies. The dynamic vegetation acted like an amplifier, increasing the SST induced rainfall anomalies.

  5. A coral-based reconstruction of Intertropical Convergence Zone variablity over Central America since 1707

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linsley, B.K.; Dunbar, R.B.; Mucciarone, D.A.

    1994-05-15

    Seasonal movements of the Intertropical Convergence Zone (ITCZ) control precipitation patterns and cloud cover throughout the tropics. In this study the authors have reconstructed seasonal and interannual variability of the eastern Pacific ITCZ from 1984 to 1707 using subseasonal {delta}{sup 18}O analyses on a massive coral from Secas Island (7{degrees}59{prime}N, 82{degrees}3{prime}W) in the Gulf of Chiriqui, Panama. The land area that drains into the Gulf of Chiriqui has served to amplify the rainfall effect on nearshore surface waters and coral {delta}{sup 18}O{sub ppt} composition. During the protracted wet season in Panama, the {delta}{sup 18}O of precipitation ({delta}{sup 18}O{sub ppt}) ismore » reduced on average by 10{per_thousand} and sea surface salinity (SSS) along the western coast is reduced up to 11{per_thousand}. Calibration of the coral {delta}{sup 18}O{sub ppt} from Secas Island against instrumental sea surface temperature (SST), SSS, precipitation and {delta}{sup 18}O{sub ppt} data indicate that seasonal rainfall induced variations in seawater {delta}{sup 18}O are responsible for {approximately}80% of the annual {delta}{sup 18}O variance. The regularity of the reconstructed seasonal ITCZ cycle indicates that over the length of the record the zone of maximum rainfall in the eastern Pacific has always expanded north to at least Panama in every northern hemisphere summer. Significant interannual and interdecadal {delta}{sup 18}O oscillations occur at average periods near 9, 3-7 (ENSO band), 17 and 33 years (listed in order of decreasing variance). As the Gulf of Chiriqui coral {delta}{sup 18}O time series is the first paleoclimatic record of past variations in the ITCZ, other seasonal-resolution reconstructions of the past behavior of the ITCZ are required to test whether the interannual and long-term variability observed in the eastern Pacific ITCZ is more than regional in scale. 79 refs., 13 figs., 2 tabs.« less

  6. Time evolution of atmospheric parameters and their influence on sea level pressure over the head Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Patra, Anindita; Bhaskaran, Prasad K.; Jose, Felix

    2018-06-01

    A zonal dipole in the observed trends of wind speed and significant wave height over the Head Bay of Bengal region was recently reported in the literature attributed due to the variations in sea level pressure (SLP). The SLP in turn is governed by prevailing atmospheric conditions such as local temperature, humidity, rainfall, atmospheric pressure, wind field distribution, formation of tropical cyclones, etc. The present study attempts to investigate the inter-annual variability of atmospheric parameters and its role on the observed zonal dipole trend in sea level pressure, surface wind speed and significant wave height. It reports on the aspects related to linear trend as well as its spatial variability for several atmospheric parameters: air temperature, geopotential height, omega (vertical velocity), and zonal wind, over the head Bay of Bengal, by analyzing National Centers for Environmental Prediction (NCEP) Reanalysis 2 dataset covering a period of 38 years (1979-2016). Significant warming from sea level to 200 mb pressure level and thereafter cooling above has been noticed during all the seasons. Warming within the troposphere exhibits spatial difference between eastern and western side of the domain. This led to fall in lower tropospheric geopotential height and its east-west variability, exhibiting a zonal dipole pattern across the Head Bay. In the upper troposphere, uplift in geopotential height was found as a result of cooling in higher levels (10-100 mb). Variability in omega also substantiated the observed variations in geopotential height. The study also finds weakening in the upper level westerlies and easterlies. Interestingly, a linear trend in lower tropospheric u-wind component also reveals an east-west dipole pattern over the study region. Further, the study corroborates the reported dipole in trends of sea level pressure, wind speed and significant wave height by evaluating the influence of atmospheric variability on these parameters.

  7. Weather types across the Caribbean basin and their relationship with rainfall and sea surface temperature

    NASA Astrophysics Data System (ADS)

    Moron, Vincent; Gouirand, Isabelle; Taylor, Michael

    2016-07-01

    Eight weather types (WTs) are computed over 98.75°W-56.25°W, 8.75°N-31.25°N using cluster analysis of daily low-level (925 hPa) winds and outgoing longwave radiation, without removing the mean annual cycle, by a k-means algorithm from 1979 to 2013. The WTs can be firstly interpreted as snapshots of the annual cycle with a clear distinction between 5 "wintertime" and 3 "summertime" WTs, which account together for 70 % of the total mean annual rainfall across the studied domain. The wintertime WTs occur mostly from late November to late April and are characterized by varying intensity and location of the North Atlantic subtropical high (NASH) and transient synoptic troughs along the northern edge of the domain. Large-scale subsidence dominates the whole basin but rainfall can occur over sections of the basin, especially on the windward shores of the troughs associated with the synoptic waves. The transition between wintertime and summertime WTs is rather abrupt, especially in May. One summertime WT (WT 4) is prevalent in summer, and almost exclusive around late July. It is characterized by strong NASH, fast Caribbean low level jet and rainfall mostly concentrated over the Caribbean Islands, the Florida Peninsula, the whole Central America and the tropical Eastern Pacific. The two remaining summertime WTs display widespread rainfall respectively from Central America to Bermuda (WT 5) and over the Eastern Caribbean (WT 6). Both WTs combine reduced regional scale subsidence and weaker Caribbean low-level jet relatively to WT 4. The relationships between WT frequency and El Niño Southern Oscillation (ENSO) events are broadly linear. Warm central and eastern ENSO events are associated with more WT 4 (less WT 5-6) during boreal summer and autumn (0) while this relationship is reversed during boreal summer (+1) for central events only. In boreal winter, the largest anomalies are observed for two WTs consistent with negative (WT 2) and positive (WT 8) phases of the North Atlantic Oscillation; more (less) WT 2 and less (more) WT 8 than usually occur from January to early April during warm (cold) ENSO events, the strongest anomalies being recorded during eastern events. Multinomial logistic regression is used to hindcast the 11-day low-pass filtered occurrence of WTs from local (Caribbean Sea and Gulf of Mexico) and remote (Eastern and Central Tropical Pacific) sea surface temperatures (SSTs). In boreal summer, the interannual variability of the seasonal occurrence of WTs 4-6 is well hindcast when at least the Caribbean Sea and Eastern Tropical Pacific are included as predictors with anomalously warm (cold) SSTs over the Caribbean Sea (Eastern Tropical Pacific) being related to more WT 5-6 and less WT 4 and vice-versa. Using antecedent SST to forecast WT frequency shows that the SST forcing is negligible at the start of boreal summer and increases toward its end.

  8. A study of the dynamics of droughts in Northern Brazil: Observations, theory, and numerical experiments with a global atmospheric circulation model

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Moura, A. D.

    1980-01-01

    The monthly mean sea surface temperature anomalies over tropical Altantic and rainfall anomalies over two selected stations for 25 years (1948-1972) were examined. It is found that the most severe drought events are associated with the simultaneous occurrence of warm sea surface temperature anomalies over north and cold sea surface temperature anomalies over south tropical Atlantic. Simultaneous occurrences of warm sea surface temperature anomaly at 15 deg N, 45 deg W and cold sea surface temperature anomaly at 15 deg S, 5 deg W were always associated with negative anomalies of rainfall, and vice versa. A simple primitive equation model is used to calculate the frictionally controlled and thermally driven circulation due to a prescribed heating function in a resting atmosphere.

  9. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?

    PubMed

    Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao

    2015-12-04

    High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.

  10. Observational evidence of European summer weather patterns predictable from spring

    NASA Astrophysics Data System (ADS)

    Ossó, Albert; Sutton, Rowan; Shaffrey, Len; Dong, Buwen

    2018-01-01

    Forecasts of summer weather patterns months in advance would be of great value for a wide range of applications. However, seasonal dynamical model forecasts for European summers have very little skill, particularly for rainfall. It has not been clear whether this low skill reflects inherent unpredictability of summer weather or, alternatively, is a consequence of weaknesses in current forecast systems. Here we analyze atmosphere and ocean observations and identify evidence that a specific pattern of summertime atmospheric circulation––the summer East Atlantic (SEA) pattern––is predictable from the previous spring. An index of North Atlantic sea-surface temperatures in March–April can predict the SEA pattern in July–August with a cross-validated correlation skill above 0.6. Our analyses show that the sea-surface temperatures influence atmospheric circulation and the position of the jet stream over the North Atlantic. The SEA pattern has a particularly strong influence on rainfall in the British Isles, which we find can also be predicted months ahead with a significant skill of 0.56. Our results have immediate application to empirical forecasts of summer rainfall for the United Kingdom, Ireland, and northern France and also suggest that current dynamical model forecast systems have large potential for improvement.

  11. Indian Ocean and Indian summer monsoon: relationships without ENSO in ocean-atmosphere coupled simulations

    NASA Astrophysics Data System (ADS)

    Crétat, Julien; Terray, Pascal; Masson, Sébastien; Sooraj, K. P.; Roxy, Mathew Koll

    2017-08-01

    The relationship between the Indian Ocean and the Indian summer monsoon (ISM) and their respective influence over the Indo-Western North Pacific (WNP) region are examined in the absence of El Niño Southern Oscillation (ENSO) in two partially decoupled global experiments. ENSO is removed by nudging the tropical Pacific simulated sea surface temperature (SST) toward SST climatology from either observations or a fully coupled control run. The control reasonably captures the observed relationships between ENSO, ISM and the Indian Ocean Dipole (IOD). Despite weaker amplitude, IODs do exist in the absence of ENSO and are triggered by a boreal spring ocean-atmosphere coupled mode over the South-East Indian Ocean similar to that found in the presence of ENSO. These pure IODs significantly affect the tropical Indian Ocean throughout boreal summer, inducing a significant modulation of both the local Walker and Hadley cells. This meridional circulation is masked in the presence of ENSO. However, these pure IODs do not significantly influence the Indian subcontinent rainfall despite overestimated SST variability in the eastern equatorial Indian Ocean compared to observations. On the other hand, they promote a late summer cross-equatorial quadrupole rainfall pattern linking the tropical Indian Ocean with the WNP, inducing important zonal shifts of the Walker circulation despite the absence of ENSO. Surprisingly, the interannual ISM rainfall variability is barely modified and the Indian Ocean does not force the monsoon circulation when ENSO is removed. On the contrary, the monsoon circulation significantly forces the Arabian Sea and Bay of Bengal SSTs, while its connection with the western tropical Indian Ocean is clearly driven by ENSO in our numerical framework. Convection and diabatic heating associated with above-normal ISM induce a strong response over the WNP, even in the absence of ENSO, favoring moisture convergence over India.

  12. Climate-disease connections: Rift Valley Fever in Kenya

    NASA Technical Reports Server (NTRS)

    Anyamba, A.; Linthicum, K. J.; Tucker, C. J.

    2001-01-01

    All known Rift Valley fever(RVF) outbreaks in Kenya from 1950 to 1998 followed periods of abnormally high rainfall. On an interannual scale, periods of above normal rainfall in East Africa are associated with the warm phase of the El Nino/Southern Oscillation (ENSO) phenomenon. Anomalous rainfall floods mosquito-breeding habitats called dambos, which contain transovarially infected mosquito eggs. The eggs hatch Aedes mosquitoes that transmit the RVF virus preferentially to livestock and to humans as well. Analysis of historical data on RVF outbreaks and indicators of ENSO (including Pacific and Indian Ocean sea surface temperatures and the Southern Oscillation Index) indicates that more than three quarters of the RVF outbreaks have occurred during warm ENSO event periods. Mapping of ecological conditions using satellite normalized difference vegetation index (NDVI) data show that areas where outbreaks have occurred during the satellite recording period (1981-1998) show anomalous positive departures in vegetation greenness, an indicator of above-normal precipitation. This is particularly observed in arid areas of East Africa, which are predominantly impacted by this disease. These results indicate a close association between interannual climate variability and RVF outbreaks in Kenya.

  13. Climate-disease connections: Rift Valley Fever in Kenya.

    PubMed

    Anyamba, A; Linthicum, K J; Tucker, C J

    2001-01-01

    All known Rift Valley fever(RVF) outbreaks in Kenya from 1950 to 1998 followed periods of abnormally high rainfall. On an interannual scale, periods of above normal rainfall in East Africa are associated with the warm phase of the El Niño/Southern Oscillation (ENSO) phenomenon. Anomalous rainfall floods mosquito-breeding habitats called dambos, which contain transovarially infected mosquito eggs. The eggs hatch Aedes mosquitoes that transmit the RVF virus preferentially to livestock and to humans as well. Analysis of historical data on RVF outbreaks and indicators of ENSO (including Pacific and Indian Ocean sea surface temperatures and the Southern Oscillation Index) indicates that more than three quarters of the RVF outbreaks have occurred during warm ENSO event periods. Mapping of ecological conditions using satellite normalized difference vegetation index (NDVI) data show that areas where outbreaks have occurred during the satellite recording period (1981-1998) show anomalous positive departures in vegetation greenness, an indicator of above-normal precipitation. This is particularly observed in arid areas of East Africa, which are predominantly impacted by this disease. These results indicate a close association between interannual climate variability and RVF outbreaks in Kenya.

  14. The East Asian Jet Stream and Asian-Pacific Climate

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Kim, K.-M.

    1999-01-01

    In this study, the NASA GEOS and NCEP/NCAR reanalyses and GPCP rainfall data have been used to study the variability of the East Asian westerly jet stream and its impact on the Asian-Pacific climate, with a focus on interannual time scales. Results indicate that external forcings such as sea surface temperature (SST) and land surface processes also play an important role in the variability of the jet although this variability is strongly governed by internal dynamics. There is a close link between the jet and Asian-Pacific climate including the Asian winter monsoon and tropical convection. The atmospheric teleconnection pattern associated with the jet is different from the ENSO-related pattern. The influence of the jet on eastern Pacific and North American climate is also discussed.

  15. Tropical Indian Ocean Variability Driving Southeast Australian Droughts

    NASA Astrophysics Data System (ADS)

    Ummenhofer, C. C.; England, M. H.; McIntosh, P. C.; Meyers, G. A.; Pook, M. J.; Risbey, J. S.; Sen Gupta, A.; Taschetto, A. S.

    2009-04-01

    Variability in the tropical Indian Ocean has widespread effects on rainfall in surrounding countries, including East Africa, India and Indonesia. The leading mode of tropical Indian Ocean variability, the Indian Ocean Dipole (IOD), is a coupled ocean-atmosphere mode characterized by sea surface temperature (SST) anomalies of opposite sign in the east and west of the basin with an associated large-scale atmospheric re-organisation. Earlier work has often focused on the positive phase of the IOD. However, we show here that the negative IOD phase is an important driver of regional rainfall variability and multi-year droughts. For southeastern Australia, we show that it is actually a lack of the negative IOD phase, rather than the positive IOD phase or Pacific variability, that provides the most robust explanation for recent drought conditions. Since 1995, a large region of Australia has been gripped by the most severe drought in living memory, the so-called "Big Dry". The ramifications for affected regions are dire, with acute water shortages for rural and metropolitan areas, record agricultural losses, the drying-out of two of Australia's major river systems and far-reaching ecosystem damage. Yet the drought's origins have remained elusive. For Southeast Australia, we show that the "Big Dry" and other iconic 20th Century droughts, including the Federation Drought (1895-1902) and World War II drought (1937-1945), are driven by tropical Indian Ocean variability, not Pacific Ocean conditions as traditionally assumed. Specifically, a conspicuous absence of characteristic Indian Ocean temperature conditions that are conducive to enhanced tropical moisture transport has deprived southeastern Australia of its normal rainfall quota. In the case of the "Big Dry", its unprecedented intensity is also related to recent above-average temperatures. Implications of recent non-uniform warming trends in the Indian Ocean and how that might affect ocean characteristics and climate in Indian Ocean rim countries are also discussed.

  16. Borneo vortex and mesoscale convective rainfall

    NASA Astrophysics Data System (ADS)

    Koseki, S.; Koh, T.-Y.; Teo, C.-K.

    2014-05-01

    We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite data sets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the Equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a "perpetual" cold surge. The Borneo vortex is manifested as a meso-α cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth/maintenance of the meso-α cyclone was achieved mainly by the vortex stretching. This vortex stretching is due to the upward motion forced by the latent heat release around the cyclone centre. The comma-shaped rainband consists of clusters of meso-β-scale rainfall cells. The intense rainfall in the comma head (comma tail) is generated by the confluence of the warmer and wetter cyclonic easterly flow (cyclonic southeasterly flow) and the cooler and drier northeasterly surge in the northwestern (northeastern) sector of the cyclone. Intense upward motion and heavy rainfall resulted due to the low-level convergence and the favourable thermodynamic profile at the confluence zone. In particular, the convergence in the northwestern sector is responsible for maintenance of the meso-α cyclone system. At both meso-α and meso-β scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is significantly self-enhanced by the nonlinear dynamics.

  17. Influence of meteorological variables on rainfall partitioning for deciduous and coniferous tree species in urban area

    NASA Astrophysics Data System (ADS)

    Zabret, Katarina; Rakovec, Jože; Šraj, Mojca

    2018-03-01

    Rainfall partitioning is an important part of the ecohydrological cycle, influenced by numerous variables. Rainfall partitioning for pine (Pinus nigra Arnold) and birch (Betula pendula Roth.) trees was measured from January 2014 to June 2017 in an urban area of Ljubljana, Slovenia. 180 events from more than three years of observations were analyzed, focusing on 13 meteorological variables, including the number of raindrops, their diameter, and velocity. Regression tree and boosted regression tree analyses were performed to evaluate the influence of the variables on rainfall interception loss, throughfall, and stemflow in different phenoseasons. The amount of rainfall was recognized as the most influential variable, followed by rainfall intensity and the number of raindrops. Higher rainfall amount, intensity, and the number of drops decreased percentage of rainfall interception loss. Rainfall amount and intensity were the most influential on interception loss by birch and pine trees during the leafed and leafless periods, respectively. Lower wind speed was found to increase throughfall, whereas wind direction had no significant influence. Consideration of drop size spectrum properties proved to be important, since the number of drops, drop diameter, and median volume diameter were often recognized as important influential variables.

  18. Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania

    PubMed Central

    Tumbo, S. D.; Kihupi, N. I.; Rwehumbiza, Filbert B.

    2017-01-01

    Rainfall variability has a significant impact on crop production with manifestations in frequent crop failure in semiarid areas. This study used the parameterized APSIM crop model to investigate how rainfall variability may affect yields of improved sorghum varieties based on long-term historical rainfall and projected climate. Analyses of historical rainfall indicate a mix of nonsignificant and significant trends on the onset, cessation, and length of the growing season. The study confirmed that rainfall variability indeed affects yields of improved sorghum varieties. Further analyses of simulated sorghum yields based on seasonal rainfall distribution indicate the concurrence of lower grain yields with the 10-day dry spells during the cropping season. Simulation results for future sorghum response, however, show that impacts of rainfall variability on sorghum will be overridden by temperature increase. We conclude that, in the event where harms imposed by moisture stress in the study area are not abated, even improved sorghum varieties are likely to perform poorly. PMID:28536708

  19. Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania.

    PubMed

    Msongaleli, Barnabas M; Tumbo, S D; Kihupi, N I; Rwehumbiza, Filbert B

    2017-01-01

    Rainfall variability has a significant impact on crop production with manifestations in frequent crop failure in semiarid areas. This study used the parameterized APSIM crop model to investigate how rainfall variability may affect yields of improved sorghum varieties based on long-term historical rainfall and projected climate. Analyses of historical rainfall indicate a mix of nonsignificant and significant trends on the onset, cessation, and length of the growing season. The study confirmed that rainfall variability indeed affects yields of improved sorghum varieties. Further analyses of simulated sorghum yields based on seasonal rainfall distribution indicate the concurrence of lower grain yields with the 10-day dry spells during the cropping season. Simulation results for future sorghum response, however, show that impacts of rainfall variability on sorghum will be overridden by temperature increase. We conclude that, in the event where harms imposed by moisture stress in the study area are not abated, even improved sorghum varieties are likely to perform poorly.

  20. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes

    PubMed Central

    Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.

    2016-01-01

    India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092

  1. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes.

    PubMed

    Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S

    2016-01-01

    India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.

  2. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas - a review

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2017-07-01

    In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.

  3. Rainfall over Friuli-Venezia Giulia: High amounts and strong geographical gradients

    NASA Astrophysics Data System (ADS)

    Ceschia, M.; Micheletti, St.; Carniel, R.

    1991-12-01

    The precipitation distribution over Friuli-Venezia Giulia — the easternmost region of Northern Italy extending from the Adriatic Sea to the Alps — has been studied. Monthly rainfall data over the region and the bordering areas of Veneto and Slovenia during the period from 1951 to 1986 have been analyzed by standard statistical methods, including cluster analysis. The overall results emphasize a distribution with rainfall increasing from the sea to the prealpine areas. The highest precipitations were recorded over the Musi-Canin range, with average values exceeding 3 200 mm per year. Noteworthy is the unforeseen subdivision of the region by the clustering procedure by means of the Angot index.

  4. Influences of Appalachian orography on heavy rainfall and rainfall variability associated with the passage of hurricane Isabel by ensemble simulations

    NASA Astrophysics Data System (ADS)

    Oldaker, Guy; Liu, Liping; Lin, Yuh-Lang

    2017-12-01

    This study focuses on the heavy rainfall event associated with hurricane Isabel's (2003) passage over the Appalachian mountains of the eastern United States. Specifically, an ensemble consisting of two groups of simulations using the Weather Research and Forecasting model (WRF), with and without topography, is performed to investigate the orographic influences on heavy rainfall and rainfall variability. In general, the simulated ensemble mean with full terrain is able to reproduce the key observed 24-h rainfall amount and distribution, while the flat-terrain mean lacks in this respect. In fact, 30-h rainfall amounts are reduced by 75% with the removal of topography. Rainfall variability is also significantly increased with the presence of orography. Further analysis shows that the complex interaction between the hurricane and terrain along with contributions from varied microphysics, cumulus parametrization, and planetary boundary layer schemes have a pronounced effect on rainfall and rainfall variability. This study follows closely with a previous study, but for a different TC case of Isabel (2003). It is an important sensitivity test for a different TC in a very different environment. This study reveals that the rainfall variability behaves similarly, even with different settings of the environment.

  5. A Bayesian Hierarchical Modeling Approach to Predicting Flow in Ungauged Basins

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Alameddine, I.; Anderson, R. M.

    2009-12-01

    Recent innovative approaches to identifying and applying regression-based relationships between land use patterns (such as increasing impervious surface area and decreasing vegetative cover) and rainfall-runoff model parameters represent novel and promising improvements to predicting flow from ungauged basins. In particular, these approaches allow for predicting flows under uncertain and potentially variable future conditions due to rapid land cover changes, variable climate conditions, and other factors. Despite the broad range of literature on estimating rainfall-runoff model parameters, however, the absence of a robust set of modeling tools for identifying and quantifying uncertainties in (and correlation between) rainfall-runoff model parameters represents a significant gap in current hydrological modeling research. Here, we build upon a series of recent publications promoting novel Bayesian and probabilistic modeling strategies for quantifying rainfall-runoff model parameter estimation uncertainty. Our approach applies alternative measures of rainfall-runoff model parameter joint likelihood (including Nash-Sutcliffe efficiency, among others) to simulate samples from the joint parameter posterior probability density function. We then use these correlated samples as response variables in a Bayesian hierarchical model with land use coverage data as predictor variables in order to develop a robust land use-based tool for forecasting flow in ungauged basins while accounting for, and explicitly acknowledging, parameter estimation uncertainty. We apply this modeling strategy to low-relief coastal watersheds of Eastern North Carolina, an area representative of coastal resource waters throughout the world because of its sensitive embayments and because of the abundant (but currently threatened) natural resources it hosts. Consequently, this area is the subject of several ongoing studies and large-scale planning initiatives, including those conducted through the United States Environmental Protection Agency (USEPA) total maximum daily load (TMDL) program, as well as those addressing coastal population dynamics and sea level rise. Our approach has several advantages, including the propagation of parameter uncertainty through a nonparametric probability distribution which avoids common pitfalls of fitting parameters and model error structure to a predetermined parametric distribution function. In addition, by explicitly acknowledging correlation between model parameters (and reflecting those correlations in our predictive model) our model yields relatively efficient prediction intervals (unlike those in the current literature which are often unnecessarily large, and may lead to overly-conservative management actions). Finally, our model helps improve understanding of the rainfall-runoff process by identifying model parameters (and associated catchment attributes) which are most sensitive to current and future land use change patterns. Disclaimer: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

  6. Extreme rainfall events in the Sinai Peninsula

    NASA Astrophysics Data System (ADS)

    Baldi, Marina; Amin, Doaa; Zayed, Islam Sabry Al; Dalu, Giovanni A.

    2017-04-01

    In the present paper Authors discuss results from the first phase of a project carried out in the framework of the Agreement on Scientific Cooperation between the Academy of Scientific Research and Technology of Egypt (ASRT) and the National Research Council of Italy (CNR). As in ancient times, today heavy rainfall, often resulting in flash floods, affects Egypt, not only in the coastal areas along the Mediterranean Sea and the Red Sea, but also in arid and semi-arid areas such as Upper Egypt (Luxor, Aswan, and Assiut) and in the Sinai Peninsula, and their distribution has been modified due to the current climate variability. These episodes, although rare, can be catastrophic in regions characterized by a very low annual total amount of precipitation, with large impacts on lives, infrastructures, properties and last but not least, to the great cultural heritage of the Country. Flash flood episodes in the Sinai Peninsula result from heavy, sudden, and short duration rainfall, influenced also by the peculiar orography and soil conditions of the Region, and represent a risk for the population, infrastructures, properties, and sectors like industry and agriculture. On the other hand, flash floods in Sinai and southern/southeastern Egypt represent a potential source for non-conventional fresh water resources. In particular flash flood water, which usually drains into the Gulf of Suez and the Gulf of Aqaba, can fulfill a non-negligible amount of water demand, and/or recharge shallow groundwater aquifers, and the harvested rainfall can represent a source of water for rain-fed agriculture in the region. A general overview of the Sinai current climate is presented, including a climatology of extreme rainfalls events in the last decades. In addition, few selected heavy rainfall episodes which occurred in the Sinai in recent years have been analyzed and their characteristics and links to larger scale circulation will be discussed. Results of the study provide a better understanding of the climate variability and change over Sinai, including a description of extreme rainfalls events in the recent past, the driving mechanisms, generation and evolution of these short-lived and patchy storms and their future evolution under future climate change scenarios, also offering the background for the next step of the project. In fact, the final goal of the ASRT-CNR joint project is on one side to improve the knowledge about the impact of future climate change on the sequence and severity of flash floods in Sinai, on the other side to give some indications for an improvement of the forecast systems over the region at different temporal scale from weekly to sub-seasonal and seasonal. The final results are also intended to provide some basic information about future water harvesting possibilities, and to help decision makers to decide between future protection works and/or water harvesting structures in the Region.

  7. Heat and Freshwater Budgets in the Eastern Pacific Warm Pool

    NASA Astrophysics Data System (ADS)

    Wijesekera, H. W.; Rudnick, D.; Paulson, C. A.; Pierce, S.

    2002-12-01

    Heat and freshwater budgets of the upper ocean in the Eastern Equatorial Pacific warm pool at 10N, 95W are investigated for the 20-day R/V New Horizon survey made as a part of the EPIC-2001 program. We collected underway hydrographic data from a SeaBird CTD mounted on an undulating platform, SeaSoar, and horizontal velocity data from the ship mounted ADCP, along a butterfly pattern centered near 10N, 95W. The time of completion of a single butterfly pattern (146x146 km) at a speed of 8 knots was approximately 36 hours, which is about half an inertial period at 10N. The butterfly survey lasted from September 14 to October 03, 2001. During the 20-day period, temperature and salinity in the upper 20 m dropped by 1.5C and 0.5 psu, respectively, and most of these changes took place over two days of heavy rainfall between September 23 and 24. The near surface became strongly stratified during these rain events. The rainfall signature weakened and mixed down to the top of the pycnocline (~30-m depth) within a few days after the rainfall. The change in fresh water content of the upper 30 m which occurred during the 2-day period of heavy rainfall is equivalent to about 0.12 m of rainfall, which is significantly less than the rainfall observed on the New Horizon. The difference may be due to spatial inhomogeneity in the rainfall and to the neglect of advection. Estimates of advection are presented using ADCP velocities and SeaSoar hydrography. Heat and fresh water budgets are presented by combining surface fluxes, and advection and storage terms.

  8. A high-resolution speleothem record of western equatorial Pacific rainfall: Implications for Holocene ENSO evolution

    NASA Astrophysics Data System (ADS)

    Chen, Sang; Hoffmann, Sharon S.; Lund, David C.; Cobb, Kim M.; Emile-Geay, Julien; Adkins, Jess F.

    2016-05-01

    The El Niño-Southern Oscillation (ENSO) is the primary driver of interannual climate variability in the tropics and subtropics. Despite substantial progress in understanding ocean-atmosphere feedbacks that drive ENSO today, relatively little is known about its behavior on centennial and longer timescales. Paleoclimate records from lakes, corals, molluscs and deep-sea sediments generally suggest that ENSO variability was weaker during the mid-Holocene (4-6 kyr BP) than the late Holocene (0-4 kyr BP). However, discrepancies amongst the records preclude a clear timeline of Holocene ENSO evolution and therefore the attribution of ENSO variability to specific climate forcing mechanisms. Here we present δ18 O results from a U-Th dated speleothem in Malaysian Borneo sampled at sub-annual resolution. The δ18 O of Borneo rainfall is a robust proxy of regional convective intensity and precipitation amount, both of which are directly influenced by ENSO activity. Our estimates of stalagmite δ18 O variance at ENSO periods (2-7 yr) show a significant reduction in interannual variability during the mid-Holocene (3240-3380 and 5160-5230 yr BP) relative to both the late Holocene (2390-2590 yr BP) and early Holocene (6590-6730 yr BP). The Borneo results are therefore inconsistent with lacustrine records of ENSO from the eastern equatorial Pacific that show little or no ENSO variance during the early Holocene. Instead, our results support coral, mollusc and foraminiferal records from the central and eastern equatorial Pacific that show a mid-Holocene minimum in ENSO variance. Reduced mid-Holocene interannual δ18 O variability in Borneo coincides with an overall minimum in mean δ18 O from 3.5 to 5.5 kyr BP. Persistent warm pool convection would tend to enhance the Walker circulation during the mid-Holocene, which likely contributed to reduced ENSO variance during this period. This finding implies that both convective intensity and interannual variability in Borneo are driven by coupled air-sea dynamics that are sensitive to precessional insolation forcing. Isolating the exact mechanisms that drive long-term ENSO evolution will require additional high-resolution paleoclimatic reconstructions and further investigation of Holocene tropical climate evolution using coupled climate models.

  9. Calibrating multiple isotopic proxies in a modern aragonite speleothem from northeast India

    NASA Astrophysics Data System (ADS)

    Ronay, E.; Oster, J. L.; Sharp, W. D.; Marks, N.; Erhardt, A.; Breitenbach, S. F. M.

    2017-12-01

    Uranium, strontium, and calcium isotope ratios in calcite speleothems are used as proxies for water-soil-rock interactions and prior calcite precipitation, and thus provide information about effective rainfall amount variations, primarily in semi-arid or highly seasonal regions. However, less is known about how these proxies function in humid regions and in aragonite speleothems. In this study, we use meteorological data to calibrate (234U/238U)i and 87Sr/86Sr in a modern aragonite speleothem from northeast India, the rainiest place on Earth, to determine how these proxies reflect effective monsoon rainfall amount. MAW-0201 is an annually laminated aragonite stalagmite that grew from 1960-2013 in Mawmluh Cave, Meghalaya, India. Rainfall here is extremely seasonal due to the Indian Summer Monsoon (ISM), which brings several meters of rain to the region each summer, but with inter-annual variability in total rainfall. The δ18O in Mawmluh dripwater and speleothems reflects moisture source and transport, rather than rainfall amount. Variations in Mg, U, and Ba concentrations in MAW-0201 show seasonal and multi-annual variability. U and Mg are closely correlated, but multi-year periods show significant anti-correlation. The Mg and U distribution coefficients in calcite and aragonite indicate correlated periods are times of prior calcite precipitation (PCP) and anti-correlated periods are times of prior aragonite precipitation (PAP) in the epikarst. We use δ44/40Ca to test this hypothesis, as Ca isotopes fractionate differently during calcite and aragonite precipitation and speleothem δ44/40Ca will record unique PAP and PCP fingerprints. We propose such shifts from PCP to PAP reflect hydrologic variability and/or flow path changes, which provide a useful tool for understanding epikarst hydrology but may also be a complicating factor in speleothem-based paleoclimate interpretations. Preliminary (234U/238U)i (always <1) and 87Sr/86Sr spanning 1991-2009 each show significant variability outside of analytical error. (234U/238U)i displays a decadal trend, gradually increasing until 2000 and decreasing to the end of the record. Several years in the 87Sr/86Sr record have anomalously high values, which may reflect increased sea spray input and provide unique information on the wind component of the ISM.

  10. Interannual Variability of the Tropical Water Cycle: Capabilities in the TRMM Era and Challenges for GPM

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.

    2003-01-01

    Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30" NE) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Although it is well documented that El Nino-Southern Oscillation (ENSO) events with marked SST changes over the tropical oceans, produce significant regional changes in precipitation, water vapor, and radiative fluxes in the tropics, we still cannot yet adequately quantify the associated net integrated changes to water and heat balance over the entire tropical oceanic or land sectors. Robertson et al., [2001 GRL] for example, showed that substantial disagreement exists among contemporary satellite estimates of interannual variations in tropical rainfall that are associated with SST changes. Berg et al., [2002 J. Climate] have documented the distinct differences between precipitation structure over the eastern and western Pacific ITCZ and noted how various satellite precipitation algorithms may respond quite differently to ENSO modulations of these precipitation regimes. Resolving this uncertainty is important since precipitation and latent heat release variations over land and ocean sectors are key components of the tropical heat balance in its most aggregated form. Rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) averaged over the tropical oceans have not solved this issue and, in fact, show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. In this paper we will focus on findings that uncertainties in microphysical assumptions necessitated by the single-frequency PR measurement pose difficulties for detecting climate-related precipitation signals. Recent work has shown that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series, yet the PR rainfall interannual variability (and attenuation derived predominantly from reflectivity) differs even in sign. We will explore these apparent inconsistencies and detail their impact on estimates of how ENSO events perturb the tropical rainfall. We will place these results in perspective by considering requirements for precipitation accuracy for global climate variability and change studies involving ENSO, monsoon dynamics and variations, and climate model improvement and validation. The discussion will conclude with an assessment of the implications of these findings for Global Precipitation Mission (GPM) requirements.

  11. Interannual variability in global mean sea level estimated from the CESM Large and Last Millennium Ensembles

    DOE PAGES

    Fasullo, John T.; Nerem, Robert S.

    2016-10-31

    To better understand global mean sea level (GMSL) as an indicator of climate variability and change, contributions to its interannual variation are quantified in the Community Earth System Model (CESM) Large Ensemble and Last Millennium Ensemble. Consistent with expectations, the El Niño/Southern Oscillation (ENSO) is found to exert a strong influence due to variability in rainfall over land (PL) and terrestrial water storage (TWS). Other important contributors include changes in ocean heat content (OHC) and precipitable water (PW). The temporal evolution of individual contributing terms is documented. The magnitude of peak GMSL anomalies associated with ENSO generally are of themore » order of 0.5 mm·K -1 with significant inter-event variability, with a standard deviation (σ) that is about half as large The results underscore the exceptional rarity of the 2010/2011 La Niña-related GMSL drop and estimate the frequency of such an event to be about only once in every 75 years. In addition to ENSO, major volcanic eruptions are found to be a key driver of interannual variability. Associated GMSL variability contrasts with that of ENSO as TWS and PW anomalies initially offset the drop due to OHC reductions but short-lived relative to them. Furthermore, responses up to 25 mm are estimated for the largest eruptions of the Last Millennium.« less

  12. Interannual variability in global mean sea level estimated from the CESM Large and Last Millennium Ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasullo, John T.; Nerem, Robert S.

    To better understand global mean sea level (GMSL) as an indicator of climate variability and change, contributions to its interannual variation are quantified in the Community Earth System Model (CESM) Large Ensemble and Last Millennium Ensemble. Consistent with expectations, the El Niño/Southern Oscillation (ENSO) is found to exert a strong influence due to variability in rainfall over land (PL) and terrestrial water storage (TWS). Other important contributors include changes in ocean heat content (OHC) and precipitable water (PW). The temporal evolution of individual contributing terms is documented. The magnitude of peak GMSL anomalies associated with ENSO generally are of themore » order of 0.5 mm·K -1 with significant inter-event variability, with a standard deviation (σ) that is about half as large The results underscore the exceptional rarity of the 2010/2011 La Niña-related GMSL drop and estimate the frequency of such an event to be about only once in every 75 years. In addition to ENSO, major volcanic eruptions are found to be a key driver of interannual variability. Associated GMSL variability contrasts with that of ENSO as TWS and PW anomalies initially offset the drop due to OHC reductions but short-lived relative to them. Furthermore, responses up to 25 mm are estimated for the largest eruptions of the Last Millennium.« less

  13. Climatological characteristics of raindrop size distributions within a topographically complex area

    NASA Astrophysics Data System (ADS)

    Suh, S.-H.; You, C.-H.; Lee, D.-I.

    2015-04-01

    Raindrop size distribution (DSD) characteristics within the complex area of Busan, Korea (35.12° N, 129.10° E) were studied using a Precipitation Occurrence Sensor System (POSS) disdrometer over a four-year period from 24 February 2001 to 24 December 2004. Average DSD parameters in Busan, a mid-latitude site, were compared with corresponding parameters recorded in the high-latitude site of Järvenpää, Finland. Mean values of median drop diameter (D0) and the shape parameter (μ) in Busan are smaller than those in Järvenpää, whereas the mean normalized intercept parameter (Nw) and rainfall rate (R) are higher in Busan. To analyze the climatological DSD characteristics in more detail, the entire period of recorded rainfall was divided into 10 categories with different temporal and spatial scales. When only convective rainfall was considered, mean Dm and Nw values for all these categories converged around a maritime cluster, except for rainfall associated with typhoons. The convective rainfall of a typhoon showed much smaller Dm and larger Nw compared with the other rainfall categories. In terms of diurnal DSD variability, we observe maritime (continental) precipitation during the daytime (DT) (nighttime, NT), which likely results from sea (land) breeze identified through wind direction analysis. These features also appeared in the seasonal diurnal distribution. The DT and NT Probability Density Function (PDF) during the summer was similar to the PDF of the entire study period. However, the DT and NT PDF during the winter season displayed an inverse distribution due to seasonal differences in wind direction.

  14. Coupled modes of rainfall over China and the pacific sea surface temperature in boreal summertime

    NASA Astrophysics Data System (ADS)

    Li, Chun; Ma, Hao

    2011-09-01

    In addition, the possible atmospheric teleconnections of the coupled rainfall and SST modes were discussed. For the ENSO-NC mode, anomalous low-pressure and high-pressure over the Asian continent induces moisture divergence over North China and reduces summer rainfall there. For the WTP-YRV mode, East Asia-Pacific teleconnection induces moisture convergence over the Yangtze River valley and enhances the summer rainfall there. The TPMM SST and the summer rainfall anomalies over the YRVL are linked by a circumglobal, wave-train-like, atmospheric teleconnection.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jin -Ho

    Amazon rainfall is subject to year-to-year fluctuation resulting in drought and flood in various intensities. A major climatic driver of the interannual variation of the Amazon rainfall is El Niño/Southern Oscillation. Also, the Sea Surface Temperature over the Atlantic Ocean is identified as an important climatic driver on the Amazon water cycle. Previously, observational datasets were used to support the Atlantic influence on Amazon rainfall. Furthermore, it is found that multiple global climate models do reproduce the Atlantic-Amazon link robustly. However, there exist differences in rainfall response, which primarily depends on the climatological rainfall amount.

  16. A comparative modeling analysis of multiscale temporal variability of rainfall in Australia

    NASA Astrophysics Data System (ADS)

    Samuel, Jos M.; Sivapalan, Murugesu

    2008-07-01

    The effects of long-term natural climate variability and human-induced climate change on rainfall variability have become the focus of much concern and recent research efforts. In this paper, we present the results of a comparative analysis of observed multiscale temporal variability of rainfall in the Perth, Newcastle, and Darwin regions of Australia. This empirical and stochastic modeling analysis explores multiscale rainfall variability, i.e., ranging from short to long term, including within-storm patterns, and intra-annual, interannual, and interdecadal variabilities, using data taken from each of these regions. The analyses investigated how storm durations, interstorm periods, and average storm rainfall intensities differ for different climate states and demonstrated significant differences in this regard between the three selected regions. In Perth, the average storm intensity is stronger during La Niña years than during El Niño years, whereas in Newcastle and Darwin storm duration is longer during La Niña years. Increase of either storm duration or average storm intensity is the cause of higher average annual rainfall during La Niña years as compared to El Niño years. On the other hand, within-storm variability does not differ significantly between different ENSO states in all three locations. In the case of long-term rainfall variability, the statistical analyses indicated that in Newcastle the long-term rainfall pattern reflects the variability of the Interdecadal Pacific Oscillation (IPO) index, whereas in Perth and Darwin the long-term variability exhibits a step change in average annual rainfall (up in Darwin and down in Perth) which occurred around 1970. The step changes in Perth and Darwin and the switch in IPO states in Newcastle manifested differently in the three study regions in terms of changes in the annual number of rainy days or the average daily rainfall intensity or both. On the basis of these empirical data analyses, a stochastic rainfall time series model was developed that incorporates the entire range of multiscale variabilities observed in each region, including within-storm, intra-annual, interannual, and interdecadal variability. Such ability to characterize, model, and synthetically generate realistic time series of rainfall intensities is essential for addressing many hydrological problems, including estimation of flood and drought frequencies, pesticide risk assessment, and landslide frequencies.

  17. ENSO relationship to Summer Rainfall Variability and its Potential Predictability over Arabian Peninsula Region

    NASA Astrophysics Data System (ADS)

    Adnan Abid, Mohammad; Almazroui, Mansour; Kucharski, Fred

    2017-04-01

    Summer seasonal rainfall falls mainly over the south and southwestern parts of the Arabian Peninsula (AP). The relationship between this mean summer seasonal rainfall pattern and El Niño Southern Oscillation (ENSO) is analyzed with the aid of a 15-member ensemble of simulations using the King Abdulaziz University (KAU) Atmospheric Global Climate Model (AGCM). Each simulation is forced with Hadley Sea Surface Temperature (SST) for the period 1980-2015. The southwestern peninsula rainfall is linked towith the SST anomalies in the central-eastern pacific region. This relation is established through an atmospheric teleconnection which shows an upper-level convergence (divergence) anomalies over the southern Arabian Peninsula compensating the central-eastern Pacific region upper-level divergence (convergence) anomalies for the warm (cold) El Niño Southern Oscillaton (ENSO) phase. The upper-level convergence (divergence) over the southern Arabian Peninsula leads to sinking (rising) motion, low-level divergence (convergence) and consequently to reduced (enhanced) rainfall. The correlation coefficient between the observed area-averged Niño3.4 index and athe South Arabian Rainfall Index (SARI) is -0.54. This indicates that AP receives less rainfall during the warm (El Niño) phase, while the opposite happens in the cold (La Niña) El Niño Southern Oscillaton (ENSO) phase. The lower tropospheric cyclonic circulation anomalies strongly modulate the ENSO-related rainfall in the region. Overall, the model shows a 43% potential predictability (PP) for the Southern Arabian Peninsula Rainfall Index (SARI). Further, the predictability during the warm ENSO (El Niño) events is higher than during cold ENSO (La Niña) events. This is not only because of a stronger signal, but also noise reduction contributes to the increase of the regional PP in El Niño compared to that of La Niña years.

  18. Contrasting rainfall declines in northern and southern Tanzania: Potential differential impacts of west Pacific warming and east Pacific cooling

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Funk, C. C.; Verdin, J. P.; Pedreros, D. H.; Shukla, S.; Husak, G. J.

    2015-12-01

    Here, we present analysis of a new 1900-2014 rainfall record for the Greater Horn of Africa with high station density (CenTrends), and evaluate potential climate change "hot spots" in Tanzania. We identify recent (1981-2014) downward trends in Tanzanian rainfall, use CenTrends to place these in a longer historical context, and relate rainfall in these regions to decadal changes in global sea surface temperatures (SSTs). To identify areas of concern, we consider the potential food security impacts of the recent rainfall declines and also rapid population growth. Looking forward, we consider what the links to SSTs might mean for rainfall in the next several decades based on SST projections. In addition to CenTrends, we use a variety of geographic data sets, including 1981-2014 rainfall from the Climate Hazards group InfraRed Precipitation with Stations (CHIRPSv2.0), simulated crop stress from the USGS Geospatial Water Requirement Satisfaction Index (GeoWRSI) model, NOAA Extended Reconstructed SSTs (ERSST v4), SST projections from the Coupled Model Intercomparison Project (CMIP5), and land cover and population maps from SERVIR, WorldPOP, and CIESIN's Gridded Population of the World. The long-term CenTrends record allows us to suggest an interesting dichotomy in decadal rainfall forcing. During the March to June season, SSTs in the west Pacific appear to be driving post-1980 rainfall reductions in northern Tanzania. In the 2000s, northern Tanzania's densely populated Pangani River, Internal Drainage, and Lake Victoria basins experienced the driest period in more than a century. During summer, negative trends in southern Tanzania appear linked to a negative SST trend in the Nino3.4 region. Since the SST trend in the west (east) Pacific appears strongly influenced by global warming (natural decadal variability), we suggest that water resources in northern Tanzania may face increasing challenges, but that this will be less the case in southern Tanzania.

  19. Predictability of rainfall and teleconnections patterns influencing on Southwest Europe from sea surfaces temperatures

    NASA Astrophysics Data System (ADS)

    Lorenzo, M. N.; Iglesias, I.; Taboada, J. J.; Gómez-Gesteira, M.; Ramos, A. M.

    2009-04-01

    This work assesses the possibility of doing a forecast of rainfall and the main teleconnections patterns that influences climate in Southwest Europe by using sea surface temperature anomalies (SSTA). The area under study is located in the NW Iberian Peninsula. This region has a great oceanic influence on its climate and has an important dependency of the water resources. In this way if the different SST patterns are known, the different rainfall situations can be predicted. On the other hand, the teleconnection patterns, which have strong weight on rainfall, are influenced by the SSTA of different areas. In the light of this, the aim of this study is to explore the relationship between global SSTAs, rainfall and the main teleconnection patterns influencing on Europe. The SST data with a 2.0 degree resolution was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA. A monthly averaged data from 1 January 1951 through December 2006 was considered. The monthly precipitation data from 1951-2006 were obtained from the database CLIMA of the University of Santiago de Compostela with data from the Meteorological State Agency (AEMET) and the Regional Government of Galicia. The teleconnection indices were taken of the Climate Prediction Center of the NOAA between 1950 and 2006. A monthly and seasonal study was analysed considering up to three months of delay in the first case and up to four seasons of delay in the second case. The Pearson product-moment correlation coefficient r was considered to quantify linear associations between SSTA and precipitation and/or SSTA and teleconnection indices. A test for field-significance was applied considering the properties of finiteness and interdependence of the spatial grid to avoid spurious correlations. Analysing the results obtained with the global SSTA and the teleconnection indices, a great number of ocean regions with high correlations can be found. The spatial patterns show very high correlations with Indian Ocean waters which could be related with the Monsoon. Another area with high correlation is Equatorial Pacific Ocean, the area related with the ENSO phenomenon. These SSTAs could be used to forecast rainfall anomalies in spring season in the area of NW Iberian Peninsula. Results show that La Niña years almost always announces dry spring in NW Iberian Peninsula. Nevertheless, El Niño years do not preclude the appearance of wet spring. Because of the progress that has been made in its prediction, the relation between ENSO and climate in NW Iberian Peninsula is of interest with respect to potential seasonal predictability and the results can be extended to the south west of Europe. [1] Lorenzo, M.N. and J. J. Taboada (2005). Influences of atmospheric variability on freshwater input in Galician Rías in winter. Journal of Atmospheric and Ocean Science Vol 10, No 4, 377-387. [2] Lorenzo, M.N. I. Iglesias, J.J. Taboada and M. Gómez-Gesteira. Relationship between monthly rainfall in NW Iberian Peninsula and North Atlantic sea surface temperature. International Journal of Climatology. (Submitted to International Journal of Climatology). [3] Philips, I.D. and J. Thorpe (2006): Icelandic precipitation-North Atlantic sea-surface temperature associations. International Journal of Climatology 26: 1201-1221.

  20. Coastal and rain-induced wind variability depicted by scatterometers

    NASA Astrophysics Data System (ADS)

    Portabella, M.; Lin, W.; Stoffelen, A.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera, J.; Vogelzang, J.

    2012-04-01

    A detailed knowledge of local wind variability near the shore is very important since it strongly affects the weather and microclimate in coastal regions. Since coastal areas are densely populated and most activity at sea occurs near the shore, sea-surface wind field information is important for a number of applications. In the vicinity of land sea-breeze, wave fetch, katabatic and current effects are more likely than in the open ocean, thus enhancing air-sea interaction. Also very relevant for air-sea interaction are the rain-induced phenomena, such as downbursts and convergence. Relatively cold and dry air is effectively transported to the ocean surface and surface winds are enhanced. In general, both coastal and rain-induced wind variability are poorly resolved by Numerical Weather Prediction (NWP) models. Satellite real aperture radars (i.e., scatterometers) are known to provide accurate mesoscale (25-50 km resolution) sea surface wind field information used in a wide variety of applications. Nowadays, there are two operating scatterometers in orbit, i.e., the C-band Advanced Scatterometer (ASCAT) onboard Metop-A and the Ku-band scatterometer (OSCAT) onboard Oceansat-2. The EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) delivers several ASCAT level 2 wind products with 25 km and 12.5 km Wind Vector Cell (WVC) spacing, including a pre-operational coastal wind product as well as an OSCAT level 2 wind product with 50 km spacing in development status. Rain is known to both attenuate and scatter the microwave signal. In addition, there is a "splashing" effect. The roughness of the sea surface is increased because of splashing due to rain drops. The so-called "rain contamination" is larger for Ku-band scatterometer systems than for C-band systems. Moreover, the associated downdrafts lead to variable wind speeds and directions, further complicating the wind retrieval. The C-band ASCAT high resolution wind processing is validated under rainy conditions, using collocations with the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) rain data, and the tropical moored buoy wind and precipitation data. It turns out that the effect of low and moderate rain appears mainly in increasing the wind variability near the surface and, unlike for Ku-band scatterometers, the rain rate itself does not appear clearly as a limiting factor in ASCAT wind quality. Moreover, the downburst patterns as observed by ASCAT are unique and have large implications for air-sea exchange. At the conference, the main progress in scatterometer wind data processing will be shown.

  1. Borneo Vortex and Meso-scale Convective Rainfall

    NASA Astrophysics Data System (ADS)

    Koh, T. Y.; Koseki, S.; Teo, C. K.

    2014-12-01

    We have investigated how the Borneo vortex develops over the equatorial South China Sea under cold surge conditions in December during the Asian winter monsoon. Composite analysis using reanalysis and satellite datasets has revealed that absolute vorticity and water vapour are transported by strong cold surges from upstream of the South China Sea to around the equator. Rainfall is correspondingly enhanced over the equatorial South China Sea. A semi-idealized experiment reproduced the Borneo vortex over the equatorial South China Sea during a perpetual cold surge. The Borneo vortex is manifested as a meso-alpha cyclone with a comma-shaped rainband in the northeast sector of the cyclone. Vorticity budget analysis showed that the growth/maintenance of the meso-alpha cyclone was achieved mainly by the vortex stretching. This vortex stretching is due to the upward motion forced by the latent heat release around the cyclone centre. The comma-shaped rainband consists of clusters of meso-beta scale rainfall cells. The intense rainfall in the comma-head (comma-tail) is generated by the confluence of the warmer and wetter cyclonic easterly flow (cyclonic southeasterly flow) and the cooler and drier northeasterly surge in the northwestern (northeastern) sector of the cyclone. Intense upward motion and heavy rainfall resulted due to the low-level convergence and the favourable thermodynamic profile at the confluence zone. In particular, the convergence in the northwestern sector is responsible for maintenance of the meso-alpha cyclone system. At both meso-alpha and meso-beta scales, the convergence is ultimately caused by the deviatoric strain in the confluence wind pattern but is significantly self-enhanced by the nonlinear dynamics. Reference: Koseki, S., T.-Y. Koh and C.-K. Teo (2014), Atmospheric Chemistry and Physics, 14, 4539-4562, doi:10.5194/acp-14-4539-2014, 2014.

  2. Structured teleconnections reveal the South American monsoon onset: A network approach

    NASA Astrophysics Data System (ADS)

    Ciemer, Catrin; Ekhtiari, Nikoo; Barbosa, Henrique; Boers, Niklas; Donner, Reik; Kurths, Jürgen; Rammig, Anja; Winkelmann, Ricarda

    2017-04-01

    The regional onset dates of the global monsoon systems are, to first order, determined by the seasonal shift of the intertropical convergence zone. However, precise onset dates vary substantially from year to year due to the complexity of the involved mechanisms. In this study, we investigate processes determining the onset of the South American monsoon system (SAMS). In recent years, a trend towards later onset dates of the SAMS has been observed. A later onset of the monsoon can have severe impacts on agriculture and infrastructure such as farming, water transport routes, and the stability of the Amazon rainforest in the long term. Possible reasons for this shift involve a multitude of climatic phenomena and variables relevant for the SAMS. To account for the highly interactive nature of the SAMS, we here investigate it with the help of complex networks. By studying the temporal changes of the correlation structure in spatial rainfall networks, we are able to determine coherent areas of similar precipitation patterns, spot teleconnections in terms of strongly correlated areas, detect key regions for precipitation correlations, and finally reveal the monsoon onset by an abrupt shift from an unordered to an ordered correlation structure of the network. To further evaluate the shift in the monsoon onset, we couple our rainfall network to a network of climate networks using sea surface temperature as a second variable. We are thereby able to emphasize oceanic regions that are particularly important for the SAMS and anticipate the influence of future changes of sea-surface temperature on the SAMS.

  3. Temporal and spatial characteristics of annual and seasonal rainfall in Malawi

    NASA Astrophysics Data System (ADS)

    Ngongondo, Cosmo; Xu, Chong-Yu; Gottschalk, Lars; Tallaksen, Lena M.; Alemaw, Berhanu

    2010-05-01

    An understanding of the temporal and spatial characteristics of rainfall is central to water resources planning and management. However, such information is often limited in many developing countries like Malawi. In an effort to bridge the information gap, this study examined the temporal and spatial charecteristics of rainfall in Malawi. Rainfall readings from 42 stations across Malawi from 1960 to 2006 were analysed at monthly, annual and seasonal scales. The Malawian rainfall season lasts from November to April. The data were firstly subjected to quality checks through the cumulative deviations test and the Standard Normal Homogeinity Test (SNHT). Monthly distribution in a typical year, called heterogeneity, was investigated using the Precipitation Concentration Index (PCI). Further, normalized precipitation anomaly series of annual rainfall series (AR) and the PCI (APCI) were used to test for interannual rainfall variability. Spatial variability was characterised by fitting the Spatial Correlation function (SCF). The nonparametric Mann-Kendall statistic was used to investigate the temporal trends of the various rainfall variables. The results showed that 40 of the stations passed both data quality tests. For the two stations that failed, the data were adjusted using nearby stations. Annual and seasonal rainfall were found to be characterised by high spatial variation. The country mean annual rainfall was 1095 mm with mean interannual variability of 26%. The highland areas to the north and southeast of the country exhibited the highest rainfall and lowest interannual variability. Lowest rainfall coupled with high interannual variability was found in the Lower Shire basin, in the southern part of Malawi. This simillarity is the pattern of annual and seasonal rainfall should be expected because all stations had over 90% of their observed annual rainfall in the six month period between November and April. Monthly rainfall was found to be highly variable both temporally and spatially. None of the stations have stable monthly rainfall regimes (mean PCI of less than 10). Stations with the highest mean rainfall were found to have a lower interannual variability. The rainfall stations showed low spatial correlations for annual, monthly as well as seasonal timescales indicating that the data may not be suitable for spatial interpolation. However, some structure (i.e. lower correlation with distance) could be observed when aggregating the data at 50 mile intervals. The annual and seasonal rainfall series were dominated by negative trends. The spatial distribution of the trends can be described as heterogeneous, although most of the stations in the southern region have negative trends. At the monthly timescale, 37 of the stations show a negative trend with four of the stations, all in the south, showing significant negative trends. On the other hand, only 5 stations show positive trends with only one significant trend in the south. Keywords: Malawi, rainfall trends, spatial variation

  4. The impact of inter-annual rainfall variability on African savannas changes with mean rainfall.

    PubMed

    Synodinos, Alexis D; Tietjen, Britta; Lohmann, Dirk; Jeltsch, Florian

    2018-01-21

    Savannas are mixed tree-grass ecosystems whose dynamics are predominantly regulated by resource competition and the temporal variability in climatic and environmental factors such as rainfall and fire. Hence, increasing inter-annual rainfall variability due to climate change could have a significant impact on savannas. To investigate this, we used an ecohydrological model of stochastic differential equations and simulated African savanna dynamics along a gradient of mean annual rainfall (520-780 mm/year) for a range of inter-annual rainfall variabilities. Our simulations produced alternative states of grassland and savanna across the mean rainfall gradient. Increasing inter-annual variability had a negative effect on the savanna state under dry conditions (520 mm/year), and a positive effect under moister conditions (580-780 mm/year). The former resulted from the net negative effect of dry and wet extremes on trees. In semi-arid conditions (520 mm/year), dry extremes caused a loss of tree cover, which could not be recovered during wet extremes because of strong resource competition and the increased frequency of fires. At high mean rainfall (780 mm/year), increased variability enhanced savanna resilience. Here, resources were no longer limiting and the slow tree dynamics buffered against variability by maintaining a stable population during 'dry' extremes, providing the basis for growth during wet extremes. Simultaneously, high rainfall years had a weak marginal benefit on grass cover due to density-regulation and grazing. Our results suggest that the effects of the slow tree and fast grass dynamics on tree-grass interactions will become a major determinant of the savanna vegetation composition with increasing rainfall variability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Modulation of Heavy Rainfall in the Middle East and North Africa by Madden-Julian Oscillation Using High Resolution Atmospheric General Circulation Model

    NASA Astrophysics Data System (ADS)

    Deng, L.; Stenchikov, G. L.; McCabe, M. F.; Bangalath, H. K.

    2014-12-01

    Recently, the modulation of subtropical rainfall by the dominant tropical intraseasonal signal of the Madden-Julian Oscillation (MJO), has been explored through the discussion of the MJO-convection-induced Kelvin and Rossby wave related teleconnection patterns. Our study focuses on characterizing the modulation of heavy rainfall in the Middle East and North Africa (MENA) region by the MJO, using the Geophysical Fluid Dynamics Laboratory (GFDL) global High Resolution Atmospheric Model (HIRAM) simulations (25-km; 1979-2012) and a combination of available atmospheric products from satellite, in-situ and reanalysis data. The observed Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) and the simulated SST from GFDL's global coupled carbon-climate Earth System Models (ESM2M) are employed in HIRAM to investigate the sensitivity of the simulated heavy rainfall and MJO to SST. The future trend of the extreme rainfalls and their links to the MJO response to climate change are examined using HIRAM simulations of 2012-2050 with the RCP4.5 and RCP 8.5 scenarios to advance the possibility of characterization and forecasting of future extreme rainfall events in the MENA region.

  6. Provenance Changes Over Glacial-Interglacial Timescales Recorded in Japan Sea Sediments (IODP Site U1430)

    NASA Astrophysics Data System (ADS)

    Kinsley, C. W.; McGee, D.; Anderson, C. H.; Murray, R. W.; Tada, R.; Alvarez Zarikian, C. A.

    2017-12-01

    Recent work has shown a mechanistic relationship between the Westerly Jet (WJ) and East Asian Monsoon (EAM) precipitation, as migration of the WJ to the northern edge of the Tibetan Plateau during spring and early summer appears to be essential for driving convective rainfall over eastern China. Chiang et al. (2015) has proposed the "Jet Transition Hypothesis" wherein it is put forward that changes to the seasonal meridional position of the WJ relative to the Tibetan Plateau drives rainfall climate changes over East Asia on paleoclimate timescales. This hypothesis would predict that in extreme scenarios such as cold phases of Dansgaard-Oeschger (D-O) stadials and during periods of low Northern Hemisphere summer insolation that the Jet would not move north of the Tibetan Plateau, keeping East Asia in prolonged spring conditions. Conversely, during periods of high Northern Hemisphere summer insolation it would be predicted that the Jet would move more quickly north of the Tibetan Plateau and remain there longer, keeping East Asia in prolonged summer conditions. Westerly Jet behavior can be reconstructed using sediments from the Japan Sea, as the WJ path and intensity determines dust emissions and transport paths from Chinese and Mongolian dust source areas, which is the primary source of terrigenous material to the Japan Sea. Radiogenic isotopes of Pb, Nd and Sr can be been applied to fingerprint the dust sources from Asia, and measurements of these isotopes downcore in the Japan Sea will allow reconstruction of the changing dust source area and thus behavior of the WJ. By coupling dust reconstructions lending insight to the behavior of the Westerly Jet with complementary records reflecting EAM intensity and precipitation distribution, the mean state and variability of the WJ and its coupling with the EAM can be examined. This study will measure a suite of samples for Pb, Nd and Sr isotopes from IODP Site U1430 over glacial-interglacial timescales, allowing detailed insights into changes in eolian sediment source regions in the Japan Sea and laying a foundation for future work examining millennial- and orbital-scale variability. Chiang, J.C.H., et al. 2015. Role of Seasonal Transitions and Westerly Jets in East Asian Paleoclimate, QSR, 108, 111-129.

  7. The long-term variability of Changma in the East Asian summer monsoon system: A review and revisit

    NASA Astrophysics Data System (ADS)

    Lee, June-Yi; Kwon, MinHo; Yun, Kyung-Sook; Min, Seung-Ki; Park, In-Hong; Ham, Yoo-Geun; Jin, Emilia Kyung; Kim, Joo-Hong; Seo, Kyong-Hwan; Kim, WonMoo; Yim, So-Young; Yoon, Jin-Ho

    2017-05-01

    Changma, which is a vital part of East Asian summer monsoon (EASM) system, plays a critical role in modulating water and energy cycles in Korea. Better understanding of its long-term variability and change is therefore a matter of scientific and societal importance. It has been indicated that characteristics of Changma have undergone significant interdecadal changes in association with the mid-1970s global-scale climate shift and the mid-1990s EASM shift. This paper reviews and revisits the characteristics on the long-term changes of Changma focusing on the underlying mechanisms for the changes. The four important features are manifested mainly during the last few decades: 1) mean and extreme rainfalls during Changma period from June to September have been increased with the amplification of diurnal cycle of rainfall, 2) the dry spell between the first and second rainy periods has become shorter, 3) the rainfall amount as well as the number of rainy days during August have significantly increased, probably due to the increase in typhoon landfalls, and 4) the relationship between the Changma rainfall and Western Pacific Subtropical High on interannual time scale has been enhanced. The typhoon contribution to the increase in heavy rainfall is attributable to enhanced interaction between typhoons and midlatitude baroclinic environment. It is noted that the change in the relationship between Changma and the tropical sea surface temperature (SST) over the Indian, Pacific, and Atlantic Oceans is a key factor in the long-term changes of Changma and EASM. Possible sources for the recent mid-1990s change include 1) the tropical dipole-like SST pattern between the central Pacific and Indo-Pacific region (the global warming hiatus pattern), 2) the recent intensification of tropical SST gradients among the Indian Ocean, the western Pacific, and the eastern Pacific, and 3) the tropical Atlantic SST warming.

  8. Coherent Modes of Global SST and Summer Rainfall over China: An Assessment of the Regional Impacts of the 1997-98 El Nino/ La Nina

    NASA Technical Reports Server (NTRS)

    Lau, K.-M.; Weng, Hengyi

    1999-01-01

    In this paper, we have identified three principal modes of summertime rainfall variability over China and global sea surface temperature (SST) for the period 1955-1998. Using these modes, we have assessed the impact of the El Nino/La Nina on major drought and flood occurrence over China during 1997-1998. The first mode can be identified with the growth phase of El Nino superimposed on a linear warming trend since the mid-1950s. This mode strongly influences rainfall over northern China. The second mode comprises of a quasi-biennial tendency manifested in alternate wet and dry years over the Yangtze River Valley (YRV) of central China. The third mode is dominated by a quasi-decadal oscillation in eastern China between the Yangtze River and the Yellow River. Using a mode-by-mode reconstruction, we evaluate the impacts of the various principal modes on the 1997 and 1998 observed rainfall anomaly. We find that the severe drought in northern China, and to a lesser degree the flood in southern China, in 1997 is likely a result of the influence of anomalous SST forcing during the growth phase of the El Nino. In addition, rainfall in southern China may be influenced by the decadal or long-term SST variability. The severe flood over the Yangtze River Valley in 1998 is associated with the biennial tendency of basin scale SST during the transition from El Nino to La Nina in 1997-98. Additionally, the observed prolonged drought over northern China and increasing flooding over the YRV since the 1950s may be associated with a long-term warming trend in the tropical Indian and western Pacific ocean. During 1997, the El Nino SST exacerbated the drought situation over northern China. In 1998, the drought appeared to get temporary relief from the La Nina anomalous SST forcing.

  9. Exploratory Long-Range Models to Estimate Summer Climate Variability over Southern Africa.

    NASA Astrophysics Data System (ADS)

    Jury, Mark R.; Mulenga, Henry M.; Mason, Simon J.

    1999-07-01

    Teleconnection predictors are explored using multivariate regression models in an effort to estimate southern African summer rainfall and climate impacts one season in advance. The preliminary statistical formulations include many variables influenced by the El Niño-Southern Oscillation (ENSO) such as tropical sea surface temperatures (SST) in the Indian and Atlantic Oceans. Atmospheric circulation responses to ENSO include the alternation of tropical zonal winds over Africa and changes in convective activity within oceanic monsoon troughs. Numerous hemispheric-scale datasets are employed to extract predictors and include global indexes (Southern Oscillation index and quasi-biennial oscillation), SST principal component scores for the global oceans, indexes of tropical convection (outgoing longwave radiation), air pressure, and surface and upper winds over the Indian and Atlantic Oceans. Climatic targets include subseasonal, area-averaged rainfall over South Africa and the Zambezi river basin, and South Africa's annual maize yield. Predictors and targets overlap in the years 1971-93, the defined training period. Each target time series is fitted by an optimum group of predictors from the preceding spring, in a linear multivariate formulation. To limit artificial skill, predictors are restricted to three, providing 17 degrees of freedom. Models with colinear predictors are screened out, and persistence of the target time series is considered. The late summer rainfall models achieve a mean r2 fit of 72%, contributed largely through ENSO modulation. Early summer rainfall cross validation correlations are lower (61%). A conceptual understanding of the climate dynamics and ocean-atmosphere coupling processes inherent in the exploratory models is outlined.Seasonal outlooks based on the exploratory models could help mitigate the impacts of southern Africa's fluctuating climate. It is believed that an advance warning of drought risk and seasonal rainfall prospects will improve the economic growth potential of southern Africa and provide additional security for food and water supplies.

  10. Ocean to land moisture transport is reflected in sea surface salinity

    NASA Astrophysics Data System (ADS)

    Schmitt, R. W.; Schanze, J. J.; Li, L.; Ummenhofer, C.

    2016-02-01

    The ocean has a much larger water cycle than the land, with global ocean evaporation of 13 Sverdrups being 10 times larger than the sum of all river flows. This disparity and the different dynamics of dry surfaces, have led to an unfortunate disconnect between terrestrial hydrologists and oceanographers. Here we show that there is in fact a close coupling between the water cycles of ocean and land. In both cases there is much local recycling of moisture, since it does not travel far in the atmosphere. We argue that the most important water cycle variable is the net export (or import) of water from (to) an area. Over the open ocean this is just evaporation minus precipitation (E-P). The "P vs E" plot is a valuable tool for identifying the source and sink regions of the water cycle. The subtropical high pressure systems are the source regions of the water cycle, with a global net export of 4.5 Sv. The three sinks are the ITCZ in the tropics, the high latitude subpolar lows, and the land, all at about 1.5 Sv, though the subpolar lows do receive more water than the tropics, where high rainfall is maintained by much local recycling. Of course, the signature of E-P in the open ocean is the sea surface salinity (SSS), as only net freshwater fluxes can create salinity variations. With the land receiving 1/3 of the oceanic export, we should expect close coupling between terrestrial rainfall and the salinity of nearby oceans, and SSS variations have indeed been found to be valuable for seasonal rainfall forecasts on land. The remarkable 3-6 month lead of winter-spring SSS over summer rainfall appears to be mediated by the recycling process on land through soil moisture. When soil moisture is high, terrestrial regions can become more oceanic-like, with solar heating energizing evaporation and leading to down-stream propagation of the moisture signal (the "brown ocean" effect). The correlation of high SSS with high rainfall promises to be a very valuable seasonal prediction tool for a variety of regions around the world.

  11. Multi-model analysis of the Atlantic influence on Southern Amazon rainfall

    DOE PAGES

    Yoon, Jin -Ho

    2015-12-07

    Amazon rainfall is subject to year-to-year fluctuation resulting in drought and flood in various intensities. A major climatic driver of the interannual variation of the Amazon rainfall is El Niño/Southern Oscillation. Also, the Sea Surface Temperature over the Atlantic Ocean is identified as an important climatic driver on the Amazon water cycle. Previously, observational datasets were used to support the Atlantic influence on Amazon rainfall. Furthermore, it is found that multiple global climate models do reproduce the Atlantic-Amazon link robustly. However, there exist differences in rainfall response, which primarily depends on the climatological rainfall amount.

  12. Interannual and Decadal Variability of Summer Rainfall over South America

    NASA Technical Reports Server (NTRS)

    Zhou, Jiayu; Lau, K.-M.

    1999-01-01

    Using the CPC (Climate Prediction Center) Merged Analysis of Precipitation product along with the Goddard Earth Observing System reanalysis and the Climate Analysis Center sea surface temperature (SST) data, we conduct a diagnostic study of the interannual and decadal scale variability of summer rainfall over South America. Results show three leading modes of rainfall variation identified with interannual, decadal, and long-term trend variability. Together, these modes explain more than half the total variance. The first mode is highly correlated with El Nino/southern oscillation (ENSO), showing severe drought over Northeast Brazil and copious rainfall over the Ecuador coast and the area of Uruguay-Southern Brazil in El Nino years. This pattern is attributed to the large scale zonal shift of the Walker circulation and local Hadley cell anomaly induced by positive (negative) SST anomaly over the eastern (western) equatorial Pacific. In El Nino years, two convective belts indicated by upper tropospheric velocity potential trough and mid-tropospheric rising motion, which are somewhat symmetric about the equator, extend toward the northeast and the southeast into the tropical North and South Atlantic respectively. Sandwiched between the ascent is a region of descending motion over Northeast Brazil. The southern branch of the anomalous Hadley cell is dynamically linked to the increase of rainfall over Uruguay-Southern Brazil. The regional response of anomalous circulation shows a stronger South American summer monsoon and an enhanced (weakened) subtropical high over the South Atlantic (South Pacific) Ocean. The decadal variation displays a meridional shift of the Intertropical Convergence Zone (ITCZ), which is tie to the anomalous cross-equatorial SST gradient over the Atlantic and the eastern Pacific. In conjunction with this mode is a large scale mass swing between the polar regions and midlatitudes in both hemispheres. Over the South Atlantic and the South Pacific, the changes of the strength of the subtropical high and the associated surface wind are dynamically consistent with the distribution of local SST anomalies, suggesting the importance of the atmospheric forcing in the decadal time scale. The decadal mode also presents a weak summer monsoon in its positive phase, which reduces the moisture supply from the equatorial Atlantic and the Amazon Basin and results in negative rainfall anomalies over the central Andes and Gran Chaco. The long-term trend shows decrease of rainfall from the northwest coast to the southeast subtropical region and a southward shift of Atlantic ITCZ that leads to increased rainfall over northern and eastern Brazil. Our result shows a close link of this mode to the observed SST warming trend over the subtropical South Atlantic and a remote connection to the interdecadal SST variation over the extratropical North Atlantic found in previous studies.

  13. Month-to-month variability of Indian summer monsoon rainfall in 2016: role of the Indo-Pacific climatic conditions

    NASA Astrophysics Data System (ADS)

    Chowdary, Jasti S.; Srinivas, G.; Du, Yan; Gopinath, K.; Gnanaseelan, C.; Parekh, Anant; Singh, Prem

    2018-03-01

    Indian summer monsoon (ISM) rainfall during 2016 exhibited a prominent month-to-month fluctuations over India, with below normal rainfall in June and August and above normal rainfall in July. The factors determining the month-to-month fluctuations in ISM rainfall during 2016 are investigated with main focus on the Indo-Pacific climatic anomalies. Warm sea surface temperature (SST) anomalies associated with super El Niño 2015 disappeared by early summer 2016 over the central and eastern Pacific. On the other hand, negative Indian Ocean dipole (IOD) like SST anomaly pattern over the equatorial Indian Ocean and anomalous anticyclonic circulation over the western North Pacific (WNP) are reported in summer 2016 concurrently with decaying El Niño/developing La Niña phase. Observations revealed that the low rainfall over central north India in June is due to moisture divergence caused by the westward extension of ridge corresponding to WNP anticyclone and subsidence induced by local Hadley cell partly related to negative IOD. Low level convergence of southeasterly wind from Bay of Bengal associated with weak WNP anticyclone and northwesterly wind corresponding to anticyclonic circulation over the northwest India remarkably contributed to positive rainfall in July over most of the Indian subcontinent. While reduced rainfall over the Indian subcontinent in August 2016 is associated with the anomalous moisture transport from ISM region to WNP region, in contrast to July, due to local cyclogenesis corroborated by number of tropical cyclones in the WNP. In addition to this, subsidence related to strong convection supported by cyclonic circulation over the WNP also resulted in low rainfall over the ISM region. Coupled General Circulation model sensitivity experiments confirmed that strong convective activities associated with cyclonic circulation over the WNP is primarily responsible for the observed negative ISM rainfall anomalies in August 2016. It is noted that the Indo-Western Pacific circulation anomalies in August 2016 are well predicted when the coupled model is initiated with initial conditions from end of July and beginning of August compared to May. This analysis suggests the importance of the WNP circulation in forcing strong sub-seasonal/month to month rainfall variations over India.

  14. Convective Systems Over the South China Sea: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shie, C.-L.; Johnson, D.; Simpson, J.; Braun, S.; Johnson, R.; Ciesielski, P. E.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, ships, wind profilers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with monsoons over the South China Sea region. SCSMEX also provided rainfall estimates which allows for comparisons with those obtained from the Tropical Rainfall Measuring Mission (TRMM), a low earth orbit satellite designed to measure rainfall from space. The Goddard Cumulus Ensemble (GCE) model (with 1-km grid size) is used to understand and quantify the precipitation processes associated with the summer monsoon over the South China Sea. This is the first (loud-resolving model used to simulate precipitation processes in this particular region. The GCE-model results captured many of the observed precipitation characteristics because it used a fine grid size. For example, the temporal variation of the simulated rainfall compares quite well to the sounding-estimated rainfall variation. The time and domain-averaged temperature (heating/cooling) and water vapor (drying/ moistening) budgets are in good agreement with observations. The GCE-model-simulated rainfall amount also agrees well with TRMM rainfall data. The results show there is more evaporation from the ocean surface prior to the onset of the monsoon than after the on-et of monsoon when rainfall increases. Forcing due to net radiation (solar heating minus longwave cooling) is responsible for about 25% of the precipitation in SCSMEX The transfer of heat from the ocean into the atmosphere does not contribute significantly to the rainfall in SCSMEX. Model sensitivity tests indicated that total rain production is reduced 17-18% in runs neglecting the ice phase. The SCSMEX results are compared to other GCE-model-simulated weather systems that developed during other field campaigns (i.e., west Pacific warm pool region, eastern Atlantic region and central USA). Large-scale forcing vie temperature and water vapor tendency, is the major energy source for net condensation in the tropical cases. The effects of large-scale cooling exceed that of large-scale moistening in the west pacific warm pool region and eastern Atlantic region. For SCSMEX, however, the effects of large-scale moistening predominate. Net radiation and sensible and latent hc,it fluxes play a much more important role in the central USA.

  15. Towards the prediction of the East Africa short rains based on sea-surface temperature-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Mutai, C. C.; Ward, M. N.; Colman, A. W.

    1998-07-01

    It is shown that the July-September sea-surface temperature (SST) pattern contains moderately strong relationships with the October-December (OND) seasonal rainfall total averaged across East Africa 15°S-5°N, 30°-41.25°E. The relations can be described by using three rotated global SST empirical orthogonal functions (EOFs), mainly measuring aspects of SST patterns in the tropical Pacific (related to El Niño/Southern Oscillation), tropical Indian and, to a lesser extent, tropical Atlantic. Confidence in the relationships is raised because the three EOFs correlate significantly with OND near-surface divergence over the tropical Pacific, Indian and Atlantic Oceans (extending into Northern mid-latitudes), as well as with the rainfall in East Africa and also with rainfall across southern and western tropical Africa.For the East African region, multiple linear regression (MLR) and linear discriminant analysis prediction models are tested. The predictors are pre-rainfall season values of the three rotated SST EOFs. The predictors use information through September. Validating MLR hindcasts using a 1945-1966 (1967-1988) training period and a 1967-1988 (1945-1966) testing period between 30 to 60% of the area-averaged rainfall variance is explained. To achieve unbiased estimates of the expected skill of a forecast system, it is safest to keep model training and testing periods completely separate. The above strategy achieves this in the most important step of ensuring that the models fit the SST predictors to the rainfall predictand using years independent of the testing period. However, the EOFs were calculated over 1901-1980, so for hindcasts prior to 1981, the EOFs describe the SST variability a little better than could be achieved in real-time, which could inflate skill estimates. Tests in the years 1981-1994, independent of the 1901-1980 eigenvector analysis period, do produce similar levels of skill, but a few more forecast years are needed to confirm this result. It is shown that the mean verification at each individual location within East Africa is somewhat lower, which is important to consider for some applications. The need to monitor the prediction relationships and update the models is emphasised. Furthermore, these forecasts only become available as the OND season is underway, though some evidence is found for one of the EOF predictors having skill as early as June.

  16. Coupled ocean-atmosphere surface variability and its climate impacts in the tropical Atlantic region

    NASA Astrophysics Data System (ADS)

    Fontaine, B.; Janicot, Serge; Roucou, P.

    This study examines time evolution and statistical relationships involving the two leading ocean-atmosphere coupled modes of variability in the tropical Atlantic and some climate anomalies over the tropical 120°W-60°W region using selected historical files (75-y near global SSTs and precipitation over land), more recent observed data (30-y SST and pseudo wind stress in the tropical Atlantic) and reanalyses from the US National Centers for Environmental Prediction (NCEP/NCAR) reanalysis System on the period 1968-1997: surface air temperature, sea level pressure, moist static energy content at 850 hPa, precipitable water and precipitation. The first coupled mode detected through singular value decomposition of the SST and pseudo wind-stress data over the tropical Atlantic (30°N-20°S) expresses a modulation in the thermal transequatorial gradient of SST anomalies conducted by one month leading wind-stress anomalies mainly in the tropical north Atlantic during northern winter and fall. It features a slight dipole structure in the meridional plane. Its time variability is dominated by a quasi-decadal signal well observed in the last 20-30 ys and, when projected over longer-term SST data, in the 1920s and 1930s but with shorter periods. The second coupled mode is more confined to the south-equatorial tropical Atlantic in the northern summer and explains considerably less wind-stress/SST cross-covariance. Its time series features an interannual variability dominated by shorter frequencies with increased variance in the 1960s and 1970s before 1977. Correlations between these modes and the ENSO-like Nino3 index lead to decreasing amplitude of thermal anomalies in the tropical Atlantic during warm episodes in the Pacific. This could explain the nonstationarity of meridional anomaly gradients on seasonal and interannual time scales. Overall the relationships between the oceanic component of the coupled modes and the climate anomaly patterns denote thermodynamical processes at the ocean/atmosphere interface that create anomaly gradients in the meridional plane in a way which tends to alter the north-south movement of the seasonal cycle. This appears to be consistent with the intrinsic non-dipole character of the tropical Atlantic surface variability at the interannual time step and over the recent period, but produces abnormal amplitude and/or delayed excursions of the intertropical convergence zone (ITCZ). Connections with continental rainfall are approached through three (NCEP/NCAR and observed) rainfall indexes over the Nordeste region in Brazil, and the Guinea and Sahel zones in West Africa. These indices appear to be significantly linked to the SST component of the coupled modes only when the two Atlantic modes+the ENSO-like Nino3 index are taken into account in the regressions. This suggests that thermal forcing of continental rainfall is particularly sensitive to the linear combinations of some basic SST patterns, in particular to those that create meridional thermal gradients. The first mode in the Atlantic is associated with transequatorial pressure, moist static energy and precipitable water anomaly patterns which can explain abnormal location of the ITCZ particularly in northern winter, and hence rainfall variations in Nordeste. The second mode is more associated with in-phase variations of the same variables near the southern edge of the ITCZ, particularly in the Gulf of Guinea during the northern spring and winter. It is primarily linked to the amplitude and annual phase of the ITCZ excursions and thus to rainfall variations in Guinea. Connections with Sahel rainfall are less clear due to the difficulty for the model to correctly capture interannual variability over that region but the second Atlantic mode and the ENSO-like Pacific variability are clearly involved in the Sahel climate interannual fluctuations: anomalous dry (wet) situations tend to occur when warmer (cooler) waters are present in the eastern Pacific and the gulf of Guinea in northern summer which contribute to create a northward (southward) transequatorial anomaly gradient in sea level pressure over West Africa.

  17. Variations of Sea Surface Temperature, Wind Stress, and Rainfall over the Tropical Atlantic and South America.

    NASA Astrophysics Data System (ADS)

    Nobre, Paulo; Srukla, J.

    1996-10-01

    Empirical orthogonal functions (E0Fs) and composite analyses are used to investigate the development of sea surface temperature (SST) anomaly patterns over the tropical Atlantic. The evolution of large-scale rainfall anomaly patterns over the equatorial Atlantic and South America are also investigated. 71e EOF analyses revealed that a pattern of anomalous SST and wind stress asymmetric relative to the equator is the dominant mode of interannual and longer variability over the tropical Atlantic. The most important findings of this study are as follows.Atmospheric circulation anomalies precede the development of basinwide anomalous SST patterns over the tropical Atlantic. Anomalous SST originate off the African coast simultaneously with atmospheric circulation anomalies and expand westward afterward. The time lag between wind stress relaxation (strengthening) and maximum SST warming (cooling) is about two months.Anomalous atmospheric circulation patterns over northern tropical Atlantic are phase locked to the seasonal cycle. Composite fields of SLP and wind stress over northern tropical Atlantic can be distinguished from random only within a few months preceding the March-May (MAM) season. Observational evidence is presented to show that the El Niño-Southern Oscillation phenomenon in the Pacific influences atmospheric circulation and SST anomalies over northern tropical Atlantic through atmospheric teleconnection patterns into higher latitudes of the Northern Hemisphere.The well-known droughts over northeastern Brazil (Nordeste) are a local manifestation of a much larger-scale rainfall anomaly pattern encompassing the whole equatorial Atlantic and Amazon region. Negative rainfall anomalies to the south of the equator during MAM, which is the rainy season for the Nordeste region, are related to an early withdrawal of the intertropical convergence zone toward the warm SST anomalies over the northern tropical Atlantic. Also, it is shown that precipitation anomalies over southern and northern parts of the Nordeste are out of phase: drought years over the northern Nordeste are commonly preceded by wetter years over the southern Nordeste, and vice versa.

  18. Impact of Sea Level Rise on Storm Surge and Inundation in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Veeramony, J.

    2016-12-01

    Assessing the impact of climate change on surge and inundation due to tropical cyclones is important for coastal adaptation as well as mitigation efforts. Changes in global climate increase vulnerability of coastal environments to the threat posed by severe storms in a number of ways. Both the intensity of future storms as well as the return periods of more severe storms are expected to increase signficantly. Increasing mean sea levels lead to more areas being inundated due to storm surge and bring the threat of inundation further inland. Rainfall associated with severe storms are also expected to increase substantially, which will add to the intensity of inland flooding and coastal inundation. In this study, we will examine the effects of sea level rise and increasing rainfall intensity using Hurricane Ike as the baseline. The Delft3D modeling system will be set up in nested mode, with the outermost nest covering the Gulf of Mexico. The system will be run in a coupled mode, modeling both waves and the hydrodynamics. The baseline simulation will use the atmospheric forcing which consists of the NOAA H*Wind (Powell et all 1998) for the core hurricane characteristics blended with reanalyzed background winds to create a smooth wind field. The rainfall estimates are obtained from TRMM. From this baseline, a set of simulations will be performed to show the impact of sea level rise and increased rainfall activity on flooding and inundation along theTexas-Lousiana coast.

  19. Visioning the Future: Scenarios Modeling of the Florida Coastal Everglades

    NASA Astrophysics Data System (ADS)

    Flower, Hilary; Rains, Mark; Fitz, Carl

    2017-11-01

    In this paper, we provide screening-level analysis of plausible Everglades ecosystem response by 2060 to sea level rise (0.50 m) interacting with macroclimate change (1.5 °C warming, 7% increase in evapotranspiration, and rainfall that either increases or decreases by 10%). We used these climate scenarios as input to the Ecological Landscape Model to simulate changes to seven interactive hydro-ecological metrics. Mangrove forest and other marine influences migrated up to 15 km inland in both scenarios, delineated by the saltwater front. Freshwater habitat area decreased by 25-30% under our two climate change scenarios and was largely replaced by mangroves and, in the increased rainfall scenario, open water as well. Significant mangroves drowned along northern Florida Bay in both climate change scenarios due to sea level rise. Increased rainfall of 10% provided significant benefits to the spatial and temporal salinity regime within the marine-influenced zone, providing a more gradual and natural adjustment for at-risk flora and fauna. However, increased rainfall also increased the risk of open water, due to water depths that inhibited mangrove establishment and reduced peat accumulation rates. We infer that ecological effects related to sea level rise may occur in the extreme front-edge of saltwater intrusion, that topography will control the incursion of this zone as sea level rises, and that differences in freshwater availability will have ecologically significant effects on ecosystem resilience through the temporal and spatial pattern of salinity changes.

  20. Visioning the Future: Scenarios Modeling of the Florida Coastal Everglades.

    PubMed

    Flower, Hilary; Rains, Mark; Fitz, Carl

    2017-11-01

    In this paper, we provide screening-level analysis of plausible Everglades ecosystem response by 2060 to sea level rise (0.50 m) interacting with macroclimate change (1.5 °C warming, 7% increase in evapotranspiration, and rainfall that either increases or decreases by 10%). We used these climate scenarios as input to the Ecological Landscape Model to simulate changes to seven interactive hydro-ecological metrics. Mangrove forest and other marine influences migrated up to 15 km inland in both scenarios, delineated by the saltwater front. Freshwater habitat area decreased by 25-30% under our two climate change scenarios and was largely replaced by mangroves and, in the increased rainfall scenario, open water as well. Significant mangroves drowned along northern Florida Bay in both climate change scenarios due to sea level rise. Increased rainfall of 10% provided significant benefits to the spatial and temporal salinity regime within the marine-influenced zone, providing a more gradual and natural adjustment for at-risk flora and fauna. However, increased rainfall also increased the risk of open water, due to water depths that inhibited mangrove establishment and reduced peat accumulation rates. We infer that ecological effects related to sea level rise may occur in the extreme front-edge of saltwater intrusion, that topography will control the incursion of this zone as sea level rises, and that differences in freshwater availability will have ecologically significant effects on ecosystem resilience through the temporal and spatial pattern of salinity changes.

  1. Organization of vertical shear of wind and daily variability of monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Gouda, K. C.; Goswami, P.

    2016-10-01

    Very little is known about the mechanisms that govern the day to day variability of the Indian summer monsoon (ISM) rainfall; in the current dominant view, the daily rainfall is essentially a result of chaotic dynamics. Most studies in the past have thus considered monsoon in terms of its seasonal (June-September) or monthly rainfall. We show here that the daily rainfall in June is associated with vertical shear of horizontal winds at specific scales. While vertical shear had been used in the past to investigate interannual variability of seasonal rainfall, rarely any effort has been made to examine daily rainfall. Our work shows that, at least during June, the daily rainfall variability of ISM rainfall is associated with a large scale dynamical coherence in the sense that the vertical shear averaged over large spatial extents are significantly correlated with area-averaged daily rainfall. An important finding from our work is the existence of a clearly delineated monsoon shear domain (MSD) with strong coherence between area-averaged shear and area-averaged daily rainfall in June; this association of daily rainfall is not significant with shear over only MSD. Another important feature is that the association between daily rainfall and vertical shear is present only during the month of June. Thus while ISM (June-September) is a single seasonal system, it is important to consider the dynamics and variation of June independently of the seasonal ISM rainfall. The association between large-scale organization of circulation and daily rainfall is suggested as a basis for attempting prediction of daily rainfall by ensuring accurate simulation of wind shear.

  2. Pelagic sea snakes dehydrate at sea

    PubMed Central

    Lillywhite, Harvey B.; Sheehy, Coleman M.; Brischoux, François; Grech, Alana

    2014-01-01

    Secondarily marine vertebrates are thought to live independently of fresh water. Here, we demonstrate a paradigm shift for the widely distributed pelagic sea snake, Hydrophis (Pelamis) platurus, which dehydrates at sea and spends a significant part of its life in a dehydrated state corresponding to seasonal drought. Snakes that are captured following prolonged periods without rainfall have lower body water content, lower body condition and increased tendencies to drink fresh water than do snakes that are captured following seasonal periods of high rainfall. These animals do not drink seawater and must rehydrate by drinking from a freshwater lens that forms on the ocean surface during heavy precipitation. The new data based on field studies indicate unequivocally that this marine vertebrate dehydrates at sea where individuals may live in a dehydrated state for possibly six to seven months at a time. This information provides new insights for understanding water requirements of sea snakes, reasons for recent declines and extinctions of sea snakes and more accurate prediction for how changing patterns of precipitation might affect these and other secondarily marine vertebrates living in tropical oceans. PMID:24648228

  3. Variability of CO2 fugacity at the western edge of the tropical Atlantic Ocean from the 8°N to 38°W PIRATA buoy

    NASA Astrophysics Data System (ADS)

    Bruto, Leonardo; Araujo, Moacyr; Noriega, Carlos; Veleda, Dóris; Lefèvre, Nathalie

    2017-06-01

    Hourly data of CO2 fugacity (fCO2) at 8°N-38°W were analyzed from 2008 to 2011. Analyses of wind, rainfall, temperature and salinity data from the buoy indicated two distinct seasonal periods. The first period (January to July) had a mean fCO2 of 378.9 μatm (n = 7512). During this period, in which the study area was characterized by small salinity variations, the fCO2 is mainly controlled by sea surface temperature (SST) variations (fCO2 = 24.4*SST-281.1, r2 = 0.8). During the second period (August-December), the mean fCO2 was 421.9 μatm (n = 11571). During these months, the region is subjected to the simultaneous action of (a) rainfall induced by the presence of the Intertropical Convergence Zone (ITCZ); (b) arrival of fresh water from the Amazon River plume that is transported to the east by the North Equatorial Countercurrent (NECC) after the retroflection of the North Brazil Current (NBC); and (c) vertical input of CO2-rich water due to Ekman pumping. The data indicated the existence of high-frequency fCO2 variability (periods less than 24 h). This high variability is related to two different mechanisms. In the first mechanism, fCO2 increases are associated to rapid increases in SST and are attributed to the diurnal cycle of solar radiation. In addition, low wind speed contributes to SST rising by inhibiting vertical mixing. In the second mechanism, fCO2 decreases are associated to SSS decreases caused by heavy rainfall.

  4. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?

    PubMed Central

    Ma, Xiaohui; Chang, Ping; Saravanan, R.; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao

    2015-01-01

    High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy–atmosphere interaction in forecast and climate models. PMID:26635077

  5. Tropical Pacific forcing on decadal-to-centennial NAO-dominated precipitation variability in northern Mediterranean over the past 6500 years

    NASA Astrophysics Data System (ADS)

    Hu, H. M.; Shen, C. C.; Michel, V.; Jiang, X.; Mii, H. S.; Wang, Y.; Valensi, P.

    2017-12-01

    We present a multi-annual-resolved absolute-dated stalagmite-inferred precipitation record, with age precision as good as ±2 years, from northern Italy, to reflect North Atlantic Oscillation (NAO) dynamics since 6.5 ka (thousand years ago, before 1950 C.E.). Our record features millennial precipitation fluctuations punctuated by several centennial-scale drought periods centered at 5.6, 6.2, 4.2, 3.0 and 2.3 ka. The phase relationship with previous NAO-sensitive records suggests a multi-millennial southward migration of the northern Westerlies and enhanced NAO variability from the middle- to late-Holocene. We also found the multi-decadal to centennial rainfall amount could dramatically vary within few decades, possibly affecting ancient Mediterranean civilizations. Concurrence between northern Mediterranean precipitation and western tropical Pacific sea surface temperature records suggests the remote forcing on this NAO-dominated rainfall. We argue that the irregular NAO change nowadays could be related to high frequency of El Niño-Southern Oscillation events and might cause an inevitable abrupt hydroclimate change and irreparable impacts on the regional human society in the near future.

  6. Spatio-temporal analysis of annual rainfall in Crete, Greece

    NASA Astrophysics Data System (ADS)

    Varouchakis, Emmanouil A.; Corzo, Gerald A.; Karatzas, George P.; Kotsopoulou, Anastasia

    2018-03-01

    Analysis of rainfall data from the island of Crete, Greece was performed to identify key hydrological years and return periods as well as to analyze the inter-annual behavior of the rainfall variability during the period 1981-2014. The rainfall spatial distribution was also examined in detail to identify vulnerable areas of the island. Data analysis using statistical tools and spectral analysis were applied to investigate and interpret the temporal course of the available rainfall data set. In addition, spatial analysis techniques were applied and compared to determine the rainfall spatial distribution on the island of Crete. The analysis presented that in contrast to Regional Climate Model estimations, rainfall rates have not decreased, while return periods vary depending on seasonality and geographic location. A small but statistical significant increasing trend was detected in the inter-annual rainfall variations as well as a significant rainfall cycle almost every 8 years. In addition, statistically significant correlation of the island's rainfall variability with the North Atlantic Oscillation is identified for the examined period. On the other hand, regression kriging method combining surface elevation as secondary information improved the estimation of the annual rainfall spatial variability on the island of Crete by 70% compared to ordinary kriging. The rainfall spatial and temporal trends on the island of Crete have variable characteristics that depend on the geographical area and on the hydrological period.

  7. Mechanisms for Diurnal Variability of Global Tropical Rainfall Observed from TRMM

    NASA Technical Reports Server (NTRS)

    Yang, Song; Smith, Eric A.

    2004-01-01

    The behavior and various controls of diurnal variability in tropical-subtropical rainfall are investigated using Tropical Rainfall Measuring Mission (TRMM) precipitation measurements retrieved from: (1) TRMM Microwave Imager (TMI), (2) Precipitation Radar (PR), and (3) TMI/PR Combined, standard level 2 algorithms for the 1998 annual cycle. Results show that the diurnal variability characteristics of precipitation are consistent for all three algorithms, providing assurance that TRMM retrievals are providing consistent estimates of rainfall variability. As anticipated, most ocean areas exhibit more rainfall at night, while over most land areas rainfall peaks during daytime ,however, various important exceptions are found. The dominant feature of the oceanic diurnal cycle is a rainfall maximum in late-evening/early-morning (LE-EM) hours, while over land the dominant maximum occurs in the mid- to late-afternoon (MLA). In conjunction with these maxima are pronounced seasonal variations of the diurnal amplitudes. Amplitude analysis shows that the diurnal pattern and its seasonal evolution are closely related to the rainfall accumulation pattern and its seasonal evolution. In addition, the horizontal distribution of diurnal variability indicates that for oceanic rainfall there is a secondary MLA maximum, co-existing with the LE-EM maximum, at latitudes dominated by large scale convergence and deep convection. Analogously, there is a preponderance for an LE-EM maximum over land, co-existing with the stronger MLA maximum, although it is not evident that this secondary continental feature is closely associated with the large scale circulation. The ocean results clearly indicate that rainfall diurnal variability associated with large scale convection is an integral part of the atmospheric general circulation.

  8. Role of the North Atlantic Ocean in Low Frequency Climate Variability

    NASA Astrophysics Data System (ADS)

    Danabasoglu, G.; Yeager, S. G.; Kim, W. M.; Castruccio, F. S.

    2017-12-01

    The Atlantic Ocean is a unique basin with its extensive, North - South overturning circulation, referred to as the Atlantic meridional overturning circulation (AMOC). AMOC is thought to represent the dynamical memory of the climate system, playing an important role in decadal and longer time scale climate variability as well as prediction of the earth's future climate on these time scales via its large heat and salt transports. This oceanic memory is communicated to the atmosphere primarily through the influence of persistent sea surface temperature (SST) variations. Indeed, many modeling studies suggest that ocean circulation, i.e., AMOC, is largely responsible for the creation of coherent SST variability in the North Atlantic, referred to as Atlantic Multidecadal Variability (AMV). AMV has been linked to many (multi)decadal climate variations in, e.g., Sahel and Brazilian rainfall, Atlantic hurricane activity, and Arctic sea-ice extent. In the absence of long, continuous observations, much of the evidence for the ocean's role in (multi)decadal variability comes from model simulations. Although models tend to agree on the role of the North Atlantic Oscillation in creating the density anomalies that proceed the changes in ocean circulation, model fidelity in representing variability characteristics, mechanisms, and air-sea interactions remains a serious concern. In particular, there is increasing evidence that models significantly underestimate low frequency variability in the North Atlantic compared to available observations. Such model deficiencies can amplify the relative influence of external or stochastic atmospheric forcing in generating (multi)decadal variability, i.e., AMV, at the expense of ocean dynamics. Here, a succinct overview of the current understanding of the (North) Atlantic Ocean's role on the regional and global climate, including some outstanding questions, will be presented. In addition, a few examples of the climate impacts of the AMV via atmospheric teleconnections from a set of coupled simulations, also considering the relative roles of its tropical and extratropical components, will be highlighted.

  9. A Combined Infrared and Microwave Technique for Studying the Diurnal Variation of Rainfall over Amazonia

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Anagnostou, Emmanouil; Adler, Robert F.

    1999-01-01

    Over 10 years of continuous data from the Special Sensor microwave Imager (SSM/I) aboard a series of Defense Department satellites has made it possible to construct regional rainfall climatologies at high spatial resolution. Using the Goddard Profiling Algorithm (GPROF), monthly estimates of precipitation were made over the region of northern Brazil, including the Amazon Basin, for 1987 to 1998. GPROF is a physical approach to passive microwave precipitation retrieval, which uses the Goddard Cumulus Ensemble (cloud) model to establish prior probability densities of precipitation structures. Precipitation fields from GPROF were stratified into morning and evening satellite overpasses, and accumulated at monthly intervals at 0.5 degree spatial resolution. Important diurnal effects were noted in the analysis, the most pronounced being a land/sea breeze circulation along the northern coast of Brazil and a mountain/valley circulation along the Andes. There were also indications of morning rainfall maxima along the major rivers, and evening maxima between the rivers. The addition of simultaneous geosynchronous infrared (IR) data leads to the current technique, which takes advantage of the 30 minute sampling and 4 km spatial resolution of the infrared channel and the better physics of the microwave retrieval. The resultant IR method is subsequently used to derive the diurnal variability of rainfall over the Amazon basin, and further, to investigate the relative contribution from its convective and stratiform components.

  10. Influence of Madden-Julian Oscillation (MJO) on Rainfall Variability over West Africa at Intraseasonal Timescale

    NASA Astrophysics Data System (ADS)

    Niang, C.

    2015-12-01

    Intraseasonal variability of rainfall over West Africa plays a significant role in the economy of the region and is highly linked to agriculture and water resources. This research study aims to investigate the relationship between Madden Julian Oscillation (MJO) and rainfall over West Africa during the boreal summer in the the state-of-the-art Atmospheric Model Intercomparison Project (AMIP) type simulations performed by Atmosphere General Circulation Models (GCMs) forced with prescribed Sea Surface Temperature (SST). It aims to determine the impact of MJO on rainfall and convection over West Africa and identify the dynamical processes which are involved in the state-of-the-art climate simulations. The simulations show in general good skills in capturing its main characteristics as well as its influence on rainfall over West Africa. On the global scale, most models simulated an eastward spatio-temporal propagation of enhanced and suppressed convection similar to the observed. However, over West Africa the MJO signal is weak in few of the models although there is a good coherence in the eastward propagation. The influence on rainfall is well captured in both Sahel and Guinea regions thereby adequately producing the transition between positive and negative rainfall anomalies through the different phases as seen in the observation. Furthermore, the results show that strong active convective phase is clearly associated with the African Easterly Jet (AEJ) but the weak convective phase is associated with a much weaker AEJ particularly over coastal Ghana. In assessing the mechanisms which are involved in the above impacts the convectively equatorial coupled waves (CCEW) are analysed separately. The analysis of the longitudinal propagation of zonal wind at 850hPa and outgoing longwave radiation (OLR) shows that the CCEW are very weak and their extention are very limited beyong West African region. It was found that the westward coupled equatorial Rossby waves are needed to bring out the MJO-convection link over the region and this relationship is well reproduced by all the models. Results also confirmed that it may be possible to predict the anomalous convection over West Africa with a time lead of 15-20 day with regard to Indian Ocean and AMIP simulations performed well in this regard.

  11. Effect of Spatio-Temporal Variability of Rainfall on Stream flow Prediction of Birr Watershed

    NASA Astrophysics Data System (ADS)

    Demisse, N. S.; Bitew, M. M.; Gebremichael, M.

    2012-12-01

    The effect of rainfall variability on our ability to forecast flooding events was poorly studied in complex terrain region of Ethiopia. In order to establish relation between rainfall variability and stream flow, we deployed 24 rain gauges across Birr watershed. Birr watershed is a medium size mountainous watershed with an area of 3000 km2 and elevation ranging between 1435 m.a.s.l and 3400 m.a.s.l in the central Ethiopia highlands. One summer monsoon rainfall of 2012 recorded at high temporal scale of 15 minutes interval and stream flow recorded at an hourly interval in three sub-watershed locations representing different scales were used in this study. Based on the data obtained from the rain gauges and stream flow observations, we quantify extent of temporal and spatial variability of rainfall across the watershed using standard statistical measures including mean, standard deviation and coefficient of variation. We also establish rainfall-runoff modeling system using a physically distributed hydrological model: the Soil and Water Assessment Tool (SWAT) and examine the effect of rainfall variability on stream flow prediction. The accuracy of predicted stream flow is measured through direct comparison with observed flooding events. The results demonstrate the significance of relation between stream flow prediction and rainfall variability in the understanding of runoff generation mechanisms at watershed scale, determination of dominant water balance components, and effect of variability on accuracy of flood forecasting activities.

  12. A 100 000-year record of annual and seasonal rainfall and temperature for northwestern Australia based on a pollen record obtained offshore

    NASA Astrophysics Data System (ADS)

    van der Kaars, Sander; de Deckker, Patrick; Gingele, Franz X.

    2006-12-01

    Pollen recovered from core tops of deep-sea cores from offshore northwestern Western Australia were used to build climatic transfer functions applied to sediment samples from major rivers bordering the ocean in the same region and a deep-sea core offshore Northwest Cape. Results show for the last 100 000 years, with a gap in the record spanning the 64 000 to 46 000 years interval, that from about 100 000 to 82 000 yr BP, climatic conditions represented by rainfall, temperature and number of humid months, were significantly higher than today's values. For the entire record, the coldest period occurred about 43 000 to 39 000 yr BP but it was wetter than today, whereas the Last Glacial Maximum saw a significant reduction in summer rainfall, interpreted as a result of the absence of monsoonal activity in the region. The Holocene can be divided into two distinct phases: one peaking around 6000 cal. yr BP with highest rainfall and summer temperatures; the second one commencing at 5000 cal. yr BP and showing a progressive decrease in summer rainfall in contrast to an increase in winter rainfall, paralleled by a progressive decrease in temperatures. Copyright

  13. Analysis of Impact of Tropical Cyclone Blance on Rainfall at Kupang Region Based on Atmospheric Condition and Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Roguna, S.; Saragih, I. J. A.; Siregar, P. S.; Julius, A. M.

    2018-04-01

    The Tropical Depression previously identified on March 3, 2017, at Arafuru Sea has grown to Tropical Cyclone Blance on March 5, 2017. The existence of Tropical Cyclone Blance gave impacts like increasing rainfall for some regions in Indonesia until March 7, 2017, such as Kupang. The increase of rainfall cannot be separated from the atmospheric dynamics related to convection processes and the formation of clouds. Analysis of weather parameters is made such as vorticity to observe vertical motion over the study area, vertical velocity to see the speed of lift force in the atmosphere, wind to see patterns of air mass distribution and rainfall to see the increase of rainfall compared to several days before the cyclone. Analysis of satellite imagery data is used as supporting analysis to see clouds imagery and movement direction of the cyclone. The results of weather parameters analysis show strong vorticity and lift force of air mass support the growth of Cumulonimbus clouds, cyclonic patterns on wind streamline and significant increase of rainfall compared to previous days. The results of satellite imagery analysis show the convective clouds over Kupang and surrounding areas when this phenomena and cyclone pattern moved down from Arafuru Sea towards the western part of Australia.

  14. South Asian monsoon history over the past 60 kyr recorded by radiogenic isotopes and clay mineral assemblages in the Andaman Sea

    NASA Astrophysics Data System (ADS)

    Ali, Sajid; Hathorne, Ed C.; Frank, Martin; Gebregiorgis, Daniel; Stattegger, Karl; Stumpf, Roland; Kutterolf, Steffen; Johnson, Joel E.; Giosan, Liviu

    2015-02-01

    The Late Quaternary variability of the South Asian (or Indian) monsoon has been linked with glacial-interglacial and millennial scale climatic changes but past rainfall intensity in the river catchments draining into the Andaman Sea remains poorly constrained. Here we use radiogenic Sr, Nd, and Pb isotope compositions of the detrital clay-size fraction and clay mineral assemblages obtained from sediment core NGHP Site 17 in the Andaman Sea to reconstruct the variability of the South Asian monsoon during the past 60 kyr. Over this time interval ɛNd values changed little, generally oscillating between -7.3 and -5.3 and the Pb isotope signatures are essentially invariable, which is in contrast to a record located further northeast in the Andaman Sea. This indicates that the source of the detrital clays did not change significantly during the last glacial and deglaciation suggesting the monsoon was spatially stable. The most likely source region is the Irrawaddy river catchment including the Indo-Burman Ranges with a possible minor contribution from the Andaman Islands. High smectite/(illite + chlorite) ratios (up to 14), as well as low 87Sr/86Sr ratios (0.711) for the Holocene period indicate enhanced chemical weathering and a stronger South Asian monsoon compared to marine oxygen isotope stages 2 and 3. Short, smectite-poor intervals exhibit markedly radiogenic Sr isotope compositions and document weakening of the South Asian monsoon, which may have been linked to short-term northern Atlantic climate variability on millennial time scales. This article was corrected on 18 MAR 2015. See the end of the full text for details.

  15. Dynamics and spatio-temporal variability of environmental factors in Eastern Australia using functional principal component analysis

    USGS Publications Warehouse

    Szabo, J.K.; Fedriani, E.M.; Segovia-Gonzalez, M. M.; Astheimer, L.B.; Hooper, M.J.

    2010-01-01

    This paper introduces a new technique in ecology to analyze spatial and temporal variability in environmental variables. By using simple statistics, we explore the relations between abiotic and biotic variables that influence animal distributions. However, spatial and temporal variability in rainfall, a key variable in ecological studies, can cause difficulties to any basic model including time evolution. The study was of a landscape scale (three million square kilometers in eastern Australia), mainly over the period of 19982004. We simultaneously considered qualitative spatial (soil and habitat types) and quantitative temporal (rainfall) variables in a Geographical Information System environment. In addition to some techniques commonly used in ecology, we applied a new method, Functional Principal Component Analysis, which proved to be very suitable for this case, as it explained more than 97% of the total variance of the rainfall data, providing us with substitute variables that are easier to manage and are even able to explain rainfall patterns. The main variable came from a habitat classification that showed strong correlations with rainfall values and soil types. ?? 2010 World Scientific Publishing Company.

  16. Glacial to Holocene dynamics of Indonesian precipitation - New insights from plant-wax dD off Northwest Sumatra

    NASA Astrophysics Data System (ADS)

    Niedermeyer, E. M.; Mohtadi, M.; Sessions, A. L.; Feakins, S. J.

    2012-12-01

    We used the stable hydrogen and stable carbon isotopic composition (dD and d13C, respectively) of terrestrial plant leaf waxes as a proxy for past rainfall variations over northwestern Indonesia. Our study site lies within the western boundary of the Indo-Pacific Warm Pool (IPWP), a key evaporative site for the global hydrologic cycle. At present, rainfall intensity in tropical Indonesia is influenced by the Pacific Ocean El Nino Southern Oscillation (ENSO) (see Kirono et al., 1999), the Indian Ocean Dipole (IOD) mode (Saji et al., 1999), and to some extend by the position of the Intertropical Convergence Zone (ITCZ) (e.g. Koutavas and Lynch-Stieglitz, 2005). Paleoclimate studies show that these systems have varied in the past, however, the impact of these changes on regional paelo-hydrology of Indonesia is yet unknown. We worked on marine sediment core SO189-144KL (1°09,300 N; 98°03,960 E) retrieved at 480 m water depth off Northwest Sumatra from the eastern Indian Ocean. Sediments consist of material from marine and terrestrial sources, and radiocarbon dating indicates an age of ~300 years at the core top and of ~24,000 years at the base. We used d13C and dD values of the n-C30 alkanoic acid as proxies for changes in vegetation composition (C3 vs. C4 plants) and rainfall variability on land, respectively. Values of d13C show only little variation and suggest persistent dominance of tropical trees throughout the past 24,000 years. Values of dD display distinct variability throughout the record, however, mean rainfall intensities during the late Last Glacial compare to those during the Holocene. This is in agreement with rather consistent vegetation at the study site but in sharp contrast with reconstructions of contemporaneous rainfall patterns at the nearby islands Borneo (Partin et al., 2007) and Flores (Griffiths et al., 2009), indicating multiple controls on regional hydrology of Indonesia. In combination with previous studies of late Pleistocene to Holocene ENSO and IOD variability, we further address the complex controls on Indonesian climate with emphasis of Holocene rainfall variability. References Griffiths, M.L., Drysdale, R.N., Gagan, M.K., Zhao, J.x., Ayliffe, L.K., Hellstrom, J.C., Hantoro, W.S., Frisia, S., Feng, Y.x., Cartwright, I., Pierre, E.S., Fischer, M.J., Suwargadi, B.W., 2009. Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nature Geoscience 2, 636-639. Kirono, D.G.C., Tapper, N.J., McBride, J.L., 1999. Documenting Indonesian rainfall in the 1997/1998 El Nino event. Physical Geography 20, 422-435. Koutavas, A., Lynch-Stieglitz, J., 2005. Variability of the marine ITCZ over the eastern Pacific during the past 30,000 years: Regional perspective and global context. In: Bradley, R.S., Diaz, H.F. (Eds.), The Hadley Circulation: Present Past and Future. Springer, pp. 347-369. Partin, J.W., Cobb, K.M., Adkins, J.F., Clark, B., Fernandez, D.P., 2007. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum. Nature 449, 452-455. Saji, N.H., Goswami, B.N., Vinayachandran, P.N., Yamagata, T., 1999. A dipole mode in the tropical Indian Ocean. Nature 401, 360-363.

  17. Pronounced centennial-scale Atlantic Ocean climate variability correlated with Western Hemisphere hydroclimate.

    PubMed

    Thirumalai, Kaustubh; Quinn, Terrence M; Okumura, Yuko; Richey, Julie N; Partin, Judson W; Poore, Richard Z; Moreno-Chamarro, Eduardo

    2018-01-26

    Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.

  18. Paracoccidioidomycosis in Colombia: an ecological study.

    PubMed Central

    Calle, D.; Rosero, D. S.; Orozco, L. C.; Camargo, D.; Castañeda, E.; Restrepo, A.

    2001-01-01

    The natural habitat of Paracoccidioides brasiliensis, agent of paracoccidioidomycosis (PCM), remains unknown. This study is aimed at establishing associations between the ecological variables present in all Colombian municipalities and the incidence of PCM. Records of 940 patients were studied and several ecological variables analysed, as well as their association to amount of patients per total rural population in each municipality, determined through a multivariate analysis. All 940 patients came from 216 municipalities (20-3%), out of which, 93 were birthplace and place of long-term residence for 121 patients. The Incidence Rate Ratio (IRR) was determined for these 93 municipalities. The following variables fitted the model: altitude from 1,000 to 1,499 metres above sea level (IRR = 6.37), rainfall from 2000 to 2999 mm (IRR = 2.15), presence of humid forests (Holdridge) (IRR = 1.79) and coffee (IRR = 1.95), tobacco (IRR = 3.59) crops. These results indicate that these municipalities constitute reservareas for P. brasiliensis (Borelli). PMID:11349982

  19. Pronounced centennial-scale Atlantic Ocean climate variability correlated with Western Hemisphere hydroclimate

    USGS Publications Warehouse

    Thirumalai, Kaustubh; Quinn, Terrence M.; Okumura, Yuko; Richey, Julie; Partin, Judson W.; Poore, Richard Z.; Moreno-Chamarro, Eduardo

    2018-01-01

    Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.

  20. Environmental and internal controls of tropical cyclone intensity change

    NASA Astrophysics Data System (ADS)

    Desflots, Melicie

    Tropical cyclone (TC) intensity change is governed by internal dynamics and environmental conditions. This study aims to gain a better understanding of the physical mechanisms responsible for TC intensity changes with a particular focus to those related to the vertical wind shear and the impact of sea spray on the hurricane boundary layer, by using high resolution, full physics numerical simulations. The coupled model consists of three components: the non-hydrostatic, 5th generation Pennsylvania State University-NCAR mesoscale model (MM5), the NOAA/NCEP WAVEWATCH III (WW3) ocean surface wave model, and the WHOI three-dimensional upper ocean circulation model (3DPWP). Sea spray parameterizations (SSP) were developed at NOAA/ESRL, modified by the author and introduced in uncoupled and coupled simulations. The 0.5 km grid resolution MM5 simulation of Hurricane Lili showed a rapid intensification associated with a contracting eyewall. Hurricane Lili weakened in a 5-10 m s-1 vertical wind shear environment. The simulated storm experienced wind shear direction normal to the storm motion, which produced a strong wavenumber one rainfall asymmetry in the downshear-left quadrant of the storm. The increasing vertical wind shear induced a vertical tilt of the vortex with a time lag of 5-6 hours after the wavenumber one rainfall asymmetry was first observed in the model simulation. Other factors controlling intensity and intensity change in tropical cyclones are the air-sea fluxes. Recent studies have shown that the momentum exchange coefficient levels off at high wind speed. However, the behavior of the exchange coefficient for enthalpy flux in high wind and the potential impact of sea spray on it is still uncertain. The current SSP are closely tied to wind speed and overestimate the mediated heat fluxes by sea spray in the hurricane boundary layer. As the sea spray generation depends on wind speed and the variable wave state, a new SSP based on the surface wave energy dissipation (WED) is introduced in the coupled model. In the coupled simulations, the WED is used to quantify the amount of wave breaking related to the generation of spray. The SSP coupled to the waves offers an improvement compared to the wind dependent SSP.

  1. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change.

    PubMed

    van der Pol, T D; van Ierland, E C; Gabbert, S; Weikard, H-P; Hendrix, E M T

    2015-05-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change given a predefined system performance target, for example a flood risk standard. Rainfall variability causes system performance estimates to be volatile. These estimates may be used to recurrently evaluate system performance. This paper presents a model for this setting, and develops a solution method to identify cost-effective investments in stormwater drainage adaptations. Runoff and water levels are simulated with rainfall from stationary rainfall distributions, and time series of annual rainfall maxima are simulated for a climate scenario. Cost-effective investment strategies are determined by dynamic programming. The method is applied to study the choice of volume for a storage basin in a Dutch polder. We find that 'white noise', i.e. trend-free variability of rainfall, might cause earlier re-investment than expected under projected changes in rainfall. The risk of early re-investment may be reduced by increasing initial investment. This can be cost-effective if the investment involves fixed costs. Increasing initial investments, therefore, not only increases water system robustness to structural changes in rainfall, but could also offer insurance against additional costs that would occur if system performance is underestimated and re-investment becomes inevitable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Climate variability and change in the United States: potential impacts on water- and foodborne diseases caused by microbiologic agents.

    PubMed Central

    Rose, J B; Epstein, P R; Lipp, E K; Sherman, B H; Bernard, S M; Patz, J A

    2001-01-01

    Exposure to waterborne and foodborne pathogens can occur via drinking water (associated with fecal contamination), seafood (due to natural microbial hazards, toxins, or wastewater disposal) or fresh produce (irrigated or processed with contaminated water). Weather influences the transport and dissemination of these microbial agents via rainfall and runoff and the survival and/or growth through such factors as temperature. Federal and state laws and regulatory programs protect much of the U.S. population from waterborne disease; however, if climate variability increases, current and future deficiencies in areas such as watershed protection, infrastructure, and storm drainage systems will probably increase the risk of contamination events. Knowledge about transport processes and the fate of microbial pollutants associated with rainfall and snowmelt is key to predicting risks from a change in weather variability. Although recent studies identified links between climate variability and occurrence of microbial agents in water, the relationships need further quantification in the context of other stresses. In the marine environment as well, there are few studies that adequately address the potential health effects of climate variability in combination with other stresses such as overfishing, introduced species, and rise in sea level. Advances in monitoring are necessary to enhance early-warning and prevention capabilities. Application of existing technologies, such as molecular fingerprinting to track contaminant sources or satellite remote sensing to detect coastal algal blooms, could be expanded. This assessment recommends incorporating a range of future scenarios of improvement plans for current deficiencies in the public health infrastructure to achieve more realistic risk assessments. PMID:11359688

  3. Climate variability and change in the United States: potential impacts on water- and foodborne diseases caused by microbiologic agents.

    PubMed

    Rose, J B; Epstein, P R; Lipp, E K; Sherman, B H; Bernard, S M; Patz, J A

    2001-05-01

    Exposure to waterborne and foodborne pathogens can occur via drinking water (associated with fecal contamination), seafood (due to natural microbial hazards, toxins, or wastewater disposal) or fresh produce (irrigated or processed with contaminated water). Weather influences the transport and dissemination of these microbial agents via rainfall and runoff and the survival and/or growth through such factors as temperature. Federal and state laws and regulatory programs protect much of the U.S. population from waterborne disease; however, if climate variability increases, current and future deficiencies in areas such as watershed protection, infrastructure, and storm drainage systems will probably increase the risk of contamination events. Knowledge about transport processes and the fate of microbial pollutants associated with rainfall and snowmelt is key to predicting risks from a change in weather variability. Although recent studies identified links between climate variability and occurrence of microbial agents in water, the relationships need further quantification in the context of other stresses. In the marine environment as well, there are few studies that adequately address the potential health effects of climate variability in combination with other stresses such as overfishing, introduced species, and rise in sea level. Advances in monitoring are necessary to enhance early-warning and prevention capabilities. Application of existing technologies, such as molecular fingerprinting to track contaminant sources or satellite remote sensing to detect coastal algal blooms, could be expanded. This assessment recommends incorporating a range of future scenarios of improvement plans for current deficiencies in the public health infrastructure to achieve more realistic risk assessments.

  4. Role of sea surface temperature anomalies in the tropical Indo-Pacific region in the northeast Asia severe drought in summer 2014: month-to-month perspective

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqing; Fan, Ke; Wang, HuiJun

    2017-09-01

    The severe drought over northeast Asia in summer 2014 and the contribution to it by sea surface temperature (SST) anomalies in the tropical Indo-Pacific region were investigated from the month-to-month perspective. The severe drought was accompanied by weak lower-level summer monsoon flow and featured an obvious northward movement during summer. The mid-latitude Asian summer (MAS) pattern and East Asia/Pacific teleconnection (EAP) pattern, induced by the Indian summer monsoon (ISM) and western North Pacific summer monsoon (WNPSM) rainfall anomalies respectively, were two main bridges between the SST anomalies in the tropical Indo-Pacific region and the severe drought. Warming in the Arabian Sea induced reduced rainfall over northeast India and then triggered a negative MAS pattern favoring the severe drought in June 2014. In July 2014, warming in the tropical western North Pacific led to a strong WNPSM and increased rainfall over the Philippine Sea, triggering a positive EAP pattern. The equatorial eastern Pacific and local warming resulted in increased rainfall over the off-equatorial western Pacific and triggered an EAP-like pattern. The EAP pattern and EAP-like pattern contributed to the severe drought in July 2014. A negative Indian Ocean dipole induced an anomalous meridional circulation, and warming in the equatorial eastern Pacific induced an anomalous zonal circulation, in August 2014. The two anomalous cells led to a weak ISM and WNPSM, triggering the negative MAS and EAP patterns responsible for the severe drought. Two possible reasons for the northward movement of the drought were also proposed.

  5. Sympatric occurrence and population dynamics of Scylla spp. in equatorial climate: Effects of rainfall, temperature and lunar phase

    NASA Astrophysics Data System (ADS)

    Fazhan, Hanafiah; Waiho, Khor; Darin Azri, Mohammad Farhan; Al-Hafiz, Ismail; Norfaizza, Wan Ibrahim Wan; Megat, Fadhlul Hazmi; Jasmani, Safiah; Ma, Hongyu; Ikhwanuddin, Mhd

    2017-11-01

    Mud crabs (Scylla spp.) are known to exist sympatrically in the wild. However, information on their population dynamics and the influence of climate parameters and lunar phase, especially along the equatorial region, are limited. Four sampling stations representing three seas (the Strait of Malacca, South China Sea and Sulu Sea) along the equator were selected. Mud crabs were collected using baited traps during spring tides from April 2012 to July 2013. All three Scylla species, S. olivacea, S. tranquebarica and S. paramamosain live in sympatry in the three seas. Scylla olivacea is the most prevalent species in the Strait of Malacca and South China Sea, whereas S. paramamosain dominates the Sulu Sea. The total crab abundance was not affected by rainfall or temperature. The abundance of S. tranquebarica in Strait of Malacca was negatively correlated with temperature and positively correlated with rainfall whereas the abundance of S. paramamosain positively correlated with temperature only at South China Sea. Scylla tranquebarica was the largest in terms of body size and it showed interchanging abundance trends with S. paramamosain. The average body size of S. paramamosain did not differ significantly with that of S. tranquebarica and S. olivacea. This decrease is most likely attributed to overfishing. Significant seasonal fluctuations in mean carapace width were detected in S. tranquebarica and S. paramamosain, but not in S. olivacea. The monthly sex ratio of all three species occasionally fluctuates above the equal sex ratio value. Lunar phase did not affect species abundance, but males and females were significantly heavier during full moon. These findings serve as a baseline of seasonal variation in crab population dynamics that are useful in mud crab fisheries and resource management.

  6. Weekly Cycle of Lightning and Associated Patterns of Rainfall, Cloud, and Aerosols over Korea and Adjacent Oceans during Boreal Summer

    NASA Technical Reports Server (NTRS)

    Kim, Ji-In; Kim, Kyu-Myong

    2011-01-01

    In this study, we analyze the weekly cycle of lightning over Korea and adjacent oceans and associated variations of aerosols, clouds, precipitation, and atmospheric circulations, using aerosol optical depth (AOD) from the NASA Moderate resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR), cloud properties from MODIS, precipitation and storm height from Tropical Rainfall Measuring Mission (TRMM) satellite, and lightning data from the Korean Lightning Detection Network (KLDN) during 9-year from 2002 to 2010. Lightning data was divided into three approximately equal areas, land area of Korea, and two adjacent oceans, Yellow Sea and South Sea. Preliminary results show that the number of lightning increases during the middle of the week over Yellow Sea. AOD data also shows moderately significant midweek increase at about the same time as lightning peaks. These results are consistent with the recent studies showing the invigoration of storms with more ice hydrometeors by aerosols, and subsequently wash out of aerosols by rainfall. Frequency of lightning strokes tend to peak at weekend in land area and over South Sea, indicating local weekly anomalous circulation between land and adjacent ocean. On the other hand, lightning frequency over Yellow Sea appears to have very strong weekly cycle with midweek peak on around Wednesday. It is speculated that the midweek peak of lightning over Yellow Sea was related with aerosol transport from adjacent land area. AOD data also suggests midweek peak over Yellow Sea, however, the weekly cycle of AOD was not statistically significant. Changes in weekly cycle of lightning from pre-monsoon to monsoon season, as well as associated clouds and circulation patterns are also discussed.

  7. Time series analysis of cholera in Matlab, Bangladesh, during 1988-2001.

    PubMed

    Ali, Mohammad; Kim, Deok Ryun; Yunus, Mohammad; Emch, Michael

    2013-03-01

    The study examined the impact of in-situ climatic and marine environmental variability on cholera incidence in an endemic area of Bangladesh and developed a forecasting model for understanding the magnitude of incidence. Diarrhoea surveillance data collected between 1988 and 2001 were obtained from a field research site in Matlab, Bangladesh. Cholera cases were defined as Vibrio cholerae O1 isolated from faecal specimens of patients who sought care at treatment centres serving the Matlab population. Cholera incidence for 168 months was correlated with remotely-sensed sea-surface temperature (SST) and in-situ environmental data, including rainfall and ambient temperature. A seasonal autoregressive integrated moving average (SARIMA) model was used for determining the impact of climatic and environmental variability on cholera incidence and evaluating the ability of the model to forecast the magnitude of cholera. There were 4,157 cholera cases during the study period, with an average of 1.4 cases per 1,000 people. Since monthly cholera cases varied significantly by month, it was necessary to stabilize the variance of cholera incidence by computing the natural logarithm to conduct the analysis. The SARIMA model shows temporal clustering of cholera at one- and 12-month lags. There was a 6% increase in cholera incidence with a minimum temperature increase of one degree celsius in the current month. For increase of SST by one degree celsius, there was a 25% increase in the cholera incidence at currrent month and 18% increase in the cholera incidence at two months. Rainfall did not influenc to cause variation in cholera incidence during the study period. The model forecast the fluctuation of cholera incidence in Matlab reasonably well (Root mean square error, RMSE: 0.108). Thus, the ambient and sea-surface temperature-based model could be used in forecasting cholera outbreaks in Matlab.

  8. Rainfall Prediction of Indian Peninsula: Comparison of Time Series Based Approach and Predictor Based Approach using Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Dash, Y.; Mishra, S. K.; Panigrahi, B. K.

    2017-12-01

    Prediction of northeast/post monsoon rainfall which occur during October, November and December (OND) over Indian peninsula is a challenging task due to the dynamic nature of uncertain chaotic climate. It is imperative to elucidate this issue by examining performance of different machine leaning (ML) approaches. The prime objective of this research is to compare between a) statistical prediction using historical rainfall observations and global atmosphere-ocean predictors like Sea Surface Temperature (SST) and Sea Level Pressure (SLP) and b) empirical prediction based on a time series analysis of past rainfall data without using any other predictors. Initially, ML techniques have been applied on SST and SLP data (1948-2014) obtained from NCEP/NCAR reanalysis monthly mean provided by the NOAA ESRL PSD. Later, this study investigated the applicability of ML methods using OND rainfall time series for 1948-2014 and forecasted up to 2018. The predicted values of aforementioned methods were verified using observed time series data collected from Indian Institute of Tropical Meteorology and the result revealed good performance of ML algorithms with minimal error scores. Thus, it is found that both statistical and empirical methods are useful for long range climatic projections.

  9. Synchronous interhemispheric Holocene climate trends in the tropical Andes

    PubMed Central

    Polissar, Pratigya J.; Abbott, Mark B.; Wolfe, Alexander P.; Vuille, Mathias; Bezada, Maximiliano

    2013-01-01

    Holocene variations of tropical moisture balance have been ascribed to orbitally forced changes in solar insolation. If this model is correct, millennial-scale climate evolution should be antiphased between the northern and southern hemispheres, producing humid intervals in one hemisphere matched to aridity in the other. Here we show that Holocene climate trends were largely synchronous and in the same direction in the northern and southern hemisphere outer-tropical Andes, providing little support for the dominant role of insolation forcing in these regions. Today, sea-surface temperatures in the equatorial Pacific Ocean modulate rainfall variability in the outer tropical Andes of both hemispheres, and we suggest that this mechanism was pervasive throughout the Holocene. Our findings imply that oceanic forcing plays a larger role in regional South American climate than previously suspected, and that Pacific sea-surface temperatures have the capacity to induce abrupt and sustained shifts in Andean climate. PMID:23959896

  10. Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model

    USGS Publications Warehouse

    Swain, Eric; Stefanova, Lydia; Smith, Thomas

    2014-01-01

    Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.

  11. Spatial structure of monthly rainfall measurements average over 25 years and trends of the hourly variability of a current rainy day in Rwanda.

    NASA Astrophysics Data System (ADS)

    Nduwayezu, Emmanuel; Kanevski, Mikhail; Jaboyedoff, Michel

    2013-04-01

    Climate plays a vital role in a wide range of socio-economic activities of most nations particularly of developing countries. Climate (rainfall) plays a central role in agriculture which is the main stay of the Rwandan economy and community livelihood and activities. The majority of the Rwandan population (81,1% in 2010) relies on rain fed agriculture for their livelihoods, and the impacts of variability in climate patterns are already being felt. Climate-related events like heavy rainfall or too little rainfall are becoming more frequent and are impacting on human wellbeing.The torrential rainfall that occurs every year in Rwanda could disturb the circulation for many days, damages houses, infrastructures and causes heavy economic losses and deaths. Four rainfall seasons have been identified, corresponding to the four thermal Earth ones in the south hemisphere: the normal season (summer), the rainy season (autumn), the dry season (winter) and the normo-rainy season (spring). Globally, the spatial rainfall decreasing from West to East, especially in October (spring) and February (summer) suggests an «Atlantic monsoon influence» while the homogeneous spatial rainfall distribution suggests an «Inter-tropical front» mechanism. What is the hourly variability in this mountainous area? Is there any correlation with the identified zones of the monthly average series (from 1965 to 1990 established by the Rwandan meteorological services)? Where could we have hazards with several consecutive rainy days (using forecasted datas from the Norwegian Meteorological Institute)? Spatio-temporal analysis allows for identifying and explaining large-scale anomalies which are useful for understanding hydrological characteristics and subsequently predicting these hydrological events. The objective of our current research (Rainfall variability) is to proceed to an evaluation of the potential rainfall risk by applying advanced geospatial modelling tools in Rwanda: geostatistical predictions and simulations, machine learning algorithm (different types of neural networks) and GIS. Hybrid models - mixing geostatistics and machine learning, will be applied to study spatial non-stationarity of rainfall fields. The research will include rainfalls variability mapping and probabilistic analyses of extreme events. Key words: rainfall variability, Rwanda, extreme event, model, mapping, geostatistics.

  12. Elemental variability in the coralline alga Lithophyllum yemenense as an archive of past climate in the Gulf of Aden (NW Indian Ocean).

    PubMed

    Caragnano, Annalisa; Basso, Daniela; Storz, David; Jacob, Dorrit E; Ragazzola, Federica; Benzoni, Francesca; Dutrieux, Eric

    2017-04-01

    This study presents the first algal thallus (skeleton) archive of Asian monsoon strength and Red Sea influence in the Gulf of Aden. Mg/Ca, Li/Ca, and Ba/Ca were measured in Lithophyllum yemenense from Balhaf (Gulf of Aden) using laser ablation inductively coupled plasma mass spectrometry, and Mg/Ca ratio oscillation was used to reconstruct the chronology (34 y). Oscillations of element rates corresponding to the algal growth between 1974 and 2008 were compared with recorded climate and oceanographic variability. During this period, sea surface temperatures (SST) in Balhaf recorded a warming trend of 0.55°C, corresponding to an increase in Mg and Li content in the algal thallus of 2.1 mol-% and 1.87 μmol-%, respectively. Lithophyllum yemenense recorded decadal SST variability by Li/Ca, and the influence of the Pacific El-Niño Southern Oscillation on the NW Indian Ocean climate system by Ba/Ca. Additionally, algal Mg/Ca, Li/Ca, and Ba/Ca showed strong and significant correlations with All Indian Rainfall in the decadal range indicating that these proxies can be useful for tracking variability in the Indian monsoon system, possibly due to changes of the surface wind system, with deep water upwelling in summer, and a distinct seasonality. © 2017 Phycological Society of America.

  13. Daily Rainfall Simulation Using Climate Variables and Nonhomogeneous Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Jung, J.; Kim, H. S.; Joo, H. J.; Han, D.

    2017-12-01

    Markov chain is an easy method to handle when we compare it with other ones for the rainfall simulation. However, it also has limitations in reflecting seasonal variability of rainfall or change on rainfall patterns caused by climate change. This study applied a Nonhomogeneous Hidden Markov Model(NHMM) to consider these problems. The NHMM compared with a Hidden Markov Model(HMM) for the evaluation of a goodness of the model. First, we chose Gum river basin in Korea to apply the models and collected daily rainfall data from the stations. Also, the climate variables of geopotential height, temperature, zonal wind, and meridional wind date were collected from NCEP/NCAR reanalysis data to consider external factors affecting the rainfall event. We conducted a correlation analysis between rainfall and climate variables then developed a linear regression equation using the climate variables which have high correlation with rainfall. The monthly rainfall was obtained by the regression equation and it became input data of NHMM. Finally, the daily rainfall by NHMM was simulated and we evaluated the goodness of fit and prediction capability of NHMM by comparing with those of HMM. As a result of simulation by HMM, the correlation coefficient and root mean square error of daily/monthly rainfall were 0.2076 and 10.8243/131.1304mm each. In case of NHMM, the correlation coefficient and root mean square error of daily/monthly rainfall were 0.6652 and 10.5112/100.9865mm each. We could verify that the error of daily and monthly rainfall simulated by NHMM was improved by 2.89% and 22.99% compared with HMM. Therefore, it is expected that the results of the study could provide more accurate data for hydrologic analysis. Acknowledgements This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(2017R1A2B3005695)

  14. Validation of satellite daily rainfall estimates in complex terrain of Bali Island, Indonesia

    NASA Astrophysics Data System (ADS)

    Rahmawati, Novi; Lubczynski, Maciek W.

    2017-11-01

    Satellite rainfall products have different performances in different geographic regions under different physical and climatological conditions. In this study, the objective was to select the most reliable and accurate satellite rainfall products for specific, environmental conditions of Bali Island. The performances of four spatio-temporal satellite rainfall products, i.e., CMORPH25, CMORPH8, TRMM, and PERSIANN, were evaluated at the island, zonation (applying elevation and climatology as constraints), and pixel scales, using (i) descriptive statistics and (ii) categorical statistics, including bias decomposition. The results showed that all the satellite products had low accuracy because of spatial scale effect, daily resolution and the island complexity. That accuracy was relatively lower in (i) dry seasons and dry climatic zones than in wet seasons and wet climatic zones; (ii) pixels jointly covered by sea and mountainous land than in pixels covered by land or by sea only; and (iii) topographically diverse than uniform terrains. CMORPH25, CMORPH8, and TRMM underestimated and PERSIANN overestimated rainfall when comparing them to gauged rain. The CMORPH25 had relatively the best performance and the PERSIANN had the worst performance in the Bali Island. The CMORPH25 had the lowest statistical errors, the lowest miss, and the highest hit rainfall events; it also had the lowest miss rainfall bias and was relatively the most accurate in detecting, frequent in Bali, ≤ 20 mm day-1 rain events. Lastly, the CMORPH25 coarse grid better represented rainfall events from coastal to inlands areas than other satellite products, including finer grid CMORPH8.

  15. Modelling rainfall amounts using mixed-gamma model for Kuantan district

    NASA Astrophysics Data System (ADS)

    Zakaria, Roslinazairimah; Moslim, Nor Hafizah

    2017-05-01

    An efficient design of flood mitigation and construction of crop growth models depend upon good understanding of the rainfall process and characteristics. Gamma distribution is usually used to model nonzero rainfall amounts. In this study, the mixed-gamma model is applied to accommodate both zero and nonzero rainfall amounts. The mixed-gamma model presented is for the independent case. The formulae of mean and variance are derived for the sum of two and three independent mixed-gamma variables, respectively. Firstly, the gamma distribution is used to model the nonzero rainfall amounts and the parameters of the distribution (shape and scale) are estimated using the maximum likelihood estimation method. Then, the mixed-gamma model is defined for both zero and nonzero rainfall amounts simultaneously. The formulae of mean and variance for the sum of two and three independent mixed-gamma variables derived are tested using the monthly rainfall amounts from rainfall stations within Kuantan district in Pahang Malaysia. Based on the Kolmogorov-Smirnov goodness of fit test, the results demonstrate that the descriptive statistics of the observed sum of rainfall amounts is not significantly different at 5% significance level from the generated sum of independent mixed-gamma variables. The methodology and formulae demonstrated can be applied to find the sum of more than three independent mixed-gamma variables.

  16. NASA Applied Sciences' DEVELOP National Program: Summer 2010 Florida Agriculture

    NASA Technical Reports Server (NTRS)

    Cooley, Zachary C.; Billiot, Amanda; Lee, Lucas; McKee, Jake

    2010-01-01

    The main agricultural areas in South Florida are located within the fertile land surrounding Lake Okeechobee. The Atlantic Watershed monthly rainfall anomalies showed a weak but statistically significant correlation to the Oceanic Nino Index (ONI). No other watershed s anomalies showed significant correlations with ONI or the Southern Oscillation Index (SOI). During La Nina months, less sea breeze days and more disturbed days were found to occur compared to El Nino and neutral months. The increase in disturbed days can likely by attributed to the synoptic pattern during La Nina, which is known to be favorable for tropical systems to follow paths that affect South Florida. Overall, neither sea breeze rainfall patterns nor total rainfall patterns in South Florida s main agricultural areas were found to be strongly influenced by the El Nino Southern Oscillation during our study time.

  17. Effects of rainfall spatial variability and intermittency on shallow landslide triggering patterns at a catchment scale

    NASA Astrophysics Data System (ADS)

    von Ruette, J.; Lehmann, P.; Or, D.

    2014-10-01

    The occurrence of shallow landslides is often associated with intense and prolonged rainfall events, where infiltrating water reduces soil strength and may lead to abrupt mass release. Despite general understanding of the role of rainfall water in slope stability, the prediction of rainfall-induced landslides remains a challenge due to natural heterogeneity that affect hydrologic loading patterns and the largely unobservable internal progressive failures. An often overlooked and potentially important factor is the role of rainfall variability in space and time on landslide triggering that is often obscured by coarse information (e.g., hourly radar data at spatial resolution of a few kilometers). To quantify potential effects of rainfall variability on failure dynamics, spatial patterns, landslide numbers and volumes, we employed a physically based "Catchment-scale Hydromechanical Landslide Triggering" (CHLT) model for a study area where a summer storm in 2002 triggered 51 shallow landslides. In numerical experiments based on the CHLT model, we applied the measured rainfall amount of 53 mm in different artificial spatiotemporal rainfall patterns, resulting in between 30 and 100 landslides and total released soil volumes between 3000 and 60,000 m3 for the various scenarios. Results indicate that low intensity rainfall below soil's infiltration capacity resulted in the largest mechanical perturbation. This study illustrates how small-scale rainfall variability that is often overlooked by present operational rainfall data may play a key role in shaping landslide patterns.

  18. Assessment of a climate model to reproduce rainfall variability and extremes over Southern Africa

    NASA Astrophysics Data System (ADS)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2010-01-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is under-estimated (over-estimated) over wet (dry) regions of southern Africa.

  19. An analysis of the relationship between drought events and mangrove changes along the northern coasts of the Pe rsian Gulf and Oman Sea

    NASA Astrophysics Data System (ADS)

    Mafi-Gholami, Davood; Mahmoudi, Beytollah; Zenner, Eric K.

    2017-12-01

    Relating the changes of mangrove forests to spatially explicit reductions in rainfall amounts and increases in drought occurrences is a prerequisite for improving the effectiveness and success of mangrove forest conservation programs. To this end, we investigated the relationship between drought events (quantified using the Standardized Precipitation Index [SPI]) and changes in area and canopy cover of mangrove forests on the northern coast of the Persian Gulf and the Oman Sea using satellite imagery and long-term annual rainfall data over a period of 30 years (1986-2016). Statistical analyses revealed 1998 as the year marking the most significant change-point in the mean annual rainfall values in the catchments and mangroves, after which average SPI values consistently remained at lower levels. In the period of 1998-2016, decreases in the mean annual rainfall and increases in the severity of droughts differed spatially and were greater in the catchments and mangroves on the coasts of the Oman Sea than the coasts of the Persian Gulf. These spatially explicit results were closely mirrored by the mangrove response, with differential in reductions in mangrove areas and canopy cover that corresponded closely with the spatial distribution of drought intensities in the different parts of the coasts, with correlation coefficients ≥0.89 for the different coastal regions.

  20. The evaluation of rainfall influence on combined sewer overflows characteristics: the Berlin case study.

    PubMed

    Sandoval, S; Torres, A; Pawlowsky-Reusing, E; Riechel, M; Caradot, N

    2013-01-01

    The present study aims to explore the relationship between rainfall variables and water quality/quantity characteristics of combined sewer overflows (CSOs), by the use of multivariate statistical methods and online measurements at a principal CSO outlet in Berlin (Germany). Canonical correlation results showed that the maximum and average rainfall intensities are the most influential variables to describe CSO water quantity and pollutant loads whereas the duration of the rainfall event and the rain depth seem to be the most influential variables to describe CSO pollutant concentrations. The analysis of partial least squares (PLS) regression models confirms the findings of the canonical correlation and highlights three main influences of rainfall on CSO characteristics: (i) CSO water quantity characteristics are mainly influenced by the maximal rainfall intensities, (ii) CSO pollutant concentrations were found to be mostly associated with duration of the rainfall and (iii) pollutant loads seemed to be principally influenced by dry weather duration before the rainfall event. The prediction quality of PLS models is rather low (R² < 0.6) but results can be useful to explore qualitatively the influence of rainfall on CSO characteristics.

  1. Interannual Variability of Tropical Rainfall as Seen From TRMM

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.

    2005-01-01

    Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30deg N/S) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Although it is well documented that El Nino-Southern Oscillation (ENSO) events with marked SST changes over the tropical oceans produce significant regional changes in precipitation, water vapor, and radiative fluxes in the tropics, we still cannot yet adequately quantify the associated net integrated changes to water and heat balance over the entire tropical oceanic or land sectors. Resolving this uncertainty is important since precipitation and latent heat release variations over land and ocean sectors are key components of the tropical heat balance in its most aggregated form. Rainfall estimates from the Version 5 Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) averaged over the tropical oceans have not solved this issue and, in fact, show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. In this paper we will focus on findings that uncertainties in microphysical assumptions necessitated by the single-frequency PR measurement pose difficulties for detecting climate-related precipitation signals. Recent work has shown that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series, yet the PR rainfall interannual variability (and attenuation derived predominantly from reflectivity) differs even in sign. We will explore these apparent inconsistencies and examine changes in new TRMM Version 6 retrievals. To place these results in a tropical water balance perspective we also examine interannual variations in evaporation over the tropical oceans made from TRMM and SSM/I (Special Sensor Microwave Imager) measurements of surface winds and humidity. Evaporation estimates from reanalysis and several global model experiments will also be compared to the TRMM findings and evaluated for consistency. The ability to detect regional shifts in freshwater flux over the oceans (equivalently, integrated moisture convergence) and moisture transport will be discussed.

  2. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations.

    PubMed

    McCarthy, Gerard D; Haigh, Ivan D; Hirschi, Joël J-M; Grist, Jeremy P; Smeed, David A

    2015-05-28

    Decadal variability is a notable feature of the Atlantic Ocean and the climate of the regions it influences. Prominently, this is manifested in the Atlantic Multidecadal Oscillation (AMO) in sea surface temperatures. Positive (negative) phases of the AMO coincide with warmer (colder) North Atlantic sea surface temperatures. The AMO is linked with decadal climate fluctuations, such as Indian and Sahel rainfall, European summer precipitation, Atlantic hurricanes and variations in global temperatures. It is widely believed that ocean circulation drives the phase changes of the AMO by controlling ocean heat content. However, there are no direct observations of ocean circulation of sufficient length to support this, leading to questions about whether the AMO is controlled from another source. Here we provide observational evidence of the widely hypothesized link between ocean circulation and the AMO. We take a new approach, using sea level along the east coast of the United States to estimate ocean circulation on decadal timescales. We show that ocean circulation responds to the first mode of Atlantic atmospheric forcing, the North Atlantic Oscillation, through circulation changes between the subtropical and subpolar gyres--the intergyre region. These circulation changes affect the decadal evolution of North Atlantic heat content and, consequently, the phases of the AMO. The Atlantic overturning circulation is declining and the AMO is moving to a negative phase. This may offer a brief respite from the persistent rise of global temperatures, but in the coupled system we describe, there are compensating effects. In this case, the negative AMO is associated with a continued acceleration of sea-level rise along the northeast coast of the United States.

  3. Mesoscale Convective Systems During SCSMEX: Simulations with a Regional Climate Model and a Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Wang, Y.; Qian, J.-H.; Shie, C.-L.; Lau, W. K.-M.; Kakar, R.; Starr, David (Technical Monitor)

    2002-01-01

    The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, ships, wind profilers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convection and circulation changes associated with monsoons over the South China Sea region. SCSMEX also provided precipitation derived from atmospheric budgets and comparison to those obtained from the Tropical Rainfall Measuring Mission (TRMM). In this paper, a regional scale model (with grid size of 20 km) and Goddard Cumulus Ensemble (GCE) model (with 1 km grid size) are used to perform multi-day integration to understand the precipitation processes associated with the summer monsoon over Southeast Asia and southern China. The regional climate model is used to understand the soil-precipitation interaction and feedback associated with a flood event that occurred in and around China's Yantz River during SCSMEX Sensitivity tests on various land surface models, sea surface temperature (SST) variations, and cloud processes are performed to understand the precipitation processes associated with the onset of the monsoon over the S. China Sea during SCSMEX. These tests have indicated that the land surface model has a major impact on the circulation over the S. China Sea. Cloud processes can effect the precipitation pattern while SST variation can effect the precipitation amounts over both land and ocean. The exact location (region) of the flooding can be effected by the soil-rainfall feedback. The GCE-model results captured many observed precipitation characteristics because it used a fine grid size. For example, the model simulated rainfall temporal variation compared quite well to the sounding-estimated rainfall. The results show there are more latent heat fluxes prior to the onset of the monsoon. However, more rainfall was simulated after the onset of the monsoon. This modeling study indicates the latent heat fluxes (or evaporation) have more of an impact on precipitation processes and rainfall in the regional climate model simulations than in the cloud-resolving model simulations. Research is underway to determine if the difference in the grid sizes or the moist processes used in these two models is responsible for the differing influence of surface fluxes an precipitation processes.

  4. High temporal resolution modeling of the impact of rain, tides, and sea level rise on water table flooding in the Arch Creek basin, Miami-Dade County Florida USA.

    PubMed

    Sukop, Michael C; Rogers, Martina; Guannel, Greg; Infanti, Johnna M; Hagemann, Katherine

    2018-03-01

    Modeling of groundwater levels in a portion of the low-lying coastal Arch Creek basin in northern Miami-Dade County in Southeast Florida USA, which is subject to repetitive flooding, reveals that rain-induced short-term water table rises can be viewed as a primary driver of flooding events under current conditions. Areas below 0.9m North American Vertical Datum (NAVD) elevation are particularly vulnerable and areas below 1.5m NAVD are vulnerable to exceptionally large rainfall events. Long-term water table rise is evident in the groundwater data, and the rate appears to be consistent with local rates of sea level rise. Linear extrapolation of long-term observed groundwater levels to 2060 suggest roughly a doubling of the number of days when groundwater levels exceed 0.9m NAVD and a threefold increase in the number of days when levels exceed 1.5m NAVD. Projected sea level rise of 0.61m by 2060 together with increased rainfall lead to a model prediction of frequent groundwater-related flooding in areas<0.9m NAVD. However, current simulations do not consider the range of rainfall events that have led to water table elevations>1.5m NAVD and widespread flooding of the area in the past. Tidal fluctuations in the water table are predicted to be more pronounced within 600m of a tidally influenced water control structure that is hydrodynamically connected to Biscayne Bay. The inland influence of tidal fluctuations appears to increase with increased sea level, but the principal driver of high groundwater levels under the 2060 scenario conditions remains groundwater recharge due to rainfall events. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Retrospective seasonal prediction of summer monsoon rainfall over West Central and Peninsular India in the past 142 years

    NASA Astrophysics Data System (ADS)

    Li, Juan; Wang, Bin; Yang, Young-Min

    2017-04-01

    Prediction of Indian summer (June-September) rainfall on regional scales remains an open issue. The operational predictions of West Central Indian summer rainfall (WCI-R) and Peninsular Indian summer rainfall (PI-R) made by the Indian Meteorological Department (IMD) had no skills during 2004-2012. This motivates the present study aiming at better understanding the predictability sources and physical processes governing summer rainfall variability over these two regions. Analysis of 133 year data reveal that although the lower boundary forcing that associated with enhanced WCI-R and PI-R featured a similar developing La-Nina and "east high west low" sea-level pressure (SLP) dipole pattern across the Indo-Pacific, the anomalous high sea surface temperature (SST) over the northern Indian Ocean and weak low pressure over northern Asia tended to enhance PI-R but reduce WCI-R. Based on our understanding of physical linkages with the predictands, we selected four and two causative predictors for predictions of the WCI-R and PI-R, respectively. The intensified summer WCI-R is preceded by (a) Indian Ocean zonal dipole-like SST tendency (west-warming and east-cooling), (b) tropical Pacific zonal dipole SST tendency (west-warming and east-cooling), (c) central Pacific meridional dipole SST tendency (north-cooling and south-warming), and (d) decreasing SLP tendency over northern Asia in the previous season. The enhanced PI-R was lead by the central-eastern Pacific cooling and 2-m temperature cooling tendency east of Lake Balkhash in the previous seasons. These causative processes linking the predictors and WCI-R and PI-R are supported by ensemble numerical experiments using a coupled climate model. For the period of 1871-2012, the physics-based empirical (P-E) prediction models built on these predictors result in cross-validated forecast temporal correlation coefficient skills of 0.55 and 0.47 for WCI-R and PI-R, respectively. The independent forecast skill is significantly higher than the skill of operational seasonal forecast made by the IMD for the period of 2004-2012. These prediction models offer a tool for seasonal prediction and their retrospective forecast skills provide an estimation of the lower bound of the predictability for WCI-R and PI-R.

  6. Comparison of Two Stochastic Daily Rainfall Models and their Ability to Preserve Multi-year Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Kamal Chowdhury, AFM; Lockart, Natalie; Willgoose, Garry; Kuczera, George; Kiem, Anthony; Parana Manage, Nadeeka

    2016-04-01

    Stochastic simulation of rainfall is often required in the simulation of streamflow and reservoir levels for water security assessment. As reservoir water levels generally vary on monthly to multi-year timescales, it is important that these rainfall series accurately simulate the multi-year variability. However, the underestimation of multi-year variability is a well-known issue in daily rainfall simulation. Focusing on this issue, we developed a hierarchical Markov Chain (MC) model in a traditional two-part MC-Gamma Distribution modelling structure, but with a new parameterization technique. We used two parameters of first-order MC process (transition probabilities of wet-to-wet and dry-to-dry days) to simulate the wet and dry days, and two parameters of Gamma distribution (mean and standard deviation of wet day rainfall) to simulate wet day rainfall depths. We found that use of deterministic Gamma parameter values results in underestimation of multi-year variability of rainfall depths. Therefore, we calculated the Gamma parameters for each month of each year from the observed data. Then, for each month, we fitted a multi-variate normal distribution to the calculated Gamma parameter values. In the model, we stochastically sampled these two Gamma parameters from the multi-variate normal distribution for each month of each year and used them to generate rainfall depth in wet days using the Gamma distribution. In another study, Mehrotra and Sharma (2007) proposed a semi-parametric Markov model. They also used a first-order MC process for rainfall occurrence simulation. But, the MC parameters were modified by using an additional factor to incorporate the multi-year variability. Generally, the additional factor is analytically derived from the rainfall over a pre-specified past periods (e.g. last 30, 180, or 360 days). They used a non-parametric kernel density process to simulate the wet day rainfall depths. In this study, we have compared the performance of our hierarchical MC model with the semi-parametric model in preserving rainfall variability in daily, monthly, and multi-year scales. To calibrate the parameters of both models and assess their ability to preserve observed statistics, we have used ground based data from 15 raingauge stations around Australia, which consist a wide range of climate zones including coastal, monsoonal, and arid climate characteristics. In preliminary results, both models show comparative performances in preserving the multi-year variability of rainfall depth and occurrence. However, the semi-parametric model shows a tendency of overestimating the mean rainfall depth, while our model shows a tendency of overestimating the number of wet days. We will discuss further the relative merits of the both models for hydrology simulation in the presentation.

  7. Vegetation response to rainfall seasonality and interannual variability in tropical dry forests

    NASA Astrophysics Data System (ADS)

    Feng, X.; Silva Souza, R. M.; Souza, E.; Antonino, A.; Montenegro, S.; Porporato, A. M.

    2015-12-01

    We analyzed the response of tropical dry forests to seasonal and interannual rainfall variability, focusing on the caatinga biome in semi-arid in Northeast Brazil. We selected four sites across a gradient of rainfall amount and seasonality and analyzed daily rainfall and biweekly Normalized Difference Vegetation Index (NDVI) in the period 2000-2014. The seasonal and interannual rainfall statistics were characterized using recently developed metrics describing duration, location, and intensity of wet season and compared them with those of NDVI time series and modelled soil moisture. A model of NDVI was also developed and forced by different rainfall scenarios (combination amount of rainfall and duration of wet season). The results show that the caatinga tends to have a more stable response characterized by longer and less variable growing seasons (of duration 3.1±0.1 months) compared to the rainfall wet seasons (2.0±0.5 months). Even for more extreme rainfall conditions, the ecosystem shows very little sensitivity to duration of wet season in relation to the amount of rainfall, however the duration of wet season is most evident for wetter sites. This ability of the ecosystem in buffering the interannual variability of rainfall is corroborated by the stability of the centroid location of the growing season compared to the wet season for all sites. The maximal biomass production was observed at intermediate levels of seasonality, suggesting a possible interesting trade-off in the effects of intensity (i.e., amount) and duration of the wet season on vegetation growth.

  8. Submesoscale features and their interaction with fronts and internal tides in a high-resolution coupled atmosphere-ocean-wave model of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Jensen, Tommy G.; Shulman, Igor; Wijesekera, Hemantha W.; Anderson, Stephanie; Ladner, Sherwin

    2018-03-01

    Large freshwater fluxes into the Bay of Bengal by rainfall and river discharges result in strong salinity fronts in the bay. In this study, a high-resolution coupled atmosphere-ocean-wave model with comprehensive physics is used to model the weather, ocean circulation, and wave field in the Bay of Bengal. Our objective is to explore the submesoscale activity that occurs in a realistic coupled model that resolves mesoscales and allows part of the submesoscale field. Horizontal resolution in the atmosphere varies from 2 to 6 km and is 13 km for surface waves, while the ocean model is submesoscale permitting with resolutions as high as 1.5 km and a vertical resolution of 0.5 m in the upper 10 m. In this paper, three different cases of oceanic submesoscale features are discussed. In the first case, heavy rainfall and intense downdrafts produced by atmospheric convection are found to force submesoscale currents, temperature, and salinity anomalies in the oceanic mixed layer and impact the mesoscale flow. In a second case, strong solitary-like waves are generated by semidiurnal tides in the Andaman Sea and interact with mesoscale flows and fronts and affect submesoscale features generated along fronts. A third source of submesoscale variability is found further north in the Bay of Bengal where river outflows help maintain strong salinity gradients throughout the year. For that case, a comparison with satellite observations of sea surface height anomalies, sea surface temperature, and chlorophyll shows that the model captures the observed mesoscale eddy features of the flow field, but in addition, submesoscale upwelling and downwelling patterns associated with ageostrophic secondary circulations along density fronts are also captured by the model.

  9. Air pollution, greenhouse gases and climate change : global and regional perspectives

    DOT National Transportation Integrated Search

    2009-01-01

    Greenhouse gases (GHGs) warm the surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. What is less recognized than problems with GHGs, however, is a comparably major g...

  10. Future Changes to ENSO Temperature and Precipitation Teleconnections Under Warming

    NASA Astrophysics Data System (ADS)

    Perry, S.; McGregor, S.; Sen Gupta, A.; England, M. H.

    2016-12-01

    As the dominant mode of interannual climate variability, the El Niño-Southern Oscillation (ENSO) modulates temperature and rainfall globally, additionally contributing to weather extremes. Anthropogenic climate change has the potential to alter the strength and frequency of ENSO and may also alter ENSO-driven atmospheric teleconnections, affecting ecosystems and human activity in regions far removed from the tropical Pacific. State-of-art climate models exhibit considerable disagreement in projections of future changes in ENSO sea surface temperature variability. Despite this uncertainty, recent model studies suggest that the precipitation response to ENSO will be enhanced in the tropical Pacific under future warming, and as such the societal impacts of ENSO will increase. Here we use temperature and precipitation data from an ensemble of 41 CMIP5 models to show where ENSO teleconnections are being enhanced and dampened in a high-emission future scenario (RCP8.5) focusing on the changes that are occurring over land areas globally. Although there is some spread between the model projections, robust changes with strong ensemble agreement are found in certain locations, including amplification of teleconnections in southeast Australia, South America and the Maritime Continent. Our results suggest that in these regions future ENSO events will lead to more extreme temperature and rainfall responses.

  11. Relationships between atmospheric circulation indices and rainfall in Northern Algeria and comparison of observed and RCM-generated rainfall

    NASA Astrophysics Data System (ADS)

    Taibi, S.; Meddi, M.; Mahé, G.; Assani, A.

    2017-01-01

    This work aims, as a first step, to analyze rainfall variability in Northern Algeria, in particular extreme events, during the period from 1940 to 2010. Analysis of annual rainfall shows that stations in the northwest record a significant decrease in rainfall since the 1970s. Frequencies of rainy days for each percentile (5th, 10th, 25th, 50th, 75th, 90th, 95th, and 99th) and each rainfall interval class (1-5, 5-10, 10-20, 20-50, and ≥50 mm) do not show a significant change in the evolution of daily rainfall. The Tenes station is the only one to show a significant decrease in the frequency of rainy days up to the 75th percentile and for the 10-20-mm interval class. There is no significant change in the temporal evolution of extreme events in the 90th, 95th, and 99th percentiles. The relationships between rainfall variability and general atmospheric circulation indices for interannual and extreme event variability are moderately influenced by the El Niño-Southern Oscillation and Mediterranean Oscillation. Significant correlations are observed between the Southern Oscillation Index and annual rainfall in the northwestern part of the study area, which is likely linked with the decrease in rainfall in this region. Seasonal rainfall in Northern Algeria is affected by the Mediterranean Oscillation and North Atlantic Oscillation in the west. The ENSEMBLES regional climate models (RCMs) are assessed using the bias method to test their ability to reproduce rainfall variability at different time scales. The Centre National de Recherches Météorologiques (CNRM), Czech Hydrometeorological Institute (CHMI), Eidgenössische Technische Hochschule Zürich (ETHZ), and Forschungszentrum Geesthacht (GKSS) models yield the least biased results.

  12. Impact of Tropical Cyclones on Soil Moisture over East Asia

    NASA Astrophysics Data System (ADS)

    Liess, S.

    2016-12-01

    A simulation of a series of three strong typhoons (Frankie, Gloria, and Herb) during the 1996 typhoon season shows that the Weather Research and Forecasting (WRF) model is representing the general characteristics of each typhoon, including sharp right turns by Gloria and Herb over the Philippine Sea. These sharp right turns can be attributed to tropical easterly waves and they are responsible for landfall over Taiwan, instead of following the general direction toward the Philippines. A second simulation where the typhoon signal is removed before landfall over East Asia shows that both rainfall and soil moisture is increased by up to 30% in coastal regions after landfall, mostly to the north of the landfall region. However, despite the noisier signal in rainfall, significant increases in soil moisture related to the paths of the simulated typhoons occur as far west as western China and Myanmar. Strong winds associated with the typhoons can also increase local evaporation and thus locally reduce soil moisture, especially south of the landfall region. Detailed observations of hydrologic variables such as soil moisture are needed to evaluate these model studies not only over coastal regions but also further inland where typhoon signals are weaker but local moisture availability is still influenced by increased rainfall and stronger winds.

  13. Movement of the saltwater interface in the surficial aquifer system in response to hydrologic stresses and water-management practices, Broward County, Florida

    USGS Publications Warehouse

    Dausman, Alyssa M.; Langevin, Christian D.

    2005-01-01

    A study was conducted to evaluate the relation between water-level fluctuations and saltwater intrusion in Broward County, Florida. The objective was achieved through data collection at selected wells in Broward County and through the development of a variable-density ground-water flow model. The numerical model is representative of many locations in Broward County that contain a well field, control structure, canal, the Intracoastal Waterway, and the Atlantic Ocean. The model was used to simulate short-term movement (from tidal fluctuations to monthly changes) and long-term movement (greater than 10 years) of the saltwater interface resulting from changes in rainfall, well-field withdrawals, sea-level rise, and upstream canal stage. The SEAWAT code, which is a combined version of the computer codes, MODFLOW and MT3D, was used to simulate the complex variable-density flow patterns. Model results indicated that the canal, control structure, and sea level have major effects on ground-water flow. For periods greater than 10 years, the upstream canal stage controls the movement and location of the saltwater interface. If upstream canal stage is decreased by 1 foot (0.3048 meter), the saltwater interface takes 50 years to move inland and stabilize. If the upstream canal stage is then increased by 1 foot (0.3048 meter), the saltwater interface takes 90 years to move seaward and stabilize. If sea level rises about 48 centimeters over the next 100 year as predicted, then inland movement of the saltwater interface may cause well-field contamination. For periods less than 10 years, simulation results indicated that a 3-year drought with increased well-field withdrawals probably will not have long-term effects on the position of the saltwater interface in the Biscayne aquifer. The saltwater interface returns to its original position in less than 10 years. Model results, however, indicated that the interface location in the lower part of the surficial aquifer system takes longer than 10 years to recover from a drought. Additionally, rainfall seems to have the greatest effect on saltwater interface movement in areas some distance from canals, but the upstream canal stage has the greatest effect on the movement of the saltwater interface near canals. Field data indicated that saltwater interface movement includes short-term fluctuations caused by tidal fluctuations and long-term seasonal fluctuations. Statistical analyses of daily-averaged data indicated that the saltwater interface moves in response to pumpage, rainfall, and upstream canal stage. In areas near the canal, the saltwater interface is most affected by canal stage because water-management structures control the stage in the upstream part of the canal and allow movement of the saltwater interface. In areas away from the canal, the saltwater interface is most affected by pumpage and rainfall, depending on the location of well fields. Data analyses also revealed that rainfall changes the vertical flow direction in the Biscayne aquifer. Results from the study indicated that upstream canal stage substantially affects the long-term position of the saltwater interface in the surficial aquifer system. The saltwater interface moves faster inland than seaward because of changes in upstream canal stage. For short-term problems, such as drought, the threat of saltwater intrusion in the Biscayne aquifer does not appear to be severe if the well-field withdrawal is increased; however, this conclusion is based on the assumption that well-field withdrawals will decrease once the drought is over. Sea-level rise may be a potential threat to the water supply in Broward County as the saltwater interface moves inland toward well fields.

  14. Statistical downscaling modeling with quantile regression using lasso to estimate extreme rainfall

    NASA Astrophysics Data System (ADS)

    Santri, Dewi; Wigena, Aji Hamim; Djuraidah, Anik

    2016-02-01

    Rainfall is one of the climatic elements with high diversity and has many negative impacts especially extreme rainfall. Therefore, there are several methods that required to minimize the damage that may occur. So far, Global circulation models (GCM) are the best method to forecast global climate changes include extreme rainfall. Statistical downscaling (SD) is a technique to develop the relationship between GCM output as a global-scale independent variables and rainfall as a local- scale response variable. Using GCM method will have many difficulties when assessed against observations because GCM has high dimension and multicollinearity between the variables. The common method that used to handle this problem is principal components analysis (PCA) and partial least squares regression. The new method that can be used is lasso. Lasso has advantages in simultaneuosly controlling the variance of the fitted coefficients and performing automatic variable selection. Quantile regression is a method that can be used to detect extreme rainfall in dry and wet extreme. Objective of this study is modeling SD using quantile regression with lasso to predict extreme rainfall in Indramayu. The results showed that the estimation of extreme rainfall (extreme wet in January, February and December) in Indramayu could be predicted properly by the model at quantile 90th.

  15. A sensitivity study of the coupled simulation of the Northeast Brazil rainfall variability

    NASA Astrophysics Data System (ADS)

    Misra, Vasubandhu

    2007-06-01

    Two long-term coupled ocean-land-atmosphere simulations with slightly different parameterization of the diagnostic shallow inversion clouds in the atmospheric general circulation model (AGCM) of the Center for Ocean-Land-Atmosphere Studies (COLA) coupled climate model are compared for their annual cycle and interannual variability of the northeast Brazil (NEB) rainfall variability. It is seen that the solar insolation affected by the changes to the shallow inversion clouds results in large scale changes to the gradients of the SST and the surface pressure. The latter in turn modulates the surface convergence and the associated Atlantic ITCZ precipitation and the NEB annual rainfall variability. In contrast, the differences in the NEB interannual rainfall variability between the two coupled simulations is attributed to their different remote ENSO forcing.

  16. Cloud microphysical background for the Israel-4 cloud seeding experiment

    NASA Astrophysics Data System (ADS)

    Freud, Eyal; Koussevitzky, Hagai; Goren, Tom; Rosenfeld, Daniel

    2015-05-01

    The modest amount of rainfall in Israel occurs in winter storms that bring convective clouds from the Mediterranean Sea when the cold post frontal air interacts with its relatively warm surface. These clouds were seeded in the Israel-1 and Israel-2 cloud glaciogenic seeding experiments, which have shown statistically significant positive effect of added rainfall of at least 13% in northern Israel, whereas the Israel-3 experiment showed no added rainfall in the south. This was followed by operational seeding in the north since 1975. The lack of physical evidence for the causes of the positive effects in the north caused a lack of confidence in the statistical results and led to the Israel-4 randomized seeding experiment in northern Israel. This experiment started in the winter of 2013/14. The main difference from the previous experiments is the focus on the orographic clouds in the catchment of the Sea of Galilee. The decision to commence the experiment was partially based on evidence supporting the existence of seeding potential, which is reported here. Aircraft and satellite microphysical and dynamic measurements of the clouds document the critical roles of aerosols, especially sea spray, on cloud microstructure and precipitation forming processes. It was found that the convective clouds over sea and coastal areas are naturally seeded hygroscopically by sea spray and develop precipitation efficiently. The diminution of the large sea spray aerosols farther inland along with the increase in aerosol concentrations causes the clouds to develop precipitation more slowly. The short time available for the precipitation forming processes in super-cooled orographic clouds over the Golan Heights farthest inland represents the best glaciogenic seeding potential.

  17. Possible impacts of the Arctic oscillation on the interdecadal variation of summer monsoon rainfall in East Asia

    NASA Astrophysics Data System (ADS)

    Jianhua, Ju; Junmei, Lü; Jie, Cao; Juzhang, Ren

    2005-01-01

    The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia. The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However, the opposite interdecadal variation was found in the rainfall anomaly in North China and South China. The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean, which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.

  18. Daily variability of rainfall and emergency department visits of acute gastrointestinal illness in North Carolina, 2006-2008

    EPA Science Inventory

    Background & Aims: Projections based on climate models suggest that the frequency of extreme rainfall events will continue to rise over the next several decades. We aim to investigate the temporal relationship between daily variability of rainfall and acute gastrointestinal illne...

  19. Assessing Australian Rainfall Projections in Two Model Resolutions

    NASA Astrophysics Data System (ADS)

    Taschetto, A.; Haarsma, R. D.; Sen Gupta, A.

    2016-02-01

    Australian climate is projected to change with increases in greenhouse gases. The IPCC reports an increase in extreme daily rainfall across the country. At the same time, mean rainfall over southeast Australia is projected to reduce during austral winter, but to increase during austral summer, mainly associated with changes in the surrounding oceans. Climate models agree better on the future reduction of average rainfall over the southern regions of Australia compared to the increase in extreme rainfall events. One of the reasons for this disagreement may be related to climate model limitations in simulating the observed mechanisms associated with the mid-latitude weather systems, in particular due to coarse model resolutions. In this study we investigate how changes in sea surface temperature (SST) affect Australian mean and extreme rainfall under global warming, using a suite of numerical experiments at two model resolutions: about 126km (T159) and 25km (T799). The numerical experiments are performed with the earth system model EC-EARTH. Two 6-member ensembles are produced for the present day conditions and a future scenario. The present day ensemble is forced with the observed daily SST from the NOAA National Climatic Data Center from 2002 to 2006. The future scenario simulation is integrated from 2094 to 2098 using the present day SST field added onto the future SST change created from a 17-member ensemble based on the RCP4.5 scenario. Preliminary results show an increase in extreme rainfall events over Tasmania associated with enhanced convection driven by the Tasman Sea warming. We will further discuss how the projected changes in SST will impact the southern mid-latitude weather systems that ultimately affect Australian rainfall.

  20. Possible rainfall reduction through reduced surface temperatures due to overgrazing

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1975-01-01

    Surface temperature reduction in terrain denuded of vegetation (as by overgrazing) is postulated to decrease air convection, reducing cloudiness and rainfall probability during weak meteorological disturbances. By reducing land-sea daytime temperature differences, the surface temperature reduction decreases daytime circulation of thermally driven local winds. The described desertification mechanism, even when limited to arid regions, high albedo soils, and weak meteorological disturbances, can be an effective rainfall reducing process in many areas including most of the Mediterranean lands.

  1. The Aerosol-Monsoon Climate System of Asia

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated absorbing aerosols (dust and black carbon) may interact with monsoon dynamics to produce feedback effects on the atmospheric water cycle, leading to in accelerated melting of snowpacks over the Himalayas and Tibetan Plateau, and subsequent changes in evolution of the pre-monsoon and peak monsoon rainfall, moisture and wind distributions in South Asia and East Asia.

  2. Cloud-to-ground lightning activity over Greece: Spatio-temporal analysis and impacts

    NASA Astrophysics Data System (ADS)

    Matsangouras, I. T.; Nastos, P. T.; Kapsomenakis, J.

    2016-03-01

    Cloud-to-ground (CG) lightning activity recorded by the Hellenic National Meteorological Service (HNMS) Precision Lightning Network (PLN) is analysed over the wider area of Greece. In addition, the spatial and temporal relationships between TRMM 3B42 (Tropical Rainfall Measuring Mission) datasets and lightning are presented. The analyses concern the period from January 14, 2008 to December 31, 2012. The Laboratory of Climatology and Atmospheric Environment, University of Athens, has established a detailed dataset of lightning impacts over Greece from 1895 to 2013, based on digitized archive editions of newspapers. The mean seasonal variability of CG lightning activity revealed autumn as the most dominant season with 303 LD, while the mean monthly variability of CG indicated October as the most lightning active month and May as the month with a mean of 27 LD. The mean annual spatial distribution of CG lightning per km2, depicted the maximum frequency over Pindus mountain range (> 7 CG/km2). During the autumn season, the northern Ionian Sea experienced a mean frequency of more than 5 CG/km2, compared to the southern Ionian Sea and NW Peloponnesus, where values of more than 7 CG/km2 are depicted. During the summer season, the maximum frequency appeared along Pindus mountain range, around Attica, Thessaly and central Macedonia highlands. The spatial distribution of seasonal correlations between the number of CG flashes/day and gridded (TRMM 3B42) daily rainfall totals for the period 2008-2012 over Greece, indicated that correlations were mainly positive all over the under study area, within all seasons, and especially during summer and autumn. Regarding the lightning impacts in Greece, based on the 1895-2013 study period, more than 343 fatalities and at least 224 injured people have been recorded. The spatial analysis of lightning impacts, showed that the majority of events has been recorded over Greek mainland and only few scattered events have been reported over Ionian and Aegean Seas. The results of the performed research for Greece, during 1895-2013 (2000-2013), indicated that fatalities/injuries caused by lightning, were estimated at 2.9 (2) deaths/1.9 (1.6) injuries per year, respectively.

  3. Meteorological analysis of flash floods in Artvin (NE Turkey) on 24 August 2015

    NASA Astrophysics Data System (ADS)

    Baltaci, Hakki

    2017-07-01

    On 24 August 2015 intense rainfall episodes generated flash floods and landslides on the eastern Black Sea coast of Turkey. As a consequence of the heavy rainstorm activity over Artvin and its surroundings (NE Turkey), 11 people died and economic losses totaled a million dollars. Over the 6 h of the event (from 05:00 to 11:00 UTC), total accumulated rainfall amounts of 136, 64, and 109 mm were measured in the Hopa, Arhavi, and Borçka settlements of Artvin city, respectively. This study comprehensively investigates the meteorological characteristics of those flash floods. In terms of synoptic mechanisms, the cutoff surface low from the summer Asian monsoon settled over the eastern Black Sea. After two days of quasistationary conditions of this cyclone, sea surface temperatures (SSTs) reached 27.5 °C (1.5 °C higher than normal) and low-level moisture convergence developed. In addition, transfer of moisture by warm northerly flows from the Black Sea and relatively cool southerly flows from the land coasts of the Artvin district exacerbated the unstable conditions and thus played a significant role in the development of deep convective cells. Severe rainstorms as well as the slope instability of the region triggered landslides and worsened flood damages in the Artvin area. This study supports conventional weather analysis, satellite images, and forecast model output to alert forecasters to the potential for heavy rainfall.

  4. Spatial and Temporal Variation in the Effects of Climatic Variables on Dugong Calf Production.

    PubMed

    Fuentes, Mariana M P B; Delean, Steven; Grayson, Jillian; Lavender, Sally; Logan, Murray; Marsh, Helene

    2016-01-01

    Knowledge of the relationships between environmental forcing and demographic parameters is important for predicting responses from climatic changes and to manage populations effectively. We explore the relationships between the proportion of sea cows (Dugong dugon) classified as calves and four climatic drivers (rainfall anomaly, Southern Oscillation El Niño Index [SOI], NINO 3.4 sea surface temperature index, and number of tropical cyclones) at a range of spatially distinct locations in Queensland, Australia, a region with relatively high dugong density. Dugong and calf data were obtained from standardized aerial surveys conducted along the study region. A range of lagged versions of each of the focal climatic drivers (1 to 4 years) were included in a global model containing the proportion of calves in each population crossed with each of the lagged versions of the climatic drivers to explore relationships. The relative influence of each predictor was estimated via Gibbs variable selection. The relationships between the proportion of dependent calves and the climatic drivers varied spatially and temporally, with climatic drivers influencing calf counts at sub-regional scales. Thus we recommend that the assessment of and management response to indirect climatic threats on dugongs should also occur at sub-regional scales.

  5. Freshwater exchanges and surface salinity in the Colombian basin, Caribbean Sea.

    PubMed

    Beier, Emilio; Bernal, Gladys; Ruiz-Ochoa, Mauricio; Barton, Eric Desmond

    2017-01-01

    Despite the heavy regional rainfall and considerable discharge of many rivers into the Colombian Basin, there have been few detailed studies about the dilution of Caribbean Surface Water and the variability of salinity in the southwestern Caribbean. An analysis of the precipitation, evaporation and runoff in relation to the climate variability demonstrates that although the salt balance in the Colombian Basin overall is in equilibrium, the area south of 12°N is an important dilution sub-basin. In the southwest of the basin, in the region of the Panama-Colombia Gyre, Caribbean Sea Water is diluted by precipitation and runoff year round, while in the northeast, off La Guajira, its salinity increases from December to May by upwelling. At the interannual scale, continental runoff is related to El Niño Southern Oscillation, and precipitation and evaporation south of 12°N are related to the Caribbean Low Level Jet. During El Niño years the maximum salinification occurs in the dry season (December-February) while in La Niña years the maximum dilution (or freshening), reaching La Guajira Coastal Zone, occurs in the wet season (September-November).

  6. Freshwater exchanges and surface salinity in the Colombian basin, Caribbean Sea

    PubMed Central

    2017-01-01

    Despite the heavy regional rainfall and considerable discharge of many rivers into the Colombian Basin, there have been few detailed studies about the dilution of Caribbean Surface Water and the variability of salinity in the southwestern Caribbean. An analysis of the precipitation, evaporation and runoff in relation to the climate variability demonstrates that although the salt balance in the Colombian Basin overall is in equilibrium, the area south of 12°N is an important dilution sub-basin. In the southwest of the basin, in the region of the Panama-Colombia Gyre, Caribbean Sea Water is diluted by precipitation and runoff year round, while in the northeast, off La Guajira, its salinity increases from December to May by upwelling. At the interannual scale, continental runoff is related to El Niño Southern Oscillation, and precipitation and evaporation south of 12°N are related to the Caribbean Low Level Jet. During El Niño years the maximum salinification occurs in the dry season (December-February) while in La Niña years the maximum dilution (or freshening), reaching La Guajira Coastal Zone, occurs in the wet season (September-November). PMID:28777801

  7. Intraseasonal Variability of the Indian Monsoon as Simulated by a Global Model

    NASA Astrophysics Data System (ADS)

    Joshi, Sneh; Kar, S. C.

    2018-01-01

    This study uses the global forecast system (GFS) model at T126 horizontal resolution to carry out seasonal simulations with prescribed sea-surface temperatures. Main objectives of the study are to evaluate the simulated Indian monsoon variability in intraseasonal timescales. The GFS model has been integrated for 29 monsoon seasons with 15 member ensembles forced with observed sea-surface temperatures (SSTs) and additional 16-member ensemble runs have been carried out using climatological SSTs. Northward propagation of intraseasonal rainfall anomalies over the Indian region from the model simulations has been examined. It is found that the model is unable to simulate the observed moisture pattern when the active zone of convection is over central India. However, the model simulates the observed pattern of specific humidity during the life cycle of northward propagation on day - 10 and day + 10 of maximum convection over central India. The space-time spectral analysis of the simulated equatorial waves shows that the ensemble members have varying amount of power in each band of wavenumbers and frequencies. However, variations among ensemble members are more in the antisymmetric component of westward moving waves and maximum difference in power is seen in the 8-20 day mode among ensemble members.

  8. Variability of rainfall over small areas

    NASA Technical Reports Server (NTRS)

    Runnels, R. C.

    1983-01-01

    A preliminary investigation was made to determine estimates of the number of raingauges needed in order to measure the variability of rainfall in time and space over small areas (approximately 40 sq miles). The literature on rainfall variability was examined and the types of empirical relationships used to relate rainfall variations to meteorological and catchment-area characteristics were considered. Relations between the coefficient of variation and areal-mean rainfall and area have been used by several investigators. These parameters seemed reasonable ones to use in any future study of rainfall variations. From a knowledge of an appropriate coefficient of variation (determined by the above-mentioned relations) the number rain gauges needed for the precise determination of areal-mean rainfall may be calculated by statistical estimation theory. The number gauges needed to measure the coefficient of variation over a 40 sq miles area, with varying degrees of error, was found to range from 264 (10% error, mean precipitation = 0.1 in) to about 2 (100% error, mean precipitation = 0.1 in).

  9. Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: a study using single-forcing climate simulations

    NASA Astrophysics Data System (ADS)

    Rotstayn, L. D.; Jeffrey, S. J.; Collier, M. A.; Dravitzki, S. M.; Hirst, A. C.; Syktus, J. I.; Wong, K. K.

    2012-07-01

    We use a coupled atmosphere-ocean global climate model (CSIRO-Mk3.6) to investigate the drivers of trends in summer rainfall and circulation in the vicinity of northern Australia. As part of the Coupled Model Intercomparison Project Phase 5 (CMIP5), we perform a 10-member 21st century ensemble driven by Representative Concentration Pathway 4.5 (RCP4.5). To investigate the roles of different forcing agents, we also perform multiple 10-member ensembles of historical climate change, which are analysed for the period 1951-2010. The historical runs include ensembles driven by "all forcings" (HIST), all forcings except anthropogenic aerosols (NO_AA) and forcing only from long-lived greenhouse gases (GHGAS). Anthropogenic aerosol-induced effects in a warming climate are calculated from the difference of HIST minus NO_AA. CSIRO-Mk3.6 simulates a strong summer rainfall decrease over north-western Australia (NWA) in RCP4.5, whereas simulated trends in HIST are weakly positive (but insignificant) during 1951-2010. The weak rainfall trends in HIST are due to compensating effects of different forcing agents: there is a significant decrease in GHGAS, offset by an aerosol-induced increase. Observations show a significant increase of summer rainfall over NWA during the last few decades. The large magnitude of the observed NWA rainfall trend is not captured by 440 unforced 60-yr trends calculated from a 500-yr pre-industrial control run, even though the model's decadal variability appears to be realistic. This suggests that the observed trend includes a forced component, despite the fact that the model does not simulate the magnitude of the observed rainfall increase in response to "all forcings" (HIST). We investigate the mechanism of simulated and observed NWA rainfall changes by exploring changes in circulation over the Indo-Pacific region. The key circulation feature associated with the rainfall increase in reanalyses is a lower-tropospheric cyclonic circulation trend off the coast of NWA, which enhances the monsoonal flow. The model shows an aerosol-induced cyclonic circulation trend off the coast of NWA in HIST minus NO_AA, whereas GHGAS shows an anticyclonic circulation trend. This explains why the aerosol-induced effect is an increase of rainfall over NWA, and the greenhouse gas-induced effect is of opposite sign. Possible explanations for the cyclonic (anticyclonic) circulation trend in HIST minus NO_AA (GHGAS) involve changes in the Walker circulation or the local Hadley circulation. In either case, a plausible atmospheric mechanism is that the circulation anomaly is a Rossby wave response to convective heating anomalies south of the Equator. We also discuss the possible role of air-sea interactions, e.g. an increase (decrease) of sea-surface temperatures off the coast of NWA in HIST minus NO_AA (GHGAS). Further research is needed to better understand the mechanisms and the extent to which these are model-dependent. In summary, our results suggest that anthropogenic aerosols may have "masked" greenhouse gas-induced changes in rainfall over NWA and in circulation over the wider Indo-Pacific region. Due to the opposing effects of greenhouse gases and anthropogenic aerosols, future trends may be very different from trends observed over the last few decades.

  10. Effect of spatial variability of storm on the optimal placement of best management practices (BMPs).

    PubMed

    Chang, C L; Chiueh, P T; Lo, S L

    2007-12-01

    It is significant to design best management practices (BMPs) and determine the proper BMPs placement for the purpose that can not only satisfy the water quantity and water quality standard, but also lower the total cost of BMPs. The spatial rainfall variability can have much effect on its relative runoff and non-point source pollution (NPSP). Meantime, the optimal design and placement of BMPs would be different as well. The objective of this study was to discuss the relationship between the spatial variability of rainfall and the optimal BMPs placements. Three synthetic rainfall storms with varied spatial distributions, including uniform rainfall, downstream rainfall and upstream rainfall, were designed. WinVAST model was applied to predict runoff and NPSP. Additionally, detention pond and swale were selected for being structural BMPs. Scatter search was applied to find the optimal BMPs placement. The results show that mostly the total cost of BMPs is higher in downstream rainfall than in upstream rainfall or uniform rainfall. Moreover, the cost of detention pond is much higher than swale. Thus, even though detention pond has larger efficiency for lowering peak flow and pollutant exports, it is not always the determined set in each subbasin.

  11. Climate Change Impact on Rainfall: How will Threaten Wheat Yield?

    NASA Astrophysics Data System (ADS)

    Tafoughalti, K.; El Faleh, E. M.; Moujahid, Y.; Ouargaga, F.

    2018-05-01

    Climate change has a significant impact on the environmental condition of the agricultural region. Meknes has an agrarian economy and wheat production is of paramount importance. As most arable area are under rainfed system, Meknes is one of the sensitive regions to rainfall variability and consequently to climate change. Therefore, the use of changes in rainfall is vital for detecting the influence of climate system on agricultural productivity. This article identifies rainfall temporal variability and its impact on wheat yields. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model. The analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that wheat yields are strongly correlated with rainfall of the period January to March. This investigation concluded that climate change is altering wheat yield and it is crucial to adept the necessary adaptation to challenge the risk.

  12. Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate, and sea-level

    USGS Publications Warehouse

    Mckee, Karen L.; Rogers, Kerrylee; Saintilan, Neil; Middleton, Beth A.

    2012-01-01

    Coastal salt marsh and mangrove ecosystems are particularly vulnerable to changes in atmospheric CO2 concentrations and associated climate and climate-induced changes. We provide a review of the literature detailing theoretical predictions and observed responses of coastal wetlands to a range of climate change stressors, including CO2, temperature, rainfall, and sea-level rise. This review incorporates a discussion of key processes controlling responses in different settings and thresholds of resilience derived from experimental and observational studies. We specifically consider the potential and observed effects on salt marsh and mangrove vegetation of changes in (1) elevated [CO2] on physiology, growth, and distribution; (2) temperature on distribution and diversity; (3) rainfall and salinity regimes on growth and competitive interactions; and (4) sea level on geomorphological, hydrological, and biological processes.

  13. Optimal traits of plant hydraulic capacitance as an adaptation to hydroclimatic variability

    NASA Astrophysics Data System (ADS)

    Hartzell, S. R.; Bartlett, M. S., Jr.; Porporato, A. M.

    2016-12-01

    Hydraulic capacitance allows plants to uptake and store water when it is abundant. This stored water is utilized during periods of water stress, decreasing tissue damage and increasing carbon assimilation. By providing a more consistent and readily accessible water supply, it buffers water stress variability across daily and seasonal timescales. The rate of plant water storage and withdrawal varies widely between plant species and is principally governed by several plant hydraulic parameters, principally the hydraulic capacitance, the total water storage capacity, and the conductance between xylem and water storage tissue. The timescale of the plant response to changes in environmental conditions may be related to the timescale of relevant environmental variability. For example, the Baobab tree (Adansonia), which grows in an environment with very strong seasonal rainfall variability, has a relatively long timescale of hydraulic response, while an evergreen tree such as Pinus taeda, which mainly contends with daily and inter-rainfall moisture variability, has a much shorter timescale of hydraulic response. Here a model of hydraulic capacitance is coupled to a resistance model of soil-plant-atmosphere continuum. We force this model with stochastic rainfall and examine plant responses to moisture variability at various timescales. Optimal plant hydraulic properties are examined as a function of mean soil moisture (daily variability), mean period between rainfall events (inter-rainfall variability), and seasonal rainfall variability, and the relative importance of each type of variability in shaping plant water use strategies is assessed. Results are compared to typical hydraulic parameters of plants growing under specific environmental conditions. Values of hydraulic traits which optimize carbon assimilation and water use efficiency are found; these values are dependent on mean environmental conditions as well as the timescale of environmental variability.

  14. Indian Ocean Dipolelike Variability in the CSIRO Mark 3 Coupled Climate Model.

    NASA Astrophysics Data System (ADS)

    Cai, Wenju; Hendon, Harry H.; Meyers, Gary

    2005-05-01

    Coupled ocean-atmosphere variability in the tropical Indian Ocean is explored with a multicentury integration of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Mark 3 climate model, which runs without flux adjustment. Despite the presence of some common deficiencies in this type of coupled model, zonal dipolelike variability is produced. During July through November, the dominant mode of variability of sea surface temperature resembles the observed zonal dipole and has out-of-phase rainfall variations across the Indian Ocean basin, which are as large as those associated with the model El Niño-Southern Oscillation (ENSO). In the positive dipole phase, cold SST anomaly and suppressed rainfall south of the equator on the Sumatra-Java coast drives an anticyclonic circulation anomaly that is consistent with the steady response (Gill model) to a heat sink displaced south of the equator. The northwest-southeast tilting Sumatra-Java coast results in cold sea surface temperature (SST) centered south of the equator, which forces anticylonic winds that are southeasterly along the coast, which thus produces local upwelling, cool SSTs, and promotes more anticylonic winds; on the equator, the easterlies raise the thermocline to the east via upwelling Kelvin waves and deepen the off-equatorial thermocline to the west via off-equatorial downwelling Rossby waves. The model dipole mode exhibits little contemporaneous relationship with the model ENSO; however, this does not imply that it is independent of ENSO. The model dipole often (but not always) develops in the year following El Niño. It is triggered by an unrealistic transmission of the model's ENSO discharge phase through the Indonesian passages. In the model, the ENSO discharge Rossby waves arrive at the Sumatra-Java coast some 6 to 9 months after an El Niño peaks, causing the majority of model dipole events to peak in the year after an ENSO warm event. In the observed ENSO discharge, Rossby waves arrive at the Australian northwest coast. Thus the model Indian Ocean dipolelike variability is triggered by an unrealistic mechanism. The result highlights the importance of properly representing the transmission of Pacific Rossby waves and Indonesian throughflow in the complex topography of the Indonesian region in coupled climate models.

  15. Errors and uncertainties in regional climate simulations of rainfall variability over Tunisia: a multi-model and multi-member approach

    NASA Astrophysics Data System (ADS)

    Fathalli, Bilel; Pohl, Benjamin; Castel, Thierry; Safi, Mohamed Jomâa

    2018-02-01

    Temporal and spatial variability of rainfall over Tunisia (at 12 km spatial resolution) is analyzed in a multi-year (1992-2011) ten-member ensemble simulation performed using the WRF model, and a sample of regional climate hindcast simulations from Euro-CORDEX. RCM errors and skills are evaluated against a dense network of local rain gauges. Uncertainties arising, on the one hand, from the different model configurations and, on the other hand, from internal variability are furthermore quantified and ranked at different timescales using simple spread metrics. Overall, the WRF simulation shows good skill for simulating spatial patterns of rainfall amounts over Tunisia, marked by strong altitudinal and latitudinal gradients, as well as the rainfall interannual variability, in spite of systematic errors. Mean rainfall biases are wet in both DJF and JJA seasons for the WRF ensemble, while they are dry in winter and wet in summer for most of the used Euro-CORDEX models. The sign of mean annual rainfall biases over Tunisia can also change from one member of the WRF ensemble to another. Skills in regionalizing precipitation over Tunisia are season dependent, with better correlations and weaker biases in winter. Larger inter-member spreads are observed in summer, likely because of (1) an attenuated large-scale control on Mediterranean and Tunisian climate, and (2) a larger contribution of local convective rainfall to the seasonal amounts. Inter-model uncertainties are globally stronger than those attributed to model's internal variability. However, inter-member spreads can be of the same magnitude in summer, emphasizing the important stochastic nature of the summertime rainfall variability over Tunisia.

  16. The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons

    NASA Astrophysics Data System (ADS)

    Enzel, Yehouda; Kushnir, Yochanan; Quade, Jay

    2015-06-01

    A dramatic increase in regional summer rainfall amount has been proposed for the Arabian Peninsula during the middle Holocene (ca. 9-5 ka BP) based on lacustrine sediments, inferred lake levels, speleothems, and pollen. This rainfall increase is considered primarily the result of an intensified Indian summer monsoon as part of the insolation-driven, northward shift of the boreal summer position of the Inter-Tropical Convergence Zone (ITCZ) to over the deserts of North Africa, Arabia, and northwest India. We examine the basis for the proposed drastic climate change in Arabia and the shifts in the summer monsoon rains, by reviewing paleohydrologic lacustrine records from Arabia. We evaluate and reinterpret individual lake-basin status regarding their lacustrine-like deposits, physiography, shorelines, fauna and flora, and conclude that these basins were not occupied by lakes, but by shallow marsh environments. Rainfall increase required to support such restricted wetlands is much smaller than needed to form and maintain highly evaporating lakes and we suggest that rainfall changes occurred primarily at the elevated edges of southwestern, southern, and southeastern Arabian Peninsula. These relatively small changes in rainfall amounts and local are also supported by pollen and speleothems from the region. The changes do not require a northward shift of the Northern Hemisphere summer ITCZ and intensification of the Indian monsoon rainfall. We propose that (a) latitudinal and slight inland expansion of the North African summer monsoon rains across the Red Sea, and (b) uplifted moist air of this monsoon to southwestern Arabia highlands, rather than rains associated with intensification of Indian summer monsoon, as proposed before, increased rains in that region; these African monsoon rains produced the modest paleo-wetlands in downstream hyperarid basins. Furthermore, we postulate that as in present-day, the ITCZ in the Indian Ocean remained at or near the equator all year round, and the Indian summer monsoon, through dynamically induced air subsidence, can reduce rather than enhance summer rainfall in the Levant and neighboring deserts, including Arabia. Our summary suggests a widening to the north of the latitudinal range of the rainfall associated with the North African summer monsoon moisture crossing the Red Sea to the east. We discuss other mechanisms that could have potentially contributed to the formation and maintaining of the modest paleo-wetlands.

  17. Sensitivity of Catchment Transit Times to Rainfall Variability Under Present and Future Climates

    NASA Astrophysics Data System (ADS)

    Wilusz, Daniel C.; Harman, Ciaran J.; Ball, William P.

    2017-12-01

    Hydrologists have a relatively good understanding of how rainfall variability shapes the catchment hydrograph, a reflection of the celerity of hydraulic head propagation. Much less is known about the influence of rainfall variability on catchment transit times, a reflection of water velocities that control solute transport. This work uses catchment-scale lumped parameter models to decompose the relationship between rainfall variability and an important metric of transit times, the time-varying fraction of young water (<90 days old) in streams (FYW). A coupled rainfall-runoff model and rank StorAge Selection (rSAS) transit time model were calibrated to extensive hydrometric and environmental tracer data from neighboring headwater catchments in Plynlimon, Wales from 1999 to 2008. At both sites, the mean annual FYW increased more than 13 percentage points from the driest to the wettest year. Yearly mean rainfall explained most between-year variation, but certain signatures of rainfall pattern were also associated with higher FYW including: more clustered storms, more negatively skewed storms, and higher covariance between daily rainfall and discharge. We show that these signatures are symptomatic of an "inverse storage effect" that may be common among watersheds. Looking to the future, changes in rainfall due to projected climate change caused an up to 19 percentage point increase in simulated mean winter FYW and similarly large decreases in the mean summer FYW. Thus, climate change could seasonally alter the ages of water in streams at these sites, with concomitant impacts on water quality.

  18. Variability of rainfall over Lake Kariba catchment area in the Zambezi river basin, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Muchuru, Shepherd; Botai, Joel O.; Botai, Christina M.; Landman, Willem A.; Adeola, Abiodun M.

    2016-04-01

    In this study, average monthly and annual rainfall totals recorded for the period 1970 to 2010 from a network of 13 stations across the Lake Kariba catchment area of the Zambezi river basin were analyzed in order to characterize the spatial-temporal variability of rainfall across the catchment area. In the analysis, the data were subjected to intervention and homogeneity analysis using the Cumulative Summation (CUSUM) technique and step change analysis using rank-sum test. Furthermore, rainfall variability was characterized by trend analysis using the non-parametric Mann-Kendall statistic. Additionally, the rainfall series were decomposed and the spectral characteristics derived using Cross Wavelet Transform (CWT) and Wavelet Coherence (WC) analysis. The advantage of using the wavelet-based parameters is that they vary in time and can therefore be used to quantitatively detect time-scale-dependent correlations and phase shifts between rainfall time series at various localized time-frequency scales. The annual and seasonal rainfall series were homogeneous and demonstrated no apparent significant shifts. According to the inhomogeneity classification, the rainfall series recorded across the Lake Kariba catchment area belonged to category A (useful) and B (doubtful), i.e., there were zero to one and two absolute tests rejecting the null hypothesis (at 5 % significance level), respectively. Lastly, the long-term variability of the rainfall series across the Lake Kariba catchment area exhibited non-significant positive and negative trends with coherent oscillatory modes that are constantly locked in phase in the Morlet wavelet space.

  19. Statistical and dynamical assessment of land-ocean-atmosphere interactions across North Africa

    NASA Astrophysics Data System (ADS)

    Yu, Yan

    North Africa is highly vulnerable to hydrologic variability and extremes, including impacts of climate change. The current understanding of oceanic versus terrestrial drivers of North African droughts and pluvials is largely model-based, with vast disagreement among models in terms of the simulated oceanic impacts and vegetation feedbacks. Regarding oceanic impacts, the relative importance of the tropical Pacific, tropical Indian, and tropical Atlantic Oceans in regulating the North African rainfall variability, as well as the underlying mechanism, remains debated among different modeling studies. Classic theory of land-atmosphere interactions across the Sahel ecotone, largely based on climate modeling experiments, has promoted positive vegetation-rainfall feedbacks associated with a dominant surface albedo mechanism. However, neither the proposed positive vegetation-rainfall feedback with its underlying albedo mechanism, nor its relative importance compared with oceanic drivers, has been convincingly demonstrated up to now using observational data. Here, the multivariate Generalized Equilibrium Feedback Assessment (GEFA) is applied in order to identify the observed oceanic and terrestrial drivers of North African climate and quantify their impacts. The reliability of the statistical GEFA method is first evaluated against dynamical experiments within the Community Earth System Model (CESM). In order to reduce the sampling error caused by short data records, the traditional GEFA approach is refined through stepwise GEFA, in which unimportant forcings are dropped through stepwise selection. In order to evaluate GEFA's reliability in capturing oceanic impacts, the atmospheric response to a sea-surface temperature (SST) forcing across the tropical Pacific, tropical Indian, and tropical Atlantic Ocean is estimated independently through ensembles of dynamical experiments and compared with GEFA-based assessments. Furthermore, GEFA's performance in capturing terrestrial impacts is evaluated through ensembles of fully coupled CESM dynamical experiments, with modified leaf area index (LAI) and soil moisture across the Sahel or West African Monsoon (WAM) region. The atmospheric responses to oceanic and terrestrial forcings are generally consistent between the dynamical experiments and statistical GEFA, confirming GEFA's capability of isolating the individual impacts of oceanic and terrestrial forcings on North African climate. Furthermore, with the incorporation of stepwise selection, GEFA can now provide reliable estimates of the oceanic and terrestrial impacts on the North African climate with the typical length of observational datasets, thereby enhancing the method's applicability. After the successful validation of GEFA, the key observed oceanic and terrestrial drivers of North African climate are identified through the application of GEFA to gridded observations, remote sensing products, and reanalyses. According to GEFA, oceanic drivers dominate over terrestrial drivers in terms of their observed impacts on North African climate in most seasons. Terrestrial impacts are comparable to, or more important than, oceanic impacts on rainfall during the post-monsoon across the Sahel and WAM region, and after the short rain across the Horn of Africa (HOA). The key ocean basins that regulate North African rainfall are typically located in the tropics. While the observed impacts of SST variability across the tropical Pacific and tropical Atlantic Oceans on the Sahel rainfall are largely consistent with previous model-based findings, minimal impacts from tropical Indian Ocean variability on Sahel rainfall are identified in observations, in contrast to previous modeling studies. The current observational analysis verifies model-hypothesized positive vegetation-rainfall feedback across the Sahel and HOA, which is confined to the post-monsoon and post-short rains season, respectively. However, the observed positive vegetation feedback to rainfall in the semi-arid Sahel and HOA is largely due to moisture recycling, rather than the classic albedo mechanism. Future projections of Sahel rainfall remain highly uncertain in terms of both sign and magnitude within phases three and five of the Coupled Model Intercomparison Project (CMIP3 and CMIP5). The GEFA-based observational analyses will provide a benchmark for evaluating climate models, which will facilitate effective process-based model weighting for more reliable projections of regional climate, as well as model development.

  20. SUB-PIXEL RAINFALL VARIABILITY AND THE IMPLICATIONS FOR UNCERTAINTIES IN RADAR RAINFALL ESTIMATES

    EPA Science Inventory

    Radar estimates of rainfall are subject to significant measurement uncertainty. Typically, uncertainties are measured by the discrepancies between real rainfall estimates based on radar reflectivity and point rainfall records of rain gauges. This study investigates how the disc...

  1. The forcing of southwestern Asia teleconnections by low-frequency sea surface temperature variability during boreal winter

    USGS Publications Warehouse

    Hoell, Andrew; Funk, Christopher C.; Mathew Barlow,

    2015-01-01

    Southwestern Asia, defined here as the domain bounded by 20°–40°N and 40°–70°E, which includes the nations of Iraq, Iran, Afghanistan, and Pakistan, is a water-stressed and semiarid region that receives roughly 75% of its annual rainfall during November–April. The November–April climate of southwestern Asia is strongly influenced by tropical Indo-Pacific variability on intraseasonal and interannual time scales, much of which can be attributed to sea surface temperature (SST) variations. The influences of lower-frequency SST variability on southwestern Asia climate during November–April Pacific decadal SST (PDSST) variability and the long-term trend in SST (LTSST) is examined. The U.S. Climate Variability and Predictability Program (CLIVAR) Drought Working Group forced global atmospheric climate models with PDSST and LTSST patterns, identified using empirical orthogonal functions, to show the steady atmospheric response to these modes of decadal to multidecadal SST variability. During November–April, LTSST forces an anticyclone over southwestern Asia, which results in reduced precipitation and increases in surface temperature. The precipitation and tropospheric circulation influences of LTSST are corroborated by independent observed precipitation and circulation datasets during 1901–2004. The decadal variations of southwestern Asia precipitation may be forced by PDSST variability, with two of the three models indicating that the cold phase of PDSST forces an anticyclone and precipitation reductions. However, there are intermodel circulation variations to PDSST that influence subregional precipitation patterns over the Middle East, southwestern Asia, and subtropical Asia. Changes in wintertime temperature and precipitation over southwestern Asia forced by LTSST and PDSST imply important changes to the land surface hydrology during the spring and summer.

  2. Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino

    2015-04-01

    To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a regional level. This is done for an intermediate-sized catchment in Italy, i.e. the Flumendosa catchment, using climate model rainfall and atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com). In doing so, we split the historical rainfall record of mean areal precipitation (MAP) in 15-year calibration and 45-year validation periods, and compare the historical rainfall statistics to those obtained from: a) Q-Q corrected climate model rainfall products, and b) synthetic rainfall series generated by the suggested downscaling scheme. To our knowledge, this is the first time that climate model rainfall and statistically downscaled precipitation are compared to catchment-averaged MAP at a daily resolution. The obtained results are promising, since the proposed downscaling scheme is more accurate and robust in reproducing a number of historical rainfall statistics, independent of the climate model used and the length of the calibration period. This is particularly the case for the yearly rainfall maxima, where direct statistical correction of climate model rainfall outputs shows increased sensitivity to the length of the calibration period and the climate model used. The robustness of the suggested downscaling scheme in modeling rainfall extremes at a daily resolution, is a notable feature that can effectively be used to assess hydrologic risk at a regional level under changing climatic conditions. Acknowledgments The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. CRS4 highly acknowledges the contribution of the Sardinian regional authorities.

  3. Asian Summer Monsoon Rainfall associated with ENSO and its Predictability

    NASA Astrophysics Data System (ADS)

    Shin, C. S.; Huang, B.; Zhu, J.; Marx, L.; Kinter, J. L.; Shukla, J.

    2015-12-01

    The leading modes of the Asian summer monsoon (ASM) rainfall variability and their seasonal predictability are investigated using the CFSv2 hindcasts initialized from multiple ocean analyses over the period of 1979-2008 and observation-based analyses. It is shown that the two leading empirical orthogonal function (EOF) modes of the observed ASM rainfall anomalies, which together account for about 34% of total variance, largely correspond to the ASM responses to the ENSO influences during the summers of the developing and decaying years of a Pacific anomalous event, respectively. These two ASM modes are then designated as the contemporary and delayed ENSO responses, respectively. It is demonstrated that the CFSv2 is capable of predicting these two dominant ASM modes up to the lead of 5 months. More importantly, the predictability of the ASM rainfall are much higher with respect to the delayed ENSO mode than the contemporary one, with the predicted principal component time series of the former maintaining high correlation skill and small ensemble spread with all lead months whereas the latter shows significant degradation in both measures with lead-time. A composite analysis for the ASM rainfall anomalies of all warm ENSO events in this period substantiates the finding that the ASM is more predictable following an ENSO event. The enhanced predictability mainly comes from the evolution of the warm SST anomalies over the Indian Ocean in the spring of the ENSO maturing phases and the persistence of the anomalous high sea surface pressure over the western Pacific in the subsequent summer, which the hindcasts are able to capture reasonably well. The results also show that the ensemble initialization with multiple ocean analyses improves the CFSv2's prediction skill of both ENSO and ASM rainfall. In fact, the skills of the ensemble mean hindcasts initialized from the four different ocean analyses are always equivalent to the best ones initialized from any individual ocean analysis, although the best performer varies with lead-time and starting calendar month.

  4. On the influence of simulated SST warming on rainfall projections in the Indo-Pacific domain: an AGCM study

    NASA Astrophysics Data System (ADS)

    Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.

    2018-02-01

    Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying SST forcing.

  5. Simulation of Tropical Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Bader, J.; Latif, M.

    2002-12-01

    The impact of sea surface temperature (SST) - especially the role of the tropical Atlantic meridional SST gradient and the El Nino-Southern Oscillation - on precipitation is investigated with the atmospheric general circulation model ECHAM4/T42. Ensemble experiments - driven with observed SST - show that Atlantic SST has a significant influence on precipitation over West Africa and northeast Brazil. SST sensitivity experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropical Atlantic caused only significant changes along the Guinea Coast, with a positive anomaly (SSTA) increasing rainfall and a negative SSTA reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, especially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. The influence of SST on precipitation over northeast Brazil (Nordeste) was also investigated. Three experiments were performed in which the climatological SST was enhanced/decreased or decreased/enhanced by one Kelvin in the North/South Atlantic and increased by two Kelvin in the Nino3 ocean area. All experiments caused significant changes over Nordeste, with an enhanced/reduced SST gradient in the Atlantic increasing/reducing rainfall. The response was nearly linear. The main effect of the Atlantic SST gradient was a shift of the ITCZ, caused by trade wind changes. The ''El Nino'' event generates a significant reduction in Nordeste rainfall. A significant positive SLP anomaly occurs in northeast Brazil which may be associated with the descending branch of the Walker circulation. Also a significant positive SLP over the Atlantic from 30S to 10N north occurs. This results in a reduced SLP gradient from the subtropical highs to the equator and a weakening of the trade winds.

  6. The significance of spatial variability of rainfall on streamflow: A synthetic analysis at the Upper Lee catchment, UK

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard

    2017-04-01

    Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.

  7. Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6

    NASA Astrophysics Data System (ADS)

    Martin, Gill M.; Klingaman, Nicholas P.; Moise, Aurel F.

    2017-01-01

    This study analyses tropical rainfall variability (on a range of temporal and spatial scales) in a set of parallel Met Office Unified Model (MetUM) simulations at a range of horizontal resolutions, which are compared with two satellite-derived rainfall datasets. We focus on the shorter scales, i.e. from the native grid and time step of the model through sub-daily to seasonal, since previous studies have paid relatively little attention to sub-daily rainfall variability and how this feeds through to longer scales. We find that the behaviour of the deep convection parametrization in this model on the native grid and time step is largely independent of the grid-box size and time step length over which it operates. There is also little difference in the rainfall variability on larger/longer spatial/temporal scales. Tropical convection in the model on the native grid/time step is spatially and temporally intermittent, producing very large rainfall amounts interspersed with grid boxes/time steps of little or no rain. In contrast, switching off the deep convection parametrization, albeit at an unrealistic resolution for resolving tropical convection, results in very persistent (for limited periods), but very sporadic, rainfall. In both cases, spatial and temporal averaging smoothes out this intermittency. On the ˜ 100 km scale, for oceanic regions, the spectra of 3-hourly and daily mean rainfall in the configurations with parametrized convection agree fairly well with those from satellite-derived rainfall estimates, while at ˜ 10-day timescales the averages are overestimated, indicating a lack of intra-seasonal variability. Over tropical land the results are more varied, but the model often underestimates the daily mean rainfall (partly as a result of a poor diurnal cycle) but still lacks variability on intra-seasonal timescales. Ultimately, such work will shed light on how uncertainties in modelling small-/short-scale processes relate to uncertainty in climate change projections of rainfall distribution and variability, with a view to reducing such uncertainty through improved modelling of small-/short-scale processes.

  8. Rainfall and streamflow from small tree-covered and fern-covered and burned watersheds in Hawaii

    Treesearch

    H. W. Anderson; P. D. Duffy; Teruo Yamamoto

    1966-01-01

    Streamflow from two 30-acre watersheds near Honolulu was studied by using principal components regression analysis. Models using data on monthly, storm, and peak discharges were tested against several variables expressing amount and intensity of rainfall, and against variables expressing antecedent rainfall. Explained variation ranged from 78 to 94 percent. The...

  9. The Influence of ENSO to the Rainfall Variability in North Sumatra Province

    NASA Astrophysics Data System (ADS)

    Irwandi, H.; Pusparini, N.; Ariantono, J. Y.; Kurniawan, R.; Tari, C. A.; Sudrajat, A.

    2018-04-01

    The El Niño Southern Oscillation (ENSO) is a global phenomenon that affects the variability of rainfall in North Sumatra. The influence of ENSO will be different for each region. This review will analyse the influence of ENSO activity on seasonal and annual rainfall variability. In this research, North Sumatra Province will be divided into 4 (four) regions based on topographical conditions, such as: East Coast (EC), East Slope (ES), Mountains (MT), and West Coast (WC). The method used was statistical and descriptive analysis. Data used in this research were rainfall data from 15 stations / climate observation posts which spread in North Sumatera region and also anomaly data of Nino 3.4 region from period 1981-2016. The results showed that the active El Niño had an effect on the decreasing the rainfall during the period of DJF, JJA and SON in East Coast, East Slope, and Mountains with the decreasing of average percentage of annual rainfall up to 7%. On the contrary, the active La Nina had an effect on the addition of rainfall during the period DJF and JJA in the East Coast and Mountains with the increasing of average percentage of annual rainfall up to 6%.

  10. Extreme Monsoon Rainfall Signatures Preserved in the Invasive Terrestrial Gastropod Lissachatina fulica

    NASA Astrophysics Data System (ADS)

    Ghosh, Prosenjit; Rangarajan, Ravi; Thirumalai, Kaustubh; Naggs, Fred

    2017-11-01

    Indian summer monsoon (ISM) rainfall lasts for a period of 4 months with large variations recorded in terms of rainfall intensity during its period between June and September. Proxy reconstructions of past ISM rainfall variability are required due to the paucity of long instrumental records. However, reconstructing subseasonal rainfall is extremely difficult using conventional hydroclimate proxies due to inadequate sample resolution. Here, we demonstrate the utility of the stable oxygen isotope composition of gastropod shells in reconstructing past rainfall on subseasonal timescales. We present a comparative isotopic study on present day rainwater and stable isotope ratios of precipitate found in the incremental growth bands of giant African land snail Lissachatina fulica (Bowdich) from modern day (2009) and in the historical past (1918). Isotopic signatures present in the growth bands allowed for the identification of ISM rainfall variability in terms of its active and dry spells in the modern as well as past gastropod record. Our results demonstrate the utility of gastropod growth band stable isotope ratios in semiquantitative reconstructions of seasonal rainfall patterns. High resolution climate records extracted from gastropod growth band stable isotopes (museum and archived specimens) can expand the scope for understanding past subseasonal-to-seasonal climate variability.

  11. Rainfall erosivity in the Fukushima Prefecture: implications for radiocesium mobilization and migration

    NASA Astrophysics Data System (ADS)

    Laceby, J. Patrick; Chartin, Caroline; Degan, Francesca; Onda, Yuichi; Evrard, Olivier; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    The Fukushima Dai-ichi nuclear power plant (FDNPP) accident in March 2011 led to the fallout of predominantly radiocesium (137Cs and 134Cs) on soils of the Fukushima Prefecture. This radiocesium was primarily fixated to fine soil particles. Subsequently, rainfall and snow melt run-off events result in significant quantities of radiocesium being eroded and transported throughout the coastal catchments and ultimately exported to the Pacific Ocean. Erosion models, such as the Universal Soil Loss Equation (USLE), relate rainfall directly to soil erosion in that an increase in rainfall one month will directly result in a proportional increase in sediment generation. Understanding the rainfall regime of the region is therefore fundamental to modelling and predicting long-term radiocesium export. Here, we analyze rainfall data for ~40 stations within a 100 km radius of the FDNPP. First we present general information on the rainfall regime in the region based on monthly and annual rainfall totals. Second we present general information on rainfall erosivity, the R-factor of the USLE equation and its relationship to the general rainfall data. Third we examine rainfall trends over the last 100 years at several of the rainfall stations to understand temporal trends and whether ~20 years of data is sufficient to calculate the R-factor for USLE models. Fourth we present monthly R-factor maps for the Fukushima coastal catchments impacted by the FDNPP accident. The variability of the rainfall in the region, particularly during the typhoon season, is likely resulting in a similar variability in the transfer and migration of radiocesium throughout the coastal catchments of the Fukushima Prefecture. Characterizing the region's rainfall variability is fundamental to modelling sediment and the concomitant radiocesium migration and transfer throughout these catchments and ultimately to the Pacific Ocean.

  12. Disentangling the role of Natural Variability and Climate Change in the aggravation of Droughts in central Chile

    NASA Astrophysics Data System (ADS)

    Garreaud, R. D.; Boisier, J. P.; Rondanelli, R. F.

    2016-12-01

    Among other climate extreme events, droughts (annual rainfall deficit larger than 25%) have punctuated the hydro-climate history of central Chile (30-40°S) with profoundly negative effects on physical (e.g., water storage depletion), ecological (e.g., increase in forest fires) and human systems (e.g., major distress in rural communities). In this presentation we show that intense but short-lived (1 or 2 years long) droughts are associated with anticyclonic (cyclonic) anomalies over the subtropical south Pacific (Amudsen sea), reduced synoptic-scale variability in that area and weakening of the westerly winds impinging the west coast of South America. These large-scale anomalies often occurs in connection with the cold phase of ENSO (La Niña events). Of particular interest is an uninterrupted rainfall deficit since 2010 to date, referred to as the central Chile mega-drought (MD) in virtue of its unprecedented character in term of duration, spatial extent and coincidence with warm air temperatures. The protracted MD shares some of the climate features of the historical events but for the prevalence of near-neutral ENSO years with the exception of 2010 (La Niña) and 2015 (intense El Niño). Thus, we use a suite of fully-coupled and SST-forced climate simulations to disentangle natural and anthropogenic contributions to current mega drought as well as to shed light in the physical link between global climate change and rainfall deficit in central Chile drought. It turns out that anthropogenic climate change accounts for about a third of the drought as it forces SAM towards its positive polarity. The later enhances a dipole of geopotential height over the South Pacific that is conducive to dry conditions in central Chile.

  13. Projections of on-farm salinity in coastal Bangladesh.

    PubMed

    Clarke, D; Williams, S; Jahiruddin, M; Parks, K; Salehin, M

    2015-06-01

    This paper quantifies the expected impacts of climate change, climate variability and salinity accumulation on food production in coastal Bangladesh during the dry season. This forms part of a concerted series of actions on agriculture and salinity in Bangladesh under the UK funded Ecosystems for Poverty Alleviation programme and the British Council INSPIRE scheme. The work was undertaken by developing simulation models for soil water balances, dry season irrigation requirements and the effectiveness of the monsoon season rainfall at leaching accumulated salts. Simulations were run from 1981 to 2098 using historical climate data and a daily climate data set based on the Met Office Hadley Centre HadRM3P regional climate model. Results show that inter-seasonal and inter-annual variability are key factors that affect the viability of dry season vegetable crop growing. By the end of the 21(st) century the dry season is expected to be 2-3 weeks longer than now (2014). Monsoon rainfall amounts will remain the same or possibly slightly increase but it will occur over a slightly shorter wet season. Expectations of sea level rise and additional saline intrusion into groundwater aquifers mean that dry season irrigation water is likely to become more saline by the end of the 21(st) century. A study carried out at Barisal indicates that irrigating with water at up to 4 ppt can be sustainable. Once the dry season irrigation water quality goes above 5 ppt, the monsoon rainfall is no longer able to leach the dry season salt deposits so salt accumulation becomes significant and farm productivity will reduce by as a much as 50%, threatening the livelihoods of farmers in this region.

  14. Rainfall erosivity and sediment load over the Poyang Lake Basin under variable climate and human activities since the 1960s

    NASA Astrophysics Data System (ADS)

    Gu, Chaojun; Mu, Xingmin; Gao, Peng; Zhao, Guangju; Sun, Wenyi; Yu, Qiang

    2018-03-01

    Accelerated soil erosion exerts adverse effects on water and soil resources. Rainfall erosivity reflects soil erosion potential driven by rainfall, which is essential for soil erosive risk assessment. This study investigated the spatiotemporal variation of rainfall erosivity and its impacts on sediment load over the largest freshwater lake basin of China (the Poyang Lake Basin, abbreviate to PYLB). The spatiotemporal variations of rainfall erosivity from 1961 to 2014 based on 57 meteorological stations were detected using the Mann-Kendall test, linear regression, and kriging interpolation method. The sequential t test analysis of regime shift (STARS) was employed to identify the abrupt changes of sediment load, and the modified double mass curve was used to assess the impacts of rainfall erosivity variability on sediment load. It was found that there was significant increase (P < 0.05) in rainfall erosivity in winter due to the significant increase in January over the last 54 years, whereas no trend in year and other seasons. Annual sediment load into the Poyang Lake (PYL) decreased significantly (P < 0.01) between 1961 and 2014, and the change-points were identified in both 1985 and 2003. It was found that take annual rainfall erosivity as the explanatory variables of the double mass curves is more reasonable than annual rainfall and erosive rainfall. The estimation via the modified double mass curve demonstrated that compared with the period before change-point (1961-1984), the changes of rainfall erosivity increased 8.0 and 2.1% of sediment load during 1985-2002 and 2003-2014, respectively. Human activities decreased 50.2 and 69.7% of sediment load during the last two periods, which indicated effects of human activities on sediment load change was much larger than that of rainfall erosivity variability in the PYLB.

  15. Climate Teleconnections and Recent Patterns of Human and Animal Disease Outbreaks

    PubMed Central

    Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer L.; Collins, Kathrine M.; Tucker, Compton J.; Pak, Edwin W.; Britch, Seth C.; Eastman, James Ronald; Pinzon, Jorge E.; Russell, Kevin L.

    2012-01-01

    Background Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. Methods and Findings We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004–2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3–4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Conclusions/Significance Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies. PMID:22292093

  16. Climate teleconnections and recent patterns of human and animal disease outbreaks.

    PubMed

    Anyamba, Assaf; Linthicum, Kenneth J; Small, Jennifer L; Collins, Kathrine M; Tucker, Compton J; Pak, Edwin W; Britch, Seth C; Eastman, James Ronald; Pinzon, Jorge E; Russell, Kevin L

    2012-01-01

    Recent clusters of outbreaks of mosquito-borne diseases (Rift Valley fever and chikungunya) in Africa and parts of the Indian Ocean islands illustrate how interannual climate variability influences the changing risk patterns of disease outbreaks. Although Rift Valley fever outbreaks have been known to follow periods of above-normal rainfall, the timing of the outbreak events has largely been unknown. Similarly, there is inadequate knowledge on climate drivers of chikungunya outbreaks. We analyze a variety of climate and satellite-derived vegetation measurements to explain the coupling between patterns of climate variability and disease outbreaks of Rift Valley fever and chikungunya. We derived a teleconnections map by correlating long-term monthly global precipitation data with the NINO3.4 sea surface temperature (SST) anomaly index. This map identifies regional hot-spots where rainfall variability may have an influence on the ecology of vector borne disease. Among the regions are Eastern and Southern Africa where outbreaks of chikungunya and Rift Valley fever occurred 2004-2009. Chikungunya and Rift Valley fever case locations were mapped to corresponding climate data anomalies to understand associations between specific anomaly patterns in ecological and climate variables and disease outbreak patterns through space and time. From these maps we explored associations among Rift Valley fever disease occurrence locations and cumulative rainfall and vegetation index anomalies. We illustrated the time lag between the driving climate conditions and the timing of the first case of Rift Valley fever. Results showed that reported outbreaks of Rift Valley fever occurred after ∼3-4 months of sustained above-normal rainfall and associated green-up in vegetation, conditions ideal for Rift Valley fever mosquito vectors. For chikungunya we explored associations among surface air temperature, precipitation anomalies, and chikungunya outbreak locations. We found that chikungunya outbreaks occurred under conditions of anomalously high temperatures and drought over Eastern Africa. However, in Southeast Asia, chikungunya outbreaks were negatively correlated (p<0.05) with drought conditions, but positively correlated with warmer-than-normal temperatures and rainfall. Extremes in climate conditions forced by the El Niño/Southern Oscillation (ENSO) lead to severe droughts or floods, ideal ecological conditions for disease vectors to emerge, and may result in epizootics and epidemics of Rift Valley fever and chikungunya. However, the immune status of livestock (Rift Valley fever) and human (chikungunya) populations is a factor that is largely unknown but very likely plays a role in the spatial-temporal patterns of these disease outbreaks. As the frequency and severity of extremes in climate increase, the potential for globalization of vectors and disease is likely to accelerate. Understanding the underlying patterns of global and regional climate variability and their impacts on ecological drivers of vector-borne diseases is critical in long-range planning of appropriate disease and disease-vector response, control, and mitigation strategies.

  17. Estimation of the fractional coverage of rainfall in climate models

    NASA Technical Reports Server (NTRS)

    Eltahir, E. A. B.; Bras, R. L.

    1993-01-01

    The fraction of the grid cell area covered by rainfall, mu, is an essential parameter in descriptions of land surface hydrology in climate models. A simple procedure is presented for estimating this fraction, based on extensive observations of storm areas and rainfall volumes. Storm area and rainfall volume are often linearly related; this relation can be used to compute the storm area from the volume of rainfall simulated by a climate model. A formula is developed for computing mu, which describes the dependence of the fractional coverage of rainfall on the season of the year, the geographical region, rainfall volume, and the spatial and temporal resolution of the model. The new formula is applied in computing mu over the Amazon region. Significant temporal variability in the fractional coverage of rainfall is demonstrated. The implications of this variability for the modeling of land surface hydrology in climate models are discussed.

  18. Marine biological controls on atmospheric CO2 and climate

    NASA Technical Reports Server (NTRS)

    Mcelroy, M. B.

    1983-01-01

    It is argued that the ocean is losing N gas faster than N is being returned to the ocean, and that replenishment of the N supply in the ocean usually occurs during ice ages. Available N from river and estruarine transport and from rainfall after formation by lightning are shown to be at a rate too low to compensate for the 10,000 yr oceanic lifetime of N. Ice sheets advance and transfer moraine N to the ocean, lower the sea levels, erode the ocean beds, promote greater biological productivity, and reduce CO2. Ice core samples have indicated a variability in the atmospheric N content that could be attributed to the ice age scenario.

  19. The Chennai extreme rainfall event in 2015: The Bay of Bengal connection

    NASA Astrophysics Data System (ADS)

    Boyaj, Alugula; Ashok, Karumuri; Ghosh, Subimal; Devanand, Anjana; Dandu, Govardhan

    2018-04-01

    Southeast India experienced a heavy rainfall during 30 Nov-2 Dec 2015. Particularly, the Chennai city, the fourth major metropolitan city in India with a population of 5 million, experienced extreme flooding and causalities. Using various observed/reanalysed datasets, we find that the concurrent southern Bay of Bengal (BoB) sea surface temperatures (SST) were anomalously warm. Our analysis shows that BoB sea surface temperature anomalies (SSTA) are indeed positively, and significantly, correlated with the northeastern Indian monsoonal rainfall during this season. Our sensitivity experiments carried out with the Weather Research and Forecasting (WRF) model at 25 km resolution suggest that, while the strong concurrent El Niño conditions contributed to about 21.5% of the intensity of the extreme Chennai rainfall through its signals in the local SST mentioned above, the warming trend in BoB SST also contributed equally to the extremity of the event. Further, the El Niño southern oscillation (ENSO) impacts on the intensity of the synoptic events in the BoB during the northeast monsoon are manifested largely through the local SST in the BoB as compared through its signature in the atmospheric circulations over the BoB.

  20. Regimes of Diurnal Variation of Summer Rainfall over Subtropical East Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan W.; Lin W.; Yu, R.

    2012-05-01

    Using hourly rain gauge records and Tropical Rainfall Measuring Mission 3B42 from 1998 to 2006, the authors present an analysis of the diurnal characteristics of summer rainfall over subtropical East Asia. The study shows that there are four different regimes of distinct diurnal variation of rainfall in both the rain gauge and the satellite data. They are located over the Tibetan Plateau with late-afternoon and midnight peaks, in the western China plain with midnight to early-morning peaks, in the eastern China plain with double peaks in late afternoon and early morning, and over the East China Sea with an early-morningmore » peak. No propagation of diurnal phases is found from the land to the ocean across the coastlines. The different diurnal regimes are highly correlated with the inhomogeneous underlying surface, such as the plateau, plain, and ocean, with physical mechanisms consistent with the large-scale 'mountain-valley' and 'land-sea' breezes and convective instability. These diurnal characteristics over subtropical East Asia can be used as diagnostic metrics to evaluate the physical parameterization and hydrological cycle of climate models over East Asia.« less

  1. The variability of the rainfall rate as a function of area

    NASA Astrophysics Data System (ADS)

    Jameson, A. R.; Larsen, M. L.

    2016-01-01

    Distributions of drop sizes can be expressed as DSD = Nt × PSD, where Nt is the total number of drops in a sample and PSD is the frequency distribution of drop diameters (D). Their discovery permitted remote sensing techniques for rainfall estimation using radars and satellites measuring over large domains of several kilometers. Because these techniques depend heavily on higher moments of the PSD, there has been a bias toward attributing the variability of the intrinsic rainfall rates R over areas (σR) to the variability of the PSDs. While this variability does increase up to a point with increasing domain dimension L, the variability of the rainfall rate R also depends upon the variability in the total number of drops Nt. We show that while the importance of PSDs looms large for small domains used in past studies, it is the variability of Nt that dominates the variability of R as L increases to 1 km and beyond. The PSDs contribute to the variability of R through the relative dispersion of χ = D3Vt, where Vt is the terminal fall speed of drops of diameter D. However, the variability of χ is inherently limited because drop sizes and fall speeds are physically limited. In contrast, it is shown that the variance of Nt continuously increases as the domain expands for physical reasons explained below. Over domains larger than around 1 km, it is shown that Nt dominates the variance of the rainfall rate with increasing L regardless of the PSD.

  2. Regional changes in extreme monsoon rainfall deficit and excess in India

    NASA Astrophysics Data System (ADS)

    Pal, Indrani; Al-Tabbaa, Abir

    2010-04-01

    With increasing concerns about climate change, the need to understand the nature and variability of monsoon climatic conditions and to evaluate possible future changes becomes increasingly important. This paper deals with the changes in frequency and magnitudes of extreme monsoon rainfall deficiency and excess in India from 1871 to 2005. Five regions across India comprising variable climates were selected for the study. Apart from changes in individual regions, changing tendencies in extreme monsoon rainfall deficit and excess were also determined for the Indian region as a whole. The trends and their significance were assessed using non-parametric Mann-Kendall technique. The results show that intra-region variability for extreme monsoon seasonal precipitation is large and mostly exhibited a negative tendency leading to increasing frequency and magnitude of monsoon rainfall deficit and decreasing frequency and magnitude of monsoon rainfall excess.

  3. Interannual rainfall variability and SOM-based circulation classification

    NASA Astrophysics Data System (ADS)

    Wolski, Piotr; Jack, Christopher; Tadross, Mark; van Aardenne, Lisa; Lennard, Christopher

    2018-01-01

    Self-Organizing Maps (SOM) based classifications of synoptic circulation patterns are increasingly being used to interpret large-scale drivers of local climate variability, and as part of statistical downscaling methodologies. These applications rely on a basic premise of synoptic climatology, i.e. that local weather is conditioned by the large-scale circulation. While it is clear that this relationship holds in principle, the implications of its implementation through SOM-based classification, particularly at interannual and longer time scales, are not well recognized. Here we use a SOM to understand the interannual synoptic drivers of climate variability at two locations in the winter and summer rainfall regimes of South Africa. We quantify the portion of variance in seasonal rainfall totals that is explained by year to year differences in the synoptic circulation, as schematized by a SOM. We furthermore test how different spatial domain sizes and synoptic variables affect the ability of the SOM to capture the dominant synoptic drivers of interannual rainfall variability. Additionally, we identify systematic synoptic forcing that is not captured by the SOM classification. The results indicate that the frequency of synoptic states, as schematized by a relatively disaggregated SOM (7 × 9) of prognostic atmospheric variables, including specific humidity, air temperature and geostrophic winds, captures only 20-45% of interannual local rainfall variability, and that the residual variance contains a strong systematic component. Utilising a multivariate linear regression framework demonstrates that this residual variance can largely be explained using synoptic variables over a particular location; even though they are used in the development of the SOM their influence, however, diminishes with the size of the SOM spatial domain. The influence of the SOM domain size, the choice of SOM atmospheric variables and grid-point explanatory variables on the levels of explained variance, is consistent with the general understanding of the dominant processes and atmospheric variables that affect rainfall variability at a particular location.

  4. Assimilating Non-linear Effects of Customized Large-Scale Climate Predictors on Downscaled Precipitation over the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Molina, J. M.; Zaitchik, B. F.

    2016-12-01

    Recent findings considering high CO2 emission scenarios (RCP8.5) suggest that the tropical Andes may experience a massive warming and a significant precipitation increase (decrease) during the wet (dry) seasons by the end of the 21st century. Variations on rainfall-streamflow relationships and seasonal crop yields significantly affect human development in this region and make local communities highly vulnerable to climate change and variability. We developed an expert-informed empirical statistical downscaling (ESD) algorithm to explore and construct robust global climate predictors to perform skillful RCP8.5 projections of in-situ March-May (MAM) precipitation required for impact modeling and adaptation studies. We applied our framework to a topographically-complex region of the Colombian Andes where a number of previous studies have reported El Niño-Southern Oscillation (ENSO) as the main driver of climate variability. Supervised machine learning algorithms were trained with customized and bias-corrected predictors from NCEP reanalysis, and a cross-validation approach was implemented to assess both predictive skill and model selection. We found weak and not significant teleconnections between precipitation and lagged seasonal surface temperatures over El Niño3.4 domain, which suggests that ENSO fails to explain MAM rainfall variability in the study region. In contrast, series of Sea Level Pressure (SLP) over American Samoa -likely associated with the South Pacific Convergence Zone (SPCZ)- explains more than 65% of the precipitation variance. The best prediction skill was obtained with Selected Generalized Additive Models (SGAM) given their ability to capture linear/nonlinear relationships present in the data. While SPCZ-related series exhibited a positive linear effect in the rainfall response, SLP predictors in the north Atlantic and central equatorial Pacific showed nonlinear effects. A multimodel (MIROC, CanESM2 and CCSM) ensemble of ESD projections revealed an increased variability and a positive and significant trend in the MAM precipitation mean in the next decades, with accentuated changes and projection uncertainty after 2050. ESD traces (2050-2100) from MIROC presented the highest changes in the precipitation mean ( 60%) when compared with the observations.

  5. Are revised models better models? A skill score assessment of regional interannual variability

    NASA Astrophysics Data System (ADS)

    Sperber, Kenneth R.; Participating AMIP Modelling Groups

    1999-05-01

    Various skill scores are used to assess the performance of revised models relative to their original configurations. The interannual variability of all-India, Sahel and Nordeste rainfall and summer monsoon windshear is examined in integrations performed under the experimental design of the Atmospheric Model Intercomparison Project. For the indices considered, the revised models exhibit greater fidelity at simulating the observed interannual variability. Interannual variability of all-India rainfall is better simulated by models that have a more realistic rainfall climatology in the vicinity of India, indicating the beneficial effect of reducing systematic model error.

  6. Are revised models better models? A skill score assessment of regional interannual variability

    NASA Astrophysics Data System (ADS)

    Participating AMIP Modelling Groups,; Sperber, Kenneth R.

    Various skill scores are used to assess the performance of revised models relative to their original configurations. The interannual variability of all-India, Sahel and Nordeste rainfall and summer monsoon windshear is examined in integrations performed under the experimental design of the Atmospheric Model Intercomparison Project. For the indices considered, the revised models exhibit greater fidelity at simulating the observed interannual variability. Interannual variability of all-India rainfall is better simulated by models that have a more realistic rainfall climatology in the vicinity of India, indicating the beneficial effect of reducing systematic model error.

  7. Flash floods and debris flow in the city area of Messina, North-East part of Sicily, Italy in October 2009: the case of the Giampilieri catchment

    NASA Astrophysics Data System (ADS)

    Aronica, G. T.; Brigandi, G.; Morey, N.

    2010-09-01

    Flash floods are phenomena in which the important hydrologic processes are occurring on the same spatial and temporal scales as the intense precipitation. Most of the catchment in the North-East part of Sicily (Italy) are small, with a steep slope, and characterized by short concentration times. These characteristics make those catchment prone to flash flood formation, as demonstrated by events that occurred in the area around Messina in the North-East part of Sicily, Italy in the last recent years. The events occurred on 25th October 2007 in the Mastroguglielmo torrent on the ionic sea coast, on 11th December 2008 in the Elicona catchment on the Tyrrhenian sea coast and on 1st October 2009 in Racinazzi and Giampilieri torrents on the ionic sea coast are an example of flash floods and debris flow events that caused not only significant economic damages to property, buildings, roads and bridges but also, for this that concern the 1st October 2009 flash flood event, loss of human life. This work is aimed by the 1st October 2009 flash flood and debris flow event where a devastating flooding was caused by a very intense rainfall concentrated over the Messina area. The storm caused severe flash floods in many villages around the city of Messina, such as Giampilieri, Scaletta Zanclea, Altolia Superiore and Molino with forty casualties and significant damage to property, buildings, roads and bridges estimated close to 200 million Euro. Main focus of this work is to perform a post event analysis of the 2009 flash flood event, putting together available meteorological and hydrological data in order to get better insight into temporal and spatial variability of the rain storm, the soil moisture condition and the consequent flash floods in the catchment of the Giampilieri catchment. Starting from these information another objective has been, then, to document the post-failure stage of event concerning slid materials. With the help of GIS technology and particularly spatial analysis, volume of debris gone down for the Giampilieri catchment has been calculated. The event was investigated using observed data from a raingauge network and hydraulic evidences. Statistical analysis using GEV distribution was performed and rainfall return period (storm severity) was estimated. Further, measured rainfall data and rainfall-runoff modeling were used to analyze the hydrological behaviour and to reconstruct flood and debris hydrographs. The study confirmed that post-flood investigation should focus on discharges and hydrological response of the catchment rather than simply analyzing statistical characteristics of rainfall. Thanks to LIDAR data produced immediately after the event, issued one meter precision DEM has been compared with a two meter precision one provided two years before. GIS maps with landslide and material deposit areas have been produced and analyzed.

  8. Atoll groundwater movement and its response to climatic and sea-level fluctuations

    USGS Publications Warehouse

    Oberle, Ferdinand; Swarzenski, Peter W.; Storlazzi, Curt

    2017-01-01

    Groundwater resources of low-lying atoll islands are threatened due to short-term and long-term changes in rainfall, wave climate, and sea level. A better understanding of how these forcings affect the limited groundwater resources was explored on Roi-Namur in the Republic of the Marshall Islands. As part of a 16-month study, a rarely recorded island-overwash event occurred and the island’s aquifer’s response was measured. The findings suggest that small-scale overwash events cause an increase in salinity of the freshwater lens that returns to pre-overwash conditions within one month. The overwash event is addressed in the context of climate-related local sea-level change, which suggests that overwash events and associated degradations in freshwater resources are likely to increase in severity in the future due to projected rises in sea level. Other forcings, such as severe rainfall events, were shown to have caused a sudden freshening of the aquifer, with salinity levels retuning to pre-rainfall levels within three months. Tidal forcing of the freshwater lens was observed in electrical resistivity profiles, high-resolution conductivity, groundwater-level well measurements and through submarine groundwater discharge calculations. Depth-specific geochemical pore water measurements further assessed and confirmed the distinct boundaries between fresh and saline water masses in the aquifer. The identification of the freshwater lens’ saline boundaries is essential for a quantitative evaluation of the aquifers freshwater resources and help understand how these resources may be impacted by climate change and anthropogenic activities.

  9. Effect of intense short rainfall events on coastal water quality parameters from remote sensing data

    NASA Astrophysics Data System (ADS)

    Corbari, Chiara; Lassini, Fabio; Mancini, Marco

    2016-07-01

    Strong rainfall events, especially during summer, in small river basins cause spills in the sea that often compromise the quality of coastal waters. The goal of this paper is then to study the changes of coastal waters quality as a result of intense rainfall events during the bathing season through the use of remote sensing data. These analyses are performed at the outlets of small watersheds which are not usually affected by high sediment transport as in the case of large basins which are persistently affected by intense solid transport which does not allow retrieving a reliable correlation between rainfall events and water quality parameters. Four small watersheds in different Italian regions on the Mediterranean Sea are selected for this study. The remotely sensed parameters of turbidity, total suspend solids and secchi disk depth, are retrieved from MODIS data. Secchi disk depths are also compared to available ground data during the summer seasons between 2003 and 2006 showing good correlations. Then the spatial and temporal changes of these parameters are analyzed after intense short storm events. Increases of turbidity and total suspend solids are found to be around 35 NTU and 20 mg L-1 respectively depending on the intensity of the rainfall event and on the distance from the shoreline. Moreover the recovery of water quality after the rain event is reached after two or three days.

  10. Proxy Records of the Indonesian Low and the El Ni{tilde n}o-Southern Oscillation (ENSO) from Stable Isotope Measurements of Indonesian Reef Corals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, M.D.

    1995-12-31

    The Earth`s largest atmospheric convective center is the Indonesian Low. It generates the Australasian monsoon, drives the zonal tropospheric Walker Circulation, and is implicated in the genesis of the El Nino-Southern Oscillation (ENSO). The long-term variability of the Indonesian Low is poorly characterized, yet such information is crucial for evaluating whether changes in the strength and frequency of ENSO events are a possible manifestation of global warming. Stable oxygen isotope ratios ({delta}{sup 18}O) in shallow-water reef coral skeletons track topical convective activity over hundreds of years because the input of isotopically-depleted rainwater dilutes seawater {delta}{sup 18}O. Corals also impose amore » temperature-dependent fractionation on {delta}{sup 18}O, but where annual rainfall is high and sea surface temperature (SST) variability is low the freshwater flux effect dominates.« less

  11. Application of NASA Giovanni to Coastal Zone Remote Sensing Research

    NASA Technical Reports Server (NTRS)

    Acker, James; Leptoukh, Gregory; Kempler, Steven; Berrick, Stephen; Rui, Hualan; Shen, Suhung

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) provides rapid access to, and enables effective utilization of, remotely-sensed data that are applicable to investigations of coastal environmental processes. Data sets in Giovanni include precipitation data from the Tropical Rainfall Measuring Mission (TRMM), particularly useful for coastal storm investigations; ocean color radiometry data from the Sea-viewing Wide Field-of-view Sensor (SeaWIFS) and Moderate Resolution Imaging Spectroradiometer (MODIS), useful for water quality evaluation, phytoplankton blooms, and terrestrial-marine interactions; and atmospheric data from MODIS and the Advanced Infrared Sounder (AIRS), providing the capability to characterize atmospheric variables. Giovanni provides a simple interface allowing discovery and analysis of environmental data sets with accompanying graphic visualizations. Examples of Giovanni investigations of the coastal zone include hurricane and storm impacts, hydrologically-induced phytoplankton blooms, chlorophyll trend analysis, and dust storm characterization. New and near-future capabilities of Giovanni will be described.

  12. Application of NASA Giovanni to Coastal Zone Remote Sensing Search

    NASA Technical Reports Server (NTRS)

    Acker, James; Leptoukh, Gregory; Kempler, Steven; Berrick, Stephen; Rui, Hualan; Shen, Suhung

    2007-01-01

    The Goddard Earth Sciences Data and Information Services Center (GES DISC) Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) provides rapid access to, and enables effective utilization of, remotely-sensed data that are applicable to investigations of coastal environmental processes. Data sets in Giovanni include precipitation data from the Tropical Rainfall Measuring Mission (TRMM), particularly useful for coastal storm investigations; ocean color radiometry data from the Sea-viewing Wide Field-of-view Sensor (SeaWIFS) and Moderate Resolution Imaging Spectroradiometer (MODIS), useful for water quality evaluation, phytoplankton blooms, and terrestrial-marine interactions; and atmospheric data from MODIS and the Advanced Infrared Sounder (AIRS), providing the capability to characterize atmospheric variables. Giovanni provides a simple interface allowing discovery and analysis of environmental data sets with accompanying graphic visualizations. Examples of Giovanni investigations of the coastal zone include hurricane and storm impacts, hydrologically-induced phytoplankton blooms, chlorophyll trend analysis, and dust storm characterization. New and near-future capabilities of Giovanni will be described.

  13. Coupled ocean-atmosphere models feature systematic delay in Indian monsoon onset compared to their atmosphere-only component

    NASA Astrophysics Data System (ADS)

    Turner, Andrew

    2014-05-01

    In this study we examine monsoon onset characteristics in 20th century historical and AMIP integrations of the CMIP5 multi-model database. We use a period of 1979-2005, common to both the AMIP and historical integrations. While all available observed boundary conditions, including sea-surface temperature (SST), are prescribed in the AMIP integrations, the historical integrations feature ocean-atmosphere models that generate SSTs via air-sea coupled processes. The onset of Indian monsoon rainfall is shown to be systematically earlier in the AMIP integrations when comparing groups of models that provide both experiments, and in the multi-model ensemble means for each experiment in turn. We also test some common circulation indices of the monsoon onset including the horizontal shear in the lower troposphere and wind kinetic energy. Since AMIP integrations are forced by observed SSTs and CMIP5 models are known to have large cold SST biases in the northern Arabian Sea during winter and spring that limits their monsoon rainfall, we relate the delayed onset in the coupled historical integrations to cold Arabian Sea SST biases. This study provides further motivation for solving cold SST biases in the Arabian Sea in coupled models.

  14. Relative role of pre-monsoon conditions and intraseasonal oscillations in determining early-vs-late indian monsoon intensity in a GCM

    NASA Astrophysics Data System (ADS)

    Ghosh, Rohit; Chakraborty, Arindam; Nanjundiah, Ravi S.

    2018-01-01

    The aim of this paper is to identify relative roles of different land-atmospheric conditions, apart from sea surface temperature (SST), in determining early vs. late summer monsoon intensity over India in a high resolution general circulation model (GCM). We find that in its early phase (June-July; JJ), pre-monsoon land-atmospheric processes play major role to modulate the precipitation over Indian region. These effects of pre-monsoon conditions decrease substantially during its later phase (August-September; AS) for which the interannual variation is mainly governed by the low frequency northward propagating intraseasonal oscillations. This intraseasonal variability which is related to mean vertical wind shear has a significant role during the early phase of monsoon as well. Further, using multiple linear regression, we show that interannual variation of early and late monsoon rainfall over India is best explained when all these land-atmospheric parameters are taken together. Our study delineates the relative role of different processes affecting early versus later summer monsoon rainfall over India that can be used for determining its subseasonal predictability.

  15. Multiproxy Reduced-Dimension Reconstruction of Holocene Tropical Pacific SST Fields and Indian Monsoon Variability

    NASA Astrophysics Data System (ADS)

    Gill, E.; Rajagopalan, B.; Molnar, P. H.; Marchitto, T. M., Jr.; Kushnir, Y.

    2016-12-01

    We develop a multiproxy reduced-dimension methodology that blends magnesium calcium (Mg/Ca) and alkenone (UK'37) paleo sea surface temperature (SST) records from the eastern and western equatorial Pacific to recreate snapshots of full field SSTs and zonal wind anomalies from 10 to 2 ka BP in 2000-year increments. In the reconstruction, the zonal SST difference (average west Pacific SST minus average east Pacific SST) is largest at 10 ka (0.26°C), with coldest SST anomalies of -0.9°C in the eastern equatorial Pacific and concurrent easterly maximum zonal wind anomalies of 7 m s-1 throughout the central Pacific. From 10 to 2 ka, the entire equatorial Pacific warms, but at a faster rate in the east than in the west. These patterns are broadly consistent with previous inferences of reduced El Niño-Southern Oscillation variability associated with a cooler and/or "La Niña-like" state during the early to middle Holocene. At present there is a strong negative correlation between tropical pacific SSTs and Indian summer monsoon strength. Assuming ENSO-monsoon teleconnections were the same during early Holocene, we would expect a cooler tropical Pacific to enhance the summer Indian monsoon. To test this idea, we used the same tropical Pacific SST proxy records and a similar reduced-dimension technique to reconstruct fields of Arabian Sea wind-stress curl and Indian summer monsoon precipitation. Reconstructions for 10 ka reveal wind-stress curl anomalies of 30% greater than present day off the coastlines of Oman and Yemen, which suggest greater coastal upwelling and an enhanced monsoon jet during this time. Spatial rainfall reconstructions reveal the greatest difference in precipitation at 10 ka over the core monsoon region ( 20-60% greater than present day). Specifically, reconstructions from 10 ka reveal 40-60% greater rainfall over North West India, a region home to abundant paleo-lake records spanning the Holocene but is at present remarkably dry ( 200-450 mm of annual rainfall). These findings advance the hypothesis that teleconnections from the tropical Pacific contributed to, if not accounted for, greater early to middle Holocene wetness over India as recorded by various (e.g., cave, lacustrine, river discharge) paleoclimate proxies throughout the monsoon region.

  16. Hydrology and water resources in Caspian Sea

    NASA Astrophysics Data System (ADS)

    Haddadi Moghaddam, Kourosh

    2016-10-01

    Precipitation is the main driver of the water balance variability of the water over space and time, and changes in precipitation have very important implications for hydrology and water resources. Variations in precipitation over daily, seasonal, annual, and decadal time scales influence hydrological variability over time in a catchment. Flood frequency is affected by changes in the year-to-year variability in precipitation and by changes in short-term rainfall properties. Desiccation of the Caspian Sea is one of the world's most serious ecosystem catastrophes. The Persian Sturgeon (Acipenser persicus) caught under 10 m depth using bottom trawl net by research vessel during winter 2012, summer and winter 2013 and spring 2014 in east, central and west of southern parts of Caspian Sea, then, their diets were investigated. During 136 trawling in the aimed seasons, Persian sturgeon with 1 to 2 years old and 179.67 × 0.2 g (body weight) and 29.97 ± 0.4 cm (Total length) captured. Examination of stomach contents in the sturgeon specimens revealed that the food spectrum was composed of bony fishes (Neogobius sp., Atherina sp. and Clupeonella delicatula), invertebrates belonging to the family Ampharetidae polychaeta worms including (Hypanai sp. and Nereis diversicolor), various crustaceans (Gammarus sp. and Paramysis sp.). Investigation on stomach contents of sturgeon Acipenser persicus caught under 10 m depth in 2012 to 2013 surveys showed that there is significant difference in the consumed food. The most food diversity have been observed in winter 2013, also Polychaeta is the primary consumed food and crustacean is the secondary one (P > 0.05), no new types of food (such as bony fishes or benthics) have been observed on food chain of Acipenser persicus and shows no significant difference (P > 0.05).

  17. Variability of hydrological extreme events in East Asia and their dynamical control: a comparison between observations and two high-resolution global climate models

    NASA Astrophysics Data System (ADS)

    Freychet, N.; Duchez, A.; Wu, C.-H.; Chen, C.-A.; Hsu, H.-H.; Hirschi, J.; Forryan, A.; Sinha, B.; New, A. L.; Graham, T.; Andrews, M. B.; Tu, C.-Y.; Lin, S.-J.

    2017-02-01

    This work investigates the variability of extreme weather events (drought spells, DS15, and daily heavy rainfall, PR99) over East Asia. It particularly focuses on the large scale atmospheric circulation associated with high levels of the occurrence of these extreme events. Two observational datasets (APHRODITE and PERSIANN) are compared with two high-resolution global climate models (HiRAM and HadGEM3-GC2) and an ensemble of other lower resolution climate models from CMIP5. We first evaluate the performance of the high resolution models. They both exhibit good skill in reproducing extreme events, especially when compared with CMIP5 results. Significant differences exist between the two observational datasets, highlighting the difficulty of having a clear estimate of extreme events. The link between the variability of the extremes and the large scale circulation is investigated, on monthly and interannual timescales, using composite and correlation analyses. Both extreme indices DS15 and PR99 are significantly linked to the low level wind intensity over East Asia, i.e. the monsoon circulation. It is also found that DS15 events are strongly linked to the surface temperature over the Siberian region and to the land-sea pressure contrast, while PR99 events are linked to the sea surface temperature anomalies over the West North Pacific. These results illustrate the importance of the monsoon circulation on extremes over East Asia. The dependencies on of the surface temperature over the continent and the sea surface temperature raise the question as to what extent they could affect the occurrence of extremes over tropical regions in future projections.

  18. A Fiji multi-coral δ18O composite approach to obtaining a more accurate reconstruction of the last two-centuries of the ocean-climate variability in the South Pacific Convergence Zone region

    NASA Astrophysics Data System (ADS)

    Dassié, Emilie P.; Linsley, Braddock K.; Corrège, Thierry; Wu, Henry C.; Lemley, Gavin M.; Howe, Steve; Cabioch, Guy

    2014-12-01

    The limited availability of oceanographic data in the tropical Pacific Ocean prior to the satellite era makes coral-based climate reconstructions a key tool for extending the instrumental record back in time, thereby providing a much needed test for climate models and projections. We have generated a unique regional network consisting of five Porites coral δ18O time series from different locations in the Fijian archipelago. Our results indicate that using a minimum of three Porites coral δ18O records from Fiji is statistically sufficient to obtain a reliable signal for climate reconstruction, and that application of an approach used in tree ring studies is a suitable tool to determine this number. The coral δ18O composite indicates that while sea surface temperature (SST) variability is the primary driver of seasonal δ18O variability in these Fiji corals, annual average coral δ18O is more closely correlated to sea surface salinity (SSS) as previously reported. Our results highlight the importance of water mass advection in controlling Fiji coral δ18O and salinity variability at interannual and decadal time scales despite being located in the heavy rainfall region of the South Pacific Convergence Zone (SPCZ). The Fiji δ18O composite presents a secular freshening and warming trend since the 1850s coupled with changes in both interannual (IA) and decadal/interdecadal (D/I) variance. The changes in IA and D/I variance suggest a re-organization of climatic variability in the SPCZ region beginning in the late 1800s to period of a more dominant interannual variability, which could correspond to a southeast expansion of the SPCZ.

  19. Physical Climatology of Indonesian Maritime Continent: An Overview of Observational Studies

    NASA Astrophysics Data System (ADS)

    Yamanaka, M. D.

    2014-12-01

    The Indonesian maritime continent (IMC) is a miniature of our land-sea coexisting planet Earth. Firstly, without interior activity, the Earth becomes an even-surfaced "aqua-planet" with both atmosphere and ocean flowing almost zonally, and solar differential heating generates (global thermal tides and) Hadley's meridional circulations with ITCZ along the equator as observed actually over open (Indian and Pacific) oceans in the both sides of IMC. ITCZ involves intraseasonal variations or super cloud clusters moving eastward. Secondly, the lands and seas over the actual Earth have been keeping the area ratio of 3:7 (similar to that of islands and inland/surrounding seas in IMC), but their displacements have produced IMC near the equator, which turns equatorial Pacific easterly current northward (Kuroshio) and reflects equatorial oceanic waves inducing coupled ocean-atmosphere interannual variations such as ENSO and IOD, or displacements of Walker's zonal circulations. Thirdly, because IMC consists of many large/small islands with very long coastlines, many narrow straits become a dam for the global (Pacific to Indian) ocean circulation, and the land-sea heat capacity contrasts along the coastlines generate the world's largest rainfall with diurnal cycles (sea-land breeze circulations). The diurnal cycles are dominant in the rainy season (austral summer in Jawa and Bali), because rainfall-induced sprinkler-like land cooling reverses the trans-coastal temperature gradient before sunrise, and subsequent clear sky on land until around noon provides solar heating dependent on season. These processes lead to rapid land/hydrosphere-atmosphere water exchange, local air pollutant washout, and transequatorial boreal winter monsoon (cold surge). In El Niño years the cooler sea-surface temperature suppresses the morning coastal-sea rainfall, and induces often serious smog over IMC. Lastly, high-resolution observations/models covering both over islands and seas are necessary. A radar-profiler network (HARIMAU) has been constructed during FY2005-09, and capacity building on radar operations and buoy manufacturing has been promoted during FY2009-13 by Japan-Indonesia collaboration projects, which are taken over by an Indonesian national center (MCCOE) established in November 2013.

  20. Disentangling sea-surface temperature and anthropogenic aerosol influences on recent trends in South Asian monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Patil, Nitin; Venkataraman, Chandra; Muduchuru, Kaushik; Ghosh, Subimal; Mondal, Arpita

    2018-05-01

    Recent studies point to combined effects of changes in regional land-use, anthropogenic aerosol forcing and sea surface temperature (SST) gradient on declining trends in the South Asian monsoon (SAM). This study attempted disentangling the effects produced by changes in SST gradient from those by aerosol levels in an atmospheric general circulation model. Two pairs of transient ensemble simulations were made, for a 40-year period from 1971 to 2010, with evolving versus climatological SSTs and with anthropogenic aerosol emissions fixed at 1971 versus 2010, in each case with evolution of the other forcing element, as well as GHGs. Evolving SST was linked to a widespread feedback on increased surface temperature, reduced land-sea thermal contrast and a weakened Hadley circulation, with weakening of cross-equatorial transport of moisture transport towards South Asia. Increases in anthropogenic aerosol levels (1971 versus 2010), led to an intensification of drying in the peninsular Indian region, through several regional pathways. Aerosol forcing induced north-south asymmetries in temperature and sea-level pressure response, and a cyclonic circulation in the Bay of Bengal, leading to an easterly flow, which opposes the monsoon flow, suppressing moisture transport over peninsular India. Further, aerosol induced decreases in convection, vertically integrated moisture flux convergence, evaporation flux and cloud fraction, in the peninsular region, were spatially congruent with reduced convective and stratiform rainfall. Overall, evolution of SST acted through a weakening of cross-equatorial moisture flow, while increases in aerosol levels acted through suppression of Arabian Sea moisture transport, as well as, of convection and vertical moisture transport, to influence the suppression of SAM rainfall.

  1. Rainfall Imprint on Sea Surface Salinity in the ITCZ: new satellite perspectives

    NASA Astrophysics Data System (ADS)

    Boutin, J.; Viltard, N.; Supply, A.; Martin, N.; Vergely, J. L.; Hénocq, C.; Reverdin, G. P.

    2016-02-01

    The European Soil Moisture and Ocean Salinity (SMOS) satellite mission monitors sea surface salinity (SSS) over the global ocean for more than 5 years since 2010. The MADRAS microwave radiometer carried by the French (CNES) Indian (ISRO) satellite mission Megha-Tropiques sampled the 30° N-30° S region end of 2011 and in 2012, very complementary to other Global Precipitation Measurement(GPM) missions. In tropical regions, SMOS SSS contains a large imprint of atmospheric rainfall, but is also likely affected by oceanographic processes (advection and diffusion). At local and short time scales, Boutin et al. (2013, 2014) have shown that the spatio-temporal variability of SSS is dominated by rainfall as detected by satellite microwave radiometers and have demonstrated a close to linear relationship between SMOS SSS freshening under rain cells and satellite rain rate. The order of magnitude is in remarkable agreement with the theoretical renewal model of Schlussel et al. (1997) and compatible with AQUARIUS SSS observations, as well as with in situ drifters observations although the latter are local and taken at 45cm depth while satellite L-band SSS roughly correspond to the top 1cm depth and are spatially integrated over 43-150km. It is thus expected that the combined information of satellite rain rates and satellite SSS brings new constraints on the precipitation budget. We first look at the consistency between the spatial structures of SMOS SSS decrease and of rain rates derived either from the MADRAS microwave radiometer or from the CMORPH combined products that do not use MADRAS rain rates. This provides an indirect validation of the rain rates estimates. We then investigate the impact of rain history and of wind speed on the observed SMOS freshening. Based on these results, we discuss the precision on various precipitation estimates over 2012 in the ITCZ region and the major sources of uncertainties that the SPURS2 campaign could help to resolve.

  2. Regional, Intraseasonal, and Diurnal Variability of Convection associated with the Boreal Summer Intraseasonal Oscillation over and around the South China Sea

    NASA Astrophysics Data System (ADS)

    Xu, W.; Rutledge, S. A.

    2017-12-01

    Weather forecasting and climate models have difficulty in simulating the BSISO due to incomplete understanding of the underlying multiscale physical processes, which also motivates the PISTON field campaign to be held in the SCS in 2018. In preparation for PISTON, this study investigates the regional, intraseasonal, and diurnal variability of BSISO-associated convection over the SCS and surrounding landmasses using long-term satellite data. The SCS is characterized by suppressed precipitation and weak southerlies during inactive BSISO phases (BSISO-1 index, phases 1-3), while a substantial northwest-southeast oriented rainband and strong low-level westerlies dominate active BSISO phases (phases 5-7). In general, convective intensity (e.g., radar echo-top height) and lightning activity are in phase with rainfall over the SCS. However, convective intensity and lightning are out of phase with rainfall over landmasses along the BSISO rainband (e.g., Indochina and Philippines). During active BSISO phases, convective systems over both land and ocean are characterized by larger size, colder cloud tops (IR), and greater fraction of stratiform precipitation. Convection over the SCS during active BSISO phases has taller precipitation echoes (20-dBZ echo top heights), higher lightning density, stronger microwave ice scattering signatures, and more robust mixed-phase microphysics (larger 30/40 dBZ echo volume above the freezing level). These same parameters maximize over land masses of Indochina and the Philippines during BSISO inactive periods. Statistics of environmental conditions suggest that the peak convection over land is due to stronger surface heating (thus higher CAPE) during inactive phases, whereas larger sea surface heat fluxes (leading to higher CAPE) during active phases enhances convective intensity over the SCS. On the other hand, mesoscale organization, convective intensity, and microphysical properties of precipitation systems to the south and north of the BSISO key rainband region have only negligible intraseasonal variability. Land convection shows a strong diurnal cycle (maximizing at afternoon and early evening) across all BSISO phases, while offshore convection peaks at midnight and early morning times during inactive BSISO phases.

  3. On the Relative Influences of Different Ocean Basin Sea Surface Temperature Anomalies on Southern African Rainfall in 20th and 21st Century GCM Simulations

    NASA Astrophysics Data System (ADS)

    Lickley, M.; Solomon, S.

    2017-12-01

    Southern Africa rainfall (SAR) is generally projected to decrease during the 21st century as a result of climate change, though there is some disagreement regarding the location and magnitude of this reduction in General Circulation Models (GCMs). Here we examine the robustness of the rainfall response to sea surface temperature (SST) anomalies. Previous work argues that warmer SSTs in the Indian Ocean suppress SAR. Other studies argue that El Niños lead to suppressed SAR. We examine the SAR response to SST anomalies in the Indian Ocean, Atlantic Ocean and ENSO 3.4 region both in observations and in two large ensembles of GCMs run over the 20th and 21st century. We find that ENSO SSTs are most correlated with SAR, while correlations between SAR and the Indian Ocean are dominated by their respective responses to ENSO. This relationship appears to persist under a warming background state.

  4. Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming

    NASA Astrophysics Data System (ADS)

    Schewe, Jacob; Levermann, Anders

    2017-07-01

    Projections of the response of Sahel rainfall to future global warming diverge significantly. Meanwhile, paleoclimatic records suggest that Sahel rainfall is capable of abrupt transitions in response to gradual forcing. Here we present climate modeling evidence for the possibility of an abrupt intensification of Sahel rainfall under future climate change. Analyzing 30 coupled global climate model simulations, we identify seven models where central Sahel rainfall increases by 40 to 300 % over the 21st century, owing to a northward expansion of the West African monsoon domain. Rainfall in these models is non-linearly related to sea surface temperature (SST) in the tropical Atlantic and Mediterranean moisture source regions, intensifying abruptly beyond a certain SST warming level. We argue that this behavior is consistent with a self-amplifying dynamic-thermodynamical feedback, implying that the gradual increase in oceanic moisture availability under warming could trigger a sudden intensification of monsoon rainfall far inland of today's core monsoon region.

  5. The impact of inter-annual rainfall variability on food production in the Ganges basin

    NASA Astrophysics Data System (ADS)

    Siderius, Christian; Biemans, Hester; van Walsum, Paul; hellegers, Petra; van Ierland, Ekko; Kabat, Pavel

    2014-05-01

    Rainfall variability is expected to increase in the coming decades as the world warms. Especially in regions already water stressed, a higher rainfall variability will jeopardize food security. Recently, the impact of inter-annual rainfall variability has received increasing attention in regional to global analysis on water availability and food security. But the description of the dynamics behind it is still incomplete in most models. Contemporary land surface and hydrological models used for such analyses describe variability in production primarily as a function of yield, a process driven by biophysical parameters, thereby neglecting yearly variations in cropped area, a process driven largely by management decisions. Agricultural statistics for northern India show that the latter process could explain up to 40% of the observed inter-annual variation in food production in various states. We added a simple dynamic land use decision module to a land surface model (LPJmL) and analyzed to what extent this improved the estimation of variability in food production. Using this improved modelling framework we then assessed if and at which scale rainfall variability affects meeting the food self-sufficiency threshold. Early results for the Ganges Basin indicate that, while on basin level variability in crop production is still relatively low, several districts and states are highly affected (RSTD > 50%). Such insight can contribute to better recommendations on the most effective measures, at the most appropriate scale, to buffer variability in food production.

  6. Spatio-temporal variability and trends of precipitation and extreme rainfall events in Ethiopia in 1980-2010

    NASA Astrophysics Data System (ADS)

    Gummadi, Sridhar; Rao, K. P. C.; Seid, Jemal; Legesse, Gizachew; Kadiyala, M. D. M.; Takele, Robel; Amede, Tilahun; Whitbread, Anthony

    2017-12-01

    This article summarizes the results from an analysis conducted to investigate the spatio-temporal variability and trends in the rainfall over Ethiopia over a period of 31 years from 1980 to 2010. The data is mostly observed station data supplemented by bias-corrected AgMERRA climate data. Changes in annual and Belg (March-May) and Kiremt (June to September) season rainfalls and rainy days have been analysed over the entire Ethiopia. Rainfall is characterized by high temporal variability with coefficient of variation (CV, %) varying from 9 to 30% in the annual, 9 to 69% during the Kiremt season and 15-55% during the Belg season rainfall amounts. Rainfall variability increased disproportionately as the amount of rainfall declined from 700 to 100 mm or less. No significant trend was observed in the annual rainfall amounts over the country, but increasing and decreasing trends were observed in the seasonal rainfall amounts in some areas. A declining trend is also observed in the number of rainy days especially in Oromia, Benishangul-Gumuz and Gambella regions. Trends in seasonal rainfall indicated a general decline in the Belg season and an increase in the Kiremt season rainfall amounts. The increase in rainfall during the main Kiremt season along with the decrease in the number of rainy days leads to an increase in extreme rainfall events over Ethiopia. The trends in the 95th-percentile rainfall events illustrate that the annual extreme rainfall events are increasing over the eastern and south-western parts of Ethiopia covering Oromia and Benishangul-Gumuz regions. During the Belg season, extreme rainfall events are mostly observed over central Ethiopia extending towards the southern part of the country while during the Kiremt season, they are observed over parts of Oromia, (covering Borena, Guji, Bali, west Harerge and east Harerge), Somali, Gambella, southern Tigray and Afar regions. Changes in the intensity of extreme rainfall events are mostly observed over south-eastern parts of Ethiopia extending to the south-west covering Somali and Oromia regions. Similar trends are also observed in the greatest 3-, 5- and 10-day rainfall amounts. Changes in the consecutive dry and wet days showed that consecutive wet days during Belg and Kiremt seasons decreased significantly in many areas in Ethiopia while consecutive dry days increased. The consistency in the trends over large spatial areas confirms the robustness of the trends and serves as a basis for understanding the projected changes in the climate. These results were discussed in relation to their significance to agriculture.

  7. Raingauge-Based Rainfall Nowcasting with Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Liong, Shie-Yui; He, Shan

    2010-05-01

    Rainfall forecasting and nowcasting are of great importance, for instance, in real-time flood early warning systems. Long term rainfall forecasting demands global climate, land, and sea data, thus, large computing power and storage capacity are required. Rainfall nowcasting's computing requirement, on the other hand, is much less. Rainfall nowcasting may use data captured by radar and/or weather stations. This paper presents the application of Artificial Neural Network (ANN) on rainfall nowcasting using data observed at weather and/or rainfall stations. The study focuses on the North-East monsoon period (December, January and February) in Singapore. Rainfall and weather data from ten stations, between 2000 and 2006, were selected and divided into three groups for training, over-fitting test and validation of the ANN. Several neural network architectures were tried in the study. Two architectures, Backpropagation ANN and Group Method of Data Handling ANN, yielded better rainfall nowcasting, up to two hours, than the other architectures. The obtained rainfall nowcasts were then used by a catchment model to forecast catchment runoff. The results of runoff forecast are encouraging and promising.With ANN's high computational speed, the proposed approach may be deliverable for creating the real-time flood early warning system.

  8. Assessing the Change in Rainfall Characteristics and Trends for the Southern African ITCZ Region

    NASA Astrophysics Data System (ADS)

    Baumberg, Verena; Weber, Torsten; Helmschrot, Jörg

    2015-04-01

    Southern Africa is strongly influenced by the movement and intensity of the Intertropical Convergence Zone (ITCZ) thus determining the climate in this region with distinct seasonal and inter-annual rainfall dynamics. The amount and variability of rainfall affect the various ecosystems by controlling the hydrological system, regulating water availability and determining agricultural practices. Changes in rainfall characteristics potentially caused by climate change are of uppermost relevance for both ecosystem functioning and human well-being in this region and, thus, need to be investigated. To analyse the rainfall variability governed by the ITCZ in southern Africa, observational daily rainfall datasets with a high spatial resolution of 0.25° x 0.25° (about 28 km x 28 km) from satellite-based Tropical Rainfall Measuring Mission (TRMM) and Global Land Data Assimilation System (GLDAS) are used. These datasets extend from 1998 to 2008 and 1948 to 2010, respectively, and allow for the assessment of rainfall characteristics over different spatial and temporal scales. Furthermore, a comparison of TRMM and GLDAS and, where available, with observed data will be made to determine the differences of both datasets. In order to quantify the intra- and inner-annual variability of rainfall, the amount of total rainfall, duration of rainy seasons and number of dry spells along with further indices are calculated from the observational datasets. Over the southern African ITCZ region, the rainfall characteristics change moving from wetter north to the drier south, but also from west to east, i.e. the coast to the interior. To address expected spatial and temporal variabilities, the assessment of changes in the rainfall parameters will be carried out for different transects in zonal and meridional directions over the region affected by the ITCZ. Revealing trends over more than 60 years, the results will help to identify and understand potential impacts of climate change on rainfall characteristics for the southern African ITCZ region. The findings of this study will feed into various ecosystem assessment and biodiversity change studies in Angola and Zambia.

  9. Evaluation of Stochastic Rainfall Models in Capturing Climate Variability for Future Drought and Flood Risk Assessment

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. F. M. K.; Lockart, N.; Willgoose, G. R.; Kuczera, G. A.; Kiem, A.; Nadeeka, P. M.

    2016-12-01

    One of the key objectives of stochastic rainfall modelling is to capture the full variability of climate system for future drought and flood risk assessment. However, it is not clear how well these models can capture the future climate variability when they are calibrated to Global/Regional Climate Model data (GCM/RCM) as these datasets are usually available for very short future period/s (e.g. 20 years). This study has assessed the ability of two stochastic daily rainfall models to capture climate variability by calibrating them to a dynamically downscaled RCM dataset in an east Australian catchment for 1990-2010, 2020-2040, and 2060-2080 epochs. The two stochastic models are: (1) a hierarchical Markov Chain (MC) model, which we developed in a previous study and (2) a semi-parametric MC model developed by Mehrotra and Sharma (2007). Our hierarchical model uses stochastic parameters of MC and Gamma distribution, while the semi-parametric model uses a modified MC process with memory of past periods and kernel density estimation. This study has generated multiple realizations of rainfall series by using parameters of each model calibrated to the RCM dataset for each epoch. The generated rainfall series are used to generate synthetic streamflow by using a SimHyd hydrology model. Assessing the synthetic rainfall and streamflow series, this study has found that both stochastic models can incorporate a range of variability in rainfall as well as streamflow generation for both current and future periods. However, the hierarchical model tends to overestimate the multiyear variability of wet spell lengths (therefore, is less likely to simulate long periods of drought and flood), while the semi-parametric model tends to overestimate the mean annual rainfall depths and streamflow volumes (hence, simulated droughts are likely to be less severe). Sensitivity of these limitations of both stochastic models in terms of future drought and flood risk assessment will be discussed.

  10. Analysis of the influence of rainfall variables on urban effluents concentrations and fluxes in wet weather

    NASA Astrophysics Data System (ADS)

    Gooré Bi, Eustache; Monette, Frédéric; Gasperi, Johnny

    2015-04-01

    Urban rainfall runoff has been a topic of increasing importance over the past years, a result of both the increase in impervious land area arising from constant urban growth and the effects of climate change on urban drainage. The main goal of the present study is to assess and analyze the correlations between rainfall variables and common indicators of urban water quality, namely event mean concentrations (EMCs) and event fluxes (EFs), in order to identify and explain the impacts of each of the main rainfall variables on the generation process of urban pollutants during wet periods. To perform this analysis, runoff from eight summer rainfall events that resulted in combined sewer overflow (CSO) was sampled simultaneously from two distinct catchment areas in order to quantify discharges at the respective outfalls. Pearson statistical analysis of total suspended solids (TSS), chemical oxygen demand (COD), carbonaceous biochemical oxygen demand at 5 days (CBOD5), total phosphorus (Ptot) and total kedjal nitrogen (N-TKN) showed significant correlations (ρ = 0.05) between dry antecedent time (DAT) and EMCs on one hand, and between total rainfall (TR) and the volume discharged (VD) during EFs, on the other. These results show that individual rainfall variables strongly affect either EMCs or EFs and are good predictors to consider when selecting variables for statistical modeling of urban runoff quality. The results also show that in a combined sewer network, there is a linear relationship between TSS event fluxes and COD, CBOD5, Ptot, and N-TKN event fluxes; this explains 97% of the variability of these pollutants which adsorb onto TSS during wet weather, which therefore act as tracers. Consequently, the technological solution selected for TSS removal will also lead to a reduction of these pollutants. Given the huge volumes involved, urban runoffs contribute substantially to pollutant levels in receiving water bodies, a situation which, in a climate change context, may get much worse as a result of more frequent, shorter, but more intense rainfall events.

  11. Oceanic influence on seasonal malaria outbreaks over Senegal and Sahel. Predictability using S4CAST model

    NASA Astrophysics Data System (ADS)

    Diouf, Ibrahima; Deme, Abdoulaye; Rodriguez-Fonseca, Belen; Suárez-Moreno, Roberto; Cisse, Moustapha; Ndione, Jacques-André; Thierno Gaye, Amadou

    2014-05-01

    Senegal and, in general, West African regions are affected by important outbreaks of diseases with destructive consequences for human population, livestock and country's economy. The vector-borne diseases such as mainly malaria, Rift Valley Fever and dengue are affected by the interanual to decadal variability of climate. Analysis of the spatial and temporal variability of climate parameters and associated oceanic patterns is important in order to assess the climate impact on malaria transmission. In this study, the approach developed to study the malaria-climate link is predefined by the QWeCI project (Quantifying Weather and Climate Impacts on Health in Developing Countries). Preliminary observations and simulations results over Senegal Ferlo region, confirm that the risk of malaria transmission is mainly linked to climate parameters such as rainfall, temperature and relative humidity; and a lag of one to two months between the maximum of malaria and the maximum of climate parameters as rainfall is observed. As climate variables are able to be predicted from oceanic SST variability in remote regions, this study explores seasonal predictability of malaria incidence outbreaks from previous sea surface temperatures conditions in different ocean basins. We have found causal or coincident relationship between El Niño and malaria parameters by coupling LMM UNILIV malaria model and S4CAST statistiscal model with the aim of predicting the malaria parameters with more than 6 months in advance. In particular, El Niño is linked to an important decrease of the number of mosquitoes and the malaria incidence. Results from this research, after assessing the seasonal malaria parameters, are expected to be useful for decision makers to better access to climate forecasts and application on health in the framework of rolling back malaria transmission.

  12. Understanding the science of climate change: Talking points - Impacts to the Gulf Coast

    Treesearch

    Rachel Loehman; Greer Anderson

    2010-01-01

    Predicted climate changes in the Gulf Coast bioregion include increased air and sea surface temperatures, altered fire regimes and rainfall patterns, increased frequency of extreme weather events, rising sea levels, increased hurricane intensity, and potential destruction of coastal wetlands and the species that reside within them. Prolonged drought conditions, storm...

  13. Soil Moisture, Coastline Curvature, and Sea Breeze Initiated Precipitation Over Florida

    NASA Technical Reports Server (NTRS)

    Baker, R. David; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo

    1999-01-01

    Land surface-atmosphere interaction plays a key role in the development of summertime convection and precipitation over the Florida peninsula. Land-ocean temperature contrasts induce sea-breeze circulations along both coasts. Clouds develop along sea-breeze fronts, and significant precipitation can occur during the summer months. However, other factors such as soil moisture distribution and coastline curvature may modulate the timing, location, and intensity of sea breeze initiated precipitation. Here, we investigate the role of soil moisture and coastline curvature on Florida precipitation using the 3-D Goddard Cumulus Ensemble (GCE) cloud model coupled with the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. This study utilizes data from the Convection and Precipitation Electrification Experiment (CaPE) collected on 27 July 1991. Our numerical simulations suggest that a realistic distribution of soil moisture influences the location and intensity of precipitation but not the timing of precipitation. In contrast, coastline curvature affects the timing and location of precipitation but has little influence on peak rainfall rates. However, both factors (soil moisture and coastline curvature) are required to fully account for observed rainfall amounts.

  14. Regime shift of Indian summer monsoon rainfall to a persistent arid state: external forcing versus internal variability

    NASA Astrophysics Data System (ADS)

    Srivastava, Ankur; Pradhan, Maheswar; Goswami, B. N.; Rao, Suryachandra A.

    2017-11-01

    The high propensity of deficient monsoon rainfall over the Indian sub-continent in the recent 3 decades (seven deficient monsoons against 3 excess monsoon years) compared to the prior 3 decades has serious implications on the food and water resources in the country. Motivated by the need to understand the high occurrence of deficient monsoon during this period, we examine the change in predictability of the Indian summer monsoon (ISM) and its teleconnections with Indo-Pacific sea surface temperatures between the two periods. The shift in the tropical climate in the late 1970s appears to be one of the major reasons behind this. We find an increased predictability of the ISM in the recent 3 decades owing to reduced `internal' interannual variability (IAV) due to the high-frequency modes, while the `external' IAV arising from the low-frequency modes has remained largely the same. The Indian Ocean Dipole-ISM teleconnection has become positive during the monsoon season in the recent period thereby compensating for the weakened ENSO-ISM teleconnection. The central Pacific El-Niño and the Indian Ocean (IO) warming during the recent 3 decades are working together to realise enhanced ascending motion in the equatorial IO between 70°E and 100°E, preconditioning the Indian monsoon system prone to a deficient state.

  15. Introducing hydrological information in rainfall intensity-duration thresholds

    NASA Astrophysics Data System (ADS)

    Greco, Roberto; Bogaard, Thom

    2016-04-01

    Regional landslide hazard assessment is mainly based on empirically derived precipitation-intensity-duration (PID) thresholds. Generally, two features of rainfall events are plotted to discriminate between observed occurrence and absence of occurrence of mass movements. Hereafter, a separation line is drawn in logarithmic space. Although successfully applied in many case studies, such PID thresholds suffer from many false positives as well as limited physical process insight. One of the main limitations is indeed that they do not include any information about the hydrological processes occurring along the slopes, so that the triggering is only related to rainfall characteristics. In order to introduce such an hydrological information in the definition of rainfall thresholds for shallow landslide triggering assessment, in this study the introduction of non-dimensional rainfall characteristics is proposed. In particular, rain storm depth, intensity and duration are divided by a characteristic infiltration depth, a characteristic infiltration rate and a characteristic duration, respectively. These latter variables depend on the hydraulic properties and on the moisture state of the soil cover at the beginning of the precipitation. The proposed variables are applied to the case of a slope covered with shallow pyroclastic deposits in Cervinara (southern Italy), for which experimental data of hourly rainfall and soil suction were available. Rainfall thresholds defined with the proposed non-dimensional variables perform significantly better than those defined with dimensional variables, either in the intensity-duration plane or in the depth-duration plane.

  16. A preliminary look at the impact of warming Mediterranean Sea temperatures on some aspects of extreme thunderstorm events in Italy

    NASA Astrophysics Data System (ADS)

    Gallus, William; Parodi, Antonio; Miglietta, Marcello; Maugeri, Maurizio

    2017-04-01

    As the global climate has warmed in recent decades, interest has grown in the impacts on extreme events associated with thunderstorms such as tornadoes and intense rainfall that can cause flash flooding. Because warmer temperatures allow the atmosphere to contain larger values of water vapor, it is generally accepted that short-term rainfall may become more intense in a future warmer climate. Regarding tornadoes, it is more difficult to say what might happen since although increased temperatures and humidity in the lowest part of the troposphere should increase thermodynamic instability, allowing for stronger thunderstorm updrafts, vertical wind shear necessary for storm-scale rotation may decrease as the pole to equator temperature gradient weakens. The Mediterranean Sea is an important source for moisture that fuels thunderstorms in Italy, and it has been warming faster than most water bodies in recent decades. The present study uses three methods to gain preliminary insight into the role that the warming Mediterranean may have on tornadoes and thunderstorms with intense rainfall in Italy. First, a historical archive of Italian tornadoes has been updated for the 1990s, and it will be used along with other data from the European Severe Weather Database to discuss possible trends in tornado occurrence. Second, convection-allowing Weather Research and Forecasting (WRF) model simulations have been performed for three extreme events to examine sensitivity to both the sea surface temperatures and other model parameters. These events include a flash flood-producing storm event near Milan, a non-tornadic severe hail event in far northeastern Italy, and the Mira EF-4 tornado of July 2015. Sensitivities in rainfall amount, radar reflectivity and storm structure, and storm rotation will be discussed. Finally, changes in the frequency of intense mesoscale convective system events in and near the Ligurian Sea, inferred from the presence of strong convergence lines in EXPRESS-Hydro regional climate model output, will be examined.

  17. Vertical Variability of Rain Drop Size Distribution from Micro Rain Radar Measurements during IFloodS

    NASA Astrophysics Data System (ADS)

    Adirosi, Elisa; Tokay, Ali; Roberto, Nicoletta; Gorgucci, Eugenio; Montopoli, Mario; Baldini, Luca

    2017-04-01

    Ground based weather radars are highly used to generate rainfall products for meteorological and hydrological applications. However, weather radar quantitative rainfall estimation is obtained at a certain altitude that depends mainly on the radar elevation angle and on the distance from the radar. Therefore, depending on the vertical variability of rainfall, a time-height ambiguity between radar measurement and rainfall at the ground can affect the rainfall products. The vertically pointing radars (such as the Micro Rain Radar, MRR) are great tool to investigate the vertical variability of rainfall and its characteristics and ultimately, to fill the gap between the ground level and the first available radar elevation. Furthermore, the knowledge of rain Drop Size Distribution (DSD) variability is linked to the well-known problem of the non-uniform beam filling that is one of the main uncertainties of Global Precipitation Measurement (GPM) mission Dual frequency Precipitation Radar (DPR). During GPM Ground Validation Iowa Flood Studies (IFloodS) field experiment, data collected with 2D video disdrometers (2DVD), Autonomous OTT Parsivel2 Units (APU), and MRR profilers at different sites were available. In three different sites co-located APU, 2DVD and MRR are available and covered by the S-band Dual Polarimetric Doppler radar (NPOL). The first elevation height of the radar beam varies, among the three sites, between 70 m and 1100 m. The IFloodS set-up has been used to compare disdrometers, MRR and NPOL data and to evaluate the uncertainties of those measurements. First, the performance of disdrometers and MRR in determining different rainfall parameters at ground has been evaluated and then the MRR based parameters have been compared with the ones obtained from NPOL data at the lowest elevations. Furthermore, the vertical variability of DSD and integral rainfall parameters within the MRR bins (from ground to 1085 m each 35 m) has been investigated in order to provide some insight on the variability of the rainfall microphysical characteristics within about 1 km above the ground.

  18. Time Series Analysis of Cholera in Matlab, Bangladesh, during 1988-2001

    PubMed Central

    Kim, Deok Ryun; Yunus, Mohammad; Emch, Michael

    2013-01-01

    The study examined the impact of in-situ climatic and marine environmental variability on cholera incidence in an endemic area of Bangladesh and developed a forecasting model for understanding the magnitude of incidence. Diarrhoea surveillance data collected between 1988 and 2001were obtained from a field research site in Matlab, Bangladesh. Cholera cases were defined as Vibrio cholerae O1 isolated from faecal specimens of patients who sought care at treatment centres serving the Matlab population. Cholera incidence for 168 months was correlated with remotely-sensed sea-surface temperature (SST) and in-situ environmental data, including rainfall and ambient temperature. A seasonal autoregressive integrated moving average (SARIMA) model was used for determining the impact of climatic and environmental variability on cholera incidence and evaluating the ability of the model to forecast the magnitude of cholera. There were 4,157 cholera cases during the study period, with an average of 1.4 cases per 1,000 people. Since monthly cholera cases varied significantly by month, it was necessary to stabilize the variance of cholera incidence by computing the natural logarithm to conduct the analysis. The SARIMA model shows temporal clustering of cholera at one- and 12-month lags. There was a 6% increase in cholera incidence with a minimum temperature increase of one degree celsius in the current month. For increase of SST by one degree celsius, there was a 25% increase in the cholera incidence at currrent month and 18% increase in the cholera incidence at two months. Rainfall did not influenc to cause variation in cholera incidence during the study period. The model forecast the fluctuation of cholera incidence in Matlab reasonably well (Root mean square error, RMSE: 0.108). Thus, the ambient and sea-surface temperature-based model could be used in forecasting cholera outbreaks in Matlab. PMID:23617200

  19. Potential impact of the May Southern Hemisphere annular mode on the Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Dou, Juan; Wu, Zhiwei; Zhou, Yefan

    2017-04-01

    El Niño-Southern Oscillation (ENSO) is probably a most important external forcing to Indian summer monsoon (ISM) rainfall (ISMR), yet the observed ENSO-ISMR relationship has become weak in recent years. It's essential to explore other predominant modes of variability which can contribute to the ISMR. As the leading mode of the variability in Southern Hemisphere (SH) extratropical atmospheric circulation, the SH annular mode (SAM) has potential influence both on the northern and southern hemispheric climate. The present study investigates the relationship between the SAM and ISMR. It is found that the May SAM exhibits a significant positive correlation with the monsoon precipitation over the Indian sub-continent and the adjacent areas in JunetJuly (JJ). Observational and numerical evidences indicate that the May SAM anomaly can trigger a South Indian Ocean dipole (SIOD) sea surface temperature anomaly (SSTA) through air-sea interactions. The SIOD SSTA persisting into the following months of JJ excites abnormal meridional circulation and modulates the low-level cross-equatorial flow. Accordingly, the ascending (or descending) motion and water vapor transportation are enhanced (or suppressed), which favors more (or less) precipitation over the Indian sub-continent and the adjacent areas. In fact, the SIOD SSTA plays an "ocean bridge" role to "prolong" the influence of the May SAM to the subsequent season and in turn impacts on the ISMR. Moreover, an empirical model is established to forecast the JJ ISMR strength based on the ENSO, Indian Ocean Dipole (IOD) and May SAM. The hindcast is carried out for the period 1979-2014, and performs better than the multimodel ensemble mean (MME) obtained from the Development of a European MME system for seasonal to interannual prediction (DEMETER) project. Since all these predictors can be monitored in real time before the early boreal summer, the empirical model might provide a practical real-time forecast tool for predicting ISMR variations.

  20. Potential impact of the May Southern Hemisphere annular mode on the Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Dou, Juan; Wu, Zhiwei; Zhou, Yefan

    2017-08-01

    El Niño-Southern Oscillation (ENSO) is probably a most important external forcing to Indian summer monsoon (ISM) rainfall (ISMR), yet the observed ENSO-ISMR relationship has become weak in recent years. It's essential to explore other predominant modes of variability which can contribute to the ISMR. As the leading mode of the variability in Southern Hemisphere (SH) extratropical atmospheric circulation, the SH annular mode (SAM) has potential influence both on the northern and southern hemispheric climate. The present study investigates the relationship between the SAM and ISMR. It is found that the May SAM exhibits a significant positive correlation with the monsoon precipitation over the Indian sub-continent and the adjacent areas in June-July (JJ). Observational and numerical evidences indicate that the May SAM anomaly can trigger a South Indian Ocean dipole (SIOD) sea surface temperature anomaly (SSTA) through air-sea interactions. The SIOD SSTA persisting into the following months of JJ excites abnormal meridional circulation and modulates the low-level cross-equatorial flow. Accordingly, the ascending (or descending) motion and water vapor transportation are enhanced (or suppressed), which favors more (or less) precipitation over the Indian sub-continent and the adjacent areas. In fact, the SIOD SSTA plays an "ocean bridge" role to "prolong" the influence of the May SAM to the subsequent season and in turn impacts on the ISMR. Moreover, an empirical model is established to forecast the JJ ISMR strength based on the ENSO, Indian Ocean Dipole and May SAM. The hindcast is carried out for the period 1979-2014, and performs better than the multimodel ensemble mean (MME) obtained from the Development of a European MME system for seasonal to interannual prediction (DEMETER) project. Since all these predictors can be monitored in real time before the early boreal summer, the empirical model might provide a practical real-time forecast tool for predicting ISMR variations.

  1. A paleoclimate rainfall reconstruction in the Murray-Darling Basin (MDB), Australia: 1. Evaluation of different paleoclimate archives, rainfall networks, and reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Ho, Michelle; Kiem, Anthony S.; Verdon-Kidd, Danielle C.

    2015-10-01

    From ˜1997 to 2009 the Murray-Darling Basin (MDB), Australia's largest water catchment and reputed "food bowl," experienced a severe drought termed the "Millennium Drought" or "Big Dry" followed by devastating floods in the austral summers of 2010/2011, 2011/2012, and 2012/2013. The magnitude and severity of these extreme events highlight the limitations associated with assessing hydroclimatic risk based on relatively short instrumental records (˜100 years). An option for extending hydroclimatic records is through the use of paleoclimate records. However, there are few in situ proxies of rainfall or streamflow suitable for assessing hydroclimatic risk in Australia and none are available in the MDB. In this paper, available paleoclimate records are reviewed and those of suitable quality for hydroclimatic risk assessments are used to develop preinstrumental information for the MDB. Three different paleoclimate reconstruction techniques are assessed using two instrumental rainfall networks: (1) corresponding to rainfall at locations where rainfall-sensitive Australian paleoclimate archives currently exist and (2) corresponding to rainfall at locations identified as being optimal for explaining MDB rainfall variability. It is shown that the optimized rainfall network results in a more accurate model of MDB rainfall compared to reconstructions based on rainfall at locations where paleoclimate rainfall proxies currently exist. This highlights the importance of first identifying key locations where existing and as yet unrealized paleoclimate records will be most useful in characterizing variability. These results give crucial insight as to where future investment and research into developing paleoclimate proxies for Australia could be most beneficial, with respect to better understanding instrumental, preinstrumental and potential future variability in the MDB.

  2. Spectral analysis of temporal non-stationary rainfall-runoff processes

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Min; Yeh, Hund-Der

    2018-04-01

    This study treats the catchment as a block box system with considering the rainfall input and runoff output being a stochastic process. The temporal rainfall-runoff relationship at the catchment scale is described by a convolution integral on a continuous time scale. Using the Fourier-Stieltjes representation approach, a frequency domain solution to the convolution integral is developed to the spectral analysis of runoff processes generated by temporal non-stationary rainfall events. It is shown that the characteristic time scale of rainfall process increases the runoff discharge variability, while the catchment mean travel time constant plays the role in reducing the variability of runoff discharge. Similar to the behavior of groundwater aquifers, catchments act as a low-pass filter in the frequency domain for the rainfall input signal.

  3. Estimating the Risk of Domestic Water Source Contamination following Precipitation Events

    PubMed Central

    Eisenhauer, Ian F.; Hoover, Christopher M.; Remais, Justin V.; Monaghan, Andrew; Celada, Marco; Carlton, Elizabeth J.

    2016-01-01

    Climate change is expected to increase precipitation extremes, threatening water quality. In low resource settings, it is unclear which water sources are most vulnerable to contamination following rainfall events. We evaluated the relationship between rainfall and drinking water quality in southwest Guatemala where heavy rainfall is frequent and access to safe water is limited. We surveyed 59 shallow household wells, measured precipitation, and calculated simple hydrological variables. We compared Escherichia coli concentration at wells where recent rainfall had occurred versus had not occurred, and evaluated variability in the association between rainfall and E. coli concentration under different conditions using interaction models. Rainfall in the past 24 hours was associated with greater E. coli concentrations, with the strongest association between rainfall and fecal contamination at wells where pigs were nearby. Because of the small sample size, these findings should be considered preliminary, but provide a model to evaluate vulnerability to climate change. PMID:27114298

  4. Indian Ocean dipole and rainfall drive a Moran effect in East Africa malaria transmission.

    PubMed

    Chaves, Luis Fernando; Satake, Akiko; Hashizume, Masahiro; Minakawa, Noboru

    2012-06-15

    Patterns of concerted fluctuation in populations-synchrony-can reveal impacts of climatic variability on disease dynamics. We examined whether malaria transmission has been synchronous in an area with a common rainfall regime and sensitive to the Indian Ocean Dipole (IOD), a global climatic phenomenon affecting weather patterns in East Africa. We studied malaria synchrony in 5 15-year long (1984-1999) monthly time series that encompass an altitudinal gradient, approximately 1000 m to 2000 m, along Lake Victoria basin. We quantified the association patterns between rainfall and malaria time series at different altitudes and across the altitudinal gradient encompassed by the study locations. We found a positive seasonal association of rainfall with malaria, which decreased with altitude. By contrast, IOD and interannual rainfall impacts on interannual disease cycles increased with altitude. Our analysis revealed a nondecaying synchrony of similar magnitude in both malaria and rainfall, as expected under a Moran effect, supporting a role for climatic variability on malaria epidemic frequency, which might reflect rainfall-mediated changes in mosquito abundance. Synchronous malaria epidemics call for the integration of knowledge on the forcing of malaria transmission by environmental variability to develop robust malaria control and elimination programs.

  5. The Glacial-Interglacial summer monsoon recorded in southwest Sulawesi speleothems: Evidence for sea level thresholds driving tropical monsoon strength

    NASA Astrophysics Data System (ADS)

    Kimbrough, A. K.; Gagan, M. K.; Dunbar, G. B.; Krause, C.; Di Nezio, P. N.; Hantoro, W. S.; Cheng, H.; Edwards, R. L.; Shen, C. C.; Sun, H.; Cai, B.; Rifai, H.

    2016-12-01

    Southwest Sulawesi lies within the Indo-Pacific Warm Pool (IPWP), at the center of atmospheric convection for two of the largest circulation cells on the planet, the meridional Hadley Cell and zonal Indo-Pacific Walker Circulation. Due to the geographic coincidence of these circulation cells, southwest Sulawesi serves as a hotspot for changes in tropical Pacific climate variability and Australian-Indonesian summer monsoon (AISM) strength over glacial-interglacial (G-I) timescales. The work presented here spans 386 - 127 ky BP, including glacial terminations IV ( 340 ky BP) and both phases of TIII (TIII 248 ky BP and TIIIa 217 ky BP). This record, along with previous work from southwest Sulawesi spanning the last 40 kyr, reveals coherent climatic features over three complete G-I cycles. The multi-stalagmite Sulawesi speleothem δ18O record demonstrates that on G-I timescales, the strength of the AISM is most sensitive to changes in sea level and its impact on the regional distribution of land and shallow ocean. Stalagmite δ18O and trace element (Mg/Ca) data indicate a rapid increase in rainfall at glacial terminations and wet interglacials. TIV, TIII, TIIIa, and TI are each characterized by an abrupt 3‰ decrease in δ18O that coincides with sea level rise and flooding of the Sunda and Sahul shelves. Strong evidence for a sea level (flooding/exposure) threshold is found throughout the southwest Sulawesi record. This is most clearly demonstrated over the period 230 - 212 ky BP (MIS 7d-7c), when a sea level fall to only -80 to -60 m for 10 kyr results in a weakened AISM and glacial conditions, followed by a full termination. Taken together, both glaciations and glacial terminations imply a sea level threshold driving the AISM between two primary levels of intensity (`interglacial' & `glacial'). These massive, sea-level driven shifts in AISM strength are superimposed on precession-scale variability associated with boreal fall insolation at the equator, indicating sensitivity to tropical Pacific influence on warm pool convection.

  6. Analysis of global oceanic rainfall from microwave data

    NASA Technical Reports Server (NTRS)

    Rao, M.

    1978-01-01

    A Global Rainfall Atlas was prepared from Nimbus 5 ESMR data. The Atlas includes global oceanic rainfall maps based on weekly, monthly and seasonal averages, complete through the end of 1975. Similar maps for 1973 and 1974 were studied. They reveal several previously unknown areas of enhanced rainfall and preliminary data on interannual variability of oceanic rainfall.

  7. Droughts, rainfall and rural water supply in northern Nigeria

    NASA Astrophysics Data System (ADS)

    Tarhule, Aondover Augustine

    Knowledge concerning various aspects of drought and water scarcity is required to predict, and to articulate strategies to minimize the effects of future events. This thesis investigated different aspects of droughts and rainfall variability at several time scales and described the dynamics of water supply and use in a rural village in northeastern Nigeria. The parallel existence of measured climatic records and information on famine/folklore events is utilized to calibrate the historical information against the measured data. It is shown that famines or historical droughts occurred when the cumulative deficit of rainfall fell below 1.3 times the standard deviation of the long-term mean rainfall. The study demonstrated that famine chronologies are adequate proxy for drought events, providing a means for the reconstruction of the drought/climatic history of the region. Analysis of recent changes in annual rainfall characteristics show that the series of annual rainfall and number of rain days experienced a discontinuity during the 1960's, caused largely by the decrease in the frequency of moderate to high intensity rain events. The periods prior to and after the change point are homogenous and provide an objective basis for the estimation of changes in rainfall characteristics, drought parameters and for demarcating the region into sub-zones. Rainfall variability was unaffected by the abrupt change. Furthermore, the variability is independently distributed and adequately described by the normal distribution. This allows estimates of the probability of various magnitudes or thresholds of variability. The effects of droughts and rainfall variability are most strongly felt in rural areas. Analysis of the patterns of water supply and use in a typical rural village revealed that the hydrologic system is driven by the local rainfall. Perturbations in the rains propagate through the system with short lag time between the various components. Where fadama aquifers occur, they offer a major supplement of water for six to seven months during the dry season. Under traditional systems, the pattern of water withdrawal from the fadama aquifers is designed to accommodate the diverse interests of different groups and to minimize the potential for conflict. The results contribute to our understanding of drought and water scarcity and are useful in various practical applications.

  8. On the dynamic forcing of short-term climate fluctuations by feedback mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, E.R.

    1979-09-01

    The energies involved in the general circulation of the atmosphere, especially the zonal available potential energy, show considerable interannual variability, suggesting the presence of various internal feedback mechanisms in the ocean-atmosphere system. Sea-surface temperature (SST) variations appear to have some effect on the hydrological cycle. The possible existence of feedback mechanisms between ocean and atmosphere seem to be evident in some of the data from the North Pacific and North Atlantic. One of these proposed mechanisms involves the variation in the convergence between the North and South Pacific trade-wind systems and is strongly reflected in rainfall variability within the drymore » region of the equatorial Pacific. Similar variations appear in low-latitude SST anomalies. The convergence between the two trade-wind systems in the Atlantic region also undergoes marked interannual variations. This quasi-biennial oscillation (QBO) in trade-wind convergence over the Atlantic appears to be tied to the global QBO of equatorial stratospheric winds and to regional rainfall regimes in the dry region of northeastern Brazil. A variability pattern of SST's with a QBO has been detected off the coast of Senegal, in the Gulf of Guinea and even in the Gulf Stream as it leaves the North American continental shelf. Possible physical connections between some of these QBO's are pointed out by a hypothetical feedback model. It is also suggested that interaction of a QBO with the annual cycle may lead to beating frequencies resembling climatic trends of a duration of several years.« less

  9. Holocene climate variability and oceanographic changes off western South Africa

    NASA Astrophysics Data System (ADS)

    Zhao, Xueqin; Dupont, Lydie; E Meadows, Michael; Schefuß, Enno; Bouimetarhan, Ilham; Wefer, Gerold

    2017-04-01

    South Africa is located at a critical transition zone between subtropical and warm-temperate climate zones influenced by the Indian and Atlantic oceans. Presently, the seasonal changes of atmospheric and oceanic systems induce a pronounced rainfall seasonality comprised of two different rainfall zones over South Africa. How did this seasonality develop during the Holocene? To obtain a better understanding of how South African climates have evolved during the Holocene, we conduct a comprehensive spatial-temporal approach including pollen and dinoflagellate cyst records from marine sediment samples retrieved from the Namaqualand mudbelt, a Holocene terrigenous mud deposit on the shelf of western South Africa. The representation of different vegetation communities in western South Africa is assessed through pollen analysis of surface sediments. This approach allows for climate reconstructions of the summer rainfall zone (SRZ) using Group 1 (Poaceae, Cyperaceae, Phragmites-type and Typha) and winter rainfall zone (WRZ) using Group 2 (Restionaceae, Ericaceae, Anthospermum, Stoebe/Elytropappus-type, Cliffortia, Passerina, Artemisia-type and Pentzia-type) from a single marine archive. The fossil pollen data from gravity core GeoB8331-4 indicate contrasting climate patterns in the SRZ and WRZ especially during the early and middle Holocene. The rainfall amount in the SRZ is dominated by insolation forcing, while in the WRZ it is mainly attributed to the latitudinal position of the southern westerlies. Dinoflagellate cyst data show significantly different oceanographic conditions associated with climate changes on land. High percentages of autotrophic taxa like Operculodinium centrocarpum and Spiniferites spp. indicate warm and stratified conditions during the early Holocene, suggesting reduced upwelling. In contrast, the middle Holocene is characterized by a strong increase in heterotrophic taxa in particular Lejeunecysta paratenella and Echinidinium spp., indicating cool and nutrient-rich waters with active upwelling. Thus, sea surface temperatures are dominated by upwelling dynamics influenced by the latitudinal position of the southern westerlies rather than warm waters via the Agulhas leakage. The paleo-productivity changes during the late Holocene are controlled by the freshwater influx of the Orange River indicated by abundant fluvial-related taxa such as Brigantedinium spp., Protoperidinium americanum and Lejeunecysta oliva. This corroborates the increase of Poaceae/Asteraceae ratio suggesting increased summer rainfall in the SRZ. Therefore, the terrestrial (pollen) and marine (dinoflagellate cyst) records generated from the same sediment sequence enable a clear understanding of the mechanisms driving variability in the Holocene of South Africa and provide significant insight into the land-ocean linkages.

  10. Spatial and Temporal Variation in the Effects of Climatic Variables on Dugong Calf Production

    PubMed Central

    Fuentes, Mariana M. P. B.; Delean, Steven; Grayson, Jillian; Lavender, Sally; Logan, Murray; Marsh, Helene

    2016-01-01

    Knowledge of the relationships between environmental forcing and demographic parameters is important for predicting responses from climatic changes and to manage populations effectively. We explore the relationships between the proportion of sea cows (Dugong dugon) classified as calves and four climatic drivers (rainfall anomaly, Southern Oscillation El Niño Index [SOI], NINO 3.4 sea surface temperature index, and number of tropical cyclones) at a range of spatially distinct locations in Queensland, Australia, a region with relatively high dugong density. Dugong and calf data were obtained from standardized aerial surveys conducted along the study region. A range of lagged versions of each of the focal climatic drivers (1 to 4 years) were included in a global model containing the proportion of calves in each population crossed with each of the lagged versions of the climatic drivers to explore relationships. The relative influence of each predictor was estimated via Gibbs variable selection. The relationships between the proportion of dependent calves and the climatic drivers varied spatially and temporally, with climatic drivers influencing calf counts at sub-regional scales. Thus we recommend that the assessment of and management response to indirect climatic threats on dugongs should also occur at sub-regional scales. PMID:27355367

  11. Interannual variability of the Submonthly Wave Patterns over the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Ko, K. C.

    2017-12-01

    This study examines the interannual variability of the 5-16 day wave patterns by separating them into active (A4mV) and inactive (I4mV) years on the basis of the 4-month (July-October) variance of a Japan-South China Sea (JSCS) circulation index from 1979 to 2013. The sea surface temperature for the A4mV years exhibited an ENSO pattern but a reversed anomaly pattern was observed in the I4mV years. Composite results indicate that tropical cyclone (TC) tracks are closely linked to the activity of the wave patterns. When the wave patterns were strong with a solid wave structure in the A4mV years, TCs would follow the propagation routes of the cyclonic anomalies of the wave patterns and separated into two types of tracks: straight-moving and recurving. However, in the I4mV years when the wave patterns were weak and poorly organized, the shapes of the cyclonic anomalies became irregular and sporadic. The weakening structure of the wave patterns in the I4mV years would induce the TCs to undergo more scattered routes near Taiwan and east coast of China. Therefore, Taiwan experienced more rainfall in the I4mV years.

  12. Variability in rainfall at monitoring stations and derivation of a long-term rainfall intensity record in the Grand Canyon Region, Arizona, USA

    USGS Publications Warehouse

    Caster, Joshua J.; Sankey, Joel B.

    2016-04-11

    In this study, we examine rainfall datasets of varying temporal length, resolution, and spatial distribution to characterize rainfall depth, intensity, and seasonality for monitoring stations along the Colorado River within Marble and Grand Canyons. We identify maximum separation distances between stations at which rainfall measurements might be most useful for inferring rainfall characteristics at other locations. We demonstrate a method for applying relations between daily rainfall depth and intensity, from short-term high-resolution data to lower-resolution longer-term data, to synthesize a long-term record of daily rainfall intensity from 1950–2012. We consider the implications of our spatio-temporal characterization of rainfall for understanding local landscape change in sedimentary deposits and archaeological sites, and for better characterizing past and present rainfall and its potential role in overland flow erosion within the canyons. We find that rainfall measured at stations within the river corridor is spatially correlated at separation distances of tens of kilometers, and is not correlated at the large elevation differences that separate stations along the Colorado River from stations above the canyon rim. These results provide guidance for reasonable separation distances at which rainfall measurements at stations within the Grand Canyon region might be used to infer rainfall at other nearby locations along the river. Like other rugged landscapes, spatial variability between rainfall measured at monitoring stations appears to be influenced by canyon and rim physiography and elevation, with preliminary results suggesting the highest elevation landform in the region, the Kaibab Plateau, may function as an important orographic influence. Stations at specific locations within the canyons and along the river, such as in southern (lower) Marble Canyon and eastern (upper) Grand Canyon, appear to have strong potential to receive high-intensity rainfall that can generate runoff which may erode alluvium. The characterization of past and present rainfall variability in this study will be useful for future studies that evaluate more spatially continuous datasets in order to better understand the rainfall dynamics within this, and potentially other, deep canyons.

  13. Validation of satellite-based rainfall in Kalahari

    NASA Astrophysics Data System (ADS)

    Lekula, Moiteela; Lubczynski, Maciek W.; Shemang, Elisha M.; Verhoef, Wouter

    2018-06-01

    Water resources management in arid and semi-arid areas is hampered by insufficient rainfall data, typically obtained from sparsely distributed rain gauges. Satellite-based rainfall estimates (SREs) are alternative sources of such data in these areas. In this study, daily rainfall estimates from FEWS-RFE∼11 km, TRMM-3B42∼27 km, CMOPRH∼27 km and CMORPH∼8 km were evaluated against nine, daily rain gauge records in Central Kalahari Basin (CKB), over a five-year period, 01/01/2001-31/12/2005. The aims were to evaluate the daily rainfall detection capabilities of the four SRE algorithms, analyze the spatio-temporal variability of rainfall in the CKB and perform bias-correction of the four SREs. Evaluation methods included scatter plot analysis, descriptive statistics, categorical statistics and bias decomposition. The spatio-temporal variability of rainfall, was assessed using the SREs' mean annual rainfall, standard deviation, coefficient of variation and spatial correlation functions. Bias correction of the four SREs was conducted using a Time-Varying Space-Fixed bias-correction scheme. The results underlined the importance of validating daily SREs, as they had different rainfall detection capabilities in the CKB. The FEWS-RFE∼11 km performed best, providing better results of descriptive and categorical statistics than the other three SREs, although bias decomposition showed that all SREs underestimated rainfall. The analysis showed that the most reliable SREs performance analysis indicator were the frequency of "miss" rainfall events and the "miss-bias", as they directly indicated SREs' sensitivity and bias of rainfall detection, respectively. The Time Varying and Space Fixed (TVSF) bias-correction scheme, improved some error measures but resulted in the reduction of the spatial correlation distance, thus increased, already high, spatial rainfall variability of all the four SREs. This study highlighted SREs as valuable source of daily rainfall data providing good spatio-temporal data coverage especially suitable for areas with limited rain gauges, such as the CKB, but also emphasized SREs' drawbacks, creating avenue for follow up research.

  14. South China Sea summer monsoon onset in relation to the off-equatorial ITCZ

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Chan, Johnny Chung-Leung; Li, Chongyin

    2005-09-01

    Observations of the South China Sea summer monsoon (SCSSM) demonstrate the different features between the early and late onsets of the monsoon. The determining factor related to the onset and the resultant monsoon rainfall might be the off-equatorial ITCZ besides the land-sea thermal contrast. The northward-propagating cumulus convection over the northern Indian Ocean could enhance the monsoon trough so that the effect of the horizontal advection of moisture and heat is substantially increased, thus westerlies can eventually penetrate and prevail over the South China Sea (SCS) region.

  15. Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall.

    PubMed

    Dave, Prashant; Bhushan, Mani; Venkataraman, Chandra

    2017-12-11

    Aerosol abundance over South Asia during the summer monsoon season, includes dust and sea-salt, as well as, anthropogenic pollution particles. Using observations during 2000-2009, here we uncover repeated short-term rainfall suppression caused by coincident aerosols, acting through atmospheric stabilization, reduction in convection and increased moisture divergence, leading to the aggravation of monsoon break conditions. In high aerosol-low rainfall regions extending across India, both in deficient and normal monsoon years, enhancements in aerosols levels, estimated as aerosol optical depth and absorbing aerosol index, acted to suppress daily rainfall anomaly, several times in a season, with lags of a few days. A higher frequency of prolonged rainfall breaks, longer than seven days, occurred in these regions. Previous studies point to monsoon rainfall weakening linked to an asymmetric inter-hemispheric energy balance change attributed to aerosols, and short-term rainfall enhancement from radiative effects of aerosols. In contrast, this study uncovers intraseasonal short-term rainfall suppression, from coincident aerosol forcing over the monsoon region, leading to aggravation of monsoon break spells. Prolonged and intense breaks in the monsoon in India are associated with rainfall deficits, which have been linked to reduced food grain production in the latter half of the twentieth century.

  16. Midweek Intensification of Rain in the U.S.: Does Air Pollution Invigorate Storms?

    NASA Technical Reports Server (NTRS)

    Bell, T. L.; Rosenfeld, D.; Hahnenberger, M.

    2005-01-01

    The effect of pollution on rainfall has been observed to depend both on the type of pollution and the precipitating environment. The climatological consequences of pollution for rainfall are uncertain. In some urban areas, pollution varies with the day of the week because of weekly variations in human activity, in effect providing a repeated experiment on the effects of pollution. Weekly variations in temperature, pressure, cloud characteristics, hails and lightning are observed in many areas. Observing a weekly cycle in rainfall statistics has proven to be more difficult, although there is some evidence for it. Here we examine rainfall statistics from the Tropical Rainfall Measuring Mission (TRMM) satellite over the southern U.S. and adjacent waters, and find that there is a distinct, statistically significant weekly cycle in summertime rainfall over the southeast U.S., as well as weekly variations in rainfall over the nearby Atlantic and the Gulf of Mexico. Rainfall over land peaks in the middle of the week, suggesting that summer rainfall on large scales may increase as pollution levels rise. Both rain statistics over land and what appear to be compensating effects over adjacent seas support the suggestion that air pollution invigorates convection and outflow aloft.

  17. Using CHIRPS Rainfall Dataset to detect rainfall trends in West Africa

    NASA Astrophysics Data System (ADS)

    Blakeley, S. L.; Husak, G. J.

    2016-12-01

    In West Africa, agriculture is often rain-fed, subjecting agricultural productivity and food availability to climate variability. Agricultural conditions will change as warming temperatures increase evaporative demand, and with a growing population dependent on the food supply, farmers will become more reliant on improved adaptation strategies. Development of such adaptation strategies will need to consider West African rainfall trends to remain relevant in a changing climate. Here, using the CHIRPS rainfall product (provided by the Climate Hazards Group at UC Santa Barbara), I examine trends in West African rainfall variability. My analysis will focus on seasonal rainfall totals, the structure of the rainy season, and the distribution of rainfall. I then use farmer-identified drought years to take an in-depth analysis of intra-seasonal rainfall irregularities. I will also examine other datasets such as potential evapotranspiration (PET) data, other remotely sensed rainfall data, rain gauge data in specific locations, and remotely sensed vegetation data. Farmer bad year data will also be used to isolate "bad" year markers in these additional datasets to provide benchmarks for identification in the future of problematic rainy seasons.

  18. Uncertainties on the definition of critical rainfall patterns for debris-flows triggering. Results from the Rebaixader monitoring site (Central Pyrenees)

    NASA Astrophysics Data System (ADS)

    Hürlimann, Marcel; Abancó, Clàudia; Moya, Jose; Berenguer, Marc

    2015-04-01

    Empirical rainfall thresholds are a widespread technique in debris-flow hazard assessment and can be established by statistical analysis of historic data. Typically, data from one or several rain gauges located nearby the affected catchment is used to define the triggering conditions. However, this procedure has been demonstrated not to be accurate enough due to the spatial variability of convective rainstorms. In 2009, a monitoring system was installed in the Rebaixader catchment, Central Pyrenees (Spain). Since then, 28 torrential flows (debris flows and debris floods) have occurred and rainfall data of 25 of them are available with a 5-minutes frequency of recording ("event rainfalls"). Other 142 rainfalls that did not trigger events ("no event rainfalls) were also collected and analysed. The goal of this work was threefold: a) characterize rainfall episodes in the Rebaixader catchment and compare rainfall data that triggered torrential events and others that did not; b) define and test Intensity-Duration (ID) thresholds using rainfall data measured inside the catchment; c) estimate the uncertainty derived from the use of rain gauges located outside the catchment based on the spatial correlation depicted by radar rainfall maps. The results of the statistical analysis showed that the parameters that more distinguish between the two populations of rainfalls are the rainfall intensities, the mean rainfall and the total precipitation. On the other side, the storm duration and the antecedent rainfall are not significantly different between "event rainfalls" and "no event rainfalls". Four different ID rainfall thresholds were derived based on the dataset of the first 5 years and tested using the 2014 dataset. The results of the test indicated that the threshold corresponding to the 90% percentile showed the best performance. Weather radar data was used to analyse the spatial variability of the triggering rainfalls. The analysis indicates that rain gauges outside the catchment may be considered useful or not to describe the rainfall depending on the type of rainfall. For widespread rainfalls, further rain gauges can give a reliable measurement, because the spatial correlation decreases slowly with the distance between the rain gauge and the debris-flow initiation area. Contrarily, local storm cells show higher space-time variability and, therefore, representative rainfall measurements are obtained only by the closest rain gauges. In conclusion, the definition of rainfall thresholds is a delicate task. When the rainfall records are coming from gauges that are outside the catchment under consideration, the data should be carefully analysed and crosschecked with radar data (especially for small convective cells).

  19. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-01-01

    El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  20. Relative Contributions of Mean-State Shifts and ENSO-Driven Variability to Precipitation Changes in a Warming Climate

    NASA Technical Reports Server (NTRS)

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta

    2015-01-01

    The El Nino-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with Coupled General Circulation Models (CGCMs) to investigate how regional precipitation in the 21st century may be affected by changes in both ENSO-driven precipitation variability and slowly-evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of 20th century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in 21st century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with 20th century observations and more stationary during the 21st century. Finally, the model-predicted 21st century rainfall response to cENSO is decomposed into the sum of three terms: 1) the 21st century change in the mean state of precipitation; 2) the historical precipitation response to the cENSO pattern; and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.

  1. Impact of rainfall spatial variability on Flash Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kevin

    2014-05-01

    According to the United States National Hazard Statistics database, flooding and flash flooding have caused the largest number of deaths of any weather-related phenomenon over the last 30 years (Flash Flood Guidance Improvement Team, 2003). Like the storms that cause them, flash floods are very variable and non-linear phenomena in time and space, with the result that understanding and anticipating flash flood genesis is far from straightforward. In the U.S., the Flash Flood Guidance (FFG) estimates the average number of inches of rainfall for given durations required to produce flash flooding in the indicated county. In Europe, flash flood often occurred on small catchments (approximately 100 km2) and it has been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, based on the Flash flood Guidance method, rainfall spatial variability information is introduced in the threshold estimation. As for FFG, the threshold is the number of millimeters of rainfall required to produce a discharge higher than the discharge corresponding to the first level (yellow) warning of the French flood warning service (SCHAPI: Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations). The indexes δ1 and δ2 of Zoccatelli et al. (2010), based on the spatial moments of catchment rainfall, are used to characterize the rainfall spatial distribution. Rainfall spatial variability impacts on warning threshold and on hydrological processes are then studied. The spatially distributed hydrological model MARINE (Roux et al., 2011), dedicated to flash flood prediction is forced with synthetic rainfall patterns of different spatial distributions. This allows the determination of a warning threshold diagram: knowing the spatial distribution of the rainfall forecast and therefore the 2 indexes δ1 and δ2, the threshold value is read on the diagram. A warning threshold diagram is built for each studied catchment. The proposed methodology is applied on three Mediterranean catchments often submitted to flash floods. The new forecasting method as well as the Flash Flood Guidance method (uniform rainfall threshold) are tested on 25 flash floods events that had occurred on those catchments. Results show a significant impact of rainfall spatial variability. Indeed, it appears that the uniform rainfall threshold (FFG threshold) always overestimates the observed rainfall threshold. The difference between the FFG threshold and the proposed threshold ranges from 8% to 30%. The proposed methodology allows the calculation of a threshold more representative of the observed one. However, results strongly depend on the related event duration and on the catchment properties. For instance, the impact of the rainfall spatial variability seems to be correlated with the catchment size. According to these results, it seems to be interesting to introduce information on the catchment properties in the threshold calculation. Flash Flood Guidance Improvement Team, 2003. River Forecast Center (RFC) Development Management Team. Final Report. Office of Hydrologic Development (OHD), Silver Spring, Mary-land. Le Lay, M. and Saulnier, G.-M., 2007. Exploring the signature of climate and landscape spatial variabilities in flash flood events: Case of the 8-9 September 2002 Cévennes-Vivarais catastrophic event. Geophysical Research Letters, 34(L13401), doi:10.1029/2007GL029746. Roux, H., Labat, D., Garambois, P.-A., Maubourguet, M.-M., Chorda, J. and Dartus, D., 2011. A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments. Nat. Hazards Earth Syst. Sci. J1 - NHESS, 11(9), 2567-2582. Zoccatelli, D., Borga, M., Zanon, F., Antonescu, B. and Stancalie, G., 2010. Which rainfall spatial information for flash flood response modelling? A numerical investigation based on data from the Carpathian range, Romania. Journal of Hydrology, 394(1-2), 148-161.

  2. Modelling Ecuador's rainfall distribution according to geographical characteristics.

    NASA Astrophysics Data System (ADS)

    Tobar, Vladimiro; Wyseure, Guido

    2017-04-01

    It is known that rainfall is affected by terrain characteristics and some studies had focussed on its distribution over complex terrain. Ecuador's temporal and spatial rainfall distribution is affected by its location on the ITCZ, the marine currents in the Pacific, the Amazon rainforest, and the Andes mountain range. Although all these factors are important, we think that the latter one may hold a key for modelling spatial and temporal distribution of rainfall. The study considered 30 years of monthly data from 319 rainfall stations having at least 10 years of data available. The relatively low density of stations and their location in accessible sites near to main roads or rivers, leave large and important areas ungauged, making it not appropriate to rely on traditional interpolation techniques to estimate regional rainfall for water balance. The aim of this research was to come up with a useful model for seasonal rainfall distribution in Ecuador based on geographical characteristics to allow its spatial generalization. The target for modelling was the seasonal rainfall, characterized by nine percentiles for each one of the 12 months of the year that results in 108 response variables, later on reduced to four principal components comprising 94% of the total variability. Predictor variables for the model were: geographic coordinates, elevation, main wind effects from the Amazon and Coast, Valley and Hill indexes, and average and maximum elevation above the selected rainfall station to the east and to the west, for each one of 18 directions (50-135°, by 5°) adding up to 79 predictors. A multiple linear regression model by the Elastic-net algorithm with cross-validation was applied for each one of the PC as response to select the most important ones from the 79 predictor variables. The Elastic-net algorithm deals well with collinearity problems, while allowing variable selection in a blended approach between the Ridge and Lasso regression. The model fitting produced explained variances of 59%, 81%, 49% and 17% for PC1, PC2, PC3 and PC4, respectively, backing up the hypothesis of good correlation between geographical characteristics and seasonal rainfall patterns (comprised in the four principal components). With the obtained coefficients from the regression, the 108 rainfall percentiles for each station were back estimated giving very good results when compared with the original ones, with an overall 60% explained variance.

  3. Joint influence of the Indo-Pacific Warm Pool and Northern Arabian Sea Temperatures on the Indian Summer Monsoon in a Global Climate Model Simulation

    NASA Astrophysics Data System (ADS)

    Befort, Daniel J.; Leckebusch, Gregor C.; Cubasch, Ulrich

    2016-04-01

    Proxy-based studies confirmed that the Indian Summer Monsoon (ISM) shows large variations during the Holocene. These changes might be explained by changes in orbital conditions and solar insolation but are also thought to be associated to changes in oceanic conditions, e.g. over the Indo-Pacific-Warm-Pool region. However, due to the nature of these (proxy-based) analyses no conclusion about atmospheric circulation changes during dry and wet epochs are possible. Here, a fully-coupled global climate simulation (AOGCM) covering the past 6000 years is analysed regarding ISM variability. Several dry and wet epochs are found, the most striking around 2ka BP (dry) and 1.7ka BP (wet). As only orbital parameters change during integration, we expect these "shorter-term" changes to be associated with changes in oceanic conditions. During 1.7ka BP the sea surface temperatures (SST) over the Northern Arabian Sea (NARAB) are significantly warmer compared to 2ka BP, whereas cooler conditions are found over the western Pacific Ocean. Additionally, significant differences are found over large parts of the North Atlantic. To explain in how far these different ocean basins are responsible for anomalous conditions during 1.7ka BP, several sensitivity experiments with changed SST/SIC conditions are carried out. It is found that neither the SST's in the Pacific nor in the Indian Ocean are able to reproduce the anomalous rainfall and atmospheric circulation patterns during 1.7ka on its own. Instead, anomalous dry conditions during 2ka BP and wet conditions during 1.7ka BP are associated with a shift of the Indo-Pacific-Warm-Pool (IPWP) and simultaneous anomalous sea-surface temperatures over the NARAB region. Eventually, it is tested in how far this hypothesis holds true for other dry and wet events in the AOGCM data during the whole 6000 years. In general, a shift of the IPWP without anomalous SST conditions over the NARAB region (and vice versa) is not sufficient to cause long-lasting rainfall variations over India on a centennial time-scale.

  4. The Impact of Model and Rainfall Forcing Errors on Characterizing Soil Moisture Uncertainty in Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.

    2013-01-01

    The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.

  5. A study of the Merritt Island, Florida sea breeze flow regimes and their effect on surface heat and moisture fluxes

    NASA Technical Reports Server (NTRS)

    Rubes, M. T.; Cooper, H. J.; Smith, E. A.

    1993-01-01

    Data collected during the Convective and Precipitation/Electrification Experiment were analyzed as part of an investigation of the sea breeze in the vicinity of Merritt Island, Florida. Analysis of near-surface divergence fields shows that the classical 24-hour oscillation in divergence over the island due to the direct sea breeze circulation is frequently disrupted and exhibits two distinct modes: the classical sea breeze pattern and deviations from that pattern. A comparison of clear day surface energy fluxes with fluxes on other days indicates that changes in magnitudes were dominated by the presence or absence of clouds. Non-classical sea breeze days tended to lose more available energy in the morning than classical sea breeze days due to earlier development of small cumulus over the island. A composite storm of surface winds, surface energy fluxes, rainfall, and satellite visible data was constructed. A spectral transmittance over the visible wavelengths for the cloud cover resulting from the composite storm was calculated. It is shown that pre-storm transmittances of 0.8 fall to values near 0.1 as the downdraft moves directly over the site. It is also found that under post-composite storm conditions of continuous clear sky days, 3.5 days are required to evaporate back into the atmosphere the latent heat energy lost to the surface by rainfall.

  6. A sound budget for the southeastern Bering Sea: measuring wind, rainfall, shipping, and other sources of underwater sound.

    PubMed

    Nystuen, Jeffrey A; Moore, Sue E; Stabeno, Phyllis J

    2010-07-01

    Ambient sound in the ocean contains quantifiable information about the marine environment. A passive aquatic listener (PAL) was deployed at a long-term mooring site in the southeastern Bering Sea from 27 April through 28 September 2004. This was a chain mooring with lots of clanking. However, the sampling strategy of the PAL filtered through this noise and allowed the background sound field to be quantified for natural signals. Distinctive signals include the sound from wind, drizzle and rain. These sources dominate the sound budget and their intensity can be used to quantify wind speed and rainfall rate. The wind speed measurement has an accuracy of +/-0.4 m s(-1) when compared to a buoy-mounted anemometer. The rainfall rate measurement is consistent with a land-based measurement in the Aleutian chain at Cold Bay, AK (170 km south of the mooring location). Other identifiable sounds include ships and short transient tones. The PAL was designed to reject transients in the range important for quantification of wind speed and rainfall, but serendipitously recorded peaks in the sound spectrum between 200 Hz and 3 kHz. Some of these tones are consistent with whale calls, but most are apparently associated with mooring self-noise.

  7. Study of the Formation and Evolution of Precipitation Induced Sea Surface Salinity Minima in the Tropical Pacific Using HYCOM

    NASA Astrophysics Data System (ADS)

    Gallagher, R. L.

    2016-02-01

    During heavy rain events in the tropics, areas of relatively low salinity water collect on the ocean surface. Rainfall events increase the buoyancy of the ocean surface and impact upper ocean salinity and temperature profiles. This resists downward mixing and as a result can persist (SPURS II planning group, 2012; Oceanography 28(1) 150-159). Salinity at the surface adjusts through advective and diffusive mixing processes (Scott, J. et al, 2013; AGU Fall meeting abstracts). This project investigates the upper ocean salinity response in both advection and diffusion dominated regions. The changes in ocean surface salinity are tracked before, during, and after rainfall events. Data from a standard oceanographic model, HYCOM, are used to identify areas where each surface process is significant. Rainfall events are identified using a TRMM dataset. It provides a tropical rainfall analysis which uses amalgamated satellite data to develop detailed global precipitation grids between 50 o north and south latitude. TRMM is useful due its high temporal and spatial resolutions. The salinity response in HYCOM is tested against simple theoretical advective and diffusive mixing models. The magnitude of sea surface salinity minima, their persistence and the precision by which HYCOM can resolve these phenomena are of interest.

  8. Reconstruction of rainfall in Zafra (southwest Spain) from 1750 to 1840 from documentary sources

    NASA Astrophysics Data System (ADS)

    Fernández-Fernández, M. I.; Gallego, M. C.; Domínguez-Castro, F.; Vaquero, J. M.; Moreno González, J. M.; Castillo Durán, J.

    2011-11-01

    This work presents the first high-resolution reconstruction of rainfall in southwestern Spain during the period 1750-1840. The weather descriptions used are weekly reports describing the most relevant events that occurred in the Duchy of Feria. An index was defined to characterise the weekly rainfall. Monthly indices were obtained by summing the corresponding weekly indices, obtaining cumulative monthly rainfall indices. The reconstruction method consisted of establishing a linear correlation between the monthly rainfall index and monthly instrumental data (1960-1990). The correlation coefficients were greater than 0.80 for all months. The rainfall reconstruction showed major variability similar to natural variability. The reconstructed rainfall series in Zafra was compared with the rainfall series of Cadiz, Gibraltar and Lisbon for the period 1750-1840, with all four series found to have a similar pattern. The influence of the North Atlantic Oscillation (NAO) on the winter rainfall reconstruction was found to behave similarly to that of modern times. Other studies described are of the SLP values over the entire North Atlantic in the months with extreme values of rainfall, and unusual meteorological events (hail, frost, storms and snowfall) in the reports of the Duchy of Feria.

  9. Tree ring reconstructed rainfall over the southern Amazon Basin

    NASA Astrophysics Data System (ADS)

    Lopez, Lidio; Stahle, David; Villalba, Ricardo; Torbenson, Max; Feng, Song; Cook, Edward

    2017-07-01

    Moisture sensitive tree ring chronologies of Centrolobium microchaete have been developed from seasonally dry forests in the southern Amazon Basin and used to reconstruct wet season rainfall totals from 1799 to 2012, adding over 150 years of rainfall estimates to the short instrumental record for the region. The reconstruction is correlated with the same atmospheric variables that influence the instrumental measurements of wet season rainfall. Anticyclonic circulation over midlatitude South America promotes equatorward surges of cold and relatively dry extratropical air that converge with warm moist air to form deep convection and heavy rainfall over this sector of the southern Amazon Basin. Interesting droughts and pluvials are reconstructed during the preinstrumental nineteenth and early twentieth centuries, but the tree ring reconstruction suggests that the strong multidecadal variability in instrumental and reconstructed wet season rainfall after 1950 may have been unmatched since 1799.

  10. Characterizing multiscale variability of zero intermittency in spatial rainfall

    NASA Technical Reports Server (NTRS)

    Kumar, Praveen; Foufoula-Georgiou, Efi

    1994-01-01

    In this paper the authors study how zero intermittency in spatial rainfall, as described by the fraction of area covered by rainfall, changes with spatial scale of rainfall measurement or representation. A statistical measure of intermittency that describes the size distribution of 'voids' (nonrainy areas imbedded inside rainy areas) as a function of scale is also introduced. Morphological algorithms are proposed for reconstructing rainfall intermittency at fine scales given the intermittency at coarser scales. These algorithms are envisioned to be useful in hydroclimatological studies where the rainfall spatial variability at the subgrid scale needs to be reconstructed from the results of synoptic- or mesoscale meteorological numerical models. The developed methodologies are demsonstrated and tested using data from a severe springtime midlatitude squall line and a mild midlatitude winter storm monitored by a meteorological radar in Norman, Oklahoma.

  11. SUBPIXEL-SCALE RAINFALL VARIABILITY AND THE EFFECTS ON SEPARATION OF RADAR AND GAUGE RAINFALL ERRORS

    EPA Science Inventory

    One of the primary sources of the discrepancies between radar-based rainfall estimates and rain gauge measurements is the point-area difference, i.e., the intrinsic difference in the spatial dimensions of the rainfall fields that the respective data sets are meant to represent. ...

  12. Enhanced future variability during India's rainy season

    NASA Astrophysics Data System (ADS)

    Menon, Arathy; Levermann, Anders; Schewe, Jacob

    2013-04-01

    The Indian summer monsoon shapes the livelihood of a large share of the world's population. About 80% of annual precipitation over India occurs during the monsoon season from June through September. Next to its seasonal mean rainfall the day-to-day variability is crucial for the risk of flooding, national water supply and agricultural productivity. Here we show that the latest ensemble of climate model simulations, prepared for the IPCC's AR-5, consistently projects significant increases in day-to-day rainfall variability under unmitigated climate change. While all models show an increase in day-to-day variability, some models are more realistic in capturing the observed seasonal mean rainfall over India than others. While no model's monsoon rainfall exceeds the observed value by more than two standard deviations, half of the models simulate a significantly weaker monsoon than observed. The relative increase in day-to-day variability by the year 2100 ranges from 15% to 48% under the strongest scenario (RCP-8.5), in the ten models which capture seasonal mean rainfall closest to observations. The variability increase per degree of global warming is independent of the scenario in most models, and is 8% +/- 4% per K on average. This consistent projection across 20 comprehensive climate models provides confidence in the results and suggests the necessity of profound adaptation measures in the case of unmitigated climate change.

  13. Intra-seasonal rainfall variability during the maize growing season in the northern lowlands of Lesotho

    NASA Astrophysics Data System (ADS)

    Tongwane, Mphethe Isaac; Moeletsi, Mokhele Edmond

    2015-05-01

    Intra-seasonal rainfall distribution was identified as a priority gap that needs to be addressed for southern Africa to cope with agro-meteorological risks. The region in the northwest of Lesotho is appropriate for crop cultivation due to its relatively favourable climatic conditions and soils. High rainfall variability is often blamed for poor agricultural production in this region. This study aims to determine the onset of rains, cessation of rains and rainy season duration using historical climate data. Temporal variability of these rainy season characteristics was also investigated. The earliest and latest onset dates of the rainy season are during the last week of October at Butha-Buthe and the third week of November at Mapoteng, respectively. Cessation of the season is predominantly in the first week of April making the season approximately 137-163 days long depending on the location. Average seasonal rainfall ranged from 474 mm at Mapoteng to 668 mm at Butha-Buthe. Onset and cessation of the rainfall season vary by 4-7 weeks and 1 week, respectively. Mean coefficient of variation of seasonal rainfall is 39 %, but monthly variations are higher. These variations make annual crop management and planning difficult each year. Trends show a decrease in the rainfall amounts but improvements in both the temporal distribution of annual rainfall, onset and cessation dates.

  14. Combined effects of short-term rainfall patterns and soil texture on nitrogen cycling -- A Modeling Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, C.; Riley, W.J.

    2009-11-01

    Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil-moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical systemmore » in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, N{sub 2}, and N{sub 2}O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH{sub 3}, NO, N{sub 2}O and NO{sub 3}{sup -} fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N{sub 2}O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling responses to increasing precipitation variability depends on precipitation amount and soil texture, and that accurate prediction of future N cycling and gas effluxes requires models with relatively sophisticated representation of the relevant processes.« less

  15. Hydroclimate temporal variability in a coastal Mediterranean watershed: the Tafna basin, North-West Algeria

    NASA Astrophysics Data System (ADS)

    Boulariah, Ouafik; Longobardi, Antonia; Meddi, Mohamed

    2017-04-01

    One of the major challenges scientists, practitioners and stakeholders are nowadays involved in, is to provide the worldwide population with reliable water supplies, protecting, at the same time, the freshwater ecosystems quality and quantity. Climate and land use changes undermine the balance between water demand and water availability, causing alteration of rivers flow regime. Knowledge of hydro-climate variables temporal and spatial variability is clearly helpful to plan drought and flood hazard mitigation strategies but also to adapt them to future environmental scenarios. The present study relates to the coastal semi-arid Tafna catchment, located in the North-West of Algeria, within the Mediterranean basin. The aim is the investigation of streamflow and rainfall indices temporal variability in six sub-basins of the large catchment Tafna, attempting to relate streamflow and rainfall changes. Rainfall and streamflow time series have been preliminary tested for data quality and homogeneity, through the coupled application of two-tailed t test, Pettitt test and Cumsum tests (significance level of 0.1, 0.05 and 0.01). Subsequently maximum annual daily rainfall and streamflow and average daily annual rainfall and streamflow time series have been derived and tested for temporal variability, through the application of the Mann Kendall and Sen's test. Overall maximum annual daily streamflow time series exhibit a negative trend which is however significant for only 30% of the station. Maximum annual daily rainfall also e exhibit a negative trend which is intend significant for the 80% of the stations. In the case of average daily annual streamflow and rainfall, the tendency for decrease in time is unclear and, in both cases, appear significant for 60% of stations.

  16. Characteristics of aggregation of daily rainfall in a middle-latitudes region during a climate variability in annual rainfall amount

    NASA Astrophysics Data System (ADS)

    Lucero, Omar A.; Rozas, Daniel

    Climate variability in annual rainfall occurs because the aggregation of daily rainfall changes. A topic open to debate is whether that change takes place because rainfall becomes more intense, or because it rains more often, or a combination of both. The answer to this question is of interest for water resources planning, hydrometeorological design, and agricultural management. Change in the number of rainy days can cause major disruptions in hydrological and ecological systems, with important economic and social effects. Furthermore, the characteristics of daily rainfall aggregation in ongoing climate variability provide a reference to evaluate the capability of GCM to simulate changes in the hydrologic cycle. In this research, we analyze changes in the aggregation of daily rainfall producing a climate positive trend in annual rainfall in central Argentina, in the southern middle-latitudes. This state-of-the-art agricultural region has a semiarid climate with dry and wet seasons. Weather effects in the region influence world-market prices of several crops. Results indicate that the strong positive trend in seasonal and annual rainfall amount is produced by an increase in number of rainy days. This increase takes place in the 3-month periods January-March (summer) and April-June (autumn). These are also the 3-month periods showing a positive trend in the mean of annual rainfall. The mean of the distribution of annual number of rainy day (ANRD) increased in 50% in a 36-year span (starting at 44 days/year). No statistically significant indications on time changes in the probability distribution of daily rainfall amount were found. Non-periodic fluctuations in the time series of annual rainfall were analyzed using an integral wavelet transform. Fluctuations with a time scale of about 10 and 20 years construct the trend in annual rainfall amount. These types of non-periodic fluctuations have been observed in other regions of the world. This suggests that results of this research could have further geographical validity.

  17. Antiphasing Between Rainfall in Africa's Rift Valley and North America's Great Basin

    NASA Technical Reports Server (NTRS)

    Broecker, Wallace S.; Pettet, Dorothy; Hajdas, Irena; Lin, Jo; Clark, Elizabeth

    1998-01-01

    The beginning of the Bolling-Allerod warm period is marked in Greenland ice by an abrupt rise in (Delta)O-18, an abrupt drop in dust rain, and an abrupt increase in atmospheric methane content. The surface waters in the Norwegian Sea underwent a simultaneous abrupt warming. At about this time, a major change in the pattern of global rainfall occurred. Lake Victoria (latitude 0deg), which prior to this time was dry, was rejuvenated. The Red Sea, which prior to this time was hypersaline, freshened. Lake Lahontan, which prior to this time had achieved its largest size, desiccated. Whereas the chronologic support for the abruptness of the hydrologic changes is firm only for the Red Sea, in keeping with evidence obtained well away from the nor-them Atlantic in the Santa Barbara basin and the Cariaco Trench, the onset and end of the millennial-duration climate events were globally abrupt. If so, the proposed linkage between the size of African closed basin lakes and insolation cycles must be reexamined.

  18. Receiver Operating Characteristic Curve Analysis of Beach Water Quality Indicator Variables

    PubMed Central

    Morrison, Ann Michelle; Coughlin, Kelly; Shine, James P.; Coull, Brent A.; Rex, Andrea C.

    2003-01-01

    Receiver operating characteristic (ROC) curve analysis is a simple and effective means to compare the accuracies of indicator variables of bacterial beach water quality. The indicator variables examined in this study were previous day's Enterococcus density and antecedent rainfall at 24, 48, and 96 h. Daily Enterococcus densities and 15-min rainfall values were collected during a 5-year (1996 to 2000) study of four Boston Harbor beaches. The indicator variables were assessed for their ability to correctly classify water as suitable or unsuitable for swimming at a maximum threshold Enterococcus density of 104 CFU/100 ml. Sensitivity and specificity values were determined for each unique previous day's Enterococcus density and antecedent rainfall volume and used to construct ROC curves. The area under the ROC curve was used to compare the accuracies of the indicator variables. Twenty-four-hour antecedent rainfall classified elevated Enterococcus densities more accurately than previous day's Enterococcus density (P = 0.079). An empirically derived threshold for 48-h antecedent rainfall, corresponding to a sensitivity of 0.75, was determined from the 1996 to 2000 data and evaluated to ascertain if the threshold would produce a 0.75 sensitivity with independent water quality data collected in 2001 from the same beaches. PMID:14602593

  19. Uncertainties of statistical downscaling from predictor selection: Equifinality and transferability

    NASA Astrophysics Data System (ADS)

    Fu, Guobin; Charles, Stephen P.; Chiew, Francis H. S.; Ekström, Marie; Potter, Nick J.

    2018-05-01

    The nonhomogeneous hidden Markov model (NHMM) statistical downscaling model, 38 catchments in southeast Australia and 19 general circulation models (GCMs) were used in this study to demonstrate statistical downscaling uncertainties caused by equifinality to and transferability. That is to say, there could be multiple sets of predictors that give similar daily rainfall simulation results for both calibration and validation periods, but project different amounts (or even directions of change) of rainfall changing in the future. Results indicated that two sets of predictors (Set 1 with predictors of sea level pressure north-south gradient, u-wind at 700 hPa, v-wind at 700 hPa, and specific humidity at 700 hPa and Set 2 with predictors of sea level pressure north-south gradient, u-wind at 700 hPa, v-wind at 700 hPa, and dewpoint temperature depression at 850 hPa) as inputs to the NHMM produced satisfactory results of seasonal rainfall in comparison with observations. For example, during the model calibration period, the relative errors across the 38 catchments ranged from 0.48 to 1.76% with a mean value of 1.09% for the predictor Set 1, and from 0.22 to 2.24% with a mean value of 1.16% for the predictor Set 2. However, the changes of future rainfall from NHMM projections based on 19 GCMs produced projections with a different sign for these two different sets of predictors: Set 1 predictors project an increase of future rainfall with magnitudes depending on future time periods and emission scenarios, but Set 2 predictors project a decline of future rainfall. Such divergent projections may present a significant challenge for applications of statistical downscaling as well as climate change impact studies, and could potentially imply caveats in many existing studies in the literature.

  20. Critical scales to explain urban hydrological response: an application in Cranbrook, London

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-Claire; Gaitan, Santiago; Ochoa Rodriguez, Susana; van de Giesen, Nick

    2018-04-01

    Rainfall variability in space and time, in relation to catchment characteristics and model complexity, plays an important role in explaining the sensitivity of hydrological response in urban areas. In this work we present a new approach to classify rainfall variability in space and time and we use this classification to investigate rainfall aggregation effects on urban hydrological response. Nine rainfall events, measured with a dual polarimetric X-Band radar instrument at the CAESAR site (Cabauw Experimental Site for Atmospheric Research, NL), were aggregated in time and space in order to obtain different resolution combinations. The aim of this work was to investigate the influence that rainfall and catchment scales have on hydrological response in urban areas. Three dimensionless scaling factors were introduced to investigate the interactions between rainfall and catchment scale and rainfall input resolution in relation to the performance of the model. Results showed that (1) rainfall classification based on cluster identification well represents the storm core, (2) aggregation effects are stronger for rainfall than flow, (3) model complexity does not have a strong influence compared to catchment and rainfall scales for this case study, and (4) scaling factors allow the adequate rainfall resolution to be selected to obtain a given level of accuracy in the calculation of hydrological response.

  1. Monsoon variability, crop water requirement, and crop planning for kharif rice in Sagar Island, India.

    PubMed

    Mandal, S; Choudhury, B U; Satpati, L N

    2015-12-01

    In the Sagar Island of Bay of Bengal, rainfed lowland rice is the major crop, grown solely depending on erratic distribution of southwest monsoon (SM) rainfall. Lack of information on SM rainfall variability and absence of crop scheduling accordingly results in frequent occurrence of intermittent water stress and occasional crop failure. In the present study, we analyzed long period (1982-2010) SM rainfall behavior (onset, withdrawal, rainfall and wetness indices, dry and wet spells), crop water requirement (CWR, by Food and Agriculture Organization (FAO) 56), and probability of weekly rainfall occurrence (by two-parameter gamma distribution) to assess the variability and impact on water availability, CWR, and rice productivity. Finally, crop planning was suggested to overcome monsoon uncertainties on water availability and rice productivity. Study revealed that the normal onset and withdrawal weeks for SM rainfall were 22nd ± 1 and 43rd ± 2 meteorological weeks (MW), respectively. However, effective monsoon rainfall started at 24th MW (rainfall 92.7 mm, p > 56.7 % for 50 mm rainfall) and was terminated by the end of 40th MW (rainfall 90.7 mm, p < 59.6 % for 50 mm rainfall). During crop growth periods (seed to seed, 21st to 45th MW), the island received an average weekly rainfall of 65.1 ± 25.9 mm, while the corresponding weekly CWR was 47.8 ± 5.4 mm. Despite net water surplus of 353.9 mm during crop growth periods, there was a deficit of 159.5 mm water during MW of 18-23 (seedling raising) and MW of 41-45 (flowering to maturity stages). Water stress was observed in early lag vegetative stage of crop growth (32nd MW). The total dry spell frequency during panicle initiation and heading stage was computed as 40 of which 6 dry spells were >7 days in duration and reflected a significant (p < 0.05) increasing trend (at 0.22 days year(-1)) over the years (1982-2010). The present study highlights the adaptive capacity of crop planning including abiotic stress-tolerant cultivars to monsoon rainfall variability for sustaining rainfed rice production vis-à-vis food and livelihood security in vulnerable islands of coastal ecosystem.

  2. Based on the rainfall system platform raindrops research and analysis of pressure loss

    NASA Astrophysics Data System (ADS)

    Cao, Gang; Sun, Jian

    2018-01-01

    With the rapid development of China’s military career, land, sea and air force all services and equipment of modern equipment need to be in the rain test, and verify its might suffer during transportation, storage or use a different environment temperature lower water or use underwater, the water is derived from the heavy rain, the wind and rain, sprinkler system, splash water, water wheel, a violent shock waves or use underwater, etcTest the product performance and quality, under the condition of rainfall system platform in the process of development, how to control the raindrops pressure loss becomes the key to whether the system can simulate the real rainfall [1], this paper is according to the rainfall intensity, nozzle flow resistance, meet water flow of rain pressure loss calculation and analysis, and system arrangement of the optimal solution of rainfall is obtained [2].

  3. Debris-flow and flooding hazards associated with the December 1999 storm in coastal Venezuela and strategies for mitigation

    USGS Publications Warehouse

    Wieczorek, G.F.; Larsen, M.C.; Eaton, L.S.; Morgan, B.A.; Blair, J.L.

    2001-01-01

    Heavy rainfall from the storm of December 14-16, 1999 triggered thousands of landslides on steep slopes of the Sierra de Avila north of Caracas, Venezuela. In addition to landslides, heavy rainfall caused flooding and massive debris flows that damaged coastal communities in the State of Vargas along the Caribbean Sea. Examination of the rainfall pattern obtained from the GOES-8 satellite showed that the pattern of damage was generally consistent with the area of heaviest rainfall. Field observations of the severely affected drainage basins and historical records indicate that previous flooding and massive debris-flow events of similar magnitude to that of December 1999 have occurred throughout this region. The volume of debris-flow deposits and the large boulders that the flows transported qualifies the 1999 event amongst the largest historical rainfall-induced debris flows documented worldwide.

  4. Very-short range forecasting system for 2018 Pyeonchang Winter Olympic and Paralympic games

    NASA Astrophysics Data System (ADS)

    Nam, Ji-Eun; Park, Kyungjeen; Kim, Minyou; Kim, Changhwan; Joo, Sangwon

    2016-04-01

    The 23rd Olympic Winter and the 13th Paralympic Winter Games will be held in Pyeongchang, Republic of Korea respectively from 9 to 25 February 2018 and from 9 to 18 February 2018. The Korea Meteorological Administration (KMA) and the National Institute for Meteorological Science (NIMS) have the responsibility to provide weather information for the management of the Games and the safety of the public. NIMS will carry out a Forecast Demonstration Project (FDP) and a Research and Development Project (RDP) which will be called ICE-POP 2018. These projects will focus on intensive observation campaigns to understand severe winter weathers over the Pyeongchang region, and the research results from the RDP will be used to improve the accuracy of nowcasting and very short-range forecast systems during the Games. To support these projects, NIMS developed Very-short range Data Assimilation and Prediction System (VDAPS), which is run in real time with 1 hour cycling interval and up to 12 hour forecasts. The domain is covering Korean Peninsular and surrounding seas with 1.5km horizontal resolution. AWS, windprofiler, buoy, sonde, aircraft, scatwinds, and radar radial winds are assimilated by 3DVAR on 3km resolution inner domain. The rain rate is converted into latent heat and initialized via nudging. The visibility data are also assimilated with the addition of aerosol control variable. The experiments results show the improvement in rainfall over south sea of Korean peninsula. In order to reduce excessive rainfalls during first 2 hours due to the reduced cycling interval, the data assimilation algorithm is optimized.

  5. Impacts of Aerosol-Monsoon Interaction on Rainfall and Circulation over Northern India and the Himalaya Foothills

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong; Shi, Jainn-Jong; Matsui, T.; Chin, M.; Tan, Qian; Peters-Lidard, C.; Tao, W. K.

    2016-01-01

    The boreal summer of 2008 was unusual for the Indian monsoon, featuring exceptional heavy loading of dust aerosols over the Arabian Sea and northern-central India, near normal all- India rainfall, but excessive heavy rain, causing disastrous flooding in the Northern Indian Himalaya Foothills (NIHF) regions, accompanied by persistent drought conditions in central and southern India. Using NASA Unified-physics Weather Research Forecast (NUWRF) model with fully interactive aerosol physics and dynamics, we carried out three sets of 7-day ensemble model forecast experiments: 1) control with no aerosol, 2) aerosol radiative effect only and 3) aerosol radiative and aerosol-cloud-microphysics effects, to study the impacts of aerosol monsoon interactions on monsoon variability over the NIHF during the summer of 2008. Results show that aerosol-radiation interaction (ARI), i.e., dust aerosol transport, and dynamical feedback processes induced by aerosol-radiative heating, plays a key role in altering the large scale monsoon circulation system, reflected by an increased north-south tropospheric temperature gradient, a northward shift of heavy monsoon rainfall, advancing the monsoon onset by 1-5 days over the HF, consistent with the EHP hypothesis (Lau et al. 2006). Additionally, we found that dust aerosols, via the semi-direct effect, increase atmospheric stability, and cause the dissipation of a developing monsoon onset cyclone over northeastern India northern Bay of Bengal. Eventually, in a matter of several days, ARI transforms the developing monsoon cyclone into mesoscale convective cells along the HF slopes. Aerosol-Cloud-microphysics Interaction (ACI) further enhances the ARI effect in invigorating the deep convection cells and speeding up the transformation processes. Results indicate that even in short-term (up to weekly) numerical forecasting of monsoon circulation and rainfall, effects of aerosol-monsoon interaction can be substantial and cannot be ignored.

  6. Amplification of ENSO Effects on Indian Summer Monsoon by Absorbing Aerosols

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, William K. M.; Kim, Kyu-Myong; Sang, Jeong; Kim, Yeon-Hee; Lee, Woo-Seop

    2015-01-01

    In this study, we present observational evidence, based on satellite aerosol measurements and MERRA reanalysis data for the period 1979-2011, indicating that absorbing aerosols can have strong influence on seasonal-to-interannual variability of the Indian summer monsoon rainfall, including amplification of ENSO effects. We find a significant correlation between ENSO (El Nino Southern Oscillation) and aerosol loading in April-May, with La Nina (El Nino) conditions favoring increased (decreased) aerosol accumulation over northern India, with maximum aerosol optical depth (AOD) over the Arabian Sea and Northwestern India, indicative of strong concentration of dust aerosols transported from West Asia and Middle East deserts. Composite analyses based on a normalized aerosol index (NAI) show that high concentration of aerosol over northern India in April-May is associated with increased moisture transport, enhanced dynamically induced warming of the upper troposphere over the Tibetan Plateau, and enhanced rainfall over northern India and the Himalayan foothills during May-June, followed by a subsequent suppressed monsoon rainfall over all India,consistent with the Elevated Heat Pump (EHP) hypothesis (Lau et al. 2006). Further analyses from sub-sampling of ENSO years, with normal (less than 1 sigma), and abnormal (greater than 1 sigma)) NAI over northern India respectively show that the EHP may lead to an amplification of the Indian summer monsoon response to ENSO forcing, particularly with respect to the increased rainfall over the Himalayan foothills, and the warming of the upper troposphere over the Tibetan Plateau. Our results suggest that absorbing aerosol, particular desert dusts can strongly modulate ENSO influence, and possibly play important roles as a feedback agent in climate change in Asian monsoon regions.

  7. Interannual Rainfall Variability in the Tropical Atlantic Region

    NASA Technical Reports Server (NTRS)

    Gu, Guojun

    2005-01-01

    Rainfall variability on seasonal and interannual-to-interdecadal time scales in the tropical Atlantic is quantified using a 25-year (1979-2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP). The ITCZ measured by monthly rainfall between 15-37.5 deg W attains its peak as moving to the northernmost latitude (4-10 deg N) during July-September in which the most total rainfall is observed in the tropical Atlantic basin (17.5 deg S-22.5 deg N, 15 deg-37.5 deg W); the ITCZ becomes weakest during January-February with the least total rainfall as it moves to the south. In contrast, rainfall variability on interannual to interdecadal time scales shows a quite different seasonal preference. The most intense interannual variability occurs during March-May when the ITCZ tends to be near the equator and becomes weaker. Significant, negative correlations between the ITCZ strength and latitude anomalies are observed during boreal spring and early summer. The ITCZ strength and total rainfall amount in the tropical Atlantic basin are significantly modulated by the Pacific El Nino and the Atlantic equatorial mode (or Atlantic Nino) particularly during boreal spring and summer; whereas the impact of the Atlantic interhemispheric mode is considerably weaker. Regarding the anomalous latitudes of the ITCZ, the influence can come from both local, i.e., the Atlantic interhemispheric and equatorial modes, and remote forcings, i. e., El Nino; however, a direct impact of El Nino on the latitudes of the ITCZ can only be found during April-July, not in winter and early spring in which the warmest SST anomalies are usually observed in the equatorial Pacific.

  8. Rainfall variability and extremes over southern Africa: Assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. The paper will conclude by discussing the user needs of satellite rainfall retrievals from a climate change modelling prospective.

  9. Rainfall variability and extremes over southern Africa: assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset.

  10. Agricultural Early Warning Informing Humanitarian Response in East Africa for 2012

    NASA Astrophysics Data System (ADS)

    Husak, G. J.; Funk, C. C.

    2012-12-01

    Long rains during the March-April-May (MAM) 2011 growing season were a failure for much of the Greater Horn of Africa. These conditions resulted in severe food shortages, with the Famine Early Warning Systems Network (FEWS NET) estimating that 12.4 million people were in need of food assistance in Kenya, Somalia, Ethiopia and Djibouti. Heading into the 2012 season, La Niña conditions, an exceptionally strong western-to-central Pacific sea surface temperature (SST) gradient, and warm SSTs in the eastern Indian Ocean foretold further dryness, compounding the difficulties faced by the already vulnerable populations of this region. In an effort to assess the potential for greater food insecurity in the region, FEWS NET scientists attempted to quantify the likelihood of a dry event. This work used satellite rainfall estimates with a 13-year rainfall history. Weights were assigned to previous years based on the similarity of existing SST conditions to those of previous years in the rainfall record. Scenarios were created by randomly combining dekadal rainfall from the historical record, in accordance with the weights. This bootstrapping resulted in a suite of simulations which could be used to identify the likelihood of specific rainfall outcomes. Areal averages of each simulation were used in the analysis. Analysis of the Global Precipitation Climatology Centre (GPCC) rainfall record, a gridded rainfall product based on available station data, showed that the mean rainfall value for the time period of the satellite data for this region was only about 80% of the 30-year mean. The bootstrapped scenarios were corrected for this bias during the period of the satellite record. Results were expressed as percent of average rather than in absolute rainfall amounts, to account for biases in the satellite products as well as variability in spatial amounts. The results showed that during a normal year the interquartile range is typically 80-120% of normal. However, using the weighted scenarios based on February SSTs, the interquartile range shifted to 75-105% of normal. As the season progressed, March turned out to be exceptionally dry, with a lack of onset of rains for much of the region. This delayed start to the season allowed for the combination of satellite estimates for the start of March to be combined with scenarios to look ahead to end-of-season values. By the end of March, combining estimated 2012 rains with the scenarios built before the season resulted in the interquartile range for expected outcomes dropping to 60-85% of normal. This information was relayed to FEWS NET food security analysts and used in a special report, highlighting the potential for crisis in the region. In April, this forecasting effort, combined with FEWS NET's extensive monitoring activities, helped motivate allocation of an additional $50M in food aid from the U.S. government. This presentation examines the climate conditions associated with MAM drought in the eastern sector of the Greater Horn, reviews the techniques behind the 2012 forecasts, and analyzes the actual outcome for the region. Methods for improving the work to more accurately reflect the variability and future directions and applications will be discussed.

  11. Variable rainfall intensity and tillage effects on runoff, sediment, and carbon losses from a loamy sand under simulated rainfall.

    PubMed

    Truman, C C; Strickland, T C; Potter, T L; Franklin, D H; Bosch, D D; Bednarz, C W

    2007-01-01

    The low-carbon, intensively cropped Coastal Plain soils of Georgia are susceptible to runoff, soil loss, and drought. Reduced tillage systems offer the best management tool for sustained row crop production. Understanding runoff, sediment, and chemical losses from conventional and reduced tillage systems is expected to improve if the effect of a variable rainfall intensity storm was quantified. Our objective was to quantify and compare effects of a constant (Ic) intensity pattern and a more realistic, observed, variable (Iv) rainfall intensity pattern on runoff (R), sediment (E), and carbon losses (C) from a Tifton loamy sand cropped to conventional-till (CT) and strip-till (ST) cotton (Gossypium hirsutum L.). Four treatments were evaluated: CT-Ic, CT-Iv, ST-Ic, and ST-Iv, each replicated three times. Field plots (n=12), each 2 by 3 m, were established on each treatment. Each 6-m2 field plot received simulated rainfall at a constant (57 mm h(-1)) or variable rainfall intensity pattern for 70 min (12-run ave.=1402 mL; CV=3%). The Iv pattern represented the most frequent occurring intensity pattern for spring storms in the region. Compared with CT, ST decreased R by 2.5-fold, E by 3.5-fold, and C by 7-fold. Maximum runoff values for Iv events were 1.6-fold higher than those for Ic events and occurred 38 min earlier. Values for Etot and Ctot for Iv events were 19-36% and 1.5-fold higher than corresponding values for Ic events. Values for Emax and Cmax for Iv events were 3-fold and 4-fold higher than corresponding values for Ic events. Carbon enrichment ratios (CER) were or=1.0 for CT plots (except for first 20 min). Maximum CER for CT-Ic, CT-Iv, ST-Ic, and ST-Iv were 2.0, 2.2, 1.0, and 1.2, respectively. Transport of sediment, carbon, and agrichemicals would be better understood if variable rainfall intensity patterns derived from natural rainfall were used in rainfall simulations to evaluate their fate and transport from CT and ST systems.

  12. Spatial and temporal Teleconnections of Sea Surface Temperature and Ocean Indices to regional Climate Variations across Thailand - a Pathway to understanding the Impact of Climate Change on Water Resources

    NASA Astrophysics Data System (ADS)

    Bejranonda, Werapol; Koch, Manfred

    2010-05-01

    Thailand has a long coastline with the Pacific Ocean, as part of the Gulf of Thailand, as well as with the Indian Ocean, as part of the Andaman Sea. Because of this peculiar location, Thailand's local climate and, in particular, its water resources are strongly influenced by the mix of tropical wet, tropical dry and tropical monsoon seasons. Because of the large seasonal and interannual variations and irregularities of these, mainly ocean-driven weather patterns, particularly in recent times, large-scale water storage in huge river-fed reservoirs has a long tradition in Thailand, providing water for urban, industrial and agricultural use during long dry seasonal periods. These reservoirs which are located all over Thailand gather water primarily from monsoon-driven rainfall during the wet season which, usually, lasts from May to October. During the dry season, November to April, when the monsoon winds move northward, the air masses are drier in central and northern Thailand, with rain falling here only a few days in a month. Southern Thailand, on the other hand, which is constituted mostly by the isthmus between the two oceans, stays even hot and humid during that time period. Because of this tropical climate pattern, the surface water resources in most of Thailand strongly hinge on the monsoon movements which, in turn, depend themselves upon the thermal states of the Pacific and Indian Oceans. Therefore, the understanding of the recent strong seasonal and interannual climate variations with their detrimental effects on the availability of hydrological water resources in most parts of Thailand, must include the analysis of changes of various sea-state indices in the adjacent oceans and of their possible teleconnections with regional climate indices across this country. With the modern coupled atmospheric-ocean models being able to predict the variations of many ocean indices over a period of several months, namely, those driven by El Nino- Southern Oscillations (ENSO) events in the Pacific Ocean, if such teleconnections exist, one would have would have a powerful tool at hand to forecast extreme seasonal climate pattern across Thailand over a limited time period. Eventually, such a predictive tool would help to better manage the availability and adequate supply of surface water resources to the various water users in this country. In the present study the spatial and temporal relationships between the global climate circulation system and the regional weather in Thailand are assessed by various techniques of stochastic time series analysis. More specifically, the time series of the sea surface temperature (SST) and various ocean indices of the Pacific and the Indian Oceans, as well as the time series of 121 meteorological stations from 5 regions across Thailand which include humidity, evaporation, temperature and rainfall during 1950-2007 are examined using autocorrelation, ARIMA, Wavelet Transform methods. Possible teleconnections between the behaviour of the ocean states and the climate variations at meteorological stations in eastern Thailand which frequently suffers from water shortage problems are analyzed using regression, cross-correlation and the Wavelet cross-correlation method. In addition to the time series of the observed ocean and meteorological variables, 1961-2000 CGCM3 predictors of the macro-scale regional climate variations for this study area are analyzed by the methods above and correlated with the ocean indices as well. Rainfall and temperatures at selected stations are forecasted up to year 2007 using the teleconnection- relationships found by multiple linear regression with the CGCM3 predictors. In addition, autoregressive integrated moving average (ARIMA) models of these climate variable are set up that are eventually extended to include the ocean indices as external regressors. The results of these various statistical techniques show that the El-Niño 1.2 SST anomaly indice of the Pacific Ocean, which refers to the most eastern section of the Pacific, correlates the strongest with the Thai local climate. Through cross-correlation, the most sensitive parameters to the ocean indices are the minimum temperature at stations in the northern and northeastern, inland regions of Thailand and the number of rainy days in the eastern, central and southern, coastal regions. In the southern region the amount of rainfall at the coast of Gulf of Thailand varies positively with El-Niño, but negatively for stations along the Andaman Sea coast in the west of the isthmus, with maximal correlation lag.-times of 4 months. Surprisingly the corresponding connections of the local climate variables with the Indian Ocean indices are less well established, with an optimal lag-time of only 3 months. Using the results of the teleconnection regression relationships, the forecast of the local climate variables could be improved significantly, as indicated by the Nash-Sutcliffe-coefficient of the prediction model's which increased from originally 0.30, 0.72 and 0.26 to 0.51, 0.82 and 0.46 for the rainfall, minimum and maximum temperatures, respectively. The results of our analysis indicate the possibility of a better forecast of extreme seasonal climate variations across some regions of Thailand over a limited time period by using short-term expected variations of the Pacific and Indian ocean indices.

  13. A skilful prediction scheme for West China autumn precipitation

    NASA Astrophysics Data System (ADS)

    Wei, Ting; Song, Wenling; Dong, Wenjie; Ke, Zongjian; Sun, Linhai; Wen, Xiaohang

    2018-01-01

    West China is one of the country's largest precipitation centres in autumn. This region's agriculture and people are highly vulnerable to the variability in the autumn rain. This study documents that the water vapour for West China autumn precipitation (WCAP) is from the Bay of Bengal, the South China Sea and the Western Pacific. A strong convergence of the three water vapour transports (WVTs) and their encounter with the cold air from the northern trough over Lake Barkersh-Lake Baikal result in the intense WCAP. Three predictors in the preceding spring or summer are identified for the interannual variability of WCAP: (1) sea surface temperature in the Indo-Pacific warm pool in summer, (2) soil moisture from the Hexi Corridor to the Hetao Plain in summer and (3) snow cover extent over East Europe and West Siberian in spring. The cold SSTAs contribute to an abnormal regional meridional circulation and intensified WVTs. The wet soil results in greater air humidity and anomalous southerly emerging over East Asia. Reduced snow cover stimulates a Rossby wave train that weakens the cold air, favouring autumn rainfall in West China. The three predictors, which demonstrate the influences of air-sea interaction, land surface processes and the cryosphere on the WCAP, have clear physical significance and are independent with each other. We then develop a new statistical prediction model with these predictors and the multilinear regression analysis method. The predicted and observed WCAP shows high correlation coefficients of 0.63 and 0.51 using cross-validation tests and independent hindcasts, respectively.

  14. Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Li, Gen; Xie, Shang-Ping; He, Chao; Chen, Zesheng

    2017-10-01

    The agrarian-based socioeconomic livelihood of densely populated South Asian countries is vulnerable to modest changes in Indian summer monsoon (ISM) rainfall. How the ISM rainfall will evolve is a question of broad scientific and socioeconomic importance. In response to increased greenhouse gas (GHG) forcing, climate models commonly project an increase in ISM rainfall. This wetter ISM projection, however, does not consider large model errors in both the mean state and ocean warming pattern. Here we identify a relationship between biases in simulated present climate and future ISM projections in a multi-model ensemble: models with excessive present-day precipitation over the tropical western Pacific tend to project a larger increase in ISM rainfall under GHG forcing because of too strong a negative cloud-radiation feedback on sea surface temperature. The excessive negative feedback suppresses the local ocean surface warming, strengthening ISM rainfall projections via atmospheric circulation. We calibrate the ISM rainfall projections using this `present-future relationship’ and observed western Pacific precipitation. The correction reduces by about 50% of the projected rainfall increase over the broad ISM region. Our study identifies an improved simulation of western Pacific convection as a priority for reliable ISM projections.

  15. Warm season heavy rainfall events over the Huaihe River Valley and their linkage with wintertime thermal condition of the tropical oceans

    NASA Astrophysics Data System (ADS)

    Li, Laifang; Li, Wenhong; Tang, Qiuhong; Zhang, Pengfei; Liu, Yimin

    2016-01-01

    Warm season heavy rainfall events over the Huaihe River Valley (HRV) of China are amongst the top causes of agriculture and economic loss in this region. Thus, there is a pressing need for accurate seasonal prediction of HRV heavy rainfall events. This study improves the seasonal prediction of HRV heavy rainfall by implementing a novel rainfall framework, which overcomes the limitation of traditional probability models and advances the statistical inference on HRV heavy rainfall events. The framework is built on a three-cluster Normal mixture model, whose distribution parameters are sampled using Bayesian inference and Markov Chain Monte Carlo algorithm. The three rainfall clusters reflect probability behaviors of light, moderate, and heavy rainfall, respectively. Our analysis indicates that heavy rainfall events make the largest contribution to the total amount of seasonal precipitation. Furthermore, the interannual variation of summer precipitation is attributable to the variation of heavy rainfall frequency over the HRV. The heavy rainfall frequency, in turn, is influenced by sea surface temperature anomalies (SSTAs) over the north Indian Ocean, equatorial western Pacific, and the tropical Atlantic. The tropical SSTAs modulate the HRV heavy rainfall events by influencing atmospheric circulation favorable for the onset and maintenance of heavy rainfall events. Occurring 5 months prior to the summer season, these tropical SSTAs provide potential sources of prediction skill for heavy rainfall events over the HRV. Using these preceding SSTA signals, we show that the support vector machine algorithm can predict HRV heavy rainfall satisfactorily. The improved prediction skill has important implication for the nation's disaster early warning system.

  16. Relative contributions of mean-state shifts and ENSO-driven variability to precipitation changes in a warming climate

    DOE PAGES

    Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; ...

    2015-12-18

    The El Niño–Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change.more » Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. Lastly, by examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.« less

  17. Using TRMM Data To Understand Interannual Variations In the Tropical Water Balance

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Fitzjarrald, Dan; Arnold, James E. (Technical Monitor)

    2002-01-01

    A significant element of the science rationale for TRMM centered on assembling rainfall data needed to validate climate models-- climatological estimates of precipitation, its spatial and temporal variability, and vertical modes of latent heat release. Since the launch of TRMM, a great interest in the science community has emerged for quantifying interannual variability (IAV) of precipitation and its relationship to sea-surface temperature (SST) changes. The fact that TRMM has sampled one strong warm/ cold ENSO couplet, together with the prospect for a mission lifetime approaching ten years, has bolstered this interest in these longer time scales. Variability on a regional basis as well as for the tropics as a whole is of concern. Our analysis of TRMM results so far has shown surprising lack of concordance between various algorithms in quantifying IAV of precipitation. The first objective of this talk is to quantify the sensitivity of tropical precipitation to changes in SSTs. We analyze performance of the 3A11, 3A25, and 3B31 algorithms and investigate their relationship to scattering-- based algorithms constructed from SSM/I and TRMM 85 kHz data. The physical basis for the differences (and similarities) in depicting tropical oceanic and land rainfall will be discussed. We argue that scattering-based estimates of variability constitute a useful upper bound for precipitation variations. These results lead to the second question addressed in this talk-- How do TRMM precipitation / SST sensitivities compare to estimates of oceanic evaporation and what are the implications of these uncertainties in determining interannual changes in large-scale moisture transport? We summarize results of an analysis performed using COADS data supplemented by SSM/I estimates of near-surface variables to assess evaporation sensitivity to SST. The response of near 5 W sq m/K is compared to various TRMM precipitation sensitivities. Implied moisture convergence over the tropics and its sensitivity to errors of these algorithms is discussed.

  18. Rainfall Across the Globe: Precipitation. The Role of Landmass in Monsoon Development. The Relationship Between Precipitation and Sea Surface Temperature on Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Chao, Winston; Schubert, Siegfried; Suarez, Max; Pegion, Philip

    2000-01-01

    The numerical simulation of precipitation helps scientists understand the complex mechanisms that determine how and why rainfall is distributed across the globe. Simulation aids in the development of forecastin,g efforts that inform policies regarding the management of water resources. Precipitation modeling also provides short-term warnings, for emergencies such as flash floods and mudslides. Just as precipitation modeling can warn of an impending abundance of rainfall, it can help anticipate the absence of rainfall in drought. What constitutes a drought? A meteorological drought simply means that an area is getting a significantly lower amount of rain than usual over a prolonged period of time and an agricultural drought is based on the level of soil moisture.

  19. Cenozoic stratigraphy of the Sahara, Northern Africa

    USGS Publications Warehouse

    Swezey, Christopher S.

    2009-01-01

    This paper presents an overview of the Cenozoic stratigraphic record in the Sahara, and shows that the strata display some remarkably similar characteristics across much of the region. In fact, some lithologies of certain ages are exceptionally widespread and persistent, and many of the changes from one lithology to another appear to have been relatively synchronous across the Sahara. The general stratigraphic succession is that of a transition from early Cenozoic carbonate strata to late Cenozoic siliciclastic strata. This transition in lithology coincides with a long-term eustatic fall in sea level since the middle Cretaceous and with a global climate transition from a Late Cretaceous–Early Eocene “warm mode” to a Late Eocene–Quaternary “cool mode”. Much of the shorter-term stratigraphic variability in the Sahara (and even the regional unconformities) also can be correlated with specific changes in sea level, climate, and tectonic activity during the Cenozoic. Specifically, Paleocene and Eocene carbonate strata and phosphate are suggestive of a warm and humid climate, whereas latest Eocene evaporitic strata (and an end-Eocene regional unconformity) are correlated with a eustatic fall in sea level, the build-up of ice in Antarctica, and the appearance of relatively arid climates in the Sahara. The absence of Oligocene strata throughout much of the Sahara is attributed to the effects of generally low eustatic sea level during the Oligocene and tectonic uplift in certain areas during the Late Eocene and Oligocene. Miocene sandstone and conglomerate are attributed to the effects of continued tectonic uplift around the Sahara, generally low eustatic sea level, and enough rainfall to support the development of extensive fluvial systems. Middle–Upper Miocene carbonate strata accumulated in northern Libya in response to a eustatic rise in sea level, whereas Upper Miocene mudstone accumulated along the south side of the Atlas Mountains because uplift of the mountains blocked fluvial access to the Mediterranean Sea. Uppermost Miocene evaporites (and an end-Miocene regional unconformity) in the northern Sahara are correlated with the Messinian desiccation of the Mediterranean Sea. Abundant and widespread Pliocene paleosols are attributed to the onset of relatively arid climate conditions and (or) greater variability of climate conditions, and the appearance of persistent and widespread eolian sediments in the Sahara is coincident with the major glaciation in the northern hemisphere during the Pliocene.

  20. Cross-timescale Interference and Rainfall Extreme Events in South Eastern South America

    NASA Astrophysics Data System (ADS)

    Munoz, Angel G.

    The physical mechanisms and predictability associated with extreme daily rainfall in South East South America (SESA) are investigated for the December-February season. Through a k-mean analysis, a robust set of daily circulation regimes is identified and then it is used to link the frequency of rainfall extreme events with large-scale potential predictors at subseasonal-to-seasonal scales. This basic set of daily circulation regimes is related to the continental and oceanic phases of the South Atlantic Convergence Zone (SACZ) and wave train patterns superimposed on the Southern Hemisphere Polar Jet. Some of these recurrent synoptic circulation types are conducive to extreme rainfall events in the region through synoptic control of different meso-scale physical features and, at the same time, are influenced by climate phenomena that could be used as sources of potential predictability. Extremely high rainfall (as measured by the 95th- and 99th-percentiles) is preferentially associated with two of these weather types, which are characterized by moisture advection intrusions from lower latitudes and the Pacific; another three weather types, characterized by above-normal moisture advection toward lower latitudes or the Andes, are preferentially associated with dry days (days with no rain). The analysis permits the identification of several subseasonal-to-seasonal scale potential predictors that modulate the occurrence of circulation regimes conducive to extreme rainfall events in SESA. It is conjectured that a cross-timescale interference between the different climate drivers improves the predictive skill of extreme precipitation in the region. The potential and real predictive skill of the frequency of extreme rainfall is then evaluated, finding evidence indicating that mechanisms of climate variability at one timescale contribute to the predictability at another scale, i.e., taking into account the interference of different potential sources of predictability at different timescales increases the predictive skill. This fact is in agreement with the Cross-timescale Interference Conjecture proposed in the first part of the thesis. At seasonal scale, a combination of those weather types tends to outperform all the other potential predictors explored, i.e., sea surface temperature patterns, phases of the Madden-Julian Oscillation, and combinations of both. Spatially averaged Kendall’s τ improvements of 43% for the potential predictability and 23% for realtime predictions are attained with respect to standard models considering sea-surface temperature fields alone. A new subseasonal-to-seasonal predictive methodology for extreme rainfall events is proposed, based on probability forecasts of seasonal sequences of these weather types. The cross-validated realtime skill of the new probabilistic approach, as measured by the Hit Score and the Heidke Skill Score, is on the order of twice that associated with climatological values. The approach is designed to offer useful subseasonal-to-seasonal climate information to decision-makers interested not only in how many extreme events will happen in the season, but also in how, when and where those events will probably occur. In order to gain further understanding about how the cross-timescale interference occurs, an externally-forced Lorenz model is used to explore the impact of different kind of forcings, at inter-annual and decadal scales, in the establishment of constructive interactions associated with the simulated “extreme events”. Using a wavelet analysis, it is shown that this simple model is capable of reproducing the same kind of cross-timescale structures observed in the wavelet power spectrum of the Nino3.4 index only when it is externally forced by both inter-annual and decadal signals: the annual cycle and a decadal forcing associated with the natural solar variability. The nature of this interaction is non-linear, and it impacts both mean and extreme values in the time series. No predictive power was found when using metrics like standard deviation and auto-correlation. Nonetheless, it was proposed that an early warning signal for occurrence of extreme rainfall in SESA may be possible via a continuous monitoring of relative phases between the cross-timescale leading components.

  1. Trends and homogeneity of monthly, seasonal, and annual rainfall over arid region of Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Meena, Hari Mohan; Machiwal, Deepesh; Santra, Priyabrata; Moharana, Pratap Chandra; Singh, D. V.

    2018-05-01

    Knowledge of rainfall variability is important for regional-scale planning and management of water resources in agriculture. This study explores spatio-temporal variations, trends, and homogeneity in monthly, seasonal, and annual rainfall series of 62 stations located in arid region of Rajasthan, India using 55 year (1957-2011) data. Box-whisker plots indicate presence of outliers and extremes in annual rainfall, which made the distribution of annual rainfall right-skewed. Mean and coefficient of variation (CV) of rainfall reveals a high inter-annual variability (CV > 200%) in the western portion where the mean annual rainfall is very low. A general gradient of the mean monthly, seasonal, and annual rainfall is visible from northwest to southeast direction, which is orthogonal to the gradient of CV. The Sen's innovative trend test is found over-sensitive in evaluating statistical significance of the rainfall trends, while the Mann-Kendall test identifies significantly increasing rainfall trends in June and September. Rainfall in July shows prominently decreasing trends although none of them are found statistically significant. Monsoon and annual rainfall show significantly increasing trends at only four stations. The magnitude of trends indicates that the rainfall is increasing at a mean rate of 1.11, 2.85, and 2.89 mm year-1 in August, monsoon season, and annual series. The rainfall is found homogeneous over most of the area except for few stations situated in the eastern and northwest portions where significantly increasing trends are observed. Findings of this study indicate that there are few increasing trends in rainfall of this Indian arid region.

  2. Eddy-induced salinity pattern in the North Pacific

    NASA Astrophysics Data System (ADS)

    Abe, H.; Ebuchi, N.; Ueno, H.; Ishiyama, H.; Matsumura, Y.

    2017-12-01

    This research examines spatio-temporal behavior of sea surface salinity (SSS) after intense rainfall events using observed data from Aquarius. Aquarius SSS in the North Pacific reveals one notable event in which SSS is locally freshened by intense rainfall. Although SSS pattern shortly after the rainfall reflects atmospheric pattern, its final form reflects ocean dynamic structure; an anticyclonic eddy. Since this anticyclonic eddy was located at SSS front created by precipitation, this eddy stirs the water in a clockwise direction. This eddy stirring was visible for several months. It is expected horizontal transport by mesoscale eddies would play significant role in determining upper ocean salinity structure.

  3. Impacts of rainfall spatial variability on hydrogeological response

    NASA Astrophysics Data System (ADS)

    Sapriza-Azuri, Gonzalo; Jódar, Jorge; Navarro, Vicente; Slooten, Luit Jan; Carrera, Jesús; Gupta, Hoshin V.

    2015-02-01

    There is currently no general consensus on how the spatial variability of rainfall impacts and propagates through complex hydrogeological systems. Most studies to date have focused on the effects of rainfall spatial variability (RSV) on river discharge, while paying little attention to other important aspects of system response. Here, we study the impacts of RSV on several responses of a hydrological model of an overexploited system. To this end, we drive a spatially distributed hydrogeological model for the semiarid Upper Guadiana basin in central Spain with stochastic daily rainfall fields defined at three different spatial resolutions (fine → 2.5 km × 2.5 km, medium → 50 km × 50 km, large → lumped). This enables us to investigate how (i) RSV at different spatial resolutions, and (ii) rainfall uncertainty, are propagated through the hydrogeological model of the system. Our results demonstrate that RSV has a significant impact on the modeled response of the system, by specifically affecting groundwater recharge and runoff generation, and thereby propagating through to various other related hydrological responses (river discharge, river-aquifer exchange, groundwater levels). These results call into question the validity of management decisions made using hydrological models calibrated or forced with spatially lumped rainfall.

  4. Internal and International Mobility as Adaptation to Climatic Variability in Contemporary Mexico: Evidence from the Integration of Census and Satellite Data.

    PubMed

    Leyk, Stefan; Runfola, Dan; Nawrotzki, Raphael J; Hunter, Lori M; Riosmena, Fernando

    2017-08-01

    Migration provides a strategy for rural Mexican households to cope with, or adapt to, weather events and climatic variability. Yet prior studies on "environmental migration" in this context have not examined the differences between choices of internal (domestic) or international movement. In addition, much of the prior work relied on very coarse spatial scales to operationalize the environmental variables such as rainfall patterns. To overcome these limitations, we use fine-grain rainfall estimates derived from NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The rainfall estimates are combined with Population and Agricultural Census information to examine associations between environmental changes and municipal rates of internal and international migration 2005-2010. Our findings suggest that municipal-level rainfall deficits relative to historical levels are an important predictor of both international and internal migration, especially in areas dependent on seasonal rainfall for crop productivity. Although our findings do not contradict results of prior studies using coarse spatial resolution, they offer clearer results and a more spatially nuanced examination of migration as related to social and environmental vulnerability and thus higher degrees of confidence.

  5. Aircraft Observations of Soil Hydrological Influence on the Atmosphere in Northern India

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher M.; Barton, Emma J.; Belusic, Danijel; Böing, Steven J.; Hunt, Kieran M. R.; Mitra, Ashis K.; Parker, Douglas J.; Turner, Andrew G.

    2017-04-01

    India is considered to be a region of the world where the influence of land surface fluxes of sensible and latent heat play an important role in regional weather and climate. Indian rainfall simulations in GCMs are known to be particularly sensitive to soil moisture. However, in a monsoon region where seasonal convective rainfall dominates, it is a big challenge for GCMs to capture, on the one hand, a realistic depiction of surface fluxes during wetting up and drying down at seasonal and sub-seasonal scales, and on the other, the sensitivity of convective rainfall and regional circulations to space-time fluctuations in land surface fluxes. On top of this, most GCMs and operational atmospheric forecast models don't explicitly consider irrigation. In the Indo-Gangetic plains of the Indian sub-continent, irrigated agriculture has become the dominant land use. Irrigation suppresses temporal flux variability for much of the year, and at the same time enhances spatial heterogeneity. One of the key objectives of the Anglo-Indian Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS) collaborative project is to better understand the coupling between the land surface and the Indian summer monsoon, and build this understanding into improved prediction of rainfall on multiple time and space scales. During June and July 2016, a series of research flights was performed across the sub-continent using the NERC/Met Office BAe146 aircraft. Here we will present results for a case study from a flight on 30th June which sampled the Planetary Boundary Layer (PBL) on a 700 km low level transect, from the semi-arid region of Rajasthan eastwards into the extensively irrigated state of Uttar Pradesh. As well as crossing different land uses, the flight also sampled mesoscale regions with contrasting recent rainfall conditions. Here we will show how variations in surface hydrology, driven by both irrigation and rainfall, influence the temperature, humidity and winds in the PBL. These unique observations will provide a powerful tool for understanding the dominant land-atmosphere coupling mechanisms operating on a range of multiple length scales, and which help to shape the Indian monsoon.

  6. South Asian Summer Monsoon Rainfall Variability and Trend: Its Links to Indo-Pacific SST Anomalies and Moist Processes

    NASA Astrophysics Data System (ADS)

    Prasanna, V.

    2016-06-01

    The warm (cold) phase of El Niño (La Niña) and its impact on all Indian Summer Monsoon rainfall (AISMR) relationship is explored for the past 100 years. The 103-year (1901-2003) data from the twentieth century reanalysis datasets (20CR) and other major reanalysis datasets for southwest monsoon season (JJAS) is utilized to find out the simultaneous influence of the El Niño Southern Oscillation (ENSO)-AISMR relationship. Two cases such as wet, dry monsoon years associated with ENSO(+) (El Niño), ENSO(-) (La Niña) and Non-ENSO (neutral) events have been discussed in detail using observed rainfall and three-dimensional 20CR dataset. The dry and wet years associated with ENSO and Non-ENSO periods show significant differences in the spatial pattern of rainfall associated with three-dimensional atmospheric composite, the 20CR dataset has captured the anomalies quite well. During wet (dry) years, the rainfall is high (low), i.e. 10 % above (below) average from the long-term mean and this wet or dry condition occur both during ENSO and Non-ENSO phases. The Non-ENSO year dry or wet composites are also focused in detail to understand, where do the anomalous winds come from unlike in the ENSO case. The moisture transport is coherent with the changes in the spatial pattern of AISMR and large-scale feature in the 20CR dataset. Recent 50-year trend (1951-2000) is also analyzed from various available observational and reanalysis datasets to see the influence of Indo-Pacific SST and moist processes on the South Asian summer monsoon rainfall trend. Apart from the Indo-Pacific sea surface temperatures (SST), the moisture convergence and moisture transport among India (IND), Equatorial Indian Ocean (IOC) and tropical western pacific (WNP) is also important in modifying the wet or dry cycles over India. The mutual interaction among IOC, WNP and IND in seasonal timescales is significant in modifying wet and dry cycles over the Indian region and the seasonal anomalies.

  7. Does internal variability change in response to global warming? A large ensemble modelling study of tropical rainfall

    NASA Astrophysics Data System (ADS)

    Milinski, S.; Bader, J.; Jungclaus, J. H.; Marotzke, J.

    2017-12-01

    There is some consensus on mean state changes of rainfall under global warming; changes of the internal variability, on the other hand, are more difficult to analyse and have not been discussed as much despite their importance for understanding changes in extreme events, such as droughts or floodings. We analyse changes in the rainfall variability in the tropical Atlantic region. We use a 100-member ensemble of historical (1850-2005) model simulations with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1) to identify changes of internal rainfall variability. To investigate the effects of global warming on the internal variability, we employ an additional ensemble of model simulations with stronger external forcing (1% CO2-increase per year, same integration length as the historical simulations) with 68 ensemble members. The focus of our study is on the oceanic Atlantic ITCZ. We find that the internal variability of rainfall over the tropical Atlantic does change due to global warming and that these changes in variability are larger than changes in the mean state in some regions. From splitting the total variance into patterns of variability, we see that the variability on the southern flank of the ITCZ becomes more dominant, i.e. explaining a larger fraction of the total variance in a warmer climate. In agreement with previous studies, we find that changes in the mean state show an increase and narrowing of the ITCZ. The large ensembles allow us to do a statistically robust differentiation between the changes in variability that can be explained by internal variability and those that can be attributed to the external forcing. Furthermore, we argue that internal variability in a transient climate is only well defined in the ensemble domain and not in the temporal domain, which requires the use of a large ensemble.

  8. Optimization of rainfall networks using information entropy and temporal variability analysis

    NASA Astrophysics Data System (ADS)

    Wang, Wenqi; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin

    2018-04-01

    Rainfall networks are the most direct sources of precipitation data and their optimization and evaluation are essential and important. Information entropy can not only represent the uncertainty of rainfall distribution but can also reflect the correlation and information transmission between rainfall stations. Using entropy this study performs optimization of rainfall networks that are of similar size located in two big cities in China, Shanghai (in Yangtze River basin) and Xi'an (in Yellow River basin), with respect to temporal variability analysis. Through an easy-to-implement greedy ranking algorithm based on the criterion called, Maximum Information Minimum Redundancy (MIMR), stations of the networks in the two areas (each area is further divided into two subareas) are ranked during sliding inter-annual series and under different meteorological conditions. It is found that observation series with different starting days affect the ranking, alluding to the temporal variability during network evaluation. We propose a dynamic network evaluation framework for considering temporal variability, which ranks stations under different starting days with a fixed time window (1-year, 2-year, and 5-year). Therefore, we can identify rainfall stations which are temporarily of importance or redundancy and provide some useful suggestions for decision makers. The proposed framework can serve as a supplement for the primary MIMR optimization approach. In addition, during different periods (wet season or dry season) the optimal network from MIMR exhibits differences in entropy values and the optimal network from wet season tended to produce higher entropy values. Differences in spatial distribution of the optimal networks suggest that optimizing the rainfall network for changing meteorological conditions may be more recommended.

  9. Accounting for interannual variability: A comparison of options for water resources climate change impact assessments

    NASA Astrophysics Data System (ADS)

    Johnson, Fiona; Sharma, Ashish

    2011-04-01

    Empirical scaling approaches for constructing rainfall scenarios from general circulation model (GCM) simulations are commonly used in water resources climate change impact assessments. However, these approaches have a number of limitations, not the least of which is that they cannot account for changes in variability or persistence at annual and longer time scales. Bias correction of GCM rainfall projections offers an attractive alternative to scaling methods as it has similar advantages to scaling in that it is computationally simple, can consider multiple GCM outputs, and can be easily applied to different regions or climatic regimes. In addition, it also allows for interannual variability to evolve according to the GCM simulations, which provides additional scenarios for risk assessments. This paper compares two scaling and four bias correction approaches for estimating changes in future rainfall over Australia and for a case study for water supply from the Warragamba catchment, located near Sydney, Australia. A validation of the various rainfall estimation procedures is conducted on the basis of the latter half of the observational rainfall record. It was found that the method leading to the lowest prediction errors varies depending on the rainfall statistic of interest. The flexibility of bias correction approaches in matching rainfall parameters at different frequencies is demonstrated. The results also indicate that for Australia, the scaling approaches lead to smaller estimates of uncertainty associated with changes to interannual variability for the period 2070-2099 compared to the bias correction approaches. These changes are also highlighted using the case study for the Warragamba Dam catchment.

  10. Distributional changes in rainfall and river flow in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun

    2017-11-01

    Climate change may not change the rainfall mean, but the variability and extremes. Therefore, it is required to explore the possible distributional changes of rainfall characteristics over time. The objective of present study is to assess the distributional changes in annual and northeast monsoon rainfall (November-January) and river flow in Sarawak where small changes in rainfall or river flow variability/distribution may have severe implications on ecology and agriculture. A quantile regression-based approach was used to assess the changes of scale and location of empirical probability density function over the period 1980-2014 at 31 observational stations. The results indicate that diverse variation patterns exist at all stations for annual rainfall but mainly increasing quantile trend at the lowers, and higher quantiles for the month of January and December. The significant increase in annual rainfall is found mostly in the north and central-coastal region and monsoon month rainfalls in the interior and north of Sarawak. Trends in river flow data show that changes in rainfall distribution have affected higher quantiles of river flow in monsoon months at some of the basins and therefore more flooding. The study reveals that quantile trend can provide more information of rainfall change which may be useful for climate change mitigation and adaptation planning.

  11. Weather types in the South Shetlands (Antarctica) using a circulation type approach

    NASA Astrophysics Data System (ADS)

    Mora, Carla; João Rocha, Maria; Dutra, Emanuel; Trigo, Isabel; Vieira, Gonçalo; Fragoso, Marcelo; Ramos, Miguel

    2010-05-01

    Weather types in the South Shetlands (Antarctica) were defined using an automated method based on the Lamb Weather Type classification scheme (Jones et al. 1993). This is an objective classification originally developed for the British Isles (Jones et al., 1993) and also applied to southeast (Goodess and Palutikof 1998) and northwest Spain (Lorenzo et al, 2009), Portugal (Trigo and DaCamara 2000) and Greece (Maheras et al. 2004) with good results. Daily atmospheric circulation in the South Shetlands region from 1989 to 2009 was classified using a 16-node grid of sea level pressure data from the ERA Interim. The classification is obtained through the comparison of the magnitudes of the directional and rotational components of the geostrophic flow. Basic circulation types were combined into 10 groups of weather types: four directional types (NW, N, S and SW), three anticyclonic types (A, ASW and ANW), and three cyclonic types (C, CSW and CNW). Westerly flow and cyclonic circulation are the most frequent events throughout the year. The sea level pressure field for each weather type is presented and the synoptic characteristics are described. The analysis is based on ERA-Interim fields, including mean sea level pressure, precipitation, cloud cover, humidity and air temperature. Snow thickess modelled using HTESSEL is also considered. Analysis of variance (anova) and multivariate analysis (principal component analysis) are applied to evaluate the characteristics of each weather type. This circulation-type approach showed good results in the past for the downscaling of precipitation in other regions, and we are interested in evaluating the possibilities that the classification offers for downscaling precipitation, but also for snow and air temperature. For this we will be using observational data at test sites in Livingston and Deception islands. We are also motivated by the possibility of using the circulation-type approach as a predictor in statistical downscaling. References: Goodess CM, Palutikof JP.1998. Development of daily rainfall scenarios for southeast Spain using a Circulation-type approach to downscaling. International Journal of Climatology. 10: 1051-1083. JonesPD, Hulme M, Briffa KR. 1993. A comparison of Lamb circulation types with an objective classification scheme. International Journal of Climatology, 13:655-663. Lorenzo M N, Iglesias I , Taboada JJ , Gómez-Gesteira M. 2009. Relationship between monthly rainfall in northwest Iberian Peninsula and North Atlantic sea surface temperature. International Journal of Climatology. Maheras P, Tolika K, Anagnostopoulou C, Vafiadis M, Patrikas I, Flocas H. 2004. On the relationship between circulation types and changes in rainfall variability in Grece. International Journal of Climatology 24: 1695-1712. Trigo RM, DaCamara C. 2000. Circulation weather types and their influence on the precipitation regime in Portugal. International Journal of Climatology. 20: 1559-1581.

  12. Combined effects of constant versus variable intensity simulated rainfall and reduced tillage management on cotton preemergence herbicide runoff.

    PubMed

    Potter, Thomas L; Truman, Clint C; Strickland, Timothy C; Bosch, David D; Webster, Theodore M; Franklin, Dorcas H; Bednarz, Craig W

    2006-01-01

    Pesticide runoff research relies heavily on rainfall simulation experiments. Most are conducted at a constant intensity, i.e., at a fixed rainfall rate; however, large differences in natural rainfall intensity is common. To assess implications we quantified runoff of two herbicides, fluometuron and pendimethalin, and applied preemergence after planting cotton on Tifton loamy sand. Rainfall at constant and variable intensity patterns representative of late spring thunderstorms in the Atlantic Coastal Plain region of Georgia (USA) were simulated on 6-m2 plots under strip- (ST) and conventional-tillage (CT) management. The variable pattern produced significantly higher runoff rates of both compounds from CT but not ST plots. However, on an event-basis, runoff totals (% applied) were not significantly different, with one exception: fluometuron runoff from CT plots. There was about 25% more fluometuron runoff with the variable versus the constant intensity pattern (P = 0.10). Study results suggest that conduct of simulations using variable intensity storm patterns may provide more representative rainfall simulation-based estimates of pesticide runoff and that the greatest impacts will be observed with CT. The study also found significantly more fluometuron in runoff from ST than CT plots. Further work is needed to determine whether this behavior may be generalized to other active ingredients with similar properties [low K(oc) (organic carbon partition coefficient) approximately 100 mL g(-1); high water solubility approximately 100 mg L(-1)]. If so, it should be considered when making tillage-specific herbicide recommendations to reduce runoff potential.

  13. Exogenous factors matter when interpreting the results of an impact evaluation: a case study of rainfall and child health programme intervention in Rwanda.

    PubMed

    Mukabutera, Assumpta; Thomson, Dana R; Hedt-Gauthier, Bethany L; Atwood, Sidney; Basinga, Paulin; Nyirazinyoye, Laetitia; Savage, Kevin P; Habimana, Marcellin; Murray, Megan

    2017-12-01

    Public health interventions are often implemented at large scale, and their evaluation seems to be difficult because they are usually multiple and their pathways to effect are complex and subject to modification by contextual factors. We assessed whether controlling for rainfall-related variables altered estimates of the efficacy of a health programme in rural Rwanda and have a quantifiable effect on an intervention evaluation outcomes. We conducted a retrospective quasi-experimental study using previously collected cross-sectional data from the 2005 and 2010 Rwanda Demographic and Health Surveys (DHS), 2010 DHS oversampled data, monthly rainfall data collected from meteorological stations over the same period, and modelled output of long-term rainfall averages, soil moisture, and rain water run-off. Difference-in-difference models were used. Rainfall factors confounded the PIH intervention impact evaluation. When we adjusted our estimates of programme effect by controlling for a variety of rainfall variables, several effectiveness estimates changed by 10% or more. The analyses that did not adjust for rainfall-related variables underestimated the intervention effect on the prevalence of ARI by 14.3%, fever by 52.4% and stunting by 10.2%. Conversely, the unadjusted analysis overestimated the intervention's effect on diarrhoea by 56.5% and wasting by 80%. Rainfall-related patterns have a quantifiable effect on programme evaluation results and highlighted the importance and complexity of controlling for contextual factors in quasi-experimental design evaluations. © 2017 John Wiley & Sons Ltd.

  14. Exploratory analysis of rainfall events in Coimbra, Portugal: variability of raindrop characteristics

    NASA Astrophysics Data System (ADS)

    Carvalho, S. C. P.; de Lima, M. I. P.; de Lima, J. L. M. P.

    2012-04-01

    Laser disdrometers can monitor efficiently rainfall characteristics at small temporal scales, providing data on rain intensity, raindrop diameter and fall speed, and raindrop counts over time. This type of data allows for the increased understanding of the rainfall structure at small time scales. Of particular interest for many hydrological applications is the characterization of the properties of extreme events, including the intra-event variability, which are affected by different factors (e.g. geographical location, rainfall generating mechanisms). These properties depend on the microphysical, dynamical and kinetic processes that interact to produce rain. In this study we explore rainfall data obtained during two years with a laser disdrometer installed in the city of Coimbra, in the centre region of mainland Portugal. The equipment was developed by Thies Clima. The data temporal resolution is one-minute. Descriptive statistics of time series of raindrop diameter (D), fall speed, kinetic energy, and rain rate were studied at the event scale; for different variables, the average, maximum, minimum, median, variance, standard deviation, quartile, coefficient of variation, skewness and kurtosis were determined. The empirical raindrop size distribution, N(D), was also calculated. Additionally, the parameterization of rainfall was attempted by investigating the applicability of different theoretical statistical distributions to fit the empirical data (e.g. exponential, gamma and lognormal distributions). As expected, preliminary results show that rainfall properties and structure vary with rainfall type and weather conditions over the year. Although only two years were investigated, already some insight into different rain events' structure was obtained.

  15. Assessing Climate Variability Effects on Dengue Incidence in San Juan, Puerto Rico

    PubMed Central

    Méndez-Lázaro, Pablo; Muller-Karger, Frank E.; Otis, Daniel; McCarthy, Matthew J.; Peña-Orellana, Marisol

    2014-01-01

    We test the hypothesis that climate and environmental conditions are becoming favorable for dengue transmission in San Juan, Puerto Rico. Sea Level Pressure (SLP), Mean Sea Level (MSL), Wind, Sea Surface Temperature (SST), Air Surface Temperature (AST), Rainfall, and confirmed dengue cases were analyzed. We evaluated the dengue incidence and environmental data with Principal Component Analysis, Pearson correlation coefficient, Mann-Kendall trend test and logistic regressions. Results indicated that dry days are increasing and wet days are decreasing. MSL is increasing, posing higher risk of dengue as the perimeter of the San Juan Bay estuary expands and shorelines move inland. Warming is evident with both SST and AST. Maximum and minimum air surface temperature extremes have increased. Between 1992 and 2011, dengue transmission increased by a factor of 3.4 (95% CI: 1.9–6.1) for each 1 °C increase in SST. For the period 2007–2011 alone, dengue incidence reached a factor of 5.2 (95% CI: 1.9–13.9) for each 1 °C increase in SST. Teenagers are consistently the age group that suffers the most infections in San Juan. Results help understand possible impacts of different climate change scenarios in planning for social adaptation and public health interventions. PMID:25216253

  16. Predicting summer monsoon of Bhutan based on SST and teleconnection indices

    NASA Astrophysics Data System (ADS)

    Dorji, Singay; Herath, Srikantha; Mishra, Binaya Kumar; Chophel, Ugyen

    2018-02-01

    The paper uses a statistical method of predicting summer monsoon over Bhutan using the ocean-atmospheric circulation variables of sea surface temperature (SST), mean sea-level pressure (MSLP), and selected teleconnection indices. The predictors are selected based on the correlation. They are the SST and MSLP of the Bay of Bengal and the Arabian Sea and the MSLP of Bangladesh and northeast India. The Northern Hemisphere teleconnections of East Atlantic Pattern (EA), West Pacific Pattern (WP), Pacific/North American Pattern, and East Atlantic/West Russia Pattern (EA/WR). The rainfall station data are grouped into two regions with principal components analysis and Ward's hierarchical clustering algorithm. A support vector machine for regression model is proposed to predict the monsoon. The model shows improved skills over traditional linear regression. The model was able to predict the summer monsoon for the test data from 2011 to 2015 with a total monthly root mean squared error of 112 mm for region A and 33 mm for region B. Model could also forecast the 2016 monsoon of the South Asia Monsoon Outlook of World Meteorological Organization (WMO) for Bhutan. The reliance on agriculture and hydropower economy makes the prediction of summer monsoon highly valuable information for farmers and various other sectors. The proposed method can predict summer monsoon for operational forecasting.

  17. Extreme events assessment methodology coupling rainfall and tidal levels in the coastal floodplain of the São Paulo North Coast (Brazil) for drainage purposes

    NASA Astrophysics Data System (ADS)

    Alfredini, P.; Cartacho, D. L.; Arasaki, E.; Rosso, M.; Sousa, W. C., Jr.; Lanzieri, D. R.; Ferreira, J. P. M.

    2012-04-01

    The Caraguatatuba Coastal Plain is the wider in São Paulo State (Brazil) North Coastline. The Santo Antônio Torrent Catchmenth drains that region with high urban concentration (around 100,000 permanent inhabitants), which may quintuplicate with the turists in the summer period. In the last decade important oil and gas sea reserves were discovered and the facilities for their treatment were located in that region. For that great economic growth scenario it is mandatory to design mitigation risk measures to have the fluvial forcing processes well known, considering the natural hazards. The Santo Antônio catchment has a surface area of 40 km2, heavy rainfall rates (around 3000 mm/year), concentrated mainly in the summer period, producing high fluvial sediment transport capacity, floods and debris-flows. Due to the steep slopes and the altitude (~ 1000 m) of the mountains near the coast, the hydrological orographic effect rapidly condensates the sea humidity and recurrent and intense flood events cause extensive risks and damages to population and infrastructures. Strong debris-flows occur in that region, because rains higher than 300-400 mm per day occur in multi decadal periods. Due to the wind blowing landward the humidity from the sea, also meteorological tides occur in correspondence of high rainfall rates. The aim of this project is to present an extreme hydrological assessment methodology, coupling rainfall rates and tidal levels, to show the impact of climate changes during the last decades. It is also presented the magnitude of the rising meteorological tide coupled with the extreme rainfall events. The data base analysed comprised long term data of rainfall and tidal measurements from 1954 to 2003. The correlations of the two data were divided in five classes of rainfall in mm per day (> 0, > 25, > 50, > 75 and > 100) and estimated the tidal levels for different return periods in years (2, 5, 10, 20, 50, 75 and 100). The comparison of two distint periods (1954 to 1980 and 1981 to 2000) for extreme events typically used for drainage projects (rains higher than 50 mm/day) clearly showed an increasing in tidal levels for the same return period. That trend indicates the importance to mantain a monitoring network in order to avoid the interruption of long term data series. According to that conclusions were evaluated the number of constructions and inhabitants affected in the are prone of that flooding in the next decades.

  18. Changes in hydro-meteorological conditions over tropical West Africa (1980-2015) and links to global climate

    NASA Astrophysics Data System (ADS)

    Ndehedehe, Christopher E.; Awange, Joseph L.; Agutu, Nathan O.; Okwuashi, Onuwa

    2018-03-01

    The role of global sea surface temperature (SST) anomalies in modulating rainfall in the African region has been widely studied and is now less debated. However, their impacts and links to terrestrial water storage (TWS) in general, have not been studied. This study presents the pioneer results of canonical correlation analysis (CCA) of TWS derived from both global reanalysis data (1980-2015) and GRACE (Gravity Recovery and Climate Experiment) (2002-2014) with SST fields. The main issues discussed include, (i) oceanic hot spots that impact on TWS over tropical West Africa (TWA) based on CCA, (ii) long term changes in model and global reanalysis data (soil moisture, TWS, and groundwater) and the influence of climate variability on these hydrological indicators, and (iii) the hydrological characteristics of the Equatorial region of Africa (i.e., the Congo basin) based on GRACE-derived TWS, river discharge, and precipitation. Results of the CCA diagnostics show that El-Niño Southern Oscillation related equatorial Pacific SST fluctuations is a major index of climate variability identified in the main portion of the CCA procedure that indicates a significant association with long term TWS reanalysis data over TWA (r = 0.50, ρ < 0.05). Based on Mann-Kendall's statistics, the study found fairly large long term declines (ρ < 0.05) in TWS and soil moisture (1982 - 2015), mostly over the Congo basin, which coincided with warming of the land surface and the surrounding oceans. Meanwhile, some parts of the Sahel show significant wetting (rainfall, soil moisture, groundwater, and TWS) trends during the same period (1982-2015) and aligns with the ongoing narratives of rainfall recovery in the region. Results of singular spectral analysis and regression confirm that multi-annual changes in the Congo River discharge explained a considerable proportion of variability in GRACE-hydrological signal over the Congo basin (r = 0.86 and R2 = 0.70, ρ < 0.05). Finally, leading orthogonal modes of MERRA and GRACE-TWS over TWA show significant association with global SST anomalies.

  19. Predicting Coastal Flood Severity using Random Forest Algorithm

    NASA Astrophysics Data System (ADS)

    Sadler, J. M.; Goodall, J. L.; Morsy, M. M.; Spencer, K.

    2017-12-01

    Coastal floods have become more common recently and are predicted to further increase in frequency and severity due to sea level rise. Predicting floods in coastal cities can be difficult due to the number of environmental and geographic factors which can influence flooding events. Built stormwater infrastructure and irregular urban landscapes add further complexity. This paper demonstrates the use of machine learning algorithms in predicting street flood occurrence in an urban coastal setting. The model is trained and evaluated using data from Norfolk, Virginia USA from September 2010 - October 2016. Rainfall, tide levels, water table levels, and wind conditions are used as input variables. Street flooding reports made by city workers after named and unnamed storm events, ranging from 1-159 reports per event, are the model output. Results show that Random Forest provides predictive power in estimating the number of flood occurrences given a set of environmental conditions with an out-of-bag root mean squared error of 4.3 flood reports and a mean absolute error of 0.82 flood reports. The Random Forest algorithm performed much better than Poisson regression. From the Random Forest model, total daily rainfall was by far the most important factor in flood occurrence prediction, followed by daily low tide and daily higher high tide. The model demonstrated here could be used to predict flood severity based on forecast rainfall and tide conditions and could be further enhanced using more complete street flooding data for model training.

  20. Constraining Marsh Carbon Budgets Using Long-Term C Burial and Contemporary Atmospheric CO2 Fluxes

    NASA Astrophysics Data System (ADS)

    Forbrich, I.; Giblin, A. E.; Hopkinson, C. S.

    2018-03-01

    Salt marshes are sinks for atmospheric carbon dioxide that respond to environmental changes related to sea level rise and climate. Here we assess how climatic variations affect marsh-atmosphere exchange of carbon dioxide in the short term and compare it to long-term burial rates based on radiometric dating. The 5 years of atmospheric measurements show a strong interannual variation in atmospheric carbon exchange, varying from -104 to -233 g C m-2 a-1 with a mean of -179 ± 32 g C m-2 a-1. Variation in these annual sums was best explained by differences in rainfall early in the growing season. In the two years with below average rainfall in June, both net uptake and Normalized Difference Vegetation Index were less than in the other three years. Measurements in 2016 and 2017 suggest that the mechanism behind this variability may be rainfall decreasing soil salinity which has been shown to strongly control productivity. The net ecosystem carbon balance was determined as burial rate from four sediment cores using radiometric dating and was lower than the net uptake measured by eddy covariance (mean: 110 ± 13 g C m-2 a-1). The difference between these estimates was significant and may be because the atmospheric measurements do not capture lateral carbon fluxes due to tidal exchange. Overall, it was smaller than values reported in the literature for lateral fluxes and highlights the importance of investigating lateral C fluxes in future studies.

Top