Sample records for sea surface layer

  1. Observing the seasonal cycle of the upper ocean in the Ross Sea, Antarctica, with autonomous profiling floats

    NASA Astrophysics Data System (ADS)

    Porter, D. F.; Springer, S. R.; Padman, L.; Fricker, H. A.; Bell, R. E.

    2017-12-01

    The upper layers of the Southern Ocean where it meets the Antarctic ice sheet undergoes a large seasonal cycle controlled by surface radiation and by freshwater fluxes, both of which are strongly influenced by sea ice. In regions where seasonal sea ice and icebergs limit use of ice-tethered profilers and conventional moorings, autonomous profiling floats can sample the upper ocean. The deployment of seven Apex floats (by sea) and six ALAMO floats (by air) provides unique upper ocean hydrographic data in the Ross Sea close to the Ross Ice Shelf front. A novel choice of mission parameters - setting parking depth deeper than the seabed - limits their drift, allowing us to deploy the floats close to the ice shelf front, while sea ice avoidance algorithms allow the floats to to sample through winter under sea ice. Hydrographic profiles show the detailed development of the seasonal mixed layer close to the Ross front, and interannual variability of the seasonal mixed layer and deeper water masses on the central Ross Sea continental shelf. After the sea ice breakup in spring, a warm and fresh surface mixed layer develops, further warming and deepening throughout the summer. The mixed layer deepens, with maximum temperatures exceeding 0ºC in mid-February. By March, the surface energy budget becomes negative and sea ice begins to form, creating a cold, saline and dense surface layer. Once these processes overcome the stable summer stratification, convection erodes the surface mixed layer, mixing some heat downwards to deeper layers. There is considerable interannual variability in the evolution and strength of the surface mixed layer: summers with shorter ice-free periods result in a cooler and shallower surface mixed layer, which accumulates less heat than the summers with longer ice-free periods. Early ice breakup occurred in all floats in 2016/17 summer, enhancing the absorbed solar flux leading to a warmer surface mixed layer. Together, these unique measurements from autonomous profilers provide insight into the hydrographic state of the Ross Sea at the start of the spring period of sea-ice breakup, and how ocean mixing and sea ice interact to initiate the summer open-water season.

  2. Influences of Ocean Thermohaline Stratification on Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Toole, J. M.; Timmermans, M.-L.; Perovich, D. K.; Krishfield, R. A.; Proshutinsky, A.; Richter-Menge, J. A.

    2009-04-01

    The Arctic Ocean's surface mixed layer constitutes the dynamical and thermodynamical link between the sea ice and the underlying waters. Wind stress, acting directly on the surface mixed layer or via wind-forced ice motion, produce surface currents that can in turn drive deep ocean flow. Mixed layer temperature is intimately related to basal sea ice growth and melting. Heat fluxes into or out of the surface mixed layer can occur at both its upper and lower interfaces: the former via air-sea exchange at leads and conduction through the ice, the latter via turbulent mixing and entrainment at the layer base. Variations in Arctic Ocean mixed layer properties are documented based on more than 16,000 temperature and salinity profiles acquired by Ice-Tethered Profilers since summer 2004 and analyzed in conjunction with sea ice observations from Ice Mass Balance Buoys and atmospheric heat flux estimates. Guidance interpreting the observations is provided by a one-dimensional ocean mixed layer model. The study focuses attention on the very strong density stratification about the mixed layer base in the Arctic that, in regions of sea ice melting, is increasing with time. The intense stratification greatly impedes mixed layer deepening by vertical convection and shear mixing, and thus limits the flux of deep ocean heat to the surface that could influence sea ice growth/decay. Consistent with previous work, this study demonstrates that the Arctic sea ice is most sensitive to changes in ocean mixed layer heat resulting from fluxes across its upper (air-sea and/or ice-water) interface.

  3. Enhancement of the surface methane hydrate-bearing layer based on the specific microorganisms form deep seabed sediment in Japan Sea.

    NASA Astrophysics Data System (ADS)

    Hata, T.; Yoneda, J.; Yamamoto, K.

    2017-12-01

    A methane hydrate-bearing layer located near the Japan Sea has been investigated as a new potential energy resource. In this study examined the feasibility of the seabed surface sediment strength located in the Japan Sea improvement technologies for enhancing microbial induced carbonate precipitation (MICP) process. First, the authors cultivated the specific urease production bacterium culture medium from this surface methane hydrate-bearing layer in the seabed (-600m depth) of Japan Sea. After that, two types of the laboratory test (consolidated-drained triaxial tests) were conducted using this specific culture medium from the seabed in the Japan Sea near the Toyama Prefecture and high urease activities bacterium named Bacillus pasteurii. The main outcomes of this research are as follows. 1) Specific culture medium focused on the urease production bacterium can enhancement of the urease activities from the methane hydrate-bearing layer near the Japan Sea side, 2) This specific culture medium can be enhancement of the surface layer strength, 3) The microbial induced carbonate precipitation process can increase the particle size compared to that of the original particles coating the calcite layer surface, 4) The mechanism for increasing the soil strength is based on the addition of cohesion like a cement stabilized soil.

  4. The Acoustic Model Evaluation Committee (AMEC) Reports. Volume 1A. Summary of Range Independent Environment Acoustic Propagation Data Sets

    DTIC Science & Technology

    1982-09-01

    experiment were: isothermal layer depth 36 ft depressed channel axis 66 ft surface water temperature 59.4 F sea state 2 Discussion The propagation loss...experiments were: isothermal layer depths 56 ft surface water temperature 59.7 0F - sea state 1 Discussion The propagation loss measurements are summarized...number of observations 1854 isothermal layer depth 33 ft surface water temperature 59.9°F sea state 2 Discussion The propagation loss measurements

  5. Investigation of the spectral reflectance and bidirectional reflectance distribution function of sea foam layer by the Monte Carlo method.

    PubMed

    Ma, L X; Wang, F Q; Wang, C A; Wang, C C; Tan, J Y

    2015-11-20

    Spectral properties of sea foam greatly affect ocean color remote sensing and aerosol optical thickness retrieval from satellite observation. This paper presents a combined Mie theory and Monte Carlo method to investigate visible and near-infrared spectral reflectance and bidirectional reflectance distribution function (BRDF) of sea foam layers. A three-layer model of the sea foam is developed in which each layer is composed of large air bubbles coated with pure water. A pseudo-continuous model and Mie theory for coated spheres is used to determine the effective radiative properties of sea foam. The one-dimensional Cox-Munk surface roughness model is used to calculate the slope density functions of the wind-blown ocean surface. A Monte Carlo method is used to solve the radiative transfer equation. Effects of foam layer thickness, bubble size, wind speed, solar zenith angle, and wavelength on the spectral reflectance and BRDF are investigated. Comparisons between previous theoretical results and experimental data demonstrate the feasibility of our proposed method. Sea foam can significantly increase the spectral reflectance and BRDF of the sea surface. The absorption coefficient of seawater near the surface is not the only parameter that influences the spectral reflectance. Meanwhile, the effects of bubble size, foam layer thickness, and solar zenith angle also cannot be obviously neglected.

  6. The ocean mixed layer under Southern Ocean sea-ice: seasonal cycle and forcing.

    NASA Astrophysics Data System (ADS)

    Violaine, P.; Sallee, J. B.; Schmidtko, S.; Roquet, F.; Charrassin, J. B.

    2016-02-01

    The mixed-layer at the surface of the ocean is the gateway for all exchanges between air and sea. A vast area of the Southern Ocean is however seasonally capped by sea-ice, which alters this gateway and the characteristic the ocean mixed-layer. The interaction between the ocean mixed-layer and sea-ice plays a key role for water-mass formation and circulation, carbon cycle, sea-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the mixed layer, as well as the processes responsible for its evolution, are poorly understood due to the lack of in-situ observations and measurements. We urgently need to better understand the forcing and the characteristics of the ocean mixed-layer under sea-ice if we are to understand and predict the world's climate. In this study, we combine a range of distinct sources of observation to overcome this lack in our understanding of the Polar Regions. Working on Elephant Seal-derived data as well as ship-based observations and Argo float data, we describe the seasonal cycle of the characteristics and stability of the ocean mixed layer over the entire Southern Ocean (South of 40°S), and specifically under sea-ice. Mixed-layer budgets of heat and freshwater are used to investigate the main forcings of the mixed-layer seasonal cycle. The seasonal variability of sea surface salinity and temperature are primarily driven by surface processes, dominated by sea-ice freshwater flux for the salt budget, and by air-sea flux for the heat budget. Ekman advection, vertical diffusivity and vertical entrainment play only secondary role.Our results suggest that changes in regional sea-ice distribution or sea-ice seasonal cycle duration, as currently observed, would widely affect the buoyancy budget of the underlying mixed-layer, and impacts large-scale water-mass formation and transformation.

  7. Seasonal signatures in SFG vibrational spectra of the sea surface nanolayer at Boknis Eck Time Series Station (SW Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Laß, K.; Bange, H. W.; Friedrichs, G.

    2013-02-01

    The very thin sea surface nanolayer on top of the sea surface microlayer, sometimes just one monomolecular layer thick, forms the interface between ocean and atmosphere. Due to the small dimension and tiny amount of substance, knowledge about the development of the layer in the course of the year is scarce. In this work, the sea surface nanolayer at Boknis Eck Time Series Station (BE), southwestern Baltic Sea, has been investigated over a period of three and a half years. Surface water samples were taken monthly by screen sampling and were analyzed in terms of organic content and composition by sum frequency generation spectroscopy, which is specifically sensitive to interfacial layers. A yearly periodicity has been observed with a pronounced abundance of sea surface nanolayer material (such as carbohydrate-rich material) during the summer months. On the basis of our results we conclude that the abundance of organic material in the nanolayer at Boknis Eck is not directly related to phytoplankton abundance. We suggest that indeed sloppy feeding of zooplankton together with photochemical and/or microbial processing of organic precursor compounds are responsible for the pronounced seasonality.

  8. Seasonal signatures in SFG vibrational spectra of the sea surface nanolayer at Boknis Eck Time Series Station (SW Baltic Sea)

    NASA Astrophysics Data System (ADS)

    Laß, K.; Bange, H. W.; Friedrichs, G.

    2013-08-01

    The very thin sea surface nanolayer on top of the sea surface microlayer, sometimes just one monomolecular layer thick, forms the interface between ocean and atmosphere. Due to the small dimension and tiny amount of substance, knowledge about the development of the layer in the course of the year is scarce. In this work, the sea surface nanolayer at Boknis Eck Time Series Station (BE), southwestern Baltic Sea, has been investigated over a period of three and a half years. Surface water samples were taken monthly by screen sampling and were analyzed in terms of organic content and composition by sum frequency generation spectroscopy, which is specifically sensitive to interfacial layers. A yearly periodicity has been observed with a pronounced abundance of sea surface nanolayer material (such as carbohydrate-rich material) during the summer months. On the basis of our results we conclude that the abundance of organic material in the nanolayer at Boknis Eck is not directly related to phytoplankton abundance alone. We speculate that indeed sloppy feeding of zooplankton together with photochemical and/or microbial processing of organic precursor compounds is responsible for the pronounced seasonality.

  9. Assessing sea wave and spray effects on Marine Boundary Layer structure

    NASA Astrophysics Data System (ADS)

    Stathopoulos, Christos; Galanis, George; Patlakas, Platon; Kallos, George

    2017-04-01

    Air sea interface is characterized by several mechanical and thermodynamical processes. Heat, moisture and momentum exchanges increase the complexity in modeling the atmospheric-ocean system. Near surface atmospheric levels are subject to sea surface roughness and sea spray. Sea spray fluxes can affect atmospheric stability and induce microphysical processes such as sea salt particle formation and condensation/evaporation of water in the boundary layer. Moreover, presence of sea spray can alter stratification over the ocean surface with further insertion of water vapor. This can lead to modified stability conditions and to wind profiles that deviate significantly from the logarithmic approximation. To model these effects, we introduce a fully coupled system consisting of the mesoscale atmospheric model RAMS/ICLAMS and the wave model WAM. The system encompasses schemes for ocean surface roughness, sea salt aerosols and droplet thermodynamic processes and handles sea salt as predictive quantity. Numerical experiments using the developed atmospheric-ocean system are performed over the Atlantic and Mediterranean shoreline. Emphasis is given to the quantification of the improvement obtained in the description of the marine boundary layer, particularly in its lower part as well as in wave characteristics.

  10. Turbulence structure of the marine stable boundary layer over the Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smedman, A.S.; Hoegstroem, U.

    For more than half of the year the land surfaces surrounding the Baltic Sea is warmer than the sea surface, and the marine boundary layer over the Baltic is stable. Observations, at various sites in the Baltic Sea area during the last decade. also indicate frequent occurrence of low-level jets at the top of the stable boundary layer. In many cases the marine jet can be considered as an analogy in space to the evolution of the nocturnal jet with time. The frictional decoupling occurs when warm air over the land is flowing out over the sea. Data from twomore » areas together with model simulations are used in this study to characterize turbulence structure in the marine boundary layer. The measurements include profiles of wind and temperature on towers situated at two isolated islands, together with turbulence recordings and aircraft measurements. Also wave height and water surface temperature have been measured. The model simulations are performed with a second-order closure model.« less

  11. Impact of Langmuir Turbulence on Upper Ocean Response to Hurricane Edouard: Model and Observations

    NASA Astrophysics Data System (ADS)

    Blair, A.; Ginis, I.; Hara, T.; Ulhorn, E.

    2017-12-01

    Tropical cyclone intensity is strongly affected by the air-sea heat flux beneath the storm. When strong storm winds enhance upper ocean turbulent mixing and entrainment of colder water from below the thermocline, the resulting sea surface temperature cooling may reduce the heat flux to the storm and weaken the storm. Recent studies suggest that this upper ocean turbulence is strongly affected by different sea states (Langmuir turbulence), which are highly complex and variable in tropical cyclone conditions. In this study, the upper ocean response under Hurricane Edouard (2014) is investigated using a coupled ocean-wave model with and without an explicit sea state dependent Langmuir turbulence parameterization. The results are compared with in situ observations of sea surface temperature and mixed layer depth from AXBTs, as well as satellite sea surface temperature observations. Overall, the model results of mixed layer deepening and sea surface temperature cooling under and behind the storm are consistent with observations. The model results show that the effects of sea state dependent Langmuir turbulence can be significant, particularly on the mixed layer depth evolution. Although available observations are not sufficient to confirm such effects, some observed trends suggest that the sea state dependent parameterization might be more accurate than the traditional (sea state independent) parameterization.

  12. Sum-Frequency Generation Spectroscopy for Studying Organic Layers at Water-Air Interfaces: Microlayer Monitoring and Surface Reactivity

    NASA Astrophysics Data System (ADS)

    Laß, Kristian; Kleber, Joscha; Bange, Hermann; Friedrichs, Gernot

    2015-04-01

    The sea surface microlayer, according to commonly accepted terminology, comprises the topmost millimetre of the oceanic water column. It is often enriched with organic matter and is directly influenced by sunlight exposure and gas exchange with the atmosphere, hence making it a place for active biochemistry and photochemistry as well as for heterogeneous reactions. In addition, surface active material either is formed or accumulates directly at the air-water interface and gives rise to very thin layers, sometimes down to monomolecular thickness. This "sea surface nanolayer" determines the viscoelastic properties of the seawater surface and thus may impact the turbulent air-sea gas exchange rates. To this effect, this small scale layer presumably plays an important role for large scale changes of atmospheric trace gas concentrations (e.g., by modulating the ocean carbon sink characteristics) with possible implications for coupled climate models. To date, detailed knowledge about the composition, structure, and reactivity of the sea surface nanolayer is still scarce. Due to its small vertical dimension and the small amount of material, this surfactant layer is very difficult to separate and analyse. A way out is the application of second-order nonlinear optical methods, which make a direct surface-specific and background-free detection of this interfacial layer possible. In recent years, we have introduced the use of vibrational sum frequency generation (VSFG) spectroscopy to gain insight into natural and artificial organic monolayers at the air-water interface. In this contribution, the application of VSFG spectroscopy for the analysis of the sea surface nanolayer will be illustrated. Resulting spectra are interpreted in terms of layer composition and surfactant classes, in particular with respect to carbohydrate-containing molecules such as glycolipids. The partitioning of the detected surfactants into soluble and non-soluble ("wet" and "dry") surfactants will be discussed. Furthermore, the application of a combined VSFG/Langmuir trough experiment to investigate the reaction kinetics of heterogeneous oxidation processes will be highlighted. The ozonolysis of monolayers of unsaturated fatty acids serves as model system for natural aging processes of surfactant layers at the sea surface. Finally, a VSFG time series study of the sea surface nanolayer at a western Baltic Sea near-shore sampling station will be presented. The observed seasonality reveals a significant temporal shift with respect to the spring algal bloom showing that high organic material content in the microlayer does not necessarily correlate with high nanolayer abundance. This interesting finding and implications for the formation of surfactant material by degradation of biological material will be discussed briefly.

  13. The ocean mixed layer under Southern Ocean sea-ice: Seasonal cycle and forcing

    NASA Astrophysics Data System (ADS)

    Pellichero, Violaine; Sallée, Jean-Baptiste; Schmidtko, Sunke; Roquet, Fabien; Charrassin, Jean-Benoît

    2017-02-01

    The oceanic mixed layer is the gateway for the exchanges between the atmosphere and the ocean; in this layer, all hydrographic ocean properties are set for months to millennia. A vast area of the Southern Ocean is seasonally capped by sea-ice, which alters the characteristics of the ocean mixed layer. The interaction between the ocean mixed layer and sea-ice plays a key role for water mass transformation, the carbon cycle, sea-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the under-ice mixed layer are poorly understood due to the sparseness of in situ observations and measurements. In this study, we combine distinct sources of observations to overcome this lack in our understanding of the polar regions. Working with elephant seal-derived, ship-based, and Argo float observations, we describe the seasonal cycle of the ocean mixed-layer characteristics and stability of the ocean mixed layer over the Southern Ocean and specifically under sea-ice. Mixed-layer heat and freshwater budgets are used to investigate the main forcing mechanisms of the mixed-layer seasonal cycle. The seasonal variability of sea surface salinity and temperature are primarily driven by surface processes, dominated by sea-ice freshwater flux for the salt budget and by air-sea flux for the heat budget. Ekman advection, vertical diffusivity, and vertical entrainment play only secondary roles. Our results suggest that changes in regional sea-ice distribution and annual duration, as currently observed, widely affect the buoyancy budget of the underlying mixed layer, and impact large-scale water mass formation and transformation with far reaching consequences for ocean ventilation.

  14. Surfactant-associated bacteria in the near-surface layer of the ocean.

    PubMed

    Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William

    2016-01-12

    Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols.

  15. Surfactant-associated bacteria in the near-surface layer of the ocean

    PubMed Central

    Kurata, Naoko; Vella, Kate; Hamilton, Bryan; Shivji, Mahmood; Soloviev, Alexander; Matt, Silvia; Tartar, Aurélien; Perrie, William

    2016-01-01

    Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols. PMID:26753514

  16. An Assessment of Southern Ocean Water Masses and Sea Ice During 1988-2007 in a Suite of Interannual CORE-II Simulations

    NASA Technical Reports Server (NTRS)

    Downes, Stephanie M.; Farneti, Riccardo; Uotila, Petteri; Griffies, Stephen M.; Marsland, Simon J.; Bailey, David; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne; hide

    2015-01-01

    We characterise the representation of the Southern Ocean water mass structure and sea ice within a suite of 15 global ocean-ice models run with the Coordinated Ocean-ice Reference Experiment Phase II (CORE-II) protocol. The main focus is the representation of the present (1988-2007) mode and intermediate waters, thus framing an analysis of winter and summer mixed layer depths; temperature, salinity, and potential vorticity structure; and temporal variability of sea ice distributions. We also consider the interannual variability over the same 20 year period. Comparisons are made between models as well as to observation-based analyses where available. The CORE-II models exhibit several biases relative to Southern Ocean observations, including an underestimation of the model mean mixed layer depths of mode and intermediate water masses in March (associated with greater ocean surface heat gain), and an overestimation in September (associated with greater high latitude ocean heat loss and a more northward winter sea-ice extent). In addition, the models have cold and fresh/warm and salty water column biases centred near 50 deg S. Over the 1988-2007 period, the CORE-II models consistently simulate spatially variable trends in sea-ice concentration, surface freshwater fluxes, mixed layer depths, and 200-700 m ocean heat content. In particular, sea-ice coverage around most of the Antarctic continental shelf is reduced, leading to a cooling and freshening of the near surface waters. The shoaling of the mixed layer is associated with increased surface buoyancy gain, except in the Pacific where sea ice is also influential. The models are in disagreement, despite the common CORE-II atmospheric state, in their spatial pattern of the 20-year trends in the mixed layer depth and sea-ice.

  17. Sensitivity of Offshore Surface Fluxes and Sea Breezes to the Spatial Distribution of Sea-Surface Temperature

    NASA Astrophysics Data System (ADS)

    Lombardo, Kelly; Sinsky, Eric; Edson, James; Whitney, Michael M.; Jia, Yan

    2018-03-01

    A series of numerical sensitivity experiments is performed to quantify the impact of sea-surface temperature (SST) distribution on offshore surface fluxes and simulated sea-breeze dynamics. The SST simulations of two mid-latitude sea-breeze events over coastal New England are performed using a spatially-uniform SST, as well as spatially-varying SST datasets of 32- and 1-km horizontal resolutions. Offshore surface heat and buoyancy fluxes vary in response to the SST distribution. Local sea-breeze circulations are relatively insensitive, with minimal differences in vertical structure and propagation speed among the experiments. The largest thermal perturbations are confined to the lowest 10% of the sea-breeze column due to the relatively high stability of the mid-Atlantic marine atmospheric boundary layer (ABL) suppressing vertical mixing, resulting in the depth of the marine layer remaining unchanged. Minimal impacts on the column-averaged virtual potential temperature and sea-breeze depth translates to small changes in sea-breeze propagation speed. This indicates that the use of datasets with a fine-scale SST may not produce more accurate sea-breeze simulations in highly stable marine ABL regimes, though may prove more beneficial in less stable sub-tropical environments.

  18. Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary.

    PubMed

    Li, J; Guo, L-X; Zeng, H; Han, X-B

    2009-06-01

    A message-passing-interface (MPI)-based parallel finite-difference time-domain (FDTD) algorithm for the electromagnetic scattering from a 1-D randomly rough sea surface is presented. The uniaxial perfectly matched layer (UPML) medium is adopted for truncation of FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different processors is illustrated for one sea surface realization, and the computation time of the parallel FDTD algorithm is dramatically reduced compared to a single-process implementation. Finally, some numerical results are shown, including the backscattering characteristics of sea surface for different polarization and the bistatic scattering from a sea surface with large incident angle and large wind speed.

  19. The Thermocline Layer and Chlorophyll-a Concentration Variability during Southeast Monsoon in the Banda Sea

    NASA Astrophysics Data System (ADS)

    Pusparini, Nikita; Prasetyo, Budi; Ambariyanto; Widowati, Ita

    2017-02-01

    Thermocline layer and chlorophyll-a concentration can be used to investigate the upwelling region. This investigation is focused in the Banda Sea because the upwelling event in this area is quite large and has a longer upwelling duration than other waters in Indonesia. In addition, Banda Sea is also influenced by climatic factors such as monsoon. The aim of this research is to determine the validation of secondary data (from satellite imagery data and model) and in situ observation data (from research cruise) and to determine the variability of thermocline layer and chlorophyll-a concentration during Southeast Monsoon in the Banda Sea. The data used in this study were chlorophyll-a concentration, seawater vertical temperature at depths 0-400 meters, and sea surface temperature from remote sensing and in situ data. Spatial and temporal analysis of all parameters was conducted by quantitative descriptive method. The results showed that the variability of thermocline layer and the chlorophyll-a distribution were strongly related to seasonal pattern. In most cases, the estimates of thermocline layer and chlorophyll-a concentration using remote sensing algorithm were higher than in situ measured values. The greatest variability occurred in the eastern Banda Sea during the Southeast Monsoon with shallower thermocline layer, more abundance of chlorophyll-a concentration, and lower sea surface temperature.

  20. Dynamics behind warming of the southeastern Arabian Sea and its interruption based on in situ measurements

    NASA Astrophysics Data System (ADS)

    Mathew, Simi; Natesan, Usha; Latha, Ganesan; Venkatesan, Ramasamy

    2018-05-01

    A study of the inter-annual variability of the warming of the southeastern Arabian Sea (SEAS) during the spring transition months was carried out from 2013 to 2015 based on in situ data from moored buoys. An attempt was made to identify the roles of the different variables in the warming of the SEAS (e.g., net heat flux, advection, entrainment, and thickness of the barrier layer during the previous northeast monsoon season). The intense freshening of the SEAS (approximately 2 PSU) occurring in each December, together with the presence of a downwelling Rossby wave, supports the formation of a thick barrier layer during the northeast monsoon season. It is known that the barrier layer thickness, varying each year, plays a major role in the spring warming of the SEAS. Interestingly, an anomalously thick barrier layer occurred during the northeast monsoon season of 2012-2013. However, the highest sea surface temperature (31 °C) was recorded during the last week of April 2015, while the lowest sea surface temperature (29.7 °C) was recorded during the last week of May 2013. The mixed layer heat budget analysis during the spring transition months proved that the intense warming has been mainly supported by the net heat flux, not by other factors like advection and entrainment. The inter-annual variability analysis of the net heat flux and its components, averaged over a box region of the SEAS, showed a substantial latent heat flux release and a reduction in net shortwave radiation in 2013. Both factors contributed to the negative net heat flux. Strong breaks in the warming were also observed in May due to the entrainment of cold sub-surface waters. These events are associated with the cyclonic eddy persisting over the SEAS during the same time. The entrainment term, favoring the cooling, was stronger in 2015 than that in 2013 and 2014. The surface temperatures measured in 2013 were lower than those in 2014 and 2015 despite the presence of a thick barrier layer. The substantial decrease in net heat flux along with entrainment cooling has been identified as causes for this behavior.

  1. Observed Seasonal Variations of the Upper Ocean Structure and Air-Sea Interactions in the Andaman Sea

    NASA Astrophysics Data System (ADS)

    Liu, Yanliang; Li, Kuiping; Ning, Chunlin; Yang, Yang; Wang, Haiyuan; Liu, Jianjun; Skhokiattiwong, Somkiat; Yu, Weidong

    2018-02-01

    The Andaman Sea (AS) is a poorly observed basin, where even the fundamental physical characteristics have not been fully documented. Here the seasonal variations of the upper ocean structure and the air-sea interactions in the central AS were studied using a moored surface buoy. The seasonal double-peak pattern of the sea surface temperature (SST) was identified with the corresponding mixed layer variations. Compared with the buoys in the Bay of Bengal (BOB), the thermal stratification in the central AS was much stronger in the winter to spring, when a shallower isothermal layer and a thinner barrier layer were sustained. The temperature inversion was strongest from June to July because of substantial surface heat loss and subsurface prewarming. The heat budget analysis of the mixed layer showed that the net surface heat fluxes dominated the seasonal SST cycle. Vertical entrainment was significant from April to July. It had a strong cooling effect from April to May and a striking warming effect from June to July. A sensitivity experiment highlighted the importance of salinity. The AS warmer surface water in the winter was associated with weak heat loss caused by weaker longwave radiation and latent heat losses. However, the AS latent heat loss was larger than the BOB in summer due to its lower relative humidity.

  2. Cloud and boundary layer interactions over the Arctic sea-ice in late summer

    NASA Astrophysics Data System (ADS)

    Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.

    2013-05-01

    Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back trajectory analyses suggest that these warm airmasses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these airmasses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing processes kept the mixed layer in equilibrium with the near-surface environment. Rather than contributing buoyancy forcing for the mixed-layer dynamics, the surface instead simply appeared to respond to the mixed-layer processes aloft. Clouds in these cases often contained slightly higher condensed water amounts, potentially due to additional moisture sources from below.

  3. Cloud and boundary layer interactions over the Arctic sea ice in late summer

    NASA Astrophysics Data System (ADS)

    Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.

    2013-09-01

    Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near-surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back-trajectory analyses suggest that these warm air masses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these air masses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing processes kept the mixed layer in equilibrium with the near-surface environment. Rather than contributing buoyancy forcing for the mixed-layer dynamics, the surface instead simply appeared to respond to the mixed-layer processes aloft. Clouds in these cases often contained slightly higher condensed water amounts, potentially due to additional moisture sources from below.

  4. Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

    2012-12-01

    The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700-900 µmol kg-1 ice (~ 25 × 106 crystals kg-1) to bottom-layer values of 100-200 µmol kg-1 ice (1-7 × 106 kg-1), all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.

  5. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  6. Bio-physical changes in the coastal ocean triggered by typhoon: A case of Typhoon Meari in summer 2011

    NASA Astrophysics Data System (ADS)

    Wu, Xiao; Wang, Houjie; Bi, Naishuang; Song, Zhenjie; Zang, Zhengchen; Kineke, Gail C.

    2016-12-01

    Based on the combination of synchronous satellite and in-situ observations, we here, for the first time, provide the compelling evidence of bio-physical response of coastal environment in the Bohai Sea (China) to the passage of Typhoon Meari over the northern Yellow Sea on June 26, 2011. Strong sustained winds induced a tongue-like intrusion of cool water from the northern Yellow Sea into the Bohai Sea, resulting in significant surface cooling and an anomalous increase in sea surface height along the coast of the western Bohai Sea. This, in return, produced downwelling and transport of the warm and nutrient-rich coastal water from the western coast to the central Bohai Sea, as driven by the barotropic pressure gradient force. In-situ observational data confirmed the cooling of both surface and bottom layers with salinity increase; however, the measured temperature increase by 2-3 °C, concomitant salinity decrease by 0.3 PSU and two-fold increase in chlorophyll-a in the middle layers suggested an influence from coastal downwelling. Ekman transport and typhoon-enhanced mixing redistributed the nutrients and thus resulted in higher chlorophyll-a concentrations in the upper layers.

  7. Study of the blue-green laser scattering from the rough sea surface with foams by the improved two-scale method

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhen; Qi, Xiao; Han, Xiang'e.

    2015-10-01

    The characteristics of laser scattering from sea surface have a great influence on application performance, from submarine communication, laser detection to laser diffusion communication. Foams will appear when the wind speed exceeds a certain value, so the foam can be seen everywhere in the upper layer of the ocean. Aiming at the volume-surface composite model of rough sea surface with foam layer driven by wind, and the similarities and differences of scattering characteristics between blue-green laser and microwave, an improved two-scale method for blue-green laser to calculate the scattering coefficient is presented in this paper. Based on the improved two-scale rough surface scattering theory, MIE theory and VRT( vector radiative transfer ) theory, the relations between the foam coverage of the sea surface and wind speed and air-sea temperature difference are analyzed. Aiming at the Gauss sea surface in blue-green laser, the dependence of back- and bistatie-scattering coefficient on the incident and azimuth angle, the coverage of foams, as well as the wind speed are discussed in detail. The results of numerical simulations are compared and analyzed in this paper. It can be concluded that the foam layer has a considerable effect on the laser scattering with the increase of wind speed, especially for a large incident angle. Theoretical analysis and numerical simulations show that the improved two-scale method is reasonable and efficient.

  8. Spatial variability of concentrations of chlorophyll a, dissolved organic matter and suspended particles in the surface layer of the Kara Sea in September 2011 from lidar data

    NASA Astrophysics Data System (ADS)

    Pelevin, V. V.; Zavjalov, P. O.; Belyaev, N. A.; Konovalov, B. V.; Kravchishina, M. D.; Mosharov, S. A.

    2017-01-01

    The article presents results of underway remote laser sensing of the surface water layer in continuous automatic mode using the UFL-9 fluorescent lidar onboard the R/V Akademik Mstislav Keldysh during cruise 59 in the Kara Sea in 2011. The description of the lidar, the approach to interpreting seawater fluorescence data, and certain methodical aspects of instrument calibration and measurement are presented. Calibration of the lidar is based on laboratory analysis of water samples taken from the sea surface during the cruise. Spatial distribution of chlorophyll a, total organic carbon and suspended matter concentrations in the upper quasi-homogeneous layer are mapped and the characteristic scales of the variability are estimated. Some dependencies between the patchiness of the upper water layer and the atmospheric forcing and freshwater runoff are shown.

  9. Coccolithophore assemblage response to Black Sea Water inflow into the North Aegean Sea (NE Mediterranean)

    NASA Astrophysics Data System (ADS)

    Karatsolis, B.-Th.; Triantaphyllou, M. V.; Dimiza, M. D.; Malinverno, E.; Lagaria, A.; Mara, P.; Archontikis, O.; Psarra, S.

    2017-10-01

    This study aims to presents the species composition of living coccolithophore communities in the NE Aegean Sea, investigating their spatial and temporal variations along a north-south transect in the area receiving the inflowing surface Black Sea Water (BSW) over the deeper Levantine Water (LW) layer. Coccolithophores in the area were relatively diverse and a total of 95 species over 3 sampling periods studied were recognized using Scanning Electron Microscope (SEM) techniques. R-mode hierarchical cluster analysis distinguished two coccolithophore Groups (I, IIa, IIb, IIc) with different ecological preferences. Emiliania huxleyi was the most abundant species of Group I, whereas Syracosphaera spp., Rhabdosphaera spp. and holococcolithophores were prevailing in the highly diversified Group II assemblages. Biometric analysis conducted on E. huxleyi coccoliths from Aegean water column and Black Sea sediment trap samples, indicated that during autumn, NE Aegean specimens in samples under BSW influence were featured by unimodal distribution concerning the coccolith relative tube width, with values similar to those provided by the Black Sea specimens. In early spring, coccoliths in the stations with increased BSW influx displayed a bimodal pattern of relative tube width with smaller values found mostly in the surface layers, while the distribution became again unimodal and dominated by larger values within the deeper LW layers. In the summer period, the typical LW holococcolithophore species (Group II) presented low cell numbers in the surface layer (<20 m), which is their usual ecological niche in the Aegean Sea, compared to greater depths, therefore marking LW mass flowing beneath the less saline BSW surface lid. In contrast to Black Sea early summer bloom conditions, E. huxleyi was almost absent in the NE Aegean during the summer sampling period.

  10. Surface Heat Budgets and Sea Surface Temperature in the Pacific Warm Pool During TOGA COARE

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zhao, Wenzhong; Chou, Ming-Dah

    1998-01-01

    The daily mean heat and momentum fluxes at the surface derived from the SSM/I and Japan's GMS radiance measurements are used to study the temporal and spatial variability of the surface energy budgets and their relationship to the sea surface temperature during the COARE intensive observing period (IOP). For the three time legs observed during the IOP, the retrieved surface fluxes compare reasonably well with those from the IMET buoy, RV Moana Wave, and RV Wecoma. The characteristics of surface heat and momentum fluxes are very different between the southern and northern warm pool. In the southern warm pool, the net surface heat flux is dominated by solar radiation which is, in turn, modulated by the two Madden-Julian oscillations. The surface winds are generally weak, leading to a shallow ocean mixed layer. The solar radiation penetrating through the bottom of the mixed layer is significant, and the change in the sea surface temperature during the IOP does not follow the net surface heat flux. In the northern warm pool, the northeasterly trade wind is strong and undergoes strong seasonal variation. The variation of the net surface heat flux is dominated by evaporation. The two westerly wind bursts associated with the Madden-Julian oscillations seem to have little effect on the net surface heat flux. The ocean mixed layer is deep, and the solar radiation penetrating through the bottom of the mixed layer is small. As opposed to the southern warm pool, the trend of the sea surface temperature in the northern warm pool during the IOP is in agreement with the variation of the net heat flux at the surface.

  11. Cloud-Scale Numerical Modeling of the Arctic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Krueger, Steven K.

    1998-01-01

    The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.

  12. Black sea surface temperature anomaly on 5th August 1998 and the ozone layer thickness

    NASA Astrophysics Data System (ADS)

    Manev, A.; Palazov, K.; Raykov, St.; Ivanov, V.

    2003-04-01

    BLACK SEA SURFACE TEMPERATURE ANOMALY ON 5th AUGUST 1998 AND THE OZONE LAYER THICKNESS A. Manev , K. Palazov , St. Raykov, V. Ivanov Solar Terrestrial Influences Laboratory, Bulgarian Academy of Sciences amanev@abv.bg This paper focuses on the peculiarities of the Black Sea surface temperature anomaly on 05.08.1998. Researching the daily temperature changes in a number of control fields in the course of 8-10 years, we have found hidden correlations and anomalous deviations in the sea surface temperatures on a global scale. Research proves the statistical reliability of the temperature anomaly on the entire Black Sea surface registered on 04.-05.08.1998. In the course of six days around these dates the temperatures are up to 2°C higher than the maximum temperatures in this period in the other seven years. A more detailed analysis of the dynamics of the anomaly required the investigation of five Black Sea surface characteristic zones of 75x75 km. The analysis covers the period 20 days - 10 days before and 10 days after the anomaly. Investigations aimed at interpreting the reasons for the anomalous heating of the surface waters. We have tried to analyze the correlation between sea surface temperature and the global ozone above the Black Sea by using simultaneously data from the two satellite systems NOAA and TOMS. Methods of processing and comparing the data from the two satellite systems are described. The correlation coefficients values for the five characteristic zones are very high and close, which proves that the character of the correlation ozone - sea surface temperature is the same for the entire Black Sea surface. Despite the high correlation coefficient, we have proved that causality between the two phenomena at the time of the anomaly does not exit.

  13. A case study of sea breeze blocking regulated by sea surface temperature along the English south coast

    NASA Astrophysics Data System (ADS)

    Sweeney, J. K.; Chagnon, J. M.; Gray, S. L.

    2013-09-01

    The sensitivity of sea breeze structure to sea surface temperature (SST) and coastal orography is investigated in convection-permitting Met Office Unified Model simulations of a case study along the south coast of England. Changes in SST of 1 K are shown to significantly modify the structure of the sea breeze. On the day of the case study the sea breeze was partially blocked by coastal orography, particularly within Lyme Bay. The extent to which the flow is blocked depends strongly on the static stability of the marine boundary layer. In experiments with colder SST, the marine boundary layer is more stable, and the degree of blocking is more pronounced. The implications of prescribing fixed SST from climatology in numerical weather prediction model forecasts of the sea breeze are discussed.

  14. The association of Antarctic krill Euphausia superba with the under-ice habitat.

    PubMed

    Flores, Hauke; van Franeker, Jan Andries; Siegel, Volker; Haraldsson, Matilda; Strass, Volker; Meesters, Erik Hubert; Bathmann, Ulrich; Wolff, Willem Jan

    2012-01-01

    The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0-2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m(-2) in summer and autumn, and 2.7 individuals m(-2) in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0-2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0-2 m layer were higher than corresponding values from the 0-200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0-200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change.

  15. The Association of Antarctic Krill Euphausia superba with the Under-Ice Habitat

    PubMed Central

    Flores, Hauke; van Franeker, Jan Andries; Siegel, Volker; Haraldsson, Matilda; Strass, Volker; Meesters, Erik Hubert; Bathmann, Ulrich; Wolff, Willem Jan

    2012-01-01

    The association of Antarctic krill Euphausia superba with the under-ice habitat was investigated in the Lazarev Sea (Southern Ocean) during austral summer, autumn and winter. Data were obtained using novel Surface and Under Ice Trawls (SUIT), which sampled the 0–2 m surface layer both under sea ice and in open water. Average surface layer densities ranged between 0.8 individuals m−2 in summer and autumn, and 2.7 individuals m−2 in winter. In summer, under-ice densities of Antarctic krill were significantly higher than in open waters. In autumn, the opposite pattern was observed. Under winter sea ice, densities were often low, but repeatedly far exceeded summer and autumn maxima. Statistical models showed that during summer high densities of Antarctic krill in the 0–2 m layer were associated with high ice coverage and shallow mixed layer depths, among other factors. In autumn and winter, density was related to hydrographical parameters. Average under-ice densities from the 0–2 m layer were higher than corresponding values from the 0–200 m layer collected with Rectangular Midwater Trawls (RMT) in summer. In winter, under-ice densities far surpassed maximum 0–200 m densities on several occasions. This indicates that the importance of the ice-water interface layer may be under-estimated by the pelagic nets and sonars commonly used to estimate the population size of Antarctic krill for management purposes, due to their limited ability to sample this habitat. Our results provide evidence for an almost year-round association of Antarctic krill with the under-ice habitat, hundreds of kilometres into the ice-covered area of the Lazarev Sea. Local concentrations of postlarval Antarctic krill under winter sea ice suggest that sea ice biota are important for their winter survival. These findings emphasise the susceptibility of an ecological key species to changing sea ice habitats, suggesting potential ramifications on Antarctic ecosystems induced by climate change. PMID:22384073

  16. Microwave vector radiative transfer equation of a sea foam layer by the second-order Rayleigh approximation

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo

    2011-10-01

    The microwave vector radiative transfer (VRT) equation of a coated spherical bubble layer is derived by means of the second-order Rayleigh approximation field when the microwave wavelength is larger than the coated spherical particle diameter. Meanwhile, the perturbation method is developed to solve the second-order Rayleigh VRT equation for the small ratio of the volume scattering coefficient to the extinction coefficient. As an example, the emissive properties of a sea surface foam layer, which consists of seawater coated bubbles, are investigated. The extinction, absorption, and scattering coefficients of sea foam are obtained by the second-order Rayleigh approximation fields and discussed for the different microwave frequencies and the ratio of inner radius to outer radius of a coated bubble. Our results show that in the dilute limit, the volume scattering coefficient decreases with increasing the ratio of inner radius to outer radius and decreasing the frequencies. It is also found that the microwave emissivity and the extinction coefficient have a peak at very thin seawater coating and its peak value decreases with frequency decrease. Furthermore, with the VRT equation and effective medium approximation of densely coated bubbles, the mechanism of sea foam enhancing the emissivity of a sea surface is disclosed. In addition, excellent agreement is obtained by comparing our VRT results with the experimental data of microwave emissivities of sea surface covered by a sea foam layer at L-band (1.4 GHz) and the Camps' model.

  17. Quantifying the Impact of Background Atmospheric Stability on Air-Ice-Ocean Interactions the Arctic Ocean During the Fall Freeze-Up

    NASA Astrophysics Data System (ADS)

    Guest, P. S.; Persson, O. P. G.; Blomquist, B.; Fairall, C. W.

    2016-02-01

    "Background" stability refers to the effect of vertical virtual temperature variations above the surface layer on fluxes within the surface layer. This is different from the classical surface layer stability quantified by the Obhukhov length scale. In most locations, changes in the background stability do not have a significant direct impact on surface fluxes. However in polar regions, where there is usually a strong low-level temperature inversion capping the boundary layer, changes in background stability can have big impacts on surface fluxes. Therefore, in the Arctic, there is potential for a positive feedback effect between ice cover and surface wind speed (and momentum flux) due to the background stability effects. As the surface becomes more ice free, heat fluxes from the surface weaken the temperature inversion which in turn increases the surface wind speed which further increases the surface turbulent heat fluxes and removes more sea ice by melting or advection. It is not clear how important feedbacks involving the background stability are during the fall freeze up of the Arctic Ocean; that will be the focus of this study. As part of an ONR-sponsored cruise in the fall of 2015 to examine sea state and boundary layer processes in the Beaufort Sea on the R/V Sikuliaq, the authors will perform a variety of surface layer and upper level atmospheric measurements of temperature, humidity and wind vector using ship platform instruments, radiosonde weather balloons, tethered balloons, kites, and miniature quad-rotor unmanned aerial vehicles. In addition, the authors will deploy a full suite of turbulent and radiational flux measurements from the vessel. These measurements will be used to quantify the impact of changing surface conditions on atmospheric structure and vice-versa. The goal is to directly observe how the surface and atmosphere above the surface layer interact and feedback with each other through radiational and turbulent fluxes.

  18. Sea Fog Forecasting with Lagrangian Models

    NASA Astrophysics Data System (ADS)

    Lewis, J. M.

    2014-12-01

    In 1913, G. I. Taylor introduced us to a Lagrangian view of sea fog formation. He conducted his study off the coast of Newfoundland in the aftermath of the Titanic disaster. We briefly review Taylor's classic work and then apply these same principles to a case of sea fog formation and dissipation off the coast of California. The resources used in this study consist of: 1) land-based surface and upper-air observations, 2) NDBC (National Data Buoy Center) observations from moored buoys equipped to measure dew point temperature as well as the standard surface observations at sea (wind, sea surface temperature, pressure, and air temperature), 3) satellite observations of cloud, and 4) a one-dimensional (vertically directed) boundary layer model that tracks with the surface air motion and makes use of sophisticated turbulence-radiation parameterizations. Results of the investigation indicate that delicate interplay and interaction between the radiation and turbulence processes makes accurate forecasts of sea fog onset unlikely in the near future. This pessimistic attitude stems from inadequacy of the existing network of observations and uncertainties in modeling dynamical processes within the boundary layer.

  19. Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.

    2012-08-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 10.6 mmol m-2 sea ice d-1 or to 3.3 ton km-2 ice floe week-1. This is markedly higher than the estimated primary production within the ice floe of 0.3-1.3 mmol m-2 sea ice d-1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.

  20. Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity

    NASA Astrophysics Data System (ADS)

    Felton, Clifford S.; Subrahmanyam, Bulusu; Murty, V. S. N.; Shriver, Jay F.

    2014-07-01

    Monthly barrier layer thickness (BLT) estimates are derived from satellite measurements using a multilinear regression model (MRM) within the Indian Ocean. Sea surface salinity (SSS) from the recently launched Soil Moisture and Ocean Salinity (SMOS) and Aquarius SAC-D salinity missions are utilized to estimate the BLT. The MRM relates BLT to sea surface salinity (SSS), sea surface temperature (SST), and sea surface height anomalies (SSHA). Three regions where the BLT variability is most rigorous are selected to evaluate the performance of the MRM for 2012; the Southeast Arabian Sea (SEAS), Bay of Bengal (BoB), and Eastern Equatorial Indian Ocean (EEIO). The MRM derived BLT estimates are compared to gridded Argo and Hybrid Coordinate Ocean Model (HYCOM) BLTs. It is shown that different mechanisms are important for sustaining the BLT variability in each of the selected regions. Sensitivity tests show that SSS is the primary driver of the BLT within the MRM. Results suggest that salinity measurements obtained from Aquarius and SMOS can be useful for tracking and predicting the BLT in the Indian Ocean. Largest MRM errors occur along coastlines and near islands where land contamination skews the satellite SSS retrievals. The BLT evolution during 2012, as well as the advantages and disadvantages of the current model are discussed. BLT estimations using HYCOM simulations display large errors that are related to model layer structure and the selected BLT methodology.

  1. Use of long-lived radon daughters as indicators of exchange between the free troposphere and the marine boundary layer

    NASA Technical Reports Server (NTRS)

    Kritz, M. A.

    1983-01-01

    Fluxes and exchange coefficients are derived for the transport of Sr-90, Pb-210, Bi-210, and Po-210 between the free troposphere and the marine boundary layer and between the boundary layer and the sea surface. Radionuclide concentrations previously measured near Hawaii are used in the derivations. Values obtained for the free troposphere/boundary layer exchange coefficient (expressed as a piston velocity) were 185, 228 and 203 m/d for Pb-210, Bi-210, and Sr-90, respectively. The magnitude of the local sea-surface source of Po-210 is also determined.

  2. Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type

    NASA Astrophysics Data System (ADS)

    Barber, D. G.; Ehn, J. K.; Pućko, M.; Rysgaard, S.; Deming, J. W.; Bowman, J. S.; Papakyriakou, T.; Galley, R. J.; Søgaard, D. H.

    2014-10-01

    Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean-sea ice-atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater becomes available to a cold atmosphere and surface winds are low, allowing for supersaturation of the near-surface boundary layer. Ice grown in a pond cut in young ice at the mouth of Young Sound, NE Greenland, in March 2012, showed that expanding frost flower clusters began forming as soon as the ice formed. The new ice and frost flowers dramatically changed the radiative and thermal environment. The frost flowers were about 5°C colder than the brine surface, with an approximately linear temperature gradient from their base to their upper tips. Salinity and δ18O values indicated that frost flowers primarily originated from the surface brine skim. Ikaite crystals were observed to form within an hour in both frost flowers and the thin pond ice. Average ikaite concentrations were 1013 µmol kg-1 in frost flowers and 1061 µmol kg-1 in the surface slush layer. Chamber flux measurements confirmed an efflux of CO2 at the brine-wetted sea ice surface, in line with expectations from the brine chemistry. Bacteria concentrations generally increased with salinity in frost flowers and the surface slush layer. Bacterial densities and taxa indicated that a selective process occurred at the ice surface and confirmed the general pattern of primary oceanic origin versus negligible atmospheric deposition.

  3. A case study of sea breeze circulation at Thumba Coast through observations and modelling

    NASA Astrophysics Data System (ADS)

    Kunhikrishnan, P. K.; Ramachandran, Radhika; Alappattu, Denny P.; Kiran Kumar, N. V. P.; Balasubrahamanyam, D.

    2006-12-01

    A case study of sea breeze circulation at a coastal region Thumba (8.5°N, 76.9°E) was carried out using Doppler Sodar, surface wind, temperature, humidity measurements and radiosonde ascents. The analysis of surface meteorological data showed that the onset of sea breeze on 12th April 2006 was at 0945 hrs. GPS sonde observation over sea at 1425 hrs and Radiosonde observation over land at 1730 showed a well developed sea breeze circulation over Thumba coast by afternoon hours. The vertical extent of sea breeze circulation was ~1000m over sea as well as on land. The Thermal Internal Boundary Layer (TIBL) depth associated with sea breeze circulation was about 400m at 8 km away from coast. The marine mixed layer height was ~500m about 12 km away from the coast. Numerical simulation of sea breeze was made using HRM (High Resolution Model) and compared the results with the observations.

  4. Properties, formation, and dissipation of the North Pacific Eastern Subtropical Mode Water and its impact on interannual spiciness anomalies

    NASA Astrophysics Data System (ADS)

    Katsura, Shota

    2018-03-01

    The properties, formation, and dissipation of the North Pacific Eastern Subtropical Mode Water (ESTMW), their interannual variability, and impact on spiciness anomalies in the upper permanent pycnocline were investigated using Argo profiling float data in 2005-2015. The core temperature and salinity of ESTMWs were horizontally compensated to a constant density, and core potential density concentrates in a range of 24.5-25.2 kg m-3 with two distinct peaks. ESTMWs showed different spatial distribution and persistence for its core potential density. Denser ESTMWs with a potential density of 24.9-25.2 kg m-3 were formed in winter mixed layer depth maximum centered at 30°N, 140°W and lighter ESTMWs of 24.5-24.9 kg m-3 were formed south and east of it. After formation through shoaling of the winter mixed layer, the former persisted until the following autumn and a small part of it subducted in winter, while the latter dissipated in summer. The formation region of ESTMW corresponded to the summer sea surface density maximum resulting from its poleward sea surface salinity front. Sea surface density maximum maintains weak stratification during summer, preconditioning the deepening of the winter mixed layer and hence the formation of ESTMWs. A relationship between the ESTMW formation region and the summer sea surface density maximum was also found in the North Atlantic and the South Pacific, implying the importance of sea surface salinity fronts and the associated summer sea surface density maximum to ESTMW formation. Interannual variations of ESTMW reflected that of the winter mixed layer in its formation region, and the thickness of ESTMW was related to the Pacific decadal oscillation. ESTMW contributed to the occurrence of spice injection and affected spiciness anomalies in the upper permanent pycnocline through its formation and dissipation.

  5. Oceanographic, Air-sea Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.

    2017-12-01

    The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the thermocline. On the way down, the jet partially mixes with the surrounding water reducing the temperature of the upper ocean. The OHC thus can either reduce or increase, depending on the wave-inertia pump parameters. Based on the model results, we discuss feasibility of the implementation of the artificial upwelling system for hurricane intensity mitigation.

  6. Heat and turbulent kinetic energy budgets for surface layer cooling induced by the passage of Hurricane Frances (2004)

    NASA Astrophysics Data System (ADS)

    Huang, Peisheng; Sanford, Thomas B.; Imberger, JöRg

    2009-12-01

    Heat and turbulent kinetic energy budgets of the ocean surface layer during the passage of Hurricane Frances were examined using a three-dimensional hydrodynamic model. In situ data obtained with the Electromagnetic-Autonomous Profiling Explorer (EM-APEX) floats were used to set up the initial conditions of the model simulation and to compare to the simulation results. The spatial heat budgets reveal that during the hurricane passage, not only the entrainment in the bottom of surface mixed layer but also the horizontal water advection were important factors determining the spatial pattern of sea surface temperature. At the free surface, the hurricane-brought precipitation contributed a negligible amount to the air-sea heat exchange, but the precipitation produced a negative buoyancy flux in the surface layer that overwhelmed the instability induced by the heat loss to the atmosphere. Integrated over the domain within 400 km of the hurricane eye on day 245.71 of 2004, the rate of heat anomaly in the surface water was estimated to be about 0.45 PW (1 PW = 1015 W), with about 20% (0.09 PW in total) of this was due to the heat exchange at the air-sea interface, and almost all the remainder (0.36 PW) was downward transported by oceanic vertical mixing. Shear production was the major source of turbulent kinetic energy amounting 88.5% of the source of turbulent kinetic energy, while the rest (11.5%) was attributed to the wind stirring at sea surface. The increase of ocean potential energy due to vertical mixing represented 7.3% of the energy deposited by wind stress.

  7. Blue Marble Eastern Hemisphere

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Drawing on data from multiple satellite missions (not all collected at the same time), a team of NASA scientists and graphic artists created layers of global data for everything from the land surface, to polar sea ice, to the light reflected by the chlorophyll in the billions of microscopic plants that grow in the ocean. They wrapped these layers around a globe, set it against a black background, and simulated the hazy edge of the Earth's atmosphere (the limb) that appears in astronaut photography of the Earth. The land surface layer is based on photo-like surface reflectance observations (reflected sunlight) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite in July 2004. The sea ice layer near the poles comes from Terra MODIS observations of daytime sea ice observed between August 28 and September 6, 2001. The ocean layer is a composite. In shallow water areas, the layer shows surface reflectances observed by Terra MODIS in July 2004. In the open ocean, the photo-like layer is overlaid with observations of the average ocean chlorophyll content for 2004. NASA's Aqua MODIS collected the chlorophyll data. The cloud layer shows a single-day snapshot of clouds observed by Terra MODIS across the planet on July 29, 2001. City lights on Earth's night side are visualized from data collected by the Defense Meteorological Satellite Program mission between 1994-1995. The topography layer is based on radar data collected by the Space Shuttle Endeavour during an 11-day mission in February of 2000. Topography over Antarctica comes from the Radarsat Antarctic Mapping Project, version 2.

  8. Blue Marble Western Hemisphere

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Drawing on data from multiple satellite missions (not all collected at the same time), a team of NASA scientists and graphic artists created layers of global data for everything from the land surface, to polar sea ice, to the light reflected by the chlorophyll in the billions of microscopic plants that grow in the ocean. They wrapped these layers around a globe, set it against a black background, and simulated the hazy edge of the Earth's atmosphere (the limb) that appears in astronaut photography of the Earth. The land surface layer is based on photo-like surface reflectance observations (reflected sunlight) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite in July 2004. The sea ice layer near the poles comes from Terra MODIS observations of daytime sea ice observed between August 28 and September 6, 2001. The ocean layer is a composite. In shallow water areas, the layer shows surface reflectances observed by Terra MODIS in July 2004. In the open ocean, the photo-like layer is overlaid with observations of the average ocean chlorophyll content for 2004. NASA's Aqua MODIS collected the chlorophyll data. The cloud layer shows a single-day snapshot of clouds observed by Terra MODIS across the planet on July 29, 2001. City lights on Earth's night side are visualized from data collected by the Defense Meteorological Satellite Program mission between 1994-1995. The topography layer is based on radar data collected by the Space Shuttle Endeavour during an 11-day mission in February of 2000. Topography over Antarctica comes from the Radarsat Antarctic Mapping Project, version 2.

  9. An analysis of dynamical factors influencing 2013 giant jellyfish bloom near Qinhuangdao in the Bohai Sea, China∗

    NASA Astrophysics Data System (ADS)

    Wu, Lingjuan; Wang, Jia; Gao, Song; Zheng, Xiangrong; Huang, Rui

    2017-02-01

    The explosive growth of Nemopilema nomurai occurred near the coastal waters of Qinhuangdao in July 2013. However, it did not take place in 2012. In this paper, the dynamical factors of wind, ocean current and sea temperature on giant jellyfish bloom in 2013 is analyzed by a comprehensive investigation. The numerical experiments are based on a numerical trajectory model of the jellyfish particles, which are released into the waters from Feiyan Shoal to New Yellow River Mouth, where is speculated as the most likely remote source of Qinhuangdao jellyfish bloom. The results show that in surface layer the jellyfish drift is jointly driven by the surface wind and surface current. For example, in northeastern Bohai Bay, the giant jellyfish moved northwestward in surface layer with influence of the westward wind and current anomalies during the second half of May in 2013, then approached the south of Jingtang Port by early June, and accumulated near Qinhuangdao in early July. The 2012 scenario during the same period was quite different. The jellyfish particles influencing waters near Qinhuangdao decreased with depth and there was few (no) particles influencing Qinhuangdao in middle (bottom) layer because the anticyclonic residual circulation weakened with depth in Bohai Bay. Besides, in the potential source waters of jellyfish, sea temperature in 2012 was more suitable for jellyfish bloom than that in 2013 if there was adequate bait. Hence, the specified direction of wind and current pattern in the Bohai Sea in surface layer (especially in the northeastern Bohai Bay during the second half of May) was more important for jellyfish bloom near Qinhuangdao than the sea temperature in the potential source.

  10. Boundary layers at a dynamic interface: Air-sea exchange of heat and mass

    NASA Astrophysics Data System (ADS)

    Szeri, Andrew J.

    2017-04-01

    Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in air-sea transfer of natural and anthropogenic gases involved in the study of climate. The goal in this research area is to determine the gas flux from air to sea or vice versa. For sparingly soluble nonreactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity w' and gas concentration c' are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither w' nor c' can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from measurements that can be taken by an infrared (IR) camera. An equation is derived with inputs being the surface temperature and heat flux, and a solution method developed for the surface-normal strain experienced over time by boundary layers at the interface. Because the thermal and concentration boundary layers experience the same near-surface fluid motions, the solution for the surface-normal strain determines the gas flux or gas transfer velocity. Examples illustrate the approach in the cases of complete surface renewal, partial surface renewal, and insolation. The prospects for use of the approach in flows characterized by sheared interfaces or rapid boundary layer straining are explored.

  11. Response of water temperature to surface wave effects in the Baltic Sea: simulations with the coupled NEMO-WAM model

    NASA Astrophysics Data System (ADS)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-04-01

    The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM. The wave forcing terms that have been taken into consideration are: Stokes-Coriolis force, seastate dependent energy flux and sea-state dependent momentum flux. The combined role of these processes as well as their individual contributions on simulated temperature is analysed. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwellinǵs. In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux. Wave induced cooling is mostly observed in near coastal areas and is mainly due to Stokes-Coriolis forcing. The latter triggers effect of intensifying upwellings near the coasts, depending on the direction of the wind. The effect of sea-state dependent momentum flux is predominantly to warm the surface layer. During the summer the wave induced water temperature changes were up to 1 °C.

  12. The interaction between sea ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of sea-ice cover

    NASA Astrophysics Data System (ADS)

    Jensen, M. F.; Nilsson, J.; Nisancioglu, K. H.

    2016-02-01

    In this study, we develop a simple conceptual model to examine how interactions between sea ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a sea-ice covered and salinity stratified ocean, and consists of a sea-ice component and a two-layer ocean; a cold, fresh surface layer above a warmer, more saline layer. The sea-ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent sea-ice export. Whether sea ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the vertical mixing. In a system where the vertical diffusivity is constant, the sea ice acts as a positive feedback on a freshwater perturbation. If the vertical diffusivity is derived from a constant mixing energy constraint, the sea ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in sea ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of sea ice. Generally, the unstable state is reached before the vertical density difference disappears, and small changes in temperature and freshwater inputs can provoke abrupt changes in sea ice.

  13. Wind-driven Sea-Ice Changes Intensify Subsurface Warm Water Intrusion into the West Antarctic Land Ice Front

    NASA Astrophysics Data System (ADS)

    Li, X.; Gille, S. T.; shang-Ping, X.; Xie, S. P.; Holland, D. M.; Holland, M. M.

    2016-12-01

    The climate change observed around Antarctica in recent decades is characterized by distinct zonally asymmetric patterns, with the strongest changes over West Antarctica. These changes are marked by strong land ice melting and sea ice redistribution around West Antarctica. This is associated with temperature and circulation anomalies in the ocean and atmosphere around the same area. In this study, we comprehensively examine the coherency between these changes using a combination of observations and numerical simulations. Results show that the atmospheric circulation changes distinctly drive the changes in ocean circulation and sea ice distribution. In addition, the atmospheric circulation induced sea ice changes play an important role in lifting the subsurface ocean temperature and salinity around the West Antarctica. During recent decades, the Amundsen Sea Low (ASL) has deepened, especially in austral autumn and winter. This deepened ASL has intensified the offshore wind near the coastal regions of the Ross Sea. Driven by these atmospheric changes, more sea ice has formed near West Antarctica in winter. In contrast, more sea ice melts during the summer. This strengthened sea ice seasonality has been observed and successfully reproduced in the model simulation. The wind-driven sea ice changes causes a surface freshening over the Ross and Amundsen Seas, with a subsurface salinity increase over the Ross Sea. The additional fresh/salt water fluxes thus further change the vertical distribution of salinity and strengthen the stratification in the Ross and Amundsen Seas. As a result of the above ice-ocean process, the mixed-layer depth around the Ross and Amundsen Seas shallows. By weakening the vertical heat transport near the surface layer, and inducing an upward movement of the circumpolar deep water (CDW), this process freshened and cooled the surface layer, while the salinity and temperature in the sub-surface ocean are increased, extending from 150 meters to >700 meters. Around the Amundsen Sea, warm water touches the continent, which could potentially contribute to the accelerated land ice melting over this area.

  14. The vertical distribution of prokaryotes in the surface sediment of Jiaolong cold seep at the northern South China Sea.

    PubMed

    Wu, Yuzhi; Qiu, Jian-Wen; Qian, Pei-Yuan; Wang, Yong

    2018-05-01

    In deep-sea cold seeps, microbial communities are shaped by geochemical components in seepage solutions. In the present study, we report the composition of microbial communities and potential metabolic activities in the surface sediment of Jiaolong cold seep at the northern South China Sea. Pyrosequencing of 16S rRNA gene amplicons revealed that a majority of the microbial inhabitants of the surface layers (0-6 cm) were sulfur oxidizer bacteria Sulfurimonas and archaeal methane consumer ANME-1, while sulfate reducer bacteria SEEP-SRB1, ANME-1 and ANME-2 dominated the bottom layers (8-14 cm). The potential ecological roles of the microorganisms were further supported by the presence of functional genes for methane oxidation, sulfur oxidation, sulfur reduction and nitrate reduction in the metagenomes. Metagenomic analysis revealed a significant correlation between coverage of 16S rRNA gene of sulfur oxidizer bacteria, functional genes involved in sulfur oxidation and nitrate reduction in different layers, indicating that sulfur oxidizing may be coupled to nitrate reducing at the surface layers of Jiaolong seeping site. This is probably related to the sulfur oxidizers of Sulfurimonas and Sulfurovum, which may be the capacity of nitrate reduction or associated with unidentified syntrophic nitrate-reducing microbes in the surface of the cold seep.

  15. Sustained Observations of Air-Sea Fluxes and Air-Sea Interaction at the Stratus Ocean Reference Station

    NASA Astrophysics Data System (ADS)

    Weller, Robert

    2014-05-01

    Since October 2000, a well-instrumented surface mooring has been maintained some 1,500 km west of the coast of northern Chile, roughly in the location of the climatological maximum in marine stratus clouds. Statistically significant increases in wind stress and decreases in annual net air-sea heat flux and in latent heat flux have been observed. If the increased oceanic heat loss continues, the region will within the next decade change from one of net annual heat gain by the ocean to one of neat annual heat loss. Already, annual evaporation of about 1.5 m of sea water a year acts to make the warm, salty surface layer more dense. Of interest is examining whether or not increased oceanic heat loss has the potential to change the structure of the upper ocean and potentially remove the shallow warm, salty mixed layer that now buffers the atmosphere from the interior ocean. Insights into how that warm, shallow layer is formed and maintained come from looking at oceanic response to the atmosphere at diurnal tie scales. Restratification each spring and summer is found to depend upon the occurrence of events in which the trade winds decay, allowing diurnal warming in the near-surface ocean to occur, and when the winds return resulting in a net upward step in sea surface temperature. This process is proving hard to accurately model.

  16. Contrasting sea-ice and open-water boundary layers during melt and freeze-up seasons: Some result from the Arctic Clouds in Summer Experiment.

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Sotiropoulou, Georgia; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara; Brooks, Ian; Persson, Ola; Prytherch, John; Salsbury, Dominic; Shupe, Matthew; Johnston, Paul; Wolfe, Dan

    2016-04-01

    With more open water present in the Arctic summer, an understanding of atmospheric processes over open-water and sea-ice surfaces as summer turns into autumn and ice starts forming becomes increasingly important. The Arctic Clouds in Summer Experiment (ACSE) was conducted in a mix of open water and sea ice in the eastern Arctic along the Siberian shelf during late summer and early autumn 2014, providing detailed observations of the seasonal transition, from melt to freeze. Measurements were taken over both ice-free and ice-covered surfaces, offering an insight to the role of the surface state in shaping the lower troposphere and the boundary-layer conditions as summer turned into autumn. During summer, strong surface inversions persisted over sea ice, while well-mixed boundary layers capped by elevated inversions were frequent over open-water. The former were often associated with advection of warm air from adjacent open-water or land surfaces, whereas the latter were due to a positive buoyancy flux from the warm ocean surface. Fog and stratus clouds often persisted over the ice, whereas low-level liquid-water clouds developed over open water. These differences largely disappeared in autumn, when mixed-phase clouds capped by elevated inversions dominated in both ice-free and ice-covered conditions. Low-level-jets occurred ~20-25% of the time in both seasons. The observations indicate that these jets were typically initiated at air-mass boundaries or along the ice edge in autumn, while in summer they appeared to be inertial oscillations initiated by partial frictional decoupling as warm air was advected in over the sea ice. The start of the autumn season was related to an abrupt change in atmospheric conditions, rather than to the gradual change in solar radiation. The autumn onset appeared as a rapid cooling of the whole atmosphere and the freeze up followed as the warm surface lost heat to the atmosphere. While the surface type had a pronounced impact on boundary-layer structure in summer, the surface was often warmer than the atmosphere in autumn, regardless of surface type. Hence the autumn boundary-layer structure was more dependent on synoptic scale meteorology.

  17. Prediction of Sea Surface Temperature Using Long Short-Term Memory

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Wang, Hui; Dong, Junyu; Zhong, Guoqiang; Sun, Xin

    2017-10-01

    This letter adopts long short-term memory(LSTM) to predict sea surface temperature(SST), which is the first attempt, to our knowledge, to use recurrent neural network to solve the problem of SST prediction, and to make one week and one month daily prediction. We formulate the SST prediction problem as a time series regression problem. LSTM is a special kind of recurrent neural network, which introduces gate mechanism into vanilla RNN to prevent the vanished or exploding gradient problem. It has strong ability to model the temporal relationship of time series data and can handle the long-term dependency problem well. The proposed network architecture is composed of two kinds of layers: LSTM layer and full-connected dense layer. LSTM layer is utilized to model the time series relationship. Full-connected layer is utilized to map the output of LSTM layer to a final prediction. We explore the optimal setting of this architecture by experiments and report the accuracy of coastal seas of China to confirm the effectiveness of the proposed method. In addition, we also show its online updated characteristics.

  18. Description of Mixed-Phase Clouds in Weather Forecast and Climate Models

    DTIC Science & Technology

    2014-09-30

    deficits, leading to freeze-up of both sea ice and the ocean surface. The surface albedo and processes impacting the energy content of the upper ocean...appear key to producing a temporal difference be- tween the freeze-up of the sea - ice surface and adjacent open water. While synoptic conditions, atmos...Leck, 2013: Cloud and boundary layer interactions over the Arctic sea - ice in late summer, Atmos. Chem. Phys. Discuss., 13, 13191-13244, doi

  19. Chemical effect on ozone deposition over seawater

    EPA Science Inventory

    Surface layer resistance plays an important role in determining ozone deposition velocity over seawater. Recent studies suggest that surface layer resistance over sea-water is influenced by wind-speed and chemical interaction at the air-water interface. Here, we investigate the e...

  20. Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation

    NASA Technical Reports Server (NTRS)

    Wang, Shouping

    1993-01-01

    A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.

  1. Sea surface temperature of the coastal zones of France

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.

    1980-01-01

    The various thermal gradients in the coastal zones of France were mapped with regard to natural phenomena and man made thermal effluents. The mesoscale thermal features of the English Channel, the Bay of Biscay, and the northwestern Mediterranean Sea were also studied. The evolution of the thermal gradients generated by the main estuaries of the French coastal zones was investigated along with the modeling of diurnal heating of the sea surface and its influence on the oceanic surface layers.

  2. Sea surface temperature of the coastal zones of France

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.

    1982-01-01

    Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery.

  3. Effect of the Barrier Layer on the Upper Ocean Response to MJO Forcing

    NASA Astrophysics Data System (ADS)

    Bulusu, S.

    2014-12-01

    Recently, attention has been given to an upper ocean feature known as the Barrier Layer, which has been shown to impact meteorological phenomena from ENSO to tropical cyclones by suppressing vertical mixing, which reduces sea surface cooling and enhances surface heat fluxes. The calculation defines the Barrier Layer as the difference between the Isothermal Layer Depth (ILD) and Mixed Layer Depth (MLD). Proper representation of these features relies on precise observations of SSS to attain accurate measurements of the MLD and subsequently, the BLT. Compared to the many available in situ SSS measurements, the NASA Aquarius salinity mission currently obtains the closest observations to the true SSS. The role of subsurface features will be better understood through increased accuracy of SSS measurements. In this study BLT estimates are derived from satellite measurements using a multilinear regression model (MRM) in the Indian Ocean. The MRM relates BLT to satellite derived SSS, sea surface temperature (SST) and sea surface height anomalies (SSHA). Besides being a variable that responds passively to atmospheric conditions, SSS significantly controls upper ocean density and therefore the MLD. The formation of a Barrier Layer can lead to possible feedbacks that impact the atmospheric component of the Madden-Julian Oscillation (MJO), as stated as one of the three major hypotheses of the DYNAMO field campaign. This layer produces a stable stratification, reducing vertical mixing, which influences surface heat fluxes and thus could possibly impact atmospheric conditions during the MJO. Establishing the magnitude and extent of SSS variations during the MJO will be a useful tool for data assimilation into models to correctly represent both oceanic thermodynamic characteristics and atmospheric processes during intraseasonal variations.

  4. A case study of sea breeze blocking regulated by sea surface temperature along the English south coast

    NASA Astrophysics Data System (ADS)

    Sweeney, J. K.; Chagnon, J. M.; Gray, S. L.

    2014-05-01

    The sensitivity of sea breeze structure to sea surface temperature (SST) and coastal orography is investigated in convection-permitting Met Office Unified Model simulations of a case study along the south coast of England. Changes in SST of 1 K are shown to significantly modify the structure of the sea breeze immediately offshore. On the day of the case study, the sea breeze was partially blocked by coastal orography, particularly within Lyme Bay. The extent to which the flow is blocked depends strongly on the static stability of the marine boundary layer. In experiments with colder SST, the marine boundary layer is more stable, and the degree of blocking is more pronounced. Although a colder SST would also imply a larger land-sea temperature contrast and hence a stronger onshore wind - an effect which alone would discourage blocking - the increased static stability exerts a dominant control over whether blocking takes place. The implications of prescribing fixed SST from climatology in numerical weather prediction model forecasts of the sea breeze are discussed.

  5. Observations and Modeling of Turbulent Air-Sea Coupling in Coastal and Strongly Forced Condition

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, David G.

    The turbulent fluxes of momentum, mass, and energy across the ocean-atmosphere boundary are fundamental to our understanding of a myriad of geophysical processes, such as wind-wave generation, oceanic circulation, and air-sea gas transfer. In order to better understand these fluxes, empirical relationships were developed to quantify the interfacial exchange rates in terms of easily observed parameters (e.g., wind speed). However, mounting evidence suggests that these empirical formulae are only valid over the relatively narrow parametric space, i.e. open ocean conditions in light to moderate winds. Several near-surface processes have been observed to cause significant variance in the air-sea fluxes not predicted by the conventional functions, such as a heterogeneous surfaces, swell waves, and wave breaking. Further study is needed to fully characterize how these types of processes can modulate the interfacial exchange; in order to achieve this, a broad investigation into air-sea coupling was undertaken. The primary focus of this work was to use a combination of field and laboratory observations and numerical modeling, in regimes where conventional theories would be expected to breakdown, namely: the nearshore and in very high winds. These seemingly disparate environments represent the marine atmospheric boundary layer at its physical limit. In the nearshore, the convergence of land, air, and sea in a depth-limited domain marks the transition from a marine to a terrestrial boundary layer. Under extreme winds, the physical nature of the boundary layer remains unknown as an intermediate substrate layer, sea spray, develops between the atmosphere and ocean surface. At these ends of the MABL physical spectrum, direct measurements of the near-surface processes were made and directly related to local sources of variance. Our results suggest that the conventional treatment of air-sea fluxes in terms of empirical relationships developed from a relatively narrow set of environmental conditions do not generalize to the coastal and extreme wind environments. This body of work represents a multi-faceted approach to understanding physical air-sea interactions in varied regimes and using a wide array of investigatory methods.

  6. Vertical stratification of microbial communities in the Red Sea revealed by 16S rDNA pyrosequencing.

    PubMed

    Qian, Pei-Yuan; Wang, Yong; Lee, On On; Lau, Stanley C K; Yang, Jiangke; Lafi, Feras F; Al-Suwailem, Abdulaziz; Wong, Tim Y H

    2011-03-01

    The ecosystems of the Red Sea are among the least-explored microbial habitats in the marine environment. In this study, we investigated the microbial communities in the water column overlying the Atlantis II Deep and Discovery Deep in the Red Sea. Taxonomic classification of pyrosequencing reads of the 16S rRNA gene amplicons showed vertical stratification of microbial diversity from the surface water to 1500 m below the surface. Significant differences in both bacterial and archaeal diversity were observed in the upper (20 [corrected] and 50 m) and deeper layers (200 and 1500 m). There were no obvious differences in community structure at the same depth for the two sampling stations. The bacterial community in the upper layer was dominated by Cyanobacteria whereas the deeper layer harbored a large proportion of Proteobacteria. Among Archaea, Euryarchaeota, especially Halobacteriales, were dominant in the upper layer but diminished drastically in the deeper layer where Desulfurococcales belonging to Crenarchaeota became the dominant group. The results of our study indicate that the microbial communities sampled in this study are different from those identified in water column in other parts of the world. The depth-wise compositional variation in the microbial communities is attributable to their adaptations to the various environments in the Red Sea.

  7. Simulation of global oceanic upper layers forced at the surface by an optimal bulk formulation derived from multi-campaign measurements.

    NASA Astrophysics Data System (ADS)

    Garric, G.; Pirani, A.; Belamari, S.; Caniaux, G.

    2006-12-01

    order to improve the air/sea interface for the future MERCATOR global ocean operational system, we have implemented the new bulk formulation developed by METEO-FRANCE (French Meteo office) in the MERCATOR 2 degree global ocean-ice coupled model (ORCA2/LIM). A single bulk formulation for the drag, temperature and moisture exchange coefficients is derived from an extended consistent database gathering 10 years of measurements issued from five experiments dedicated to air-sea fluxes estimates (SEMAPHORE, CATCH, FETCH, EQUALANT99 and POMME) in various oceanic basins (from Northern to equatorial Atlantic). The available database (ALBATROS) cover the widest range of atmospheric and oceanic conditions, from very light (0.3 m/s) to very strong (up to 29 m/s) wind speeds, and from unstable to extremely stable atmospheric boundary layer stratification. We have defined a work strategy to test this new formulation in a global oceanic context, by using this multi- campaign bulk formulation to derive air-sea fluxes from base meteorological variables produces by the ECMWF (European Centre for Medium Range and Weather Forecast) atmospheric forecast model, in order to get surface boundary conditions for ORCA2/LIM. The simulated oceanic upper layers forced at the surface by the previous air/sea interface are compared to those forced by the optimal bulk formulation. Consecutively with generally weaker transfer coefficient, the latter formulation reduces the cold bias in the equatorial Pacific and increases the too weak summer sea ice extent in Antarctica. Compared to a recent mixed layer depth (MLD) climatology, the optimal bulk formulation reduces also the too deep simulated MLDs. Comparison with in situ temperature and salinity profiles in different areas allowed us to evaluate the impact of changing the air/sea interface in the vertical structure.

  8. Proceedings of the Coastal Benthic Boundary Layer Key West Workshop

    DTIC Science & Technology

    1997-06-24

    depth are controlled by climatic changes which affect sea level and result in vastly different sedimentary regimes. After several hours of discussion...benthic boundary layer. EOS 75: 201- 206. Tom S.J. and Richardson M.D. (1996) The Key West campaign. Sea Technology 36:17-25. 6 Mi : VA1 I I AI T0. 03 a -1Z...reflectors appear to be unconformable surfaces based on the presence of karst, and probably represent erosion and cementation during sea -level lowstands

  9. A Numerical Study of Tropical Sea-Air Interactions Using a Cloud Resolving Model Coupled with an Ocean Mixed-Layer Model

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.

  10. Seasonal Overturning Circulation in the Red Sea

    NASA Astrophysics Data System (ADS)

    Yao, F.; Hoteit, I.; Koehl, A.

    2010-12-01

    The Red Sea exhibits a distinct seasonal overturning circulation. In winter, a typical two-layer exchange structure, with a fresher inflow from the Gulf of Aden on top of an outflow from the Red Sea, is established. In summer months (June to September) this circulation pattern is changed to a three-layer structure: a surface outflow from the Red Sea on top of a subsurface intrusion of the Gulf of Aden Intermediate Water and a weakened deep outflow. This seasonal variability is studied using a general circulation model, MITgcm, with 6 hourly NCEP atmospheric forcing. The model is able to reproduce the observed seasonal variability very well. The forcing mechanisms of the seasonal variability related to seasonal surface wind stress and buoyancy flux, and water mass transformation processes associated with the seasonal overturning circulation are analyzed and presented.

  11. Interannual variability of primary production and air-sea CO2 flux in the Atlantic and Indian sectors of the Southern Ocean.

    NASA Astrophysics Data System (ADS)

    Dufour, Carolina; Merlivat, Liliane; Le Sommer, Julien; Boutin, Jacqueline; Antoine, David

    2013-04-01

    As one of the major oceanic sinks of anthropogenic CO2, the Southern Ocean plays a critical role in the climate system. However, due to the scarcity of observations, little is known about physical and biological processes that control air-sea CO2 fluxes and how these processes might respond to climate change. It is well established that primary production is one of the major drivers of air-sea CO2 fluxes, consuming surface Dissolved Inorganic Carbon (DIC) during Summer. Southern Ocean primary production is though constrained by several limiting factors such as iron and light availability, which are both sensitive to mixed layer depth. Mixed layer depth is known to be affected by current changes in wind stress or freshwater fluxes over the Southern Ocean. But we still don't know how primary production may respond to anomalous mixed layer depth neither how physical processes may balance this response to set the seasonal cycle of air-sea CO2 fluxes. In this study, we investigate the impact of anomalous mixed layer depth on surface DIC in the Atlantic and Indian sectors of the Subantarctic zone of the Southern Ocean (60W-60E, 38S-55S) with a combination of in situ data, satellite data and model experiment. We use both a regional eddy permitting ocean biogeochemical model simulation based on NEMO-PISCES and data-based reconstruction of biogeochemical fields based on CARIOCA buoys and SeaWiFS data. A decomposition of the physical and biological processes driving the seasonal variability of surface DIC is performed with both the model data and observations. A good agreement is found between the model and the data for the amplitude of biological and air-sea flux contributions. The model data are further used to investigate the impact of winter and summer anomalies in mixed layer depth on surface DIC over the period 1990-2004. The relative changes of each physical and biological process contribution are quantified and discussed.

  12. Analysis of Atmosphere-Ocean Surface Flux Feedbacks in Recent Satellite and Model Reanalysis Products

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, F. R.; Clayson, C. A.

    2010-01-01

    Recent investigations have examined observations in an attempt to determine when and how the ocean forces the atmosphere, and vice versa. These studies focus primarily on relationships between sea surface temperature anomalies and the turbulent and radiative surface heat fluxes. It has been found that both positive and negative feedbacks, which enhance or reduce sea surface temperature anomaly amplitudes, can be generated through changes in the surface boundary layer. Consequent changes in sea surface temperature act to change boundary layer characteristics through changes in static stability or turbulent fluxes. Previous studies over the global oceans have used coarse-resolution observational and model products such as ICOADS and the NCEP Reanalysis. This study focuses on documenting the atmosphere ocean feedbacks that exist in recently produced higher resolution products, namely the SeaFlux v1.0 product and the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA). It has been noted in recent studies that evidence of oceanic forcing of the atmosphere exists on smaller scales than the usually more dominant atmospheric forcing of the ocean, particularly in higher latitudes. It is expected that use of these higher resolution products will allow for a more comprehensive description of these small-scale ocean-atmosphere feedbacks. The SeaFlux intercomparisons have revealed large scatter between various surface flux climatologies. This study also investigates the uncertainty in surface flux feedbacks based on several of these recent satellite based climatologies

  13. Residual-Mean Analysis of the Air-Sea Fluxes and Associated Oceanic Meridional Overturning

    DTIC Science & Technology

    2006-12-01

    the adiabatic component of the MOC which is based entirely on the sea surface data . The coordinate system introduced in this study is somewhat...heat capacity of water. The technique utilizes the observational data based on meteorological re- analysis (density flux at the sea surface) and...Figure 8. Annual mean and temporal standard deviation of the zonally-averaged mixed- layer depth. The plotted data are based on Levitus 94 climatology

  14. Simulation of an oil film at the sea surface and its radiometric properties in the SWIR

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Van Eijk, Alexander M. J.

    2017-10-01

    The knowledge of the optical contrast of an oil layer on the sea under various surface roughness conditions is of great interest for oil slick monitoring techniques. This paper presents a 3D simulation of a dynamic sea surface contaminated by a floating oil film. The simulation considers the damping influence of oil on the ocean waves and its physical properties. It calculates the radiance contrast of the sea surface polluted by the oil film in relation to a clean sea surface for the SWIR spectral band. Our computer simulation combines the 3D simulation of a maritime scene (open clear sea/clear sky) with an oil film at the sea surface. The basic geometry of a clean sea surface is modeled by a composition of smooth wind driven gravity waves. Oil on the sea surface attenuates the capillary and short gravity waves modulating the wave power density spectrum of these waves. The radiance of the maritime scene is calculated in the SWIR spectral band with the emitted sea surface radiance and the specularly reflected sky radiance as components. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of the sky radiance at the clean sea surface is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For oil at the sea surface, a specific BRDF is used influenced by the reduced surface roughness, i.e., the modulated wave density spectrum. The radiance contrast of an oil film in relation to the clean sea surface is calculated for different viewing angles, wind speeds, and oil types characterized by their specific physical properties.

  15. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of Mexico, with a special focus on the relationship among measured and modeled energy fluxes and other oceanographic and atmospheric conditions.

  16. Biological control of surface temperature in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Sathyendranath, Shubha; Gouveia, Albert D.; Shetye, Satish R.; Ravindran, P.; Platt, Trevor

    1991-01-01

    In the Arabian Sea, the southwest monsoon promotes seasonal upwelling of deep water, which supplies nutrients to the surface layer and leads to a marked increase in phytoplankton growth. Remotely sensed data on ocean color are used here to show that the resulting distribution of phytoplankton exerts a controlling influence on the seasonal evolution of sea surface temperature. This results in a corresponding modification of ocean-atmosphere heat exchange on regional and seasonal scales. It is shown that this biological mechanism may provide an important regulating influence on ocean-atmosphere interactions.

  17. A geochemical model of the Peru Basin deep-sea floor—and the response of the system to technical impacts

    NASA Astrophysics Data System (ADS)

    König, Iris; Haeckel, Matthias; Lougear, André; Suess, Erwin; Trautwein, Alfred X.

    A geochemical model of the Peru Basin deep-sea floor, based on an extensive set of field data as well as on numerical simulations, is presented. The model takes into account the vertical oscillations of the redox zonation that occur in response to both long-term (glacial/interglacial) and short-term (El Niño Southern Oscillation (ENSO) time scale) variations in the depositional flux of organic matter. Field evidence of reaction between the pore water NO 3- and an oxidizable fraction of the structural Fe(II) in the clay mineral content of the deep-sea sediments is provided. The conditions of formation and destruction of reactive clay Fe(II) layers in the sea floor are defined, whereby a new paleo-redox proxy is established. Transitional NO 3- profile shapes are explained by periodic contractions and expansions of the oxic zone (ocean bottom respiration) on the ENSO time scale. The near-surface oscillations of the oxic-suboxic boundary constitute a redox pump mechanism of major importance with respect to diagenetic trace metal enrichments and manganese nodule formation, which may account for the particularly high nodule growth rates in this ocean basin. These conditions are due to the similar depth ranges of both the O 2 penetration in the sea floor and the bioturbated high reactivity surface layer (HRSL), all against the background of ENSO-related large variations in depositional C org flux. Removal of the HRSL in the course of deep-sea mining would result in a massive expansion of the oxic surface layer and, thus, the shut down of the near-surface redox pump for centuries, which is demonstrated by numerical modeling.

  18. Assessment of Aerosol Optical Property and Radiative Effect for the Layer Decoupling Cases over the Northern South China Sea During the 7-SEAS Dongsha Experiment

    NASA Technical Reports Server (NTRS)

    Pani, Shantau Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-01-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (omega) approx. = 0.92 at 440nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the omega (approx. = 0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6W/sq m2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  19. Assessment of aerosol optical property and radiative effect for the layer decoupling cases over the northern South China Sea during the 7-SEAS/Dongsha Experiment

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi

    2016-05-01

    The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500 nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (ω) ≈ 0.92 at 440 nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the ω (≈0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6 W m-2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.

  20. A model of air-sea gas exchange incorporating the physics of the turbulent boundary layer and the properties of the sea surface

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Schluessel, Peter

    The model presented contains interfacial, bubble-mediated, ocean mixed layer, and remote sensing components. The interfacial (direct) gas transfer dominates under conditions of low and—for quite soluble gases like CO2—moderate wind speeds. Due to the similarity between the gas and heat transfer, the temperature difference, ΔT, across the thermal molecular boundary layer (cool skin of the ocean) and the interfacial gas transfer coefficient, Kint are presumably interrelated. A coupled parameterization for ΔT and Kint has been derived in the context of a surface renewal model [Soloviev and Schluessel, 1994]. In addition to the Schmidt, Sc, and Prandtl, Pr, numbers, the important parameters are the surface Richardson number, Rƒ0, and the Keulegan number, Ke. The more readily available cool skin data are used to determine the coefficients that enter into both parameterizations. At high wind speeds, the Ke-number dependence is further verified with the formula for transformation of the surface wind stress to form drag and white capping, which follows from the renewal model. A further extension of the renewal model includes effects of solar radiation and rainfall. The bubble-mediated component incorporates the Merlivat et al. [1993] parameterization with the empirical coefficients estimated by Asher and Wanninkhof [1998]. The oceanic mixed layer component accounts for stratification effects on the air-sea gas exchange. Based on the example of GasEx-98, we demonstrate how the results of parameterization and modeling of the air-sea gas exchange can be extended to the global scale, using remote sensing techniques.

  1. Oceanic response to Typhoon Nari (2007) in the East China Sea

    NASA Astrophysics Data System (ADS)

    Oh, Kyung-Hee; Lee, Seok; Kang, Sok-Kuh; Song, Kyu-Min

    2017-06-01

    The oceanic response to a typhoon in the East China Sea (ECS) was examined using thermal and current structures obtained from ocean surface drifters and a bottom-moored current profiler installed on the right side of the typhoon's track. Typhoon Nari (2007) had strong winds as it passed the central region of the ECS. The thermal structure in the ECS responded to Typhoon Nari (2007) very quickly: the seasonal thermocline abruptly collapsed and the sea surface temperature dropped immediately by about 4°C after the typhoon passed. The strong vertical mixing and surface cooling caused by the typhoon resulted in a change in the thermal structure. Strong near-inertial oscillation occurred immediately after the typhoon passed and lasted for at least 4-5 days, during which a strong vertical current existed in the lower layer. Characteristics of the near-inertial internal oscillation were observed in the middle layer. The clockwise component of the inertial frequency was enhanced in the surface layer and at 63 m depth after the typhoon passed, with these layers almost perfectly out of phase. The vertical shear current was intensified by the interaction of the wind-driven current in the upper layer and the background semi-diurnal tidal current during the arrival of the typhoon, and also by the near-inertial internal oscillation after the typhoon passage. The strong near-inertial internal oscillation persisted without significant interfacial structure after the mixing of the thermocline, which could enhance the vertical mixing over several days.

  2. Long-term decrease in phosphate concentrations in the surface layer of the southern Japan Sea

    NASA Astrophysics Data System (ADS)

    Kodama, Taketoshi; Igeta, Yosuke; Kuga, Mizuki; Abe, Shoko

    2016-10-01

    To identify possible causes for the long-term trends in nutrient concentrations in the southern Japan Sea (JS), we studied nutrient concentrations that were obtained by the Japan Meteorological Agency. Our evaluation shows that phosphate concentrations declined in the surface layers in summer (0-20 and 21-50 m depth) and winter (0-20, 21-50, and 51-100 m depth) over the last 40 years, while no significant linear trend was observed for nitrate concentrations. The declining trend in the phosphate concentration was quantified as 1.8-3.3 nM yr-1. The increase in atmospheric nutrient deposition to the JS could not explain the decline in phosphate concentration. In addition, the mixed-layer depth during winter did not demonstrate any significant trend, and an increase in phosphate concentrations was not observed in any layers; therefore, the decrease in nutrient supply from deep JS water was not considered a major possible cause for the decline in the phosphate concentration. In contrast, the phosphate concentration in the surface of the southern JS during winter showed a significant positive correlation with the concentration in the 21-50 m depth layer of the saline East China Sea (ECS) water in the preceding summer, and the surface water of the southern JS was almost entirely replaced by water originating from the ECS during May-October. Therefore, it is concluded that the declining trend in the phosphate concentrations in the southern JS is caused by horizontal advection of ECS water.

  3. Air-sea Forcing and Thermohaline Changes In The Ross Sea.

    NASA Astrophysics Data System (ADS)

    Fusco, G.; Budillon, G.

    Heat exchanges between sea and atmosphere from 1986 to 2000 in the Ross Sea (Antarctica) were computed from climatological data obtained from the European Centre for Medium Range Weather Forecasts. They have been related with the thermo- haline changes observed during 5 hydrological surveys performed between the austral summer 1994-1995 and 2000-2001 in the western sector of the Ross Sea. The esti- mated heat fluxes show extremely strong spatial and temporal variability over all the Ross Sea. As can be expected the largest heat losses occur between May and August, while during the period November-February the heat budget becomes positive. In the first six years of the investigated period the heat loss is very strong with its maximum about 166 Wm-2; while during the period 1992-2000 the yearly heat losses are the lowest. Thermohaline changes in the surface layer (upper pycnocline) of the western Ross Sea follow the expected seasonal pattern of warming and freshening from the be- ginning to the end of the austral summer. The heating changes are substantially lower than the estimated heat supplied by the atmosphere during the summer, which under- lines the importance in this season of the advective component carried by the currents in the total heat budget of this area. The year to year differences are about one or two orders of magnitude smaller than the seasonal changes in the surface layer. In the in- termediate and deep layers, the summer heat and salt variability is of the same order as or one order higher than from one summer to the next. Moreover a freshening of the near bottom layer has been observed, it is consistent with the High Salinity Shelf Water salinity decrease recently detected in the Ross Sea.

  4. Comparison of the ocean surface vector winds over the Nordic Seas and their application for ocean modeling

    NASA Astrophysics Data System (ADS)

    Dukhovskoy, Dmitry; Bourassa, Mark

    2017-04-01

    Ocean processes in the Nordic Seas and northern North Atlantic are strongly controlled by air-sea heat and momentum fluxes. The predominantly cyclonic, large-scale atmospheric circulation brings the deep ocean layer up to the surface preconditioning the convective sites in the Nordic Seas for deep convection. In winter, intensive cooling and possibly salt flux from newly formed sea ice erodes the near-surface stratification and the mixed layer merges with the deeper domed layer, exposing the very weakly stratified deep water mass to direct interaction with the atmosphere. Surface wind is one of the atmospheric parameters required for estimating momentum and turbulent heat fluxes to the sea ice and ocean surface. In the ocean models forced by atmospheric analysis, errors in surface wind fields result in errors in air-sea heat and momentum fluxes, water mass formation, ocean circulation, as well as volume and heat transport in the straits. The goal of the study is to assess discrepancies across the wind vector fields from reanalysis data sets and scatterometer-derived gridded products over the Nordic Seas and northern North Atlantic and to demonstrate possible implications of these differences for ocean modeling. The analyzed data sets include the reanalysis data from the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR) and satellite wind products Cross-Calibrated Multi-Platform (CCMP) wind product version 1.1 and recently released version 2.0, and Remote Sensing Systems QuikSCAT data. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The sensitivity experiments demonstrate differences in the net surface heat fluxes during storm events. Next, it is hypothesized that discrepancies in the wind vorticity fields should manifest different behaviors of the isopycnals in the Nordic Seas. Time evolution of isopycnal depths in the sensitivity experiments forced by different wind fields is discussed. Results of these sensitivity experiments demonstrate a relationship between the isopycnal surfaces and the wind stress curl. The numerical experiments are also analyzed to investigate the relationship between the East Greenland Current and the wind stress curl over the Nordic Seas. The transport of the current at this location has substantial contribution from wind-driven large-scale circulation. This wind-driven part of the East Greenland Current is a western-intensified return flow of a wind-driven cyclonic gyre in the central Nordic Seas. The numerical experiments with different wind fields reveal notable sensitivity of the East Greenland Current to differences in the wind forcing.

  5. Mechanistic Drivers of Reemergence of Anthropogenic Carbon in the Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Zhai, Ping; Rodgers, Keith B.; Griffies, Stephen M.; Slater, Richard D.; Iudicone, Daniele; Sarmiento, Jorge L.; Resplandy, Laure

    2017-09-01

    Relatively rapid reemergence of anthropogenic carbon (Cant) in the Equatorial Pacific is of potential importance for its impact on the carbonate buffering capacity of surface seawater and thereby impeding the ocean's ability to further absorb Cant from the atmosphere. We explore the mechanisms sustaining Cant reemergence (upwelling) from the thermocline to surface layers by applying water mass transformation diagnostics to a global ocean/sea ice/biogeochemistry model. We find that the upwelling rate of Cant (0.4 PgC yr-1) from the thermocline to the surface layer is almost twice as large as air-sea Cant fluxes (0.203 PgC yr-1). The upwelling of Cant from the thermocline to the surface layer can be understood as a two-step process: The first being due to diapycnal diffusive transformation fluxes and the second due to surface buoyancy fluxes. We also find that this reemergence of Cant decreases dramatically during the 1982/1983 and 1997/1998 El Niño events.

  6. Ikaite crystal distribution in winter sea ice and implications for CO2 system dynamics

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pućko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

    2013-04-01

    The precipitation of ikaite (CaCO3 ⋅ 6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few μm to 700 μm, were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surface-ice values of 700-900 μmol kg-1 ice (~25 × 106 crystals kg-1) to values of 100-200 μmol kg-1 ice (1-7 × 106 crystals kg-1) near the sea ice-water interface, all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration, whereas TA concentrations in the lower half of the sea ice were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolve in layers below. Melting of sea ice and dissolution of observed concentrations of ikaite would result in meltwater with a pCO2 of <15 μatm. This value is far below atmospheric values of 390 μatm and surface water concentrations of 315 μatm. Hence, the meltwater increases the potential for seawater uptake of CO2.

  7. A Large Eddy Simulation Study of Heat Entrainment under Sea Ice in the Canadian Arctic Basin

    NASA Astrophysics Data System (ADS)

    Ramudu, E.; Yang, D.; Gelderloos, R.; Meneveau, C. V.; Gnanadesikan, A.

    2016-12-01

    Sea ice cover in the Arctic has declined rapidly in recent decades. The much faster than projected retreat suggests that climate models may be missing some key processes, or that these processes are not accurately represented. The entrainment of heat from the mixed layer by small-scale turbulence is one such process. In the Canadian Basin of the Arctic Ocean, relatively warm Pacific Summer Water (PSW) resides at the base of the mixed layer. With an increasing influx of PSW, the upper ocean in the Canadian Basin has been getting warmer and fresher since the early 2000s. While studies show a correlation between sea ice reduction and an increase in PSW temperature, others argue that PSW intrusions in the Canadian Basin cannot affect sea ice thickness because the strongly-stratified halocline prevents heat from the PSW layer from being entrained into the mixed layer and up to the basal ice surface. In this study, we try to resolve this conundrum by simulating the turbulent entrainment of heat from the PSW layer to a moving basal ice surface using large eddy simulation (LES). The LES model is based on a high-fidelity spectral approach on horizontal planes, and includes a Lagrangian dynamic subgrid model that reduces the need for empirical inputs for subgrid-scale viscosities and diffusivities. This LES tool allows us to investigate physical processes in the mixed layer at a very fine scale. We focus our study on summer conditions, when ice is melting, and show for a range of ice-drift velocities, halocline temperatures, and halocline salinity gradients characteristic of the Canadian Basin how much heat can be entrained from the PSW layer to the sea ice. Our results can be used to improve parameterizations of vertical heat flux under sea ice in coarse-grid ocean and climate models.

  8. Simulation of Earthquake-Generated Sea-Surface Deformation

    NASA Astrophysics Data System (ADS)

    Vogl, Chris; Leveque, Randy

    2016-11-01

    Earthquake-generated tsunamis can carry with them a powerful, destructive force. One of the most well-known, recent examples is the tsunami generated by the Tohoku earthquake, which was responsible for the nuclear disaster in Fukushima. Tsunami simulation and forecasting, a necessary element of emergency procedure planning and execution, is typically done using the shallow-water equations. A typical initial condition is that using the Okada solution for a homogeneous, elastic half-space. This work focuses on simulating earthquake-generated sea-surface deformations that are more true to the physics of the materials involved. In particular, a water layer is added on top of the half-space that models the seabed. Sea-surface deformations are then simulated using the Clawpack hyperbolic PDE package. Results from considering the water layer both as linearly elastic and as "nearly incompressible" are compared to that of the Okada solution.

  9. A global low order spectral model designed for climate sensitivity studies

    NASA Technical Reports Server (NTRS)

    Hanna, A. F.; Stevens, D. E.

    1984-01-01

    A two level, global, spectral model using pressure as a vertical coordinate is developed. The system of equations describing the model is nonlinear and quasi-geostrophic. A moisture budget is calculated in the lower layer only with moist convective adjustment between the two layers. The mechanical forcing of topography is introduced as a lower boundary vertical velocity. Solar forcing is specified assuming a daily mean zenith angle. On land and sea ice surfaces a steady state thermal energy equation is solved to calculate the surface temperature. Over the oceans the sea surface temperatures are prescribed from the climatological average of January. The model is integrated to simulate the January climate.

  10. LLWBCS changes through surface mesoscale activity and baroclinic tides in the Solomon Sea

    NASA Astrophysics Data System (ADS)

    Gourdeau, L.; Djath, B.; Ganachaud, A. S.; Tchilibou, M. L.; Verron, J. A.; Jouanno, J.

    2016-02-01

    In the south west Pacific, the Solomon Sea is on the pathway of the Low Latitudes Western Boundary Currents that connect the subtropics to the equator. Changes in their strengths, or in their water mass properties may have implication for ENSO and its low frequency modulation. During their transit in the Solomon Sea, the salinity maximum at thermocline level, characteristic of the South Pacific Tropical Waters (SPTW), is largely eroded. Different mechanisms could explain such salt erosion whose current/bathymetry interaction, internal tides, eddy activity. The Solomon Sea is an area of high level of eddy kinetic energy (EKE), especially in the surface layers, and its complex bathymetry is favourable for generation and dissipation of internal tides. Based on high resolution modelling, glider, and altimetric data mesoscale eddies observed at the surface are analysed in their 4D aspects. Their role on water mass transformation is explored. These eddies may affect the surface layers (σ<23.3) and the upper thermocline waters (23.3< σ <24.3), but they cannot explained the erosion of the salinity maximum below. Simulations with and without explicit tides provide a description of baroclinic tides in the Solomon Sea. Their role on water mixing is evaluated, especially for the SPTW.

  11. Examining Differences in Arctic and Antarctic Sea Ice Change

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Rigor, I. G.; Clemente-Colon, P.; Neumann, G.; Li, P.

    2015-12-01

    The paradox of the rapid reduction of Arctic sea ice versus the stability (or slight increase) of Antarctic sea ice remains a challenge in the cryospheric science research community. Here we start by reviewing a number of explanations that have been suggested by different researchers and authors. One suggestion is that stratospheric ozone depletion may affect atmospheric circulation and wind patterns such as the Southern Annular Mode, and thereby sustaining the Antarctic sea ice cover. The reduction of salinity and density in the near-surface layer may weaken the convective mixing of cold and warmer waters, and thus maintaining regions of no warming around the Antarctic. A decrease in sea ice growth may reduce salt rejection and upper-ocean density to enhance thermohalocline stratification, and thus supporting Antarctic sea ice production. Melt water from Antarctic ice shelves collects in a cool and fresh surface layer to shield the surface ocean from the warmer deeper waters, and thus leading to an expansion of Antarctic sea ice. Also, wind effects may positively contribute to Antarctic sea ice growth. Moreover, Antarctica lacks of additional heat sources such as warm river discharge to melt sea ice as opposed to the case in the Arctic. Despite of these suggested explanations, factors that can consistently and persistently maintains the stability of sea ice still need to be identified for the Antarctic, which are opposed to factors that help accelerate sea ice loss in the Arctic. In this respect, using decadal observations from multiple satellite datasets, we examine differences in sea ice properties and distributions, together with dynamic and thermodynamic processes and interactions with land, ocean, and atmosphere, causing differences in Arctic and Antarctic sea ice change to contribute to resolving the Arctic-Antarctic sea ice paradox.

  12. Low pCO2 under sea-ice melt in the Canada Basin of the western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Kosugi, Naohiro; Sasano, Daisuke; Ishii, Masao; Nishino, Shigeto; Uchida, Hiroshi; Yoshikawa-Inoue, Hisayuki

    2017-12-01

    In September 2013, we observed an expanse of surface water with low CO2 partial pressure (pCO2sea) (< 200 µatm) in the Chukchi Sea of the western Arctic Ocean. The large undersaturation of CO2 in this region was the result of massive primary production after the sea-ice retreat in June and July. In the surface of the Canada Basin, salinity was low (< 27) and pCO2sea was closer to the air-sea CO2 equilibrium (˜ 360 µatm). From the relationships between salinity and total alkalinity, we confirmed that the low salinity in the Canada Basin was due to the larger fraction of meltwater input (˜ 0.16) rather than the riverine discharge (˜ 0.1). Such an increase in pCO2sea was not so clear in the coastal region near Point Barrow, where the fraction of riverine discharge was larger than that of sea-ice melt. We also identified low pCO2sea (< 250 µatm) in the depth of 30-50 m under the halocline of the Canada Basin. This subsurface low pCO2sea was attributed to the advection of Pacific-origin water, in which dissolved inorganic carbon is relatively low, through the Chukchi Sea where net primary production is high. Oxygen supersaturation (> 20 µmol kg-1) in the subsurface low pCO2sea layer in the Canada Basin indicated significant net primary production undersea and/or in preformed condition. If these low pCO2sea layers surface by wind mixing, they will act as additional CO2 sinks; however, this is unlikely because intensification of stratification by sea-ice melt inhibits mixing across the halocline.

  13. Observed seasonal and interannual variability of the near-surface thermal structure of the Arabian Sea Warm Pool

    NASA Astrophysics Data System (ADS)

    Rao, R. R.; Ramakrishna, S. S. V. S.

    2017-06-01

    The observed seasonal and interannual variability of near-surface thermal structure of the Arabian Sea Warm Pool (ASWP) is examined utilizing a reanalysis data set for the period 1990-2008. During a year, the ASWP progressively builds from February, reaches its peak by May only in the topmost 60 m water column. The ASWP Index showed a strong seasonal cycle with distinct interannual signatures. The years with higher (lower) sea surface temperature (SST) and larger (smaller) spatial extent are termed as strong (weak) ASWP years. The differences in the magnitude and spatial extent of thermal structure between the strong and weak ASWP regimes are seen more prominently in the topmost 40 m water column. The heat content values with respect to 28 °C isotherm (HC28) are relatively higher (lower) during strong (weak) ASWP years. Even the secondary peak in HC28 seen during the preceding November-December showed higher (lower) magnitude during the strong ASWP (weak) years. The influence of the observed variability in the surface wind field, surface net air-sea heat flux, near-surface mixed layer thickness, sea surface height (SSH) anomaly, depth of 20 °C isotherm and barrier layer thickness is examined to explain the observed differences in the near-surface thermal structure of the ASWP between strong and weak regimes. The surface wind speed is much weaker in particular during the preceding October and February-March corresponding to the strong ASWP years when compared to those of the weak ASWP years implying its important role. Both stronger winter cooling during weak ASWP years and stronger pre-monsoon heating during strong ASWP years through the surface air-sea heat fluxes contribute to the observed sharp contrast in the magnitudes of both the regimes of the ASWP. The upwelling Rossby wave during the preceding summer monsoon, post-monsoon and winter seasons is stronger corresponding to the weak ASWP regime when compared to the strong ASWP regime resulting in greater cooling of the near-surface layers during the summer monsoon season of the preceding year. On the other hand, the downwelling Rossby wave is stronger during pre-monsoon months during the strong ASWP regime when compared to weak ASWP regime leading to lesser cooling during strong ASWP regime.

  14. Reconstruction of paleoenvironmental changes based on the planktonic foraminiferal assemblages off Shimokita (Japan) in the northwestern North Pacific

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, Azumi; Kawahata, Hodaka; Narita, Hisashi; Ohkushi, Ken'ichi; Aramaki, Takafumi

    2006-08-01

    Planktonic foraminifera live in the upper ocean, and their assemblages can record the surrounding environment. To reconstruct changes in water masses and the timing of flow of the Oyashio and Tsugaru currents through the Tsugaru Strait after the Last Glacial Maximum, when the Japan Sea had been almost isolated from the surrounding seas, we investigated at high resolution the planktonic foraminiferal fauna in seafloor sediments off the Shimokita (core MD01-2409: 41°33.9'N, 141°52.1'E), in the northwestern North Pacific, over the last 26,900 years. Factor analysis of the foraminiferal assemblage suggests that the water mass changed significantly as a result of the deglacial sea-level rise and opening of the straits into the Japan Sea. Mass accumulation rates of some selected foraminiferal species that inhabit characteristic environments (e.g., warm stratified water, Oyashio Current, Tsushima Current) corroborate these changes in water mass and water column structure. We also used the ratio of the dextral form to total Neogloboquadrina pachyderma as an indicator of subsurface (below the pycnocline) water temperature. We recognized five distinct periods of oceanographic change at the study site, which is just east of the Tsugaru Strait: (1) Oyashio Current affecting both surface and subsurface waters (26.9-15.7 thousand calendar years before present (cal. kyr BP)); (2) vertical mixing and subsurface warming as the Oyashio Current began to flow into the Japan Sea through the Tsugaru Strait (15.7-10.6 cal. kyr BP); (3) outflow of the Tsugaru Current from the Japan Sea into the Pacific, leading to baroclinic conditions, with the surface layer under the influence of the Tsugaru and the subsurface layers of the Oyashio Current (10.6-9.0 cal. kyr BP); (4) stratification of the water column developed as the flow of the Tsugaru Current increased (9.0-6.2 cal. kyr BP); and (5) warming of the subsurface layer, disruption of the stratification, and dominance of the Tsugaru Current in both surface and subsurface layers, similar to the present situation (6.2-1.5 cal. kyr BP). The timing of flow of the Oyashio and Tsugaru currents through the strait at the study site off Shimokita is generally compatible with the results of studies in the Japan Sea. The flow of the Tsugaru Current led to progressive warming of the waters, from the surface to the subsurface layers and from the Japan Sea side to the Pacific side of the Tsugaru Strait, beginning in 8.3-6.8 cal. kyr BP on the western side, and in 6.2 cal. kyr BP on the eastern side of the strait. By 4.8 cal. kyr BP on the western side, and by ˜ 3.4 cal. kyr BP on the eastern side of the strait, warm water prevailed in both surface and subsurface layers.

  15. Study on wind wave variability by inhomogeneous currents in the closed seas

    NASA Astrophysics Data System (ADS)

    Bakhanov, Victor V.; Bogatov, Nikolai A.; Ermoshkin, Aleksei V.; Ivanov, Andrei Yu.; Kemarskaya, Olga N.; Titov, Victor I.

    2012-09-01

    Complex experiments were performed in the north-eastern part of the Black Sea and in the south-eastern part of the White Sea to study variability of the current fields and other characteristics of the sea, wind waves, and parameters of the near-surface atmospheric layer. Measurements were carried out from the onboard of the scientific research vessels by optical, radar and acoustic sensors. The heterogeneity of bottom topography in Black Sea had quasi-one-dimensional character. The case of the two-dimensionally heterogeneous relief of the bottom was investigated in the White Sea. The peculiarity of these experiments was simultaneous measurements from onboard of vessel synchronously with acquisitions of synthetic aperture radar (SAR) images of the Envisat and TerraSAR-X satellites. We have detected for the case of the quasi-one-dimensionally heterogeneous current a difference between the sea surface roughness above the shelf zone and the roughness at the deep bottom. We found that the inhomogeneities of the bottom topography can manifest as a change not only in the amplitude of different characteristics of surface wave and atmospheric near-water layer, but also in their frequency spectrum. In White Sea the special features of the flow of the powerful tidal current (up to 1 m/s) around the secluded underwater elevation and the spatial structure of surface anomalies in the field of these two-dimensional-heterogeneous currents are analyzed. The numerical simulation of the wind wave transformation in the field of two-dimensional- heterogeneous flows is carried out. The qualitative agreement of the calculation results with the experimental data is shown.

  16. The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Wong, Elizabeth Wing-See

    There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of thermal skin layer disruption. The results show independence of the turbulent fluxes and emitted radiation on the incident radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation and increase infrared emission. Furthermore, independence was confirmed between the incoming and outgoing radiative flux which implies the heat sink for upward flowing heat at the air-sea interface is more-or-less fixed. The surplus energy, from absorbing increasing levels of infrared radiation, is found to adjust the curvature of the thermal skin layer such that there is a smaller gradient at the interface between the thermal skin layer and the mixed layer beneath. The vertical conduction of heat from the mixed layer to the surface is therefore hindered while the additional energy within the thermal skin layer is supporting the gradient changes of the skin layer's temperature profile. This results in heat beneath the thermal skin layer, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content. The accuracy of four published skin layer models were evaluated by comparison with the field results. The results show a need to include radiative effects, which are currently absent, in such models as they do not replicate the findings from the field data and do not elucidate the effects of the absorption of infrared radiation.

  17. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    NASA Astrophysics Data System (ADS)

    Cherkasheva, A.; Bracher, A.; Nöthig, E.-M.; Bauerfeind, E.; Melsheimer, C.

    2012-11-01

    Current estimates of global marine primary production range over a factor of two. At high latitudes, the uncertainty is even larger than globally because here in-situ data and ocean color observations are scarce, and the phytoplankton absorption shows specific characteristics due to the low-light adaptation. The improvement of the primary production estimates requires an accurate knowledge on the chlorophyll vertical profile, which is the basis for most primary production models. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer did not include the Arctic region or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the Arctic regions where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S Merian cruises combined with data of the ARCSS-PP database (Arctic primary production in-situ database) for the years 1957-2010. The profiles were categorized according to their mean concentration in the surface layer and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll exceeding 0.7 mg C m-3 showed a clear seasonal cycle with values gradually decreasing from April to August. Chlorophyll profiles maxima moved from lower depths in spring towards the surface in late summer. Profiles with smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability in April, May and June of the Greenland Sea season is following the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviates significantly from that in other months (July-September) where the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersect roughly at one common depth within each category. Finally, by applying a Gaussian fitting with 0.1 mg C m-3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations have been determined. These will be used as the input to the satellite-based primary production models estimating primary production in Arctic regions.

  18. Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.; Bricaud, A.; Benner, R.; Para, J.; Sempéré, R.; Prieur, L.; Bélanger, S.; Babin, M.

    2012-03-01

    Light absorption by colored dissolved organic matter (CDOM) [aCDOM(λ)] plays an important role in the heat budget of the Arctic Ocean, contributing to the recent decline in sea ice, as well as in biogeochemical processes. We investigated aCDOM(λ) in the Southern Beaufort Sea where a significant amount of CDOM is delivered by the Mackenzie River. In the surface layer, aCDOM(440) showed a strong and negative correlation with salinity, indicating strong river influence and conservative transport in the river plume. Below the mixed layer, a weak but positive correlation between aCDOM(440) and salinity was observed above the upper halocline, resulting from the effect of removal of CDOM due to brine rejection and lateral intrusion of Pacific summer waters into these layers. In contrast, the relationship was negative in the upper and the lower haloclines, suggesting these waters originated from Arctic coastal waters. DOC concentrations in the surface layer were strongly correlated with aCDOM(440) (r2 = 0.97), suggesting that this value can be estimated in this area, using aCDOM(440) that is retrieved using satellite ocean color data. Implications for estimation of DOC concentrations in surface waters using ocean color remote sensing are discussed.

  19. What Drives the Variability of the Atlantic Water Circulation in the Arctic Ocean?

    NASA Astrophysics Data System (ADS)

    Lique, C.; Johnson, H. L.

    2016-02-01

    The Atlantic Water (AW) layer in the Arctic Basin is isolated from the atmosphere by the overlaying surface layer; yet observations of the AW pan-Arctic boundary current have revealed that the velocities in this layer exhibit significant variations on all timescales. Here, analysis of a global ocean/sea ice model hindcast, complemented by experiments performed with an idealized process model, are used to investigate what controls the variability of AW circulation, with a focus on the role of wind forcing. The AW circulation carries the imprint of wind variations, both remotely over the Nordic and Barents seas where they force variability on the AW inflow to the Arctic Basin, and locally over the Arctic Basin through the forcing of the wind-driven Beaufort gyre, which modulates and transfers the wind variability to the AW layer. Our results further suggest that understanding variability in the large amount of heat contained within the AW layer requires a better understanding of the circulation within both AW and surface layers.

  20. Optimizing Surface Winds using QuikSCAT Measurements in the Mediterranean Sea During 2000-2006

    DTIC Science & Technology

    2009-02-28

    Temperature and salinity from the 1/4° Generalized Digital Envi- ronmental Model ( GDEM ) monthly climatology developed at the Naval Oceanographic...monthly GDEM climatology was also used for relaxation of the sea-surface salinity (SSS) to keep the surface salinity balance on track. The net heat...salinity from the GDEM clima- tology are used to initialize themodel. There is a relaxation tomonthly mean SSS fromGDEM. The referencemixed-layer

  1. Flux measurements in the surface Marine Atmospheric Boundary Layer over the Aegean Sea, Greece.

    PubMed

    Kostopoulos, V E; Helmis, C G

    2014-10-01

    Micro-meteorological measurements within the surface Marine Atmospheric Boundary Layer took place at the shoreline of two islands at northern and south-eastern Aegean Sea of Greece. The primary goal of these experimental campaigns was to study the momentum, heat and humidity fluxes over this part of the north-eastern Mediterranean Sea, characterized by limited spatial and temporal scales which could affect these exchanges at the air-sea interface. The great majority of the obtained records from both sites gave higher values up to factor of two, compared with the estimations from the most widely used parametric formulas that came mostly from measurements over open seas and oceans. Friction velocity values from both campaigns varied within the same range and presented strong correlation with the wind speed at 10 m height while the calculated drag coefficient values at the same height for both sites were found to be constant in relation with the wind speed. Using eddy correlation analysis, the heat flux values were calculated (virtual heat fluxes varied from -60 to 40 W/m(2)) and it was found that they are affected by the limited spatial and temporal scales of the responding air-sea interaction mechanism. Similarly, the humidity fluxes appeared to be strongly influenced by the observed intense spatial heterogeneity of the sea surface temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.

    2012-03-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (CaCO3·6H2O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from an actively melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures gradually disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice flow thickness by ca. 0.2 m per week and resulted in an estimated 1.6 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 11 mmol m-2 sea ice d-1 or to 3.5 ton km-2 ice floe week-1.

  3. Thin Sea-Ice Thickness as Inferred from Passive Microwave and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Naoki, Kazuhiro; Ukita, Jinro; Nishio, Fumihiko; Nakayama, Masashige; Comiso, Josefino C.; Gasiewski, Al

    2007-01-01

    Since microwave radiometric signals from sea-ice strongly reflect physical conditions of a layer near the ice surface, a relationship of brightness temperature with thickness is possible especially during the early stages of ice growth. Sea ice is most saline during formation stage and as the salinity decreases with time while at the same time the thickness of the sea ice increases, a corresponding change in the dielectric properties and hence the brightness temperature may occur. This study examines the extent to which the relationships of thickness with brightness temperature (and with emissivity) hold for thin sea-ice, approximately less than 0.2 -0.3 m, using near concurrent measurements of sea-ice thickness in the Sea of Okhotsk from a ship and passive microwave brightness temperature data from an over-flying aircraft. The results show that the brightness temperature and emissivity increase with ice thickness for the frequency range of 10-37 GHz. The relationship is more pronounced at lower frequencies and at the horizontal polarization. We also established an empirical relationship between ice thickness and salinity in the layer near the ice surface from a field experiment, which qualitatively support the idea that changes in the near-surface brine characteristics contribute to the observed thickness-brightness temperature/emissivity relationship. Our results suggest that for thin ice, passive microwave radiometric signals contain, ice thickness information which can be utilized in polar process studies.

  4. Do buoyant plumes enhance cross-shelf transport in the Black Sea?

    NASA Astrophysics Data System (ADS)

    Sedakov, Roman; Zavialov, Peter; Izhitsky, Alexander

    2017-04-01

    Like many inland seas, the Black Sea is exposed to massive continental discharges on the one hand and significant anthropogenic stresses, including pollution, on the other. It is, therefore, important to understand mechanisms of advection of continental water into the sea and factors that may influence transport of such water across shelf areas. In this study, we focus on the coastal segment of the Black Sea between the Feodosia Bay, which includes nature reserve and resort areas, and the Kerch Strait. The Sea of Azov outflow penetrates into the Black Sea through the latter, forming a plume of relatively fresh, light waters with elevated concentrations of suspended matter but also pollutants, especially hydrocarbons. This plume, which can be detected via satellite imagery of the region, extends on over 70 km from the Kerch Strait outfall along Crimea shore and reaches the Feodosia Bay, making that area the most polluted of the Crimea shoreline. In situ velocity measurements were conducted at a mooring station deployed in the area at the depth of 5 and 21.5 meters during the period 17th-23rd of May 2015. These data demonstrated high correlation of the wind stress with the cross-shore component of the velocity in the surface layer and anti-correlation with that in the bottom layer during the periods when a two-layered stratification of the water column due to the occurrence of the Azov plume was present, and lack of such correlation otherwise. In order to investigate whether the buoyant plume in the surface layer is capable of fortifying the wind-driven cross-shelf exchanges, we develop a dynamical model of current forming under the influence of wind tension, pressure gradient and Earth's rotation in a simple one- and a two- layer setups. Firstly, a 2D model was investigated that did not account Coriolis effect. Secondly, a 3D model with Coriolis effect was investigated. The main parameter of the problem is the eddy diffusivity coefficient, which we choose to be either constant and different within each layer or a linear function of depth. In each case we obtain an analytical solution and derive a relation between seaward/shoreward transport and eddy viscosity. Both 2D and 3D models indicate that the stratified conditions damping vertical mixing lead to an increase of transport in the surface layer. This result corresponds well with the in situ observations, showing that buoyant plumes may indeed enhance advection of plume waters across shelf areas.

  5. The deep-sea as a final global sink of semivolatile persistent organic pollutants? Part I: PCBs in surface and deep-sea dwelling fish of the north and south Atlantic and the Monterey Bay Canyon (California).

    PubMed

    Froescheis, O; Looser, R; Cailliet, G M; Jarman, W M; Ballschmiter, K

    2000-03-01

    The understanding of the global environmental multiphase distribution of persistent organic pollutants (POPs) as a result of the physico-chemical properties of the respective compounds is well established. We have analysed the results of a vertical transport of POPs from upper water layers (0-200 m) to the deepwater region (> 800 m) in terms of the contamination of the biophase in both water layers. The contents of persistent organochlorine compounds like polychlorinated biphenyls (PCBs) in fish living in the upper water layers of the North Atlantic and the South Atlantic, and at the continental shelf of California (Marine Sanctuary Monterey Bay and its deep-sea Canyon) are compared to the levels in deep-sea or bottom dwelling fish within the same geographic area. The deep-sea biota show significantly higher burdens as compared to surface-living species of the same region. There are also indications for recycling processes of POPs--in this case the PCBs--in the biophase of the abyss as well. It can be concluded that the bio- and geo phase of the deep-sea may act similarly as the upper horizons of forest and grasslands on the continents as an ultimate global sink for POPs in the marine environment.

  6. Lidar observations of the planetary boundary layer during FASINEX

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Boers, R.; Palm, S. P.

    1988-01-01

    Data are presented on the planetary boundary layer (PBL) over the ocean acquired with an airborne downward-looking lidar during the Frontal Air-Sea Interaction Experiment (FASINEX) with the purpose of studying the impact of an ocean front on air-sea interactions. No changes in the PBL structure were detected by lidar. Lidar data were then used along with other readily available remotely-sensed data and a one-dimensional boundary-layer-growth model to infer the mean PBL moisture and temperature structure and to estimate the surface fluxes of heat and moisture.

  7. Scanning electron microscope studies of sea urchin fertilization. I. Eggs with vitelline layers.

    PubMed

    Tegner, M J; Epel, D

    1976-07-01

    The surface coats of sea urchin eggs and the events of fertilization which take place on these surfaces were examined with the scanning electron microscope (SEM). Gametes of Stronglyocentrotus purpuratus and Lytechinus pictus were considered in detail; eggs of seven other echinoids were examined for comparative purposes. Jelly coats, preserved by varying the pH of fixation, were found to vary in morphology and solubility properties between species. The vitelline layers of the nine echinoids are characterized by arrays of projections which are impressions of cytoplasmic microvilli in the vitelline layer. After sperm bind to the egg surface via the acrosomal process, fine filaments, apparently an egg response to insemination, further connect some sperm heads and tails to the egg. The cortical reactions spread out as a wave from where the fertilizing sperm fused with the egg; separation of the vitelline layer proceeds as a smooth wave from S. purpuratus eggs and as a series of localized separations in L. pictus eggs. The fertilization membranes of S. purpuratus and Allocentrotus fragilis zygotes are expanded replicas of their respective vitelline layers, suggesting that fertilization membranes are formed by an unfolding of the vitelline layer.

  8. Contribution of mycosporine-like amino acids and colored dissolved and particulate matter to sea ice optical properties and ultraviolet attenuation

    PubMed Central

    Uusikivi, Jari; Vähätalo, Anssi V.; Granskog, Mats A.; Sommaruga, Ruben

    2010-01-01

    In the Baltic Sea ice, the spectral absorption coefficients for particulate matter (PM) were about two times higher at ultraviolet wavelengths than at photosynthetically available radiation (PAR) wavelengths. PM absorption spectra included significant absorption by mycosporine-like amino acids (MAAs) between 320 and 345 nm. In the surface ice layer, the concentration of MAAs (1.37 μg L−1) was similar to that of chlorophyll a, resulting in a MAAs-to-chlorophyll a ratio as high as 0.65. Ultraviolet radiation (UVR) intensity and the ratio of UVR to PAR had a strong relationship with MAAs concentration (R2 = 0.97, n = 3) in the ice. In the surface ice layer, PM and especially MAAs dominated the absorption (absorption coefficient at 325 nm: 0.73 m−1). In the columnar ice layers, colored dissolved organic matter was the most significant absorber in the UVR (< 380 nm) (absorption coefficient at 325 nm: 1.5 m−1). Our measurements and modeling of UVR and PAR in Baltic Sea ice show that organic matter, both particulate and dissolved, influences the optical properties of sea ice and strongly modifies the UVR exposure of biological communities in and under snow-free sea ice. PMID:20585592

  9. Re-initiation of bottom water formation in the East Sea (Japan Sea) in a warming world.

    PubMed

    Yoon, Seung-Tae; Chang, Kyung-Il; Nam, SungHyun; Rho, TaeKeun; Kang, Dong-Jin; Lee, Tongsup; Park, Kyung-Ae; Lobanov, Vyacheslav; Kaplunenko, Dmitry; Tishchenko, Pavel; Kim, Kyung-Ryul

    2018-01-25

    The East Sea (Japan Sea), a small marginal sea in the northwestern Pacific, is ventilated deeply down to the bottom and sensitive to changing surface conditions. Addressing the response of this marginal sea to the hydrological cycle and atmospheric forcing would be helpful for better understanding present and future environmental changes in oceans at the global and regional scales. Here, we present an analysis of observations revealing a slowdown of the long-term deepening in water boundaries associated with changes of water formation rate. Our results indicate that bottom (central) water formation has been enhanced (reduced) with more (less) oxygen supply to the bottom (central) layer since the 2000s. This paper presents a new projection that allows a three-layered deep structure, which retains bottom water, at least until 2040, contrasting previous results. This projection considers recent increase of slope convections mainly due to the salt supply via air-sea freshwater exchange and sea ice formation and decrease of open-ocean convections evidenced by reduced mixed layer depth in the northern East Sea, resulting in more bottom water and less central water formations. Such vigorous changes in water formation and ventilation provide certain implications on future climate changes.

  10. Ozone depletion - Ultraviolet radiation and phytoplankton biology in Antarctic waters

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Prezelin, B. B.; Baker, K. S.; Bidigare, R. R.; Boucher, N. P.; Coley, T.; Karentz, D.; Macintyre, S.; Matlick, H. A.; Menzies, D.

    1992-01-01

    The near-50-percent thinning of the stratospheric ozone layer over the Antarctic, with increased passage of mid-UV radiation to the surface of the Southern Ocean, has prompted concern over possible radiation damage to the near-surface phytoplankton communities that are the bases of Antarctic marine ecosystems. As the ozone layer thinned, a 6-week study of the marginal ice zone of the Bellingshousen Sea in the austral spring of 1990 noted sea-surface and depth-dependent ratios of mid-UV irradiance to total irradiance increased, and mid-UV inhibition of photosynthesis increased. A 6-12 percent reduction in primary production associated with ozone depletion was estimated to have occurred over the course of the present study.

  11. A heavy sea fog event over the Yellow Sea in March 2005: Analysis and numerical modeling

    NASA Astrophysics Data System (ADS)

    Gao, Shanhong; Lin, Hang; Shen, Biao; Fu, Gang

    2007-02-01

    In this paper, a heavy sea fog episode that occurred over the Yellow Sea on 9 March 2005 is investigated. The sea fog patch, with a spatial scale of several hundred kilometers at its mature stage, reduced visibility along the Shandong Peninsula coast to 100 m or much less at some sites. Satellite images, surface observations and soundings at islands and coasts, and analyses from the Japan Meteorology Agency (JMA) are used to describe and analyze this event. The analysis indicates that this sea fog can be categorized as advection cooling fog. The main features of this sea fog including fog area and its movement are reasonably reproduced by the Fifth-generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5). Model results suggest that the formation and evolution of this event can be outlined as: (1) southerly warm/moist advection of low-level air resulted in a strong sea-surface-based inversion with a thickness of about 600 m; (2) when the inversion moved from the warmer East Sea to the colder Yellow Sea, a thermal internal boundary layer (TIBL) gradually formed at the base of the inversion while the sea fog grew in response to cooling and moistening by turbulence mixing; (3) the sea fog developed as the TIBL moved northward and (4) strong northerly cold and dry wind destroyed the TIBL and dissipated the sea fog. The principal findings of this study are that sea fog forms in response to relatively persistent southerly warm/moist wind and a cold sea surface, and that turbulence mixing by wind shear is the primary mechanism for the cooling and moistening the marine layer. In addition, the study of sensitivity experiments indicates that deterministic numerical modeling offers a promising approach to the prediction of sea fog over the Yellow Sea but it may be more efficient to consider ensemble numerical modeling because of the extreme sensitivity to model input.

  12. The inland boundary layer at low latitudes

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1985-08-01

    Observations from the Koorin boundary-layer experiment in Australia (latitude 16 °S) were analysed in a study of the nocturnal jet development. For geostrophic winds in the range 10 20 m s-1, ageostrophic wind magnitudes of 5 10m s-1 were common above the surface layer near sunset, with cross-isobar flow angles of about 40 °. The jet that then developed by midnight was probably the result of these large ageostrophic winds, strong surface cooling and favourable baroclinity and sloping terrain. The analysis is supported by numerical model calculations with special emphasis on the role of long-wave radiative cooling on turbulent decay. Decay is rapid in the presence of radiation, although there is little influence on stress divergence levels. Evidence of sea-breeze influences on the jet evolution, and on features of deeply penetrating sea breezes in general, will be presented and discussed in part 2 of this study (submitted to Boundary-Layer Meteorol.).

  13. Measurements of Vertical Profiles of Turbulence, Temperature, Ozone, Aerosols, and BrO over Sea Ice and Tundra Snowpack during BROMEX

    NASA Astrophysics Data System (ADS)

    Shepson, P.; Caulton, D.; Cambaliza, M. L.; Dhaniyala, S.; Fuentes, J. D.; General, S.; Halfacre, J. W.; Nghiem, S. V.; Perez Perez, L.; Peterson, P. K.; Platt, U.; Pohler, D.; Pratt, K. A.; Simpson, W. R.; Stirm, B.; Walsh, S. J.; Zielcke, J.

    2012-12-01

    During the BROMEX field campaign of March 2012, we conducted measurements of boundary layer structure, ozone, BrO and aerosol, from a light, twin-engine aircraft during eleven flights originating from Barrow, AK. Flights were conducted over the sea ice in the Beaufort and Chukchi Seas, and over the tundra from Barrow to the Brooks Range, with vertical profiles covering altitudes from the surface to 3.5km in the free troposphere. Flights over the course of one month allowed a variety of sea ice conditions, including open water, nilas, first year sea ice, and frost flowers, to be examined over the Chukchi Sea. Atmospheric turbulence was measured using a calibrated turbulence probe, which will enable characterization of both the structure and turbulence of the Arctic boundary layer. Ozone was measured using a 2B UV absorption instrument. A GRIMM optical particle counter was used to measure 0.25-4 μm sized aerosol particles. The MAX-DOAS instrument enabled measurements of BrO vertical profiles. The aircraft measurements can be used to connect the surface measurements of ozone and BrO from the "Icelander" buoys, and the surface sites at Barrow, with those measured on the aircraft. Here we will discuss the spatial variability/coherence in these data. A major question that will be addressed using these data is the extent to which bromine is activated through reactions at the snowpack/ice surface versus the surface of aerosols. Here we will present a preliminary analysis of the relationships between snow/ice surface types, aerosol size-resolved number concentrations, and the vertical profiles of ozone and BrO.

  14. Fluvial landscapes evolution in the Gangkou River basin of southern Taiwan: Evidence from the sediment cores

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Hong; Chyi, Shyh-Jeng; Yen, Jiun-Yee; Lin, Li-Hung; Yen, I.-Chin; Yu, Neng-Ti; Ho, Lih-Der; Jen, Chia-Hung

    2017-04-01

    The Gangkou River basin is the largest basin in the eastern Hengchun Peninsula of Taiwan. Its main river length is 31km and the basin area is 102sq. km. The width of the active channel is relatively narrow, but the valley from the middle to downstream is remarkably wide, indicating a feature of underfit stream. We drilled two sediment cores in the downstream area, including a 30m core (core-A) from a higher terrace, which is 14m above mean sea level, and a 20m core (core-B) from a lower terrace, which is 4m above mean sea level. Most of the sediments in the core-A are mud, which represents the flood plain facies, and 14C dates in the core-A range from 11ka to 7ka BP. Furthermore, the sediment layers reveal signals of marine events at the core depths of 5m to 11m by X-ray fluorescence. In the core-B, there is an erosional surface at the core depth of 5m. The age of the fluvial gravel layer above the erosional surface is about 0.4ka BP, and the mud layer top the surface is about 8.5ka BP. The preliminary results show that (1) as the tectonic uplift rate induced by the marine terraces around the basin is 1.0 to 2.5 mm/yr, and the accumulation rate of the mud layer in the basin is 6.7 to 8.7 mm/yr, the sediments infilling (more than 30-meters-thick) in the downstream area of the basin should be the results of the lower tectonic uplifting and the higher post-glacial sea level rise and; (2) the marine sediment layer with 14C dates of 7.5ka to 8.5ka BP is very likely the remain of the maximum flooding surface (MFS) in the early Holocene. These results indicate that the fluvial landscapes evolution of the basin was controlled by the sea-level; (3) the erosional surface in the core-B indicates the Gangkou River continuously erode the infilling sediments from 7ka to 0.4ka BP. Previous studies show that the sea-level around Taiwan gradually declined from its high stand since 6ka, we proposed that the continuous erosion was probably the results of tectonic uplifting and eustatic sea-level fall.

  15. Wind-sea surface temperature-sea ice relationship in the Chukchi-Beaufort Seas during autumn

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Stegall, Steve T.; Zhang, Xiangdong

    2018-03-01

    Dramatic climate changes, especially the largest sea ice retreat during September and October, in the Chukchi-Beaufort Seas could be a consequence of, and further enhance, complex air-ice-sea interactions. To detect these interaction signals, statistical relationships between surface wind speed, sea surface temperature (SST), and sea ice concentration (SIC) were analyzed. The results show a negative correlation between wind speed and SIC. The relationships between wind speed and SST are complicated by the presence of sea ice, with a negative correlation over open water but a positive correlation in sea ice dominated areas. The examination of spatial structures indicates that wind speed tends to increase when approaching the ice edge from open water and the area fully covered by sea ice. The anomalous downward radiation and thermal advection, as well as their regional distribution, play important roles in shaping these relationships, though wind-driven sub-grid scale boundary layer processes may also have contributions. Considering the feedback loop involved in the wind-SST-SIC relationships, climate model experiments would be required to further untangle the underlying complex physical processes.

  16. On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazil, J.; Feingold, G.; Wang, Hailong

    2014-01-02

    The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. Itmore » is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric air, the spatial distribution of surface air temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of sea salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in sea-salt fluxes, it also enhances the sea-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found to have only a small effect on cloud properties in the investigated cases. This indicates that sub-grid scale spatial variability in the surface flux of sensible and latent heat and of sea salt aerosol may not be required in large scale and global models to describe marine boundary layer cellular cloudiness.« less

  17. THE MEMBRANE CAPACITANCE OF THE SEA URCHIN EGG

    PubMed Central

    Rothschild, Lord

    1957-01-01

    1. The surface of the unfertilized sea urchin egg is folded and the folds are reversibly eliminated by exposing the egg to hypotonic sea water. If the plasma membrane is outside the layer of cortical granules, unfolding may explain why the membrane capacitance per unit area decreases (and does not increase) when a sea urchin egg is put into hypotonic sea water. 2. The degree of surface folding markedly increases after fertilization, which provides an explanation for the increase in membrane capacitance per unit area observed after fertilization. 3. The percentage reduction in membrane folding in fertilized eggs after immersion in hypotonic sea water is probably sufficient to explain the decrease in membrane capacitance per unit area observed in these conditions. PMID:13416315

  18. Large eddy simulation of heat entrainment under Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Ramudu, Eshwan; Gelderloos, Renske; Yang, Di; Meneveau, Charles; Gnanadesikan, Anand

    2017-11-01

    Sea ice cover in the Arctic has declined rapidly in recent decades. To better understand ice loss through bottom melting, we choose to study the Canada Basin of the Arctic Ocean, which is characterized by a perennial anomalously warm Pacific Summer Water (PSW) layer residing at the base of the mixed layer and a summertime Near-Surface Temperature Maximum (NSTM) layer trapping heat from solar radiation. The interaction of these warm layers with a moving ice basal surface is investigated using large eddy simulation. We find that the presence of the NSTM enhances heat entrainment from the mixed layer. Another conclusion from our work is that there is no heat entrained from the PSW layer, even at the largest ice-drift velocity of 0.3 m s-1 considered. We propose a scaling law for the heat flux at the ice basal surface which depends on the initial temperature anomaly in the NSTM layer and the ice-drift velocity. A case study of `The Great Arctic Cyclone of 2012' gives a turbulent heat flux from the mixed layer that is approximately 70% of the total ocean-to-ice heat flux estimated from the PIOMAS model often used for short-term predictions. Present results highlight the need for large-scale climate models to account for the NSTM layer. We acknowledge funding from NOAA Grant NA15OAR4310172, the NSF, and the University of Houston start-up fund.

  19. Mixed Layer Temperature Budget for the Northward Propagating Summer Monsoon Intraseasonal Oscillation (MISO) in the Central Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Girishkumar, M. S.; Joseph, J.; Thangaprakash, V. P.; Pottapinjara, V.; McPhaden, M. J.

    2017-11-01

    Composite analyses of mixed layer temperature (MLT) budget terms from near-surface meteorological and oceanic observations in the central Bay of Bengal are utilized to evaluate the modulation of air-sea interactions and MLT processes in response to the summer monsoon intraseasonal oscillation (MISO). For this purpose, we use moored buoy data at 15°N, 12°N, and 8°N along 90°E together with TropFlux meteorological parameters and the Ocean Surface Current Analyses Real-time (OSCAR) current product. Our analysis shows a strong cooling tendency in MLT with maximum amplitude in the central and northern BoB during the northward propagation of enhanced convective activity associated with the active phase of the MISO; conversely, warming occurs during the suppressed phase of the MISO. The surface mixed layer is generally heated during convectively inactive phases of the MISO primarily due to increased net surface heat flux into the ocean. During convectively active MISO phases, the surface mixed layer is cooled by the combined influence of net surface heat loss to the atmosphere and entrainment cooling at the base of mixed layer. The variability of net surface heat flux is primarily due to modulation of latent heat flux and shortwave radiation. Shortwave is mostly controlled by an enhancement or reduction of cloudiness during the active and inactive MISO phases and latent heat flux is mostly controlled by variations in air-sea humidity difference.

  20. Flux and distribution of methane (CH4) in the Gunsan Basin of the southeastern Yellow Sea, off the Western Korea.

    PubMed

    Lee, Jun-Ho; Woo, Han Jun; Son, Seung-Kyu; Kim, Moonkoo; Lee, Dong-Hun; Tsunogai, Urumu; Jeong, Kap-Sik

    2018-04-16

    The flux and distribution of methane (CH 4 ) was investigated in the seawater column at 14 stations in the Gunsan Basin, the southeastern part of Yellow Sea from 2013 to 2015. Here CH 4 is concentrated 2.4-4.7 (3.4 ± 0.7) nM in the surface and 2.5-7.4 (5.2 ± 1.7) nM in the bottom layer. The CH 4 saturation ratios ranged from 65.5% to 295.5% (162.6 ± 68.7), comprising the mean sea-to-air CH 4 flux of 3.8 to 25.3 (15.6 ± 5.5) µM m -2 d -1 . Methane concentration was largely different in the upper and the lower seawater layers that is separated by the thermocline of which depth is variable (20-60 m) depending on the time of sampling. The concentration of seawater dissolved CH 4 is high between the bottom surface of the thermocline layer and the sea floor. Generally it tends to decrease from the south-westernmost part of the basin toward the west coast of Korea. This distribution pattern of CH 4 seems to result from the CH 4 supply by decomposition of organic matters produced in the upper seawater layer that is superimposed by the larger supply from the underlying sediment layer especially beneath the thermocline. The latter is manifested by ubiquitous CH 4 seeps from the seafloor sediments.

  1. On the sensitivity of mesoscale models to surface-layer parameterization constants

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Pielke, R. A.

    1989-09-01

    The Colorado State University standard mesoscale model is used to evaluate the sensitivity of one-dimensional (1D) and two-dimensional (2D) fields to differences in surface-layer parameterization “constants”. Such differences reflect the range in the published values of the von Karman constant, Monin-Obukhov stability functions and the temperature roughness length at the surface. The sensitivity of 1D boundary-layer structure, and 2D sea-breeze intensity, is generally less than that found in published comparisons related to turbulence closure schemes generally.

  2. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    NASA Astrophysics Data System (ADS)

    Cherkasheva, A.; Nöthig, E.-M.; Bauerfeind, E.; Melsheimer, C.; Bracher, A.

    2013-04-01

    Current estimates of global marine primary production range over a factor of two. Improving these estimates requires an accurate knowledge of the chlorophyll vertical profiles, since they are the basis for most primary production models. At high latitudes, the uncertainty in primary production estimates is larger than globally, because here phytoplankton absorption shows specific characteristics due to the low-light adaptation, and in situ data and ocean colour observations are scarce. To date, studies describing the typical chlorophyll profile based on the chlorophyll in the surface layer have not included the Arctic region, or, if it was included, the dependence of the profile shape on surface concentration was neglected. The goal of our study was to derive and describe the typical Greenland Sea chlorophyll profiles, categorized according to the chlorophyll concentration in the surface layer and further monthly resolved profiles. The Greenland Sea was chosen because it is known to be one of the most productive regions of the Arctic and is among the regions in the Arctic where most chlorophyll field data are available. Our database contained 1199 chlorophyll profiles from R/Vs Polarstern and Maria S. Merian cruises combined with data from the ARCSS-PP database (Arctic primary production in situ database) for the years 1957-2010. The profiles were categorized according to their mean concentration in the surface layer, and then monthly median profiles within each category were calculated. The category with the surface layer chlorophyll (CHL) exceeding 0.7 mg C m-3 showed values gradually decreasing from April to August. A similar seasonal pattern was observed when monthly profiles were averaged over all the surface CHL concentrations. The maxima of all chlorophyll profiles moved from the greater depths to the surface from spring to late summer respectively. The profiles with the smallest surface values always showed a subsurface chlorophyll maximum with its median magnitude reaching up to three times the surface concentration. While the variability of the Greenland Sea season in April, May and June followed the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989), it deviated significantly from the model in the other months (July-September), when the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersected roughly at one common depth within each category. By applying a Gaussian fit with 0.1 mg C m-3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations were determined. They generally reproduce the magnitude and position of the CHL maximum, resulting in an average 4% underestimation in Ctot (and 2% in rough primary production estimates) when compared to in situ estimates. These mathematical approximations can be used as the input to the satellite-based primary production models that estimate primary production in the Arctic regions.

  3. The structure of the stably stratified internal boundary layer in offshore flow over the sea

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Ryan, B. F.

    1989-04-01

    Observations obtained mainly from a research aircraft are presented of the mean and turbulent structure of the stably stratified internal boundary layer (IBL) over the sea formed by warm air advection from land to sea. The potential temperature and humidity fields reveal the vertical extent of the IBL, for fetches out to several hundred of kilometres, geostrophic winds of 20 25 m s-1, and potential temperature differences between undisturbed continental air and the sea surface of 7 to 17 K. The dependence of IBL depth on these external parameters is discussed in the context of the numerical results of Garratt (1987), and some discrepancies are noted. Wind observations show the development of a low-level wind maximum (wind component normal to the coast) and rotation of the wind to smaller cross-isobar flow angles. Potential temperature (θ) profiles within the IBL reveal quite a different structure to that found in the nocturnal boundary layer (NBL) over land. Over the sea, θ profiles have large positive curvature with vertical gradients increasing monotonically with height; this reflects the dominance of turbulent cooling within the layer. The behaviour is consistent with known behaviour in the NBL over land where curvature becomes negative (vertical gradients of θ decreasing with height) as radiative cooling becomes dominant. Turbulent properties are discussed in terms of non-dimensional quantities, normalised by the surface friction velocity, as functions of normalised height using the IBL depth. Vertical profiles of these and the normalised wavelength of the spectral maximum agree well with known results for the stable boundary layer over land (Caughey et al., 1979).

  4. Understanding the Steric Height Long Term Variability at the Bermuda Atlantic Time-Series Study (BATS) Site with a Neutral Density Approach

    NASA Astrophysics Data System (ADS)

    Goncalves Neto, A.; Johnson, R. J.; Bates, N. R.

    2016-02-01

    Rising sea level is one of the main concerns for human life in a scenario with global atmosphere and ocean warming, which is of particular concern for oceanic islands. Bermuda, located in the center of the Sargasso Sea, provides an ideal location to investigate sea level rise since it has a long term tide gauge (1933-present) and is in close proximity to deep ocean time-series sites, namely, Hydrostation `S' (1954-present) and the Bermuda Atlantic Time-Series Study site (1988-present). In this study, we use the monthly CTD deep casts at BATS to compute the contribution of steric height (SH) to the local sea surface height (SSH) for the past 24 years. To determine the relative contribution from the various water masses we first define 8 layers (Surface Layer, Upper Thermocline, Subtropical Mode-Water, Lower Thermocline, Antarctic Intermediate Water, Labrador Sea Water, Iceland-Scotland Overflow Water, Denmark Strait Overflow Water) based on neutral density criteria for which SH is computed. Additionally, we calculate the thermosteric and halosteric components for each of the defined neutral density layers. Surprisingly, the results show that, despite a 3.3mm/yr sea level rise observed at the Bermuda tide gauge, the steric contribution to the SSH at BATS has decreased at a rate of -1.1mm/yr during the same period. The thermal component is found to account for the negative trend in the steric height (-4.4mm/yr), whereas the halosteric component (3.3mm/yr) partially compensates the thermal signal and can be explained by an overall cooling and freshening at the BATS site. Although the surface layer and the upper thermocline waters are warming, all the subtropical and polar water masses, which represent most of the local water column, are cooling and therefore drive the overall SH contribution to the local SSH. Hence, it suggests that the mass contribution to the local SSH plays an important role in the sea level rise, for which we investigate with GRACE data.

  5. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.

    PubMed

    Moore, Christopher W; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M; Douglas, Thomas A; Richter, Andreas; Nghiem, Son V

    2014-02-06

    The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.

  6. Turbulent Structure Under Short Fetch Wind Waves

    DTIC Science & Technology

    2015-12-01

    1970) developed the LFT utilizing the concurrent measurement of sea surface elevation (η) and the near surface velocities to isolate the wave...Layers and Air-Sea Transfer program by making very high spatial resolution profile measurements of the 3-D velocity field into the crest-trough...distribution is unlimited TURBULENT STRUCTURE UNDER SHORT FETCH WIND WAVES Michael J. Papa Lieutenant Commander, United States Navy B.S., United States Naval

  7. Disruption of the air-sea interface and formation of two-phase transitional layer in hurricane conditions

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Matt, S.; Fujimura, A.

    2012-04-01

    The change of the air-sea interaction regime in hurricane conditions is linked to the mechanism of direct disruption of the air-sea interface by pressure fluctuations working against surface tension forces (Soloviev and Lukas, 2010). The direct disruption of the air-sea interface due to the Kelvin-Helmholtz (KH) instability and formation of a two-phase transitional layer have been simulated with a computational fluid dynamics model. The volume of fluid multiphase model included surface tension at the water-air interface. The model was initialized with either a flat interface or short wavelets. Wind stress was applied at the upper boundary of the air layer, ranging from zero stress to hurricane force stress in different experiments. Under hurricane force wind, the numerical model demonstrated disruption of the air-water interface and the formation of spume and the two-phase transition layer. In the presence of a transition layer, the air-water interface is no longer explicitly identifiable. As a consequence, the analysis of dimensions suggests a linear dependence for velocity and logarithm of density on depth (which is consistent with the regime of marginal stability in the transition layer). The numerical simulations confirmed the presence of linear segments in the corresponding profiles within the transition layer. This permitted a parameterization of the equivalent drag coefficient due to the presence of the two-phase transition layer at the air-sea interface. This two-phase layer parameterization represented the lower limit imposed on the drag coefficient under hurricane conditions. The numerical simulations helped to reduce the uncertainty in the critical Richardson number applicable to the air-sea interface and in the values of two dimensionless constants; this reduced the uncertainty in the parameterization of the lower limit on the drag coefficient. The available laboratory data (Donelan et al., 2004) are bounded by the two-phase layer parameterization from below and the wave resistance parameterization from above. The available field data (Powell et al., 2003; Black et al., 2007) fall between these two parameterizations, for wind speeds of up to 50 m/s. A few points from the dropsonde data from Powell et al. (2003), obtained at very high wind speeds, are below the theoretical lower limit on the drag coefficient. We also conducted a numerical experiment with imposed short wavelets. Streamwise coherent structures were observed on the water surface, which were especially prominent on the top of wave crests. These intermittent streamwise structures on the top of wavelets, with periodicity in the transverse direction, presumably were a result of the Tollmien-Schlichting (TS) instability. Similar processes take place at the atomization of liquid fuels in cryogenic and diesel engines (Yecko et al., 2002). According to McNaughton and Brunet (2002), the nonlinear stage of the TS instability results in streamwise streaks followed by fluid ejections. This mechanism can contribute to the generation of spume in the form of streaks. Foam streaks are an observable feature on photographic images of the ocean surface under hurricane conditions. The mechanism of the TS instability can also contribute to dispersion of oil spills and other pollutants in hurricane conditions.

  8. Evaluating hydrography, circulation and transport in a coastal archipelago using a high-resolution 3D hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Tuomi, Laura; Miettunen, Elina; Alenius, Pekka; Myrberg, Kai

    2018-04-01

    We used a 3D hydrodynamic model, COHERENS, to simulate the temperature, salinity and currents in an extremely complicated area, the Archipelago Sea in the Baltic Sea. The high-resolution model domain with approximately 460 m resolution was nested inside a coarser resolution ( 3.7 km) grid covering the entire Baltic Sea. The verification of the model results against temperature and salinity measurements showed that the model well captured the seasonal temperature cycle in the surface layer, both in the inner and outer archipelago. In the inner archipelago, the model tended to reproduce higher temperatures in the bottom layer than were measured. The modelled vertical temperature and salinity stratifications were not as pronounced as the measured ones but did describe the overall vertical structure. There was large year-to-year variability in the annual mean surface circulation, both in direction and magnitude. In the deeper channels crossing the Archipelago Sea, there were some year-to-year differences in the magnitudes of the bottom layer currents, but there was very little difference in the directions. These differences were studied by introducing passive tracers into the model through river discharge and as point sources. The results showed that the prevailing wind conditions resulted in southward net transport from the Bothnian Sea towards the Baltic Proper. However, due to the variability in the wind conditions in some years, a significant proportion of transport can also be towards north, from the Baltic Proper to the Bothnian Sea.

  9. Pigments, size and distribution of Synechococcus spp. in the Black Sea

    NASA Astrophysics Data System (ADS)

    Uysal, Zahit

    2000-03-01

    Pigments, size and distribution of Phycoerythrin-containing unicellular cyanobacteria Synechococcus spp. within the euphotic zone were studied for the first time in April-May 1994 in the western and southwestern Black Sea by epifluorescence microscopy and flow-cytometry. Synechococcus was present in varying quantities at every station and depth studied. Surface spatial distribution of Synechococcus revealed that cells were much more abundant in offshore waters than near coastal regions under the direct influence of the Danube river. Minimum and maximum cell concentrations ranged between 9×10 2 and 1.45×10 5 cells/ml at the surface, between 2×10 3 and 1.23×10 5 cells/ml at the chlorophyll sub-maximum layer, and between 1.3×10 2 and 3.5×10 2 at the nitrite maximum layer. Cells at the chlorophyll sub-maximum layer (based on in-situ fluorometer readings) fluoresce brighter and longer than the ones at the surface and lower depths. Spectral properties of chromophore pigment types of total 64 clonal isolates from different depths down to the lower layer of the euphotic zone (˜60 m) in the southern Black Sea coast revealed that all have type 2 phycoerythrobilin in common, lacking in phycourobilin. In vivo fluorescence emission maxima for the phycoerythrobilin were about the same (˜578 nm) for all isolates. All isolates examined showed in vivo absorption maxima at between 435 and 442 nm and at about 681 nm due to chlorophyll- a. Based on the flow cytometer mean forward light scatter data for size distribution, it could be concluded that cells at the surface mixed layer (0-10 m) were larger in cell size than the cells at lower depths (20-60 m).

  10. Springtime microwave emissivity changes in the southern Kara Sea

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Anderson, Mark R.

    1994-01-01

    Springtime microwave brightness temperatures over first-year ice are examined for the southern Kara Sea. Snow emissivity changes are revealed by episodic drops in the 37- to 18-GHz brightness temperature gradient ratio measured by the Nimbus 7 scanning multichannel microwave radiometer. We suggest that the negative gradient ratios in spring 1982 result from increased scatter at 37 GHz due to the formation of a near-surface hoar layer. This interpretation is supported by the results of a surface radiation balance model that shows the melt signature occurring at below freezing temperatures but under clear-sky conditions with increased solar input to the surface. Published observations from the Greenland ice cap show a surface hoar layer forming under similar atmospheric conditions owing to the increased penetration and absorption of solar radiation just below the surface layer. In spring/early summer 1984 similar gradient ratio signatures occur. They appear to be due to several days of freeze-thaw cycling following the movement of a low-pressure system through the region. These changes in surface emissivity represent the transition from winter to summer conditions (as defined by the microwave response) and are shown to be regional in extent and to vary with the synoptic circulations.

  11. Sea surface cooling in the Northern South China Sea observed using Chinese sea-wing underwater glider measurements

    NASA Astrophysics Data System (ADS)

    Qiu, Chunhua; Mao, Huabin; Yu, Jiancheng; Xie, Qiang; Wu, Jiaxue; Lian, Shumin; Liu, Qinyan

    2015-11-01

    Based on 26 days of Chinese Sea-wing underwater glider measurements and satellite microwave data, we documented cooling of the upper mixed layer of the ocean in response to changes in the wind in the Northern South China Sea (NSCS) from September 19, 2014, to October 15, 2014. The Sea-wing underwater glider measured 177 profiles of temperature, salinity, and pressure within a 55 km×55 km area, and reached a depth of 1000 m at a temporal resolution of ∼4 h. The study area experienced two cooling events, Cooling I and Cooling II, according to their timing. During Cooling I, water temperature at 1-m depth (T1) decreased by ∼1.0 °C, and the corresponding satellite-derived surface winds increased locally by 4.2 m/s. During Cooling II, T1 decreased sharply by 1.7 °C within a period of 4 days; sea surface winds increased by 7 m/s and covered the entire NSCS. The corresponding mixed layer depth (MLD) deepened sharply from 30 m to 60 m during Cooling II, and remained steady during Cooling I. We estimated temperature tendencies using a ML model. High resolution Sea-wing underwater glider measurements provided an estimation of MLD migration, allowing us to obtain the temporal entrainment rate of cool sub-thermocline water. Quantitative analysis confirmed that the entrainment rate and latent heat flux were the two major components that regulated cooling of the ML, and that the Ekman advection and sensible heat flux were small.

  12. Onset and localisation of convection during transient growth of mushy sea ice

    NASA Astrophysics Data System (ADS)

    Wells, Andrew; Hitchen, Joe

    2017-11-01

    More than 20 million square kilometres of the polar oceans freeze over each year to form sea ice. Sea ice is a mushy layer: a reactive, porous, multiphase material consisting of ice crystals bathed in liquid brine. Atmospheric cooling generates a density gradient in the interstitial brine, which can drive convection and rejection of brine from the sea ice to force ocean circulation and mixing. We use linear stability analysis and nonlinear numerical simulations to consider the convection in a transiently growing mushy layer. An initial salt water layer is cooled from above via a linearised thermal exchange with the atmosphere, and generates a growing mushy layer with the porosity varying in space and time. We determine how the critical porous-medium Rayleigh number for the onset of convection varies with the surface cooling rate, and the initial temperature and salinity of the solidifying salt water. Differences in the cooling conditions modify the structure of the ice and the resulting convection cells. Weak cooling leads to full-depth convection through ice with slowly varying porosity, whilst stronger cooling leads to localised convection confined to a highly permeable basal layer. These results provide insight into the onset of convective brine drainage from growing sea ice.

  13. Response of the Atmospheric Boundary Layer and Soil Layer to a High Altitude, Dense Aerosol Cover.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Pittock, A. B.; Walsh, K.

    1990-01-01

    The response of the atmospheric boundary layer to the appearance of a high-altitude smoke layer has been investigated in a mesoscale numerical model of the atmosphere. Emphasis is placed on the changes in mean boundary-layer structure and near-surface temperatures when smoke of absorption optical depth (AOD) in the, range 0 to 1 is introduced. Calculations have been made at 30°S, for different soil thermal properties and degrees of surface wetness, over a time period of several days during which major smoke-induced cooling occurs. The presence of smoke reduces the daytime mixed-layer depth and, for large enough values of AOD, results in a daytime surface inversion with large cooling confined to heights of less than a few hundred meters. Smoke-induced reductions in daytime soil and air temperatures of several degrees are typical, dependent critically upon soil wetness and smoke AOD. Locations near the coast experience reduced cooling whenever there is a significant onshore flow related to a sea breeze (this would also be the case with a large-scale onshore flow). The sea breeze itself disappears for large enough smoke AOD and, over sloping coastal terrain, a smoke-induced, offshore drainage flow may exist throughout the diurnal cycle.

  14. The prediction of sea-surface temperature variations by means of an advective mixed-layer ocean model

    NASA Technical Reports Server (NTRS)

    Atlas, R. M.

    1976-01-01

    An advective mixed layer ocean model was developed by eliminating the assumption of horizontal homogeneity in an already existing mixed layer model, and then superimposing a mean and anomalous wind driven current field. This model is based on the principle of conservation of heat and mechanical energy and utilizes a box grid for the advective part of the calculation. Three phases of experiments were conducted: evaluation of the model's ability to account for climatological sea surface temperature (SST) variations in the cooling and heating seasons, sensitivity tests in which the effect of hypothetical anomalous winds was evaluated, and a thirty-day synoptic calculation using the model. For the case studied, the accuracy of the predictions was improved by the inclusion of advection, although nonadvective effects appear to have dominated.

  15. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    NASA Technical Reports Server (NTRS)

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad

    2013-01-01

    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  16. Turbulent boundary layer on the surface of a sea geophysical antenna

    NASA Astrophysics Data System (ADS)

    Smol'Yakov, A. V.

    2010-11-01

    A theory is constructed that makes it possible to calculate the initial parameters necessary for calculating the hydrodynamic (turbulent) noise, which is a handicap to the operation of sea geophysical antennas. Algorithms are created for calculating the profile and defect of the average speed, displacement thickness, momentum thickness, and friction resistance in a turbulent boundary layer on a cylinder in its axial flow. Results of calculations using the developed theory are compared to experimental data. As the diameter of the cylinder tends to infinity, all relations of the theory pass to known relations for the boundary layer on a flat plate. The developed theory represents the initial stage of creating a method to calculate hydrodynamic noise, which is handicap to the operation of sea geophysical antennas.

  17. A Coupled Model of Langmuir Circulations and Ramp-like Structures in the Upper Ocean Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.; Lukas, R.; Donelan, M. A.; Terray, E. A.

    2016-12-01

    Surface-wave breaking is a powerful mechanism producing significant energy flux to small scale turbulence. Most of the turbulent energy produced by breaking waves dissipates within one significant wave height, while the turbulent diffusion layer extends to approximately ten significant wave heights. Notably, the near-surface shear may practically vanish within the wave-stirred layer due to small-scale turbulent mixing. The surface ocean temperature-salinity structure, circulation, and mass exchanges (including greenhouse gases and pollutants) substantially depend on turbulent mixing and non-local transport in the near-surface layer of the ocean. Spatially coherent organized motions have been recognized as an important part of non-local transport. Langmuir circulation (LC) and ramp-like structures are believed to vertically transfer an appreciable portion of the momentum, heat, gases, pollutants (e.g., oil), and other substances in the upper layer of the ocean. Free surface significantly complicates the analysis of turbulent exchanges at the air-sea interface and the coherent structures are not yet completely understood. In particular, there is growing observational evidence that in the case of developing seas when the wind direction may not coincide with the direction of the energy containing waves, the Langmuir lines are oriented in the wind rather than the wave direction. In addition, the vortex force due to Stokes drift in traditional models is altered in the breaking-wave-stirred layer. Another complication is that the ramp-like structures in the upper ocean turbulent boundary layer have axes perpendicular to the axes of LC. The ramp-like structures are not considered in the traditional model. We have developed a new model, which treats the LC and ramp-like structures in the near-surface layer of the ocean as a coupled system. Using computational fluid dynamics tools (LES), we have been able to reproduce both LC and ramp-like structures coexisting in space though intermittent in time. In the model, helicity isosurfaces appear to be tilted and, in general, coordinated with the tilted velocity isosurfaces produced by ramp-like structures. This is an indication of coupling between the LC and ramp-like structures. Remarkably, the new model is able to explain observations of LC under developing seas.

  18. Under-ice melt ponds and the oceanic mixed layer

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Smith, N.; Feltham, D. L.

    2017-12-01

    Under-ice melt ponds are pools of freshwater beneath the Arctic sea ice that form when melt from the surface of the sea ice percolates down through the porous sea ice. Through double diffusion, a sheet of ice can form at the interface between the ocean and the under-ice melt pond, completely isolating the pond from the mixed layer below and forming a false bottom to the sea ice. As such, they insulate the sea ice from the ocean below. It has been estimated that these ponds could cover between 5 and 40 % of the base of the Arctic sea ice, and so could have a notable impact on the mass balance of the sea ice. We have developed a one-dimensional model to calculate the thickness and thermodynamic properties of a slab of sea ice, an under-ice melt pond, and a false bottom, as these layers evolve. Through carrying out sensitivity studies, we have identified a number of interesting ways that under-ice melt ponds affect the ice above them and the rate of basal ablation. We found that they result in thicker sea ice above them, due to their insulation of the ice, and have found a possible positive feedback cycle in which less ice will be gained due to under-ice melt ponds as the Arctic becomes warmer. More recently, we have coupled this model to a simple Kraus-Turner type model of the oceanic mixed layer to investigate how these ponds affect the ocean water beneath them. Through altering basal ablation rates and ice thickness, they change the fresh water and salt fluxes into the mixed layer, as well as incoming radiation. Multi-year simulations have, in particular, shown how these effects work on longer time-scales.

  19. Fabrication and characterization of microsieve electrode array (µSEA) enabling cell positioning on 3D electrodes

    NASA Astrophysics Data System (ADS)

    Schurink, B.; Tiggelaar, R. M.; Gardeniers, J. G. E.; Luttge, R.

    2017-01-01

    Here the fabrication and characterization of a novel microelectrode array for electrophysiology applications is described, termed a micro sieve electrode array (µSEA). This silicon based µSEA device allows for hydrodynamic parallel positioning of single cells on 3D electrodes realized on the walls of inverted pyramidal shaped pores. To realize the µSEA, a previously realized silicon sieving structure is provided with a patterned boron doped poly-silicon, connecting the contact electrodes with the 3D sensing electrodes in the pores. A LPCVD silicon-rich silicon nitride layer was used as insulation. The selective opening of this insulation layer at the ends of the wiring lines allows to generate well-defined contact and sensing electrodes according to the layout used in commercial microelectrode array readers. The main challenge lays in the simultaneously selective etching of material at both the planar surface (contact electrode) as well as in the sieving structure containing the (3D) pores (sensing electrodes). For the generation of 3D electrodes in the pores a self-aligning technique was developed using the pore geometry to our advantage. This technique, based on sacrificial layer etching, allows for the fine tuning of the sensing electrode surface area and thus supports the positioning and coupling of single cells on the electrode surface in relation to the cell size. Furthermore, a self-aligning silicide is formed on the sensing electrodes to favour the electrical properties. Experiments were performed to demonstrate the working principle of the µSEA using different types of neuronal cells. Capture efficiency in the pores was  >70% with a 70% survival rate of the cell maintained for up to 14 DIV. The TiSi2-boron-doped-poly-silicon sensing electrodes of the µSEA were characterized, which indicated noise levels of  <15 µV and impedance values of 360 kΩ. These findings potentially allow for future electrophysiological measurements using the µSEA.

  20. Modelling study of sea breezes in a complex coastal environment

    NASA Astrophysics Data System (ADS)

    Cai, X.-M.; Steyn, D. G.

    This study investigates a mesoscale modelling of sea breezes blowing from a narrow strait into the lower Fraser valley (LFV), British Columbia, Canada, during the period of 17-20 July, 1985. Without a nudging scheme in the inner grid, the CSU-RAMS model produces satisfactory wind and temperature fields during the daytime. In comparison with observation, the agreement indices for surface wind and temperature during daytime reach about 0.6 and 0.95, respectively, while the agreement indices drop to 0.4 at night. In the vertical, profiles of modelled wind and temperature generally agree with tethersonde data collected on 17 and 19 July. The study demonstrates that in late afternoon, the model does not capture the advection of an elevated warm layer which originated from land surfaces outside of the inner grid. Mixed layer depth (MLD) is calculated from model output of turbulent kinetic energy field. Comparison of MLD results with observation shows that the method generates a reliable MLD during the daytime, and that accurate estimates of MLD near the coast require the correct simulation of wind conditions over the sea. The study has shown that for a complex coast environment like the LFV, a reliable modelling study depends not only on local surface fluxes but also on elevated layers transported from remote land surfaces. This dependence is especially important when local forcings are weak, for example, during late afternoon and at night.

  1. Modeling the feedback between aerosol and boundary layer processes: a case study in Beijing, China.

    PubMed

    Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu

    2016-02-01

    Rapid development has led to frequent haze in Beijing. With mountains and sea surrounding Beijing, the pollution is found to be influenced by the mountain-plain breeze and sea-land breeze in complex ways. Meanwhile, the presence of aerosols may affect the surface energy balance and impact these boundary layer (BL) processes. The effects of BL processes on aerosol pollution and the feedback between aerosol and BL processes are not yet clearly understood. Thus, the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is used to investigate the possible effects and feedbacks during a haze episode on 23 September 2011. Influenced by the onshore prevailing wind, sea-breeze, and upslope breeze, about 45% of surface particulate matter (PM)2.5 in Beijing are found to be contributed by its neighbor cities through regional transport. In the afternoon, the development of upslope breeze suppresses the growth of BL in Beijing by imposing a relatively low thermal stable layer above the BL, which exacerbates the pollution. Two kinds of feedback during the daytime are revealed as follows: (1) as the aerosols absorb and scatter the solar radiation, the surface net radiation and sensible heat flux are decreased, while BL temperature is increased, resulting in a more stable and shallower BL, which leads to a higher surface PM2.5 concentration in the morning and (2) in the afternoon, as the presence of aerosols increases the BL temperature over plains, the upslope breeze is weakened, and the boundary layer height (BLH) over Beijing is heightened, resulting in the decrease of the surface PM2.5 concentration there.

  2. Scripps Ocean Modeling and Remote Sensing (SOMARS)

    DTIC Science & Technology

    1988-09-20

    Topics in this brief reports include: Kalman filtering of oceanographic data; Remote sensing of sea surface temperature; Altimetry and Surface heat fluxes; Ocean models of the marine mixed layer; Radar altimetry; Mathematical model of California current eddies.

  3. Intercomparison of Air-Sea Fluxes in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Buckley, J.; Weller, R. A.; Farrar, J. T.; Tandon, A.

    2016-02-01

    Heat and momentum exchange between the air and sea in the Bay of Bengal is an important driver of atmospheric convection during the Asian Monsoon. Warm sea surface temperatures resulting from salinity stratified shallow mixed layers trigger widespread showers and thunderstorms. In this study, we compare atmospheric reanalysis flux products to air-sea flux values calculated from shipboard observations from four cruises and an air-sea flux mooring in the Bay of Bengal as part of the Air-Sea Interactions in the Northern Indian Ocean (ASIRI) experiment. Comparisons with months of mooring data show that most long timescale reanalysis error arises from the overestimation of longwave and shortwave radiation. Ship observations and select data from the air-sea flux mooring reveals significant errors on shorter timescales (2-4 weeks) which are greatly influenced by errors in shortwave radiation and latent and sensible heat. During these shorter periods, the reanalyses fail to properly show sharp decreases in air temperature, humidity, and shortwave radiation associated with mesoscale convective systems. Simulations with the Price-Weller-Pinkel (PWP) model show upper ocean mixing and deepening mixed layers during these events that effect the long term upper ocean stratification. Mesoscale convective systems associated with cloudy skies and cold and dry air can reduce net heat into the ocean for minutes to a few days, significantly effecting air-sea heat transfer, upper ocean stratification, and ocean surface temperature and salinity.

  4. Southern Ocean Mixed-Layer Seasonal and Interannual Variations From Combined Satellite and In Situ Data

    NASA Astrophysics Data System (ADS)

    Buongiorno Nardelli, B.; Guinehut, S.; Verbrugge, N.; Cotroneo, Y.; Zambianchi, E.; Iudicone, D.

    2017-12-01

    The depth of the upper ocean mixed layer provides fundamental information on the amount of seawater that directly interacts with the atmosphere. Its space-time variability modulates water mass formation and carbon sequestration processes related to both the physical and biological pumps. These processes are particularly relevant in the Southern Ocean, where surface mixed-layer depth estimates are generally obtained either as climatological fields derived from in situ observations or through numerical simulations. Here we demonstrate that weekly observation-based reconstructions can be used to describe the variations of the mixed-layer depth in the upper ocean over a range of space and time scales. We compare and validate four different products obtained by combining satellite measurements of the sea surface temperature, salinity, and dynamic topography and in situ Argo profiles. We also compute an ensemble mean and use the corresponding spread to estimate mixed-layer depth uncertainties and to identify the more reliable products. The analysis points out the advantage of synergistic approaches that include in input the sea surface salinity observations obtained through a multivariate optimal interpolation. Corresponding data allow to assess mixed-layer depth seasonal and interannual variability. Specifically, the maximum correlations between mixed-layer anomalies and the Southern Annular Mode are found at different time lags, related to distinct summer/winter responses in the Antarctic Intermediate Water and Sub-Antarctic Mode Waters main formation areas.

  5. The salinity effect in a mixed layer ocean model

    NASA Technical Reports Server (NTRS)

    Miller, J. R.

    1976-01-01

    A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.

  6. Water mass characteristic in the outflow region of the Indonesian throughflow during and post 2016 negative Indian ocean dipole event

    NASA Astrophysics Data System (ADS)

    Bayhaqi, A.; Iskandar, I.; Surinati, D.; Budiman, A. S.; Wardhana, A. K.; Dirhamsyah; Yuan, D.; Lestari, D. O.

    2018-05-01

    Strong El Niño and positive Indian Ocean Dipole (pIOD) events in 2015/2016 followed by relatively strong negative Indian Ocean Dipole (nIOD) and weak La Niña in 2016 events have affected hydrography conditions in the Indonesian Throughflow (ITF) region. Two research cruises were conducted using RV Baruna Jaya VIII in August and November 2016. These cruises aim to evaluate possible impact of those two climate mode events on the water mass characteristic in the outflow region of the ITF. Hydrographic data from those two cruises were combined with the sea surface temperature (SST) from the Advanced Very High Resolution Radiometer (AVHRR) and surface wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF). The results showed that in the 2016 anomaly year, the cooler sea surface temperature was observed during the negative IOD (nIOD) event while the warmer temperature was found in the post of nIOD event. The observed water mass characteristics in the outflow region of the ITF revealed that the upper layer was dominated by the Indian Ocean water mass, while the Pacific Ocean water mass was observed in the deeper layer. The observed current data across the Sumba Strait showed that the South Java Coastal Current (SJCC) was observed in the upper layer, propagating eastward toward the Savu Sea. A few days later, the observed currents in the upper layer of the Ombai Strait revealed the ITF flow towards the Indian Ocean. Meanwhile, the lower layer showed an eastward flow towards the Ombai Strait.

  7. Marginal sea surface temperature variation as a pre-cursor of heat waves over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun; Na, Hye-Yun

    2017-11-01

    This study examines the role of the marginal sea surface temperature (SST) on heat waves over Korea. It is found that sea surface warming in the south sea of Korea/Japan (122-138°E, 24- 33°N) causes heat waves after about a week. Due to the frictional force, the positive geopotential height anomalies associated with the south sea warming induce divergent flows over the boundary layer. This divergent flow induces the southerly in Korea, which leads to a positive temperature advection. On the other hand, over the freeatmosphere, the geostrophic wind around high-pressure anomalies flows in a westerly direction over Korea during the south sea warming, which is not effective in temperature advection. Therefore, the positive temperature advection in Korea due to the south sea warming decreases with height. This reduces the vertical potential temperature gradient, which indicates a negative potential vorticity (PV) tendency over Korea. Therefore, the high-pressure anomaly over the south sea of Korea is propagated northward, which results in heat waves due to more incoming solar radiation.

  8. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode

    NASA Astrophysics Data System (ADS)

    Sallée, J. B.; Speer, K. G.; Rintoul, S. R.

    2010-04-01

    Interactions between the atmosphere and ocean are mediated by the mixed layer at the ocean surface. The depth of this layer is determined by wind forcing and heating from the atmosphere. Variations in mixed-layer depth affect the rate of exchange between the atmosphere and deeper ocean, the capacity of the ocean to store heat and carbon and the availability of light and nutrients to support the growth of phytoplankton. However, the response of the Southern Ocean mixed layer to changes in the atmosphere is not well known. Here we analyse temperature and salinity data from Argo profiling floats to show that the Southern Annular Mode (SAM), the dominant mode of atmospheric variability in the Southern Hemisphere, leads to large-scale anomalies in mixed-layer depth that are zonally asymmetric. From a simple heat budget of the mixed layer we conclude that meridional winds associated with departures of the SAM from zonal symmetry cause anomalies in heat flux that can, in turn, explain the observed changes of mixed-layer depth and sea surface temperature. Our results suggest that changes in the SAM, including recent and projected trends attributed to human activity, drive variations in Southern Ocean mixed-layer depth, with consequences for air-sea exchange, ocean sequestration of heat and carbon, and biological productivity.

  9. Microeukaryotic diversity in marine environments, an analysis of surface layer sediments from the East Sea.

    PubMed

    Park, Soo-Je; Park, Byoung-Joon; Pham, Vinh Hoa; Yoon, Dae-No; Kim, Si-Kwan; Rhee, Sung-Keun

    2008-06-01

    Molecular techniques, based on clone library of 18S rRNA gene, were employed to ascertain the diversity of microeukaryotic organisms in sediments from the East Sea. A total of 261 clones were recovered from surface sediments. Most of the clone sequences (90%) were affiliated with protists, dominated by Ciliates (18%) and Dinoflagellates (19%) of Alveolates, phototrophic Stramenopiles (11%), and Cercozoa (20%). Many of the clones were related to uncultivated eukaryotes clones retrieved from anoxic environments with several highly divergent 18S rRNA gene sequences. However, no clones were related to cultivated obligate anaerobic protists. Protistan communities between subsurface layers of 1 and 9 cm shared 23% of total phylotypes which comprised 64% of total clones retrieved. Analysis of diversity indices and rarefaction curve showed that the protistan community within the 1 cm layer exhibited higher diversity than the 9 cm layer. Our results imply that diverse protists remain to be uncovered within marine benthic environments.

  10. Exploring the southern ocean response to climate change

    NASA Technical Reports Server (NTRS)

    Martinson, Douglas G.; Rind, David; Parkinson, Claire

    1993-01-01

    The purpose of this project was to couple a regional (Southern Ocean) ocean/sea ice model to the existing Goddard Institute for Space Science (GISS) atmospheric general circulation model (GCM). This modification recognizes: the relative isolation of the Southern Ocean; the need to account, prognostically, for the significant air/sea/ice interaction through all involved components; and the advantage of translating the atmospheric lower boundary (typically the rapidly changing ocean surface) to a level that is consistent with the physical response times governing the system evolution (that is, to the base of the fast responding ocean surface layer). The deeper ocean beneath this layer varies on time scales several orders of magnitude slower than the atmosphere and surface ocean, and therefore the boundary between the upper and deep ocean represents a more reasonable fixed boundary condition.

  11. Meteorological and Land Surface Properties Impacting Sea Breeze Extent and Aerosol Distribution in a Dry Environment

    NASA Astrophysics Data System (ADS)

    Igel, Adele L.; van den Heever, Susan C.; Johnson, Jill S.

    2018-01-01

    The properties of sea breeze circulations are influenced by a variety of meteorological and geophysical factors that interact with one another. These circulations can redistribute aerosol particles and pollution and therefore can play an important role in local air quality, as well as impact remote sensing. In this study, we select 11 factors that have the potential to impact either the sea breeze circulation properties and/or the spatial distribution of aerosols. Simulations are run to identify which of the 11 factors have the largest influence on the sea breeze properties and aerosol concentrations and to subsequently understand the mean response of these variables to the selected factors. All simulations are designed to be representative of conditions in coastal sub tropical environments and are thus relatively dry, as such they do not support deep convection associated with the sea breeze front. For this dry sea breeze regime, we find that the background wind speed was the most influential factor for the sea breeze propagation, with the soil saturation fraction also being important. For the spatial aerosol distribution, the most important factors were the soil moisture, sea-air temperature difference, and the initial boundary layer height. The importance of these factors seems to be strongly tied to the development of the surface-based mixed layer both ahead of and behind the sea breeze front. This study highlights potential avenues for further research regarding sea breeze dynamics and the impact of sea breeze circulations on pollution dispersion and remote sensing algorithms.

  12. Simulating the Cyclone Induced Turbulent Mixing in the Bay of Bengal using COAWST Model

    NASA Astrophysics Data System (ADS)

    Prakash, K. R.; Nigam, T.; Pant, V.

    2017-12-01

    Mixing in the upper oceanic layers (up to a few tens of meters from surface) is an important process to understand the evolution of sea surface properties. Enhanced mixing due to strong wind forcing at surface leads to deepening of mixed layer that affects the air-sea exchange of heat and momentum fluxes and modulates sea surface temperature (SST). In the present study, we used Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) model to demonstrate and quantify the enhanced cyclone induced turbulent mixing in case of a severe cyclonic storm. The COAWST model was configured over the Bay of Bengal (BoB) and used to simulate the atmospheric and oceanic conditions prevailing during the tropical cyclone (TC) Phailin that occurred over the BoB during 10-15 October 2013. The model simulated cyclone track was validated with IMD best-track and model SST validated with daily AVHRR SST data. Validation shows that model simulated track & intensity, SST and salinity were in good agreement with observations and the cyclone induced cooling of the sea surface was well captured by the model. Model simulations show a considerable deepening (by 10-15 m) of the mixed layer and shoaling of thermocline during TC Phailin. The power spectrum analysis was performed on the zonal and meridional baroclinic current components, which shows strongest energy at 14 m depth. Model results were analyzed to investigate the non-uniform energy distribution in the water column from surface up to the thermocline depth. The rotary spectra analysis highlights the downward direction of turbulent mixing during the TC Phailin period. Model simulations were used to quantify and interpret the near-inertial mixing, which were generated by cyclone induced strong wind stress and the near-inertial energy. These near-inertial oscillations are responsible for the enhancement of the mixing operative in the strong post-monsoon (October-November) stratification in the BoB.

  13. The Impact of Sea Surface Temperature Front on Stratus-Sea Fog over the Yellow and East China Seas

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Li, M.; Liu, F.

    2013-12-01

    A stratus-sea fog event occurred on 3 June 2011 over the Yellow and East China Seas (as shown in figure) is investigated observationally and numerically. Emphasis is put on the influences of the sea surface temperature front (SSTF) and of the synoptic circulations on the transition of stratus to sea fog. The southerly winds from a synoptic high pressure transport water vapor from the East China Sea to the Yellow Sea, while the subsidence induced by the high contributes to the formation of the temperature inversion on the top of the stratus or stratocumulus that appears mainly over the warm flank of a sea surface temperature front in the East China Sea. Forced by the SSTF, there is a secondary cell within the atmospheric boundary layer (ABL), with a sinking branch on the cold flank and a rising one on the warm flank of the SSTF. This sinking branch, in phase with the synoptic subsidence, forces the stratus or stratocumulus to lower in the elevation getting close to the sea surface as these clouds move northward driven by the southerly winds. The cloud droplets can either reach to the sea surface directly or evaporate into water vapor that may condense again when coming close to the cold sea surface to form fog. In this later case, the stratus and fog may separate. The cooling effect of cold sea surface counteracts the adiabatic heating induced by the subsidence and thus helps the transition of stratus to sea fog in the southern Yellow Sea. By smoothing the SSTF in the numerical experiment, the secondary cell weakens and the sea fog patches shrink obviously over the cold flank of the SSTF though the synoptic subsidence and moist advection still exist. A conceptual model is suggested for the transition of stratus to sea fog in the Yellow and East China Seas, which is helpful for the forecast of sea fog over these areas. The satellite visible image of the stratus-fog event. The fog appears in the Yellow Sea and the stratocumulus in the East China Sea.

  14. Variations in Transport Derived from Satellite Altimeter Data over the Gulf Stream

    NASA Technical Reports Server (NTRS)

    Molinelli, Eugene; Lambert, Richard B., Jr.

    1981-01-01

    Variations in total change of sea surface height (delta h) across the Gulf Stream are observed using Seasat radar altimeter data. The sea surface height is related to transport within the stream by a two layer model. Variations in delta h are compared with previously observed changes in transport found to increase with distance downstream. No such increase is apparent since the satellite transports show no significant dependence on distance. Though most discrepancies are less than 50 percent, a few cases differ by about 100 percent and more. Several possible reasons for these discrepancies are advanced, including geoid error, but only two oceanographic contributions to the variability are examined, namely, limitations in the two layer model and meanders in the current. It is concluded that some of the discrepancies could be explained as changes in the density structure not accounted for by the two layer model.

  15. Global sea level trend in the past century

    NASA Technical Reports Server (NTRS)

    Gornitz, V.; Lebedeff, S.; Hansen, J.

    1982-01-01

    Data derived from tide-gauge stations throughout the world indicate that the mean sea level rose by about 12 centimeters in the past century. The sea level change has a high correlation with the trend of global surface air temperature. A large part of the sea level rise can be accounted for in terms of the thermal expansion of the upper layers of the ocean. The results also represent weak indirect evidence for a net melting of the continental ice sheets.

  16. Satellite and Skin Layer Effects on the Accuracy of Sea Surface Temperature Measurements from the GOES Satellites

    NASA Technical Reports Server (NTRS)

    Wick, Gary A.; Bates, John J.; Scott, Donna J.

    2000-01-01

    The latest Geostationary Operational Environmental Satellites (GOES) have facilitated significant improvements in our ability to measure sea surface temperature (SST) from geostationary satellites. Nonetheless, difficulties associated with sensor calibration and oceanic near-surface temperature gradients affect the accuracy of the measurements and our ability to estimate and interpret the diurnal cycle of the bulk SST. Overall, measurements of SST from the GOES Imagers on the GOES 8-10 satellites are shown to have very small bias (less than 0.02 K) and rms differences of between 0.6 and 0.9 K relative to buoy observations. Separate consideration of individual measurement times, however, demonstrates systematic bias variations of over 0.6 K with measurement hour. These bias variations significantly affect both the amplitude and shape of estimates of the diurnal SST cycle. Modeled estimates of the temperature difference across the oceanic cool skin and diurnal thermocline show that bias variations up to 0.3 K can result from variability in the near-surface layer. Oceanic near-surface layer and known "satellite midnight" calibration effects, however, explain only a portion of the observed bias variations, suggesting other possible calibration concerns. Methods of explicitly incorporating skin layer and diurnal thermocline effects in satellite bulk SST measurements were explored in an effort to further improve the measurement accuracy. While the approaches contain more complete physics, they do not yet significantly improve the accuracy of bulk SST measurements due to remaining uncertainties in the temperature difference across the near-surface layer.

  17. Impact of wave mixing on the sea ice cover

    NASA Astrophysics Data System (ADS)

    Rynders, Stefanie; Aksenov, Yevgeny; Madec, Gurvan; Nurser, George; Feltham, Daniel

    2017-04-01

    As information on surface waves in ice-covered regions becomes available in ice-ocean models, there is an opportunity to model wave-related processes more accurate. Breaking waves cause mixing of the upper water column and present mixing schemes in ocean models take this into account through surface roughness. A commonly used approach is to calculate surface roughness from significant wave height, parameterised from wind speed. We present results from simulations using modelled significant wave height instead, which accounts for the presence of sea ice and the effect of swell. The simulations use the NEMO ocean model coupled to the CICE sea ice model, with wave information from the ECWAM model of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new waves-in-ice module allows waves to propagate in sea ice and attenuates waves according to multiple scattering and non-elastic losses. It is found that in the simulations with wave mixing the mixed layer depth (MLD) under ice cover is reduced, since the parameterisation from wind speed overestimates wave height in the ice-covered regions. The MLD change, in turn, affects sea ice concentration and ice thickness. In the Arctic, reduced MLD in winter translates into increased ice thicknesses overall, with higher increases in the Western Arctic and decreases along the Siberian coast. In summer, shallowing of the mixed layer results in more heat accumulating in the surface ocean, increasing ice melting. In the Southern Ocean the meridional gradient in ice thickness and concentration is increased. We argue that coupling waves with sea ice - ocean models can reduce negative biases in sea ice cover, affecting the distribution of nutrients and, thus, biological productivity and ecosystems. This coupling will become more important in the future, when wave heights in a large part of the Arctic are expected to increase due to sea ice retreat and a larger wave fetch. Therefore, wave mixing constitutes a possible positive feedback mechanism.

  18. Mixed Layer Heat and Fresh Water Balance in North Bay of Bengal (18N, 90E) Using a Seaglider and Mooring

    NASA Astrophysics Data System (ADS)

    Thangaprakash, V. P.; Girishkumar, M. S.; S, S.; Chaudhuri, D.; Sureshkumar, N.; Ravichandran, M.; Sengupta, D.; Weller, R. A.

    2016-02-01

    The Bay of Bengal (BoB) receives the large quantity of freshwater by excess precipitation over evaporation and runoff. This large freshwater flux into the BoB leads to strong haline stratification in the near surface layer, which have significant impact on the evolution of near thermo-haline structure and air-sea interactions process in those areas. However, lack of systematic measurements of observations, the factors that are modulating near mixed layer salinity and temperature in these freshwater pool in the northern BoB is not yet understood clearly. Under OMM - ASIRI (Ocean mixing and monsoon - Air sea interaction regional initiatives in the Northern Indian Ocean) programme, 3 month repeated hydrographic survey using seaglider in a butterfly (or bowtie) track centered around a mooring in the North Bay of Bengal (18N, 89E) equipped with near surface ASIMET sensors and subsurface temperature and salinity measurements, which provides unprecedental data source to quantify the relative contribution of different process on the evolution of near surface thermo-haline field through mixed layer heat and salt budget. The results of the analysis will be presented.

  19. Analysis of reactive bromine production and ozone depletion in the Arctic boundary layer using 3-D simulations with GEM-AQ: inference from synoptic-scale patterns

    NASA Astrophysics Data System (ADS)

    Toyota, K.; McConnell, J. C.; Lupu, A.; Neary, L.; McLinden, C. A.; Richter, A.; Kwok, R.; Semeniuk, K.; Kaminski, J. W.; Gong, S.-L.; Jarosz, J.; Chipperfield, M. P.; Sioris, C. E.

    2011-04-01

    Episodes of high bromine levels and surface ozone depletion in the springtime Arctic are simulated by an online air-quality model, GEM-AQ, with gas-phase and heterogeneous reactions of inorganic bromine species and a simple scheme of air-snowpack chemical interactions implemented for this study. Snowpack on sea ice is assumed to be the only source of bromine to the atmosphere and to be capable of converting relatively stable bromine species to photolabile Br2 via air-snowpack interactions. A set of sensitivity model runs are performed for April 2001 at a horizontal resolution of approximately 100 km×100 km in the Arctic, to provide insights into the effects of temperature and the age (first-year, FY, versus multi-year, MY) of sea ice on the release of reactive bromine to the atmosphere. The model simulations capture much of the temporal variations in surface ozone mixing ratios as observed at stations in the high Arctic and the synoptic-scale evolution of areas with enhanced BrO column amount ("BrO clouds") as estimated from satellite observations. The simulated "BrO clouds" are in modestly better agreement with the satellite measurements when the FY sea ice is assumed to be more efficient at releasing reactive bromine to the atmosphere than on the MY sea ice. Surface ozone data from coastal stations used in this study are not sufficient to evaluate unambiguously the difference between the FY sea ice and the MY sea ice as a source of bromine. The results strongly suggest that reactive bromine is released ubiquitously from the snow on the sea ice during the Arctic spring while the timing and location of the bromine release are largely controlled by meteorological factors. It appears that a rapid advection and an enhanced turbulent diffusion associated with strong boundary-layer winds drive transport and dispersion of ozone to the near-surface air over the sea ice, increasing the oxidation rate of bromide (Br-) in the surface snow. Also, if indeed the surface snowpack does supply most of the reactive bromine in the Arctic boundary layer, it appears to be capable of releasing reactive bromine at temperatures as high as -10 °C, particularly on the sea ice in the central and eastern Arctic Ocean. Dynamically-induced BrO column variability in the lowermost stratosphere appears to interfere with the use of satellite BrO column measurements for interpreting BrO variability in the lower troposphere but probably not to the extent of totally obscuring "BrO clouds" that originate from the surface snow/ice source of bromine in the high Arctic. A budget analysis of the simulated air-surface exchange of bromine compounds suggests that a "bromine explosion" occurs in the interstitial air of the snowpack and/or is accelerated by heterogeneous reactions on the surface of wind-blown snow in ambient air, both of which are not represented explicitly in our simple model but could have been approximated by a parameter adjustment for the yield of Br2 from the trigger.

  20. Land- and sea-surface impacts on local coastal breezes

    NASA Astrophysics Data System (ADS)

    Veron, D. E.; Hughes, C.; Gilchrist, J.; Lodise, J.; Goldman, W.

    2014-12-01

    The state of Delaware has seen significant increases in population along the coastline in the past three decades. With this increase in population have come changes to the land surface, as forest and farmland has been converted to residential and commercial purposes, causing changes in the surface roughness, temperature, and land-atmosphere fluxes. There is also a semi-permanent upwelling center in the spring and summer outside the Delaware Bay mouth that significantly changes the structure of the sea surface temperature both inside and outside the Bay. Through a series of high resolution modeling and observational studies, we have determined that in cases of strong synoptic forcing, the impact of the land-surface on the boundary layer properties can be advected offshore, creating a false coastline and modifying the location and timing of the sea breeze circulation. In cases of weak synoptic forcing, the influence of the upwelling and the tidal circulation of the Delaware Bay waters can greatly change the location, strength, and penetration of the sea breeze. Understanding the importance of local variability in the surface-atmosphere interactions on the sea breeze can lead to improved prediction of sea breeze onset, penetration, and duration which is important for monitoring air quality and developing offshore wind power production.

  1. Deriving depths of deep chlorophyll maximum and water inherent optical properties: A regional model

    NASA Astrophysics Data System (ADS)

    Xiu, Peng; Liu, Yuguang; Li, Gang; Xu, Qing; Zong, Haibo; Rong, Zengrui; Yin, Xiaobin; Chai, Fei

    2009-10-01

    The Bohai Sea is a semi-enclosed inland sea with case-2 waters near the coast. A comprehensive set of optical data was collected during three cruises in June, August, and September 2005 in the Bohai Sea. The vertical profile measurements, such as chlorophyll concentration, water turbidity, downwelling irradiance, and diffuse attenuation coefficient, showed that the Bohai Sea was vertically stratified with a relative clear upper layer superimposed on a turbid lower layer. The upper layer was found to correspond to the euphotic zone and the deep chlorophyll maximum (DCM) occurs at the base of this layer. By tuning a semi-analytical model (Lee et al., 1998, 1999) for the Bohai Sea, we developed a method to derive water inherent optical properties and the depth of DCM from above-surface measurements. Assuming a 'fake' bottom in the stratified water, this new method retrieves the 'fake' bottom depth, which is highly correlated with the DCM depth. The average relative error between derived and measured values is 33.9% for phytoplankton absorption at 440 nm, 25.6% for colored detrital matter (detritus plus gelbstoff) absorption at 440 nm, and 24.2% for the DCM depth. This modified method can retrieve water inherent optical properties and monitor the depth of DCM in the Bohai Sea, and the method is also applicable to other stratified waters.

  2. Quasi-Geostrophic Diagnosis of Mixed-Layer Dynamics Embedded in a Mesoscale Turbulent Field

    NASA Astrophysics Data System (ADS)

    Chavanne, C. P.; Klein, P.

    2016-02-01

    A new quasi-geostrophic model has been developed to diagnose the three-dimensional circulation, including the vertical velocity, in the upper ocean from high-resolution observations of sea surface height and buoyancy. The formulation for the adiabatic component departs from the classical surface quasi-geostrophic framework considered before since it takes into account the stratification within the surface mixed-layer that is usually much weaker than that in the ocean interior. To achieve this, the model approximates the ocean with two constant-stratification layers : a finite-thickness surface layer (or the mixed-layer) and an infinitely-deep interior layer. It is shown that the leading-order adiabatic circulation is entirely determined if both the surface streamfunction and buoyancy anomalies are considered. The surface layer further includes a diabatic dynamical contribution. Parameterization of diabatic vertical velocities is based on their restoring impacts of the thermal-wind balance that is perturbed by turbulent vertical mixing of momentum and buoyancy. The model skill in reproducing the three-dimensional circulation in the upper ocean from surface data is checked against the output of a high-resolution primitive-equation numerical simulation. Correlation between simulated and diagnosed vertical velocities are significantly improved in the mixed-layer for the new model compared to the classical surface quasi-geostrophic model, reaching 0.9 near the surface.

  3. Trophic dynamics of deep-sea megabenthos are mediated by surface productivity.

    PubMed

    Tecchio, Samuele; van Oevelen, Dick; Soetaert, Karline; Navarro, Joan; Ramírez-Llodra, Eva

    2013-01-01

    Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such as feeding specialisation, niche width variation, and reduction in metabolic rates. The Mediterranean Sea hosts a gradient of food availability at the deep seafloor over its wide longitudinal transect. In the Mediterranean, broad regional studies on trophic habits are almost absent, and the response of deep-sea benthos to different trophic conditions is still speculative. Here, we show that both primary and secondary production processes taking place at surface layers are key drivers of deep-sea food web structuring. By employing an innovative statistical tool, we interpreted bulk-tissue δ(13)C and δ(15)N isotope ratios in benthic megafauna, and associated surface and mesopelagic components from the 3 basins of the Mediterranean Sea at 3 different depths (1200, 2000, and 3000 m). The trophic niche width and the amplitude of primary carbon sources were positively correlated with both primary and secondary surface production indicators. Moreover, mesopelagic organic matter utilization processes showed an intermediate position between surface and deep benthic components. These results shed light on the understanding of deep-sea ecosystems functioning and, at the same time, they demand further investigation.

  4. Trophic Dynamics of Deep-Sea Megabenthos Are Mediated by Surface Productivity

    PubMed Central

    Tecchio, Samuele; van Oevelen, Dick; Soetaert, Karline; Navarro, Joan; Ramírez-Llodra, Eva

    2013-01-01

    Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such as feeding specialisation, niche width variation, and reduction in metabolic rates. The Mediterranean Sea hosts a gradient of food availability at the deep seafloor over its wide longitudinal transect. In the Mediterranean, broad regional studies on trophic habits are almost absent, and the response of deep-sea benthos to different trophic conditions is still speculative. Here, we show that both primary and secondary production processes taking place at surface layers are key drivers of deep-sea food web structuring. By employing an innovative statistical tool, we interpreted bulk-tissue δ13C and δ15N isotope ratios in benthic megafauna, and associated surface and mesopelagic components from the 3 basins of the Mediterranean Sea at 3 different depths (1200, 2000, and 3000 m). The trophic niche width and the amplitude of primary carbon sources were positively correlated with both primary and secondary surface production indicators. Moreover, mesopelagic organic matter utilization processes showed an intermediate position between surface and deep benthic components. These results shed light on the understanding of deep-sea ecosystems functioning and, at the same time, they demand further investigation. PMID:23691098

  5. Aerial Surveys of the Beaufort Sea Seasonal Ice Zone in 2012-2014

    NASA Astrophysics Data System (ADS)

    Dewey, S.; Morison, J.; Andersen, R.; Zhang, J.

    2014-12-01

    Seasonal Ice Zone Reconnaissance Surveys (SIZRS) of the Beaufort Sea aboard U.S. Coast Guard Arctic Domain Awareness flights were made monthly from May 2012 to October 2012, June 2013 to August 2013, and June 2014 to October 2014. In 2012 sea ice extent reached a record minimum and the SIZRS sampling ranged from complete ice cover to open water; in addition to its large spatial coverage, the SIZRS program extends temporal coverage of the seasonal ice zone (SIZ) beyond the traditional season for ship-based observations, and is a good set of measurements for model validation and climatological comparison. The SIZ, where ice melts and reforms annually, encompasses the marginal ice zone (MIZ). Thus SIZRS tracks interannual MIZ conditions, providing a regional context for smaller-scale MIZ processes. Observations with Air eXpendable CTDs (AXCTDs) reveal two near-surface warm layers: a locally-formed surface seasonal mixed layer and a layer of Pacific origin at 50-60m. Temperatures in the latter differ from the freezing point by up to 2°C more than climatologies. To distinguish vertical processes of mixed layer formation from Pacific advection, vertical heat and salt fluxes are quantified using a 1-D Price-Weller-Pinkel (PWP) model adapted for ice-covered seas. This PWP simulates mixing processes in the top 100m of the ocean. Surface forcing fluxes are taken from the Marginal Ice Zone Modeling and Assimilation System MIZMAS. Comparison of SIZRS observations with PWP output shows that the ocean behaves one-dimensionally above the Pacific layer of the Beaufort Gyre. Despite agreement with the MIZMAS-forced PWP, SIZRS observations remain fresher to 100m than do outputs from MIZMAS and ECCO.2. The shapes of seasonal cycles in SIZRS salinity and temperature agree with MIZMAS and ECCO.2 model outputs despite differences in the values of each. However, the seasonal change of surface albedo is not high enough resolution to accurately drive the PWP. Use of ice albedo observations to scale shortwave radiation and salt fluxes improves agreement between observations and PWP outputs. Sensitivity analyses suggest that these are the two most impactful surface parameters on PWP output and that better knowledge of their seasonal changes—as well as better characterization of horizontal Pacific inflow—is imperative for future modeling.

  6. EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    NASA Astrophysics Data System (ADS)

    Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.

    2016-12-01

    The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.

  7. Seasonal variability of the Red Sea, from GRACE time-variable gravity and altimeter sea surface height measurements

    NASA Astrophysics Data System (ADS)

    Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean

    2014-05-01

    Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.

  8. Land-atmosphere-ocean interactions in the southeastern Atlantic: interannual variability

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoming; Vizy, Edward K.; Cook, Kerry H.

    2018-02-01

    Land-atmosphere-ocean interactions in the southeastern South Atlantic and their connections to interannual variability are examined using a regional climate model coupled with an intermediate-level ocean model. In austral summer, zonal displacements of the South Atlantic subtropical high (SASH) can induce variations of mixed-layer currents in the Benguela upwelling region through surface wind stress curl anomalies near the Namibian coast, and an eastward shifted SASH is related to the first Pacific-South American mode. When the SASH is meridionally displaced, mixed layer vertically-integrated Ekman transport anomalies are mainly a response to the change of alongshore surface wind stress. The latitudinal shift of the SASH tends to dampen the anomalous alongshore wind by modulating the land-sea thermal contrast, while opposed by oceanic diffusion. Although the position of the SASH is closely linked to the phase of El Niño-Southern Oscillation (ENSO) and the southern annular mode (SAM) in austral summer, an overall relationship between Benguela upwelling strength and ENSO or SAM is absent. During austral winter, variations of the mixed layer Ekman transport in the Benguela upwelling region are connected to the strength of the SASH through its impact on both coastal wind stress curl and alongshore surface wind stress. Compared with austral summer, low-level cloud cover change plays a more important role. Although wintertime sea surface temperature fluctuations in the equatorial Atlantic are strong and may act to influence variability over the northern Benguela area, the surface heat budget analysis suggests that local air-sea interactions dominate.

  9. Subduction of a low-salinity water mass around the Xisha Islands in the South China Sea.

    PubMed

    Huang, Zhida; Zhuang, Wei; Liu, Hailong; Hu, Jianyu

    2018-02-15

    Based on three climatologically observed temperature and salinity datasets (i.e., GDEM-V3, SCSPOD14 and WOA13), this paper reports a low-salinity (~34.32) water mass in the subsurface-to-intermediate layer around the Xisha Islands in the South China Sea. This water mass mainly subducts from the surface layer into the intermediate layer, characterized by a relatively low potential vorticity tongue extending from the bottom of mixed layer to the thermocline, and accompanied by a thermocline ventilation in spring (especially in April). The potential dynamics are the joint effects of negative wind stress curl, and an anticyclonic eddy triggered by the inherent topographic effect of the Xisha Islands, reflecting that downward vertical motion dominates the subduction. Despite lacking of the homogenous temperature and density, the low-salinity water mass is to some extent similar to the classic mode water and can be regarded as a deformed mode water in the South China Sea.

  10. Upper Ocean Measurements from Profiling Floats in the Arabian Sea During NASCar

    DTIC Science & Technology

    2015-09-30

    top-level goals] OBJECTIVES The work proposed here is designed to examine the seasonal evolution of the upper ocean in the northern Arabian...Sea over several seasonal cycles, with the specific objectives of (1) Documenting the spatial variations in the seasonal cycle of the upper ocean...circulation of the Arabian Sea and the seasonal and spatial evolution of the surface mixed layer, and would be used in conjunction with HYCOM model

  11. Office of Naval Research (ONR), Arctic and Global Prediction Program Department Research Initiative (DRI), Sea State and Boundary Layer Physics of the Emerging Arctic Ocean Quantifying the Role of Atmospheric Forcing in Ice Edge Retreat and Advance Including Wind-Wave Coupling

    DTIC Science & Technology

    2014-09-30

    direction Sea snake CIRES/NOAA sea-surface temperature 35-channel Radiometrics radiometer CIRES/NOAA PWV , LWP, profiles of T, q Ceilometer CIRES...size distribution Stabilized, scanning Doppler Lidar Leeds winds, cloud phase, turbulence HATPRO, scanning,12 ch radiometer Leeds PWV , LWP

  12. Regional difference of the vertical structure of seasonal thermocline and its impact on sea surface temperature in the North Pacific

    NASA Astrophysics Data System (ADS)

    Yamaguchi, R.; Suga, T.

    2016-12-01

    Recent observational studies show that, during the warming season, a large amount of heat flux is penetrated through the base of thin mixed layer by vertical eddy diffusion, in addition to penetration of solar radiation [1]. In order to understand this heat penetration process due to vertical eddy diffusivity and its contribution to seasonal variation of sea surface temperature, we investigated the evolution of thermal stratification below the summertime thin mixed layer (i.e. evolution of seasonal thermocline) and its vertical structure in the North Pacific using high vertical resolution temperature profile observed by Argo floats. We quantified the vertical structure of seasonal thermocline as deviations from the linear structure where the vertical gradient of temperature is constant, that is, "shape anomaly". The shape anomaly is variable representing the extent of the bend of temperature profiles. We found that there are larger values of shape anomaly in the region where the seasonal sea surface temperature warming is relatively faster. To understand the regional difference of shape anomalies, we investigated the relationship between time changes in shape anomalies and net surface heat flux and surface kinetic energy flux. From May to July, the analysis indicated that, in a large part of North Pacific, there's a tendency for shape anomalies to develop strongly (weakly) under the conditions of large (small) downward net surface heat flux and small (large) downward surface kinetic energy flux. Since weak (strong) development of shape anomalies means efficient (inefficient) downward heat transport from the surface, these results suggest that the regional difference of the downward heat penetration below mixed layer is explained reasonably well by differences in surface heat forcing and surface wind forcing in a vertical one dimensional framework. [1] Hosoda et al. (2015), J. Oceanogr., 71, 541-556.

  13. Analysis of Near-Surface Oceanic Measurements Obtained During the Low-Wind Component of the Coupled Boundary Layers and Air-Sea Transfer (CBLAST) Experiment

    DTIC Science & Technology

    2006-09-30

    temperature and the upwelling IR radiative heat flux were obtained from a pyrometer . The heat fluxes are combined to compute the net heat flux into or out...sampled acoustic Doppler velocimeters (ADVs) and thermistors (Figure 1b). These measurements provide inertial-range estimates of dissipation rates...horizontal velocity at the sea surface were obtained with a “fanbeam” acoustic Doppler current profiler (ADCP), which produces spatial maps of the

  14. Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn

    NASA Astrophysics Data System (ADS)

    Sato, K.; Inoue, J.; Kodama, Y.; Overland, J. E.

    2012-12-01

    Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999-2010 cruises of the Japanese R/V Mirai. To understand the recent change in cloud base height over the Arctic Ocean, these cloud-base height data were compared with the observation data under ice-covered situation during SHEBA (the Surface Heat Budget of the Arctic Ocean project in 1998). Our ice-free results showed a 30 % decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. This suggests that stratus cloud over the sea ice has been replaced as stratocumulus clouds with low cloud fraction due to the decrease in static stability induced by the sea-ice retreat. The relationship between cloud-base height and air-sea temperature difference (SST-Ts) was analyzed in detail using special section data during 2010 cruise data. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere. Frequency distribution of the cloud-base height (km) detected by a ceilometer/lidar (black bars) and radiosondes (gray bars), and profiles of potential temperature (K) for (a) ice-free cases (R/V Mirai during September) and (b) ice-covered case (SHEBA during September 1998). (c) Vertical profiles of air temperature from 1000 hPa to 150 hPa (solid lines: observations north of 75°N, and dashed lines: the ERA-Interim reanalysis over 75-82.5°N, 150-170°W). Green, blue, and red lines denote profiles derived from observations by NP stations (the 1980s), SHEBA (1998), and the R/V Mirai (the 2000s), respectively. (d) Temperature trend calculated by the ERA-Interim reanalysis over the area.

  15. A comparison of sea surface salinity in the equatorial Pacific Ocean during the 1997-1998, 2012-2013, and 2014-2015 ENSO events

    NASA Astrophysics Data System (ADS)

    Corbett, Caroline M.; Subrahmanyam, Bulusu; Giese, Benjamin S.

    2017-11-01

    Sea surface salinity (SSS) variability during the 1997-1998 El Niño event and the failed 2012-2013 and 2014-2015 El Niño events is explored using a combination of observations and ocean reanalyses. Previously, studies have mainly focused on the sea surface temperature (SST) and sea surface height (SSH) variability. This analysis utilizes salinity data from Argo and the Simple Ocean Data Assimilation (SODA) reanalysis to examine the SSS variability. Advective processes and evaporation minus precipitation (E-P) variability is understood to influence SSS variability. Using surface wind, surface current, evaporation, and precipitation data, we analyze the causes for the observed SSS variability during each event. Barrier layer thickness and upper level salt content are also examined in connection to subsurface salinity variability. Both advective processes and E-P variability are important during the generation and onset of a successful El Niño, while a lack of one or both of these processes leads to a failed ENSO event.

  16. Diurnal vertical migration of Cochlodinium polykrikoides during the red tide in Korean coastal sea waters.

    PubMed

    Kim, Young Sug; Jeong, Chang Su; Seong, Gi Tak; Han, In Sung; Lee, Young Sik

    2010-09-01

    The diurnal vertical migration of Cochlodinium polykrikoides (C. polykrikoides), which caused a red tide in the Korean coastal waters of the East Sea/Sea of Japan in September 2003, was examined by determining the time-dependent changes in the density of living cells in relation to the depth of the water column. The ascent of this species into the surface layer (depth of water 2 m) occurred during 1400-1500. The descent started at 1600 and a high distribution rate (86%) at 15-20 m was observed at 0300. During the ascent, the cells were widely distributed at each depth level from 0600 hr and at 0800-1100, the cells were primarily distributed in the middle layer (0-6 m). The concentration of dissolved inorganic nitrogen was generally < or = 2.86 micromol l(-1), but at 1400-1500, the concentration in the surface layer reduced to < or = 0.14 micromol l(-1). Moreover, the concentration gradually increased as the depth increased to > or = 5 m. These results showed that the nutrient-consumption rate associated with the proliferation of C. polykrikoides during a red tide is more influenced by the inorganic-nitrogen resources ratherthan the inorganic-phosphorus compounds.

  17. The Northeast Monsoon's Impact on Mixing, Phytoplankton Biomass and Nutrient Cycling in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Wiggert, J. D.; Jones, B. H.; Dickey, T. D.; Brink, K. H.; Weller, R. A.; Marra, J.; Codispoti, L. A.

    2000-01-01

    In the northern Arabian Sea, atmospheric conditions during the Northeast (winter) Monsoon lead to deep convective mixing. Due to the proximity of the permanent pyncnocline to the sea surface, this mixing does not penetrate below 125 m. However, a strong nitracline is also present and the deep convection results in significant nitrate flux into the surface waters. This leads to nitrate concentrations over the upper 100 m that exceed 4 micrometers toward the end of the Monsoon. During the 1994/1995 US JGOFS/Arabian Sea expedition, the mean areal gross primary production over two successive Northeast Monsoons was determined to be 1.35gC/sq m/d. Thus, despite the deep penetrative convection, high rates of primary productivity were maintained. An interdisciplinary model was developed to elucidate the biogeochemical processes involved in supporting the elevated productivity. This model consists of a 1-D mixed-layer model coupled to a set of equations that tracked phytoplankton growth and the concentration of the two major nutrients (nitrate and ammonium). Zooplankton grazing was parameterized by rate constant determined by shipboard experiments. Model boundary conditions consist of meteorological time-series measured from the surface buoy that was part of the ONR Arabian Sea Experiment's central mooring. Our numerical experiments show that elevated surface evaporation, and the associated salinization of the mixed layer, strongly contributes to the frequency and penetration depth of the observed convective mixing. Cooler surface temperatures, increased nitrate entrainment, reduced water column stratification, and lower near-surface chlorophyll a concentrations all result from this enhanced mixing. The model also captured a dependence on regenerated nitrogen observed in nutrient uptake experiments performed during the Northeast Monsoon. Our numerical experiments also indicate that variability in mean pycnocline depth causes up to a 25% reduction in areal chlorophyll a concentration. We hypothesize that such shifts in pycnocline depth may contribute to the interannual variations in primary production and surface chlorophyll a concentration that have been previously observed in this region.

  18. Pathways of basal meltwater from Antarctic ice shelves: A model study

    NASA Astrophysics Data System (ADS)

    Kusahara, Kazuya; Hasumi, Hiroyasu

    2014-09-01

    We investigate spreading pathways of basal meltwater released from all Antarctic ice shelves using a circumpolar coupled ice shelf-sea ice-ocean model that reproduces major features of the Southern Ocean circulation, including the Antarctic Circumpolar Current (ACC). Several independent virtual tracers are used to identify detailed pathways of basal meltwaters. The spreading pathways of the meltwater tracers depend on formation sites, because the meltwaters are transported by local ambient ocean circulation. Meltwaters from ice shelves in the Weddell and Amundsen-Bellingshausen Seas in surface/subsurface layers are effectively advected to lower latitudes with the ACC. Although a large portion of the basal meltwaters is present in surface and subsurface layers, a part of the basal meltwaters penetrates into the bottom layer through active dense water formation along the Antarctic coastal margins. The signals at the seafloor extend along the topography, showing a horizontal distribution similar to the observed spreading of Antarctic Bottom Water. Meltwaters originating from ice shelves in the Weddell and Ross Seas and in the Indian sector significantly contribute to the bottom signals. A series of numerical experiments in which thermodynamic interaction between the ice shelf and ocean is neglected regionally demonstrates that the basal meltwater of each ice shelf impacts sea ice and/or ocean thermohaline circulation in the Southern Ocean. This article was corrected on 10 OCT 2014. See the end of the full text for details.

  19. Large-eddy simulation of subtropical cloud-topped boundary layers: 1. A forcing framework with closed surface energy balance

    NASA Astrophysics Data System (ADS)

    Tan, Zhihong; Schneider, Tapio; Teixeira, João.; Pressel, Kyle G.

    2016-12-01

    Large-eddy simulation (LES) of clouds has the potential to resolve a central question in climate dynamics, namely, how subtropical marine boundary layer (MBL) clouds respond to global warming. However, large-scale processes need to be prescribed or represented parameterically in the limited-area LES domains. It is important that the representation of large-scale processes satisfies constraints such as a closed energy balance in a manner that is realizable under climate change. For example, LES with fixed sea surface temperatures usually do not close the surface energy balance, potentially leading to spurious surface fluxes and cloud responses to climate change. Here a framework of forcing LES of subtropical MBL clouds is presented that enforces a closed surface energy balance by coupling atmospheric LES to an ocean mixed layer with a sea surface temperature (SST) that depends on radiative fluxes and sensible and latent heat fluxes at the surface. A variety of subtropical MBL cloud regimes (stratocumulus, cumulus, and stratocumulus over cumulus) are simulated successfully within this framework. However, unlike in conventional frameworks with fixed SST, feedbacks between cloud cover and SST arise, which can lead to sudden transitions between cloud regimes (e.g., stratocumulus to cumulus) as forcing parameters are varied. The simulations validate this framework for studies of MBL clouds and establish its usefulness for studies of how the clouds respond to climate change.

  20. Contributions of the atmosphere-land and ocean-sea ice model components to the tropical Atlantic SST bias in CESM1

    NASA Astrophysics Data System (ADS)

    Song, Z.; Lee, S. K.; Wang, C.; Kirtman, B. P.; Qiao, F.

    2016-02-01

    In order to identify and quantify intrinsic errors in the atmosphere-land and ocean-sea ice model components of the Community Earth System Model version 1 (CESM1) and their contributions to the tropical Atlantic sea surface temperature (SST) bias in CESM1, we propose a new method of diagnosis and apply it to a set of CESM1 simulations. Our analyses of the model simulations indicate that both the atmosphere-land and ocean-sea ice model components of CESM1 contain large errors in the tropical Atlantic. When the two model components are fully coupled, the intrinsic errors in the two components emerge quickly within a year with strong seasonality in their growth rates. In particular, the ocean-sea ice model contributes significantly in forcing the eastern equatorial Atlantic warm SST bias in early boreal summer. Further analysis shows that the upper thermocline water underneath the eastern equatorial Atlantic surface mixed layer is too warm in a stand-alone ocean-sea ice simulation of CESM1 forced with observed surface flux fields, suggesting that the mixed layer cooling associated with the entrainment of upper thermocline water is too weak in early boreal summer. Therefore, although we acknowledge the potential importance of the westerly wind bias in the western equatorial Atlantic and the low-level stratus cloud bias in the southeastern tropical Atlantic, both of which originate from the atmosphere-land model, we emphasize here that solving those problems in the atmosphere-land model alone does not resolve the equatorial Atlantic warm bias in CESM1.

  1. The fate of ethane in Titan's hydrocarbon lakes and seas

    NASA Astrophysics Data System (ADS)

    Mousis, Olivier; Lunine, Jonathan I.; Hayes, Alexander G.; Hofgartner, Jason D.

    2016-05-01

    Ethane is expected to be the dominant photochemical product on Titan's surface and, in the absence of a process that sequesters it from exposed surface reservoirs, a major constituent of its lakes and seas. Absorption of Cassini's 2.2 cm radar by Ligeia Mare however suggests that this north polar sea is dominated by methane. In order to explain this apparent ethane deficiency, we explore the possibility that Ligeia Mare is the visible part of an alkanofer that interacted with an underlying clathrate layer and investigate the influence of this interaction on an assumed initial ethane-methane mixture in the liquid phase. We find that progressive liquid entrapment in clathrate allows the surface liquid reservoir to become methane-dominated for any initial ethane mole fraction below 0.75. If interactions between alkanofers and clathrates are common on Titan, this should lead to the emergence of many methane-dominated seas or lakes.

  2. Sources, behaviors and degradation of dissolved organic matter in the East China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Yang, Gui-Peng; Liu, Li; Zhang, Peng-Yan; Leng, Wei-Song

    2016-03-01

    Concentrations of dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and its major compound classes-total hydrolysable amino acids (THAA) were measured at 4 cross-shelf transects of the East China Sea in July 2011. Surface concentrations of DOC, DIN, DON and THAA at the nearshore stations were mostly in excess of those found at the offshore sites, indicating either substantial autochthonous production or allochthonous inputs from the Changjiang River. The vertical distributions of DOC, DON and THAA showed similar trends with higher values in the surface layer, whereas the elevated concentrations of DIN were observed in the bottom layer. Major constituents of THAA presented in the study area were glycine, serine, alanine, glutamic acid, aspartic acid and valine. The mole percentages of neutral amino acids increased from surface water to bottom water, whereas acidic and hydroxy amino acids decreased with the water depth. Concentrations of DOC and THAA were negatively correlated to the ΔDIN values (the difference between the real concentration and theoretical concentration), respectively, indicating the coupling relation between dissolved organic matter (DOM) remineralization and nutrient regeneration in the water column. The C/N ratios in the water column exhibited different characteristics with elevated values appearing in the surface and bottom layers. Box and whisker plots showed that both degradation index (DI) values and THAA yields displayed a decreasing trend from the surface layer to the bottom layer, implying increasing degradation with the water depth. Our data revealed that glycine and alanine increased in relative abundance with decreasing DI, while tyrosine, valine, phenylalanine and isoleucine increased with increasing DI.

  3. Subsurface temperature estimation from climatology and satellite SST for the sea around Korean Peninsula 1Bong-Guk, Kim, 1Yang-Ki, Cho, 1Bong-Gwan, Kim, 1Young-Gi, Kim, 1Ji-Hoon, Jung 1School of Earth and Environmental Sciences, Seoul National University

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Guk; Cho, Yang-Ki; Kim, Bong-Gwan; Kim, Young-Gi; Jung, Ji-Hoon

    2015-04-01

    Subsurface temperature plays an important role in determining heat contents in the upper ocean which are crucial in long-term and short-term weather systems. Furthermore, subsurface temperature affects significantly ocean ecology. In this study, a simple and practical algorithm has proposed. If we assume that subsurface temperature changes are proportional to surface heating or cooling, subsurface temperature at each depth (Sub_temp) can be estimated as follows PIC whereiis depth index, Clm_temp is temperature from climatology, dif0 is temperature difference between satellite and climatology in the surface, and ratio is ratio of temperature variability in each depth to surface temperature variability. Subsurface temperatures using this algorithm from climatology (WOA2013) and satellite SST (OSTIA) where calculated in the sea around Korean peninsula. Validation result with in-situ observation data show good agreement in the upper 50 m layer with RMSE (root mean square error) less than 2 K. The RMSE is smallest with less than 1 K in winter when surface mixed layer is thick, and largest with about 2~3 K in summer when surface mixed layer is shallow. The strong thermocline and large variability of the mixed layer depth might result in large RMSE in summer. Applying of mixed layer depth information for the algorithm may improve subsurface temperature estimation in summer. Spatial-temporal details on the improvement and its causes will be discussed.

  4. Cooling of the North Atlantic by Saharan Dust

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, K. M.

    2007-01-01

    Using aerosol optical depth, sea surface temperature, top-of-the-atmosphere solar radiation flux, and oceanic mixed-layer depth from diverse data sources that include NASA satellites, NCEP reanalysis, in situ observations, as well as long-term dust records from Barbados, we examine the possible relationships between Saharan dust and Atlantic sea surface temperature. Results show that the estimated anomalous cooling pattern of the Atlantic during June 2006 relative to June 2005 due to attenuation of surface solar radiation by Saharan dust remarkably resemble observations, accounting for approximately 30-40% of the observed change in sea surface temperature. Historical data analysis show that there is a robust negative correlation between atmospheric dust loading and Atlantic SST consistent with the notion that increased (decreased) Saharan dust is associated with cooling (warming) of the Atlantic during the early hurricane season (July- August-September).

  5. Determination of surface stress by Seasat-SASS - A case study with JASIN data

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Large, W. G.

    1981-01-01

    The values of sea surface stress determined with the dissipation method and those determined with a surface-layer model from observations on F.S. Meteor during the Joint Air-Sea Interaction (JASIN) Experiment are compared with the backscatter coefficients measured by the scatterometer SASS on the satellite Seasat. This study demonstrates that SASS can be used to determine surface stress directly as well as wind speed. The quality of the surface observations used in the calibration of the retrieval algorithms, however, is important. This sample of measurements disagrees with the predictions by the existing wind retrieval algorithm under non-neutral conditions and the discrepancies depend on atmospheric stability.

  6. Sea ice and oceanic processes on the Ross Sea continental shelf

    NASA Technical Reports Server (NTRS)

    Jacobs, S. S.; Comiso, J. C.

    1989-01-01

    The spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf have been investigated in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86 percent during winter with little month-to-month of interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn.

  7. Glacial to interglacial surface nutrient variations of Bering Deep Basins recorded by δ13C and δ15N of sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Takeshi; Watanabe, Kazuki; Handa, Nobuhiko; Matsumoto, Eiji; Wada, Eitaro

    1995-12-01

    Stable carbon and nitrogen isotopic ratios (δ13C and δ15N) of organic matter were measured in three sediment cores from deep basins of the Bering Sea to investigate past changes in surface nutrient conditions. For surface water reconstructions, hemipelagic layers in the cores were distinguished from turbidite layers (on the basis of their sedimentary structures and 14C ages) and analyzed for isotopic studies. Although δ13C profiles may have been affected by diagenesis, both δ15N and δ13C values showed common positive anomalies during the last deglaciation. We explain these anomalies as reflecting suppressed vertical mixing and low nutrient concentrations in surface waters caused by injection of meltwater from alpine glaciers around the Bering Sea. Appendix tables are available with entire article on microfiche. Order from American Geophysical Union, 2000 Florida Avenue, N.W., Washington , DC 20009. Document P95-003; $2.50. Payment must accompany order.

  8. An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Gordon, Arnold L.; Shroyer, Emily; Murty, V. S. N.

    2017-04-01

    The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean eddies. On 5 December 2013 a sub-surface vortex or Intrathermocline Eddy (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface eddy from the eastern Bay of Bengal. While Lehar’s interaction with the ocean initially removes heat from the upper layers of the eddy, air-sea flux is limited as the deeper portions of the eddy was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE core from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification.

  9. An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal.

    PubMed

    Gordon, Arnold L; Shroyer, Emily; Murty, V S N

    2017-04-12

    The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean eddies. On 5 December 2013 a sub-surface vortex or Intrathermocline Eddy (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface eddy from the eastern Bay of Bengal. While Lehar's interaction with the ocean initially removes heat from the upper layers of the eddy, air-sea flux is limited as the deeper portions of the eddy was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE core from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification.

  10. An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal

    PubMed Central

    Gordon, Arnold L.; Shroyer, Emily; Murty, V. S. N.

    2017-01-01

    The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean eddies. On 5 December 2013 a sub-surface vortex or Intrathermocline Eddy (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface eddy from the eastern Bay of Bengal. While Lehar’s interaction with the ocean initially removes heat from the upper layers of the eddy, air-sea flux is limited as the deeper portions of the eddy was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE core from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification. PMID:28401909

  11. Dissolved methane in the residual basins of the Aral Sea

    NASA Astrophysics Data System (ADS)

    Izhitskaya, Elena; Zavialov, Peter; Egorov, Alexander

    2017-04-01

    The state of the Aral Sea has changed significantly since the second half of the 20th century. Due to the level decline the present-day sea consists of the several water bodies: the Large Aral Sea, the Small Aral Sea and Lake Tshchebas. Water balance peculiarities of each basin caused the differences in physical, chemical and biological structure of the ecosystem. Severe salinization of the Large Aral resulted in the increase of water stratification and formation of the anoxic conditions in the bottom layer. According to the field survey of 2002 [Zavialov et al., 2003; Friedrich, Oberhansli, 2004], hydrogen sulfide was detected in the bottom layer of the Large Aral Sea for the first time. Methane formation is the next reaction after sulfate reduction within process of sequential oxidation of organic matter [Break, 1974]. Thus, methane is an important indicator of biogeochemical processes in natural water environments. Besides due to high greenhouse activity of methane study of its emission to the atmosphere is essential for solution of climatological problems [Bazhin, 2000]. The presented study aims to the evaluation of methane dissolved in waters of the Aral region. Measurements of the gas concentration were carried out on surface and vertical profiles, as well as on point stations in 2012, 2013, 2015 and 2016 years in different parts of the sea. Water samples were analyzed by the head-space method with further gas chromatographic determination of methane concentration [Bolshakov, Egorov, 1987]. According to the obtained data, dissolved methane content in the surface waters of the residual basins of the Aral Sea ranges from 12 to 234 nM/l. One of the main results of the research is detection of intensive methane increase in the lower water layer of the Large Aral to 17014 nM/l in central part and to 147316 nM/l in the Chernyshev Bay.

  12. Small phytoplankton and carbon export from the surface ocean.

    PubMed

    Richardson, Tammi L; Jackson, George A

    2007-02-09

    Autotrophic picoplankton dominate primary production over large oceanic regions but are believed to contribute relatively little to carbon export from surface layers. Using analyses of data from the equatorial Pacific Ocean and Arabian Sea, we show that the relative direct and indirect contribution of picoplankton to export is proportional to their total net primary production, despite their small size. We suggest that all primary producers, not just the large cells, can contribute to export from the surface layer of the ocean at rates proportional to their production rates.

  13. Comparison of sea surface flux measured by instrumented aircraft and ship during SOFIA and SEMAPHORE experiments

    NASA Astrophysics Data System (ADS)

    Durand, Pierre; Dupuis, HéLèNe; Lambert, Dominique; BéNech, Bruno; Druilhet, Aimé; Katsaros, Kristina; Taylor, Peter K.; Weill, Alain

    1998-10-01

    Two major campaigns (Surface of the Oceans, Fluxes and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE)) devoted to the study of ocean-atmosphere interaction were conducted in 1992 and 1993, respectively, in the Azores region. Among the various platforms deployed, instrumented aircraft and ship allowed the measurement of the turbulent flux of sensible heat, latent heat, and momentum. From coordinated missions we can evaluate the sea surface fluxes from (1) bulk relations and mean measurements performed aboard the ship in the atmospheric surface layer and (2) turbulence measurements aboard aircraft, which allowed the flux profiles to be estimated through the whole atmospheric boundary layer and therefore to be extrapolated toward the sea surface level. Continuous ship fluxes were calculated with bulk coefficients deduced from inertial-dissipation measurements in the same experiments, whereas aircraft fluxes were calculated with eddy-correlation technique. We present a comparison between these two estimations. Although momentum flux agrees quite well, aircraft estimations of sensible and latent heat flux are lower than those of the ship. This result is surprising, since aircraft momentum flux estimates are often considered as much less accurate than scalar flux estimates. The various sources of errors on the aircraft and ship flux estimates are discussed. For sensible and latent heat flux, random errors on aircraft estimates, as well as variability of ship flux estimates, are lower than the discrepancy between the two platforms, whereas the momentum flux estimates cannot be considered as significantly different. Furthermore, the consequence of the high-pass filtering of the aircraft signals on the flux values is analyzed; it is weak at the lowest altitudes flown and cannot therefore explain the discrepancies between the two platforms but becomes considerable at upper levels in the boundary layer. From arguments linked to the imbalance of the surface energy budget, established during previous campaigns performed over land surfaces with aircraft, we conclude that aircraft heat fluxes are probably also underestimated over the sea.

  14. Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during NICE2015:salty surface mixed layer and active basal melt

    NASA Astrophysics Data System (ADS)

    Provost, C.; Koenig, Z.; Villacieros-Robineau, N.; Sennechael, N.; Meyer, A.; Lellouche, J. M.; Garric, G.

    2016-12-01

    IAOOS platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by 0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shedded eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 Wm-2 (mean of 150 Wm-2 over the continentalslope). Sea-ice melt events were associated with near 12-hour fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography and/or geostrophic adjustments.

  15. Ship Observations and Numerical Simulation of the Marine Atmosphericboundary Layer over the Spring Oceanic Front in the Northwestern South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, D.; Shi, R.; Chen, J.; Guo, X.; Zeng, L.; Li, J.; Xie, Q.; Wang, X.

    2017-12-01

    The response of the marine atmospheric boundary layer (MABL) structure to an oceanic front is analyzed using Global Positioning System (GPS) sounding data obtained during a survey in the northwestern South China Sea (NSCS) over a period of about one week in April 2013. The Weather Research and Forecasting (WRF) model is used to further examine the thermodynamical mechanisms of the MABL's response to the front. The WRF model successfully simulates the change in the MABL structure across the front, which agrees well with the observations. The spatially high-pass-filtered fields of sea surface temperature (SST) and 10-m neutral equivalent wind from the WRF model simulation show a tight, positive coupling between the SST and surface winds near the front. Meanwhile, the SST front works as a damping zone to reduce the enhancement of wind blowing from the warm to the cold side of the front in the lower boundary layer. Analysis of the momentum budget shows that the most active and significant term affecting horizontal momentum over the frontal zone is the adjustment of the pressure gradient. It is found that the front in the NSCS is wide enough for slowly moving air parcels to be affected by the change in underlying SST. The different thermal structure upwind and downwind of the front causes a baroclinic adjustment of the perturbation pressure from the surface to the mid-layer of the MABL, which dominates the change in the wind profile across the front.

  16. Sea surface cooling in the Northern South China Sea observed using Chinese Sea-wing Underwater Glider measurements

    NASA Astrophysics Data System (ADS)

    Qiu, C.; Mao, H.; Wu, J.

    2016-02-01

    Based on 26 days of Chinese Seawing underwater Glider measurements and satellite microwave data, we documented cooling of the upper mixed layer of the ocean in response to changes in the wind in the Northern South China Sea (NSCS) from September 19, 2014, to October 15, 2014. The Seawing underwater glider measured 177 profiles of temperature, salinity, and pressure within a 55 km נ55 km area, and reached a depth of 1000 m at a temporal resolution of 4 h. The study area experienced two cooling events, Cooling I and Cooling II, according to their timing. During Cooling I, water temperature at 1m depth (T1) decreased by 1.0°C, and the corresponding satellitederived surface winds increased locally by 4.2 m/s. During Cooling II, T1 decreased sharply by 1.7°C within a period of 4 days; sea surface winds increased by 7 m/s and covered the entire NSCS. The corresponding mixed layer depth (MLD) deepened sharply from 30 m to 60 m during Cooling II, and remained steady during Cooling I. We estimated temperature tendencies using a ML model. High resolution Seawing underwater glider measurements provided an estimation of MLD migration, allowing us to obtain the temporal entrainment rate of cool sub thermocline water. Quantitative analysis confirmed that the entrainment rate and latent heat flux were the two major components that regulated cooling of the ML, and that the Ekman advection and sensible heat flux were small.

  17. Gaseous elemental mercury in the marine boundary layer and air-sea flux in the Southern Ocean in austral summer.

    PubMed

    Wang, Jiancheng; Xie, Zhouqing; Wang, Feiyue; Kang, Hui

    2017-12-15

    Gaseous elemental mercury (GEM) in the marine boundary layer (MBL), and dissolved gaseous mercury (DGM) in surface seawater of the Southern Ocean were measured in the austral summer from December 13, 2014 to February 1, 2015. GEM concentrations in the MBL ranged from 0.4 to 1.9ngm -3 (mean±standard deviation: 0.9±0.2ngm -3 ), whereas DGM concentrations in surface seawater ranged from 7.0 to 75.9pgL -1 (mean±standard deviation: 23.7±13.2pgL -1 ). The occasionally observed low GEM in the MBL suggested either the occurrence of atmospheric mercury depletion in summer, or the transport of GEM-depleted air from the Antarctic Plateau. Elevated GEM concentrations in the MBL and DGM concentrations in surface seawater were consistently observed in the ice-covered region of the Ross Sea implying the influence of the sea ice environment. Diminishing sea ice could cause more mercury evasion from the ocean to the air. Using the thin film gas exchange model, the air-sea fluxes of gaseous mercury in non-ice-covered area during the study period were estimated to range from 0.0 to 6.5ngm -2 h -1 with a mean value of 1.5±1.8ngm -2 h -1 , revealing GEM (re-)emission from the East Southern Ocean in summer. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Upper Ocean Response to Hurricanes Katrina and Rita (2005) from Multi-sensor Satellites

    NASA Astrophysics Data System (ADS)

    Gierach, M. M.; Bulusu, S.

    2006-12-01

    Analysis of satellite observations and model simulations of the mixed layer provided an opportunity to assess the biological and physical effects of hurricanes Katrina and Rita (2005) in the Gulf of Mexico. Oceanic cyclonic circulation was intensified by the hurricanes' wind field, maximizing upwelling, surface cooling, and deepening the mixed layer. Two areas of maximum surface chlorophyll-a concentration and sea surface cooling were detected with peak intensities ranging from 2-3 mg m-3 and 4-6°C, along the tracks of Katrina and Rita. The temperature of the mixed layer cooled approximately 2°C and the depth of the mixed layer deepened by approximately 33-52 m. The forced deepening of the mixed layer injected nutrients into the euphotic zone, generating phytoplankton blooms 3-5 days after the passage of Katrina and Rita (2005).

  19. Data requirements in support of the marine weather service program

    NASA Technical Reports Server (NTRS)

    Travers, J.; Mccaslin, R. W.; Mull, M.

    1972-01-01

    Data support activities for the Marine Weather Service Program are outlined. Forecasts, cover anomolous water levels, including sea and swell, surface and breakers, and storm surge. Advisories are also provided for sea ice on the Great Lake and Cook inlet in winter, and in the Bering, Chukchi, and Beaufort Seas in summer. Attempts were made to deal with ocean currents in the Gulf Stream, areas of upwelling, and thermal structure at least down through the mixed layer.

  20. The impact of the snow cover on sea-ice thickness products retrieved by Ku-band radar altimeters

    NASA Astrophysics Data System (ADS)

    Ricker, R.; Hendricks, S.; Helm, V.; Perovich, D. K.

    2015-12-01

    Snow on sea ice is a relevant polar climate parameter related to ocean-atmospheric interactions and surface albedo. It also remains an important factor for sea-ice thickness products retrieved from Ku-band satellite radar altimeters like Envisat or CryoSat-2, which is currently on its mission and the subject of many recent studies. Such satellites sense the height of the sea-ice surface above the sea level, which is called sea-ice freeboard. By assuming hydrostatic equilibrium and that the main scattering horizon is given by the snow-ice interface, the freeboard can be transformed into sea-ice thickness. Therefore, information about the snow load on hemispherical scale is crucial. Due to the lack of sufficient satellite products, only climatological values are used in current studies. Since such values do not represent the high variability of snow distribution in the Arctic, they can be a substantial contributor to the total sea-ice thickness uncertainty budget. Secondly, recent studies suggest that the snow layer cannot be considered as homogenous, but possibly rather featuring a complex stratigraphy due to wind compaction and/or ice lenses. Therefore, the Ku-band radar signal can be scattered at internal layers, causing a shift of the main scattering horizon towards the snow surface. This alters the freeboard and thickness retrieval as the assumption that the main scattering horizon is given by the snow-ice interface is no longer valid and introduces a bias. Here, we present estimates for the impact of snow depth uncertainties and snow properties on CryoSat-2 sea-ice thickness retrievals. We therefore compare CryoSat-2 freeboard measurements with field data from ice mass-balance buoys and aircraft campaigns from the CryoSat Validation Experiment. This unique validation dataset includes airborne laser scanner and radar altimeter measurements in spring coincident to CryoSat-2 overflights, and allows us to evaluate how the main scattering horizon is altered by the presence of a complex snow stratigraphy.

  1. Bifurcation structure of a wind-driven shallow water model with layer-outcropping

    NASA Astrophysics Data System (ADS)

    Primeau, François W.; Newman, David

    The steady state bifurcation structure of the double-gyre wind-driven ocean circulation is examined in a shallow water model where the upper layer is allowed to outcrop at the sea surface. In addition to the classical jet-up and jet-down multiple equilibria, we find a new regime in which one of the equilibrium solutions has a large outcropping region in the subpolar gyre. Time dependent simulations show that the outcropping solution equilibrates to a stable periodic orbit with a period of 8 months. Co-existing with the periodic solution is a stable steady state solution without outcropping. A numerical scheme that has the unique advantage of being differentiable while still allowing layers to outcrop at the sea surface is used for the analysis. In contrast, standard schemes for solving layered models with outcropping are non-differentiable and have an ill-defined Jacobian making them unsuitable for solution using Newton's method. As such, our new scheme expands the applicability of numerical bifurcation techniques to an important class of ocean models whose bifurcation structure had hitherto remained unexplored.

  2. Towards the use of HYCOM in Coupled ENSO Prediction: Assessment of ENSO Skill in Forced Global HYCOM

    DTIC Science & Technology

    2016-08-10

    CICE spun-up state forced with climatological surface atmospheric fluxes. This run was initialized from Generalized Digital Environmental Model4...GDEM4) climatological temperature and salinity. It was configured with 41layers. 2. Global 0.72° HYCOM/CICE forced with NOGAPS for 2003-2012. The same...surface temperature, sea-ice concentration, and precipitation products. It was initialized from Levitus-PHC2 climatology . It was configured with 32 layers

  3. Investigation of Turbulence Parametrization Schemes with Reference to the Atmospheric Boundary Layer Over the Aegean Sea During Etesian Winds

    NASA Astrophysics Data System (ADS)

    Dandou, A.; Tombrou, M.; Kalogiros, J.; Bossioli, E.; Biskos, G.; Mihalopoulos, N.; Coe, H.

    2017-08-01

    The spatial structure of the marine atmospheric boundary layer (MABL) over the Aegean Sea is investigated using the Weather Research and Forecasting (WRF) mesoscale model. Two `first-order' non-local and five `1.5-order' local planetary boundary-layer (PBL) parametrization schemes are used. The predictions from the WRF model are evaluated against airborne observations obtained by the UK Facility for Airborne Atmospheric Measurements BAe-14 research aircraft during the Aegean-GAME field campaign. Statistical analysis shows good agreement between measurements and simulations especially at low altitude. Despite the differences between the predicted and measured wind speeds, they reach an agreement index of 0.76. The simulated wind-speed fields close to the surface differ substantially among the schemes (maximum values range from 13 to 18 m s^{-1} at 150-m height), but the differences become marginal at higher levels. In contrast, all schemes show similar spatial variation patterns in potential temperature fields. A warmer (1-2 K) and drier (2-3 g kg^{-1}) layer than is observed, is predicted by almost all schemes under stable conditions (eastern Aegean Sea), whereas a cooler (up to 2 K) and moister (1-2 g kg^{-1}) layer is simulated under near-neutral to nearly unstable conditions (western Aegean Sea). Almost all schemes reproduce the vertical structure of the PBL and the shallow MABL (up to 300 m) well, including the low-level jet in the eastern Aegean Sea, with non-local schemes being closer to observations. The simulated PBL depths diverge (up to 500 m) due to the different criteria applied by the schemes for their calculation. Under stable conditions, the observed MABL depth corresponds to the height above the sea surface where the simulated eddy viscosity reaches a minimum; under neutral to slightly unstable conditions this is close to the top of the simulated entrainment layer. The observed sensible heat fluxes vary from -40 to 25 W m^{-2}, while the simulated fluxes range from -40 to 40 W m^{-2}; however, all of the schemes' predictions are close to the observations under unstable conditions. Finally, all schemes overestimate the friction velocity, although the simulated range (from 0.2 to 0.5 m s^{-1}) is narrower than that observed (from 0.1 to 0.7 m s^{-1}).

  4. The inland boundary layer at low latitudes: II Sea-breeze influences

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Physick, W. L.

    1985-11-01

    Two-dimensional mesoscale model results support the claim of evening sea-breeze activity at Daly Waters, 280 km inland from the coast in northern Australia, the site of the Koorin boundary-layer experiment. The sea breeze occurs in conditions of strong onshore and alongshore geostrophic winds, not normally associated with such activity. It manifests itself at Daly Waters and in the model as a cooling in a layer 500 1000 m deep, as an associated surface pressure jump, as strong backing of the wind and, when an offshore low-level wind is present, as a collapse in the inland nocturnal jet. Both observational analysis and model results illustrate the rotational aspects of the deeply penetrating sea breeze; in our analysis this is represented in terms of a surge vector — the vector difference between the post- and pre-frontal low-level winds. There is further evidence to support earlier work that the sea breeze during the afternoon and well into the night — at least for these low-latitude experiments — behaves in many ways as an atmospheric gravity current, and that inland penetrations up to 500 km occur.

  5. Salt dissolution and sinkhole formation: Results of laboratory experiments

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Eyal, Shalev; Yoseph, Yechieli; Ittai, Gavrieli; Elad, Levanon; Haim, Gvirtzman

    2016-10-01

    The accepted mechanism for the formation of thousands of sinkholes along the coast of the Dead Sea suggests that their primary cause is dissolution of a salt layer by groundwater undersaturated with respect to halite. This is related to the drop in the Dead Sea level, which caused a corresponding drop of the freshwater-saltwater interface, resulting in fresher groundwater replacing the brines that were in contact with the salt layer. In this study we used physical laboratory experiments to examine the validity of this mechanism by reproducing the full dynamic natural process and to examine the impact of different hydrogeological characteristics on this process. The experimental results show surface subsidence and sinkhole formation. The stratigraphic configurations of the aquifer, together with the mechanical properties of the salt layer, determine the dynamic patterns of the sinkhole formation (instantaneous versus gradual formation). Laboratory experiments were also used to study the potential impact of future stratification in the Dead Sea, if and when the "Red Sea-Dead Sea Canal" project is carried out, and the Dead Sea level remains stable. The results show that the dissolution rates are slower by 1 order of magnitude in comparison with a nonstratified saltwater body, and therefore, the processes of salt dissolution and sinkhole formation will be relatively restrained under these conditions.

  6. Observational study of atmospheric surface layer and coastal weather in northern Qatar

    NASA Astrophysics Data System (ADS)

    Samanta, Dhrubajyoti; Sadr, Reza

    2016-04-01

    Atmospheric surface layer is the interaction medium between atmosphere and Earth's surface. Better understanding of its turbulence nature is essential in characterizing the local weather, climate variability and modeling of turbulent exchange processes. The importance of Middle East region, with its unique geographical, economical and weather condition is well recognized. However, high quality micrometeorological observational studies are rare in this region. Here we show experimental results from micrometeorological observations from an experimental site in the coastal region of Qatar during August-December 2015. Measurements of winds are obtained from three sonic anemometers installed on a 9 m tower placed at Al Ghariyah beach in northern Qatar (26.08 °N, 51.36 °E). Different surface layer characteristics is analyzed and compared with earlier studies in equivalent weather conditions. Monthly statistics of wind speed, wind direction, temperature, humidity and heat index are made from concurrent observations from sonic anemometer and weather station to explore variations with surface layer characteristics. The results also highlights potential impact of sea breeze circulation on local weather and atmospheric turbulence. The observed daily maximum temperature and heat index during morning period may be related to sea breeze circulations. Along with the operational micrometeorological observation system, a camera system and ultrasonic wave measurement system are installed recently in the site to study coastline development and nearshore wave dynamics. Overall, the complete observational set up is going to provide new insights about nearshore wind dynamics and wind-wave interaction in Qatar.

  7. Modelling of surface fluxes and Urban Boundary Layer over an old mediterannean city core

    NASA Astrophysics Data System (ADS)

    Lemonsu, A.; Masson, V.; Grimmond, Cs. B.

    2003-04-01

    In the frameworks of the UBL(Urban Boundary Layer)-ESCOMPTE campaign, the Town Energy Balance (TEB) model was run in off-line mode for Marseille. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the campaign. Parameterization improvements allow to better represent the energy exchanges between the air inside the canyon and the atmosphere above the roof level. Then, high resolution Méso-NH simulations are done to study the 3-D structure and the evolution of the Urban Boundary Layer (UBL) over Marseille. Will will give a special attention to the impact of the seabord effects (sea-breeze circulation) on the UBL.

  8. Latest Data on Thermohaline Structure and Circulation of the Dying Aral Sea

    NASA Astrophysics Data System (ADS)

    Izhitsky, Alexander; Zavialov, Peter

    2010-05-01

    The results of the latest expedition of the Shirshov Institute to the Aral Sea are reported. The survey encompassed 15 field days in August, 2009. An interdisciplinary oceanographic study in the western basin of the sea was conducted during the expedition. Vertical profiles of temperature, salinity and fluorescence were obtained using a CTD profiler at 8 stations across the western basin. Two mooring stations equipped with current meters, one at the surface and one in the bottom layer at each station, as well as pressure gauges at the bottom, were deployed for 5 days in the deepest portion of the western basin. One of the stations was installed at the western slope of the basin, while the other one was positioned at the eastern slope. A portable automatic meteorological station, continuously recording the variability of wind and principal meteorological parameters, was installed near the mooring sites. The vertical structure of the themohaline fields exhibited a 3-layered pattern, with local salinity maxima in the upper mixed layer and at the bottom. The intermediate layer was characterized by a core of minimum salinity and temperature, also accompanied by maximum fluorescence. Such a pattern indicates that the signature of the denser, saltier water originating from the eastern basin is still evident, even though the eastern basin itself dried up almost completely during the summer of 2009. The surface salinity was around 136 ppt, which constituted a notable increase for about 20 ppt since the summer of 2008. Over the same period, sea level decreased by 164 cm since the summer of 2008. Analysis of the current measurements data along with the meteorological data records demonstrated that the mean basin-scale surface circulation of the Large Aral Sea is likely to have remained anticyclonic, whilst the near-bottom circulation appears to be cyclonic. The current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity series versus the wind stress allowed to quantify the response of the system to the wind forcing.

  9. A survey of the summer coccolithophore community in the western Barents Sea

    NASA Astrophysics Data System (ADS)

    Giraudeau, Jacques; Hulot, Vivien; Hanquiez, Vincent; Devaux, Ludovic; Howa, Hélène; Garlan, Thierry

    2016-06-01

    The Barents Sea is particularly vulnerable to large-scale hydro-climatic changes associated with the polar amplification of climate change. Key oceanographical variables in this region are the seasonal development of sea-ice and the location and strength of physico-chemical gradients in the surface and subsurface water layers induced by the convergence of Arctic- and Atlantic-derived water masses. Remote sensing imagery have highlighted the increasing success of calcifying haptophytes (coccolithophores) in the summer phytoplankton production of the Barents Sea over the last 20 years, as a response to an overall larger contribution of Atlantic waters to surface and sub-surface waters, as well as to enhanced sea-ice melt-induced summer stratification of the photic layer. The present study provides a first thorough description of coccolithophore standing stocks and diversity over the shelf and slope of the western Barents Sea from two sets of surface and water column samples collected during August-September 2014 from northern Norway to southern Svalbard. The abundance and composition of coccolithophore cells and skeletal remains (coccoliths) are discussed in view of the physical-chemical-biological status of the surface waters and water column based on in-situ (temperature, salinity, fluorescence) and shore-based (microscope enumerations, chemotaxonomy) measurements, as well as satellite-derived data (Chl a and particulate inorganic carbon contents). The coccolithophore population is characterized by a low species diversity and the overwhelming dominance of Emiliania huxleyi. Coccolithophores are abundant both within the well stratified, Norwegian coastal water - influenced shallow mixed layer off northern Norway, as well as within well-mixed cool Atlantic water in close vicinity of the Polar Front. Bloom concentrations with standing stocks larger than 4 million cells/l are recorded in the latter area north of 75°N. Our limited set of chemotaxonomic data suggests that coccolithophores contribute substantially (ca. 20% of the total Chl a) to the summer phytoplankton community which is made essentially of small-sized algal groups. Excluding the bloom area, coccolith calcite accounts for an average of 20% to the bulk particulate inorganic carbon content in the surface waters, and explains to some extent the satellite-derived spatial distribution of this parameter. Deep water living coccolithophore species thriving below the pycnocline as well as populations present in well-mixed cool Atlantic water are rapidly transferred to depth in the form of intact coccospheres down to at least 200 m. High amplitude internal waves which, according to our observations, affect a wide range of water depth up to the lower photic zone, might strengthen the vertical transfer of this sinking population.

  10. Turbulent Control Of The Ocean Surface Boundary Layer During The Onset Of Seasonal Stratification

    NASA Astrophysics Data System (ADS)

    Palmer, M.; Hopkins, J.; Wihsgott, J. U.

    2016-02-01

    To provide accurate predictions of global carbon cycles we must first understand the mechanistic control of ocean surface boundary layer (OSBL) temperature and the timing and depth of ocean thermal stratification, which are critical controls on oceanic carbon sequestration via the solubility and biological pumps. Here we present an exciting new series of measurements of the fine-scale physical structure and dynamics of the OSBL that provide fresh insight into the turbulent control of upper ocean structure. This study was made in the centre of the Celtic Sea, a broad section of the NW European continental shelf, and represents one of only a handful of measurements of near-surface turbulence in our shelf seas. Data are provided by an ocean microstructure glider (OMG) that delivers estimates of turbulent dissipation rates and mixing from 100m depth to within 2-3m of the sea surface, approximately every 10 minutes and continually for 21 days during April 2015. The OMG successfully captures the onset of spring stratification as solar radiation finally overcomes the destabilising effects of turbulent surface processes. Using coincident meteorological and wave observations from a nearby mooring, and full water column current velocity data we are able to close the near surface energy budget and provide a valuable test for proposed parameterisations of OSBL turbulence based on wind, wave and buoyancy inputs. We verify recent hypotheses that even very subtle thermal stratification, below often assumed limits of 0.1°C, are sufficient to establish sustained stratification even during active surface forcing. We also find that while buoyant production (convection) is not an efficient mechanism for mixing beyond the base of the mixed layer it does play an important role in modification of surface structure, acting to precondition the OSBL for enhanced (deeper) impacts from wind and wave driven turbulence.

  11. The Response of the Ocean Thermal Skin Layer to Variations in Incident Infrared Radiation

    NASA Astrophysics Data System (ADS)

    Wong, Elizabeth W.; Minnett, Peter J.

    2018-04-01

    Ocean warming trends are observed and coincide with the increase in concentrations of greenhouse gases in the atmosphere resulting from human activities. At the ocean surface, most of the incoming infrared (IR) radiation is absorbed within the top micrometers of the ocean's surface where the thermal skin layer (TSL) exists. Thus, the incident IR radiation does not directly heat the upper few meters of the ocean. This paper investigates the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that given the heat lost through the air-sea interface is controlled by the TSL, the TSL adjusts in response to variations in incident IR radiation to maintain the surface heat loss. This modulates the flow of heat from below and hence controls upper ocean heat content. This hypothesis is tested using the increase in incoming longwave radiation from clouds and analyzing vertical temperature profiles in the TSL retrieved from sea-surface emission spectra. The additional energy from the absorption of increasing IR radiation adjusts the curvature of the TSL such that the upward conduction of heat from the bulk of the ocean into the TSL is reduced. The additional energy absorbed within the TSL supports more of the surface heat loss. Thus, more heat beneath the TSL is retained leading to the observed increase in upper ocean heat content.

  12. Bacterial Communities of Surface Mixed Layer in the Pacific Sector of the Western Arctic Ocean during Sea-Ice Melting

    PubMed Central

    Ha, Ho Kyung; Kim, Hyun Cheol; Kim, Ok-Sun; Lee, Bang Yong; Cho, Jang-Cheon; Hur, Hor-Gil; Lee, Yoo Kyung

    2014-01-01

    From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting. PMID:24497990

  13. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting.

    PubMed

    Han, Dukki; Kang, Ilnam; Ha, Ho Kyung; Kim, Hyun Cheol; Kim, Ok-Sun; Lee, Bang Yong; Cho, Jang-Cheon; Hur, Hor-Gil; Lee, Yoo Kyung

    2014-01-01

    From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting.

  14. Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?

    NASA Astrophysics Data System (ADS)

    O'Dowd, Colin; Ceburnis, Darius; Ovadnevaite, Jurgita; Bialek, Jakub; Stengel, Dagmar B.; Zacharias, Merry; Nitschke, Udo; Connan, Solene; Rinaldi, Matteo; Fuzzi, Sandro; Decesari, Stefano; Cristina Facchini, Maria; Marullo, Salvatore; Santoleri, Rosalia; Dell'Anno, Antonio; Corinaldesi, Cinzia; Tangherlini, Michael; Danovaro, Roberto

    2015-10-01

    Bursting bubbles at the ocean-surface produce airborne salt-water spray-droplets, in turn, forming climate-cooling marine haze and cloud layers. The reflectance and ultimate cooling effect of these layers is determined by the spray’s water-uptake properties that are modified through entrainment of ocean-surface organic matter (OM) into the airborne droplets. We present new results illustrating a clear dependence of OM mass-fraction enrichment in sea spray (OMss) on both phytoplankton-biomass, determined from Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP). The correlation coefficient for OMss as a function of Chl-a increased form 0.67 on a daily timescale to 0.85 on a monthly timescale. An even stronger correlation was found as a function of NPP, increasing to 0.93 on a monthly timescale. We suggest the observed dependence is through the demise of the bloom, driven by nanoscale biological processes (such as viral infections), releasing large quantities of transferable OM comprising cell debris, exudates and other colloidal materials. This OM, through aggregation processes, leads to enrichment in sea-spray, thus demonstrating an important coupling between biologically-driven plankton bloom termination, marine productivity and sea-spray modification with potentially significant climate impacts.

  15. Formation and spreading of Red Sea Outflow Water in the Red Sea

    NASA Astrophysics Data System (ADS)

    Zhai, Ping; Bower, Amy S.; Smethie, William M.; Pratt, Larry J.

    2015-09-01

    Hydrographic data, chlorofluorocarbon-12 (CFC-12) and sulfur hexafluoride (SF6) measurements collected in March 2010 and September-October 2011 in the Red Sea, as well as an idealized numerical experiment are used to study the formation and spreading of Red Sea Outflow Water (RSOW) in the Red Sea. Analysis of inert tracers, potential vorticity distributions, and model results confirm that RSOW is formed through mixed-layer deepening caused by sea surface buoyancy loss in winter in the northern Red Sea and reveal more details on RSOW spreading rates, pathways, and vertical structure. The southward spreading of RSOW after its formation is identified as a layer with minimum potential vorticity and maximum CFC-12 and SF6. Ventilation ages of seawater within the RSOW layer, calculated from the partial pressure of SF6 (pSF6), range from 2 years in the northern Red Sea to 15 years at 17°N. The distribution of the tracer ages is in agreement with the model circulation field which shows a rapid transport of RSOW from its formation region to the southern Red Sea where there are longer circulation pathways and hence longer residence time due to basin wide eddies. The mean residence time of RSOW within the Red Sea estimated from the pSF6 age is 4.7 years. This time scale is very close to the mean transit time (4.8 years) for particles from the RSOW formation region to reach the exit at the Strait of Bab el Mandeb in the numerical experiment.

  16. Closing the Seasonal Ocean Surface Temperature Balance in the Eastern Tropical Oceans from Remote Sensing and Model Reanalyses

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol A.

    2012-01-01

    The Eastern tropical ocean basins are regions of significant atmosphere-ocean interaction and are important to variability across subseasonal to decadal time scales. The numerous physical processes at play in these areas strain the abilities of coupled general circulation models to accurately reproduce observed upper ocean variability. Furthermore, limitations in the observing system of important terms in the surface temperature balance (e.g., turbulent and radiative heat fluxes, advection) introduce uncertainty into the analyses of processes controlling sea surface temperature variability. This study presents recent efforts to close the surface temperature balance through estimation of the terms in the mixed layer temperature budget using state-of-the-art remotely sensed and model-reanalysis derived products. A set of twelve net heat flux estimates constructed using combinations of radiative and turbulent heat flux products - including GEWEX-SRB, ISCCP-SRF, OAFlux, SeaFlux, among several others - are used with estimates of oceanic advection, entrainment, and mixed layer depth variability to investigate the seasonal variability of ocean surface temperatures. Particular emphasis is placed on how well the upper ocean temperature balance is, or is not, closed on these scales using the current generation of observational and model reanalysis products. That is, the magnitudes and spatial variability of residual imbalances are addressed. These residuals are placed into context within the current uncertainties of the surface net heat fluxes and the role of the mixed layer depth variability in scaling the impact of those uncertainties, particularly in the shallow mixed layers of the Eastern tropical ocean basins.

  17. Dynamic ikaite production and dissolution in sea ice - control by temperature, salinity and pCO2 conditions

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Papakyriakou, T.; Sørensen, L. L.; Sievers, J.; Notz, D.

    2013-12-01

    Ikaite is a hydrous calcium carbonate mineral (CaCO3 · 6H2O). It is only found in a metastable state, and decomposes rapidly once removed from near-freezing water. Recently, ikaite crystals have been found in sea ice and it has been suggested that their precipitation may play an important role in air-sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an out-door pool of the Sea-ice Environmental Research Facility (SERF). During the experiment, ikaite precipitated in sea ice with temperatures below -3 °C, creating three distinct zones of ikaite concentrations: (1) a mm to cm thin surface layer containing frost flowers and brine skim with bulk concentrations of > 2000 μmol kg-1, (2) an internal layer with concentrations of 200-400 μmol kg-1 and (3) a~bottom layer with concentrations of < 100 μmol kg-1. Snowfall events caused the sea ice to warm, dissolving ikaite crystals under acidic conditions. Manual removal of the snow cover allowed the sea ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The modeled (FREZCHEM) ikaite concentrations were in the same order of magnitude as observations and suggest that ikaite concentration in sea ice increase with decreasing temperatures. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in sea ice. This will have implications for CO2 exchange with the atmosphere and ocean.

  18. Temporal dynamics of ikaite in experimental sea ice

    NASA Astrophysics Data System (ADS)

    Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Notz, D.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Sørensen, L. L.; Sievers, J.; Papakyriakou, T.

    2014-08-01

    Ikaite (CaCO3 · 6H2O) is a metastable phase of calcium carbonate that normally forms in a cold environment and/or under high pressure. Recently, ikaite crystals have been found in sea ice, and it has been suggested that their precipitation may play an important role in air-sea CO2 exchange in ice-covered seas. Little is known, however, of the spatial and temporal dynamics of ikaite in sea ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in sea ice grown at an outdoor pool of the Sea-ice Environmental Research Facility (SERF) in Manitoba, Canada. During the experiment, ikaite precipitated in sea ice when temperatures were below -4 °C, creating three distinct zones of ikaite concentrations: (1) a millimeter-to-centimeter-thin surface layer containing frost flowers and brine skim with bulk ikaite concentrations of >2000 μmol kg-1, (2) an internal layer with ikaite concentrations of 200-400 μmol kg-1, and (3) a bottom layer with ikaite concentrations of <100 μmol kg-1. Snowfall events caused the sea ice to warm and ikaite crystals to dissolve. Manual removal of the snow cover allowed the sea ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The observed ikaite concentrations were on the same order of magnitude as modeled by FREZCHEM, which further supports the notion that ikaite concentration in sea ice increases with decreasing temperature. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in sea ice. This could have a major implication for CO2 exchange with the atmosphere and ocean that has not been accounted for previously.

  19. The coccolithophores Emiliania huxleyi and Coccolithus pelagicus: Extant populations from the Norwegian-Iceland Seas and Fram Strait

    NASA Astrophysics Data System (ADS)

    Dylmer, C. V.; Giraudeau, J.; Hanquiez, V.; Husum, K.

    2015-04-01

    The distributions of the coccolithophore species Emiliania huxleyi and Coccolithus pelagicus (heterococcolith-bearing phase) in the northern North Atlantic were investigated along two zonal transects crossing Fram Strait and the Norwegian-Iceland Sea, respectively, each conducted during both July 2011 and September-October 2007. Remote-sensing images as well as CTD and ARGO profiles were used to constrain the physico-chemical state of the surface water and surface mixed layer at the time of sampling. Strong seasonal differences in bulk coccolithophore standing stocks characterized the northern and southern transects, where the maximum values of 53×103 cells/l (fall) and 70×103 cells/l (summer), respectively, were essentially explained by E. huxleyi. This pattern confirms previous findings of a summer to fall northwestward shift in peak coccolithophore cell densities within the Nordic Seas. While depicting an overall zonal shift in high cell densities between the summer (Norwegian Sea) and fall (northern Iceland Sea) conditions, the southern transects were additionally characterized by local peak coccolithophore concentrations associated with a geographically and temporally restricted convective process (Lofoten Gyre, summer), as well as an island mass effect (in the vicinity of Jan Mayen Island, fall). Maximum coccolithophore abundances within Fram Strait were found during both seasons close to the western frontal zone (Polar and Arctic Fronts) an area of strong density gradients where physical and chemical properties of the surface mixed layer are prone to enhance phytoplankton biomass and productivity. Here, changes in species dominance from E. huxleyi in summer, to C. pelagicus in fall, were related to the strengthened influence during summer, of surface AW, as well as to high July solar irradiance, within an area usually characterized by C. pelagicus-dominated low density populations.

  20. Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling.

    PubMed

    Renault, Lionel; McWilliams, James C; Masson, Sebastien

    2017-12-18

    Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the air-sea transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for air-sea interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.

  1. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    NASA Astrophysics Data System (ADS)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  2. An equilibrium model for the coupled ocean-atmosphere boundary layer in the tropics

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Betts, Alan K.

    1991-01-01

    An atmospheric convective boundary layer (CBL) model is coupled to an ocean mixed-layer (OML) model in order to study the equilibrium state of the coupled system in the tropics, particularly in the Pacific region. The equilibrium state of the coupled system is solved as a function of sea-surface temperature (SST) for a given surface wind and as a function of surface wind for a given SST. It is noted that in both cases, the depth of the CBL and OML increases and the upwelling below the OML decreases, corresponding to either increasing SST or increasing surface wind. The coupled ocean-atmosphere model is solved iteratively as a function of surface wind for a fixed upwelling and a fixed OML depth, and it is observed that SST falls with increasing wind in both cases. Realistic gradients of mixed-layer depth and upwelling are observed in experiments with surface wind and SST prescribed as a function of longitude.

  3. Version 2 Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF2)

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.; Shie, Chung-Lin; Starr, David O'C. (Technical Monitor)

    2002-01-01

    Information on the turbulent fluxes of momentum, moisture, and heat at the air-sea interface is essential in improving model simulations of climate variations and in climate studies. We have derived a 13.5-year (July 1987-December 2000) dataset of daily surface turbulent fluxes over global oceans from the Special Sensor Mcrowave/Imager (SSM/I) radiance measurements. This dataset, version 2 Goddard Satellite-based Surface Turbulent Fluxes (GSSTF2), has a spatial resolution of 1 degree x 1 degree latitude-longitude and a temporal resolution of 1 day. Turbulent fluxes are derived from the SSM/I surface winds and surface air humidity, as well as the 2-m air and sea surface temperatures (SST) of the NCEP/NCAR reanalysis, using a bulk aerodynamic algorithm based on the surface layer similarity theory.

  4. Low Cloud Type over the Ocean from Surface Observations. Part III: Relationship to Vertical Motion and the Regional Surface Synoptic Environment.

    NASA Astrophysics Data System (ADS)

    Norris, Joel R.; Klein, Stephen A.

    2000-01-01

    Composite large-scale dynamical fields contemporaneous with low cloud types observed at midlatitude Ocean Weather Station (OWS) C and eastern subtropical OWS N are used to establish representative relationships between low cloud type and the synoptic environment. The composites are constructed by averaging meteorological observations of surface wind and sea level pressure from volunteering observing ships (VOS) and analyses of sea level pressure, 1000-mb wind, and 700-mb pressure vertical velocity from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis project on those dates and times of day when a particular low cloud type was reported at the OWS.VOS and NCEP results for OWS C during summer show that bad-weather stratus occurs with strong convergence and ascent slightly ahead of a surface low center and trough. Cumulus-under-stratocumulus and moderate and large cumulus occur with divergence and subsidence in the cold sector of an extratropical cyclone. Both sky-obscuring fog and no-low-cloud typically occur with southwesterly flow from regions of warmer sea surface temperature and differ primarily according to slight surface convergence and stronger warm advection in the case of sky-obscuring fog or surface divergence and weaker warm advection in the case of no-low-cloud. Fair-weather stratus and ordinary stratocumulus are associated with a mixture of meteorological conditions, but differ with respect to vertical motion in the environment. Fair-weather stratus occurs most commonly in the presence of slight convergence and ascent, while stratocumulus often occurs in the presence of divergence and subsidence.Surface divergence and estimated subsidence at the top of the boundary layer are calculated from VOS observations. At both OWS C and OWS N during summer and winter these values are large for ordinary stratocumulus, less for cumulus-under-stratocumulus, and least (and sometimes slightly negative) for moderate and large cumulus. Subsidence interpolated from NCEP analyses to the top of the boundary layer does not exhibit such variation, but the discrepancy may be due to deficiencies in the analysis procedure or the boundary layer parameterization of the NCEP model. The VOS results suggest that decreasing divergence and subsidence in addition to increasing sea surface temperature may promote the transition from stratocumulus to trade cumulus observed over low-latitude oceans.

  5. [FATTY ACID COMPOSITION ALTEROMONAS-LIKE BACTERIA ISOLATED FROM THE BLACK SEA WATER].

    PubMed

    Klochko, V V; Avdeeva, L V

    2015-01-01

    Alteromonas macleodii strains isolated from the Black sea water were similar in their fatty acids composition with the type strain of this species. Analysis of lipid composition of 10 A. macleodii strains isolated from the deep and surface water layers in different World ocean regions including the Black sea water has shown that the deep and surface isolates of this species formed two groups different in their fatty acids profiles. The Black sea isolates of Pseudoalteromonas haloplanktis, P. citrea, P. flavipulchra conformed to these species type strains in their fatty acids composition. On the basis of the fatty acids spectra similarity of three Pseudoalteromonas species strains with Plipolytica described in 2010 has been established. Presence of three isomers C16:1ψ7, C 16:1ψ9 and C16:1ψ6--components of hexadecenic acid in the Black sea isolates of Shewanella baltica has been shown.

  6. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes

    NASA Technical Reports Server (NTRS)

    Frankignoul, C.

    1985-01-01

    Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.

  7. Turbulent Surface Flux Measurements over Snow-Covered Sea Ice

    NASA Astrophysics Data System (ADS)

    Andreas, E. L.; Fairall, C. W.; Grachev, A. A.; Guest, P. S.; Jordan, R. E.; Persson, P. G.

    2006-12-01

    Our group has used eddy correlation to make over 10,000 hours of measurements of the turbulent momentum and heat fluxes over snow-covered sea ice in both the Arctic and the Antarctic. Polar sea ice is an ideal site for studying fundamental processes for turbulent exchange over snow. Both our Arctic and Antarctic sites---in the Beaufort Gyre and deep into the Weddell Sea, respectively---were expansive, flat areas with continuous snow cover; and both were at least 300 km from any topography that might have complicated the atmospheric flow. In this presentation, we will review our measurements of the turbulent fluxes of momentum and sensible and latent heat. In particular, we will describe our experiences making turbulence instruments work in the fairly harsh polar, marine boundary layer. For instance, several of our Arctic sites were remote from our main camp and ran unattended for a week at a time. Besides simply making flux measurements, we have been using the data to develop a bulk flux algorithm and to study fundamental turbulence processes in the atmospheric surface layer. The bulk flux algorithm predicts the turbulent surface fluxes from mean meteorological quantities and, thus, will find use in data analyses and models. For example, components of the algorithm are already embedded in our one- dimensional mass and energy budget model SNTHERM. Our fundamental turbulence studies have included deducing new scaling regimes in the stable boundary layer; examining the Monin-Obukhov similarity functions, especially in stable stratification; and evaluating the von Kármán constant with the largest atmospheric data set ever applied to such a study. During this presentation, we will highlight some of this work.

  8. Satellite monitoring of sea surface pollution

    NASA Technical Reports Server (NTRS)

    Fielder, G.; Telfer, D. J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Image processing techniques developed are well adapted to the exploration and isolation of local areas which exhibit small temperature differences between themselves and their surroundings. In the worst case of imagery of small areal extent of sea surface having no coastal boundary in the area, there is yet no method of distinguishing unambiguously an oil spill from fog, cloud, the effect produced by shallow sediments, or the effects of naturally occuring thermal fronts. In the case of uniform slicks of liquid North Sea oil in still air, laboratory simulation experiments show that, for oil thicknesses in excess of 1 or 2 mm, there is, under equilibrium conditions, little dependence of oil surface temperature on the thickness of the oil layer. The surface temperature of oil is consistently higher than that of water, the difference being about 1 K at low values of relative humidity, but tending to increase as the relative humidity increases.

  9. Geometry and spatial variations of seismic reflection intensity of the upper surface of the Philippine Sea plate off the Boso Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Kono, Akihiro; Sato, Toshinori; Shinohara, Masanao; Mochizuki, Kimihiro; Yamada, Tomoaki; Uehira, Kenji; Shinbo, Takashi; Machida, Yuya; Hino, Ryota; Azuma, Ryousuke

    2017-07-01

    In the region off the Boso Peninsula, Japan, the Pacific plate is subducting westward beneath both the Honshu island arc and Philippine Sea plate, while the Philippine Sea plate is subducting northwestward beneath the Honshu island arc. These complex tectonic interactions have caused numerous seismic events occurred in the past. To better understand these seismic events, it is important to determine the geometry of the plate boundary, in particular the upper surface of the Philippine Sea plate. We conducted an active-source seismic refraction survey in July and August 2009 from which we obtained a 2-D P-wave velocity structure model along a 216-km profile. We used the velocity model and previously published data that indicate a P-wave velocity of 5.0 km/s for the upper surface of the subducting Philippine Sea plate to delineate its boundary with the overriding Honshu island arc. Our isodepth contours of the upper surface of the Philippine Sea plate show that its dip is shallow at depths of 10 to 15 km, far off the Boso Peninsula. This shallow dip may be a result of interference from the Pacific plate slab, which is subducting westward under the Philippine Sea plate. Within our survey data, we recognized numerous seismic reflections of variable intensity, some of which came from the upper surface of the Philippine Sea plate. An area of high seismic reflection intensity corresponds with the main slip area of the Boso slow slip events. Our modeling indicates that those reflections can be explained by an inhomogeneous layer close to the upper surface of the Philippine Sea plate.

  10. Preliminary results on ocean dynamics from Skylab and their implications for future spacecraft

    NASA Technical Reports Server (NTRS)

    Hayes, J.; Pierson, W. J.; Cardone, V. J.

    1975-01-01

    The instrument aboard Skylab designated S193 - a combined passive and active microwave radar system acting as a radiometer, scatterometer, and altimeter - is used to measure the surface vector wind speeds in the planetary boundary layer over the oceans. Preliminary results corroborate the hypothesis that sea surface winds in the planetary boundary layer can be determined from satellite data. Future spacecraft plans for measuring a geoid with an accuracy up to 10 cm are discussed.

  11. Microplastics in the Baltic Sea water: fibers everywhere.

    NASA Astrophysics Data System (ADS)

    Khatmullina, Lilia; Bagaev, Andrey; Chubarenko, Irina

    2017-04-01

    Presence of thin synthetic fibres (microfibres, tens of micrometres in diameter) in the surface waters and sediments is documented in different studies; however, the data on their exact abundances in the marine environment are commonly not presented owing to the shortcomings of the sampling procedure and general absence of well-established methodology for microplastics data collection. Nevertheless, we made an attempt to qualitatively analyse the amounts of microplastic fibres in the water column of the Baltic Sea. Water samples acquired during 6 cruises over the Baltic Sea Proper in 2015-2016 were filtered using 174 μm filters, which were subsequently analysed by microscope. From the total of 95 examined filters, 63% contained fibres. They were identified by colour and the reaction to the mechanical action of a thin needle: justification of anthropogenic origin was considered to be enough; any questionable objects were discarded. Fibres comprise more than 90% of the whole microplastic particles found in the near-bottom layers in the coastal zone and around 24% of microplastics in the surface and intermediate waters, with mean concentrations of 0.71 and 0.07 fibres per litre, respectively. Although the methodology still requires a lot of enhancement, even the preliminary results indicate ubiquitous distribution of the microfibres in the water column of the Baltic Sea with surface and bottom layers revealing higher abundances of microfibres in comparison with intermediate layers, and open-sea waters being less contaminated than the coastal ones. Apart from enhancing the sampling technics, we consider that it is crucial to understand principal physical features of fibers behavior in the marine environment (e.g., settling, entrainment by currents), as it would provide an opportunity to parameterize their transport and further on to model distribution of fibers in the water column. The research is supported by the Russian Science Foundation grant number 15-17-10020.

  12. High-Albedo Salt Crusts on the Tropical Ocean of Snowball Earth: Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Carns, R.; Light, B.; Warren, S. G.

    2014-12-01

    During a Snowball Earth event, almost all of the ocean surface first freezes as sea ice. As in modern sea ice, trapped inclusions of liquid brine permeate the ice cover. As the ice grows and cools, salt crystals precipitate within the inclusions. At -23C, the most abundant salt in seawater, sodium chloride, begins to precipitate as the dihydrate mineral hydrohalite (NaCl·2H2O). Crystals of hydrohalite within the sea ice scatter light. Measurements of cold, natural sea ice show a broadband albedo increase of 10-20% when salt precipitates. Such snow-free natural sea ice with a surface temperature below -23C is rare on modern Earth, but would have been common in tropical regions of a Snowball Earth where evaporation exceeded precipitation. The persistent cold and lack of summer melt on the Snowball ocean surface, combined with net evaporation, is hypothesized to yield lag deposits of hydrohalite crystals on the ice surface. To investigate this process, we prepared laboratory-grown sea ice in a 1000 liter tank in a walk-in freezer laboratory. The ice was cooled below -23 C and the surface sprayed with a 23% NaCl solution to create a layer of hydrohalite-enriched ice, a proxy for lag deposits that would have formed over long periods of surface sublimation. We have developed a novel technique for measuring the spectral albedo of ice surfaces in the laboratory; this technique was used to monitor the evolution of the surface albedo of our salt crust as the ice matrix sublimated away leaving a layer of fine-grained hydrohalite crystals. Measurements of this hydrohalite surface crust show a very high albedo, comparable to fresh snow at visible wavelengths and significantly larger than fresh snow at near infrared wavelengths. Broadband albedos are 0.55 for bare artificial sea ice at -30C, 0.75 for ice containing 25% hydrohalite by volume, 0.84 after five days of desiccation and 0.93 after 47 days of desiccation. Using our laboratory measurements, along with estimates of grain size and crust optical depth, as inputs to Mie scattering and radiative transfer models allowed us to infer the imaginary refractive index of hydrohalite. The model can calculate albedo for pure hydrohalite crusts of varying thickness and for mixtures of ice and hydrohalite. A parameterization is presented for albedo as a function of the thickness of the hydrohalite crust.

  13. Sea-State Dependence of Aerosol Concentration in the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lenain, L.; Melville, W. K.

    2016-02-01

    While sea spray aerosols represent a large portion of the aerosols present in the marine environment, and despite evidence of the importance of surface wave and wave-breaking related processes in the coupling of the ocean with the atmosphere, sea spray source generation functions are traditionally parameterized by the wind speed at 10m. It is clear that unless the wind and wave field are fully developed, the source function will be a function of both wind and wave parameters. In this study, we report on an air-sea interaction experiment, the ONR phase-resolved High-Resolution Air-Sea Interaction experiments (HIRES), conducted off the coast of Northern California in June 2010. Detailed measurements of aerosol number concentration in the Marine Atmospheric Boundary Layer (MABL), at altitudes ranging from as low as 30m and up to 800m AMSL over a broad range of environmental conditions (significant wave height, Hs, of 2 to 4.5m and wind speed at 10m height, U10, of 10 to 18 m/s) collected from an instrumented research aircraft, are presented. Aerosol number densities and volume are computed over a range of particle diameters from 0.1 to 200 µm, while the surface conditions, i.e. significant wave height, moments of the breaker length distribution Λ(c), and wave breaking dissipation, were measured by a suite of electro-optical sensors that included the NASA Airborne Topographic Mapper (ATM). The sea-state dependence of the aerosol concentration in the MABL is evident, ultimately stressing the need to incorporate wave and wave kinematics in the spray source generation functions that are traditionally primarily parameterized by surface winds. A scaling of the measured aerosol volume distribution by wave and atmospheric state variables is proposed.

  14. Varieties of submesoscale dynamics in the south-west Pacific.

    NASA Astrophysics Data System (ADS)

    Srinivasan, K.; Renault, L.; McWilliams, J. C.

    2016-02-01

    The large-scale circulation in the topographically complex south-west Pacific region con-sists of an equatorward western boundary current along the coast of Papua New Guinea andwestern Solomon sea, the equatorial currents to the north and east of the Solomon islands,and the multiple jet-like zonal currents generated by the numerous islands to the south in theCoral Sea. Employing a hierarchy of nested, realistic ocean modeling experiments in ROMS,with horizontal resolutions as fine as 500m, we examine the dynamics of submesoscales inthis region. We construct spatial maps of statistics of the surface divergence (δ), vortic-ity (ζ)), buoyancy gradient (∇b) and the frontogenetic tendency (Tadv ), to identify areas ofactive submesoscales and their seasonal variability. More specifically, such areas are charac-terized by high variance of δ, ζ, ∇b and Tadv and a corresponding high negative skewnessin surface divergence, since frontogenesis is a downwelling-dominant physical process. Suchareas include sites in and around the Solomon Sea, with eddy generation through separa-tion of bottom-drag generated shear layers, the Coral Sea open ocean mixed-layer submesoscale `soup'generated through baroclinic instability and frontogenesis, and lastly, Equatorial fronts thatwe believe are hitherto unobserved and thought to be largely absent on theoretical groundsrequiring the presence of background rotation in frontogenesis. While the Coral Sea subme-soscale soup peaks in the (Southern hemisphere) winter, Equatorial frontal activity showsa summer-spring maximum. The dynamics of frontogenesis is particularly complex in theSolomon Sea where topographically generated eddies interact with mixed-layer buoyancygradients, that are in turn controlled by interplay of the warm equatorial currents to thenorth, the cooler Coral sea intrusions from the south and rather significantly, the strongand highly seasonal rainfall patterns and the corresponding freshwater input. A concomi-tant analysis of the energy inter-conversion between eddy and mean potential and kineticenergies is used to supplement the statistical results.

  15. Structure of Subsurface Sediments in the Scan Basin (Scotia Sea)

    NASA Astrophysics Data System (ADS)

    Schreider, Al. A.; Schreider, A. A.; Sazhneva, A. E.; Galindo-Zaldivar, J.; Ruano, P.; Maldonado, A.; Martos-Martin, Y.; Lobo, F.

    2018-01-01

    The structure of sediments in the Scotia Sea is used as a basis for reconstructing the geological history of its bottom in the Late Quaternary. The Scan Basin is one of the main elements of the topography of the southern Scotia Sea. Its formation played a considerable role in the fragmentation of the continent, which included the Bruce and Discovery banks. The main parameters of the sediment layer in the Scan Basin have been reconstructed by the present time, but its top part has not been studied. In this work, we analyze the first data obtained on the R/V Gesperidas with the use of a TOPAS PS 18/40 high-resolution seismic profilograph in 2012. Three layers in the subsurface sediments on the bottom of the Scan Basin were specified for the first time. The mean periods of their deposition in the Late Quaternary were determined as 115000 years for the first, 76000 years for the second, and 59 000 years for the third layer from the surface of the bottom. The duration of the total accumulation period of the three layers is about 250000 years.

  16. Midlatitude atmosphere-ocean interaction during El Nino. Part I. The north Pacific ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, M.A.

    Atmosphere-ocean modeling experiments are used to investigate the formation of sea surface temperature (SST) anomalies in the North Pacific Ocean during fall and winter of the El Nino year. Experiments in which the NCAR Community Climate Model (CCM) surface fields are used to force a mixed-layer ocean model in the North Pacific (no air-sea feedback) are compared to simulations in which the CCM and North Pacific Ocean model are coupled. Anomalies in the atmosphere and the North Pacific Ocean during El Nino are obtained from the difference between simulations with and without prescribed warm SST anomalies in the tropical Pacific.more » In both the forced and coupled experiments, the anomaly pattern resembles a composite of the actual SST anomaly field during El Nino: warm SSTs develop along the coast of North America and cold SSTs form in the central Pacific. In the coupled simulations, air-sea interaction results in a 25% to 50% reduction in the magnitude of the SST and mixed-layer depth anomalies, resulting in more realistic SST fields. Coupling also decreases the SST anomaly variance; as a result, the anomaly centers remain statistically significant even though the magnitude of the anomalies is reduced. Three additional sensitivity studies indicate that air-sea feedback and entrainment act to damp SST anomalies while Ekman pumping has a negligible effect on mixed-layer depth and SST anomalies in midatitudes.« less

  17. Polar boundary layer bromine explosion and ozone depletion events in the chemistry-climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

    NASA Astrophysics Data System (ADS)

    Falk, Stefanie; Sinnhuber, Björn-Martin

    2018-03-01

    Ozone depletion events (ODEs) in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR) and vertical column densities (VCDs) of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE) events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) based on the scheme of Toyota et al. (2011). In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME) satellite BrO VCDs and surface ozone observations.

  18. Observation of Sea Ice Surface Thermal States Under Cloud Cover

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Perovich, D. K.; Gow, A. J.; Kwok, R.; Barber, D. G.; Comiso, J. C.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Clouds interfere with the distribution of short-wave and long-wave radiations over sea ice, and thereby strongly affect the surface energy balance in polar regions. To evaluate the overall effects of clouds on climatic feedback processes in the atmosphere-ice-ocean system, the challenge is to observe sea ice surface thermal states under both clear sky and cloudy conditions. From laboratory experiments, we show that C-band radar (transparent to clouds) backscatter is very sensitive to the surface temperature of first-year sea ice. The effect of sea ice surface temperature on the magnitude of backscatter change depends on the thermal regimes of sea ice thermodynamic states. For the temperature range above the mirabilite (Na2SO4.10H20) crystallization point (-8.2 C), C-band data show sea ice backscatter changes by 8-10 dB for incident angles from 20 to 35 deg at both horizontal and vertical polarizations. For temperatures below the mirabilite point but above the crystallization point of MgCl2.8H2O (-18.0 C), relatively strong backwater changes between 4-6 dB are observed. These backscatter changes correspond to approximately 8 C change in temperature for both cases. The backscattering mechanism is related to the temperature which determines the thermodynamic distribution of brine volume in the sea ice surface layer. The backscatter is positively correlated to temperature and the process is reversible with thermodynamic variations such as diurnal insolation effects. From two different dates in May 1993 with clear and overcast conditions determined by the Advanced Very High Resolution Radiometer (AVHRR), concurrent Earth Resources Satellite 1 (ERS-1) C-band ice observed with increases in backscatter over first-year sea ice, and verified by increases in in-situ sea ice surface temperatures measured at the Collaborative-Interdisciplinary Cryosphere Experiment (C-ICE) site.

  19. Winter ocean-ice interactions under thin sea ice observed by IAOOS platforms during N-ICE2015: Salty surface mixed layer and active basal melt

    NASA Astrophysics Data System (ADS)

    Koenig, Zoé; Provost, Christine; Villacieros-Robineau, Nicolas; Sennéchael, Nathalie; Meyer, Amelie

    2016-10-01

    IAOOS (Ice Atmosphere Arctic Ocean Observing System) platforms, measuring physical parameters at the atmosphere-snow-ice-ocean interface deployed as part of the N-ICE2015 campaign, provide new insights on winter conditions North of Svalbard. The three regions crossed during the drifts, the Nansen Basin, the Sofia Deep, and the Svalbard northern continental slope featured distinct hydrographic properties and ice-ocean exchanges. In the Nansen Basin, the quiescent warm layer was capped by a stepped halocline (60 and 110 m) and a deep thermocline (110 m). Ice was forming and the winter mixed layer salinity was larger by ˜0.1 g/kg than previously observed. Over the Svalbard continental slope, the Atlantic Water (AW) was very shallow (20 m from the surface) and extended offshore from the 500 m isobath by a distance of about 70 km, sank along the slope (40 m from the surface) and probably shed eddies into the Sofia Deep. In the Sofia Deep, relatively warm waters of Atlantic origin extended from 90 m downward. Resulting from different pathways, these waters had a wide range of hydrographic characteristics. Sea-ice melt was widespread over the Svalbard continental slope and ocean-to-ice heat fluxes reached values of 400 W m-2 (mean of ˜150 W m-2 over the continental slope). Sea-ice melt events were associated with near 12 h fluctuations in the mixed-layer temperature and salinity corresponding to the periodicity of tides and near-inertial waves potentially generated by winter storms, large barotropic tides over steep topography, and/or geostrophic adjustments.

  20. SJL-1, a C-type lectin, acts as a surface defense molecule in Japanese sea cucumber, Apostichopus japonicus.

    PubMed

    Ono, Keisuke; Suzuki, Takuya Alan; Toyoshima, Youichi; Suzuki, Tomoya; Tsutsui, Shigeyuki; Odaka, Tomoyuki; Miyadai, Toshiaki; Nakamura, Osamu

    2018-05-01

    The surface defense molecules of aquatic invertebrates against infectious microorganisms have remained largely unexplored. In the present study, hemagglutinins were isolated from an extract of body surface layer of Japanese sea cucumber, Apostichopus japonicus, by affinity chromatography with fixed rabbit erythrocyte membranes. The N-terminal sequence of a 15-kDa agglutinin was almost identical with that of SJL-1, a C-type lectin formerly identified in this species. Because cDNA sequence and tissue distribution of SJL-1 have not been reported, we performed cDNA sequencing, gene expression analysis, and western blotting and immunohistochemical evaluation with anti-recombinant SJL-1 (rSJL-1) antibodies. The hemagglutinin gene was transcribed mainly in the integument, tentacles, and respiratory tree. Western blotting revealed that SJL-I is present in a body surface rinse, indicating that SJL-1 is secreted onto the body surface. SJL-1-positive cells scattered beneath the outermost layer of the integument were detected by immunohistochemistry. Furthermore, rSJL-1 agglutinated Gram-positive and Gram-negative bacteria, and yeast. These results indicate that SJL-1 acts as a surface defense molecule in A. japonicus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Evaluation of weather research and forecasting model parameterizations under sea-breeze conditions in a North Sea coastal environment

    NASA Astrophysics Data System (ADS)

    Salvador, Nadir; Reis, Neyval Costa; Santos, Jane Meri; Albuquerque, Taciana Toledo de Almeida; Loriato, Ayres Geraldo; Delbarre, Hervé; Augustin, Patrick; Sokolov, Anton; Moreira, Davidson Martins

    2016-12-01

    Three atmospheric boundary layer (ABL) schemes and two land surface models that are used in the Weather Research and Forecasting (WRF) model, version 3.4.1, were evaluated with numerical simulations by using data from the north coast of France (Dunkerque). The ABL schemes YSU (Yonsei University), ACM2 (Asymmetric Convective Model version 2), and MYJ (Mellor-Yamada-Janjic) were combined with two land surface models, Noah and RUC (Rapid Update Cycle), in order to determine the performances under sea-breeze conditions. Particular attention is given in the determination of the thermal internal boundary layer (TIBL), which is very important in air pollution scenarios. The other physics parameterizations used in the model were consistent for all simulations. The predictions of the sea-breeze dynamics output from the WRF model were compared with observations taken from sonic detection and ranging, light detection and ranging systems and a meteorological surface station to verify that the model had reasonable accuracy in predicting the behavior of local circulations. The temporal comparisons of the vertical and horizontal wind speeds and wind directions predicted by the WRF model showed that all runs detected the passage of the sea-breeze front. However, except for the combination of MYJ and Noah, all runs had a time delay compared with the frontal passage measured by the instruments. The proposed study shows that the synoptic wind attenuated the intensity and penetration of the sea breeze. This provided changes in the vertical mixing in a short period of time and on soil temperature that could not be detected by the WRF model simulations with the computational grid used. Additionally, among the tested schemes, the combination of the localclosure MYJ scheme with the land surface Noah scheme was able to produce the most accurate ABL height compared with observations, and it was also able to capture the TIBL.

  2. Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies

    NASA Astrophysics Data System (ADS)

    Alappattu, Denny P.; Wang, Qing; Yamaguchi, Ryan; Lind, Richard J.; Reynolds, Mike; Christman, Adam J.

    2017-08-01

    The sea surface temperature (SST) relevant to air-sea interaction studies is the temperature immediately adjacent to the air, referred to as skin SST. Generally, SST measurements from ships and buoys are taken at depths varies from several centimeters to 5 m below the surface. These measurements, known as bulk SST, can differ from skin SST up to O(1°C). Shipboard bulk and skin SST measurements were made during the Coupled Air-Sea Processes and Electromagnetic ducting Research east coast field campaign (CASPER-East). An Infrared SST Autonomous Radiometer (ISAR) recorded skin SST, while R/V Sharp's Surface Mapping System (SMS) provided bulk SST from 1 m water depth. Since the ISAR is sensitive to sea spray and rain, missing skin SST data occurred in these conditions. However, SMS measurement is less affected by adverse weather and provided continuous bulk SST measurements. It is desirable to correct the bulk SST to obtain a good representation of the skin SST, which is the objective of this research. Bulk-skin SST difference has been examined with respect to meteorological factors associated with cool skin and diurnal warm layers. Strong influences of wind speed, diurnal effects, and net longwave radiation flux on temperature difference are noticed. A three-step scheme is established to correct for wind effect, diurnal variability, and then for dependency on net longwave radiation flux. Scheme is tested and compared to existing correction schemes. This method is able to effectively compensate for multiple factors acting to modify bulk SST measurements over the range of conditions experienced during CASPER-East.

  3. Operationalizing Air-Sea Battle in the Pacific

    DTIC Science & Technology

    2015-02-01

    Joumall 25 \\/ FEATURE Ballard, Harysch, Cole, & Hall Operationalizing Ait’-Sea Battle in the Pacific tribes and nomadic marauders such as the...communications in general, the former focuses on the digital data links between different platforms. The original CSBA operational con- cept touches on this...very capable fourth-generation fighters; and it has fielded layers of upgraded and double- digit surface-to-air missile systems and antiaircraft

  4. Short-term climatic fluctuations forced by thermal anomalies

    NASA Technical Reports Server (NTRS)

    Hanna, A. F.

    1982-01-01

    A two level, global, spectral model using pressure as a vertical coordinate was developed. The system of equations describing the model is nonlinear and quasi-geostrophic (linear balance). Static stability is variable in the model. A moisture budget is calculated in the lower layer only. Convective adjustment is used to avoid supercritical temperature lapse rates. The mechanical forcing of topography is introduced as a vertical velocity at the lower boundary. Solar forcing is specified assuming a daily mean zenith angle. The differential diabatic heating between land and sea is paramterized. On land and sea ice surfaces, a steady state thermal energy equation is solved to calculate the surface temperature. On the oceans, the sea surface temperature is specified as the climatological average for January. The model is used to simulate the January, February and March circulations.

  5. Effects of an Arctic under-ice phytoplankton bloom on bio-optical properties of surface waters during the Norwegian Young Sea Ice Cruise (N-ICE2015)

    NASA Astrophysics Data System (ADS)

    Pavlov, A. K.; Granskog, M. A.; Hudson, S. R.; Taskjelle, T.; Kauko, H.; Hamre, B.; Assmy, P.; Mundy, C. J.; Nicolaus, M.; Kowalczuk, P.; Stedmon, C. A.; Fernandez Mendez, M.

    2016-02-01

    A thinner and younger Arctic sea-ice cover has led to an increase in solar light transmission into the surface ocean, especially during late spring and summer. A description of the seasonal evolution of polar surface water optical properties is essential, in order to understand how changes are affecting light availability for photosynthetic organisms and the surface ocean energy budget. The development of the bio-optical properties of Arctic surface waters under predominantly first-year sea ice in the southern Nansen Basin were studied from January to June 2015 during the Norwegian Young Sea Ice Cruise (N-ICE2015). Observations included inherent optical properties, absorption by colored dissolved organic matter and particles, as well as radiometric measurements. We documented a rapid transition from relatively clear and transparent waters in winter to turbid waters in late May and June. This transition was associated with a strong under-ice phytoplankton bloom detected first under the compact ice pack and then monitored during drift across the marginal ice zone. We discuss potential implications of underwater light availability for photosynthesis, heat redistribution in the upper ocean layer, and energy budget of the sea-ice - ocean system.

  6. Wave breaking induced surface wakes and jets observed during a bora event

    NASA Astrophysics Data System (ADS)

    Jiang, Qingfang; Doyle, James D.

    2005-09-01

    An observational and modeling study of a bora event that occurred during the field phase of the Mesoscale Alpine Programme is presented. Research aircraft in-situ measurements and airborne remote-sensing observations indicate the presence of strong low-level wave breaking and alternating surface wakes and jets along the Croatian coastline over the Adriatic Sea. The observed features are well captured by a high-resolution COAMPS simulation. Analysis of the observations and modeling results indicate that the long-extending wakes above the boundary layer are induced by dissipation associated with the low-level wave breaking, which locally tends to accelerate the boundary layer flow beneath the breaking. Farther downstream of the high peaks, a hydraulic jump occurs in the boundary layer, which creates surface wakes. Downstream of lower-terrain (passes), the boundary layer flow stays strong, resembling supercritical flow.

  7. Impact of tropical cyclone Matmo on mixed zone of the Yellow and Bohai seas

    NASA Astrophysics Data System (ADS)

    Guo, Jie; Ji, Diansheng; Hou, Chawei; Guo, Kai; Ji, Ling

    2017-12-01

    The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits (mixed zone). Its off shore seabed is shallow, which makes it vulnerable to serious marine meteorological disasters associated with the northward passage of Pacifi c tropical cyclones. Analyses on data of remote sensing and buoy of the mixed zone of the Yellow and Bohai seas indicate that all the wind speed, signifi cant wave height, and salinity (SAL) increased, sea surface temperature decreased, and wind energy density changed considerably during the passage of tropical cyclone Matmo on July 25, 2014. It was found that the SAL inversion layer in the mixed zone of the Yellow and Bohai Seas was caused by the tropical cyclone. Furthermore, it was found that the tropical cyclone transported the northern Yellow Sea cold water mass (NYSCWM) into the mixed zone of the Yellow and Bohai Seas. The NYSCWM has direct infl uence on both the aquaculture and the ecological environment of the region. Therefore, further research is needed to establish the mechanism behind the formation of the SAL inversion layer in the mixed zone, and to determine the infl uence of tropical cyclones on the NYSCWM.

  8. Features of Red Sea Water Masses

    NASA Astrophysics Data System (ADS)

    Kartadikaria, Aditya; Hoteit, Ibrahim

    2015-04-01

    Features of Red Sea water mass can be divided into three types but best to be grouped into two different classes that are split at the potential density line σθ=27.4. The surface water (0-50 m) and the intermediate water (50-200 m) have nearly identical types of water mass. They appear as a maxima salinity layer for the water mass that has σθ > 26.0, and as a minimum salinity layer for water mass that has σθ < 26.0. These types of water masses are strongly affected by mixing that is controlled by seasonal variability, fresh water intrusion of the Gulf of Aden Intermediate Water (GAIW), and eddies variability. Two types of mixing; isopycnal and diapycnal mixing are part of important physical phenomena that explain the change of water mass in the Red Sea. The isopycnal mixing occurs at the neutral potential density line, connecting the Red Sea with its adjacent channel, the Gulf of Aden. Diapycnal mixing is found as a dominant mixing mode in the surface of the Red Sea Water and mainly due to energetic eddy activity. Density gradients, across which diapycnal mixing occurs, in the Red Sea are mainly due to large variations in salinity. The isolation of an extreme haline water mass below the thermocline contributes to the generation of the latitudinal shift and low diapycnal mixing. This finding further explains the difference of spatial kinetic mixing between the RSW and the Indian Ocean basin.

  9. The effect of under-ice melt ponds on their surroundings in the Arctic

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Smith, N.; Flocco, D.

    2016-12-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Sheets of ice, known as false bottoms, can subsequently form via double diffusion processes at the under-ice melt pond interface with the ocean, trapping the pond against the ice and completely isolating it from the ocean below. This has an insulating effect on the parent sea ice above the trapped pond, altering its rate of basal ablation. A one-dimensional, thermodynamic model of Arctic sea ice has been adapted to study the evolution of under-ice melt ponds and false bottoms over time. Comparing simulations of sea ice evolution with and without an under-ice melt pond provides a measure of how an under-ice melt pond affects the mass balance of the sea ice above it. Sensitivity studies testing the response of the model to a range of uncertain parameters have been performed, revealing some interesting implications of under-ice ponds during their life cycle. By changing the rate of basal ablation of the parent sea ice, and so the flux of fresh water and salt into the ocean, under-ice melt ponds affect the properties of the mixed layer beneath the sea ice. Our model of under-ice melt pond refreezing has been coupled to a simple oceanic mixed layer model to determine the effect on mixed layer depth, salinity and temperature.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, B.; Valdes, P.J.

    The U.K. University Global Atmospheric Modeling Programme GCM is used to investigate whether the growth of Northern Hemisphere ice sheets could have been initiated by changes of orbital parameters and sea surface temperatures. Two different orbital configurations, corresponding to the present day and 115 kyr BP are used. The reduced summer solar insolation in the Northern Hemisphere results in a decrease of the surface temperature by 4{degrees} to 10{degrees}C in the northern continents and to perennial snow in some high-latitude regions. Therefore, the model results support the hypothesis that a deficit of summer insolation can create conditions favorable for initiationmore » of ice sheet growth in the Northern Hemisphere. A decreased sea surface temperature northward of 65{degrees}N during the Northern Hemisphere summer may contribute to the maintenance of ice sheets. A simple mixed-layer ocean model coupled to the GCM indicates that the changes of sea surface temperature and extension of sea ice due to insolation changes play an important role in inception of the Fennoscandian, Laurentide, and Cordilleran ice sheets. The model results suggest that the regions of greatest sensitivity for ice initiation are the Canadian Archipelago, Baffin Island, Tibetan Plateau, Scandinavia, Siberia, Alaska, and Keewatin, where changing orbital parameters to 115 kyr BP results in the snow cover remaining throughout the warmer summer, leading to long-term snow accumulation. The model results are in general agreement with geological evidence and are the first time that a GCM coupled with a mixed layer ocean has reproduced the inception of the Northern Hemisphere ice sheets. 69 refs., 21 figs., 3 tabs.« less

  11. Episodic Southern Ocean Heat Loss and Its Mixed Layer Impacts Revealed by the Farthest South Multiyear Surface Flux Mooring

    NASA Astrophysics Data System (ADS)

    Ogle, S. E.; Tamsitt, V.; Josey, S. A.; Gille, S. T.; Cerovečki, I.; Talley, L. D.; Weller, R. A.

    2018-05-01

    The Ocean Observatories Initiative air-sea flux mooring deployed at 54.08°S, 89.67°W, in the southeast Pacific sector of the Southern Ocean, is the farthest south long-term open ocean flux mooring ever deployed. Mooring observations (February 2015 to August 2017) provide the first in situ quantification of annual net air-sea heat exchange from one of the prime Subantarctic Mode Water formation regions. Episodic turbulent heat loss events (reaching a daily mean net flux of -294 W/m2) generally occur when northeastward winds bring relatively cold, dry air to the mooring location, leading to large air-sea temperature and humidity differences. Wintertime heat loss events promote deep mixed layer formation that lead to Subantarctic Mode Water formation. However, these processes have strong interannual variability; a higher frequency of 2 σ and 3 σ turbulent heat loss events in winter 2015 led to deep mixed layers (>300 m), which were nonexistent in winter 2016.

  12. A New Study of Sea Spray Optical Properties from Multi-Sensor Spaceborne Observations

    NASA Technical Reports Server (NTRS)

    Dawson, K. W.; Meskhidze, N.; Josset, D.; Gasso, S.

    2014-01-01

    Retrievals of aerosol optical depth (AOD) from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite sensor require the assumption of an extinction-to-backscatter ratio, also known as the lidar ratio. This paper evaluates a new method to calculate lidar ratio of sea spray aerosol using two independent sources: the AOD from Synergized Optical Depth of Aerosols (SODA) and the integrated attenuated backscatter from CALIOP. The method applied in this study allows particulate lidar ratio to be calculated for individual CALIOP retrievals of single aerosol layer columns over the ocean. Analyses are carried out using CALIOP level 2, 5km sea spray aerosol layer products and collocated SODA nighttime data from December 2007 to December 2009. The global mean lidar ratio for sea spray aerosols was found to be 26 sr, roughly 30 higher than the one prescribed by CALIOP. Data analysis also showed considerable spatiotemporal variability in calculated lidar ratio over different parts of the remote oceans. The calculated aerosol lidar ratios are shown to be inversely related to the mean ocean surface wind speed: increase in ocean surface wind speed (U10) from 0 to 15 ms-1 reduces the mean lidar ratios for sea spray particles from 32 sr (for 0 U10 4 ms-1) to 22 sr (for U10 15 ms-1). Such changes in the lidar ratio are expected to have a corresponding effect on sea spray AOD. The outcomes of this study are relevant for future improvements of the SODA and CALIOP operational product and could lead to more accurate retrievals of sea spray AOD.

  13. Photosynthetic adaptation strategy of Ulva prolifera floating on the sea surface to environmental changes.

    PubMed

    Zhao, Xinyu; Tang, Xuexi; Zhang, Huanxin; Qu, Tongfei; Wang, Ying

    2016-10-01

    For 8 consecutive years, a green tide has originated in the southern Yellow Sea and spread to the Qingdao offshore area. The causative species, Ulva prolifera, always forms a very thick thallus mat that is capable of drifting long distances over long periods. During this process, although the thalli face disturbance by complex environmental factors, they maintain high biomass and proliferation. We hypothesized that some form of photosynthetic adaptation strategy must exist to protect the thalli. Therefore, we studied the different photosynthetic response characteristics of the surface and lower layers of the floating thallus mats, and investigated the physiological and molecular-level adaptation mechanisms. The results showed that: (1) U. prolifera has strong photosynthetic capability that ensures it can gain sufficient energy to increase its biomass and adapt to long-distance migration. (2) Surface layer thalli adapt to the complex environment by dissipating excess energy via photosynthetic quantum control (energy quenching and energy redistribution between PSII/PSI) to avoid irreversible damage to the photosynthetic system. (3) Lower layer thalli increase their contents of Chlorophyll a (Chl a) and Chlorophyll b (Chl b) and decrease their Chl a/Chl b ratio to improve their ability to use light energy. (4) U. prolifera has strong photosynthetic plasticity and can adapt to frequent exchange between the surface and lower layer environments because of wave disturbance. Pigment component changes, energy quenching, and energy redistribution between PSII/PSI contribute to this photosynthetic plasticity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. STS-55 Earth observation of the Timor Sea

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Earth observation taken from Columbia, Orbiter Vehicle (OV) 102, shows the Timor Sea along the south coast of Timor. The sunglint pattern shows a sharp boundary in sea surface temperature, with cooler water along the coast and warmer water offshore. The sunglint brightness reveals water surface roughness with bright indicating smooth water and dark representing rough water. Cooler water is smoother because it acts to stabilize the atmospheric boundary layer, while the warm water acts to destabilize the atmosphere. Another indication of water temperature is the cloud pattern. Advection within the atmosphere as a result of warming at the sea surface forms low-level clouds with the small, popcorn-like appearance seen in upper right corner of the photograph. The cool water, on the other hand, is relatively free of the popcorn-like clouds. The distribution of the clouds indicates that the wind is blowing toward the upper right corner of the photograph. Also note the line of low-level

  15. Bio-optical properties of Arctic drift ice and surface waters north of Svalbard from winter to spring

    NASA Astrophysics Data System (ADS)

    Kowalczuk, Piotr; Meler, Justyna; Kauko, Hanna M.; Pavlov, Alexey K.; Zabłocka, Monika; Peeken, Ilka; Dybwad, Christine; Castellani, Giulia; Granskog, Mats A.

    2017-06-01

    We have quantified absorption by CDOM, aCDOM(λ), particulate matter, ap(λ), algal pigments, aph(λ), and detrital material, aNAP(λ), coincident with chlorophyll a in sea ice and surface waters in winter and spring 2015 in the Arctic Ocean north of Svalbard. The aCDOM(λ) was low in contrast to other regions of the Arctic Ocean, while ap(λ) has the largest contribution to absorption variability in sea ice and surface waters. ap(443) was 1.4-2.8 times and 1.3-1.8 times higher than aCDOM(443) in surface water and sea ice, respectively. aph(λ) contributed 90% and 81% to ap(λ), in open leads and under-ice waters column, and much less (53%-74%) in sea ice, respectively. Both aCDOM(λ) and ap(λ) followed closely the vertical distribution of chlorophyll a in sea ice and the water column. We observed a tenfold increase of the chlorophyll a concentration and nearly twofold increase in absorption at 443 nm in sea ice from winter to spring. The aCDOM(λ) dominated the absorption budget in the UV both in sea ice and surface waters. In the visible range, absorption was dominated by aph(λ), which contributed more than 50% and aCDOM(λ), which contributed 43% to total absorption in water column. Detrital absorption contributed significantly (33%) only in surface ice layer. Algae dynamics explained more than 90% variability in ap(λ) and aph(λ) in water column, but less than 70% in the sea ice. This study presents detailed absorption budget that is relevant for modeling of radiative transfer and primary production.

  16. The benthoneuston of the Black Sea: Composition and environmental factors influencing its nocturnal dynamic

    NASA Astrophysics Data System (ADS)

    Vereshchaka, Alexander L.; Anokhina, Ludmila L.

    2017-05-01

    Plankton fauna nocturnally migrating from the sea-floor or near-bottom layer to the uppermost surface layer (benthoneuston) links benthic, benthopelagic, pelagic, and neustonic realms. We conducted five intervals of sampling (every 1-2 h during five nights) synchronously in the neustal (surface to 10-cm depth layer) and in the water column below to examine which taxa concentrate in the neustal, and under which circumstances they do so. We tested the following environmental factors: sea-floor biotope type, temperature, time after sunset, time to midnight, moon phase, and moon altitude. Of the 77 taxa recorded, about half (41) were found in the neustal. Among these, less than half (16) of the taxa showed a quantified attraction (by L-index) to the neustal and may be called the true benthoneuston. In contrast to the benthopelagic zone, where the contribution of the characteristic benthopelagic fauna exceeded 50%, the neustal was not dominated by a specific benthoneuston fauna. Nocturnal dynamics of the benthoneuston was mainly controlled by the proximity of the twilight time, then by the sea-floor biotope type and time to midnight. Neustonic taxa were more affected by moon illumination (moon phase and moon altitude) than those in the water column below. The benthoneuston in the studied area was represented by either juveniles or reproducing adults. This component of plankton communities is thus temporary and seasonal, at least in the temperate Black Sea. In the "high" summer-autumn season, contribution of benthoneuston to the coastal plankton communities is significant, whilst in winter this contribution may be negligible. The next step in the understanding of the role of benthoneuston should be associated with tropical areas where seasonal changes in reproduction are less distinctive and this group may represent an important permanent component of coastal communities.

  17. Upper Ocean Response to the Atmospheric Cold Pools Associated With the Madden-Julian Oscillation

    NASA Astrophysics Data System (ADS)

    Pei, Suyang; Shinoda, Toshiaki; Soloviev, Alexander; Lien, Ren-Chieh

    2018-05-01

    Atmospheric cold pools are frequently observed during the Madden-Julian Oscillation events and play an important role in the development and organization of large-scale convection. They are generally associated with heavy precipitation and strong winds, inducing large air-sea fluxes and significant sea surface temperature (SST) fluctuations. This study provides a first detailed investigation of the upper ocean response to the strong cold pools associated with the Madden-Julian Oscillation, based on the analysis of in situ data collected during the Dynamics of the Madden-Julian Oscillation (DYNAMO) field campaign and one-dimensional ocean model simulations validated by the data. During strong cold pools, SST drops rapidly due to the atmospheric cooling in a shoaled mixed layer caused by the enhanced near-surface salinity stratification generated by heavy precipitation. Significant contribution also comes from the component of surface heat flux produced by the cold rain temperature. After the period of heavy rain, while net surface cooling remains, SST gradually recovers due to the enhanced entrainment of warmer waters below the mixed layer.

  18. Boundary layers at a dynamic interface: air-sea exchange of heat and mass

    NASA Astrophysics Data System (ADS)

    Szeri, Andrew

    2017-11-01

    Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in air-sea transfer of natural and man-made gases involved in climate change. The goal in this research area is to determine the gas flux from air to sea or vice versa. For sparingly soluble non-reactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity and gas concentration differences are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither of these quantities can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from remote measurements, which allows one to determine the gas transfer velocity, or gas flux per unit area if overall concentration differences are known. The approach is illustrated with conceptual examples.

  19. Melted Ice

    NASA Image and Video Library

    2009-06-24

    These drawings depict explanations for the source of intense heat that has been measured coming from Enceladus south polar region. These models predict that water could exist in a deep layer as an ocean or sea and also near the surface.

  20. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  1. Seasonal and inter-annual variations of dissolved oxygen in the northwestern Mediterranean Sea (DYFAMED site)

    NASA Astrophysics Data System (ADS)

    Coppola, Laurent; Legendre, Louis; Lefevre, Dominique; Prieur, Louis; Taillandier, Vincent; Diamond Riquier, Emilie

    2018-03-01

    Dissolved oxygen (O2) is a relevant tracer to interpret variations of both water mass properties in the open ocean and biological production in the surface layer of both coastal and open waters. Deep-water formation is very active in the northwestern Mediterranean Sea, where it influences intermediate and deep waters properties, nutrients replenishment and biological production. This study analyses, for the first time, the 20-year time series of monthly O2 concentrations at the DYFAMED long-term sampling site in the Ligurian Sea. Until the winters of 2005 and 2006, a thick and strong oxygen minimum layer was present between 200 and 1300 m because dense water formation was then local, episodic and of low intensity. In 2005-2006, intense and rapid deep convection injected 24 mol O2 m-2 between 350 and 2000 m from December 2005 to March 2006. Since this event, the deep layer has been mostly ventilated during winter time by newly formed deep water spreading from the Gulf of Lion 250 km to the west and by some local deep mixing in early 2010, 2012 and 2013. In the context of climate change, it is predicted that the intensity of deep convection will become weaker in the Mediterranean, which could potentially lead to hypoxia in intermediate and deep layers with substantial impact on marine ecosystems. With the exception of winters 2005 and 2006, the O2 changes in surface waters followed a seasonal trend that reflected the balance between air-sea O2 exchanges, changes in the depth of the mixed layer and phytoplankton net photosynthesis. We used the 20-year O2 time series to estimate monthly and annual net community production. The latter was 7.1 mol C m-2 yr-1, consistent with C-14 primary production determinations and sediment-trap carbon export fluxes at DYFAMED.

  2. Sedimentary records of Typhoon Haiyan in the South China Sea

    NASA Astrophysics Data System (ADS)

    Su, C. C.; Chen, Y. H.; Chang, J. H.; Hsu, H. H.; Yu, P. S.; Liu, C. S.

    2016-12-01

    South China Sea (SCS), which is located at the boundary of the Eurasian, Philippine Sea, and Indian plates, is the largest marginal sea of the northwest Pacific and also on the North Western Pacific corridor of typhoons. The unique tectonic setting and climatic conditions make it has to face the severe natural hazards, like submarine landslides, and high sediment discharges which induced by typhoon. On November 8, 2013, the Typhoon Haiyan, which was one of the largest tropical cyclones ever recorded in western Pacific, devastated Philippines and caused catastrophic destruction. Before the Typhoon Haiyan reached Hainan Province, China and Quangninh Province, Vietnam, it emerged over the SCS. How was the large amount of terrestrial materials distributed and recorded in deep sea sediments by such intense typhoon? Is it possible for us to reconstruct the history of extreme tropical cyclones by using deep sea cores? In this study, twelve gravity cores were collected in the Central SCS Basin and around Taiping Island (Itu Aba Island) from 2014 to 2015 and a series of analysis including Multi-Sensor Core Logger, XRF Core Scanner, core surface and X-radiograph images, grain size, and excess 210Pb chronology were conducted for modern extreme event records in cores and attempt to evaluate the possibility of reconstructed extreme typhoon records in cores from the SCS. On core surface images, an obvious brownish oxidized layer exist in core top with higher 210Pb activities beneath the layer. According to the sampling time, we conjecture the oxidized layer might formed by Typhoon Haiyan in 2013. In addition, the Itrax data shows high manganese content only exist in this layer which might related to the modern industrial pollution delivered by typhoon induced flooding from Philippines. The Power Barge 103 of Napocor in Estancia IIoilo was dislodged from its mount by Typhoon Haiyan and the United Nations Disaster Assessment and Coordination Team reported 600,000 liters of bunker fuel had spilled. To clarify the relationship between the oil spill and high manganese records in sediments, some further analysis is needed. Our analysis result shows, in the Central SCS Basin, over 80 cm turbidite layer was deposited by Typhoon Haiyan and it will take more than 4000 years to deposit on seafloor without the impact of extreme events.

  3. Defining the Habitat of Pacific Tuna of the Eastern Tropical Pacific from Satellite Imagery, Climatologies, and a Global Circulation Model

    NASA Astrophysics Data System (ADS)

    Kiefer, D. A.; Hinton, M. G.; Armstrong, E. M.; Harrison, D. P.; Menemenlis, D.; Hu, C.

    2016-02-01

    With support from NASA's Ecological Forecasting program, we have developed a Tuna Stock Assessment Support System, which merges time series of satellite imagery, a global ocean circulation model, climatology from field surveys, and fisheries data on catch and effort. The purpose of this software is to extract information on the habitat of skipjack, bigeye, and yellowfin tuna in the Eastern Tropical Pacific. The support system is based upon a 50-year record of catch and effort from long-line and purse seine vessels provide by the Inter-American Tropical Tuna Commission. This database, which covers thousands of kilometers of ocean surface, provides monthly information at a 1 degree spatial resolution for the purse seine fleet and 5 degree resolution for the long line fishery. This data is then merged in time and space with satellite imagery of sea surface temperature, chlorophyll, and height, as well as NODC climatologies of oxygen concentration and temperature, and output from NASA's ECCO-2 global circulation model, which provides 3-dimensional simulations of water density, current velocity, mixed layer depth, and sea surface height. Our analyses have yielded a broad range of understanding of the habitat and dynamics both the fish and the fisherman. The purse seine ground, which targets younger tuna, is constrained to waters where the hypoxic layer is shallow. The longline fishery, which targets older tuna, is not constrained by the hypoxic layer and has a much larger distribution. We have characterized the preferences of each species to environmental variables including the depth of the hypoxic layer, the depth of the water column, as well as sea surface height, temperature, and chlorophyll concentration. Finally, the analyses have revealed information on local depletion by fishing, the size distribution of the schools of younger fish, and the impact of ENSO on fishing activities.

  4. Relating Radiative Fluxes on Arctic Sea Ice Area Using Arctic Observation and Reanalysis Integrated System (ArORIS)

    NASA Astrophysics Data System (ADS)

    Sledd, A.; L'Ecuyer, T. S.

    2017-12-01

    With Arctic sea ice declining rapidly and Arctic temperatures rising faster than the rest of the globe, a better understanding of the Arctic climate, and ice cover-radiation feedbacks in particular, is needed. Here we present the Arctic Observation and Reanalysis Integrated System (ArORIS), a dataset of integrated products to facilitate studying the Arctic using satellite, reanalysis, and in-situ datasets. The data include cloud properties, radiative fluxes, aerosols, meteorology, precipitation, and surface properties, to name just a few. Each dataset has uniform grid-spacing, time-averaging and naming conventions for ease of use between products. One intended use of ArORIS is to assess Arctic radiation and moisture budgets. Following that goal, we use observations from ArORIS - CERES-EBAF radiative fluxes and NSIDC sea ice fraction and area to quantify relationships between the Arctic energy balance and surface properties. We find a discernable difference between energy budgets for years with high and low September sea ice areas. Surface fluxes are especially responsive to the September sea ice minimum in months both leading up to September and the months following. In particular, longwave fluxes at the surface show increased sensitivity in the months preceding September. Using a single-layer model of solar radiation we also investigate the individual responses of surface and planetary albedos to changes in sea ice area. By partitioning the planetary albedo into surface and atmospheric contributions, we find that the atmospheric contribution to planetary albedo is less sensitive to changes in sea ice area than the surface contribution. Further comparisons between observations and reanalyses can be made using the available datasets in ArORIS.

  5. Light comfort zones of mesopelagic acoustic scattering layers in two contrasting optical environments

    NASA Astrophysics Data System (ADS)

    Røstad, Anders; Kaartvedt, Stein; Aksnes, Dag L.

    2016-07-01

    We make a comparison of the mesopelagic sound scattering layers (SLs) in two contrasting optical environments; the clear Red Sea and in murkier coastal waters of Norway (Masfjorden). The depth distributions of the SL in Masfjorden are shallower and narrower than those of the Red Sea. This difference in depth distribution is consistent with the hypothesis that the organisms of the SL distribute according to similar light comfort zones (LCZ) in the two environments. Our study suggest that surface and underwater light measurements ranging more than 10 orders of magnitude is required to assess the controlling effects of light on SL structure and dynamics.

  6. New record of Lobophora rosacea (Dictyotales; Phaeophyceae) from the South China Sea

    NASA Astrophysics Data System (ADS)

    Sun, Zhongmin; Wang, Yongqiang; Yan, Pengcheng; Guo, Hui; Yao, Jianting; Tanaka, Jiro; Kawai, Hiroshi

    2017-01-01

    Lobophora rosacea C.W. Vieira, Payri et De Clerck is reported from the South China Sea for the first time. Our specimens are very similar to L. rosacea recently described from New Caledonia, not only in morphology but also in rbcL and cox3 gene sequences. The fan-shaped thallus grows erectly, attaching to the substrate by a basal holdfast. The thallus is composed of a single layer of large medullary cells and three to four layers of cortical cells on both sides of the medulla. Mature sporophytes are detected, with sporangium sori scattered on both surfaces of the thallus.

  7. Anthropogenic activities have contributed moderately to increased inputs of organic materials in marginal seas off China.

    PubMed

    Liu, Liang-Ying; Wei, Gao-Ling; Wang, Ji-Zhong; Guan, Yu-Feng; Wong, Charles S; Wu, Feng-Chang; Zeng, Eddy Y

    2013-10-15

    Sediment has been recognized as a gigantic sink of organic materials and therefore can record temporal input trends. To examine the impact of anthropogenic activities on the marginal seas off China, sediment cores were collected from the Yellow Sea, the inner shelf of the East China Sea (ECS), and the South China Sea (SCS) to investigate the sources and spatial and temporal variations of organic materials, i.e., total organic carbon (TOC) and aliphatic hydrocarbons. The concentration ranges of TOC were 0.5-1.29, 0.63-0.83, and 0.33-0.85%, while those of Σn-C14-35 (sum of n-alkanes with carbon numbers of 14-35) were 0.08-1.5, 0.13-1.97, and 0.35-0.96 μg/g dry weight in sediment cores from the Yellow Sea, ECS inner shelf, and the SCS, respectively. Terrestrial higher plants were an important source of aliphatic hydrocarbons in marine sediments off China. The spatial distribution of Σn-C14-35 concentrations and source diagnostic ratios suggested a greater load of terrestrial organic materials in the Yellow Sea than in the ECS and SCS. Temporally, TOC and Σn-C14-35 concentrations increased with time and peaked at either the surface or immediate subsurface layers. This increase was probably reflective of elevated inputs of organic materials to marginal seas off China in recent years, and attributed partly to the impacts of intensified anthropogenic activities in mainland China. Source diagnostics also suggested that aliphatic hydrocarbons were mainly derived from biogenic sources, with a minority in surface sediment layers from petroleum sources, consistent with the above-mentioned postulation.

  8. Distribution of Different Biogeographical Tintinnids in Yellow Sea and Bohai Sea

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Li, Haibo; Zhao, Yuan; Zhao, Li; Dong, Yi; Zhang, Wuchang; Xiao, Tian

    2018-04-01

    There were different biogeographical tintinnids in the oceans. Knowledge of their distribution pattern and mixing was important to the understanding of ecosystem functions. Yellow Sea (YS) and Bohai Sea (BS) were semi-enclosed seas influenced by warm water intrusion and YS cold bottom water. The occurrence of tintinnids in YS and BS during two cruises (summer and winter) were investigated to find out: i) whether warm-water tintinnids appeared in YS and BS; ii) whether boreal tintinnids appeared in high summer; iii) the core area of neritic tintinnids and iv) how these different biogeographical tintinnids mixed. Our results showed that tintinnid community was dominated by neritic tintinnid. We confirmed the occurrence of warm-water tintinnids in summer and winter. In summer, they intruded into BS and mainly distributed in the upper 20 m where Yellow Sea Surface Warm Water (YSSWW) developed. In winter, they were limited in the surface water of central deep region (bottom depth >50 m) of YS where were affected by Yellow Sea Warm Water (YSWW). Boreal tintinnids occurred in YS in high summer (August) and in winter, while they were not observed in BS. In summer, the highest abundance of boreal tintinnids occurred in Yellow Sea Bottom Cold Water, indicating the presence of an oversummering stock. In winter, they were concentrated in the north of YSWW. Vertically, neritic tintinnids abundance was high in the bottom layers. Horizontally, high neritic tintinnids abundance in bottom layers occurred along the 50 m isobath coinciding with the position of front systems. Front systems were the core distribution area of neritic tintinnids. High abundance areas of warm-water and boreal tintinnids were clearly separated vertically in summer, and horizontally in winter. High abundance of neritic tintinnids rarely overlapped with that of warm-water or boreal tintinnids.

  9. How well does wind speed predict air-sea gas transfer in the sea ice zone? A synthesis of radon deficit profiles in the upper water column of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Loose, B.; Kelly, R. P.; Bigdeli, A.; Williams, W.; Krishfield, R.; Rutgers van der Loeff, M.; Moran, S. B.

    2017-05-01

    We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort Sea. Including these 34, there are presently 58 published radon-deficit estimates of air-sea gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% sea ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d-1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d-1 with mean-weighted wind speed of 6.4 m s-1. We show how ice cover changes the mixed-layer radon budget, and yields an "effective gas transfer velocity." We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the sea ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of sea ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect air-sea gas exchange with no impact from air-ice gas exchange.

  10. An operational large-scale marine planetary boundary layer model

    NASA Technical Reports Server (NTRS)

    Brown, R. A.; Liu, W. T.

    1982-01-01

    A marine planetary boundary layer (PBL) model is presented and compared with data from sea-based experiments. The PBL model comprises two layers, the outer an Ekman-Taylor layer with stratification-dependent secondary flow, and the logarithmic surface layer corrected for stratification and humidity effects and variable surface roughness. Corrections are noted for air much warmer than water in stable conditions and for low wind speeds. The layers are analytically defined along with similarity relations and a resistance law for inclusion in a program. An additional interfacial layer correction is developed and shown to be significant for heat flux calculations. Experimental data from GOASEX were used to predict the windfield in the Gulf of Alaska, and JASIN data was used for windfields SE of Iceland. The JASIN-derived wind field predictions were accurate to within 1 m/sec and 10 deg in a 200 km triangle.

  11. A model for the estimation of the surface fluxes of momentum, heat and moisture of the cloud topped marine atmospheric boundary layer from satellite measurable parameters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Allison, D. E.

    1984-01-01

    A model is developed for the estimation of the surface fluxes of momentum, heat, and moisture of the cloud topped marine atmospheric boundary layer by use of satellite remotely sensed parameters. The parameters chosen for the problem are the integrated liquid water content, q sub li, the integrated water vapor content, q sub vi, the cloud top temperature, and either a measure of the 10 meter neutral wind speed or the friction velocity at the surface. Under the assumption of a horizontally homogeneous, well-mixed boundary layer, the model calculates the equivalent potential temperature and total water profiles of the boundary layer along with the boundary layer height from inputs of q sub li, q sub vi, and cloud top temperature. These values, along with the 10m neutral wind speed or friction velocity and the sea surface temperature are then used to estimate the surface fluxes. The development of a scheme to parameterize the integrated water vapor outside of the boundary layer for the cases of cold air outbreak and California coastal stratus is presented.

  12. Impact of atmospheric forcing on heat content variability in the sub-surface layer in the Japan/East Sea, 1948-2009

    NASA Astrophysics Data System (ADS)

    Stepanov, Dmitry; Gusev, Anatoly; Diansky, Nikolay

    2016-04-01

    Based on numerical simulations the study investigates impact of atmospheric forcing on heat content variability of the sub-surface layer in Japan/East Sea (JES), 1948-2009. We developed a model configuration based on a INMOM model and atmospheric forcing extracted from the CORE phase II experiment dataset 1948-2009, which enables to assess impact of only atmospheric forcing on heat content variability of the sub-surface layer of the JES. An analysis of kinetic energy (KE) and total heat content (THC) in the JES obtained from our numerical simulations showed that the simulated circulation of the JES is being quasi-steady state. It was found that the year-mean KE variations obtained from our numerical simulations are similar those extracted from the SODA reanalysis. Comparison of the simulated THC and that extracted from the SODA reanalysis showed significant consistence between them. An analysis of numerical simulations showed that the simulated circulation structure is very similar that obtained from the PALACE floats in the intermediate and abyssal layers in the JES. Using empirical orthogonal function analysis we studied spatial-temporal variability of the heat content of the sub-surface layer in the JES. Based on comparison of the simulated heat content variations with those obtained from natural observations an assessment of the atmospheric forcing impact on the heat content variability was obtained. Using singular value decomposition analysis we considered relationships between the heat content variability and wind stress curl as well as sensible heat flux in winter. It was established the major role of sensible heat flux in decadal variability of the heat content of the sub-surface layer in the JES. The research was supported by the Russian Foundation for Basic Research (grant N 14-05-00255) and the Council on the Russian Federation President Grants (grant N MK-3241.2015.5)

  13. Seasonal dynamics of surface chlorophyll concentration and sea surface temperature, as indicator of hydrological structure of the ocean (by satellite data)

    NASA Astrophysics Data System (ADS)

    Shevyrnogov, Anatoly; Vysotskaya, Galina

    Continuous monitoring of phytopigment concentrations and sea surface temperature in the ocean by space-borne methods makes possible to estimate ecological condition of biocenoses in critical areas. Unlike land vegetation, hydrological processes largely determine phytoplank-ton dynamics, which may be either recurrent or random. The types of chlorophyll concentration dynamics and sea surface temperature can manifest as zones quasistationary by seasonal dynamics, quasistationary areas (QSA). In the papers of the authors (A. Shevyrnogov, G. Vysotskaya, E. Shevyrnogov, A study of the stationary and the anomalous in the ocean surface chlorophyll distribution by satellite data. International Journal of Remote Sensing, Vol. 25, No.7-8, pp. 1383-1387, April 2004 & A. P. Shevyrnogov, G. S. Vysotskaya, J. I. Gitelson, Quasistationary areas of chlorophyll concentra-tion in the world ocean as observed satellite data Advances in Space Research, Volume 18, Issue 7, Pages 129-132, 1996) existence of zones, which are quasi-stationary with similar seasonal dynamics of chlorophyll concentration at surface layer of ocean, was shown. Results were obtained on the base of processing of time series of satellite images SeaWiFS. It was shown that fronts and frontal zones coincide with dividing lines between quasi-stationary are-as, especially in areas of large oceanic streams. To study the dynamics of the ocean for the period from 1985 through 2012 we used data on the temperature of the surface layer of the ocean and chlorophyll concentration (AVHRR, SeaWiFS and MODIS). Biota of surface oceanic layer is more stable in comparison with quickly changing surface tem-perature. It gives a possibility to circumvent influence of high-frequency component (for exam-ple, a diurnal cycle) in investigation of dynamics of spatial distribution of surface streams. In addition, an analyses of nonstable ocean productivity phenomena, stood out time series of satellite images, showed existence of areas with different types of instability in the all Global ocean. They are observed as adjacent nonstationary zones of different size, which are associ-ated by different ways with known oceanic phenomena. It is evident that dynamics of a spatial distribution of biological productivity can give an additional knowledge of complicated picture of surface oceanic layer hydrology. In this study we demonstrate different origin of appearance of quasistationary zones in the ocean. We can see that the border between quasi¬stationary zones is an indicator of the front between the Labrador Current and Gulfstream, other example of revealed pheno¬menon is a qua-sistationary area around of the British Isles that correlates with the relief of the oceanic bottom. Considering that the QSA maps are calculated almost for all surface of the Global ocean, not all QSA can be explained especially of small size. Although some small QSA are interesting. Also local QSA near estuaries of large rivers and large industrial centers, that can be result of a human impact. In sum satellite data is a powerful instrument for investigation of dynamic oceanic processes, their stability and unstability. The result of such study can be used for monitoring of long-term changes and their correlation of with climate dynamics.

  14. Determining change of bathymetry with GPR method in Ordu-Giresun, a sea-filled airport in the Black Sea, Turkey

    NASA Astrophysics Data System (ADS)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf

    2016-04-01

    Ordu-Giresun (OGU) is a newly-constructed airport, the first sea-filled airport in Turkey and in Europe, and the second airport in the world after Osaca-Japan. The airport is between Gulyalı district in Ordu city and Piraziz district in Giresun city in Black Sea -Turkey. A protection breakwater has been constructed by filling a rock approximately 7.435-m long and with an average height of 5.5 m. Then, the Black Sea has been filled until 1 m over the sea level, approximately the area is 1.770.000 m2 wide and includes a runway, aprons and taxiway covered by breakwater. The runway has a 1-m thickness, 3-km length and 45-m width, PCN84 strength, and stone mastic asphalt surface. The aprons has a 240 x 110 m length and PCN110 strength, the taxiway is 250 x 24 m wide. The airport was started to be constructed in July 2011 and it began to serve on 22th May 2015. The aim of this study was to determine the depth of the rock-filled layer and the amount of sinking of the bathymetry which has been determined before filling processing. In addition, before bathymetry determination, unconsolidated sediments had been removed from the bottom of the sea. There were four drilling points to control the sinking of the bathymetry. Therefore, six suitable Ground Penetrating Radar (GPR) profiles were measured, crossing these points with runway and aprons, using 250-MHz and 100-MHz shielded antennas. Starting points of the profiles were in the middle of the runway to merge between depth and thickness changing of the filled layer and bathymetry along the profiles. Surface topography changing was measured spaced 1 m apart with 1 cm sensitivity on each profile. At the same time, similarly the topography changing, bathymetry coordinates was re-arranged along the each profile. Topography corrections were applied to the processed radargrams and then the bottom boundary lines of the rock-filled layer were determined. The maximum height was 3.5 m according to the sea level, which was on the middle point of the runway, representing zero depth of the radargrams of the profiles. To determine the amount of the sinking of the rock filled layer, the first sea level were lined at 3.5 m in depth on the right side depth axes of the radargrams. The second, bathymetry changing lines were placed on the interested radargrams. Finally, differences between the bottom boundary lines of the filled layer and bathymetry lines were compared. The results showed that GPR method could be applied successfully to determine the depth of the rock filled layer in Black Sea and the small amount of the sinking of the bathymetry. Acknowledgement This project has been supported by Cengiz - Içtaş Joint Venture-Turkey. This study is a contribution to the EU funded COST action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.GPRadar.eu, www.cost.eu).

  15. Estimating temporal and spatial variation of ocean surface pCO2 in the North Pacific using a Self Organizing Map neural network technique

    NASA Astrophysics Data System (ADS)

    Nakaoka, S.; Telszewski, M.; Nojiri, Y.; Yasunaka, S.; Miyazaki, C.; Mukai, H.; Usui, N.

    2013-03-01

    This study produced maps of the partial pressure of oceanic carbon dioxide (pCO2sea) in the North Pacific on a 0.25° latitude × 0.25° longitude grid from 2002 to 2008. The pCO2sea values were estimated by using a self-organizing map neural network technique to explain the non-linear relationships between observed pCO2sea data and four oceanic parameters: sea surface temperature (SST), mixed layer depth, chlorophyll a concentration, and sea surface salinity (SSS). The observed pCO2sea data was obtained from an extensive dataset generated by the volunteer observation ship program operated by the National Institute for Environmental Studies. The reconstructed pCO2sea values agreed rather well with the pCO2sea measurements, the root mean square error being 17.6 μatm. The pCO2sea estimates were improved by including SSS as one of the training parameters and by taking into account secular increases of pCO2sea that have tracked increases in atmospheric CO2. Estimated pCO2sea values accurately reproduced pCO2sea data at several stations in the North Pacific. The distributions of pCO2sea revealed by seven-year averaged monthly pCO2sea maps were similar to Lamont-Doherty Earth Observatory pCO2sea climatology and more precisely reflected oceanic conditions. The distributions of pCO2sea anomalies over the North Pacific during the winter clearly showed regional contrasts between El Niño and La Niña years related to changes of SST and vertical mixing.

  16. Sea-town interactions over Marseille: 3D urban boundary layer and thermodynamic fields near the surface

    NASA Astrophysics Data System (ADS)

    Lemonsu, A.; Pigeon, G.; Masson, V.; Moppert, C.

    2006-02-01

    3D numerical simulations with the Meso-NH atmospheric model including the Town Energy Balance urban parameterization, are conducted over the south-east of France and the one million inhabitants city of Marseille in the frameworks of the ESCOMPTE-UBL program. The geographic situation of the area is relatively complex, because of the proximity of the Mediterranean Sea and the presence of numerous massifs, inducing complex meteorological flows. The present work is focused on six days of the campaign, characterized by the development of strong summer sea-breeze circulations. A complete evaluation of the model is initially realized at both regional- and city-scales, by using the large available database. The regional evaluation shows a good behavior of the model, during the six days of simulation, either for the parameters near the surface or for the vertical profiles describing the structure of the atmosphere. The urban-scale evaluation indicates that the fine structure of the horizontal fields of air temperature above the city is correctly simulated by the model. A specific attention is then pointed to the 250-m horizontal resolution outputs, focused on the Marseille area, for two days of the campaign. From the study of the vertical structure of the Urban Boundary Layer and the thermodynamic fields near the surface, one underscores the important differences due to the regional and local flows, and the complex interactions that occur between the urban effects and the effects of sea breezes.

  17. The 30-60-day Intraseasonal Variability of Sea Surface Temperature in the South China Sea dur1ing May-September

    NASA Astrophysics Data System (ADS)

    Mao, Jiangyu; Wang, Ming

    2018-05-01

    This study investigates the structure and propagation of intraseasonal sea surface temperature (SST) variability in the South China Sea (SCS) on the 30-60-day timescale during boreal summer (May-September). TRMM-based SST, GODAS oceanic reanalysis and ERA-Interim atmospheric reanalysis datasets from 1998 to 2013 are used to examine quantitatively the atmospheric thermodynamic and oceanic dynamic mechanisms responsible for its formation. Power spectra show that the 30-60-day SST variability is predominant, accounting for 60% of the variance of the 10-90-day variability over most of the SCS. Composite analyses demonstrate that the 30-60-day SST variability is characterized by the alternate occurrence of basin-wide positive and negative SST anomalies in the SCS, with positive (negative) SST anomalies accompanied by anomalous northeasterlies (southwesterlies). The transition and expansion of SST anomalies are driven by the monsoonal trough-ridge seesaw pattern that migrates northward from the equator to the northern SCS. Quantitative diagnosis of the composite mixed-layer heat budgets shows that, within a strong 30-60-day cycle, the atmospheric thermal forcing is indeed a dominant factor, with the mixed-layer net heat flux (MNHF) contributing around 60% of the total SST tendency, while vertical entrainment contributes more than 30%. However, the entrainment-induced SST tendency is sometimes as large as the MNHF-induced component, implying that ocean processes are sometimes as important as surface fluxes in generating the 30-60-day SST variability in the SCS.

  18. State of the Oceans: A Satellite Data Processing System for Visualizing Near Real-Time Imagery on Google Earth

    NASA Astrophysics Data System (ADS)

    Thompson, C. K.; Bingham, A. W.; Hall, J. R.; Alarcon, C.; Plesea, L.; Henderson, M. L.; Levoe, S.

    2011-12-01

    The State of the Oceans (SOTO) web tool was developed at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) at the Jet Propulsion Laboratory (JPL) as an interactive means for users to visually explore and assess ocean-based geophysical parameters extracted from the latest archived data products. The SOTO system consists of four extensible modules, a data polling tool, a preparation and imaging package, image server software, and the graphical user interface. Together, these components support multi-resolution visualization of swath (Level 2) and gridded Level 3/4) data products as either raster- or vector- based KML layers on Google Earth. These layers are automatically updated periodically throughout the day. Current parameters available include sea surface temperature, chlorophyll concentration, ocean winds, sea surface height anomaly, and sea surface temperature anomaly. SOTO also supports mash-ups, allowing KML feeds from other sources to be overlaid directly onto Google Earth such as hurricane tracks and buoy data. A version of the SOTO software has also been installed at Goddard Space Flight Center (GSFC) to support the Land Atmosphere Near real-time Capability for EOS (LANCE). The State of the Earth (SOTE) has similar functionality to SOTO but supports different data sets, among them the MODIS 250m data product.

  19. Internal waves, Andaman Sea

    NASA Image and Video Library

    1994-09-30

    STS068-236-044 (30 September-11 October 1994) --- These internal waves in the Andaman Sea, west of Burma, were photographed from 115 nautical miles above Earth by the crew of the Space Shuttle Endeavour during the Space Radar Laboratory 2 (SRL-2) mission. The internal waves smooth out some of the capillary waves at the surface in bands and travel along the density discontinuity at the bottom of the mixed layer depth. There is little evidence of the internal waves at the surface. They are visible in the Space Shuttle photography because of sunglint, which reflects off the water.

  20. Tracing the source of deep water in the Arctic Ocean with 17Oexcess of dissolved O2

    NASA Astrophysics Data System (ADS)

    Smethie, W. M., Jr.; Luz, B.; Barkan, E.; Broecker, W. S.

    2014-12-01

    The 17Oexcess of dissolved O2 (17Δ) in the ocean is a unique property which is useful for telling apart O2 produced by marine photosynthesis (bio-O2) from atmospheric O2. Unlike O2 concentration, 17Δ is not affected by respiration and thus behaves conservatively in the deep sea. In general, 17Δ in the oceanic mixed layer is low due to the dominance of air-sea gas exchange. In contrast, in the Arctic mixed-layer 17Δ is higher because sufficient light penetrates through the sea-ice cover and drives photosynthesis, but air-sea gas exchange is retarded by sea ice cover. We have preliminary 17Δ data from depth profiles in the Eurasian and Makarov basins. In both, the fraction of bio-O2 is about 20 % in the surface mixed layer. However, the vertical distribution beneath the mixed layer at the two stations is substantially different. In the Makarov Basin there is a layer of Pacific Water centered at about 100 m, which enters the Arctic Ocean through Bering Strait and is modified as it flows across the wide Chukchi and Siberian shelves. It has a strong maximum in 17Δ, equivalent to ~30% bio-O2. 17Δ then decreases through the underlying halocline to a minimum between 500 and 700 m, which lies within the Barents Sea Branch of Atlantic Water (BSBW) indicating ~15% bio-O2. At the Eurasian Basin station, 17Δ decreases from the mixed layer through the halocline reaching a minimum at the temperature maximum of Atlantic Water. This temperature maximum marks the core of the Fram Strait Branch of Atlantic Water (FSBW). 17Δ then increases to a maximum indicating ~20% bio-O2 between 500 and 700 m. The BSBW is produced as Atlantic Water flows through the shallow Barents Sea becoming denser than FSBW and enters the Eurasian Basin through the Santa Anna Trough beneath the FSBW. Our 17Δ measurements suggest that waters of Pacific and Atlantic origin that transit across the wide Arctic continental shelves acquire a high 17Δ signal indicative of photosynthesis in ice covered water.

  1. Small scale patches of suspended matter and phytoplankton in the Elbe River estuary, German Bight and tidal flats

    NASA Technical Reports Server (NTRS)

    Doerffer, R.; Fischer, J.; Stoessel, M.; Brockmann, C.; Grassl, H.

    1989-01-01

    Landsat 5 TM measurements are found suitable for study of small scale features in coastal waters; three independent factors, namely suspended matter concentration, atmospheric scattering, and sea-surface temperature, were extracted from all seven TM channels on the basis of factor analysis. The distribution of suspended matter in near-surface water layer and sea surface temperature is observable with a spatial resolution of at least 120 x 120 sq m. The high correlation between water depth and suspended matter distribution established by ship-gathered data supports the presently hypothesized control by bottom topography and wind-modified tidal currents of eddy and front formation.

  2. Mesoscale Simulations of a Florida Sea Breeze Using the PLACE Land Surface Model Coupled to a 1.5-Order Turbulence Parameterization

    NASA Technical Reports Server (NTRS)

    Lynn, Barry H.; Stauffer, David R.; Wetzel, Peter J.; Tao, Wei-Kuo; Perlin, Natal; Baker, R. David; Munoz, Ricardo; Boone, Aaron; Jia, Yiqin

    1999-01-01

    A sophisticated land-surface model, PLACE, the Parameterization for Land Atmospheric Convective Exchange, has been coupled to a 1.5-order turbulent kinetic energy (TKE) turbulence sub-model. Both have been incorporated into the Penn State/National Center for Atmospheric Research (PSU/NCAR) mesoscale model MM5. Such model improvements should have their greatest effect in conditions where surface contrasts dominate over dynamic processes, such as the simulation of warm-season, convective events. A validation study used the newly coupled model, MM5 TKE-PLACE, to simulate the evolution of Florida sea-breeze moist convection during the Convection and Precipitation Electrification Experiment (CaPE). Overall, eight simulations tested the sensitivity of the MM5 model to combinations of the new and default model physics, and initialization of soil moisture and temperature. The TKE-PLACE model produced more realistic surface sensible heat flux, lower biases for surface variables, more realistic rainfall, and cloud cover than the default model. Of the 8 simulations with different factors (i.e., model physics or initialization), TKE-PLACE compared very well when each simulation was ranked in terms of biases of the surface variables and rainfall, and percent and root mean square of cloud cover. A factor separation analysis showed that a successful simulation required the inclusion of a multi-layered, land surface soil vegetation model, realistic initial soil moisture, and higher order closure of the planetary boundary layer (PBL). These were needed to realistically model the effect of individual, joint, and synergistic contributions from the land surface and PBL on the CAPE sea-breeze, Lake Okeechobee lake breeze, and moist convection.

  3. Review: the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.

    1994-10-01

    An overview is given of the atmospheric boundary layer (ABL) over both continental and ocean surfaces, mainly from observational and modelling perspectives. Much is known about ABL structure over homogeneous land surfaces, but relatively little so far as the following are concerned, (i) the cloud-topped ABL (over the sea predominantly); (ii) the strongly nonhomogeneous and nonstationary ABL; (iii) the ABL over complex terrain. These three categories present exciting challenges so far as improved understanding of ABL behaviour and improved representation of the ABL in numerical models of the atmosphere are concerned.

  4. Remotely Searching for Noctiluca Miliaris in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Roesler, Collin S.; Goes, Joaquim I.

    2014-01-01

    Reversing monsoonal winds in the Arabian Sea result in two seasons with elevated biological activity, namely the annual summer Southwest Monsoon (SWM; June to September) and winter Northeast Monsoon (NEM; November to March) [Wiggert et al., 2005]. Generally speaking, the SWM and NEM create two geographically distinct blooms [Banse and English, 2000; Levy et al., 2007]. In the summer, winds from the southwest drive offshore Ekman transport and coastal upwelling along the northwestern coast of Africa, which brings nutrient-rich water to the surface from below the permanent thermocline [Bauer et al., 1991]. In the winter, cooling of the northern Arabian Sea causes surface waters to sink, which generates convective mixing that injects nutrients throughout the upper mixed layer [Madhupratap et al., 1996]. This fertilization of otherwise nutrient-deplete surface waters produces one of the most substantial seasonal extremes of phytoplankton biomass and carbon flux anywhere in the world [Smith, 2005].

  5. Ocean haline skin layer and turbulent surface convections

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zhang, X.

    2012-04-01

    The ocean haline skin layer is of great interest to oceanographic applications, while its attribute is still subject to considerable uncertainty due to observational difficulties. By introducing Batchelor micro-scale, a turbulent surface convection model is developed to determine the depths of various ocean skin layers with same model parameters. These parameters are derived from matching cool skin layer observations. Global distributions of salinity difference across ocean haline layers are then simulated, using surface forcing data mainly from OAFlux project and ISCCP. It is found that, even though both thickness of the haline layer and salinity increment across are greater than the early global simulations, the microwave remote sensing error caused by the haline microlayer effect is still smaller than that from other geophysical error sources. It is shown that forced convections due to sea surface wind stress are dominant over free convections driven by surface cooling in most regions of oceans. The free convection instability is largely controlled by cool skin effect for the thermal microlayer is much thicker and becomes unstable much earlier than the haline microlayer. The similarity of the global distributions of temperature difference and salinity difference across cool and haline skin layers is investigated by comparing their forcing fields of heat fluxes. The turbulent convection model is also found applicable to formulating gas transfer velocity at low wind.

  6. Seasonality of Red Sea Mixed-Layer Depth and Density Budget

    NASA Astrophysics Data System (ADS)

    Kartadikaria, A. R.; Cerovecki, I.; Krokos, G.; Hoteit, I.

    2016-02-01

    The Red Sea is an active area of water mass formation. Dense water initially formed in the northern Red Sea, in the Gulf of Aqaba and the Gulf of Suez, spreads southward and finally flows to the open ocean through the Gulf of Aden via the narrow strait of Bab Al Mandeb. The signature of this outflow can be traced until the southern Indian Ocean, and is characterized by potential density of σθ ≈ 27.4. This water mass is important because it represents a significant source of heat and salt for the Indian Ocean. Using a high-resolution 1km regional MITgcm ocean model for the period 1992-2001 configured for the Red Sea, we examine the spatio-temporal characteristics of water mass formation inside the basin by analyzing closed and complete temperature and salinity budgets. The deepest mixed-layers (MLD) always develop in the northern part of the basin where surface ocean buoyancy loss leads to the Red Sea Intermediate and Deep Water formation. As this water is advected south, it is strongly modified by diapycnal mixing of heat and salt.

  7. The Sea Breeze in South-Iceland: Observations with an unmanned aircraft and numerical simulations

    NASA Astrophysics Data System (ADS)

    Opsanger Jonassen, Marius; Ólafsson, Haraldur; Rasol, Dubravka; Reuder, Joachim

    2010-05-01

    Sea breeze events, 19-20 July 2009, observed during the international field campaign MOSO, at the southcoast of Iceland, have been investigated using high resolution numerical simulations. Thanks to the use of a small unmanned aircraft system (UAS), SUMO, the wind and temperature aloft could be observed at a high resolution in both space and time. Simultaneously with the UAS operations, conventional platforms were used to obtain surface measurements. The observations show a distinct sea breeze circulation with an onset at around noon and a final decay around 19:00 UTC. At the maximum, the sea breeze layer reached a height of appr. 400 m, marked by a capping wind minimum. When compared to the flow aloft, the sea breeze layer was found to exhibit relatively low temperatures and an expected turn from an off-shore to an on-shore flow. Overall, the agreement between the observations and simulations are relatively good. The simulations suggest a horizontal extent of the circulation some 20-30 km off-shore, but only around 5 km on-shore.

  8. Temperature history of the Caribbean mixed layer as derived from sclerosponges

    NASA Astrophysics Data System (ADS)

    Estrella, J.; Winter, A.; Sherman, C.; Mangini, A.; Ramírez, W.

    2011-12-01

    We present a high resolution record of the Caribbean mixed layer temperature at different depths derived from oxygen isotopic ratios obtained from the sclerosponge Ceratoporella nicholsoni. Sclerosponges precipitate their calcium carbonate skeleton in equilibrium with their surrounding environment and are capable of living at great depths (down to 200 m). The sponges for this project were collected off Puerto Rico and St. Croix in northeastern region of the Caribbean Sea. The record obtained closest to the surface (36 m) indicates a sudden rise in sea surface temperature that started in 1866 and ended in 1877 with a total rise of 0.5 °C. At this time the rise decelerated until it finally stopped in 1935. From there onwards the record shows a declining trend that lasts until present day. We found that up to 51 % of the temperature variability in this record can be attributed to the Atlantic Multidecadal Oscillation (Trenberth and Shea, 2006). Further work is taking place on sponges located at various depths to determine the rate of expansion of the mixed layer.

  9. Enrichment of Extracellular Carbonic Anhydrase in the Sea Surface Microlayer and Its Effect on Air-Sea CO2 Exchange

    NASA Astrophysics Data System (ADS)

    Mustaffa, N. I. H.; Striebel, M.; Wurl, O.

    2017-12-01

    This paper describes the quantification of extracellular carbonic anhydrase (eCA) concentrations in the sea surface microlayer (SML), the boundary layer between the ocean and the atmosphere of the Indo-West Pacific. We demonstrated that the SML is enriched with eCA by 1.5 ± 0.7 compared to the mixed underlying water. Enrichment remains up to a wind speed of 7 m s-1 (i.e., under typical oceanic conditions). As eCA catalyzes the interconversion of HCO3- and CO2, it has been hypothesized that its enrichment in the SML enhances the air-sea CO2 exchange. We detected concentrations in the range of 0.12 to 0.76 nM, which can enhance the exchange by up to 15% based on the model approach described in the literature.

  10. Artificial upwelling using the energy of surface waves

    NASA Astrophysics Data System (ADS)

    Soloviev, A.

    2016-02-01

    The ocean is an important component of climate and climate change, since the heat capacity of a few meters of the upper ocean is equivalent to the heat capacity of the entire atmosphere. (Solar radiation and IR balance in the atmosphere are of course major factors as well.) Artificial upwelling devices using the energy of surface waves, similar to those developed by Vershinskiy, Pshenichnyy, and Soloviev (1987), can bring cold water from below the thermocline to the sea surface. Their wave-inertia pump consisted of a vertical tube, a valve, and a buoy to keep the device afloat. The device operated by using energy of surface waves to create an upward flow of water in the tube. An outlet valve at the top of the unit synchronized the operation of the device with surface waves and prevented back-splashing. A single device with a 100 m long and 1.2 m diameter tube is able to produce up to 1 m3s-1 flow of deep water to the surface. With a 10oC temperature difference over 100 m depth, the negative heat supply rate to the sea surface is 42 MW, which is equivalent to a 42 Wm-2 heat flux, if distributed over 1 km2 area. Such flux is comparable to the average net air-sea flux. This type of artificial upwelling can cool down the sea surface, modify climate on a regional scale and possibly help mitigate hurricanes. The cold water brought from the deep layer, however, has a larger density than the surface water and therefore has a tendency to sink back down. In this work, the efficiency of wave-inertia pumps has been estimated for different environmental conditions using a computational fluid dynamics model. The cooled near-surface layer of the ocean will be getting more heat from the sun, which is a detrimental consequence. Cloud seeding can help to mitigate this extra warming. A synergistic approach to climate engineering can thus reduce detriments and increase potential benefits of this system to society.

  11. Self-accelerated development of salt karst during flash floods along the Dead Sea Coast, Israel

    NASA Astrophysics Data System (ADS)

    Avni, Yoav; Lensky, Nadav; Dente, Elad; Shviro, Maayan; Arav, Reuma; Gavrieli, Ittai; Yechieli, Yoseph; Abelson, Meir; Lutzky, Hallel; Filin, Sagi; Haviv, Itai; Baer, Gidon

    2016-01-01

    We document and analyze the rapid development of a real-time karst system within the subsurface salt layers of the Ze'elim Fan, Dead Sea, Israel by a multidisciplinary study that combines interferometric synthetic aperture radar and light detection and ranging measurements, sinkhole mapping, time-lapse camera monitoring, groundwater level measurements and chemical and isotopic analyses of surface runoff and groundwater. The >1 m/yr drop of Dead Sea water level and the subsequent change in the adjacent groundwater system since the 1960s resulted in flushing of the coastal aquifer by fresh groundwater, subsurface salt dissolution, gradual land subsidence and formation of sinkholes. Since 2010 this process accelerated dramatically as flash floods at the Ze'elim Fan were drained by newly formed sinkholes. During and immediately after these flood events the dissolution rates of the subsurface salt layer increased dramatically, the overlying ground surface subsided, a large number of sinkholes developed over short time periods (hours to days), and salt-saturated water resurged downstream. Groundwater flow velocities increased by more than 2 orders of magnitudes compared to previously measured velocities along the Dead Sea. The process is self-accelerating as salt dissolution enhances subsidence and sinkhole formation, which in turn increase the ponding areas of flood water and generate additional draining conduits to the subsurface. The rapid terrain response is predominantly due to the highly soluble salt. It is enhanced by the shallow depth of the salt layer, the low competence of the newly exposed unconsolidated overburden and the moderate topographic gradients of the Ze'elim Fan.

  12. Fast Response of the Tropics to an Abrupt Loss of Arctic Sea Ice via Ocean Dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Deser, Clara; Sun, Lantao; Tomas, Robert A.

    2018-05-01

    The role of ocean dynamics in the transient adjustment of the coupled climate system to an abrupt loss of Arctic sea ice is investigated using experiments with Community Climate System Model version 4 in two configurations: a thermodynamic slab mixed layer ocean and a full-depth ocean that includes both dynamics and thermodynamics. Ocean dynamics produce a distinct sea surface temperature warming maximum in the eastern equatorial Pacific, accompanied by an equatorward intensification of the Intertropical Convergence Zone and Hadley Circulation. These tropical responses are established within 25 years of ice loss and contrast markedly with the quasi-steady antisymmetric coupled response in the slab-ocean configuration. A heat budget analysis reveals the importance of anomalous vertical advection tied to a monotonic temperature increase below 200 m for the equatorial sea surface temperature warming maximum in the fully coupled model. Ocean dynamics also rapidly modify the midlatitude atmospheric response to sea ice loss.

  13. Black Sea thermohaline properties: Long‐term trends and variations

    PubMed Central

    Stips, A.; Garcia‐Gorriz, E.; Macias Moy, D.

    2017-01-01

    Abstract The current knowledge about spatial and temporal dynamics of the Black Sea's thermohaline structure is incomplete because of missing data and sparse distribution of existing measurements in space and time. This study presents 56 year continuous simulations of the Black Sea's hydrodynamics using the 3D General Estuarine Transport Model (GETM), without incorporating any relaxation toward climatological or observational data fields. This property of the model allows us to estimate independent temporal trends, in addition to resolving the spatial structure. The simulations suggest that the intermediate layer temperature is characterized by a weak positive trend (warming), whereas the surface temperature does not show a clear linear trend. Different salinity trends have been established at the surface (negative), upper (weaker negative) and main halocline (positive). Three distinct dynamic periods are identified (1960–1970, 1970–1995, 1995–2015), which exhibit pronounced changes in the Black Sea's thermohaline properties and basin circulation. Strengthening of the main cyclonic circulation, accompanied by intensification of the mesoscale anticyclonic eddy formation is found. Both events strongly affect the sea surface salinity but contribute in opposing directions. Specifically, strong composite large‐scale circulation leads to an increase in sea surface salinity, while enhanced formation of mesoscale anticyclones decreases it. Salinity evolution with time is thus the result of the competition of these two opposing yet interdependent processes. PMID:28989833

  14. Observational study of upper ocean cooling due to Phet super cyclone in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Muni Krishna, K.

    2016-05-01

    Phet super cyclone (31 May-7 June 2010) was the most intense and also the rarest of the rare track in Arabian Sea as per the recorded history during 1877-2009. The present study focuses on the ocean physical responses to Phet cyclone using satellite and Argo observations. The sea surface temperature is decreased to 6 °C with an approximately 350 km long and 100 km width area in the Arabian Sea after the cyclone passage. The translation speed of cyclone is 3.86 m/s, the mixed layer is 79 m, and thermocline displacement is 13 m at the cooling area. With the relationship of wind stress curl and Ekman pumping velocity (EPV), the author found that the speed of EPV was increased after the passage of cyclone. So the extent of the SST drop was probably due to the moving speed of cyclone and the depth of the mixed layer.

  15. The marine atmospheric boundary layer under strong wind conditions: Organized turbulence structure and flux estimates by airborne measurements

    NASA Astrophysics Data System (ADS)

    Brilouet, Pierre-Etienne; Durand, Pierre; Canut, Guylaine

    2017-02-01

    During winter, cold air outbreaks take place in the northwestern Mediterranean sea. They are characterized by local strong winds (Mistral and Tramontane) which transport cold and dry continental air across a warmer sea. In such conditions, high values of surface sensible and latent heat flux are observed, which favor deep oceanic convection. The HyMeX/ASICS-MED field campaign was devoted to the study of these processes. Airborne measurements, gathered in the Gulf of Lion during the winter of 2013, allowed for the exploration of the mean and turbulent structure of the marine atmospheric boundary layer (MABL). A spectral analysis based on an analytical model was conducted on 181 straight and level runs. Profiles of characteristic length scales and sharpness parameter of the vertical wind spectrum revealed larger eddies along the mean wind direction associated with an organization of the turbulence field into longitudinal rolls. These were highlighted by boundary layer cloud bands on high-resolution satellite images. A one-dimensional description of the vertical exchanges is then a tricky issue. Since the knowledge of the flux profile throughout the entire MABL is essential for the estimation of air-sea exchanges, a correction of eddy covariance turbulent fluxes was developed taking into account the systematic and random errors due to sampling and data processing. This allowed the improvement of surface fluxes estimates, computed from the extrapolation of the stacked levels. A comparison between those surface fluxes and bulk fluxes computed at a moored buoy revealed considerable differences, mainly regarding the latent heat flux under strong wind conditions.

  16. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink.

    PubMed

    Abelmann, Andrea; Gersonde, Rainer; Knorr, Gregor; Zhang, Xu; Chapligin, Bernhard; Maier, Edith; Esper, Oliver; Friedrichsen, Hans; Lohmann, Gerrit; Meyer, Hanno; Tiedemann, Ralf

    2015-09-18

    Reduced surface-deep ocean exchange and enhanced nutrient consumption by phytoplankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However, identification of the biological and physical conditions involved and the related processes remains incomplete. Here we specify Southern Ocean surface-subsurface contrasts using a new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian opal, in combination with numerical simulations. Our data do not indicate a permanent glacial halocline related to melt water from icebergs. Corroborated by numerical simulations, we find that glacial surface stratification was variable and linked to seasonal sea-ice changes. During glacial spring-summer, the mixed layer was relatively shallow, while deeper mixing occurred during fall-winter, allowing for surface-ocean refueling with nutrients from the deep reservoir, which was potentially richer in nutrients than today. This generated specific carbon and opal export regimes turning the glacial seasonal sea-ice zone into a carbon sink.

  17. Surface wave effects on water temperature in the Baltic Sea: simulations with the coupled NEMO-WAM model

    NASA Astrophysics Data System (ADS)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-08-01

    Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.

  18. Picophytoplankton variability: Influence of winter convective mixing and advection in the northeastern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Bemal, Suchandan; Anil, Arga Chandrashekar; Shankar, D.; Remya, R.; Roy, Rajdeep

    2018-04-01

    The deepening of mixed layer and ensuing changes in optical and physicochemical properties of euphotic zone can influence phytoplankton community dynamics in the northeastern Arabian Sea during winter monsoon. The response of picophytoplankton community to such changes during winter convective mixing is not well understood. Herein, we have compared variations in the picophytoplankton community structure during early (November-December 2012), peak (end-January 2014) and late (mid-February 2015) winter monsoon from three separate cruises in the southern northeastern Arabian Sea. The higher Synechococcus abundance owing to entrainment of nutrients in mixed layer was observed during peak winter monsoon, while the concomitant changes in nitrate concentration, light and oxygen environment restricted Prochlorococcus growth resulting in lower abundance during the same period. This highlights the diverse responses of picophytoplankton groups to physicochemical changes of water column during winter convective mixing. The divinyl chlorophyll b/a ratio (marker for Prochlorococcus ecotypes) indicated prevalence of one low-light adapted ecotype (sensitive to light shock) in sub-surface water, one high-light adapted ecotype in surface water during early winter monsoon and both disappeared during intense mixing period in peak winter monsoon. Subsequently, a distinct low-light adapted ecotype, capable to tolerate light shock, was noticed during late winter monsoon and we argue that this ecotype is introduced to southern northeastern Arabian Sea through advection from north by sub-surface circulation. The total picophytoplankton biomass available to microbial loop is restored during late winter monsoon, when stratification begins, with a higher abundance of Synechococcus and the re-occurrence of Prochlorococcus population in the region. These inferences indicate that variability in picophytoplankton community structure and their contribution to the microbial loop are driven by convective mixing and advection, which in turn influence ecosystem functioning and trophodynamics of the southern northeastern Arabian Sea.

  19. No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic.

    PubMed

    Foukal, Nicholas P; Lozier, M Susan

    2016-04-22

    Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS.

  20. No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic

    PubMed Central

    Foukal, Nicholas P.; Lozier, M. Susan

    2016-01-01

    Recent Lagrangian analyses of surface drifters have questioned the existence of a surface current connecting the Gulf Stream (GS) to the subpolar gyre (SPG) and have cast doubt on the mechanism underlying an apparent pathway for sea-surface temperature (SST) anomalies between the two regions. Here we use modelled Lagrangian trajectories to determine the fate of surface GS water and satellite SST data to analyse pathways of GS SST anomalies. Our results show that only a small fraction of the surface GS water reaches the SPG, the water that does so mainly travels below the surface mixed layer, and GS SST anomalies do not propagate into the SPG on interannual timescales. Instead, the inter-gyre heat transport as part of the Atlantic Meridional Overturning Circulation must be accomplished via subsurface pathways. We conclude that the SST in the SPG cannot be predicted by tracking SST anomalies along the GS. PMID:27103496

  1. PARKA II Experiment Utilizing SEA SPIDER. ONR Scientific Plan 2-69

    DTIC Science & Technology

    1969-06-26

    speed and wave height, and take a bathythermograph record to establish depth of surface layer . Log layer depth only with wind and wave data. Step 12...range acoustic propagation experiments designed to support the advanced development objectives of the Long Range Acoustic Propagation Project (LRAPP...environmental experiments conducted under the Long Range Acoustic Propagation Project (LR PP) for the purpose of, evaluating and improving

  2. Improving Numerical Weather Predictions of Summertime Precipitation Over the Southeastern U.S. Through a High-Resolution Initialization of the Surface State

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Kumar, Sujay V.; Krikishen, Jayanthi; Jedlovec, Gary J.

    2011-01-01

    It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high resolution models. This paper presents model verification results of a case study period from June-August 2008 over the Southeastern U.S. using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the NASA Land Information System (LIS) and sea surface temperature (SST) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spin-up run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer, but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS/MODIS data substantially impact surface and boundary layer properties.

  3. Re-approaching global iodine emissions: A novel parameterisation for sea-surface iodide concentrations using a machine learning approach

    NASA Astrophysics Data System (ADS)

    Sherwen, T.; Evans, M. J.; Chance, R.; Tinel, L.; Carpenter, L.

    2017-12-01

    Halogens (Cl, Br, I) in the troposphere have been shown to play a profound role in determining the concentrations of ozone and OH. Iodine, which is essentially oceanic in source, exerts its largest impacts on composition in both the marine boundary layer, and in the upper troposphere. This chemistry has only recently been implemented into global models and significant uncertainties remain, particularly regarding the magnitude of iodine emissions. Iodine emissions are dominated by the inorganic oxidation of iodide in the sea surface by ozone, which leads to release of gaseous inorganic iodine (HOI, I2). Critical for calculation of these fluxes is the sea-surface concentration of iodide, which is poorly constrained by observations. Previous parameterizations for sea-surface iodide concentration have focused on simple regressive relationships with sea surface temperature and another single oceanographic variables. This leads to differences in iodine fluxes of approximately a factor of two, and leads to substantial differences in the modelled impact of iodine on atmospheric composition. Here we use an expanded dataset of oceanic iodide observations, which incorporates new data that has been targeted at areas with poor coverage previously. A novel approach of multivariate machine learning techniques is applied to this expanded dataset to generate a model that yields improved estimates of the global sea surface iodide distribution. We then use a global chemical transport model (GEOS-Chem) to explore the impact of this new parameterisation on the atmospheric budget of iodine and its impact on tropospheric composition.

  4. Tropospheric characteristics over sea ice during N-ICE2015

    NASA Astrophysics Data System (ADS)

    Kayser, Markus; Maturilli, Marion; Graham, Robert; Hudson, Stephen; Cohen, Lana; Rinke, Annette; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats

    2017-04-01

    Over recent years, the Arctic Ocean region has shifted towards a younger and thinner sea-ice regime. The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in this new ice regime north of Svalbard. Here we analyze upper-air measurements made by radiosondes launched twice daily together with surface meteorology observations during N-ICE2015 from January to June 2015. We study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, sudden increases in moisture content and temperature, temperature inversions and boundary layer dynamics. The influence of synoptic cyclones is strongest under polar night conditions, when radiative cooling is most effective and the moisture content is low. We find that transitions between the radiatively clear and opaque state are the largest drivers of changes to temperature inversion and stability characteristics in the boundary layer during winter. In spring radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. The unique N-ICE2015 dataset is used for case studies investigating changes in the vertical structure of the atmosphere under varying synoptic conditions. The goal is to deepen our understanding of synoptic interactions within the Arctic climate system, to improve model performance, as well as to identify gaps in instrumentation, which precludes further investigations.

  5. A new method for estimating the turbulent heat flux at the bottom of the daily mixed layer

    NASA Technical Reports Server (NTRS)

    Imawaki, Shiro; Niiler, Pearn P.; Gautier, Catherine H.; Knox, Robert A.; Halpern, David

    1988-01-01

    Temperature data in the mixed layer and net solar irradiance data at the sea surface are used to estimate the vertical turbulent heat flux at the bottom of the daily mixed layer. The method is applied to data obtained in the eastern tropical Pacific, where the daily cycle in the temperature field is confined to the upper 10-25 m. Equatorial turbulence measurements indicate that the turbulent heat flux is much greater during nighttime than daytime.

  6. Observations of the summer Red Sea circulation

    NASA Astrophysics Data System (ADS)

    Sofianos, Sarantis S.; Johns, William E.

    2007-06-01

    Aiming at exploring and understanding the summer circulation in the Red Sea, a cruise was conducted in the basin during the summer of 2001 involving hydrographic, meteorological, and direct current observations. The most prominent feature, characteristic of the summer circulation and exchange with the Indian Ocean, is a temperature, salinity, and oxygen minimum located around a depth of 75 m at the southern end of the basin, associated with Gulf of Aden Intermediate Water inflowing from the Gulf of Aden during the summer season as an intruding subsurface layer. Stirring and mixing with ambient waters lead to marked increases in temperature (from 16.5 to almost 33°C) and salinity (from 35.7 to more than 38 psu) in this layer by the time it reaches midbasin. The observed circulation presents a very vigorous pattern with strong variability and intense features that extend the width of the basin. A permanent cyclone, detected in the northern Red Sea, verifies previous observations and modeling studies, while in the central sector of the basin a series of very strong anticyclones were observed with maximum velocities exceeding 1 m/s. The three-layer flow pattern, representative of the summer exchange between the Red Sea and the Gulf of Aden, is observed in the strait of Bab el Mandeb. In the southern part of the basin the layer flow is characterized by strong banking of the inflows and outflows against the coasts. Both surface and intermediate water masses involved in the summer Red Sea circulation present prominent spatial variability in their characteristics, indicating that the eddy field and mixing processes play an important role in the summer Red Sea circulation.

  7. Spatial variation of biogenic sulfur in the south Yellow Sea and the East China Sea during summer and its contribution to atmospheric sulfate aerosol.

    PubMed

    Zhang, Sheng-Hui; Yang, Gui-Peng; Zhang, Hong-Hai; Yang, Jian

    2014-08-01

    Spatial distributions of biogenic sulfur compounds including dimethylsulfide (DMS), dissolved and particulate dimethylsulfoniopropionate (DMSPd and DMSPp) were investigated in the South Yellow Sea (SYS) and the East China Sea (ECS) in July 2011. The concentrations of DMS and DMSPp were significantly correlated with the levels of chlorophyll a in the surface water. Simultaneously, relatively high ratio values of DMSP/chlorophyll a and DMS/chlorophyll a occurred in the areas where the phytoplankton community was dominated by dinoflagellates. The DMSPp and chlorophyll a size-fractionation showed that larger nanoplankton (5-20 μm) was the most important producer of DMSPp in the study area. The vertical profiles of DMS and DMSP were characterized by a maximum at the upper layer and the bottom concentrations were also relatively higher compared with the overlying layer of the bottom. In addition, a positive linear correlation was observed between dissolved dimethylsulfoxide (DMSOd) and DMS concentrations in the surface waters. The sea-to-air fluxes of DMS in the study area were estimated to be from 0.03 to 102.35 μmol m(-2) d(-1) with a mean of 16.73 μmol m(-2) d(-1) and the contribution of biogenic non-sea-salt SO4(2-) (nss-SO4(2-)) to the measured total nss-SO4(2-) in the atmospheric aerosol over the study area varied from 1.42% to 30.98%, with an average of 8.2%. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Gradient measurements of gaseous elemental mercury (Hg0) in the marine boundary layer of the northwest Sea of Japan (East Sea).

    PubMed

    Kalinchuk, Viktor; Lopatnikov, Evgeny; Astakhov, Anatoly

    2018-06-01

    Gaseous elemental mercury (Hg 0 ) is a prolific and persistent contaminant in the atmosphere. Atmospheric concentrations of Hg 0 were determined from 17 September to 7 October 2015 in the northwest Sea of Japan aboard the Russian research vessel Professor Gagarinsky. Simultaneous measurements of Hg 0 concentrations were performed 2 m and 20 m above the sea surface using automatic Hg 0 analysers RA-915M and RA-915+, respectively. Concentrations ranged from 0.3 to 25.9 ng/m 3 (n = 5207) and from 0.3 to 27.8 ng/m 3 (n = 4415), with medians of 1.7 and 1.6 ng/m 3 , respectively. Elevated Hg 0 was observed during three episodes from 19 to 22 September, likely caused by one or more of the following factors: 1) atmospheric transport of Hg 0 from the west and south-west (from N. Korea, China, and the Yellow Sea region); 2) Hg 0 emission from the sea due to pollution by water from the Tumannaya River; or 3) underwater geological activities. Increased Hg 0 concentration was observed during periods when air masses flowed from the south, and low concentrations were observed when air masses came from the north. A daytime increase of Hg 0 concentrations at a height of 2 m occurred simultaneously with decreasing Hg 0 at a height of 20 m. These diurnal variations suggest that two contrasting processes occur during the daytime in the marine boundary layer (MBL): Hg 0 emission from the sea surface and Hg 0 oxidation in the MBL by active halogens formed by photolysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Variational Data Assimilation for the Global Ocean

    DTIC Science & Technology

    2013-01-01

    ocean includes the Geoid (a fixed gravity equipotential surface ) as well as the MDT, which is not known accurately enough relative to the centimeter...scales, including processes that control the surface mixed layer, the formation of ocean eddies, meandering ocean J.A. Cummings (E3) nography Division...variables. Examples of this in the ocean are integral quantities, such as acous^B travel time and altimeter measures of sea surface height, and direct

  10. Distribution of Ra isotopes and the 210Pb and 210Po balance in surface seawaters of the mid Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Nozaki, Yoshiyuki; Dobashi, Fumi; Kato, Yoshihisa; Yamamoto, Yoshiyuki

    1998-08-01

    210Po, 210Pb, 228Ra, and 226Ra were measured in surface sea waters along the 1989-1990 global traverse of the oceans using the new R.V. Hakuho-Maru. Where the traverse intersects other expedition routes, the data are generally confirmatory. In the high-productivity regimes like the Red Sea, and the Arabian Sea 210Po is removed from the mixed layer at much faster rates than 210Pb. This fractionation occurs during scavenging presumably because 210Po is strongly sorbed by organic particles, whereas 210Pb is more likely associated with inorganic detritus. The 210Po/ 210Pb activity ratios leaving the mixed layer by particulate transport can be estimated from the steady state balance of 210Pb and 210Po in the surface waters for different oceanic regions, and are compared with those in the literature obtained by sediment-trap experiments. Although this comparison appears to merge, there exist some inconsistencies, which may be attributable to one of the following possibilities: (1) the model-derived atmospheric 210Pb flux is overestimated for the North Pacific and the North Atlantic, or (2) the sediment-trap data do not represent the real 210Po/ 210Pb ratio in the vertical particulate flux due to some experimental artifacts, such as incomplete trapping and size fractionation. Further careful studies of sediment trapping including seasonal variation are needed to resolve this issue. Our Ra data confirmed that strong sources for 228Ra exist in the Bay of Bengal and the Southeast Asian continental shelf zone, whereas the Mediterranean and the Red Sea, though they are surrounded by land, are not effective sources of 228Ra in the surface water.

  11. Modeling of Long-Term Evolution of Hydrophysical Fields of the Black Sea

    NASA Astrophysics Data System (ADS)

    Dorofeyev, V. L.; Sukhikh, L. I.

    2017-11-01

    The long-term evolution of the Black Sea dynamics (1980-2020) is reconstructed by numerical simulation. The model of the Black Sea circulation has 4.8 km horizontal spatial resolution and 40 levels in z-coordinates. The mixing processes in the upper layer are parameterized by Mellor-Yamada turbulent model. For the sea surface boundary conditions, atmospheric forcing functions were used, provided for the Black Sea region by the Euro mediterranean Center on Climate Change (CMCC) from the COSMO-CLM regional climate model. These data have a spatial resolution of 14 km and a daily temporal resolution. To evaluate the quality of the hydrodynamic fields derived from the simulation, they were compared with in-situ hydrological measurements and similar results from physical reanalysis of the Black Sea.

  12. Calculation and simulation of atmospheric refraction effects in maritime environments

    NASA Astrophysics Data System (ADS)

    Dion, Denis, Jr.; Gardenal, Lionel; Lahaie, P.; Forand, J. Luc

    2001-01-01

    Near the sea surface, atmospheric refraction and turbulence affect both IR transmission and image quality. This produces an impact on both the detection and classification/identification of targets. With the financial participation of the U.S. Office of Naval Research (ONR), Canada's Defence Research Establishment Valcartier (DREV) is developing PRIME (Propagation Resources In the Maritime Environment), a computer model aimed at describing the overall atmospheric effects on IR imagery systems in the marine surface layer. PRIME can be used as a complement to MODTRAN to compute the effective transmittance in the marine surface layer, taking into account the lens effects caused by refraction. It also provides information on image degradation caused by both refraction and turbulence. This paper reviews the refraction phenomena that take place in the surface layer and discusses their effects on target detection and identification. We then show how PRIME can benefit detection studies and image degradation simulations.

  13. Assimilation of Altimeter Data into a Quasigeostrophic Model of the Gulf Stream System. Part 1; Dynamical Considerations

    NASA Technical Reports Server (NTRS)

    Capotondi, Antonietta; Malanotte-Rizzoli, Paola; Holland, William R.

    1995-01-01

    The dynamical consequences of constraining a numerical model with sea surface height data have been investigated. The model used for this study is a quasigeostrophic model of the Gulf Stream region. The data that have been assimilated are maps of sea surface height obtained as the superposition of sea surface height variability deduced from the Geosat altimeter measurements and a mean field constructed from historical hydrographic data. The method used for assimilating the data is the nudging technique. Nudging has been implemented in such a way as to achieve a high degree of convergence of the surface model fields toward the observations. The assimilation of the surface data is thus equivalent to the prescription of a surface pressure boundary condition. The authors analyzed the mechanisms of the model adjustment and the characteristics of the resultant equilibrium state when the surface data are assimilated. Since the surface data are the superposition of a mean component and an eddy component, in order to understand the relative role of these two components in determining the characteristics of the final equilibrium state, two different experiments have been considered: in the first experiment only the climatological mean field is assimilated, while in the second experiment the total surface streamfunction field (mean plus eddies) has been used. It is shown that the model behavior in the presence of the surface data constraint can be conveniently described in terms of baroclinic Fofonoff modes. The prescribed mean component of the surface data acts as a 'surface topography' in this problem. Its presence determines a distortion of the geostrophic contours in the subsurface layers, thus constraining the mean circulation in those layers. The intensity of the mean flow is determined by the inflow/outflow conditions at the open boundaries, as well as by eddy forcing and dissipation.

  14. Influence of the extreme conditions on the water quality and material exchange flux in the Strait of Istanbul

    NASA Astrophysics Data System (ADS)

    Altıok, Hüsne; Aslan, Aslı; Övez, Süleyman; Demirel, Nazlı; Yüksek, Ahsen; Kıratlı, Nur; Taş, Seyfettin; Müftüoğlu, Ahmet Edip; Sur, Halil Ibrahim; Okuş, Erdoğan

    2014-11-01

    This study focuses on the influence of extreme hydrological events on the water quality of the Strait of Istanbul (Bosphorus), a stratified waterway, polluted by sewage outfalls and non-point sources. Monthly collected water quality parameters (nitrate + nitrite, ortho-phosphate, silicate, dissolved oxygen, total suspended solids, chlorophyll-a and fecal indicator bacteria (fecal coliform and enterococci)) were evaluated together with the hydrological data (salinity, temperature and current flow) for 1 year. Two blockage events, identified as extreme conditions, were detected during the study: a lower layer blockage in February 2003 and an upper layer blockage in October 2003. During the lower layer blockage, the volume fluxes of the upper layer significantly increased to 28,140 m3 s- 1 and the lower layer almost stopped flowing (19 m3 s- 1). The dissolved oxidative nitrogen, ortho-phosphate and silicate inputs outflowing from the Black Sea were 117, 17.6, and 309 tons which were 3, 2, and 4 times the average daily fluxes respectively, in addition to enhancement of fecal indicator bacteria contamination in the sea surface flow. During the upper layer blockage, the volume flux of the upper layer was 3837 m3 s- 1 and the counter flow reached 24,985 m3 s- 1 at the northern exit of the Strait of Istanbul resulting in 2.7 fold increase in the mean bottom flow. The daily exports of nutrients, total suspended solid and dissolved oxygen by the lower layer flow increased by at least 2 fold compared to the mass fluxes estimated from the seasonal/annual means of volume flux and concentrations. On the other hand, fecal indicator bacteria flux by the lower layer inflow to the Black Sea decreased by at least 2 fold compared to the mean daily flux. These results show that the material exchange between the Marmara and the Black seas becomes more important during blockage events.

  15. Wave inhibition by sea ice enables trans-Atlantic ice rafting of debris during Heinrich Events

    NASA Astrophysics Data System (ADS)

    Wagner, T. J. W.; Dell, R.; Eisenman, I.; Keeling, R. F.; Padman, L.; Severinghaus, J. P.

    2017-12-01

    The thickness of the ice-rafted debris (IRD) layers that signal Heinrich Events declines far more gradually with distance from the iceberg sources than would be expected based on present-day iceberg trajectories. Here we model icebergs as passive Lagrangian tracers driven by ocean currents, winds, and sea surface temperatures. The icebergs are released in a comprehensive climate model simulation of the last glacial maximum (LGM), as well as a simulation of the modern climate. The two simulated climates result in qualitatively similar distributions of iceberg meltwater and hence debris, with the colder temperatures of the LGM having only a relatively small effect on meltwater spread. In both scenarios, meltwater flux falls off rapidly with zonal distance from the source, in contrast with the more uniform spread of IRD in sediment cores. In order to address this discrepancy, we propose a physical mechanism that could have prolonged the lifetime of icebergs during Heinrich events. The mechanism involves a surface layer of cold and fresh meltwater formed from, and retained around, densely packed armadas of icebergs. This leads to wintertime sea ice formation even in relatively low latitudes. The sea ice in turn shields the icebergs from wave erosion, which is the main source of iceberg ablation. We find that allowing sea ice to form around all icebergs during four months each winter causes the model to approximately agree with the distribution of IRD in sediment cores.

  16. Sea Ice Retreat and its Impact on the Intensity of Open-Ocean Convection in the Greenland and Iceland Seas

    NASA Astrophysics Data System (ADS)

    Moore, K.; Våge, K.; Pickart, R. S.; Renfrew, I.

    2016-12-01

    The air-sea transfer of heat and freshwater plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland Seas, where these fluxes drive ocean convection that contributes to Denmark Strait Overflow Water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). This buoyancy transfer is most pronounced during the winter downstream of the ice edge, where the cold and dry Arctic air first comes in contact with the relatively warm ocean surface. Here we show that the wintertime retreat of sea ice in the region, combined with different rates of warming for the atmosphere and sea surface of the Greenland and Iceland Seas, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter air-sea heat fluxes since 1979. Furthermore, it is demonstrated that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional air-sea interaction in this region. Mixed-layer model simulations imply that a continued decrease in atmospheric forcing will exceed a threshold for the Greenland Sea whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic Seas. In the Iceland Sea, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC.

  17. Evidence from the Seychelles of Last Interglacial Sea Level Oscillations

    NASA Astrophysics Data System (ADS)

    Vyverberg, K.; Dutton, A.; Dechnik, B.; Webster, J.; Zwartz, D.

    2014-12-01

    Several studies indicate that sea level oscillated during Marine Isotope Stage (MIS) 5e, but the details of these scenarios, including the number of sea level oscillations, are still debated. We lack a detailed understanding of the sensitivity of the large polar ice sheets to changes in temperature that could result in eustatic sea level oscillations. Because the Seychelles are located far from the margins of the Last Glacial Maximum northern hemisphere ice sheets, they have not been subjected to glacial isostatic adjustment, and have been tectonically stable since the Last Interglacial period; therefore, they provide a robust record of eustatic sea level during MIS 5e. All of the outcrops we examined contain unconformities and/or sharp transitions between facies, though the nature of these boundaries varies between sites. In some outcrops we observed a hardground comprising fine-grained, mollusc-rich sediment layer between distinct generations of in situ coralgal framework. In one outcrop, this succession was observed twice, where two generations of reef growth were each capped by a strongly indurated fine-grained, mollusc-rich sediment layer. At the site with the greatest vertical extent of outcrop, there is a marked difference in the taxonomic composition of the coral community above and below an unconformable surface, but the indurated fine-grained, sediment layer observed elsewhere was absent. Most of the other outcrops we studied contained a common succession of facies from in situ reef units overlain by cemented coral rubble. In two dated outcrops, the age of corals above and below the rubble layer are the same age. The hardgrounds and rubble layers may represent ephemeral exposure of the reef units during two drops in sea level. The inference of multiple meter-scale oscillations during the MIS 5e highstand indicates a more dynamic cryosphere than the present interglacial, although the climatic threshold for more volatile polar ice sheets is not yet clear.

  18. Sea State and Boundary Layer Physics of the Emerging Arctic Ocean

    DTIC Science & Technology

    2013-09-01

    meteorological stations; weather observations; upper-air (rawinsondes, balloons and tethered kit); turbulent fluxes; radiation; surface temperature...remote sensing, in-field remote sensing will be employed, using small unmanned aerial vehicles (UAV), balloons , and manned aircraft (funded by other

  19. Technical note: Examining ozone deposition over seawater

    EPA Science Inventory

    Surface layer resistance plays an important role in determining ozone deposition velocity over sea-water and can be influenced by chemical interactions at the air-water interface. Here, we examine the effect of chemical interactions of iodide, dimethylsulfide, dissolved organic c...

  20. Regular network model for the sea ice-albedo feedback in the Arctic.

    PubMed

    Müller-Stoffels, Marc; Wackerbauer, Renate

    2011-03-01

    The Arctic Ocean and sea ice form a feedback system that plays an important role in the global climate. The complexity of highly parameterized global circulation (climate) models makes it very difficult to assess feedback processes in climate without the concurrent use of simple models where the physics is understood. We introduce a two-dimensional energy-based regular network model to investigate feedback processes in an Arctic ice-ocean layer. The model includes the nonlinear aspect of the ice-water phase transition, a nonlinear diffusive energy transport within a heterogeneous ice-ocean lattice, and spatiotemporal atmospheric and oceanic forcing at the surfaces. First results for a horizontally homogeneous ice-ocean layer show bistability and related hysteresis between perennial ice and perennial open water for varying atmospheric heat influx. Seasonal ice cover exists as a transient phenomenon. We also find that ocean heat fluxes are more efficient than atmospheric heat fluxes to melt Arctic sea ice.

  1. The role of horizontal exchanges on ventilation of the benthic boundary layer on the Black Sea shelf

    NASA Astrophysics Data System (ADS)

    Shapiro, Georgy; Wobus, Fred

    2010-05-01

    The state of the benthic component of the shelf ecosystem is strongly influenced by availability of dissolved oxygen. The chemical structure of the Black Sea waters is largely determined by the location and the strength of the pycnocline. Due to similarity in the mechanisms of vertical exchanges the oxycline and the chemocline occur at the same depth intervals as the halocline and pycnocline (Özsoy and Ünlüata, 1997). As the data for dissolved oxygen on the shelf is relatively sparse we assume that much abundant data on physical parameters (temperature and salinity) can be used as proxy in determining the location of the oxycline and hence the spatial extent of near-bottom waters depleted in oxygen. When the waters of the benthic boundary layers below the pycnocline are ‘locked' i.e. unable to mix vertically with surface then the biological pump and supply of oxygen are suppressed. However, the locked water can, in principle, move ‘horizontally', predominantly along the constant density levels and get ventilated via isopycnal exchanges. The isopycnals in the Black Sea have generally a dome-like structure, so that the isopycnal movements across the shelf break can ventilate bottom shelf waters with water masses from upper parts of the water column in the deep sea. We use the intra- and inter-annual variations in the near-bottom temperature as indicators for variability of physical conditions in the benthic boundary layer on the shelf. The physical reason for this is that interannual variations in the near-bottom temperature are directly related with the volume of cold waters (Ivanov et al., 2000) which are formed on the shelf and then exported into the deep sea, so that variations in temperature may indicate changes in the intensity of horizontal exchanges. In this paper we identified areas on the Black Sea margin where bottom waters can not be mixed vertically (‘locked' waters) during the winter months and locations to which the locked waters can move ‘horizontally'. The potential energy approach was used to identify the spatial and temporal variability of the areas and volumes occupied by the locked waters. This approach allows to assess a relative strength of the ability of locked waters to mix vertically with oxygen rich surface waters as compared to ‘horizontal' exchanges with the deep sea along isopycnic surfaces. Analysis of interannual variability of temperature showed that the period 1965-1983 was a warm period when the ‘summer' season ( May to November) temperatures of the benthic waters were higher than the average; to the contrary the period 1983-2001 (i.e. up to end of available data sets) was a cold period. Correlations between various time series of hydrographical and meteorological parameters were calculated to establish the relative importance of vertical versus horizontal exchanges in ventilation of the locked water masses. A low correlation (R=0.24) was obtained between the variation of the winter sea surface temperature on the shelf and the ‘summer' temperatures of locked waters. A higher correlation (R=0.56) was found between the summer temperatures of the Cold Intermediate Waters below the seasonal pycnocline in the deep sea (density range sigma-theta= 14.2-14.8) and the ‘summer' temperatures of the ‘locked' waters in the benthic boundary layer on the shelf. Analysis shows that the isopycnic exchanges with the deep sea are more important for ventilation of the benthic boundary layer on the shelf than winter convection on the shelf itself. This work was made possible via support from EU FP6 SESAME and EU FP7 MyOcean projects and NERC PhD studentship. References Özsoy, E. and Ünlüata, Ü., 1997. Oceanography of the Black Sea: a review of some recent results. Earth-Sci. Rev., 42(4): 231-272. Ivanov, L.I., Belokopytov, V.N., Özsoy, E. and Samodurov, A., 2000. Ventilation of the Black Sea pycnocline on seasonal and interannual time scales. Mediterr. Mar. Sci., 1/2: 61-74.

  2. Rectification of Atmospheric Intraseasonal Oscillations on Seasonal to Interannual Sea Surface Temperature in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Duncan, B.; Han, W.

    2010-12-01

    An ocean general circulation model (the Hybrid Coordinate Ocean Model, HYCOM) is used to examine the rectification of atmospheric intraseasonal oscillations (ISOs) on lower-frequency seasonal to interannual sea surface temperatures (SSTs) in the Indian Ocean (IO). Existing studies have shown that ISOs rectify on low-frequency equatorial surface currents, suggesting that they may also have important impacts on low-frequency SST variability. To evaluate these impacts, a hierarchy of experiments is run with HYCOM that isolates the ocean response to atmospheric forcing by 10-30 day (submonthly), 30-90 day (dominated by the Madden-Julian Oscillation), and 10-90 day (all ISO) events. Other experiments isolate the ocean response to a range of forcing processes including shortwave radiation, precipitation, and winds. Results indicate that ISOs have a non-negligible effect on the seasonal and annual cycles of SST in the Arabian Sea. The maximum seasonal SST variability in the Arabian Sea is 1.6°C, while the ISO-forced seasonal SST variability has a maximum of 0.4°C. Because SSTs in the Arabian Sea are already warm (>28°C), a change of 0.4°C can affect convection there. ISOs also have non-negligible effects on the seasonal variability of SST in the south- and west- equatorial IO. The ISO contribution to the seasonal cycle of mixed layer thickness (hmix) in the eastern equatorial IO has a maximum of 9m, while the total hmix seasonal cycle has a maximum of 14m. ISOs affect the hmix seasonal cycle by up to 10m in the Arabian Sea, where the total seasonal cycle has a maximum of 75m. Further work will seek to explain the causes of this observed rectification of ISOs on seasonal SST and mixed layer variability, and to extend our results to include interannual timescales.

  3. Frontolysis by surface heat flux in the Agulhas Return Current region with a focus on mixed layer processes: observation and a high-resolution CGCM

    NASA Astrophysics Data System (ADS)

    Ohishi, Shun; Tozuka, Tomoki; Komori, Nobumasa

    2016-12-01

    Detailed mechanisms for frontogenesis/frontolysis of the Agulhas Return Current (ARC) Front, defined as the maximum of the meridional sea surface temperature (SST) gradient at each longitude within the ARC region (40°-50°E, 55°-35°S), are investigated using observational datasets. Due to larger (smaller) latent heat release to the atmosphere on the northern (southern) side of the front, the meridional gradient of surface net heat flux (NHF) is found throughout the year. In austral summer, surface warming is weaker (stronger) on the northern (southern) side, and thus the NHF tends to relax the SST front. The weaker (stronger) surface warming, at the same time, leads to the deeper (shallower) mixed layer on the northern (southern) side. This enhances the frontolysis, because deeper (shallower) mixed layer is less (more) sensitive to surface warming. In austral winter, stronger (weaker) surface cooling on the northern (southern) side contributes to the frontolysis. However, deeper (shallower) mixed layer is induced by stronger (weaker) surface cooling on the northern (southern) side and suppresses the frontolysis, because the deeper (shallower) mixed layer is less (more) sensitive to surface cooling. Therefore, the frontolysis by the NHF becomes stronger (weaker) through the mixed layer processes in austral summer (winter). The cause of the meridional gradient of mixed layer depth is estimated using diagnostic entrainment velocity and the Monin-Obukhov depth. Furthermore, the above mechanisms obtained from the observation are confirmed using outputs from a high-resolution coupled general circulation model. Causes of model biases are also discussed.

  4. Marine Atmospheric Surface Layer and Its Application to Electromagnetic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Wang, Q.

    2015-12-01

    An important application of the atmospheric surface layer research is to characterize the near surface vertical gradients in temperature and humidity in order to predict radar and radio communication conditions in the environment. In this presentation, we will give an overview of a new research initiative funded under the Office of Naval Research (ONR) Multi-University Research Initiative (MURI): the Coupled Air-Sea Processes and EM Ducting Research (CASPER). The objective is to fully characterize the marine atmospheric boundary layer (MABL) as an electromagnetic (EM) propagation environment with the emphasis of spatial and temporal heterogeneities and surface wave/swell effects, both of which contravene the underlying assumptions of Monin-Obukhov Similarity Theory (MOST) used in coupled environmental forecast models. Furthermore, coastal variability in the inversion atop the MABL presents a challenge to forecast models and also causes practical issues in EM prediction models. These issues are the target of investigation of CASPER. CASPER measurement component includes two major field campaigns: CASPER-East (2015 Duck, NC) and CASPER-West (2018 southern California). This presentation will show the extensive measurements to be made during the CASPER -East field campaign with the focus on the marine atmospheric surface layer measurements with two research vessels, two research aircraft, surface flux buoy, wave gliders, ocean gliders, tethered balloons, and rawinsondes. Unlike previous research on the marine surface layer with the focus on surface fluxes and surface flux parameterization, CASPER field campaigns also emphasize of the surface layer profiles and the validation of the surface layer flux-profile relationship originally derived over land surfaces. Results from CASPER pilot experiment and preliminary results from CASPER-East field campaign will be discussed.

  5. Multi-centennial Record of Labrador Sea Primary Productivity and Sea-Ice Variability Archived in Coralline Algal Ba/Ca

    NASA Astrophysics Data System (ADS)

    Chan, Phoebe; Halfar, Jochen; Adey, Walter; Hetzinger, Steffen; Zack, Thomas; Moore, Kent; Wortmann, Ulrich; Williams, Branwen; Hou, Alicia

    2017-04-01

    Arctic sea-ice thickness and concentration have dropped by approximately 9% per decade since 1978. Concurrent with this sea-ice decline is an increase in rates of phytoplankton productivity, driven by shoaling of the mixed layer and enhanced transmittance of solar radiation into the surface ocean. This has recently been confirmed by phytoplankton studies in Arctic and Subarctic basins that have revealed earlier timing, prolonged duration, and increased primary productivity of the spring phytoplankton bloom. However, difficulties of navigating in remote ice-laden waters and harsh polar climates have often resulted in short and incomplete records of in-situ plankton abundance in the northwestern Labrador Sea. Alternatively, information of past ocean productivity may be gained through the study of trace nutrient distributions in the surface water column. Investigations of dissolved barium (Ba) concentrations in the Arctic reveal significant depletions of Ba in surface seawaters due to biological scavenging during the spring phytoplankton bloom. Here we apply a barium-to-calcium (Ba/Ca) and carbon isotope (δ13C) multiproxy approach to long-lived crustose coralline algae in order to reconstruct an annually-resolved multi-centennial record of Labrador Sea productivity related to sea-ice variability in Labrador, Canada that extends well into the Little Ice Age (LIA; 1646 AD). The crustose coralline alga Clathromorphum compactum is a shallow marine calcareous plant that is abundant along the eastern Canadian coastline, and produces annual growth increments which allow for the precise calendar dating and geochemical sampling of hard tissue. Algal Ba/Ca ratios can serve as a promising new proxy for surface water productivity, demonstrating a close correspondence to δ13C that does not suffer from the anthropogenically-induced carbon isotope decline (ex. Suess Effect) beginning in the 1960s. Coralline algal Ba/Ca demonstrates statistically significant correlations to both observational and proxy records of sea-ice extent and transport variability, and shows a persistent pattern of covariability that is broadly consistent with the timing and phasing of the Atlantic Multidecadal Oscillation (AMO). Lower algal Ba/Ca values are interpreted as increased productivity (via biological scavenging) coinciding with warming sea surface temperatures and melting of sea-ice, and vice versa. This relationship is further supported by negative correlations between algal Ba/Ca and spatially averaged chlorophyll α concentrations determined from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS; 1998 - 2009) ocean colour data. Extended comparisons to a multi-centennial tree-ring proxy AMO index demonstrates more frequent positive Ba/Ca excursions (indicating reduced productivity) associated with AMO cool phases during the Little Ice Age, followed by a step-wise decline in Ba/Ca (indicating increasing productivity) from 1910 to present levels - unprecedented in the last 365 years. Our multi-centennial record of coralline algal Ba/Ca in the Subarctic northwest Atlantic demonstrates a long-term increasing trend in primary productivity that is in agreement with recent satellite-based productivity in the Arctic Ocean. This ongoing increase in phytoplankton productivity is expected to fundamentally alter marine biodiversity and trophic dynamics as warming and freshening of the surface layer is projected to intensify over the coming century.

  6. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model.

    PubMed

    Tsamados, Michel; Feltham, Daniel; Petty, Alek; Schroeder, David; Flocco, Daniela

    2015-10-13

    We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice-atmosphere and ice-ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice-ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities. © 2015 The Author(s).

  7. [Distribution features of chlorophyll a and primary productivity in high frequency area of red tide in East China Sea during spring].

    PubMed

    Zhou, Weihua; Huo, Wenyi; Yuan, Xiangcheng; Yin, Kedong

    2003-07-01

    The distributions of chlorophyll a and primary productivity were determined during April to May 2002 in the East China Sea. The results showed that the average concentration of chlorophyll a was 1.086 mg.m-3 at surface layer, and that nano- and pico-phytoplankton (< 20 microns) dominated the phytoplankton biomass in this sea region during Spring (up to 64% of total chlorophyll a content). Ultra-phytoplankton (< 5 microns) consisted 27% of total phytoplankton biomass. Nutrients and feeding pressure of zooplankton affected the distribution of chlorophyll a and its size-fractionation. The average primary productivity was 10.091 mg.m-3.h-1, while that of red tide tracking stations R-03, RL-01 and RG-01 was 399.984 mg.m-3.h-1. Light and nutrients were the main factors affecting the distributions of chlorophyll a and primary productivity. The station DC-11 had a high concentration of phytoplankton biomass. The surface layer concentration of chlorophyll a and primary productivity were up to 9,082 mg.m-3 and 128,79 mg.m-3.h-1, respectively, but the color of the seawater was normal.

  8. Modelling storm development and the impact when introducing waves, sea spray and heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2015-04-01

    In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal Netherlands Meteorological Institute.

  9. Possible Evidence of Multiple Sea Level Oscillations in the Seychelles During the Last Interglacial

    NASA Astrophysics Data System (ADS)

    Dutton, A. L.; Vyverberg, K.; Webster, J.; Dechnik, B.; Zwartz, D.; Lambeck, K.

    2013-12-01

    In search of a eustatic sea level signal on glacial-interglacial timescales, the Seychelles ranks as one of the best places on the planet to study. Owing to its far-field location with respect to the former margins of Northern Hemisphere ice sheets, glacio-hydro-isostatic models predict that relative sea level in the Seychelles should lie within a few meters of the globally averaged eustatic signal during interglacial periods. We have surveyed and dated fossil coral reefs from the last interglacial period to determine the magnitude of peak sea level and to assess sedimentologic evidence of potential sea level oscillations. Numerous outcrops we studied in detail exhibit a stratigraphic sequence comprised of in situ coralgal framework at the base, capped by thick coralline algae crusts, and overlain by coral rubble deposits. We also observed a succession of three stacked coralgal reefs within a single outcrop, separated by hardgrounds that have been bored by molluscs. In general, the succession within each reef unit consists of interlayered corals and crusts of coralline algae-vermetid gastropods-encrusting foraminifera. The lower two reef units are capped by a well-cemented 5 to 10 cm thick carbonate mud layer that is heavily bored by molluscs. These two surfaces may represent exposure surfaces during brief sea level oscillations, where sea level fell and exposed the top of the reef sequence, which was subsequently bored when sea level rose again and reef growth resumed. The elevations of the corals in each reef unit provide minimum elevations of sea level during each of the three pulses of sea level highstands during the last interglacial period. Significantly, since many of these corals are capped by thick coralline algae layers that contain vermetid gastropods and encrusting foraminifera that are indicative of the intertidal zone, there is strong evidence that these corals grew in extremely shallow water, providing a robust indication of sea level position. These observations ostensibly support the notion that the last interglacial period was characterized by ice sheet instability, causing multiple sea level oscillations.

  10. Physical-Biological Coupling in the Western South China Sea: The Response of Phytoplankton Community to a Mesoscale Cyclonic Eddy.

    PubMed

    Wang, Lei; Huang, Bangqin; Chiang, Kuo-Ping; Liu, Xin; Chen, Bingzhang; Xie, Yuyuan; Xu, Yanping; Hu, Jianyu; Dai, Minhan

    2016-01-01

    It is widely recognized that the mesoscale eddies play an important part in the biogeochemical cycle in ocean ecosystem, especially in the oligotrophic tropical zones. So here a heterogeneous cyclonic eddy in its flourishing stage was detected using remote sensing and in situ biogeochemical observation in the western South China Sea (SCS) in early September, 2007. The high-performance liquid chromatography method was used to identify the photosynthetic pigments. And the CHEMical TAXonomy (CHEMTAX) was applied to calculate the contribution of nine phytoplankton groups to the total chlorophyll a (TChl a) biomass. The deep chlorophyll a maximum layer (DCML) was raised to form a dome structure in the eddy center while there was no distinct enhancement for TChl a biomass. The integrated TChl a concentration in the upper 100 m water column was also constant from the eddy center to the surrounding water outside the eddy. However the TChl a biomass in the surface layer (at 5 m) in the eddy center was promoted 2.6-fold compared to the biomass outside the eddy (p < 0.001). Thus, the slight enhancement of TChl a biomass of euphotic zone integration within the eddy was mainly from the phytoplankton in the upper mixed zone rather than the DCML. The phytoplankton community was primarily contributed by diatoms, prasinophytes, and Synechococcus at the DCML within the eddy, while less was contributed by haptophytes_8 and Prochlorococcus. The TChl a biomass for most of the phytoplankton groups increased at the surface layer in the eddy center under the effect of nutrient pumping. The doming isopycnal within the eddy supplied nutrients gently into the upper mixing layer, and there was remarkable enhancement in phytoplankton biomass at the surface layer with 10.5% TChl a biomass of water column in eddy center and 3.7% at reference stations. So the slight increasing in the water column integrated phytoplankton biomass might be attributed to the stimulated phytoplankton biomass at the surface layer.

  11. Properties of coarse particles in suspended particulate matter of the North Yellow Sea during summer

    NASA Astrophysics Data System (ADS)

    Zhang, Kainan; Wang, Zhenyan; Li, Wenjian; Yan, Jun

    2018-01-01

    Fine particles in seawater commonly form large porous aggregates. Aggregate density and settling velocity determine the behavior of this suspended particulate matter (SPM) within the water column. However, few studies of aggregate particles over a continental shelf have been undertaken. In our case study, properties of aggregate particles, including size and composition, over the continental shelf of the North Yellow Sea were investigated. During a scientific cruise in July 2016, in situ effective particle size distributions of SPM at 10 stations were measured, while temperature and turbidity measurements and samples of water were obtained from surface, middle, and bottom layers. Dispersed and inorganic particle size distributions were determined in the laboratory. The in situ SPM was divided into (1) small particles (<32 μm), (2) medium particles (32-256 μm) and (3) large particles (>256 μm). Large particles and medium particles dominated the total volume concentrations (VCs) of in situ SPM. After dispersion, the VCs of medium particles decreased to low values (<0.1 μL/L). The VCs of large particles in the surface and middle layers also decreased markedly, although they had higher peak values (0.1-1 μL/L). This suggests that almost all in situ medium particles and some large particles were aggregated, while other large particles were single particles. Correlation analysis showed that primary particles <32 μm influenced the formation of these aggregates. Microscopic examination revealed that these aggregates consisted of both organic and inorganic fine particles, while large particles were mucus-bound organic aggregates or individual plankton. The vertical distribution of coarser particles was clearly related to water stratification. Generally, medium aggregate particles were dominant in SPM of the bottom layer. A thermocline blocked resuspension of fine material into upper layers, yielding low VCs of medium-sized aggregate particles in the surface layer. Abundant large biogenic particles were present in both surface and middle layers.

  12. Interaction of the sea breeze with a river breeze in an area of complex coastal heating

    NASA Technical Reports Server (NTRS)

    Zhong, Shiyuan; Takle, Eugene S.; Leone, John M., Jr.

    1991-01-01

    The interaction of the sea-breeze circulation with a river-breeze circulation in an area of complex coastal heating (east coast of Florida) was studied using a 3D finite-element mesoscale model. The model simulations are compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment. The results from numerical experiments designed to isolate the effect of the river breeze indicate that the convergence in the sea-breeze front is suppressed when it passes over the cooler surface of the rivers.

  13. The sedimentary evolution of the Celtic Sea during Marine Isotope Stages 1 and 2

    NASA Astrophysics Data System (ADS)

    Lockhart, Edward; Scourse, James; Van Landeghem, Katrien; Praeg, Daniel; Mellett, Claire; Huws, Dei; Saher, Margot; Benetti, Sara

    2017-04-01

    During the Last Glacial Maximum (LGM), the Celtic Sea was partially glaciated by the Irish Sea Ice Stream and is considered to have subsequently experienced a high-energy post-glacial transgression. The combination of these events resulted in the deposition, reworking and erosion of a wide range of sediment types to produce the upper stratigraphy of the shelf, including the world's largest submarine elongated ridges. These geomorphic features dominate the shelf and have been previously interpreted to have formed as a result of the tidal reworking of shelf deposits during transgression, despite not having been directly dated. Shelf-wide high-resolution geophysical data, and vibrocores, collected as part of the BRITICE-CHRONO Project, provide new information on relationships between seismic and shallow sedimentary units. A regionally extensive near-surface reflector, cored in several locations, correlates to a gravel/shell layer with an erosive base, unconformably overlying fine-grained LGM glacial sediments with undrained shear strengths in excess of 120 kPa, and in places exhibiting visibly deformed laminations. Geotechnical tests suggest these sediments to be over-consolidated, and we propose that these properties and the observed deformation can only be explained by subglacial reworking under a re-advancing Irish Sea Ice Stream, a scenario never before evidenced in reconstructions of Celtic Sea glaciation. Previous reconstructions propose a single advance-retreat cycle; therefore, a re-advance during a time of inferred retreat would represent a significant change in glacial dynamics. Seismic reflection profiles show that the regionally continuous gravel/shell layer appears to form an undulating palaeo-topography, possibly influenced by the geotechnical properties of the deposits below, on which the large surface ridges are formed. The presence of a regionally continuous reflection surface truncating LGM glacial sediments would suggest a significant erosion event after glacial deposition occurred, possibly representing transgression. This suggests that the large surface ridges may be of post-glacial tidal origin, but with significant sediment supply and morphological control influenced by the glaciation of the Celtic Sea.

  14. Upper oceanic response to tropical cyclone Phailin in the Bay of Bengal using a coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Prakash, Kumar Ravi; Pant, Vimlesh

    2017-01-01

    A numerical simulation of very severe cyclonic storm `Phailin', which originated in southeastern Bay of Bengal (BoB) and propagated northwestward during 10-15 October 2013, was carried out using a coupled atmosphere-ocean model. A Model Coupling Toolkit (MCT) was used to make exchanges of fluxes consistent between the atmospheric model `Weather Research and Forecasting' (WRF) and ocean circulation model `Regional Ocean Modelling System' (ROMS) components of the `Coupled Ocean-Atmosphere-Wave-Sediment Transport' (COAWST) modelling system. The track and intensity of tropical cyclone (TC) Phailin simulated by the WRF component of the coupled model agrees well with the best-track estimates reported by the India Meteorological Department (IMD). Ocean model component (ROMS) was configured over the BoB domain; it utilized the wind stress and net surface heat fluxes from the WRF model to investigate upper oceanic response to the passage of TC Phailin. The coupled model shows pronounced sea surface cooling (2-2.5 °C) and an increase in sea surface salinity (SSS) (2-3 psu) after 06 GMT on 12 October 2013 over the northwestern BoB. Signature of this surface cooling was also observed in satellite data and buoy measurements. The oceanic mixed layer heat budget analysis reveals relative roles of different oceanic processes in controlling the mixed layer temperature over the region of observed cooling. The heat budget highlighted major contributions from horizontal advection and vertical entrainment processes in governing the mixed layer cooling (up to -0.1 °C h-1) and, thereby, reduction in sea surface temperature (SST) in the northwestern BoB during 11-12 October 2013. During the post-cyclone period, the net heat flux at surface regained its diurnal variations with a noontime peak that provided a warming tendency up to 0.05 °C h-1 in the mixed layer. Clear signatures of TC-induced upwelling are seen in vertical velocity (about 2.5 × 10-3 m s-1), rise in isotherms and isohalines along 85-88° E longitudes in the northwestern BoB. The study demonstrates that a coupled atmosphere-ocean model (WRF + ROMS) serves as a useful tool to investigate oceanic response to the passage of cyclones.

  15. Hydrographic survey in the dying Aral Sea

    NASA Astrophysics Data System (ADS)

    Zavialov, P. O.; Kostianoy, A. G.; Emelianov, S. V.; Ni, A. A.; Ishniyazov, D.; Khan, V. M.; Kudyshkin, T. V.

    2003-07-01

    We report the results of a hydrographic survey conducted in November, 2002, in the Uzbekistan part of the western basin of the dying Aral Sea. There were very few hydrographic measurements in this region since at least early 1990s. The salinity in the western deep basin of the Aral Sea varied from about 82 psu at the surface to over 94 psu at the bottom. The absolute lake surface level was about 30.5 m. Hence, the observed salinity values were much higher, and the level much lower, than expected according to earlier predictions. The density in the western basin exhibited an extremely strong stratification of ~11 kg/m3 per ~20 m in the bottom layer. The picnocline was accompanied by a temperature inversion whose magnitude was ~4°C. The observed density stratification effectively isolating the lower part of the water column from surface exchanges may be responsible for the increase of summer SSTs and evaporation rates reported in previous studies. We discovered the hydrogen sulphide contamination in the bottom layer whose upper limit was at the depth of approximately 22 m. Estimates suggest that the western basin salinization occurs not only because of the local evaporation, but also because of the assimilation of the saltier eastern basin water in the course of the interbasin exchange through the connecting channel. The satellite imagery analysis, in particular the Maximum Cross-Correlation method, suggests that the circulation pattern in the Aral Sea in its present limits is cyclonic under the eastern winds that are predominant in the region throughout the year.

  16. Nutrient Dynamics in the Northern South China Sea Shelf-sea (NoSoCS)

    NASA Astrophysics Data System (ADS)

    Wong, G. T.; Guo, X.

    2011-12-01

    The Northern South China Sea Shelf-sea (NoSoCS) is situated in the sub-tropics along the southern Chinese coast between the southern end of the Taiwan Strait and the Hainan Island. Samples were collected in four cross-shelf transects in summer, 2010 and two cross-shelf transects in winter, 2011 in this Shelf-sea. The shelf may be sub-divided into the inner shelf (<40 m, low water temperature, high chlorophyll concentration), the middle shelf (50-80 m), and the outer shelf (90-120 m, high water temperature, low nutrient and chlorophyll concentrations). The mixed layer depth and the top of the nutricline depth (at ~30 m in the summer and ~70 m in the winter) were shallower than the shelf break depth (~120 m) in both seasons. The relatively nutrient-rich upper nutricline water (>1 μM in NO3- and >0.1 μM in soluble reactive phosphate) stretched across the shelf at least to the middle shelf. Thus, vertical mixing, even to relatively shallow depths, on the shelf may supply nutrients to and play a critical role in determining the primary production in the mixed layer. At least three such processes were observed. Through the year, internal waves of various strengths generated at the Luzon Strait propagated westward along the bottom of the mixed layer and dissipated along the middle and outer shelf. The effects of these waves were especially conspicuous north of the Dongsha Atoll and their action enhances vertical mixing. In the summer, upwelling occurred in the inner/middle shelf off Dongshan in response to the along shore southwest monsoon and the topographic forcing by the ridge extending offshore from Dongshan to the Taiwan Bank. In the winter, surface cooling and the strong northeast monsoon led to complete overturn in the shelf. The maximum density, reaching 24.6, in the surface waters was found offshore in the inner and middle shelf. This density was equivalent to the density of the water at >100 m offshore. As a result, this dense water also appeared as a layer of bottom water that extended across the shelf to the shelf edge.

  17. Convective Cold Pool Structure and Boundary Layer Recovery in DYNAMO

    NASA Astrophysics Data System (ADS)

    Savarin, A.; Chen, S. S.; Kerns, B. W.; Lee, C.; Jorgensen, D. P.

    2012-12-01

    One of the key factors controlling convective cloud systems in the Madden-Julian Oscillation (MJO) over the tropical Indian Ocean is the property of the atmospheric boundary layer. Convective downdrafts and precipitation from the cloud systems produce cold pools in the boundary layer, which can inhibit subsequent development of convection. The recovery time is the time it takes for the boundary layer to return to pre convective conditions. It may affect the variability of the convection on various time scales during the initiation of MJO. This study examines the convective cold pool structure and boundary layer recovery using the NOAA WP-3D aircraft observations, include the flight-level, Doppler radar, and GPS dropsonde data, collected during the Dynamics of MJO (DYNAMO) field campaign from November-December 2011. The depth and strength of convective cold pools are defined by the negative buoyancy, which can be computed from the dropsonde data. Convective downdraft can be affected by environmental water vapor due to entrainment. Mid-level dry air observed during the convectively suppressed phase of MJO seems to enhance convective downdraft, making the cold pools stronger and deeper. Recovery of the cold pools in the boundary layer is determined by the strength and depth of the cold pools and also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO over the Indian Ocean, the aircraft data are stratified by the two different large-scale regimes of MJO. Preliminary results show that the strength and depth of the cold pools are inversely correlated with the surrounding mid-level moisture. During the convectively suppressed phase, the recovery time is ~5-20 hours in relative weak wind condition with small air-sea fluxes. The recovery time is generally less than 6 hours during the active phase of MJO with moist mid-levels and stronger surface wind and air-sea fluxes.

  18. The Summertime Arctic Atmosphere: Meteorological Measurements during the Arctic Ocean Experiment 2001.

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Leck, Caroline; Persson, P. Ola G.; Jensen, Michael L.; Oncley, Steven P.; Targino, Admir

    2004-09-01

    An atmospheric boundary layer experiment into the high Arctic was carried out on the Swedish ice-breaker Oden during the summer of 2001, with the primary boundary layer observations obtained while the icebreaker drifted with the ice near 89°N during 3 weeks in August. The purposes of the experiment were to gain an understanding of atmospheric boundary layer structure and transient mixing mechanisms, in addition to their relationships to boundary layer clouds and aerosol production. Using a combination of in situ and remote sensing instruments, with temporal and spatial resolutions previously not deployed in the Arctic, continuous measurements of the lower-troposphere structure and boundary layer turbulence were taken concurrently with atmospheric gas and particulate chemistry, and marine biology measurements.The boundary layer was strongly controlled by ice thermodynamics and local turbulent mixing. Near-surface temperatures mostly remained between near the melting points of the sea- and freshwater, and near-surface relative humidity was high. Low clouds prevailed and fog appeared frequently. Visibility outside of fog was surprisingly good even with very low clouds, probably due to a lack of aerosol particles preventing the formation of haze. The boundary layer was shallow but remained well mixed, capped by an occasionally very strong inversion. Specific humidity often increased with height across the capping inversion.In contrast to the boundary layer, the free troposphere often retained its characteristics from well beyond the Arctic. Elevated intrusions of warm, moist air from open seas to the south were frequent. The picture that the Arctic atmosphere is less affected by transport from lower latitudes in summer than the winter may, thus, be an artifact of analyzing only surface measurements. The transport of air from lower latitudes at heights above the boundary layer has a major impact on the Arctic boundary layer, even very close to the North Pole. During a few week-long periods synoptic-scale weather systems appeared, while weaker and shallower mesoscale fronts were frequent. While frontal passages changed the properties of the free troposphere, changes in the boundary layer were more determined by local effects that often led to changes contrary to those aloft. For example, increasing winds associated with a cold front often led to a warming of the near-surface air by mixing and entrainment.

  19. 1/f model for long-time memory of the ocean surface temperature

    NASA Astrophysics Data System (ADS)

    Fraedrich, Klaus; Luksch, Ute; Blender, Richard

    2004-09-01

    The 1/f spectrum of the ocean surface temperature in the Atlantic and Pacific midlatitudes is explained by a simple vertical diffusion model with a shallow mixed layer on top of a deep ocean. The model is forced at the air-sea interface with the total surface heat flux from a 1000 year climate simulation. The analysis reveals the role of ocean advection and substantiates estimates of internal thermal diffusivities.

  20. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    NASA Astrophysics Data System (ADS)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  1. (abstract) A Polarimetric Model for Effects of Brine Infiltrated Snow Cover and Frost Flowers on Sea Ice Backscatter

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.

    1995-01-01

    A polarimetric scattering model is developed to study effects of snow cover and frost flowers with brine infiltration on thin sea ice. Leads containing thin sea ice in the Artic icepack are important to heat exchange with the atmosphere and salt flux into the upper ocean. Surface characteristics of thin sea ice in leads are dominated by the formation of frost flowers with high salinity. In many cases, the thin sea ice layer is covered by snow, which wicks up brine from sea ice due to capillary force. Snow and frost flowers have a significant impact on polarimetric signatures of thin ice, which needs to be studied for accessing the retrieval of geophysical parameters such as ice thickness. Frost flowers or snow layer is modeled with a heterogeneous mixture consisting of randomly oriented ellipsoids and brine infiltration in an air background. Ice crystals are characterized with three different axial lengths to depict the nonspherical shape. Under the covering multispecies medium, the columinar sea-ice layer is an inhomogeneous anisotropic medium composed of ellipsoidal brine inclusions preferentially oriented in the vertical direction in an ice background. The underlying medium is homogeneous sea water. This configuration is described with layered inhomogeneous media containing multiple species of scatterers. The species are allowed to have different size, shape, and permittivity. The strong permittivity fluctuation theory is extended to account for the multispecies in the derivation of effective permittivities with distributions of scatterer orientations characterized by Eulerian rotation angles. Polarimetric backscattering coefficients are obtained consistently with the same physical description used in the effective permittivity calculation. The mulitspecies model allows the inclusion of high-permittivity species to study effects of brine infiltrated snow cover and frost flowers on thin ice. The results suggest that the frost cover with a rough interface significantly increases the backscatter from thin saline ice and the polarimetric signature becomes closer to the isotropic characteristics. The snow cover also modifies polarimetric signatures of thin sea ice depending on the snow mixture and the interface condition.

  2. Understanding Madden-Julian-Induced sea surface temperature variations in the North Western Australian Basin

    NASA Astrophysics Data System (ADS)

    Vialard, J.; Drushka, K.; Bellenger, H.; Lengaigne, M.; Pous, S.; Duvel, J. P.

    2013-12-01

    The strongest large-scale intraseasonal (30-110 day) sea surface temperature (SST) variations in austral summer in the tropics are found in the eastern Indian Ocean between Australia and Indonesia (North-Western Australian Basin, or NWAB). TMI and Argo observations indicate that the temperature signal (std. ~0.4 °C) is most prominent within the top 20 m. This temperature signal appears as a standing oscillation with a 40-50 day timescale within the NWAB, associated with ~40 Wm-2 net heat fluxes (primarily shortwave and latent) and ~0.02 Nm-2 wind stress perturbations. This signal is largely related to the Madden-Julian Oscillation. A slab ocean model with climatological observed mixed-layer depth and an ocean general circulation model both accurately reproduce the observed intraseasonal SST oscillations in the NWAB. Both indicate that most of the intraseasonal SST variations in the NWAB in austral winter are related to surface heat flux forcing, and that intraseasonal SST variations are largest in austral summer because the mixed-layer is shallow (~20 m) and thus more responsive during that season. The general circulation model indicates that entrainment cooling plays little role in intraseasonal SST variations. The larger intraseasonal SST variations in the NWAB as compared to the widely-studied thermocline-ridge of the Indian Ocean region is explained by the larger convective and air-sea heat flux perturbations in the NWAB.

  3. Influence of Near-Surface Severe Plastic Deformation of Mild Steel on the Inhibition Performance of Sodium Molybdate and 1H-Benzotriazole in Artificial Sea Water

    NASA Astrophysics Data System (ADS)

    Sabet Bokati, Kazem; Dehghanian, Changiz; Babaei, Mahdi

    2018-02-01

    The effects of near-surface severe plastic deformation (NS-SPD) on the inhibition performance of sodium molybdate (SM) and 1H-benzotriazole (BTA) for mild steel were investigated using weight loss, polarization and electrochemical impedance spectroscopy measurements. The crystal grain size of NS-SPD-processed surface was analyzed by x-ray diffractometry and field emission scanning electron microscopy. A deformed layer with thickness of 20 ± 5 µm was produced on mild steel surface after NS-SPD process due to accumulated strains. The NS-SPD process caused more effective adsorption of corrosion inhibitors due to the fabrication of a surface with a high density of preferential adsorption sites. However, the stability of protective layer was predominantly influenced by the effect of NS-SPD process on inhibition efficiency. The fairly good persistence of protective layer formed on the surface by SM-containing solution and also positive effect of NS-SPD process on adsorption of molybdate ions caused higher inhibition performance for sodium molybdate. However, NS-SPD process encouraged deterioration of protective layer formed on steel surface in the presence of BTA inhibitor. It was ascribed to partial coverage of surface, low stability of adsorbed layer and thus more adsorption of aggressive ions on unprotected area which was uncovered during immersion time.

  4. Hydrocarbon pollution in the sediment from the Jarzouna-Bizerte coastal area of Tunisia (Mediterranean Sea).

    PubMed

    Zrafi-Nouira, I; Khedir-Ghenim, Z; Zrafi, F; Bahri, R; Cheraeif, I; Rouabhia, M; Saidane-Mosbahi, D

    2008-06-01

    This study investigated the presence and origin of hydrocarbon pollution in industrial waste water sediments found near the Jarzouna (Bizerte, Tunisia) oil refinery. Analyses of surface sediments (layer 1) and deep sediments (layer 2) showed that Total Hydrocarbon (TH) concentrations ranged from 602 +/- 7.638 microg/g in layer-1 to 1270 +/- 2.176 microg/g in layer-2. The results suggest that the deeper the sediment, the higher the level of total hydrocarbon found. The sedimentary Non Aromatic Hydrocarbon (NAH) and Aromatic Hydrocarbon (AH) concentrations ranged from 66.22 +/- 1.516 to 211.82 +/- 10.670 microg/g for NAH, and from 13.84 +/- 0.180 to 115.60 +/- 2.479 microg/g for AH. The high variability of these concentrations was associated with the location of the sediment collection sites. Aliphatic biomarker analysis revealed petroleum contamination close to the refinery rejection site, and biogenic sources further away. Petroleum contamination may be associated with increased industrial activity in the area of Jarzouna-Bizerte in the Mediterranean Sea.

  5. Remote sensing observations of phytoplankton increases triggered by successive typhoons

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Zhao, Hui; Pan, Jiayi; Devlin, Adam

    2017-12-01

    Phytoplankton blooms in the Western North Pacific, triggered by two successive typhoons with different intensities and translation speeds under different pre-existing oceanic conditions, were observed and analyzed using remotely sensed chlorophyll-a (Chl-a), sea surface temperature (SST), and sea surface height anomaly (SSHA) data, as well as typhoon parameters and CTD (conductivity, temperature, and depth) profiles. Typhoon Sinlaku, with relatively weaker intensity and slower translation speed, induced a stronger phytoplankton bloom than Jangmi with stronger intensity and faster translation speed (Chl-a>0.18 mg·m‒3 versus Chl-a<0.15 mg·m‒3) east of Taiwan Island. Translation speed may be one of the important mechanisms that affect phytoplankton blooms in the study area. Pre-existing cyclonic circulations provided a relatively unstable thermodynamic structure for Sinlaku, and therefore cold water with rich nutrients could be brought up easily. The mixed-layer deepening caused by Typhoon Sinlaku, which occurred first, could have triggered an unfavorable condition for the phytoplankton bloom induced by Typhoon Jangmi which followed afterwards. The sea surface temperature cooling by Jangmi was suppressed due to the presence of the thick upper-ocean mixed-layer, which prevented the deeper cold water from being entrained into the upper-ocean mixed layer, leading to a weaker phytoplankton augment. The present study suggests that both wind (including typhoon translation speed and intensity) and pre-existing conditions (e.g., mixed-layer depths, eddies, and nutrients) play important roles in the strong phytoplankton bloom, and are responsible for the stronger phytoplankton bloom after Sinlaku's passage than that after Jangmi's passage. A new typhoon-influencing parameter is introduced that combines the effects of the typhoon forcing (including the typhoon intensity and translation speed) and the oceanic pre-condition. This parameter shows that the forcing effect of Sinlaku was stronger than that of Jangmi.

  6. Iceberg ploughmark features on bottom surface of the South-Eastern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Dorokhov, Dmitry; Sivkov, Vadim; Dorokhova, Evgenia; Krechik, Viktor

    2016-04-01

    A detail swath bathymetry, side-scan sonar and acoustic profiling combined with sediment sampling during the 64th cruise of RV "Academic Mstislav Keldysh" (October 2015) allowed to identify new geomorphological features of the South-Eastern Baltic Sea bottom surface. The extended chaotic ploughmarks (furrows) in most cases filled with thin layer of mud were discovered on surface of the Gdansk-Gotland sill glacial deposits. They are observed on the depth of more than 70 m and have depth and width from 1 to 10 m. Most of them are v- or u-shaped stepped depressions. The side-scan records of similar geomorpholoical features are extensively reported from Northern Hemisphere and Antarctica (Goodwin et al., 1985; Dowdeswell et al., 1993). Ploughmarks are attributed to the action of icebergs scouring into the sediment as they touch bottom. We are suggest that furrows discovered in the South-Eastern Baltic Sea are also the result of iceberg scouring during the Baltic Ice Lake stage (more than 11 600 cal yr BP (Bjorck, 2008)). This assumption confirmed by occurrence of fragmental stones and boulders on the sea bottom surface which are good indicators of iceberg rafting (Lisitzin, 2003). Ice ploughmarks at sea bottom surface were not occurred before in the South-Eastern Baltic Sea. The study was financed by Russian Scientific Fund, grant number 14-37-00047. References Bjorck S. The late Quaternary development of the Baltic Sea Basin. In: The BACC Author Team (eds) Assessment of climate change for the Baltic Sea Basin. Springer, Berlin, Heidelberg. 2008. Dowdeswell J. A., Villinger H., Whittington R. J., Marienfeld P. Iceberg scouring in Scoresby Sund and on the East Greenland continental shelf // Marine Geology. V. 111. N. 1-2. 1993. P. 37-53. Goodwin C. R., Finley J. C., Howard L. M. Ice scour bibliography. Environmental Studies Revolving Funds Report No. 010. Ottawa. 1985. 99 pp. Lisitzin A. P. Sea-Ice and Iceberg Sedimentation in the Ocean: Recent and Past. Springer, Heidelberg, Germany. 2003.

  7. 22-year surface salinity changes in the Seasonal Ice Zone near 140°E off Antarctica

    NASA Astrophysics Data System (ADS)

    Morrow, Rosemary; Kestenare, Elodie

    2017-11-01

    Seasonal and interannual variations in sea surface salinity (SSS) are analyzed in the Sea Ice Zone south of 60°S, from a 22-year time series of observations near 140°E. In the northern sea-ice zone during the warming, melting cycle from October to March, waters warm by an average of 3.5 °C and become fresher by 0.1 to 0.25. In the southern sea-ice zone, the surface temperatures vary from - 1 to 1 °C over summer, and the maximal SSS range occurs in December, with a minimum SSS of 33.65 near the Southern Boundary of the ACC, reaching 34.4 in the shelf waters close to the coast. The main fronts, normally defined at subsurface, are shown to have more distinct seasonal characteristics in SSS than in SST. The interannual variations in SSS are more closely linked to variations in upstream sea-ice cover than surface forcing. SSS and sea-ice variations show distinct phases, with large biannual variations in the early 1990s, weaker variations in the 2000s and larger variations again from 2009 onwards. The calving of the Mertz Glacier Tongue in February 2010 leads to increased sea-ice cover and widespread freshening of the surface layers from 2011 onwards. Summer freshening in the northern sea-ice zone is 0.05-0.07 per decade, increasing to 0.08 per decade in the southern sea-ice zone, largely influenced by the Mertz Glacier calving event at the end of our time series. The summer time series of SSS on the shelf at 140°E is in phase but less variable than the SSS observed upstream in the Adélie Depression, and thus represents a spatially integrated index of the wider SSS variations.

  8. Symmetry in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.

    1993-01-01

    Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is observed that e and e(sub 0) are increasing with incident angle and e is greater than e(sub 0) at L-band because of the directional feature of sea surface waves. Symmetry properties of geophysical media can also be used to calibrate polarimetric radars.

  9. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2016-02-01

    Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between simulations and observations of cloud and aerosol over the Southern Ocean.

  10. A numerical model for the whole Wadden Sea: results on the hydrodynamics

    NASA Astrophysics Data System (ADS)

    Gräwe, Ulf; Duran-Matute, Matias; Gerkema, Theo; Flöser, Götz; Burchard, Hans

    2015-04-01

    A high-resolution baroclinic three-dimensional numerical model for the entire Wadden Sea of the German Bight in the southern North Sea is first validated against field data for surface elevation, current velocity, temperature and salinity at selected stations and then used to calculate fluxes of volume, heat and salt inside the Wadden Sea and the exchange between the Wadden Sea and the adjacent North Sea through the major tidal inlets. The General Estuarine Transport Model (GETM) is simulating the reference years 2009-2011. The numerical grid has a resolution of 200x200m and 30 adaptive vertical layers. It is the final stage of a multi-nested setup, starting from the North Atlantic. The atmospheric forcing is taken from the operational forecast of the German Weather Service. Additionally, the freshwater discharge of 23 local rivers and creeks are included. For validation, we use observations from a ship of opportunity measuring sea surface properties, tidal gauge stations, high frequency of salinity and volume transport estimates for the Mardiep and Spiekeroog inlet. Finally, the estuarine overturning circulation in three tidal gulleys is quantified. Regional differences between the gullies are assessed and drivers of the estuarine circulation are identified. Moreover, we will give a consistent estimate of the tidal prisms for all tidal inlets in the entire Wadden Sea.

  11. The biomass of the deep-sea benthopelagic plankton

    NASA Astrophysics Data System (ADS)

    Wishner, K. F.

    1980-04-01

    Deep-sea benthopelagic plankton samples were collected with a specially designed opening-closing net system 10 to 100 m above the bottom in five different oceanic regions at depths from 1000 to 4700 m. Benthopelagic plankton biomasses decrease exponentially with depth. At 1000 m the biomass is about 1% that of the surface zooplankton, at 5000 m about 0.1%. Effects of differences in surface primary productivity on deep-sea plankton biomass are much less than the effect of depth and are detectable only in a few comparisons of extreme oceanic regions. The biomass at 10 m above the bottom is greater than that at 100 m above the bottom (in a three-sample comparison), which could be a consequence of an enriched near-bottom environment. The deep-sea plankton biomass in the Red Sea is anomalously low. This may be due to increased decomposition rates in the warm (22°C) deep Red Sea water, which prevent much detritus from reaching the deep sea. A model of organic carbon utilization in the benthic boundary layer (bottom 100 m), incorporating results from deep-sea sediment trap and respiration studies, indicates that the benthopelagic plankton use only a small amount of the organic carbon flux. A large fraction of the flux is unaccounted for by present estimates of benthic and benthopelagic respiration.

  12. Distinct bacterial assemblages reside at different depths in Arctic multiyear sea ice.

    PubMed

    Hatam, Ido; Charchuk, Rhianna; Lange, Benjamin; Beckers, Justin; Haas, Christian; Lanoil, Brian

    2014-10-01

    Bacterial communities in Arctic sea ice play an important role in the regulation of nutrient and energy dynamics in the Arctic Ocean. Sea ice has vertical gradients in temperature, brine salinity and volume, and light and UV levels. Multiyear ice (MYI) has at least two distinct ice layers: old fresh ice with limited permeability, and new saline ice, and may also include a surface melt pond layer. Here, we determine whether bacterial communities (1) differ with ice depth due to strong physical and chemical gradients, (2) are relatively homogenous within a layer, but differ between layers, or (3) do not vary with ice depth. Cores of MYI off northern Ellesmere Island, NU, Canada, were subsectioned in 30-cm intervals, and the bacterial assemblage structure was characterized using 16S rRNA gene pyrotag sequencing. Assemblages clustered into three distinct groups: top (0-30 cm); middle (30-150 cm); and bottom (150-236 cm). These layers correspond to the occurrence of refrozen melt pond ice, at least 2-year-old ice, and newly grown first-year ice at the bottom of the ice sheet, respectively. Thus, MYI houses multiple distinct bacterial assemblages, and in situ conditions appear to play a less important role in structuring microbial assemblages than the age or conditions of the ice at the time of formation. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology

    NASA Astrophysics Data System (ADS)

    Parard, G.; Charantonis, A. A.; Rutgerson, A.

    2015-06-01

    Studies of coastal seas in Europe have noted the high variability of the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes, complicates the accurate estimation of these mechanisms. This is particularly pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been characterized in as much detail as in the open oceans. In addition, the joint availability of in situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, we used the SOMLO (self-organizing multiple linear output; Sasse et al., 2013) methodology, which combines two existing methods (i.e. self-organizing maps and multiple linear regression) to estimate the ocean surface partial pressure of CO2 (pCO2) in the Baltic Sea from the remotely sensed sea surface temperature, chlorophyll, coloured dissolved organic matter, net primary production, and mixed-layer depth. The outputs of this research have a horizontal resolution of 4 km and cover the 1998-2011 period. These outputs give a monthly map of the Baltic Sea at a very fine spatial resolution. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in situ measurements and a root mean square error of 36 μatm. Removing any of the satellite parameters degraded this reconstructed CO2 flux, so we chose to supply any missing data using statistical imputation. The pCO2 maps produced using this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data, and we expect to be able to produce even more accurate reconstructions in coming years, given the predicted acquisition of new data.

  14. Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Alexeev, Vladimir A.; Walsh, John E.; Ivanov, Vladimir V.; Semenov, Vladimir A.; Smirnov, Alexander V.

    2017-08-01

    Arctic sea ice over the last few decades has experienced a significant decline in coverage both in summer and winter. The currently warming Atlantic Water layer has a pronounced impact on sea ice in the Nordic Seas (including the Barents Sea). More open water combined with the prevailing atmospheric pattern of airflow from the southeast, and persistent North Atlantic storms such as the recent extremely strong Storm Frank in December 2015, lead to increased energy transport to the high Arctic. Each of these storms brings sizeable anomalies of heat to the high Arctic, resulting in significant warming and slowing down of sea ice growth or even melting. Our analysis indicates that the recently observed sea ice decline in the Nordic Seas during the cold season around Svalbard, Franz Joseph Land and Novaya Zemlya, and the associated heat release from open water into the atmosphere, contributed significantly to the increase in the downward longwave radiation throughout the entire Arctic. Added to other changes in the surface energy budget, this increase since the 1960s to the present is estimated to be at least 10 W m-2, which can result in thinner (up to at least 15-20 cm) Arctic ice at the end of the winter. This change in the surface budget is an important contributing factor accelerating the thinning of Arctic sea ice.

  15. How do Greenhouse Gases Warm the Ocean? Investigation of the Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes.

    NASA Astrophysics Data System (ADS)

    Wong, E.; Minnett, P. J.

    2016-12-01

    There is much evidence that the ocean is heating due to an increase in concentrations of greenhouse gases (GHG) in the atmosphere from human activities. GHGs absorbs infrared (IR) radiation and re-emits the radiation back to the ocean's surface which is subsequently absorbed resulting in a rise in the ocean heat content. However, the incoming longwave radiation, LWin, is absorbed within the top micrometers of the ocean's surface, where the thermal skin layer (TSL) exists and does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of IR radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the TSL, which is directly influenced by the absorption and emission of IR radiation, the heat flow through the TSL adjusts to maintain the surface heat loss, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in LWin and analyzing retrieved TSL vertical profiles from a shipboard IR spectrometer from two research cruises. The data is limited to night-time, no precipitation and low winds of < 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of TSL disruption. The results show independence between the turbulent fluxes and radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation. Instead, we observe the surplus energy, from absorbing increasing levels of LWin, adjusts the curvature of the TSL such that there is a lower gradient at the interface between the TSL and the mixed layer. The release of heat stored within the mixed layer is therefore hindered while the additional energy within the TSL is cycled back into the atmosphere. This results in heat beneath the TSL, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content.

  16. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the Goddard Institute for Space Studies (GISS) 8 deg x lO deg atmospheric General Circulation Model (GCM) to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  17. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the GISS 8 deg x lO deg atmospheric GCM to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  18. Hydrological state of the Large Aral Sea in the fall season of 2013

    NASA Astrophysics Data System (ADS)

    Izhitskiy, Alexander; Zavialov, Peter

    2014-05-01

    We report here the results of the latest expedition of the Shirshov Institute to the Aral Sea. The survey encompassed 8 field days in October-November, 2013. Direct measurements of thermohaline characteristics and water currents were conducted in the western basin of the Large Aral Sea during the expedition. Vertical profiles of temperature and salinity were obtained using a CTD profiler at 9 stations, situated on two cross-sections of the western basin. Four mooring stations equipped with current meters, as well as pressure gauges, were deployed for 4-6 days on the slopes of the deepest portion of the western basin. A portable automatic meteorological station, continuously recording the variability of wind and principal meteorological parameters, was installed near the mooring sites. Analysis of the current measurements data along with the meteorological data records demonstrated the current velocity and level anomalies responded energetically to winds. Correlation analysis of the velocity series versus the wind stress allowed to quantify the response of the system to the wind forcing. Together with the similar results of more earlier surveys, recently collected data shows that the mean surface circulation of the western basin remains anti-cyclonic under the predominant winds. Character of the interannual variability of salinity values in the Aral Sea water manifested increase in the surface layer during last 5 years. On the other hand, salinity values in the bottom layer appear to be decreased due to ceasing of the influence of the interbasin water exchange since 2010. Water level of the Large Aral Sea is still falling. Assessment of the on-going changes holds promise to help predicting the subsequent state of the Aral Sea region.

  19. The Impact of Salinity on the Seasonal and Interannual Variability of the Upper Ocean Structure and Air/Sea Interaction in the South Eastern Tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    Soares, S. M.; Richards, K. J.; Annamalai, H.; Natarov, A.

    2016-02-01

    The Seychelles-Chagos thermocline ridge (SCRT) in the south-eastern tropical Indian Ocean is believed to play an important role on air/sea interactions at monsoonal and intraseasonal timescales. Large gains in predictability of monsoon and intraseasonal variability may result from studying the mechanisms of ocean feedback to the atmosphere in the SCRT region. ARGO data from 2005-2014 show a marked salinity and temperature annual cycle, where mixed layer waters are freshest and warmest around February-March and saltiest and coldest around July-August in the eastern side of the SCRT. An analysis of the mixed-layer salt budget using a mix of observational gridded products and a coupled model shows that: i) surface freshwater fluxes do not play a significant role on the SCRT salinity annual cycle, ii) the freshening during austral Spring is primarily driven by zonal advection of the large pool of less saline waters off the coast of southeast Asia and bay of Bengal, while meridional advection accounts for a large fraction of the salting during Fall. The largest interannual anomalies in the ARGO salinity record occur in the aftermath of the negative Indian Ocean Dipole events of 2005 and 2010, when February mixed layer freshening was much reduced. The appearance of the fresher waters were evident in the DYNAMO/CINDY data collected in the area during Spring 2011 following the passage of a downwelling Rossby wave. Lagrangian parcel tracking indicates a variety of sources for these fresher waters, but generally agrees with the ARGO results above. The fresh surface layer had a significant impact on the measured turbulence and mixing and may have impacted the development of Madden-Julien Oscillation events observed during DYNAMO/CINDY. Given these findings, we examine in detail the suite of DYNAMO observations, combining them with numerical modeling experiments to determine the role of eddy fluxes and vertical processes on the formation of these freshwater layers, as well as their influence on the surface heat budget and possible feedbacks on air-sea interactions.

  20. A comprehensive sensitivity analysis of the WRF model for air quality applications over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Borge, Rafael; Alexandrov, Vassil; José del Vas, Juan; Lumbreras, Julio; Rodríguez, Encarnacion

    Meteorological inputs play a vital role on regional air quality modelling. An extensive sensitivity analysis of the Weather Research and Forecasting (WRF) model was performed, in the framework of the Integrated Assessment Modelling System for the Iberian Peninsula (SIMCA) project. Up to 23 alternative model configurations, including Planetary Boundary Layer schemes, Microphysics, Land-surface models, Radiation schemes, Sea Surface Temperature and Four-Dimensional Data Assimilation were tested in a 3 km spatial resolution domain. Model results for the most significant meteorological variables, were assessed through a series of common statistics. The physics options identified to produce better results (Yonsei University Planetary Boundary Layer, WRF Single-Moment 6-class microphysics, Noah Land-surface model, Eta Geophysical Fluid Dynamics Laboratory longwave radiation and MM5 shortwave radiation schemes) along with other relevant user settings (time-varying Sea Surface Temperature and combined grid-observational nudging) where included in a "best case" configuration. This setup was tested and found to produce more accurate estimation of temperature, wind and humidity fields at surface level than any other configuration for the two episodes simulated. Planetary Boundary Layer height predictions showed a reasonable agreement with estimations derived from routine atmospheric soundings. Although some seasonal and geographical differences were observed, the model showed an acceptable behaviour overall. Despite being useful to define the most appropriate setup of the WRF model for air quality modelling over the Iberian Peninsula, this study provides a general overview of WRF sensitivity and can constitute a reference for future mesoscale meteorological modelling exercises.

  1. Stratigraphic response of salt marshes to slow rates of sea-level change

    NASA Astrophysics Data System (ADS)

    Daly, J.; Bell, T.

    2006-12-01

    Conventional models of salt-marsh development show an idealized spatial relationship between salt-marsh floral and foraminiferal zones, where the landward margin of the marsh gradually migrates inland in response to sea-level rise. This model predicts that transgression will result in persistent and possibly expanded salt marshes at the surface, depending on a variety of factors including sediment supply, hydrologic conditions, tidal range, and rate of sea-level rise. However, in areas with abundant sediment supply and slow rates of sea- level rise, the extent of back-barrier salt marshes may decline over time as the barrier-spits mature. Sea level around the northeast coast of Newfoundland is rising at a very slow rate during the late Holocene (<0.5 mm/yr). Sandy barrier-spits and tombolos are common coastal features, but salt marshes are rare. The generalized stratigraphy of dutch cores collected in back-barrier settings in this region is a surface layer of sphagnum peat with abundant woody roots, underlain by sedge-dominated peat that transitions gradually to a thin layer of Juncus sp. peat with agglutinated foraminifera, dominantly Jadammina macrescens and Balticammina pseudomacrescens. These basal peats are interpreted as salt-marsh peats, characterized by the presence of foraminifera that are absent in overlying peat units. This sequence indicates that salt marshes developed in back-barrier environments during the initial stages of barrier progradation, then gradually transitioned to environments increasingly dominated by freshwater flora. These transitions are interpreted to reflect the progradation of the spit, decreased tidal exchange in the back-barrier, and increased influence of freshwater streams discharging into the back-barrier setting. Decreased marine influence on the back-barrier environment leads to a floral and faunal shift associated with a regressive stratigraphy in an area experiencing sea-level rise. For studies of Holocene sea-level change requiring salt-marsh stratigraphic records, it is necessary to account for changing micro-environments to locate sites appropriate for study; salt marshes may play an important role in defining the record, but may not exist at the surface to guide investigation.

  2. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    NASA Technical Reports Server (NTRS)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat flux contributions.

  3. The Impact of Air-Sea Interactions on the Representation of Tropical Precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Hirons, L. C.; Klingaman, N. P.; Woolnough, S. J.

    2018-02-01

    The impacts of air-sea interactions on the representation of tropical precipitation extremes are investigated using an atmosphere-ocean-mixed-layer coupled model. The coupled model is compared to two atmosphere-only simulations driven by the coupled-model sea-surface temperatures (SSTs): one with 31 day running means (31 d), the other with a repeating mean annual cycle. This allows separation of the effects of interannual SST variability from those of coupled feedbacks on shorter timescales. Crucially, all simulations have a consistent mean state with very small SST biases against present-day climatology. 31d overestimates the frequency, intensity, and persistence of extreme tropical precipitation relative to the coupled model, likely due to excessive SST-forced precipitation variability. This implies that atmosphere-only attribution and time-slice experiments may overestimate the strength and duration of precipitation extremes. In the coupled model, air-sea feedbacks damp extreme precipitation, through negative local thermodynamic feedbacks between convection, surface fluxes, and SST.

  4. Internal gravity wave contributions to global sea surface variability

    NASA Astrophysics Data System (ADS)

    Savage, A.; Arbic, B. K.; Richman, J. G.; Shriver, J. F.; Buijsman, M. C.; Zamudio, L.; Wallcraft, A. J.; Sharma, H.

    2016-02-01

    High-resolution (1/12th and 1/25th degree) 41-layer simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea-surface height (SSH). The HYCOM output has been separated into steric, non-steric, and total sea-surface height and the maps display variance in subtidal, tidal, and supertidal bands. Two of the global maps are of particular interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter mission; (1) a map of the nonstationary tidal signal (estimated after removing the stationary tidal signal via harmonic analysis), and (2) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum. Both of these maps display signals of order 1 cm2, the target accuracy for the SWOT mission. Therefore, both non-stationary internal tides and non-tidal internal gravity waves are likely to be important sources of "noise" that must be accurately removed before examination of lower-frequency phenomena can take place.

  5. TEAM - Titan Exploration Atmospheric Microprobes

    NASA Astrophysics Data System (ADS)

    Nixon, Conor; Esper, Jaime; Aslam, Shahid; Quilligan, Gerald

    2016-10-01

    The astrobiological potential of Titan's surface hydrocarbon liquids and probable interior water ocean has led to its inclusion as a destination in NASA's "Ocean Worlds" initiative, and near-term investigation of these regions is a high-level scientific goal. TEAM is a novel initiative to investigate the lake and sea environs using multiple dropsondes -scientific probes derived from an existing cubesat bus architecture (CAPE - the Cubesat Application for Planetary Exploration) developed at NASA GSFC. Each 3U probe will parachute to the surface, making atmospheric structure and composition measurements during the descent, and photographing the surface - land, shoreline and seas - in detail. TEAM probes offer a low-cost, high-return means to explore multiple areas on Titan, yielding crucial data about the condensing chemicals, haze and cloud layers, winds, and surface features of the lakes and seas. These microprobes may be included on a near-term New Frontiers class mission to the Saturn system as additional payload, bringing increased scientific return and conducting reconnaissance for future landing zones. In this presentation we describe the probe architecture, baseline payload, flight profile and the unique engineering and science data that can be returned.

  6. Determination of a Critical Sea Ice Thickness Threshold for the Central Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.

    2017-12-01

    While sea ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea ice pack, determining the spatial variability of sea ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea ice transitions from the thickest multi-year ice to the very thin marginal ice seas. This provides an ideal location to simulate how the diminishing Arctic sea ice interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface air temperature increase as sea ice thickness transitions from perennial ice to seasonal ice. While models predict a sea ice free Arctic at the end of the warm season in future decades, sea ice will continue to transform seasonally during Polar winter. However, despite seasonal sea ice change, if and where its thickness remains below this critical threshold, the Arctic Ocean will continue interacting with the overlying atmosphere and contributing to Arctic amplification during the cold season.

  7. Numerical investigation of hydrodynamic flow over an AUV moving in the water-surface vicinity considering the laminar-turbulent transition

    NASA Astrophysics Data System (ADS)

    Salari, Mahmoud; Rava, Amin

    2017-09-01

    Nowadays, Autonomous Underwater Vehicles (AUVs) are frequently used for exploring the oceans. The hydrodynamics of AUVs moving in the vicinity of the water surface are significantly different at higher depths. In this paper, the hydrodynamic coefficients of an AUV in non-dimensional depths of 0.75, 1, 1.5, 2, and 4D are obtained for movement close to the free-surface. Reynolds Averaged Navier Stokes Equations (RANS) are discretized using the finite volume approach and the water-surface effects modeled using the Volume of Fraction (VOF) method. As the operating speeds of AUVs are usually low, the boundary layer over them is not fully laminar or fully turbulent, so the effect of boundary layer transition from laminar to turbulent flow was considered in the simulations. Two different turbulence/transition models were used: 1) a full-turbulence model, the k-ɛ model, and 2) a turbulence/transition model, Menter's Transition-SST model. The results show that the Menter's Transition-SST model has a better consistency with experimental results. In addition, the wave-making effects of these bodies are studied at different immersion depths in the sea-surface vicinity or at finite depths. It is observed that the relevant pitch moments and lift coefficients are non-zero for these axi-symmetric bodies when they move close to the sea-surface. This is not expected for greater depths.

  8. Anthropogenic CO2 in a dense water formation area of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Ingrosso, Gianmarco; Bensi, Manuel; Cardin, Vanessa; Giani, Michele

    2017-05-01

    There is growing evidence that the on-going ocean acidification of the Mediterranean Sea could be favoured by its active overturning circulation. The areas of dense water formation are, indeed, preferential sites for atmospheric carbon dioxide absorption and through them the ocean acidification process can quickly propagate into the deep layers. In this study we estimated the concentration of anthropogenic CO2 (Cant) in the dense water formation areas of the middle and southern Adriatic Sea. Using the composite tracer TrOCA (Tracer combining Oxygen, inorganic Carbon, and total Alkalinity) and carbonate chemistry data collected throughout March 2013, our results revealed that a massive amount of Cant has invaded all the identified water masses. High Cant concentration was detected at the bottom layer of the Pomo Pit (middle Adriatic, 96.8±9.7 μmol kg-1) and Southern Adriatic Pit (SAP, 85.2±9.4 μmol kg-1), associated respectively with the presence of North Adriatic Dense Water (NAdDW) and Adriatic Dense Water (AdDW). This anthropogenic contamination was clearly linked to the dense water formation events, which govern strong CO2 flux from the atmosphere to the sea and the sinking of dense, CO2-rich surface waters to the deep sea. However, a very high Cant level (94.5±12.5 μmol kg-1) was also estimated at the intermediate layer, as a consequence of a recent vertical mixing that determined the physical and biogeochemical modification of the water of Levantine origin (i.e. Modified Levantine Intermediate Water, MLIW) and favoured the atmospheric CO2 intrusion. The penetration of Cant in the Adriatic Sea determined a significant pH reduction since the pre-industrial era (- 0.139±0.019 pH units on average). This estimation was very similar to the global Mediterranean Sea acidification, but it was again more pronounced at the bottom of the Pomo Pit, within the layer occupied by NAdDW (- 0.157±0.018 pH units), and at the intermediate layer of the recently formed MLIW (- 0.143±0.020 pH units). Our results indicate that the Adriatic Sea could potentially be one of the Mediterranean regions most affected by the ocean acidification and also demonstrate its active role in sequestering and storing Cant.

  9. Path homogeneity along a horizontal line-of-sight path during the FESTER experiment: first results

    NASA Astrophysics Data System (ADS)

    Gunter, W. H.; Maritz, B.; Koago, M.; Wainman, C. K.; Gardener, M. E.; February, F.; van Eijk, A. M. J.

    2016-10-01

    The First European South African Experiment (FESTER) was conducted over about a 10 month period at the Institute of Maritime Technology (IMT) in False Bay, South Africa. One of the important goals was the establishment of the air-sea temperature difference (ASTD) homogeneity along the main propagation link atmospheric path since it is a basic assumption for most of the atmospheric turbulence models (caused by refractive index variations). The ASTD was measured from a small scientific work boat (called Sea Lab) moving along a straight in- and outbound track along the main propagation link path. The air temperature on-board was measured using standard weather sensors, while the sea surface temperature was measured using a long wavelength infrared radiometer, which was compared to the bulk sea temperature half a meter below the sea surface. This was obtained by an under water temperature sensor mounted on a `surfboard' that was towed alongside Sea Lab. Vertical water temperature profiles were also measured along the main propagation path in order to determine the depth of the surface mixed layer and thermocline using a Conductivity Temperature Depth profiler (CTD). First results investigated the ASTD variation along the horizontal line-of-sight path used by the principal electro-optic transmission link monitoring equipment (i.e. scintillometer and multi-spectral radiometer-transmissometer system).

  10. Seasonal variation of the water exchange through the Bohai Strait

    NASA Astrophysics Data System (ADS)

    Zhang, Z.

    2016-02-01

    Seasonal variations of the Lubei coastal current off the northern Shandong Peninsula and water exchange between the Bohai and Yellow seas were analyzed, based on current and salinity data measured mainly in 2006, 2007 and 2012. In winter and autumn, the Lubei coastal current flows eastward through the Bohai Strait before ultimately heading southward into the waters off Chengshantou in the east of the Shandong Peninsula. In spring and summer, the Lubei coastal current disappears. There are three kinds of patterns of water exchange between the Bohai and Yellow seas. The first is the "inflow in the north and outflow in the south of the Bohai Strait" in winter and autumn, which is regarded as the permanent pattern during the whole year from literature. The second is "outflow in the surface layer and inflow in the underlying layer" in summer, where the outflow is significantly greater than the inflow related with increased runoff and precipitation. The third is "inflow together in the southern and northern channels of the Bohai Strait" in spring. The low mean sea level and N-S sea-level incline formed in winter in the Bohai Sea lose their dynamic balance because of the reversal of the northeast monsoon in spring. This forces the water from the northern Yellow Sea into the Bohai Sea via the southern and northern channels of the Bohai Strait, which constitutes the largest net inflow of the four seasons.

  11. Numerical simulation of inter-annual variations in the properties of the upper mixed layer in the Black Sea over the last 34 years

    NASA Astrophysics Data System (ADS)

    Shapiro, Georgy I.; Wobus, Fred; Zatsepin, Andrei G.; Akivis, Tatiana M.; Zanacchi, Marcus; Stanichny, Sergey

    2014-05-01

    The Black Sea is a nearly land-locked basin where a combination of salt and heat budgets results in a unique thermohaline water mass structure. An important feature of the Black Sea is that oxygen is dissolved and rich sea life made possible only in the upper water levels. This is due to a strong pycnocline which cannot be mixed even by strong winds or winter convection (Shapiro, 2008). The upper mixed layer (UML) with a nearly uniform temperature profile and a very sharp seasonal thermocline at its lower boundary develops during the summer season (Sur & Ilyin, 1997). The deepening of the UML has an important effect on the supply of nutrients into the euphotic upper layer from the underlying nutrient-rich water mass. The temperature of the UML at any given location is dependent on the surface heat flux, horizontal advection of heat, the depth and the rate of deepening of the UML. In this study we use a 3D ocean circulation model, NEMO-SHELF (O'Dea et al, 2012) to simulate the parameters of the UML in the Black Sea over the last 34 years. The model has horizontal resolution of 1/12×1/16 degrees and 33 layers in the vertical. The vertical discretization uses a hybrid enveloped s-z grid developed in Shapiro et al. (2012). The model is spun up from climatology (Suvorov et al., 2004); it is forced by the Drakkar Forcing Set v5.2 (Brodeau et al., 2010, Meinvielle et al., 2013) and river discharges from 8 major rivers are included. For each year the model is run from 1st January and the data for the period April to October are used for analysis. The sea surface temperature produced by the model is compared with satellite data ( Modis-Aqua, 2013) to show a good agreement. The model simulations are validated against in-situ observations (BSERP-3, 2004; Piotukh et al., 2011). The analysis is performed for the deep basin where the depth of the sea is greater than 1000m. It clearly shows the inter-annual variations of both the SST and the depth of UML. The depth of UML is calculated using the method by Thomson (1976). It is highly dependent on the meteorological forcing, in particular the wind speed. The correlation between the variations of parameters of UML, the weather patterns, buoyancy fluxes and the kinetic energy of the UML circulation is analysed. This study was supported by EU FP7 PERSEUS and EU FP7 MyOcean2 projects. References BSERP-3. Black Sea Ecosystem Recovery Project. BSERP-3 cruise, May 2004. http://www.research.plymouth.ac.uk/shelf/projects/Black_sea/C_S_BSERP3_final.pdf, 2004. Brodeau, L., B. Barnier, A-M. Treguier, T. Penduff, S. Gulev : An ERA40-based atmospheric forcing for global ocean circulation models, Ocean Modelling, 31, (3-4), 88-104, 2010, http://dx.doi.org/10.1016/j.ocemod.2009.10.005 Meinvielle, M., Brankart, J.-M., Brasseur, P., Barnier, B., Dussin, R., and Verron, J.: Optimal adjustment of the atmospheric forcing parameters of ocean models using sea surface temperature data assimilation, Ocean Sci., 9, 867-883, doi:10.5194/os-9-867-2013, 2013. MODIS-AQUA. http://aqua.nasa.gov/science/images_data.php, 2013. O'Dea, E. J., While, J., Furner, R., Arnold, A., Hyder, P., Storkey, D., Edwards, K.P., Siddorn, J.R., Martin, M.J., Liu, H., Holt, J.T.: An operational ocean forecast system incorporating SST data assimilation for the tidally driven European North-West European shelf. Journal of Operational Oceanography, 5, 3-17, 2012. Piotukh V.B., Zatsepin A.G., Kazmin A.S., Yakubenko V.G.: Impact of the winter cooling on the variability of the thermohaline characteristics of the active layer in the Black Sea. Oceanology, 41, 2, 221-230, 2011 Shapiro, G.I.: Black Sea Circulation. In: Encyclopedia of Ocean Sciences (Second Edition). Eds: J. H. Steele, K. K. Turekian, and S. A. Thorpe. ISBN: 978-0-12-374473-9, P.3519-3532, 2008. Sur, H. I., and Y. P. Ilyin: Evolution of satellite derived mesoscale thermal patterns in the Black Sea, Prog. Oceanogr., 39, 109-151, 1997 Suvorov, A.M., Eremeev, V.N., Belokopytov, V.N., Khaliulin, A.H., Godin, E.A., Ingerov, A.V., Palmer, D.R. and Levitus, S.: Digital Atlas: Physical Oceanography of the Black Sea. (CD-ROM), Environmental Services Data and Information Management Program, Marine Hydrophysical Institute of the National Academy of Sciences of Ukraine, 2004. Thompson, R. O. R. Y.: Climatological numerical models of the surface mixed layer of the ocean, J. Phys. Oceanogr., 6, 496-603, 1976

  12. Frost flowers and sea-salt aerosols over seasonal sea-ice areas in northwestern Greenland during winter-spring

    NASA Astrophysics Data System (ADS)

    Hara, Keiichiro; Matoba, Sumito; Hirabayashi, Motohiro; Yamasaki, Tetsuhide

    2017-07-01

    Sea salts and halogens in aerosols, frost flowers, and brine play an important role in atmospheric chemistry in polar regions. Simultaneous sampling and observations of frost flowers, brine, and aerosol particles were conducted around Siorapaluk in northwestern Greenland during December 2013 to March 2014. Results show that water-soluble frost flower and brine components are sea-salt components (e.g., Na+, Cl-, Mg2+, K+, Ca2+, Br-, and iodine). Concentration factors of sea-salt components of frost flowers and brine relative to seawater were 1.14-3.67. Sea-salt enrichment of Mg2+, K+, Ca2+, and halogens (Cl-, Br-, and iodine) in frost flowers is associated with sea-salt fractionation by precipitation of mirabilite and hydrohalite. High aerosol number concentrations correspond to the occurrence of higher abundance of sea-salt particles in both coarse and fine modes, and blowing snow and strong winds. Aerosol number concentrations, particularly in coarse mode, are increased considerably by release from the sea-ice surface under strong wind conditions. Sulfate depletion by sea-salt fractionation was found to be limited in sea-salt aerosols because of the presence of non-sea-salt (NSS) SO42-. However, coarse and fine sea-salt particles were found to be rich in Mg. Strong Mg enrichment might be more likely to proceed in fine sea-salt particles. Magnesium-rich sea-salt particles might be released from the surface of snow and slush layer (brine) on sea ice and frost flowers. Mirabilite-like and ikaite-like particles were identified only in aerosol samples collected near new sea-ice areas. From the field evidence and results from earlier studies, we propose and describe sea-salt cycles in seasonal sea-ice areas.

  13. Deglacial development of (sub) sea surface temperature and salinity in the subarctic northwest Pacific: Implications for upper-ocean stratification

    NASA Astrophysics Data System (ADS)

    Riethdorf, Jan-Rainer; Max, Lars; Nürnberg, Dirk; Lembke-Jene, Lester; Tiedemann, Ralf

    2013-01-01

    Based on models and proxy data, it has been proposed that salinity-driven stratification weakened in the subarctic North Pacific during the last deglaciation, which potentially contributed to the deglacial rise in atmospheric carbon dioxide. We present high-resolution subsurface temperature (TMg/Ca) and subsurface salinity-approximating (δ18Oivc-sw) records across the last 20,000 years from the subarctic North Pacific and its marginal seas, derived from combined stable oxygen isotopes and Mg/Ca ratios of the planktonic foraminiferal species Neogloboquadrina pachyderma (sin.). Our results indicate regionally differing changes of subsurface conditions. During the Heinrich Stadial 1 and the Younger Dryas cold phases, our sites were subject to reduced thermal stratification, brine rejection due to sea-ice formation, and increased advection of low-salinity water from the Alaskan Stream. In contrast, the Bølling-Allerød warm phase was characterized by strengthened thermal stratification, stronger sea-ice melting, and influence of surface waters that were less diluted by the Alaskan Stream. From direct comparison with alkenone-based sea surface temperature estimates (SSTUk'37), we suggest deglacial thermocline changes that were closely related to changes in seasonal contrasts and stratification of the mixed layer. The modern upper-ocean conditions seem to have developed only since the early Holocene.

  14. On the relationship between satellite-estimated bio-optical and thermal properties in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Jolliff, Jason K.; Kindle, John C.; Penta, Bradley; Helber, Robert; Lee, Zhongping; Shulman, Igor; Arnone, Robert; Rowley, Clark D.

    2008-03-01

    Three years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data were combined with three-dimensional thermal fields generated by the U.S. Navy's Modular Ocean Data Assimilation System (MODAS) in order to examine the interdependencies between bio-optical fields and their relationship to seasonal and mesoscale changes in upper ocean thermal structure. The combined data set suggests that the oceanic boundary layer within the Gulf of Mexico may be broadly defined by two seasonally occurring bio-thermal periods. A winter mixing period, characterized by net heat losses to the atmosphere, deepening of the isothermal layer depth, and annual maxima of satellite-estimated colored detrital matter (CDM) absorption coefficients and surface pigment concentration, was followed by a thermally stratified period characterized by net surface ocean heating, reduced isothermal layer depths, and annual minima in surface bio-optical fields. Variability in the interdependencies of ocean color products was used to diagnose an attendant shift in the size-structure of surface phytoplankton communities as well as identify CDM as the constituent responsible for the majority of blue-light absorption in Gulf of Mexico surface waters. The mesoscale circulation, as resolved by MODAS thermal fields into cold and warm-core eddies, appears to significantly modulate the seasonal bio-optical cycle of CDM absorption and surface pigment concentration. An empirical model was developed to describe CDM absorption as a function of upper ocean thermal energy. The model accounted for nearly half the variance in the satellite-estimate of this bio-optical variable. Large mismatches between the model and satellite data implied episodes of shelf water export to the deep Gulf of Mexico.

  15. Surface current dynamics under sea breeze conditions observed by simultaneous HF radar, ADCP and drifter measurements

    NASA Astrophysics Data System (ADS)

    Sentchev, Alexei; Forget, Philippe; Fraunié, Philippe

    2017-04-01

    Ocean surface boundary layer dynamics off the southern coast of France in the NW Mediterranean is investigated by using velocity observations by high-frequency (HF) radars, surface drifting buoys and a downward-looking drifting acoustic Doppler current profiler (ADCP). The analysis confirms that velocities measured by HF radars correspond to those observed by an ADCP at the effective depth z f = k -1, where k is wavenumber of the radio wave emitted by the radar. The radials provided by the radars were in a very good agreement with in situ measurements, with the relative errors of 1 and 9 % and root mean square (RMS) differences of 0.02 and 0.04 m/s for monostatic and bistatic radar, respectively. The total radar-based velocities appeared to be slightly underestimated in magnitude and somewhat biased in direction. At the end of the survey period, the difference in the surface current direction, based on HF radar and ADCP data, attained 10°. It was demonstrated that the surface boundary layer dynamics cannot be reconstructed successfully without taking into the account velocity variation with depth. A significant misalignment of ˜30° caused by the sea breeze was documented between the HF radar (HFR-derived) surface current and the background current. It was also found that the ocean response to a moderate wind forcing was confined to the 4-m-thick upper layer. The respective Ekman current attained the maximum value of 0.15 m/s, and the current rotation was found to be lagging the wind by approximately 40 min, with the current vector direction being 15-20° to the left of the wind. The range of velocity variability due to wind forcing was found comparable with the magnitude of the background current variability.

  16. Impacts of the Changjiang diluted water on sinking processes of particulate organic matters in the East China Sea

    NASA Astrophysics Data System (ADS)

    Sukigara, Chiho; Mino, Yoshihisa; Tripathy, Sarat Chandra; Ishizaka, Joji; Matsuno, Takeshi

    2017-12-01

    Intensive surveys with repeated CTD and microstructure turbulent observations, water and sediments sampling as well as onboard incubation and sediment trap experiments were conducted to reveal the nitrogen budget in the center of the East China Sea (ECS) during July 2010 and 2011. Low salinity water (Changjiang Diluted Water, CDW) covered the study area in 2010, but not in 2011. Higher chlorophyll a (chl. a) concentration, primary productivity, and downward particle flux in the upper layer were observed in 2010 than those in 2011. Existence of the CDW resulted in a steep pycnocline and an associated subsurface chl. a maximum (SCM) layer directly beneath the CDW. From chemical analyses of particulate carbon and nitrogen contents and isotope ratios, it became apparent that the particles sunk out the euphotic zone in 2010 was primarily originated in the CDW layer and secondly in the SCM layer. Whereas, in 2011, sinking particles were originated in the surface layer but a part of them were decomposed in the bottom of pycnocline. Our findings indicate that the CDW would supply particles into the deep layer and contribute to the downward transport of materials and the efficiency of biological pump in the ECS.

  17. Dissipation in the Baltic proper during winter stratification

    NASA Astrophysics Data System (ADS)

    Lass, Hans Ulrich; Prandke, Hartmut; Liljebladh, Bengt

    2003-06-01

    Profiles of dissipation rates and stratification between 10 and 120 m depth were measured with a loosely tethered profiler over a 9-day winter period in the Gotland Basin of the Baltic Sea. Supplementary measurements of current profiles were made with moored ADCPs. Temporal and spatial patterns of the stratification were observed by means of towed CTD. Shallow freshwater lenses in the surface mixed layer, mesoscale eddies, inertial oscillations, and inertial waves as part of the internal wave spectrum provided the marine physical environment for the small-scale turbulence. Two well-separated turbulence regimes were detected. The turbulence in the surface mixed layer was well correlated with the wind. The majority of the energy flux from the wind to the turbulent kinetic energy was dissipated within the surface mixed layer. A minor part of this flux was consumed by changes of the potential energy of the fresh water lenses. The penetration depth Hpen of the wind-driven turbulence into the weakly stratified surface mixed layer depended on the local wind speed (W10) as Hpen = cW103/2 Active erosion of the Baltic halocline by wind-driven turbulence is expected for wind speeds greater than 14 m/s. The turbulence in the strongly stratified interior of the water column was quite independent of the meteorological forcing at the sea surface. The integrated production of turbulent kinetic energy exceeded the energy loss of inertial oscillations in the surface layer suggesting additional energy sources which might have been provided by inertial wave radiation during geostrophic adjustment of coastal jets and mesoscale eddies. The averaged dissipation rate profile in the stratified part of the water column, best fitted by ɛ ∝ EN, was different from the scaling of the dissipation in the thermocline of the ocean [, 1986]. The diapycnical mixing coefficient (Kv) was best fit by Kv = a0/N according to [1987] with a0 ≈ 0.87 × 10-7 m2/s2. The diapycnal diffusivity estimated from the dissipation rate was lower than those estimated by the bulk method.

  18. Sea spray contributions to the air-sea fluxes at moderate and hurricane wind speeds

    NASA Astrophysics Data System (ADS)

    Mueller, J. A.; Veron, F.

    2009-12-01

    At sufficiently high wind speed conditions, the surface of the ocean separates to form a substantial number of sea spray drops, which can account for a significant fraction of the total air-sea surface area and thus make important contributions to the aggregate air-sea momentum, heat and mass fluxes. Although consensus around the qualitative impacts of these drops has been building in recent years, the quantification of their impacts has remained elusive. Ultimately, the spray-mediated fluxes depend on three controlling factors: the number and size of drops formed at the surface, the duration of suspension within the atmospheric marine boundary layer, and the rate of momentum, heat and mass transfer between the drops and the atmosphere. While the latter factor can be estimated from an established, physically-based theory, the estimates for the former two are not well established. Using a recent, physically-based model of the sea spray source function along with the results from Lagrangian stochastic simulations of individual drops, we estimate the aggregate spray-mediated fluxes, finding reasonable agreement with existing models and estimates within the empirical range of wind speed conditions. At high wind speed conditions that are outside the empirical range, however, we find somewhat lower spray-mediated fluxes than previously reported in the literature, raising new questions about the relative air-sea fluxes at high wind speeds as well as the development and sustainment of hurricanes.

  19. Hydrogeology and simulation of ground-water flow and land-surface subsidence in the Chicot and Evangeline aquifers, Houston area, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Strom, Eric W.

    2002-01-01

    In November 1997, the U.S. Geological Survey, in cooperation with the City of Houston Utilities Planning Section and the City of Houston Department of Public Works & Engineering, began an investigation of the Chicot and Evangeline aquifers in the greater Houston area in Texas to better understand the hydrology, flow, and associated land-surface subsidence. The principal part of the investigation was a numerical finite-difference model (MODFLOW) developed to simulate ground-water flow and land-surface subsidence in an 18,100-square-mile area encompassing greater Houston.The focus of the study was Harris and Galveston Counties, but other counties were included to achieve the appropriate boundary conditions. The model was vertically discretized into three 103-row by 109-column layers resulting in a total of 33,681 grid cells. Layer 1 represents the water table using a specified head, layer 2 represents the Chicot aquifer, and layer 3 represents the Evangeline aquifer.Simulations were made under transient conditions for 31 ground-water-withdrawal (stress) periods spanning 1891–1996. The years 1977 and 1996 were chosen as potentiometric-surface calibration periods for the model. Simulated and measured potentiometric surfaces of the Chicot and Evangeline aquifers for 1977 match closely. Waterlevel measurements indicate that by 1977, large ground-water withdrawals in east-central and southeastern areas of Harris County had caused the potentiometric surfaces to decline as much as 250 feet below sea level in the Chicot aquifer and as much as 350 feet below sea level in the Evangeline aquifer. Simulated and measured potentiometric surfaces of the Chicot and Evangeline aquifers for 1996 also match closely. The large potentiometric-surface decline in 1977 in the southeastern Houston area showed significant recovery by 1996. The 1996 centers of potentiometric-surface decline are located much farther northwest. Potentiometric-surface declines of more than 200 feet below sea level in the Chicot aquifer and more than 350 feet below sea level in the Evangeline aquifer were measured in observation wells and simulated in the flow model.Simulation of land-surface subsidence and water released from storage in the clay layers was accomplished using the Interbed-Storage Package of the MODFLOW model. Land-surface subsidence was calibrated by comparing simulated long-term (1891–1995) and short-term (1978–95) land-surface subsidence with published maps of land-surface subsidence for about the same period until acceptable matches were achieved.Simulated 1996 Chicot aquifer flow rates indicate that a net flow of 562.5 cubic feet per second enters the Chicot aquifer in the outcrop area, and a net flow of 459.5 cubic feet per second passes through the Chicot aquifer into the Evangeline aquifer. The remaining 103.0 cubic feet per second of flow is withdrawn as pumpage, with a shortfall of about 84.9 cubic feet per second supplied to the wells from storage in sands and clays. Water simulated from storage in clays in the Chicot aquifer is about 19 percent of the total water withdrawn from the aquifer.Simulated 1996 Evangeline aquifer flow rates indicate that a net flow of 14.8 cubic feet per second enters the Evangeline aquifer in the outcrop area, and a net flow of 459.5 cubic feet per second passes through the Chicot aquifer into the Evangeline aquifer for a total inflow of 474.3 cubic feet per second. A greater amount, 528.6 cubic feet per second, is withdrawn by wells; the shortfall of about 54.8 cubic feet per second is supplied from storage in sands and clays. Water simulated from storage in clays in the Evangeline aquifer is about 10 percent of the total water withdrawn from the aquifer.

  20. Effects of surface wave breaking on the oceanic boundary layer

    NASA Astrophysics Data System (ADS)

    He, Hailun; Chen, Dake

    2011-04-01

    Existing laboratory studies suggest that surface wave breaking may exert a significant impact on the formation and evolution of oceanic surface boundary layer, which plays an important role in the ocean-atmosphere coupled system. However, present climate models either neglect the effects of wave breaking or treat them implicitly through some crude parameterization. Here we use a one-dimensional ocean model (General Ocean Turbulence Model, GOTM) to investigate the effects of wave breaking on the oceanic boundary layer on diurnal to seasonal time scales. First a set of idealized experiments are carried out to demonstrate the basic physics and the necessity to include wave breaking. Then the model is applied to simulating observations at the northern North Sea and the Ocean Weather Station Papa, which shows that properly accounting for wave breaking effects can improve model performance and help it to successfully capture the observed upper ocean variability.

  1. Atmospheric boundary layer modification in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Bennett, Theodore J., Jr.; Hunkins, Kenneth

    1986-01-01

    A case study of the Andreas et al. (1984) data on atmospheric boundary layer modification in the marginal ice zone is made. The model is a two-dimensional, multilevel, linear model with turbulence, lateral and vertical advection, and radiation. Good agreement between observed and modeled temperature cross sections is obtained. In contrast to the hypothesis of Andreas et al., the air flow is found to be stable to secondary circulations. Adiabatic lifting and, at long fetches, cloud top longwave cooling, not an air-to-surface heat flux, dominate the cooling of the boundary layer. The accumulation with fetch over the ice of changes in the surface wind field is shown to have a large effect on estimates of the surface wind stress. It is speculated that the Andreas et al. estimates of the drag coefficient over the compact sea ice are too high.

  2. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy.

    PubMed

    Marutschke, Christoph; Walters, Deron; Walters, Deron; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika

    2014-08-22

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic - yet decisive - question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid-liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface.

  3. Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes

    NASA Astrophysics Data System (ADS)

    Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon

    2014-04-01

    Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.

  4. Importance of solar subsurface heating in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Rochford, Peter A.; Kara, A. Birol; Wallcraft, Alan J.; Arnone, Robert A.

    2001-12-01

    The importance of subsurface heating on surface mixed layer properties in an ocean general circulation model (OGCM) is examined using attenuation of solar irradiance with depth below the ocean surface. The depth-dependent attenuation of subsurface heating is given by global monthly mean fields for the attenuation of photosynthetically available radiation (PAR), kPAR. These global fields of kPAR are derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data on the spectral diffuse attenuation coefficient at 490 nm (k490), and have been processed to have the smoothly varying and continuous coverage necessary for use in OGCM applications. These monthly fields provide the first complete global data sets of subsurface optical fields that can be used for OGCM applications of subsurface heating and bio-optical processes. The effect on global OGCM prediction of sea surface temperature (SST) and surface mixed layer depth (MLD) is examined when solar heating, as given by monthly mean kPAR and PAR fields, is included in the model. It is found that subsurface heating yields a marked increase in the SST predictive skill of the OGCM at low latitudes. No significant improvement in MLD predictive skill is obtained when including subsurface heating. Use of the monthly mean kPAR produces an SST decrease of up to 0.8°C and a MLD increase of up to only 4-5 m for climatological surface forcing, with this primarily confined to the equatorial regions. Remarkably, a constant kPAR value of 0.06 m-1, which is indicative of optically clear open ocean conditions, is found to serve very well for OGCM prediction of SST and MLD over most of the global ocean.

  5. Impact of sea spray on the Yellow and East China Seas thermal structure during the passage of Typhoon Rammasun (2002)

    NASA Astrophysics Data System (ADS)

    Zhang, Lianxin; Zhang, Xuefeng; Chu, P. C.; Guan, Changlong; Fu, Hongli; Chao, Guofang; Han, Guijun; Li, Wei

    2017-10-01

    Strong winds lead to large amounts of sea spray in the lowest part of the atmospheric boundary layer. The spray droplets affect the air-sea heat fluxes due to their evaporation and the momentum due to the change of sea surface, and in turn change the upper ocean thermal structure. In this study, impact of sea spray on upper ocean temperatures in the Yellow and East China Seas (YES) during typhoon Rammasun's passage is investigated using the POMgcs ocean model with a sea spray parameterization scheme, in which the sea spray-induced heat fluxes are based on an improved Fairall's sea spray heat fluxes algorithm, and the sea spray-induced momentum fluxes are derived from an improved COARE version 2.6 bulk model. The distribution of the sea spray mediated turbulent fluxes was primarily located at Rammasun eye-wall region, in accord with the maximal wind speeds regions. When Rammasun enters the Yellow sea, the sea spray mediated latent (sensible) heat flux maximum is enhanced by 26% (13.5%) compared to that of the interfacial latent (sensible) heat flux. The maximum of the total air-sea momentum fluxes is enhanced by 43% compared to the counterpart of the interfacial momentum flux. Furthermore, the sea spray plays a key role in enhancing the intensity of the typhoon-induced "cold suction" and "heat pump" processes. When the effect of sea spray is considered, the maximum of the sea surface cooling in the right side of Rammasun's track is increased by 0.5°C, which is closer to the available satellite observations.

  6. Particulate matter in pack ice of the Beaufort Gyre

    USGS Publications Warehouse

    Reimnitz, E.; Barnes, P.W.; Weber, W.S.

    1993-01-01

    Fine sediment occurred in very small patches of turbid ice, as thin spotty surface layers, in mud pellets or in old snowdrifts. The latter were widespread south of 74??N, containing an estimated 22 tonnes of silt and clay km-2. Average particle concentration in sea ice (40 mg1-1) was much higher than in sea water (0.8 mg 1 -1) or in new snow. Assuming one-third of the load is released each year, the estimated deposition rate would equal the measured Holocene rate (~2cm 1000 year-1). Therefore, modern sea-ice rafting represents a substantial fraction of the total Arctic Ocean sediment budget. -from Authors

  7. Microhydrodynamics of flotation processes in the sea surface layer

    NASA Astrophysics Data System (ADS)

    Grammatika, Marianne; Zimmerman, William B.

    2001-10-01

    The uppermost surface of the ocean forms a peculiarly important ecosystem, the sea surface microlayer (SML). Comprising the top 1-1000 μm of the ocean surface, the SML concentrates many chemical substances, particularly those that are surface active. Important economically as a nursery for fish eggs and larvae, the SML unfortunately is also especially vulnerable to pollution. Contaminants that settle out from the air, have low solubility, or attach to floatable matter tend to accumulate in the SML. Bubbles contribute prominently to the dynamics of air-sea exchanges, playing an important role in geochemical cycling of material in the upper ocean and SML. In addition to the movement of bubbles, the development of a bubble cloud interrelates with the single particle dynamics of all other bubbles and particles. In the early sixties, several in situ oceanographic techniques revealed an "unbelievably immense" number of coastal bubbles of radius 15-300 μm. The spatial and temporal variation of bubble numbers were studied; acoustical oceanographers now use bubbles as tracers to determine ocean processes near the ocean surface. Sea state and rain noises have both been definitively ascribed to the radiation from huge numbers of infant micro bubbles [The Acoustic Bubble. Academic Press, San Diego]. Our research programme aims at constructing a hydrodynamic model for particle transport processes occurring at the microscale, in multi-phase flotation suspensions. Current research addresses bubble and floc microhydrodynamics as building blocks for a microscale transport model. This paper reviews sea surface transport processes in the microlayer and the lower atmosphere, and identifies those amenable to microhydrodynamic modelling and simulation. It presents preliminary simulation results including the multi-body hydrodynamic mobility functions for the modelling of "dynamic bubble filters" and floc suspensions. Hydrodynamic interactions versus spatial anisotropy and size of particle clouds are investigated.

  8. Observations of Equatorial Kelvin Waves and their Convective Coupling with the Atmosphere/Ocean Surface Layer

    NASA Astrophysics Data System (ADS)

    Conry, Patrick; Fernando, H. J. S.; Leo, Laura; Blomquist, Byron; Amelie, Vincent; Lalande, Nelson; Creegan, Ed; Hocut, Chris; MacCall, Ben; Wang, Yansen; Jinadasa, S. U. P.; Wang, Chien; Yeo, Lik-Khian

    2016-11-01

    Intraseasonal disturbances with their genesis in the equatorial Indian Ocean (IO) are an important component of global climate. The disturbances, which include Madden-Julian Oscillation and equatorial Kelvin and Rossby waves in the atmosphere and ocean, carry energy which affects El Niño, cyclogenesis, and monsoons. A recent field experiment in IO (ASIRI-RAWI) observed disturbances at three sites across IO with arrays of instruments probing from surface layer to lower stratosphere. During the field campaign the most pronounced planetary-scale disturbances were Kelvin waves in tropical tropopause layer. In Seychelles, quasi-biweekly westerly wind bursts were documented and linked to the Kelvin waves aloft, which breakdown in the upper troposphere due to internal shear instabilities. Convective coupling between waves' phase in upper troposphere and surface initiates rapid (turbulent) vertical transport and resultant wind bursts at surface. Such phenomena reveal linkages between planetary-scale waves and small-scale turbulence in the surface layer that can affect air-sea property exchanges and should be parameterized in atmosphere-ocean general circulation models. Funded by ONR Grants N00014-14-1-0279 and N00014-13-1-0199.

  9. Recent Rise in West Greenland Surface Melt and Firn Density Driven by North Atlantic SSTs and Blocking Events

    NASA Astrophysics Data System (ADS)

    Osterberg, E. C.; Graeter, K.; Hawley, R. L.; Marshall, H. P.; Ferris, D. G.; Lewis, G.; Birkel, S. D.; Meehan, T.; McCarthy, F.

    2017-12-01

    The Greenland Ice Sheet (GrIS) has been losing mass since at least the early 2000s, mostly due to enhanced surface melt. Approximately 40% of the surface melt currently generated on the GrIS percolates into the snow/firn and refreezes, where it has no immediate impact on GrIS mass balance or sea-level rise. However, in situ observations of surface melt are sparse, and thus it remains unclear how melt water percolation and refreezing are modifying the GrIS percolation zone under recent warming. In addition, understanding the climatic drivers behind the recent increase in melt is critical for accurately predicting future GrIS surface melt rates and contributions to sea-level rise. Here we show that there have been significant increases in melt refreeze and firn density over the past 30-50 years along a 250 km-long region of the Western Greenland percolation zone (2137 - 2218 m elevation). We collected seven shallow firn cores as part of the 2016 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS), analyzed each for melt layer stratigraphy and density, and developed timescales for each based on annual layer counting of seasonal chemical oscillations (e.g. δ18O, dust, and biogenic sulfur). The cores indicate that refrozen melt layers have increased 2- to 9-fold since 1970, with statistically significant (p < 0.05) linear trends at the five southernmost core sites. Comparisons of two GreenTrACS cores to co-located PARCA cores collected in 1998 reveal significant (p < 0.05) increases in density averaged over the top 10 m of firn ranging from 32-42 kg/m3. Recent density increases closely correspond with the locations of refrozen melt water. We use output from the MARv3.7 Regional Climate Model to assess climatic forcing of surface melt at GreenTrACS sites, and find significant summer-to-summer correlations between melt generation and the frequency of blocking high pressure centers over Greenland (represented by the Greenland Blocking Index; GBI), and with North Atlantic sea surface temperatures (represented by the Atlantic Multidecadal Oscillation; AMO). Thus, future surface melt rates in Western Greenland depend on the complex evolution of the GBI and AMO under anthropogenic forcing, both of which remain poorly constrained in 21st century model projections.

  10. Chemical composition of sediments from White Sea, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Gamza, Olga; Shevchenko, Vladimir; Novigatsky, Aleksandr

    2010-05-01

    The White Sea, the only Russian inland sea, is located on the north of outlying districts of the European part of Russia, belongs to Arctic Ocean. Area of water of sea occupies about 90 tousend square kilometers. The sea can be divided into some general parts: neck, funnel, basin and 4 Bays: Dvina Bay, Kandalaksha Bay, Mezen Bay and Onega Bay. The purpose of this work was geochemical mapping of the surface sediments of this area. The main tasks were: compilation data base of element composition of the surface sediments, geochemical mapping of each element, research of the anormal concentration of elements on the surface. To detect the content of chemical elements several methods were used: atomic absorption spectrometry (P.P. Shirshov Institute of Oceanology); neutron activation analysis (Vernadsky Institute of Geochemistry and Analytical Chemistry), total and organic carbon analysis, photometric method to detection Si, Al, P (P.P. Shirshov Institute of Oceanology). Bulk composition is one of the fundamental characteristics of sediments and bottom deposites of modern basins. Coarse-grained sediments with portion of pelitic component <50% is spread on the shallow area (Kandalaksha Bay), in areas with high hydrodynamic activity of near-bottom water. Under the conditions of their low activity, fine-grained facies are common(>80%). Character of elements distribution correlates with facial distribution of sediments from White Sea. According to litologic description, bottom surface of Dvina Bay is practically everywhere covered by layer of fine-grained sand. In the border area between Dvina Bay and White Sea basin on terraced subwater slope aleurite politic silts are abundant. They tend to exhange down the slope to clay silts. In Onega Bay fractions of non-deposition are observed. They are characterized by wide spread of thin blanket poorgraded sediments, which are likely to be relic. Relief of Kandalakscha Bay bottom is presented as alternation of abyssal fosses (near 300 m) with silles and elevations (<20 m), and also numerous islands. Thus variety of sediment composition is observed here - from rules and gravels to fine-grained clay silts [1]. The map of distribution of chemical elements was created by using bulk composition data with the help of program ArcView. Mn distribution in sedimentation mass is largely determed by influence of redox diagenesis. Reactive form of Mn dominates over less moving, litogenic form in sedimation mass of White Sea. Litogenic form remains in sediment, reactive form moves into silt near-bottom water, resulting Mn migration both in sediment and near-bottom layer of marine water. Mn oxidizes on the contact with oxygen of marine water and alters into insoluble form MnO2, causing Mn enrichment of surface layer of sediments. Highly movable silt deposit MnO2 and enriched by Mn suspension are moved by underflow and accumulate in bottom depressions and in central part of the sea, which is quite wide from both places of original sedimentation and run off sources [2]. Thus, the interrelation between granulometric composition of sediment and materials concentration can be shown by the example of Mn. Local conditions, leading to accumulation of clastic components, are: 1. Rise of content in sand owning to separation of heavy minerals 2. Rise of content in surface, mainly sandy clay sediments owning to presence of concretions 3. Rise of content in lower bunches roof owning to diagenetic contraction. Authors thank academic Lisitsyn for encourage, Andrey Apletalin for valuable help, and everybody, who helped in field and laboratory research of the White sea sediments. Work was being done under the auspices of Russian foundation of basic research (grants 09-05-10081, 09-05-00658 and 08-05-00860), RSA presidiums program of 17 fundamental researches (project 17.1). References: 1.Kuzmina T., Lein A., Lutchsheva L., Murdmaa I., Novigatsky A., Shevchenko V. Chemical composition of White Sea's sediments // Litology and mineral deposits . 2009. - № 2. - P 115-132. 2.Nevessky E., Medvedev V. , Kalinenko V. White sea, sedimentation and holocoen developmental history. - Moscow.: Nauka, 1977. - 236 p. 3.White Sea and it water collection affected by climatic and antropogenic factors. / under the editorship of Terzhevik A., Filatov N. - Petrozavodsk.: Karelsky nauchny centr RAN, 2007. - 335p

  11. The evolution of water property in the Mackenzie Bay polynya during Antarctic winter

    NASA Astrophysics Data System (ADS)

    Xu, Zhixin; Gao, Guoping; Xu, Jianping; Shi, Maochong

    2017-10-01

    Temperature and salinity profile data, collected by southern elephant seals equipped with autonomous CTD-Satellite Relay Data Loggers (CTD-SRDLs) during the Antarctic wintertime in 2011 and 2012, were used to study the evolution of water property and the resultant formation of the high density water in the Mackenzie Bay polynya (MBP) in front of the Amery Ice Shelf (AIS). In late March the upper 100-200 m layer is characterized by strong halocline and inversion thermocline. The mixed layer keeps deepening up to 250 m by mid-April with potential temperature remaining nearly the surface freezing point and sea surface salinity increasing from 34.00 to 34.21. From then on until mid-May, the whole water column stays isothermally at about -1.90℃ while the surface salinity increases by a further 0.23. Hereafter the temperature increases while salinity decreases along with the increasing depth both by 0.1 order of magnitude vertically. The upper ocean heat content ranging from 120.5 to 2.9 MJ m-2, heat flux with the values of 9.8-287.0 W m-2 loss and the sea ice growth rates of 4.3-11.7 cm d-1 were estimated by using simple 1-D heat and salt budget methods. The MBP exists throughout the whole Antarctic winter (March to October) due to the air-sea-ice interaction, with an average size of about 5.0×103 km2. It can be speculated that the decrease of the salinity of the upper ocean may occur after October each year. The recurring sea-ice production and the associated brine rejection process increase the salinity of the water column in the MBP progressively, resulting in, eventually, the formation of a large body of high density water.

  12. The summer hydrographic structure of the Hanna Shoal region on the northeastern Chukchi Sea shelf: 2011-2013

    NASA Astrophysics Data System (ADS)

    Weingartner, Thomas; Fang, Ying-Chih; Winsor, Peter; Dobbins, Elizabeth; Potter, Rachel; Statscewich, Hank; Mudge, Todd; Irving, Brita; Sousa, Leandra; Borg, Keath

    2017-10-01

    We used shipboard and towed CTD, current meter, and satellite-tracked drifter data to examine the hydrographic structure in the northeastern Chukchi Sea in August-September of 2011, 2012, and 2013. In all years the densest winter water was around and east of Hanna Shoal. In 2012 and 2013, a 15 m deep layer of cold, dilute meltwater overlaid the dense water north of the shelf region between 71.2 and 71.5°N. A front extends from the southwest side of Hanna Shoal toward the head of Barrow Canyon, separated meltwaters from warmer, saltier Bering Sea Summer Waters to the south. Stratification was stronger and the surface density variances in the meso- and sub-mesoscale range were higher north of the front than to the south. No meltwater or surface fronts were present in 2011 due to a very early ice retreat. Differences in summer ice cover may be due to differences in the amount of grounded ice atop Hanna Shoal associated with the previous winter's regional ice drift. Along the north side of Hanna Shoal the model-predicted clockwise barotropic flow carrying waters from the western side of the Shoal appears to converge with a counterclockwise, baroclinic flow on the northeast side. The baroclinic tendency is confined to the upper 30 m and can include waters transported from the shelfbreak. The inferred zonal convergence implies that north of the Shoal: a) near-surface waters are a mixture of waters from the western and eastern Chukchi Sea and b) the cross-isobath pressure gradient collapses thereby facilitating leakage of upper layer waters northward across the shelf.

  13. Variation of turbulence in a coastal thermal internal boundary layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SethuRaman, S.; Raynor, G.S.; Brown, R.M.

    1981-01-01

    Internal boundary layers (IBL) form when an air mass encounters a change in surface characteristics. There are essentially two types of internal boundary layers - one caused by the change in surface roughness and the other by the variation in surface heating. The former is known as the aerodynamic internal boundary layer (AIBL) and the latter the thermal internal boundary layer (TIBL). Change in shear stress generally characterizes the AIBL and change in turbulence the TIBL. Results of some observations of the vertical component of turbulence made in a coastal TIBL over Long Island, New York from 1974 to 1978more » are reported. Vertical turbulence measured by a simple sail plane variometer in a thermal internal boundary layer over Long Island with onshore flows indicates the structure to depend significantly on the land-water temperature difference. The position of the vertical velocity fluctuation maximum seems to vary from one test to another but its variation could not be correlated to other parameters due to lack of a sufficient number of tests. The structure of vertical turbulence was found to be different for sea breeze flows as compared to gradient winds.« less

  14. Thickness and Lower Limit Seismogenic Layer within the Crust beneath Japanese Islands on the Japan Sea Side

    NASA Astrophysics Data System (ADS)

    Matsubara, M.; Sato, H.

    2015-12-01

    1. Introduction I investigate the depth of the seismogenic layer in order to estimate the lower limit of the seismogenic fault plane since this depth is related to the size of the earthquake caused by the active fault. I have indexes D10 and D90 as the upper and lower limits of the seismogenic layer defined as the depth above which 10 % and 90 % of the whole crustal earthquakes occurred from the surface, respectively. The difference between the D10 and D90 is the thickness of the seismogenic layer. 2. Data and method The NIED Hi-net has a catalog of hypocenters determined with one-dimensional velocity (1D) structure (Ukawa et al., 1984) and I estimated the D10 and D90 with this catalog at first. I construct the system to relocate the hypocenters from 2001 to 2013 with magnitude greater than 1.5 on the Japan Sea side shallower than 50 km depth with the three-dimensional velocity (3D) structure (Matsubara and Obara, 2011) obtained by seismic tomography. I estimate the D10 and D90 from the hypocenter catalog with 3D structure. 3. Result Many earthquakes shallower than 5 km with 1D structure are relocated to deeper with 3D structure and the earthquakes deeper than 15 km are relocated to about 5 km shallower. With 3D structure D10 deepens and D90 shallows from 1D structure. D90 beneath the northern Honshu is deeper than the other area and D90 beneath the Japan Sea is much deeper than the inland area. The thickness of the seismogenic layer beneath the Japan Sea is also thick from 8-16 km. D90 on the Japan Sea side of the southwestern Japan on the west side of the Itoigawa Shizuoka Tectonic Line is very shallow as 11-16 km and the thickness of the seismogenic layer is also thin as 2-7 km. 4. Discussion Omuralieva et al. (2012) relocated the JMA unified hypocenters with 3D structure and estimated shallower D90 than that from the JMA catalog. Very deep D90 beneath the northern Hokkaido and northern Honshu is consistent with our result. 5. Conclusion Using 3D velocity structure D10 deepens, D90 shallows, and the thickness of the seismogenic layer becomes thinner. The thickness of the seismogenic layer is thick beneath the northern Honshu, however, that is very thin beneath southwestern Japan on the Japan Sea side.

  15. Control of wave-driven turbulence and surface heating on the mixing of microplastic marine debris

    NASA Astrophysics Data System (ADS)

    Kukulka, T.; Lavender Law, K. L.; Proskurowski, G. K.

    2016-02-01

    Buoyant microplastic marine debris (MPMD) is a pollutant in the ocean surface boundary layer (OSBL) that is submerged by turbulent transport processes. Langmuir circulation (LC) is a turbulent process driven by wind and surface waves that enhances mixing in the OSBL. Sea surface cooling also contributes to OSBL turbulence by driving convection. On the other hand, sea surface heating stratifies and stabilizes the water column to reduce turbulent motion. We analyze observed MPMD surface concentrations in the Atlantic and Pacific Oceans to reveal a significant increase in MPMD concentrations during surface heating and a decrease during surface cooling. Turbulence resolving large eddy simulations of the OSBL for an idealized diurnal heating cycle suggest that turbulent downward fluxes of buoyant tracers are enhanced at night, facilitating deep submergence of plastics, and suppressed in heating conditions, resulting in surface trapped MPMD. Simulations agree with observations if enhanced mixing due to LC is included. Our results demonstrate the controlling influence of surface heat fluxes and LC on turbulent transport in the OSBL and on vertical distributions of buoyant marine particles.

  16. Impacts of sea-surface salinity in an eddy-resolving semi-global OGCM

    NASA Astrophysics Data System (ADS)

    Furue, Ryo; Takatama, Kohei; Sasaki, Hideharu; Schneider, Niklas; Nonaka, Masami; Taguchi, Bunmei

    2018-02-01

    To explore the impacts of sea-surface salinity (SSS) on the interannual variability of upper-ocean state, we compare two 10-year runs of an eddy-resolving ocean general circulation model (OGCM): in one, SSS is strongly restored toward a monthly climatology (World Ocean Atlas '98) and in the other, toward the SSS of a monthly gridded Argo product. The inclusion of the Argo SSS generally improves the interannual variability of the mixed layer depth; particularly so in the western tropical Pacific, where so-called "barrier layers" are reproduced when the Argo SSS is included. The upper-ocean subsurface salinity variability is also improved in the tropics and subtropics even below the mixed layer. To understand the reason for the latter improvement, we separate the salinity difference between the two runs into its "dynamical" and "spiciness" components. The dynamical component is dominated by small-scale noise due to the chaotic nature of mesoscale eddies. The spiciness difference indicates that as expected from the upper-ocean general circulation, SSS variability in the mixed layer is subducted into the thermocline in subtropics; this signal is generally advected downward, equatorward, and westward in the equator-side of the subtropical gyre. The SSS signal subducted in the subtropical North Pacific appears to enter the Indian Ocean through the Indonesian Throughflow, although this signal is weak and probably insignificant in our model.

  17. Motorization of China implies changes in Pacific air chemistry and primary production

    NASA Astrophysics Data System (ADS)

    Elliott, Scott; Blake, Donald R.; Duce, Robert A.; Lai, C. Aaron; McCreary, Iain; McNair, Laurie A.; Rowland, F. Sherwood; Russell, Armistead G.; Streit, Gerald E.; Turco, Richard P.

    1997-11-01

    The People's Republic of China, the world's most populous nation, is considering extensive development of its automotive transportation infrastructure. Upper limits to the associated pollution increases can be defined through scenarios with Western style vehicles and vehicle-to-person ratios. Here we construct estimates of fundamental changes to chemistry of the Pacific ocean/atmosphere system through simple budgeting procedures. Regional increases in tropospheric ozone could reach tens of parts per billion. Observations/experiments suggest that enhanced nitrogen oxides will react with sea salt aerosols to yield chlorine atoms in the marine boundary layer. Nitrate deposition onto the open sea surface would support several percent of exported North Pacific carbon production. Transport of biologically active iron to surface waters may follow from increases in mineral dust and acid sulfate aerosols. Altered plankton ecodynamics will feed back into climate processes through sea to air flux of reduced sulfur gases and through carbon dioxide drawdown.

  18. Comparison of Euphausia superba, Euphausia crystallorophias, Pleuragramma antarcticum and Environmental Distributions in the Western Ross Sea

    NASA Astrophysics Data System (ADS)

    Davis, L.; Hofmann, E. E.; Klinck, J. M., II; Dinniman, M.; Pinones, M. A.

    2016-02-01

    Distributions of Antarctic krill (Euphausia superba), crystal krill (Euphausia crystallorophias), and Antarctic silverfish (Pleuragramma antarcticum) were constructed using observations collected in the western Ross Sea from 1988-2004. Distributions of mixed layer depth (MLD), water temperature below 200 m (an indicator for Circumpolar Deep Water, CDW), and surface speed were obtained from a Ross Sea circulation model; surface chlorophyll and percent sea ice coverage were obtained from satellite observations. The species and environmental distributions were analyzed to determine patterns and correlations. Statistical analyses of the distributions show that the three species are concentrated in specific regions and that their habitats have limited overlap. Antarctic krill are concentrated along the shelf break near Cape Adare and are associated with temperatures >0.5°C and -2°C to -0.75°C, 19-32% sea ice coverage, and high surface flow speeds. Crystal krill are concentrated in Terra Nova Bay in areas with depths of 400-600 m, temperatures < -1.3°, 50% or more sea ice coverage, shallow MLDs (2-36 m), moderate concentrations of chlorophyll (0.44 μg m-3) and low surface speeds (0.08 m s-1). Similarly, Antarctic silverfish are concentrated in Terra Nova Bay and are also found over the continental shelf in areas with depths of 500 m and temperatures of -2°C to -1°C. Additional statistical analyses provide insights into the relative contribution of the different environmental features to producing the distributions of the three species.

  19. The study of the effects of sea-spray drops on the marine atmospheric boundary layer by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.

    2018-01-01

    The detailed knowledge of turbulent exchange processes occurring in the atmospheric marine boundary layer are of primary importance for their correct parameterization in large-scale prognostic models. These processes are complicated, especially at sufficiently strong wind forcing conditions, by the presence of sea-spray drops which are torn off the crests of sufficiently steep surface waves by the wind gusts. Natural observations indicate that mass fraction of sea-spray drops increases with wind speed and their impact on the dynamics of the air in the vicinity of the sea surface can become quite significant. Field experiments, however, are limited by insufficient accuracy of the acquired data and are in general costly and difficult. Laboratory modeling presents another route to investigate the spray-mediated exchange processes in much more detail as compared to the natural experiments. However, laboratory measurements, contact as well as Particle Image Velocimetry (PIV) methods, also suffer from inability to resolve the dynamics of the near-surface air-flow, especially in the surface wave troughs. In this report, we present a first attempt to use Direct Numerical Simulation (DNS) as tool for investigation of the drops-mediated momentum, heat and moisture transfer in a turbulent, droplet-laden air flow over a wavy water surface. DNS is capable of resolving the details of the transfer processes and do not involve any closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes (LES and RANS) simulations. Thus DNS provides a basis for improving parameterizations in LES and RANS closure models and further development of large-scale prognostic models. In particular, we discuss numerical results showing the details of the modification of the air flow velocity, temperature and relative humidity fields by multidisperse, evaporating drops. We use Eulerian-Lagrangian approach where the equations for the air-flow fields are solved in a Eulerian frame whereas the drops dymanics equations are solved in a Largangain frame. The effects of air flow and drops on the water surface wave are neglected. A point-force approximation is employed to model the feed-back contributions by the drops to the air momentum, heat and moisture transfer.

  20. Design and validation of MEDRYS, a Mediterranean Sea reanalysis over the period 1992-2013

    NASA Astrophysics Data System (ADS)

    Hamon, Mathieu; Beuvier, Jonathan; Somot, Samuel; Lellouche, Jean-Michel; Greiner, Eric; Jordà, Gabriel; Bouin, Marie-Noëlle; Arsouze, Thomas; Béranger, Karine; Sevault, Florence; Dubois, Clotilde; Drevillon, Marie; Drillet, Yann

    2016-04-01

    The French research community in the Mediterranean Sea modeling and the French operational ocean forecasting center Mercator Océan have gathered their skill and expertise in physical oceanography, ocean modeling, atmospheric forcings and data assimilation to carry out a MEDiterranean sea ReanalYsiS (MEDRYS) at high resolution for the period 1992-2013. The ocean model used is NEMOMED12, a Mediterranean configuration of NEMO with a 1/12° ( ˜ 7 km) horizontal resolution and 75 vertical z levels with partial steps. At the surface, it is forced by a new atmospheric-forcing data set (ALDERA), coming from a dynamical downscaling of the ERA-Interim atmospheric reanalysis by the regional climate model ALADIN-Climate with a 12 km horizontal and 3 h temporal resolutions. This configuration is used to carry a 34-year hindcast simulation over the period 1979-2013 (NM12-FREE), which is the initial state of the reanalysis in October 1992. MEDRYS uses the existing Mercator Océan data assimilation system SAM2 that is based on a reduced-order Kalman filter with a three-dimensional (3-D) multivariate modal decomposition of the forecast error. Altimeter data, satellite sea surface temperature (SST) and temperature and salinity vertical profiles are jointly assimilated. This paper describes the configuration we used to perform MEDRYS. We then validate the skills of the data assimilation system. It is shown that the data assimilation restores a good average temperature and salinity at intermediate layers compared to the hindcast. No particular biases are identified in the bottom layers. However, the reanalysis shows slight positive biases of 0.02 psu and 0.15 °C above 150 m depth. In the validation stage, it is also shown that the assimilation allows one to better reproduce water, heat and salt transports through the Strait of Gibraltar. Finally, the ability of the reanalysis to represent the sea surface high-frequency variability is shown.

  1. Spatial distribution of the phytoplankton in the White Sea during atypical domination of dinoflagellates (July 2009)

    NASA Astrophysics Data System (ADS)

    Ilyash, L. V.; Zhitina, L. S.; Belevich, T. A.; Shevchenko, V. P.; Kravchishina, M. D.; Pantyulin, A. N.; Tolstikov, A. V.; Chultsova, A. L.

    2016-05-01

    The species composition and biomass of phytoplankton, concentrations of chlorophyll a (Chl a) and nutrients, and accompanying hydrophysical conditions have been studied in the White Sea on July 6-11, 2009. The temperature of the surface water layer was lower than the multiyear average in July. Dinoflagellates dominated in the entire studied area; this was not the typical event for July. We suggest that domination of dinoflagellates was caused by low water temperature, when the nutrient regeneration rate was insufficient to support diatom growth. The abundance of microalgae and the structure of the phytoplankton community depended on the water structure. Variations in the phytoplankton community structure were caused not by substitution of specific species but rather by variability of the abundance of a single species, Heterocapsa triquetra. The highest phytoplankton biomass has been recorded in weakly stratified waters, where tidal mixing supplied the income of inorganic nutrients. The income of nutrients to the photic layer was limited in the stratified waters of Dvina Bay during the summer low-water period, so the phytoplankton abundance was low. We suggest that the lens of surface desalinated water presumably originated from the outlet of the Dvina River was registered in the central part of the White Sea.

  2. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    NASA Astrophysics Data System (ADS)

    Mungall, Emma L.; Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A.; Papakyriakou, Tim; Willis, Megan D.; Liggio, John

    2017-06-01

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  3. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer.

    PubMed

    Mungall, Emma L; Abbatt, Jonathan P D; Wentzell, Jeremy J B; Lee, Alex K Y; Thomas, Jennie L; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A; Papakyriakou, Tim; Willis, Megan D; Liggio, John

    2017-06-13

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  4. Sea ice breakup and marine melt of a retreating tidewater outlet glacier in northeast Greenland (81°N).

    PubMed

    Bendtsen, Jørgen; Mortensen, John; Lennert, Kunuk; K Ehn, Jens; Boone, Wieter; Galindo, Virginie; Hu, Yu-Bin; Dmitrenko, Igor A; Kirillov, Sergei A; Kjeldsen, Kristian K; Kristoffersen, Yngve; G Barber, David; Rysgaard, Søren

    2017-07-10

    Rising temperatures in the Arctic cause accelerated mass loss from the Greenland Ice Sheet and reduced sea ice cover. Tidewater outlet glaciers represent direct connections between glaciers and the ocean where melt rates at the ice-ocean interface are influenced by ocean temperature and circulation. However, few measurements exist near outlet glaciers from the northern coast towards the Arctic Ocean that has remained nearly permanently ice covered. Here we present hydrographic measurements along the terminus of a major retreating tidewater outlet glacier from Flade Isblink Ice Cap. We show that the region is characterized by a relatively large change of the seasonal freshwater content, corresponding to ~2 m of freshwater, and that solar heating during the short open water period results in surface layer temperatures above 1 °C. Observations of temperature and salinity supported that the outlet glacier is a floating ice shelf with near-glacial subsurface temperatures at the freezing point. Melting from the surface layer significantly influenced the ice foot morphology of the glacier terminus. Hence, melting of the tidewater outlet glacier was found to be critically dependent on the retreat of sea ice adjacent to the terminus and the duration of open water.

  5. Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones: Progress, Challenges, and Ways Forward

    NASA Astrophysics Data System (ADS)

    Chen, Shuyi

    2015-04-01

    It has long been recognized that air-sea interaction plays an important role in tropical cyclones (TC) intensity change. However, most current numerical weather prediction (NWP) models are deficient in predicting TC intensity. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in TCs push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. Parameterizations of air-sea fluxes in NWP models are often crude and create "manmade" energy source/sink that does not exist, especially in the absence of a fully interactive ocean in the model. The erroneous surface heat, moisture, and momentum fluxes can cause compounding errors in the model (e.g., precipitation, water vapor, boundary layer properties). The energy source (heat and moisture fluxes from the ocean) and sink (surface friction and wind-induced upper ocean cooling) are critical to TC intensity. However, observations of air-sea fluxes in TCs are very limited, especially in extreme high wind conditions underneath of the eyewall region. The Coupled Boundary Layer Air-Sea Transfer (CBLAST) program was designed to better understand the air-sea interaction, especially in high wind conditions, which included laboratory and coupled model experiments and field campaign in 2003-04 hurricane seasons. Significant progress has been made in better understanding of air-sea exchange coefficients up to 30 m/s, i.e., a leveling off in drag coefficient and relatively invariant exchange coefficient of enthalpy with wind speed. More recently, the Impact of Typhoon on the Ocean in the Pacific (ITOP) field campaign in 2010 has provided an unprecedented data set to study the air-sea fluxes in TCs and their impact on TC structure and intensity. More than 800 GPS dropsondes and 900 AXBTs/AXCTs as well as drifters, floats, and moorings were deployed in TCs, including Typhoons Fanapi and Malakas, and Supertyphoon Megi with a record peak wind speed of more than 80 m/s. It is found that the air-sea fluxes are quite asymmetric around a storm with complex features representing various air-sea interaction processes in TCs. A unique observation in Typhoon Fanapi is the development of a stable boundary layer in the near-storm cold wake region, which has a direct impact on TC inner core structure and intensity. Despite of the progress, challenges remain. Air-sea momentum exchange in wind speed greater than 30-40 m/s is largely unresolved. Directional wind-wave stress and wave-current stress are difficult to determine from observations. Effects of sea spray on the air-sea fluxes are still not well understood. This talk will provide an overview on progress made in recent years, challenges we are facing, and ways forward. An integrated coupled observational and atmosphere-wave-ocean modeling system is urgently needed, in which coupled model development and targeted observations from field campaign and lab measurements together form the core of the research and prediction system. Another important aspect is that fully coupled models provide explicit, integrated impact forecasts of wind, rain, waves, ocean currents and surges in TCs and winter storms, which are missing in most current NWP models. It requires a new strategy for model development, evaluation, and verification. Ensemble forecasts using high-resolution coupled atmosphere-wave-ocean models can provide probabilistic forecasts and quantitative uncertainty estimates, which also allow us to explore new methodologies to verify probabilistic impact forecasts and evaluate model physics using a stochastic approach. Examples of such approach in TCs including Superstorm Sandy will be presented.

  6. Impact of Equatorial Waves on the Variability of Upwelling Process Along West Coast of India

    NASA Astrophysics Data System (ADS)

    Prakash, K. R.; Nigam, T.; Pant, V.

    2017-12-01

    Coastal upwelling is a seasonal phenomenon along the south eastern Arabian Sea (SEAS) due to favourable wind setup during Indian Summer Monsoon Season (June-September). This upwelling brings subsurface cold and nutrient rich water to the surface layers. The cold water transported northward by the altered along shore current of west coast of India in the post-monsoon season. The different climatological forcing of positive Indian Ocean Dipole (IOD) and normal years were utilised to simulate the upwelling off the west coast of India using a three dimensional Regional Ocean Modelling System (ROMS). Strength of upwelling and the northward transport were found to be weaken for positive IOD simulations as compared to normal years. Analysis suggests that the meridional wind stress weakening resulted into a decrease in strength of West India Coastal Current (WICC) and, therefore, reduced magnitude of offshore Ekman transport. The mixed layer heat budget calculation also supports the findings by showing dominated vertical process in comparison to net heat flux effect. The post-monsoon northward transport of cold water was found to be correlated with the coastally trapped downwelling Kelvin waves. These waves are the only remote forcing from the Bay of Bengal that reaches to the south-eastern Arabian Sea during the months of October-December. The composite of sea surface height anomalies for the positive IOD and normal years shows that the downwelling Kelwin wave was absent during October-December.

  7. A Real-time 1/16° Global Ocean Nowcast/Forecast System

    NASA Astrophysics Data System (ADS)

    Shriver, J. F.; Rhodes, R. C.; Hurlburt, H. E.; Wallcraft, A. J.; Metzger, E. J.; Smedstad, O. M.; Kara, A. B.

    2001-05-01

    A 1/16° eddy-resolving global ocean prediction system that uses the NRL Layered Ocean Model (NLOM) has been transitioned to the Naval Oceanographic Office (NAVO), Stennis Space Center, MS. The system gives a real time view of the ocean down to the 50-100 mile scale of ocean eddies and the meandering of ocean currents and fronts, a view with unprecedented resolution and clarity, and demonstrated forecast skill for a month or more for many ocean features. It has been running in real time at NAVO since 19 Oct 2000 with assimilation of real-time altimeter sea surface height (SSH) data (currently ERS-2, GFO and TOPEX/POSEIDON) and sea surface temperature (SST). The model is updated daily and 4-day forecasts are made daily. 30-day forecasts are made once a week. Nowcasts and forecasts using this model are viewable on the web, including SSH, SST and 30-day forecast verification statistics for many zoom regions. The NRL web address is http://www7320.nrlssc.navy.mil/global_nlom/index.html. The NAVO web address is: http://www.navo.navy.mil. Click on "Operational Products", then "Product Search Form", then "Product Type View", then select "Model Navy Layered Ocean Model" and a region and click on "Submit Query". This system is used at NAVO for ocean front and eddy analyses and predictions and to provide accurate sea surface height for use in computing synthetic temperature and salinity profiles, among other applications.

  8. Changes in wintertime pH and hydrography of the Gulf of Finland (Baltic Sea) with focus on depth layers.

    PubMed

    Almén, Anna-Karin; Glippa, Olivier; Pettersson, Heidi; Alenius, Pekka; Engström-Öst, Jonna

    2017-04-01

    We studied changes in sea water pH, temperature and salinity with focus on two depth layers, along the Gulf of Finland (the Baltic Sea) using long-term monitoring data from 1979 to 2015. Data from the most frequently sampled monitoring stations between western and eastern Gulf of Finland were used. The main result of the study reveals that pH has decreased both in surface and deep-water in the western Gulf of Finland with values ranging between -0.005 and -0.008 units year -1 . We also demonstrate a rise in temperature (~2 °C) and decrease in salinity (~-0.7 g kg -1 ) at several stations over the last 36 years. In general, the changes are shown to be more pronounced in the western part of the gulf. This paper also stresses the importance of improving the sampling frequency and quality of monitoring measurements.

  9. Nudging the Arctic Ocean to quantify Arctic sea ice feedbacks

    NASA Astrophysics Data System (ADS)

    Dekker, Evelien; Severijns, Camiel; Bintanja, Richard

    2017-04-01

    It is well-established that the Arctic is warming 2 to 3 time faster than rest of the planet. One of the great uncertainties in climate research is related to what extent sea ice feedbacks amplify this (seasonally varying) Arctic warming. Earlier studies have analyzed existing climate model output using correlations and energy budget considerations in order to quantify sea ice feedbacks through indirect methods. From these analyses it is regularly inferred that sea ice likely plays an important role, but details remain obscure. Here we will take a different and a more direct approach: we will keep the sea ice constant in a sensitivity simulation, using a state-of -the-art climate model (EC-Earth), applying a technique that has never been attempted before. This experimental technique involves nudging the temperature and salinity of the ocean surface (and possibly some layers below to maintain the vertical structure and mixing) to a predefined prescribed state. When strongly nudged to existing (seasonally-varying) sea surface temperatures, ocean salinity and temperature, we force the sea ice to remain in regions/seasons where it is located in the prescribed state, despite the changing climate. Once we obtain fixed' sea ice, we will run a future scenario, for instance 2 x CO2 with and without prescribed sea ice, with the difference between these runs providing a measure as to what extent sea ice contributes to Arctic warming, including the seasonal and geographical imprint of the effects.

  10. Interannual variability (1979-2013) of the North-Western Mediterranean deep water mass formation: past observation reanalysis and coupled ocean-atmosphere high-resolution modelling

    NASA Astrophysics Data System (ADS)

    Somot, Samuel; Houpert, Loic; Sevault, Florence; Testor, Pierre; Bosse, Anthony; Durrieu de Madron, Xavier; Dubois, Clotilde; Herrmann, Marine; Waldman, Robin; Bouin, Marie-Noëlle; Cassou, Christophe

    2015-04-01

    The North-Western Mediterranean Sea is known as one of the only place in the world where open-sea deep convection occurs (often up to more than 2000m) with the formation of the Western Mediterranean Deep Water (WMDW). This phenomena is mostly driven by local preconditioning of the water column and strong buoyancy losses during Winter. At the event scale, the WMDW formation is characterized by different phases (preconditioning, strong mixing, restratification and spreading), intense air-sea interaction and strong meso-scale activity but, on a longer time scale, it also shows a large interannual variability and may be strongly affected by climate change with impact on the regional biogeochemistry. Therefore observing, simulating and understanding the long-term temporal variability of the North-Western Mediterranean deep water formation is still today a very challenging task. We try here to tackle those issues thanks to (1) a thorough reanalysis of past in-situ observations (CTD, Argo, surface and deep moorings, gliders) and (2) an ERA-Interim driven simulation using a recently-developed fully coupled Regional Climate System Model (CNRM-RCSM4, Sevault et al. 2014). The multi-decadal simulation (1979-2013) is designed to be temporally and spatially homogeneous with a realistic chronology, a high resolution representation of both the regional ocean and atmosphere, specific initial conditions, a long-term spin-up and a full ocean-atmosphere coupling without constraint at the air-sea interface. The observation reanalysis allows to reconstruct interannual time series of deep water formation indicators (ocean surface variables, mixed layer depth, surface of the convective area, dense water volumes and characteristics of the deep water). Using the observation-based indicators and the model outputs, the 34 Winters of the period 1979-2013 are analysed in terms of weather regimes, related Winter air-sea fluxes, ocean preconditioning, mixed layer depth, surface of the convective area, deep water formation rate and long-term evolution of the deep water hydrology.

  11. Polarimetric Signatures of Sea Ice. Part 1; Theoretical Model

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.

    1995-01-01

    Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in sea ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of sea ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. Sea ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing sea ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of sea ice polarimetric signatures.

  12. On the freshwater budget in the eastern tropical Atlantic during the development of the cold tongue

    NASA Astrophysics Data System (ADS)

    Schlundt, Michael; Krahmann, Gerd; Brandt, Peter; Karstensen, Johannes

    2013-04-01

    The most striking sea surface temperature (SST) phenomenon in the tropical Atlantic is the seasonal appearance of the Atlantic Cold Tongue (ACT). Onset, duration, spatial extent and strength of cooling are subject to significant interannual variability. The ACT onset is also associated with remarkable changes in upper ocean salinity. To examine the different contributions to these changes we here focus on and present a mixed layer freshwater budget in the eastern tropical Atlantic. Our investigation is based on an exceptionally large set of observations during the onset of the ACT in late boreal spring/ early boreal summer 2011: more than 5400 CTD-profiles acquired by seven gliders running simultaneously to two research cruises, 180 ship based CTD-profiles, time series data from the PIRATA buoy array as well as measurements from the Argo float program are used to derive mixed layer depth, lateral and vertical salinity gradients. To derive turbulent mixing and inferred diapycnal salt flux, microstructure observations are taken into account. Furthermore satellite measurements of sea surface salinity (SSS) by the SMOS mission and of SST by the TMI radiometer as well as atmospheric reanalysis data and the OSCAR project products are implemented. Freshwater budget terms were calculated for different sub-regions. These sub-regions are chosen using pre-defined thresholds in SSS, SST or mixed layer depth. Overall the freshwater budget is dominated by the net surface freshwater flux and horizontal advection by strong zonal currents. Other terms, like entrainment and diapycnal mixing are found to be regionally important. In particular, the observed increase in salinity in the near-equatorial region during ACT onset is found to be the result of the northward migration of the ITCZ associated with reduced net surface freshwater flux at the equator as well as mixing of salty subsurface waters into the surface mixed layer.

  13. A comparison and evaluation between ICESat/GLAS altimetry and mean sea level in Thailand

    NASA Astrophysics Data System (ADS)

    Naksen, Didsaphan; Yang, Dong Kai

    2015-10-01

    Surface elevation is one of the importance information for GIS. Usually surface elevation can acquired from many sources such as satellite imageries, aerial photograph, SAR data or LiDAR by photogrammetry, remote sensing methodology. However the most trust information describe the actual surface elevation is Leveling from terrestrial survey. Leveling is giving the highest accuracy but in the other hand is also long period process spending a lot of budget and resources, moreover the LiDAR technology is new era to measure surface elevation. ICESat/GLAS is spaceborne LiDAR platform, a scientific satellite lunched by NASA in 2003. The study area was located at the middle part of Thailand between 12. ° - 14° North and 98° -100° East Latitude and Longitude. The main idea is to compare and evaluate about elevation between ICESat/GLAS Altimetry and mean sea level of Thailand. Data are collected from various sources, including the ICESat/GLAS altimetry data product from NASA, mean sea level from Royal Thai Survey Department (RTSD). For methodology, is to transform ICESat GLA14 from TOPX/Poseidon-Jason ellipsoid to WGS84 ellipsoid. In addition, ICESat/GLAS altimetry that extracted form centroid of laser footprint and mean sea level were compared and evaluated by 1st Layer National Vertical Reference Network. The result is shown that generally the range of elevation between ICESat/GLAS and mean sea level is wildly from 0. 8 to 25 meters in study area.

  14. Thermohaline variability in the Adriatic and Northern Ionian Seas observed from the Argo floats during 2010-2014

    NASA Astrophysics Data System (ADS)

    Kovačević, Vedrana; Ursella, Laura; Gačić, Miroslav; Notarstefano, Giulio; Menna, Milena; Bensi, Manuel; Civitarese, Giuseppe; Poulain, Pierre-Marie

    2015-04-01

    The Adriatic Sea is the northernmost basin of the Eastern Mediterranean Sea (EMed). At its southern end, the basin communicates with the adjacent Ionian Sea through the 80 km wide and 850 m deep Strait of Otranto. Due to the river discharge in the north and due to the strong winter cooling, the Adriatic is both a dilution basin and the dense water formation region. The basin-wide circulation is cyclonic. The circulation is however, energetic also at smaller spatial and temporal scales, and several circulation cells and mesoscale features are regularly observed equally along the littoral and in the open sea. The North Adriatic Dense Water (NAdDW) formed during winter is the densest water of the whole Mediterranean Sea (up to 1060 kg/m3). It flows as a density driven bottom current from the northern shelf toward south, filling the deep layers of the middle and southern Adriatic pits. The deep open-sea area of the South Adriatic Pit (SAP, 1200 m) feels the influence of a water mass exchange through the Strait of Otranto. Specifically, it receives salty and warm surface and Levantine Intermediate Waters from the Ionian Sea. Through the open-sea winter convection that homogenizes and ventilates 400-800 m thick upper water column, this salty water contributes to the formation of the Adriatic Deep Water (AdDW, 1029.17-1029.20 kg/m3), which is not as dense as the NAdDW. Both dense waters eventually mix and spill across the sill ventilating the deep and bottom layers of the Ionian Sea, and driving the deep thermohaline cell of the EMed. Thermohaline properties of the Adriatic Sea vary at wide spatial and temporal scales, and this in turn affects the properties of its dense waters. The long-term scales are of a particular interest, as they are often associated with the biogeochemical and biotic variability such as intrusion of alien species into the Adriatic Sea and interconnection with the adjacent Ionian basin. Due to the extremely variable meteo- and climatic conditions, the signal of the Adriatic dense waters can be fairly irregular and impulsive. Sporadic in-situ surveys by research vessels are not always sufficient to capture this irregularity and its consequences on the circulation. The Lagrangian platforms are disseminated within the whole Mediterranean through the international Argo program. They are a useful tool to assess some of the spatial and temporal variability in the two basins. Combining the information from the floats and in-situ CTD profiles from oceanographic campaigns, we picture the inter-annual variability of the thermohaline properties in general during 2010-2014. In addition, the peculiarities of the very dense water overflow that during 2012 spilled out form the Strait of Otranto into the Northern Ionian is evidenced. Also, by the remotely sensed sea surface topography, we depict the most prominent circulation features of the upper layer.

  15. Estimating temporal and spatial variation of ocean surface pCO2 in the North Pacific using a self-organizing map neural network technique

    NASA Astrophysics Data System (ADS)

    Nakaoka, S.; Telszewski, M.; Nojiri, Y.; Yasunaka, S.; Miyazaki, C.; Mukai, H.; Usui, N.

    2013-09-01

    This study uses a neural network technique to produce maps of the partial pressure of oceanic carbon dioxide (pCO2sea) in the North Pacific on a 0.25° latitude × 0.25° longitude grid from 2002 to 2008. The pCO2sea distribution was computed using a self-organizing map (SOM) originally utilized to map the pCO2sea in the North Atlantic. Four proxy parameters - sea surface temperature (SST), mixed layer depth, chlorophyll a concentration, and sea surface salinity (SSS) - are used during the training phase to enable the network to resolve the nonlinear relationships between the pCO2sea distribution and biogeochemistry of the basin. The observed pCO2sea data were obtained from an extensive dataset generated by the volunteer observation ship program operated by the National Institute for Environmental Studies (NIES). The reconstructed pCO2sea values agreed well with the pCO2sea measurements, with the root-mean-square error ranging from 17.6 μatm (for the NIES dataset used in the SOM) to 20.2 μatm (for independent dataset). We confirmed that the pCO2sea estimates could be improved by including SSS as one of the training parameters and by taking into account secular increases of pCO2sea that have tracked increases in atmospheric CO2. Estimated pCO2sea values accurately reproduced pCO2sea data at several time series locations in the North Pacific. The distributions of pCO2sea revealed by 7 yr averaged monthly pCO2sea maps were similar to Lamont-Doherty Earth Observatory pCO2sea climatology, allowing, however, for a more detailed analysis of biogeochemical conditions. The distributions of pCO2sea anomalies over the North Pacific during the winter clearly showed regional contrasts between El Niño and La Niña years related to changes of SST and vertical mixing.

  16. Hurricane Matthew (2016) and its Storm Surge Inundation under Global Warming Scenarios: Application of an Interactively Coupled Atmosphere-Ocean Model

    NASA Astrophysics Data System (ADS)

    Jisan, M. A.; Bao, S.; Pietrafesa, L.; Pullen, J.

    2017-12-01

    An interactively coupled atmosphere-ocean model was used to investigate the impacts of future ocean warming, both at the surface and the layers below, on the track and intensity of a hurricane and its associated storm surge and inundation. The category-5 hurricane Matthew (2016), which made landfall on the South Carolina coast of the United States, was used for the case study. Future ocean temperature changes and sea level rise (SLR) were estimated based on the projection of Inter-Governmental Panel on Climate Change (IPCC)'s Representative Concentration Pathway scenarios RCP 2.6 and RCP 8.5. After being validated with the present-day observational data, the model was applied to simulate the changes in track, intensity, storm surge and inundation that Hurricane Matthew would cause under future climate change scenarios. It was found that a significant increase in hurricane intensity, storm surge water level, and inundation area for Hurricane Matthew under future ocean warming and SLR scenarios. For example, under the RCP 8.5 scenario, the maximum wind speed would increase by 17 knots (14.2%), the minimum sea level pressure would decrease by 26 hPa (2.85%), and the inundated area would increase by 401 km2 (123%). By including the effect of SLR for the middle-21st-century scenario, the inundated area will further increase by up to 49.6%. The increase in the hurricane intensity and the inundated area was also found for the RCP 2.6 scenario. The response of sea surface temperature was analyzed to investigate the change in intensity. A comparison was made between the impacts when only the sea surface warming is considered versus when both the sea surface and the underneath layers are considered. These results showed that even without the effect of SLR, the storm surge level and the inundated area would be higher due to the increased hurricane intensity under the influence of the future warmer ocean temperature. The coupled effect of ocean warming and SLR would cause the hurricane-induced storm surge and inundation to be amplified. The relative importance of the ocean warming versus the SLR was evaluated. Keywords: Hurricane Matthew, Global Warming, Coupled Atmosphere-Ocean Model, Air-Sea interactions, Storm Surge, Inundation

  17. Sea Ice and Hydrographic Variability in the Northwest North Atlantic

    NASA Astrophysics Data System (ADS)

    Fenty, I. G.; Heimbach, P.; Wunsch, C. I.

    2010-12-01

    Sea ice anomalies in the Northwest North Atlantic's Labrador Sea are of climatic interest because of known and hypothesized feedbacks with hydrographic anomalies, deep convection/mode water formation, and Northern Hemisphere atmospheric patterns. As greenhouse gas concentrations increase, hydrographic anomalies formed in the Arctic Ocean associated with warming will propagate into the Labrador Sea via the Fram Strait/West Greenland Current and the Canadian Archipelago/Baffin Island Current. Therefore, understanding the dynamical response of sea ice in the basin to hydrographic anomalies is essential for the prediction and interpretation of future high-latitude climate change. Historically, efforts to quantify the link between the observed sea ice and hydrographic variability in the region has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and sea ice observations with numerical models. To elaborate the relationship between sea ice and ocean variability, we create three one-year (1992-1993, 1996-1997, 2003-2004) three-dimensional time-varying reconstructions of the ocean and sea ice state in Labrador Sea and Baffin Bay. The reconstructions are syntheses of a regional coupled 32 km ocean-sea ice model with a suite of contemporary in situ and satellite hydrographic and ice data using the adjoint method. The model and data are made consistent, in a least-squares sense, by iteratively adjusting several model control variables (e.g., ocean initial and lateral boundary conditions and the atmospheric state) to minimize an uncertainty-weighted model-data misfit cost function. The reconstructions reveal that the ice pack attains a state of quasi-equilibrium in mid-March (the annual sea ice maximum) in which the total ice-covered area reaches a steady state -ice production and dynamical divergence along the coasts balances dynamical convergence and melt along the pack’s seaward edge. Sea ice advected to the marginal ice zone is mainly ablated via large sustained turbulent ocean enthalpy fluxes. The sensible heat required for these sustained fluxes is drawn from a reservoir of warm subsurface waters of subtropical origin entrained into the mixed layer via convective mixing. Analysis of ocean surface buoyancy fluxes during the period preceding quasi-equilibrium reveals that low-salinity upper ocean anomalies are required for ice to advance seaward of the Arctic Water/Irminger Water thermohaline front in the northern Labrador Sea. Anomalous low-salinity waters inhibit mixed layer deepening, shielding the advancing ice pack from the subsurface heat reservoir, and are conducive to a positive surface stratification enhancement feedback from ice meltwater release. Interestingly, the climatological location of the front coincides with the minimum observed wintertime ice extent; positive ice extent anomalies may require hydrographic preconditioning. If true, the export of low-salinity anomalies from melting Arctic ice associated with future warming may be predicted to lead positive ice extent anomalies in Labrador Sea via the positive surface stratification enhancement mechanism feedback outlined above.

  18. Habitability at the frontlines of sea level rise: a spatiotemporal analysis of settlements and coastal inundation in eight global sea level rise hotspots between 1990 and 2015

    NASA Astrophysics Data System (ADS)

    Rose, S. A.; Wrathall, D.

    2017-12-01

    Over the coming centuries and millennia, sea level rise will greatly redistribute global human population through displacement and migration. Sudden, large-scale displacement is extremely disruptive to society both for migrants and host communities, and there is a great scientific and policy need to anticipate where, when and how this could happen around sea level rise. We can meet these needs by examining how long-term coastal inundation of settlements has already occurred. Using two global geospatial data sets, the Global Human Settlement Layer and the Global Surface Water Layer, we examine the global spatial concentration of settlement inundation that occurred between 1990 and 2015. We focus on the eight sea level rise hotspots identified in Clark et al (2016), which include Bangladesh, Mekong Delta, Indonesia, Japan, Nile Delta, Philippines, and the US Mid-Atlantic and Gulf of Mexico, and examine areas of convergence between settlement loss density and negative population change. This analysis reveals specific areas of concern within vulnerable countries, and forms the basis for focused investigations of the long-term impact of coastal inundation on various migration systems. This analysis shows us how long-term sets of satellite derived data on human population can help anticipate how sea level rise will alter future patterns of human settlement and migration into the 21st century and beyond.

  19. Spatial patterns of mixing in the Solomon Sea

    NASA Astrophysics Data System (ADS)

    Alberty, M. S.; Sprintall, J.; MacKinnon, J.; Ganachaud, A.; Cravatte, S.; Eldin, G.; Germineaud, C.; Melet, A.

    2017-05-01

    The Solomon Sea is a marginal sea in the southwest Pacific that connects subtropical and equatorial circulation, constricting transport of South Pacific Subtropical Mode Water and Antarctic Intermediate Water through its deep, narrow channels. Marginal sea topography inhibits internal waves from propagating out and into the open ocean, making these regions hot spots for energy dissipation and mixing. Data from two hydrographic cruises and from Argo profiles are employed to indirectly infer mixing from observations for the first time in the Solomon Sea. Thorpe and finescale methods indirectly estimate the rate of dissipation of kinetic energy (ɛ) and indicate that it is maximum in the surface and thermocline layers and decreases by 2-3 orders of magnitude by 2000 m depth. Estimates of diapycnal diffusivity from the observations and a simple diffusive model agree in magnitude but have different depth structures, likely reflecting the combined influence of both diapycnal mixing and isopycnal stirring. Spatial variability of ɛ is large, spanning at least 2 orders of magnitude within isopycnal layers. Seasonal variability of ɛ reflects regional monsoonal changes in large-scale oceanic and atmospheric conditions with ɛ increased in July and decreased in March. Finally, tide power input and topographic roughness are well correlated with mean spatial patterns of mixing within intermediate and deep isopycnals but are not clearly correlated with thermocline mixing patterns.

  20. Reflective properties of melt ponds on sea ice

    NASA Astrophysics Data System (ADS)

    Malinka, Aleksey; Zege, Eleonora; Istomina, Larysa; Heygster, Georg; Spreen, Gunnar; Perovich, Donald; Polashenski, Chris

    2018-06-01

    Melt ponds occupy a large part of the Arctic sea ice in summer and strongly affect the radiative budget of the atmosphere-ice-ocean system. In this study, the melt pond reflectance is considered in the framework of radiative transfer theory. The melt pond is modeled as a plane-parallel layer of pure water upon a layer of sea ice (the pond bottom). We consider pond reflection as comprising Fresnel reflection by the water surface and multiple reflections between the pond surface and its bottom, which is assumed to be Lambertian. In order to give a description of how to find the pond bottom albedo, we investigate the inherent optical properties of sea ice. Using the Wentzel-Kramers-Brillouin approximation approach to light scattering by non-spherical particles (brine inclusions) and Mie solution for spherical particles (air bubbles), we conclude that the transport scattering coefficient in sea ice is a spectrally independent value. Then, within the two-stream approximation of the radiative transfer theory, we show that the under-pond ice spectral albedo is determined by two independent scalar values: the transport scattering coefficient and ice layer thickness. Given the pond depth and bottom albedo values, the bidirectional reflectance factor (BRF) and albedo of a pond can be calculated with analytical formulas. Thus, the main reflective properties of the melt pond, including their spectral dependence, are determined by only three independent parameters: pond depth z, ice layer thickness H, and transport scattering coefficient of ice σt.The effects of the incident conditions and the atmosphere state are examined. It is clearly shown that atmospheric correction is necessary even for in situ measurements. The atmospheric correction procedure has been used in the model verification. The optical model developed is verified with data from in situ measurements made during three field campaigns performed on landfast and pack ice in the Arctic. The measured pond albedo spectra were fitted with the modeled spectra by varying the pond parameters (z, H, and σt). The coincidence of the measured and fitted spectra demonstrates good performance of the model: it is able to reproduce the albedo spectrum in the visible range with RMSD that does not exceed 1.5 % for a wide variety of melt pond types observed in the Arctic.

  1. Physical-Biological Coupling in the Western South China Sea: The Response of Phytoplankton Community to a Mesoscale Cyclonic Eddy

    PubMed Central

    Wang, Lei; Huang, Bangqin; Chiang, Kuo-Ping; Liu, Xin; Chen, Bingzhang; Xie, Yuyuan; Xu, Yanping; Hu, Jianyu; Dai, Minhan

    2016-01-01

    It is widely recognized that the mesoscale eddies play an important part in the biogeochemical cycle in ocean ecosystem, especially in the oligotrophic tropical zones. So here a heterogeneous cyclonic eddy in its flourishing stage was detected using remote sensing and in situ biogeochemical observation in the western South China Sea (SCS) in early September, 2007. The high-performance liquid chromatography method was used to identify the photosynthetic pigments. And the CHEMical TAXonomy (CHEMTAX) was applied to calculate the contribution of nine phytoplankton groups to the total chlorophyll a (TChl a) biomass. The deep chlorophyll a maximum layer (DCML) was raised to form a dome structure in the eddy center while there was no distinct enhancement for TChl a biomass. The integrated TChl a concentration in the upper 100 m water column was also constant from the eddy center to the surrounding water outside the eddy. However the TChl a biomass in the surface layer (at 5 m) in the eddy center was promoted 2.6-fold compared to the biomass outside the eddy (p < 0.001). Thus, the slight enhancement of TChl a biomass of euphotic zone integration within the eddy was mainly from the phytoplankton in the upper mixed zone rather than the DCML. The phytoplankton community was primarily contributed by diatoms, prasinophytes, and Synechococcus at the DCML within the eddy, while less was contributed by haptophytes_8 and Prochlorococcus. The TChl a biomass for most of the phytoplankton groups increased at the surface layer in the eddy center under the effect of nutrient pumping. The doming isopycnal within the eddy supplied nutrients gently into the upper mixing layer, and there was remarkable enhancement in phytoplankton biomass at the surface layer with 10.5% TChl a biomass of water column in eddy center and 3.7% at reference stations. So the slight increasing in the water column integrated phytoplankton biomass might be attributed to the stimulated phytoplankton biomass at the surface layer. PMID:27088991

  2. Novel water filtration of saline water in the outermost layer of mangrove roots.

    PubMed

    Kim, Kiwoong; Seo, Eunseok; Chang, Suk-Kyu; Park, Tae Jung; Lee, Sang Joon

    2016-02-05

    The scarcity of fresh water is a global challenge faced at present. Several desalination methods have been suggested to secure fresh water from sea water. However, conventional methods suffer from technical limitations, such as high power consumption, expensive operating costs, and limited system durability. In this study, we examined the feasibility of using halophytes as a novel technology of desalinating high-concentration saline water for long periods. This study investigated the biophysical characteristics of sea water filtration in the roots of the mangrove Rhizophora stylosa from a plant hydrodynamic point of view. R. stylosa can grow even in saline water, and the salt level in its roots is regulated within a certain threshold value through filtration. The root possesses a hierarchical, triple layered pore structure in the epidermis, and most Na(+) ions are filtered at the first sublayer of the outermost layer. The high blockage of Na(+) ions is attributed to the high surface zeta potential of the first layer. The second layer, which is composed of macroporous structures, also facilitates Na(+) ion filtration. This study provides insights into the mechanism underlying water filtration through halophyte roots and serves as a basis for the development of a novel bio-inspired desalination method.

  3. Seasonal cycle of oceanic mixed layer and upper-ocean heat fluxes in the Mediterranean Sea from in-situ observations.

    NASA Astrophysics Data System (ADS)

    Houpert, Loïc; Testor, Pierre; Durrieu de Madron, Xavier; Estournel, Claude; D'Ortenzio, Fabrizio

    2013-04-01

    Heat fluxes across the ocean-atmosphere interface play a crucial role in the upper turbulent mixing. The depth reached by this turbulent mixing is indicated by an homogenization of seawater properties in the surface layer, and is defined as the Mixed Layer Depth (MLD). The thickness of the mixed layer determines also the heat content of the layer that directly interacts with the atmosphere. The seasonal variability of these air-sea fluxes is crucial in the calculation of heat budget. An improvement in the estimate of these fluxes is needed for a better understanding of the Mediterranean ocean circulation and climate, in particular in Regional Climate Models. There are few estimations of surface heat fluxes based on oceanic observations in the Mediterranean, and none of them are based on mixed layer observations. So, we proposed here new estimations of these upper-ocean heat fluxes based on mixed layer. We present high resolution Mediterranean climatology (0.5°) of the mean MLD based on a comprehensive collection of temperature profiles of last 43 years (1969-2012). The database includes more than 150,000 profiles, merging CTD, XBT, ARGO Profiling floats, and gliders observations. This dataset is first used to describe the seasonal cycle of the mixed layer depth on the whole Mediterranean on a monthly climatological basis. Our analysis discriminates several regions with coherent behaviors, in particular the deep water formation sites, characterized by significant differences in the winter mixing intensity. Heat storage rates (HSR) were calculated as the time rate of change of the heat content integrated from the surface down to a specific depth that is defined as the MLD plus an integration constant. Monthly climatology of net heat flux (NHF) from ERA-Interim reanalysis was balanced by the 1°x1° resolution heat storage rate climatology. Local heat budget balance and seasonal variability in the horizontal heat flux are then discussed by taking into account uncertainties, due to errors in monthly value estimation and to intra-annual and inter-annual variability.

  4. Carbon and Nutrient Dynamics and Fluxes in the Northwest European Continental Shelf Sea

    NASA Astrophysics Data System (ADS)

    Humphreys, M. P.; Moore, M. M.; Achterberg, E. P.; Griffiths, A.; Smilenova, A.; Chowdhury, M. Z. H.; Kivimae, C.; Hartman, S. E.; Hopkins, J.; Woodward, M. S.

    2016-02-01

    Despite covering only about 5 % of the Earth's ocean surface area, shallow marginal seas support 15-20 % of global primary productivity, and are the key interface between the land and the open ocean. They are therefore of critical importance to marine biogeochemical cycles, and may have a significant role in ocean uptake and storage of anthropogenic carbon dioxide (CO2). However, their behaviour is significantly more complex than that of the open ocean, because of the greater heterogeneity of the underlying physical, chemical and biological processes acting upon them. Detailed case-studies of individual regions are therefore essential in order to accurately evaluate their net global influence. The Northwest European continental shelf, in particular the Celtic Sea, was the target of extensive hydrographic sampling from March 2014 to September 2015, as part of the UK Shelf Seas Biogeochemistry research programme (UK-SSB). Here, we use the UK-SSB carbonate chemistry and macronutrient measurements to describe the seasonal biogeochemical cycle in the Celtic Sea. The 100-200 m deep water column proceeds from vertically well mixed in winter to a strongly stratified two-layer structure over spring-summer. The associated seasonal cycle in near-surface biological activity removes dissolved inorganic carbon (DIC) and nutrients, some of which are then exported into the deeper layer. Calculating total inventories of the biogeochemical variables throughout the seasonal cycle, we determine seasonal net CO2 uptake and investigate whether non-Redfieldian macronutrient uptake and remineralisation processes occur. Combining these results with estimated water exchange across the shelf edge further allows us to quantify the strength of the `shelf pump' sink for atmospheric (and anthropogenic) CO2.

  5. Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Arndt, Stefanie; Willmes, Sascha; Dierking, Wolfgang; Nicolaus, Marcel

    2016-04-01

    The better understanding of temporal variability and regional distribution of surface melt on Antarctic sea ice is crucial for the understanding of atmosphere-ocean interactions and the determination of mass and energy budgets of sea ice. Since large regions of Antarctic sea ice are covered with snow during most of the year, observed inter-annual and regional variations of surface melt mainly represents melt processes in the snow. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. In this study we combine two approaches for observing both surface and volume snowmelt by means of passive microwave satellite data. The former is achieved by measuring diurnal differences of the brightness temperature TB at 37 GHz, the latter by analyzing the ratio TB(19GHz)/TB(37GHz). Moreover, we use both melt onset proxies to divide the Antarctic sea ice cover into characteristic surface melt patterns from 1988/89 to 2014/15. Our results indicate four characteristic melt types. On average, 43% of the ice-covered ocean shows diurnal freeze-thaw cycles in the surface snow layer, resulting in temporary melt (Type A), less than 1% shows continuous snowmelt throughout the snowpack, resulting in strong melt over a period of several days (Type B), 19% shows Type A and B taking place consecutively (Type C), and for 37% no melt is observed at all (Type D). Continuous melt is primarily observed in the outflow of the Weddell Gyre and in the northern Ross Sea, usually 20 days after the onset of temporary melt. Considering the entire data set, snowmelt processes and onset do not show significant temporal trends. Instead, areas of increasing (decreasing) sea-ice extent have longer (shorter) periods of continuous snowmelt.

  6. Impact of Typhoons on the Western Pacific Ocean (ITOP) DRI: Numerical Modeling of Ocean Mixed Layer Turbulence and Entrainment at High Winds

    DTIC Science & Technology

    2013-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Impact of Typhoons on the Western Pacific Ocean (ITOP...The measurement and modeling activities include a focus on the impact of surface waves, air-sea fluxes and the temperature, salinity and velocity...SUBTITLE Impact of Typhoons on the Western Pacific Ocean (ITOP) DRI: Numerical Modeling of Ocean Mixed Layer Turbulence and Entrainment at High Winds

  7. Submesoscale-selective compensation of fronts in a salinity-stratified ocean.

    PubMed

    Spiro Jaeger, Gualtiero; Mahadevan, Amala

    2018-02-01

    Salinity, rather than temperature, is the leading influence on density in some regions of the world's upper oceans. In the Bay of Bengal, heavy monsoonal rains and runoff generate strong salinity gradients that define density fronts and stratification in the upper ~50 m. Ship-based observations made in winter reveal that fronts exist over a wide range of length scales, but at O(1)-km scales, horizontal salinity gradients are compensated by temperature to alleviate about half the cross-front density gradient. Using a process study ocean model, we show that scale-selective compensation occurs because of surface cooling. Submesoscale instabilities cause density fronts to slump, enhancing stratification along-front. Specifically for salinity fronts, the surface mixed layer (SML) shoals on the less saline side, correlating sea surface salinity (SSS) with SML depth at O(1)-km scales. When losing heat to the atmosphere, the shallower and less saline SML experiences a larger drop in temperature compared to the adjacent deeper SML on the salty side of the front, thus correlating sea surface temperature (SST) with SSS at the submesoscale. This compensation of submesoscale fronts can diminish their strength and thwart the forward cascade of energy to smaller scales. During winter, salinity fronts that are dynamically submesoscale experience larger temperature drops, appearing in satellite-derived SST as cold filaments. In freshwater-influenced regions, cold filaments can mark surface-trapped layers insulated from deeper nutrient-rich waters, unlike in other regions, where they indicate upwelling of nutrient-rich water and enhanced surface biological productivity.

  8. Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and Air-sea Roughness

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.

    2013-01-01

    A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the air-sea interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum exchange and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.

  9. USSR and Eastern Europe Scientific Abstracts, Geophysics, Astronomy and Space, Number 395

    DTIC Science & Technology

    1977-04-15

    of the air masses, wind condi- tions, cloudiness and precipitation in the eastern part of the Arabian Sea are related to the beginning of the monsoon...layer of the atmosphere which plays a large role in the air shifts near the earth’s surface. In the west- ern part of the Arabian Sea the "Yu. M...mod- el. Gravity anomalies can be used in both the Bouguer and in the Faye re- ductions. It is noted, in particular, that investigations of ocean

  10. The Last Interglacial Labrador Sea: A Pervasive Millennial Oscillation In Surface Water Conditions Without Labrador Sea Water Formation

    NASA Astrophysics Data System (ADS)

    Hillaire-Marcel, C.; de Vernal, A.

    A multi-proxy approach was developed to document secular to millenial changes of potential density in surface, mesopelagic, and bottom waters of the Labrador Sea, thus allowing to reconstruct situations when winter convection with intermediate or deep water formation occurred in the basin. This approach relies on dinocyst-transfer functions providing estimates of sea-surface temperature and salinity that are used to calibrate past-relationships between oxygen 18 contents in calcite and potential density gradients. The oxygen isotope compositions of epipelagic (Globigerina bul- loides), deeper-dwelling (Neogloboquadrina pachyderma, left coiling), and benthic (Uvigerina peregrina and Cibicides wuellerstorfi) foraminifera, then allow to extrap- olate density gradients between the corresponding water layers. This approach has been tested in surface sediments in reference to modern hydrographic conditions at several sites from the NW North Atlantic, then used to reconstruct past conditions from high resolution studies of cores raised from the southern Greenland Rise (off Cape Farewell). Results indicate that the modern-like regime established during the early Holocene and full developed after 7 ka only. It is marked by weak density gradi- ents between the surface and intermediate water masses, allowing winter convection down to a lower pycnocline between intermediate and deep-water masses, thus the formation of intermediate Labrador Sea Water (LSW). Contrasting with the middle to late Holocene situation, since the last interglacial and throughout the last climatic cycle, a single and dense water mass seems to have occupied the water column below a generally low-density surface water layer, thus preventing deep convection. There- fore, the production of LSW seems to be feature specific to the present interglacial interval that could soon cease to exist, due to global warming, as suggested by recent ocean model experiments and by the fact that it never occurred during the last inter- glacial. We think that the mechanism for the eventual shut-down in LSW formation involves an enhanced freshwater export from the Arctic into the Labrador Sea, as a consequence of both an enhanced hydrological cycle in a warmer mean climate, and a lesser sea-ice extend in the Canadian Arctic Archipelago. Both the last interglacial and the Holocene depict large amplitude millenial oscillations in surface water conditions and in density gradients with the underlying water mass. During the last 11 ka, six 1 of these oscillations are recorded, and those that occurred since ca. 7 ka BP probably resulted in large amplitude changes in LSW-production rate. These oscillations pos- sibly correspond to the Holocene "pervasive millennial cycle" observed by Bond and others in a few North Atlantic records. We hypothesize that they are related to sea ice conditions in the Arctic Ocean and to the relative routing of outflowing freshwaters through either the Canadian Arctic Archipelago or Fram Strait, into the North Atlantic. These oscillations would probably maintain after an eventual collapse of LSW forma- tion, as suggested by the last interglacial reconstructions, but their impact on future thermohaline circulation in the North Atlantic is unclear. 2

  11. Tracer signals of the intermediate layer of the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Rhein, Monika; Stramma, Lothar; Plähn, Olaf

    In 1995, hydrographic and chlorofluorocarbon (CFCs, components F11, F12) measurements were carried out in the Gulf of Aden, in the Gulf of Oman, and in the Arabian Sea. In the Gulf of Oman, the F12 concentrations in the Persian Gulf outflow (PGW) at about 300m depth were significantly higher than in ambient surface water with saturations reaching 270%. These high values could not be caused by air-sea gas exchange. The outflow was probably contaminated with oil, and the lipophilic character of the CFCs could then lead to the observed supersaturations. The intermediate F12 maximum decreased rapidly further east and south. At the Strait of Bab el Mandeb in the Gulf of Aden, the Red Sea outflow (RSW) was saturated with F12 to about 65% at 400m depth, and decreased to 50% while descending to 800m depth. The low saturation is not surprising, because the outflow contains deep and intermediate water masses from the Red Sea which were isolated from the surface for some time. The tracer contributions to the Arabian Sea for Indian Central Water (ICW) and PGW are about equal, while below 500m depth the RSW contribution greatly exceeds ICW. Modeling the CFC budget of the Arabian Sea, the inflow of ICW north of 12°N is estimated to be 1-6 Sv, depending mainly on the strength of the flow of Red Sea Water into the Arabian Sea.

  12. Internal Waves, Western Indian Ocean

    NASA Image and Video Library

    1991-12-01

    STS044-79-077 (24 Nov.-1 Dec. 1991) --- This photograph, captured from the Earth-orbiting Space Shuttle Atlantis, shows sunglint pattern in the western tropical Indian Ocean. Several large internal waves reflect around a shallow area on the sea floor. NASA scientists studying the STS-44 photography believe the shallow area to be a sediment (a submerged mountain) on top of the Mascarene Plateau, located northeast of Madagascar at approximately 5.6 degrees south latitude and 55.7 degrees east longitude. Internal waves are similar to surface ocean waves, except that they travel inside the water column along the boundary between water layers of different density. At the surface, their passage is marked on the sea surface by bands of smooth and rough water. These bands appear in the sunglint pattern as areas of brighter or darker water. NASA scientists point out that, when the waves encounter an obstacle, such as a near-surface seamount, they bend or refract around the obstacle in the same manner as surface waves bend around an island or headland.

  13. Why is there net surface heating over the Antarctic Circumpolar Current?

    NASA Astrophysics Data System (ADS)

    Czaja, Arnaud; Marshall, John

    2015-05-01

    Using a combination of atmospheric reanalysis data, climate model outputs and a simple model, key mechanisms controlling net surface heating over the Southern Ocean are identified. All data sources used suggest that, in a streamline-averaged view, net surface heating over the Antarctic Circumpolar Current (ACC) is a result of net accumulation of solar radiation rather than a result of heat gain through turbulent fluxes (the latter systematically cool the upper ocean). It is proposed that the fraction of this net radiative heat gain realized as net ACC heating is set by two factors. First, the sea surface temperature at the southern edge of the ACC. Second, the relative strength of the negative heatflux feedbacks associated with evaporation at the sea surface and advection of heat by the residual flow in the oceanic mixed layer. A large advective feedback and a weak evaporative feedback maximize net ACC heating. It is shown that the present Southern Ocean and its circumpolar current are in this heating regime.

  14. Flux of low salinity water from Aniva Bay (Sakhalin Island) to the southern Okhotsk Sea

    NASA Astrophysics Data System (ADS)

    Oguma, Sachiko; Ono, Tsuneo; Watanabe, Yutaka W.; Kasai, Hiromi; Watanabe, Shuichi; Nomura, Daiki; Mitsudera, Humio

    2011-01-01

    In this study, we examined the relationship between the low salinity water in the shelf region of the southern Okhotsk Sea which was seasonally sampled (0-200 m), and fluxes of low salinity water from Aniva Bay. To express the source of freshwater mixing in the surface layer, we applied normalized total alkalinity (NTA) and stable isotopes of seawater as chemical tracers. NTA-S diagrams indicate that NTA of low salinity water in the upper 30 m layer just off the Soya Warm Current is clearly higher than in the far offshore region in summer and autumn. Using NTA-S regression lines, we could deduce that the low salinity and high NTA water in the upper layer originates from Aniva Bay. For convenience, we defined this water as the Aniva Surface Water (ASW) with values S < 32, NTA > 2450 μmol kg -1. Formation and transport processes of ASW are discussed using historical data. The interaction between the maximum core of high NTA water on the bottom slope of eastern Aniva Bay and an anticyclonic eddy at the mouth of Aniva Bay are concluded to control ASW formation. Upwelling of the Cold Water Belt water at the tip of Cape Krillion is considered to cause ASW outflow from Aniva Bay.

  15. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean.

    PubMed

    Heimbürger, Lars-Eric; Sonke, Jeroen E; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-05-20

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79 °N). Here we present the first central Arctic Ocean (79-90 °N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81-85 °N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150-200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production.

  16. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean

    PubMed Central

    Heimbürger, Lars-Eric; Sonke, Jeroen E.; Cossa, Daniel; Point, David; Lagane, Christelle; Laffont, Laure; Galfond, Benjamin T.; Nicolaus, Marcel; Rabe, Benjamin; van der Loeff, Michiel Rutgers

    2015-01-01

    Methylmercury (MeHg) is a neurotoxic compound that threatens wildlife and human health across the Arctic region. Though much is known about the source and dynamics of its inorganic mercury (Hg) precursor, the exact origin of the high MeHg concentrations in Arctic biota remains uncertain. Arctic coastal sediments, coastal marine waters and surface snow are known sites for MeHg production. Observations on marine Hg dynamics, however, have been restricted to the Canadian Archipelago and the Beaufort Sea (<79°N). Here we present the first central Arctic Ocean (79–90°N) profiles for total mercury (tHg) and MeHg. We find elevated tHg and MeHg concentrations in the marginal sea ice zone (81–85°N). Similar to other open ocean basins, Arctic MeHg concentration maxima also occur in the pycnocline waters, but at much shallower depths (150–200 m). The shallow MeHg maxima just below the productive surface layer possibly result in enhanced biological uptake at the base of the Arctic marine food web and may explain the elevated MeHg concentrations in Arctic biota. We suggest that Arctic warming, through thinning sea ice, extension of the seasonal sea ice zone, intensified surface ocean stratification and shifts in plankton ecodynamics, will likely lead to higher marine MeHg production. PMID:25993348

  17. A Campaign Study of Sea Spray Aerosol Properties in the Bay of Aarhus

    NASA Astrophysics Data System (ADS)

    Nguyen, Quynh; Rasmussen, Berit; Kristensen, Kasper; Sloth Nielsen, Lærke; Bilde, Merete

    2016-04-01

    The oceans of the world are a dominant source of atmospheric aerosol. Together with mineral dust, sea spray aerosols (SSA) constitute the largest mass flux of particulate matter in the atmosphere (Andreae and Rosenfeld, 2008). Due to their effects on the global radiative budget - both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN), SSA are considered an important component of the climate system. The sea-surface microlayer (SML) is an ultra-thin boundary layer between the ocean and the atmosphere. The high concentration of surface-active organic compounds in the SML, compared to that of the underlying water column, creates rigid film-like layer over the surface of the ocean. The SML is believed to play an important role in the formation and composition of SSA. However, current knowledge on the SML and its impacts on SSA remain limited. To characterize the SML of natural seawater and examine its impacts on aerosol properties, a field campaign was conducted in the bay of Aarhus, Denmark, during spring 2015. Bulk seawater was collected 1-2 times every week along with selective sampling of the SML. Characterization of the sea water and SML included a wide range of measurements, including surface tension, water activity, dissolved organic matter, and chemical composition analysis by liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS). SSA was generated from sampled sea water by diffusion of air bubbles through a 10L seawater sample situated in a sea spray tank. Particle number concentration and CCN measurements were conducted along with measurements of the organic share in the aerosol phase as indicated by volatility measurements. To investigate the effect of the SML, spiking of the seawater samples with additional SML was performed and measurements repeated for comparison. Preliminary results show that the SML samples only displayed slightly lower surface tension compared to subsurface seawater. A number of overlapping masses were observed in dissolved organic matter extracted from SML and slick samples, which requires further identification. Spiking bulk seawater with SML seems to lead to a small increase in organic share in the aerosol phase as indicated by volatility measurements, while the trend is unclear in CCN measurements. Andreae, M. O., and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci Rev, 89, 13-41, 2008.

  18. Occurrence of Quaternary turbidite deposits in the central South China Sea: Response to global sea-level changes

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Zhang, X.; Christophe, C.; Peleo-Alampay, A.; Guballa, J. D. S.; Li, P.; Liu, C.

    2016-12-01

    Terrigenous turbidite layers frequently occur at the upper 150-m-thick sedimentary sequence of Hole U1431D (15º22.54'N, 117 º00.00'E, 4240.5 m water depth), International Ocean Discovery Program (IODP) Expedition 349, near the relict spreading ridge in the central South China Sea. This study implies visual statistics combined with grain size, clay mineralogy, and Nd-Sr isotope analyses to reconstruct the occurrence of these turbidite layers. The age-model of combined calcareous nannofossils, planktonic foraminifers, and paleomagnetism suggests that the sedimentary sequence spans the entire Quaternary with an age of 2.6 Ma at the depth of 150 mcd below the seafloor. Our results show that the turbidite deposits are dominated by silt with sandy silt and silty clay, poorly sorted, and grading upward with erosion base. The occurrence of turbidite layers are highly frequent with about 3.06 layers per meter and an average thickness of 14.64 cm per layer above 96 mcd ( 1.6 Ma), while the lower part turbudite layers are less frequently developed with 1.16 layers per meter and an average thickness of 5.67 cm. Provenance analysis indicates that Taiwan, about 900 km northward to the studied site, is the major source for these terrigenous sediments, implying the long run-out turbidity current activity over the very low-gradient deep-sea plain of the South China Sea. The frequency of the turbidite layer occurrence is well correlated to the Quaternary global sea-level change history, with the high frequency occurred during the lower sea-level stands. Our study suggests that the glacial-interglacial-scale sea-level change has controlled terrigenous sediment input from Taiwan and the northern shelf of the South China Sea during the Quaternary. The increase of turbidite layer frequency since 1.6 Ma in the central South China Sea could be triggered by the enlarged amplitude of sea-level change.

  19. Controlled meteorological (CMET) balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to a mesoscale model

    NASA Astrophysics Data System (ADS)

    Roberts, T. J.; Dütsch, M.; Hole, L. R.; Voss, P. B.

    2015-10-01

    Observations from CMET (Controlled Meteorological) balloons are analyzed in combination with mesoscale model simulations to provide insights into tropospheric meteorological conditions (temperature, humidity, wind-speed) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard over 5-12 May 2011, and measured vertical atmospheric profiles above Spitsbergen Island and over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer over a period of more than 10 h. The CMET profiles are compared to simulations using the Weather Research and Forecasting (WRF) model using nested grids and three different boundary layer schemes. Variability between the three model schemes was typically smaller than the discrepancies between the model runs and the observations. Over Spitsbergen, the CMET flights identified temperature inversions and low-level jets (LLJ) that were not captured by the model. Nevertheless, the model largely reproduced time-series obtained from the Ny-Ålesund meteorological station, with exception of surface winds during the LLJ. Over sea-ice east of Svalbard the model underestimated potential temperature and overestimated wind-speed compared to the CMET observations. This is most likely due to the full sea-ice coverage assumed by the model, and consequent underestimation of ocean-atmosphere exchange in the presence of leads or fractional coverage. The suite of continuous CMET soundings over a sea-ice free region to the northwest of Svalbard are analysed spatially and temporally, and compared to the model. The observed along-flight daytime increase in relative humidity is interpreted in terms of the diurnal cycle, and in the context of marine and terrestrial air-mass influences. Analysis of the balloon trajectory during the CMET soundings identifies strong wind-shear, with a low-level channeled flow. The study highlights the challenges of modelling the Arctic atmosphere, especially in coastal zones with varying topography, sea-ice and surface conditions. In this context, CMET balloons provide a valuable technology for profiling the free atmosphere and boundary layer in remote regions where few other observations are available for model validation.

  20. Heat Content and Ice Draft Variability over the Slope of the Chukchi Sea from 2016-2017 Ocean Moorings

    NASA Astrophysics Data System (ADS)

    Muenchow, A.; Ryan, P. A.; Badiey, M.; Elmer, C.; Eickmeier, J.

    2017-12-01

    The shallow-water component of the Canada Basin Acoustic Propagation Experiment (CANAPE) will quantify how ocean properties vary at daily to seasonal time scales over the outer continental shelf of the Chukchi Sea. We here describe initial results related to a weak sound channel above warm Atlantic and below seasonally modulated surface waters. It coincides with the cold halocline layer that often slopes up- or downward at the edge of the continental shelf in response to surface forcing. Sloping topography supports isopycnal oscillations whose time scales vary from hours to months. These Kelvin or Rossby waves will become more pronounced in a increasingly dynamic, wind-forced Arctic Ocean with a diminished, thinner, and more mobile ice cover.

  1. Assessment of microphysical and chemical factors of aerosols over seas of the Russian Artic Eastern Section

    NASA Astrophysics Data System (ADS)

    Golobokova, Liudmila; Polkin, Victor

    2014-05-01

    The newly observed kickoff of the Northern Route development drew serious attention to state of the Arctic Resource environment. Occurring climatic and environmental changes are more sensitively seen in polar areas in particular. Air environment control allows for making prognostic assessments which are required for planning hazardous environmental impacts preventive actions. In August - September 2013, RV «Professor Khlustin» Northern Sea Route expeditionary voyage took place. En-route aerosol sampling was done over the surface of the Beringov, Chukotka and Eastern-Siberia seas (till the town of Pevek). The purpose of sampling was to assess spatio-temporal variability of optic, microphysical and chemical characteristics of aerosol particles of the surface layer within different areas adjacent to the Northern Sea Route. Aerosol test made use of automated mobile unit consisting of photoelectric particles counter AZ-10, aetalometr MDA-02, aspirator on NBM-1.2 pump chassis, and the impactor. This set of equipment allows for doing measurements of number concentration, dispersed composition of aerosols within sizes d=0.3-10 mkm, mass concentration of submicron sized aerosol, and filter-conveyed aerosols sampling. Filter-conveyed aerosols sampling was done using method accepted by EMEP and EANET monitoring networks. The impactor channel was upgraded to separate particles bigger than 1 mkm in size, and the fine grain fraction settled down on it. Reverse 5-day and 10-day trajectories of air mass transfer executed at heights of 10, 1500 and 3500 m were analyzed. The heights were selected by considerations that 3000 m is the height which characterizes air mass trend in the lower troposphere. 1500 m is the upper border of the atmospheric boundary layer, and the sampling was done in the Earth's surface layer at less than 10 m. Minimum values of the bespoken microphysical characteristics are better characteristic of higher latitudes where there are no man induced sources of aerosols while the natural ones are of lower severity due to low temperatures endemic for the Arctic Ocean areas. For doing the assessment of the air mass components chemical formulation samples of water soluble fraction of the atmospheric aerosol underwent chemical analysis. Sum of main ions within the aerosol composition varied from 0.23 to 16.2 mkg/m3. Minimum ion concentrations are defined in the aerosol sampled over the Chukotka sea surface at still. Chemical composition of the Beringov and Chukotka sea aerosol was dominated by impurities of sea origin coming from the ocean with air mass. Ion sum increased concentrations were observed in the Pevek area (Eastern Siberia Sea). Aerosol chemical composition building was impacted by air mass coming from the shore. Maximum concentrations of the bespoken components are seen in the aerosol sampled during stormy weather. Increase of wind made it for raising into the air of the sea origin particles. Ingestion of sprays onto the filter was eliminated by covering the sample catcher with a special protective hood. This completed survey is indicative of favourable state of atmosphere in the arctic resource of the Russian Arctic Eastern Section during Summer-Autumn season of 2013. The job is done under financial support of project. 23 Programs of fundamental research of the RAS Presidium, Partnership Integration Project, SB RAS. 25.

  2. Comparison of Two Global Ocean Reanalyses, NRL Global Ocean Forecast System (GOFS) and U. Maryland Simple Ocean Data Assimilation (SODA)

    NASA Astrophysics Data System (ADS)

    Richman, J. G.; Shriver, J. F.; Metzger, E. J.; Hogan, P. J.; Smedstad, O. M.

    2017-12-01

    The Oceanography Division of the Naval Research Laboratory recently completed a 23-year (1993-2015) coupled ocean-sea ice reanalysis forced by NCEP CFS reanalysis fluxes. The reanalysis uses the Global Ocean Forecast System (GOFS) framework of the HYbrid Coordinate Ocean Model (HYCOM) and the Los Alamos Community Ice CodE (CICE) and the Navy Coupled Ocean Data Assimilation 3D Var system (NCODA). The ocean model has 41 layers and an equatorial resolution of 0.08° (8.8 km) on a tri-polar grid with the sea ice model on the same grid that reduces to 3.5 km at the North Pole. Sea surface temperature (SST), sea surface height (SSH) and temperature-salinity profile data are assimilated into the ocean every day. The SSH anomalies are converted into synthetic profiles of temperature and salinity prior to assimilation. Incremental analysis updating of geostrophically balanced increments is performed over a 6-hour insertion window. Sea ice concentration is assimilated into the sea ice model every day. Following the lead of the Ocean Reanalysis Intercomparison Project (ORA-IP), the monthly mean upper ocean heat and salt content from the surface to 300 m, 700m and 1500 m, the mixed layer depth, the depth of the 20°C isotherm, the steric sea surface height and the Atlantic Meridional Overturning Circulation for the GOFS reanalysis and the Simple Ocean Data Assimilation (SODA 3.3.1) eddy-permitting reanalysis have been compared on a global uniform 0.5° grid. The differences between the two ocean reanalyses in heat and salt content increase with increasing integration depth. Globally, GOFS trends to be colder than SODA at all depth. Warming trends are observed at all depths over the 23 year period. The correlation of the upper ocean heat content is significant above 700 m. Prior to 2004, differences in the data assimilated lead to larger biases. The GOFS reanalysis assimilates SSH as profile data, while SODA doesn't. Large differences are found in the Western Boundary Currents, Southern Ocean and equatorial regions. In the Indian Ocean, the Equatorial Counter Current extends to far to the east and the subsurface flow in the thermocline is too weak in GOFS. The 20°C isotherm is biased 2 m shallow in SODA compared to GOFS, but the monthly anomalies in the depth are highly correlated.

  3. Winter and summer monsoon water mass, heat and freshwater transport changes in the Arabian Sea near 8°N

    NASA Astrophysics Data System (ADS)

    Stramma, Lothar; Brandt, Peter; Schott, Friedrich; Quadfasel, Detlef; Fischer, Jürgen

    The differences in the water mass distributions and transports in the Arabian Sea between the summer monsoon of August 1993 and the winter monsoon of January 1998 are investigated, based on two hydrographic sections along approximately 8°N. At the western end the sections were closed by a northward leg towards the African continent at about 55°E. In the central basin along 8°N the monsoon anomalies of the temperature and density below the surface-mixed layer were dominated by annual Rossby waves propagating westward across the Arabian Sea. In the northwestern part of the basin the annual Rossby waves have much smaller impact, and the density anomalies observed there were mostly associated with the Socotra Gyre. Salinity and oxygen differences along the section reflect local processes such as the spreading of water masses originating in the Bay of Bengal, northward transport of Indian Central Water, or slightly stronger southward spreading of Red Sea Water in August than in January. The anomalous wind conditions of 1997/98 influenced only the upper 50-100 m with warmer surface waters in January 1998, and Bay of Bengal Water covered the surface layer of the section in the eastern Arabian Sea. Estimates of the overturning circulation of the Arabian Sea were carried out despite the fact that many uncertainties are involved. For both cruises a vertical overturning cell of about 4-6 Sv was determined, with inflow below 2500 m and outflow between about 300 and 2500 m. In the upper 300-450 m a seasonally reversing shallow meridional overturning cell appears to exist in which the Ekman transport is balanced by a geostrophic transport. The heat flux across 8°N is dominated by the Ekman transport, yielding about -0.6 PW for August 1993, and 0.24 PW for January 1998. These values are comparable to climatological and model derived heat flux estimates. Freshwater fluxes across 8°N also were computed, yielding northward freshwater fluxes of 0.07 Sv in January 1998 and 0.43 Sv in August 1993. From climatological salinities the stronger freshwater flux in August was found to be caused by the seasonal change of salinity storage in the Arabian Sea north of 8°N. The near-surface circulation follows complex pathways, with generally cyclonic-circulation in January 1998 affected at the eastern side by the Laccadive High, and anticyclonic circulation in August 1993.

  4. Field assessment of optical transparency in the low-level marine boundary layer: preliminary data from coastal New England sites

    NASA Astrophysics Data System (ADS)

    Vandemark, Douglas; Feng, Hui; Greenslade, Margaret E.

    2016-05-01

    Estimating the variation in the spectral transmission and scattering of optical and near-IR radiation near the sea surface under a range of conditions should be feasible using historical data collected off the coast of New Hampshire USA and along the coastline in the Gulf of Maine. Presented here are long-term offshore aerosol optical depth measurements collected using an AERONET sun photometer from 2007-2011 and near-surface wind and (3 m) horizontal visibility measurements collected using surface meteorological buoys from 2001-present. Future analysis of these data can address their correlation with near-surface meteorological and sea state conditions and to exploit an intensive but limited subset of historical aerosol particle measurements collected here both during a large research ship surveys (ICARTT) as well as with a dedicated aerosol measurement station in summer 2005. Refractive index variation and relevant altitude-dependent differences in meteorological scalars are also investigated using unique offshore long-term measurements at 3 and 32 m above sea level. Overall project results should provide new information for assessment against several existing models for aerosol extinction in marine environments.

  5. Estimating ocean-air heat fluxes during cold air outbreaks by satellite

    NASA Technical Reports Server (NTRS)

    Chou, S. H.; Atlas, D.

    1981-01-01

    Nomograms of mean column heating due to surface sensible and latent heat fluxes were developed. Mean sensible heating of the cloud free region is related to the cloud free path (CFP, the distance from the shore to the first cloud formation) and the difference between land air and sea surface temperatures, theta sub 1 and theta sub 0, respectively. Mean latent heating is related to the CFP and the difference between land air and sea surface humidities q sub 1 and q sub 0 respectively. Results are also applicable to any path within the cloud free region. Corresponding heat fluxes may be obtained by multiplying the mean heating by the mean wind speed in the boundary layer. The sensible heating estimated by the present method is found to be in good agreement with that computed from the bulk transfer formula. The sensitivity of the solutions to the variations in the initial coastal soundings and large scale subsidence is also investigated. The results are not sensitive to divergence but are affected by the initial lapse rate of potential temperature; the greater the stability, the smaller the heating, other things being equal. Unless one knows the lapse rate at the shore, this requires another independent measurement. For this purpose the downwind slope of the square of the boundary layer height is used, the mean value of which is also directly proportional to the mean sensible heating. The height of the boundary layer should be measurable by future spaceborn lidar systems.

  6. Mesoscale and high-frequency variability of macroscopic particles (> 100 μm) in the Ross Sea and its relevance for late-season particulate carbon export

    NASA Astrophysics Data System (ADS)

    Bochdansky, Alexander B.; Clouse, Melissa A.; Hansell, Dennis A.

    2017-02-01

    The Ross Sea plays a major role in the transfer of organic carbon from the surface into the deep sea due to the combination of high seasonal productivity and Antarctic bottom water formation. Here we present a particle inventory of the Ross Sea based on a combined deployment of a video particle profiler (VPP) and a high-resolution digital holographic microscope (DIHM). Long-distance (100 s of kilometers) and short-distance (10 s of kilometers) sections showed high variability of particle distributions that co-varied with the density structure of the water column. Particle export was apparent at sites of locally weakened pycnoclines, likely an indirect effect of nutrient mixing into the surface layer and local blooms that lead to export. Particle volume abundances at 200-300 m depth were highly correlated with particle volume abundances in the upper mixed layer (< 60 m), consistent with particles at depth primarily the result of export rather than lateral advection. Phaeocystis antarctica (Haptophyta) colonies that were initially retained in the mixed layer sank below the euphotic zone within a period of two weeks. Fine-scale analysis at a resolution < 1 m revealed a significantly overdispersed (i.e., highly patchy) environment in all casts. Patchiness, as determined by the Lloyd index of patchiness and the Index of Aggregation, increased in and below the pycnocline presumably due to aggregation of particles while accumulating on density gradients. In contrast, particles in the upper mixed layer and in the nepheloid layers were more randomly distributed. In 40 of the 84 VPP depth profiles, a periodicity of particle peaks ranged from 10 to 90 m with a mode of 30 m, which can be regarded as the "relevant scale" or "characteristic patch size" of the vertical distribution of particles. While chlorophyll fluorescence and particle mass determined by VPP were significantly correlated at higher particle abundances, the relationship changed from cast to cast, reflecting changes in the relative contribution of fresh phytoplankton to total particle mass. Particles that sank below the main pycnocline were composed of phytoplankton, marine snow with and without embedded phytoplankton, crustacean plankton, and a surprisingly high percentage of heterotrophic (and perhaps mixotrophic) protists, such as acantharians and tintinnids.

  7. Autonomous Sensing of Layered Structures in Hawaiian Waters

    DTIC Science & Technology

    2008-01-01

    layers in the sea. APPROACH In March of 2007 we were awarded $112,842 for the fabrication of an autonomous profiler (the SeaHorse ) for the...detection of thin layers of phytoplankton in the coastal ocean. The SeaHorse (Figures 1, 2) makes use of wave energy to power extended, high-resolution...to adaptively change the sample rate of the SeaHorse profiler itself. For example, if we observe a layer at 10 m depth, we can instruct the profiler

  8. Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin.

    PubMed

    Macao, Bertil; Johansson, Denny G A; Hansson, Gunnar C; Härd, Torleif

    2006-01-01

    The single cell layer of the lungs and the gastrointestinal tract is protected by the mucus formed by large glycoproteins called mucins. Transmembrane mucins typically contain 110-residue SEA domains located next to the membrane. These domains undergo post-translational cleavage between glycine and serine in a characteristic GSVVV sequence, but the two peptides remain tightly associated. We show that the SEA domain of the human MUC1 transmembrane mucin undergoes a novel type of autoproteolysis, which is catalyzed by conformational stress and the conserved serine hydroxyl. We propose that self-cleaving SEA domains have evolved to dissociate as a result of mechanical rather than chemical stress at the apical cell membrane and that this protects epithelial cells from rupture. We further suggest that the cell can register mechanical shear at the mucosal surface if the dissociation is signaled via loss of a SEA-binding protein.

  9. Sea ice ecosystems.

    PubMed

    Arrigo, Kevin R

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  10. A heat budget for the Stratus mooring in the southeast Pacific

    NASA Astrophysics Data System (ADS)

    Holte, J.; Straneo, F.; Weller, R. A.; Farrar, J. T.

    2012-12-01

    The surface layer of the southeast Pacific Ocean (SEP) requires an input of fresh, cold water to balance evaporation and heat gain from incoming solar radiation. Numerous processes contribute to closing the SEP's upper-ocean heat budget, including gyre circulation, Ekman transport and pumping, vertical mixing, and horizontal eddy heat flux divergence. However, there is little consensus on which processes are most important, as many modeling and observational studies have reported conflicting results. To examine how the SEP maintains relatively cool surface temperatures despite such strong surface forcing, we calculate a heat budget for the upper 250 m of the Stratus mooring. The Stratus mooring, deployed at 85(^o)W 20(^o)S since 2000, is in the center of the stratus cloud region. The surface buoy measures meteorological conditions and air-sea fluxes; the mooring line is heavily instrumented, measuring temperature, salinity, and velocity at approximately 15 to 20 depth levels. Our heat budget covers 2004 - 2010. The net air-sea heat flux over this period is 32 W m(^{-2}), approximately 2/3 of the flux over earlier periods. We use Argo profiles, relatively abundant in the region since 2004, to calculate horizontal temperature gradients. These gradients, coupled with the mooring velocity record, are used to estimate the advective heat flux. We find that the cool advective heat flux largely compensates the air-sea heat flux at the mooring; in our calculation this term includes the mean gyre circulation, horizontal Ekman transport, and some contribution from eddies. The passage of numerous eddies is evident in the mooring velocity record, but with the available data we cannot separate the eddy heat flux divergence from the mean heat advection. Vertical mixing and Ekman pumping across the base of the layer are both small.

  11. Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal.

    PubMed

    Jyothibabu, R; Karnan, C; Jagadeesan, L; Arunpandi, N; Pandiarajan, R S; Muraleedharan, K R; Balachandran, K K

    2017-08-15

    Trichodesmium is a bloom-forming, diazotrophic, non-heterocystous cyanobacteria widely distributed in the warmer oceans, and their bloom is considered a 'biological indication' of stratification and nitrogen limitation in the ocean surface layer. In the first part of this paper, based on the retrospective analyses of the ocean surface mesoscale features associated with 59 Trichodesmium bloom incidences recorded in the past, 32 from the Arabian Sea and the Bay of Bengal, and 27 from the rest of the world, we have showed that warm-core features have an inducing effect on bloom formation. In the second part, we have considered the environmental preferences of Trichodesmium bloom based on laboratory and field studies across the globe, and proposed a view about how warm-core features could provide an inducing pre-requisite condition for the bloom formation in the Arabian Sea and the Bay of Bengal. Proposed that the subsurface waters of warm-core features maintain more likely chances for the conducive nutrient and light conditions required for the triggering of the blooms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Saharan Dust Deposition May Affect Phytoplankton Growth in the Mediterranean Sea at Ecological Time Scales

    PubMed Central

    Gallisai, Rachele; Peters, Francesc; Volpe, Gianluca; Basart, Sara; Baldasano, José Maria

    2014-01-01

    The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layer. PMID:25333783

  13. An observation of sea-spray microphysics by airborne Doppler radar

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Pezoa, S.; Moran, K.; Wolfe, D.

    2014-05-01

    This paper describes observations and analysis of Doppler radar data from a down-looking 94 GHz (W-Band) system operated from a NOAA WP-3 Orion research aircraft in Tropical Storm (TS) Karen. The flight took place on 5 October 2013; Karen had weakened with maximum winds around 20 m s-1. Doppler spectral moments from the radar were processed to retrieve sea-spray microphysical properties (drop size and liquid water mass concentration) profiles in the height range 75-300 m above the sea surface. In the high wind speed regions of TS Karen (U10 > 15 m s-1), sea spray was observed with a nominal mass-mode radius of about 40 µm, a radar-weighted gravitational fall velocity of about 1 m s-1, and a mass concentration of about 10-3 gm-3 at 75 m. Spray-drop mass concentration declined with height to values of about 10-4 gm-3 at 300 m. Drop mass decreased slightly more slowly with increasing height than predicted by surface-layer similarity theory for a balance of turbulent diffusion vs fall velocity.

  14. Sea surface temperature anomalies driven by oceanic local forcing in the Brazil-Malvinas Confluence

    NASA Astrophysics Data System (ADS)

    da Silveira, Isabel Porto; Pezzi, Luciano Ponzi

    2014-03-01

    Sea surface temperature (SST) anomaly events in the Brazil-Malvinas Confluence (BMC) were investigated through wavelet analysis and numerical modeling. Wavelet analysis was applied to recognize the main spectral signals of SST anomaly events in the BMC and in the Drake Passage as a first attempt to link middle and high latitudes. The numerical modeling approach was used to clarify the local oceanic dynamics that drive these anomalies. Wavelet analysis pointed to the 8-12-year band as the most energetic band representing remote forcing between high to middle latitudes. Other frequencies observed in the BMC wavelet analysis indicate that part of its variability could also be forced by low-latitude events, such as El Niño. Numerical experiments carried out for the years of 1964 and 1992 (cold and warm El Niño-Southern Oscillation (ENSO) phases) revealed two distinct behaviors that produced negative and positive sea surface temperature anomalies on the BMC region. The first behavior is caused by northward cold flow, Río de la Plata runoff, and upwelling processes. The second behavior is driven by a southward excursion of the Brazil Current (BC) front, alterations in Río de la Plata discharge rates, and most likely by air-sea interactions. Both episodes are characterized by uncoupled behavior between the surface and deeper layers.

  15. Cloud Response to Arctic Sea Ice Loss and Implications for Feedbacks in the CESM1 Climate Model

    NASA Astrophysics Data System (ADS)

    Morrison, A.; Kay, J. E.; Chepfer, H.; Guzman, R.; Bonazzola, M.

    2017-12-01

    Clouds have the potential to accelerate or slow the rate of Arctic sea ice loss through their radiative influence on the surface. Cloud feedbacks can therefore play into Arctic warming as clouds respond to changes in sea ice cover. As the Arctic moves toward an ice-free state, understanding how cloud - sea ice relationships change in response to sea ice loss is critical for predicting the future climate trajectory. From satellite observations we know the effect of present-day sea ice cover on clouds, but how will clouds respond to sea ice loss as the Arctic transitions to a seasonally open water state? In this study we use a lidar simulator to first evaluate cloud - sea ice relationships in the Community Earth System Model (CESM1) against present-day observations (2006-2015). In the current climate, the cloud response to sea ice is well-represented in CESM1: we see no summer cloud response to changes in sea ice cover, but more fall clouds over open water than over sea ice. Since CESM1 is credible for the current Arctic climate, we next assess if our process-based understanding of Arctic cloud feedbacks related to sea ice loss is relevant for understanding future Arctic clouds. In the future Arctic, summer cloud structure continues to be insensitive to surface conditions. As the Arctic warms in the fall, however, the boundary layer deepens and cloud fraction increases over open ocean during each consecutive decade from 2020 - 2100. This study will also explore seasonal changes in cloud properties such as opacity and liquid water path. Results thus far suggest that a positive fall cloud - sea ice feedback exists in the present-day and future Arctic climate.

  16. Dissolved DMSO production via biological and photochemical oxidation of dissolved DMS in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    del Valle, Daniela A.; Kieber, David J.; Toole, Dierdre A.; Bisgrove, John; Kiene, Ronald P.

    2009-02-01

    Dimethylsulfoxide (DMSO) is an important degradation product of the climate-influencing gas dimethylsulfide (DMS). In the Ross Sea, Antarctica, dissolved DMSO (DMSOd) concentrations exhibited substantial seasonal and vertical variations. Surface water DMSOd concentrations in pre-bloom waters were very low (<1 nM) but increased rapidly up to 41 nM during the spring Phaeocystis antarctica bloom (late November). Increases in DMSOd concentrations lagged by several days increases in DMS concentrations. Although DMSOd concentrations reached relatively high levels during the spring bloom, concentrations were generally higher (36.3-60.6 nM) during summer (January), even though phytoplankton biomass and DMS concentrations had decreased by that time. During both seasons, DMSOd concentrations were substantially higher within the surface mixed layer than below it. DMSOd production from biological DMS consumption (BDMSC) was higher during late November (3.4-5.2 nM d -1) than during the summer (0.7-2.4 nM d -1); therefore, production via BDMSC alone could not explain the higher DMSOd concentrations encountered during the summer. Mixed layer-integrated DMSOd production from BDMSC was 2.5-13.7 times greater than production from dissolved DMS photolysis during the P. antarctica bloom, while photolysis contributed 1.3 times more DMSO than BDMSC before the bloom. The DMSO yield from BDMSC was consistently higher within the upper mixed layer than at depths below. Experimental incubations with water from the mixed layer showed that exposure to full spectrum sunlight for 72 h caused an increase in the DMSO yield whereas exposure to only photosynthetically active radiation did not. This suggests that ultraviolet radiation is a potential factor shifting the fate of biologically consumed DMS toward DMSO. In general, the highest DMSO yields from BDMSC were in samples with slow biological DMS turnover, whereas fast turnover favored sulfate rather than DMSO as a major end-product. This study provides the first detailed information about DMSOd distribution and production in the Ross Sea and points to DMSOd as an important biological and photochemical degradation product of DMS and a major reservoir of methylated sulfur in these polar surface waters.

  17. Upper ocean response to the passage of two sequential typhoons

    NASA Astrophysics Data System (ADS)

    Wu, Renhao; Li, Chunyan

    2018-02-01

    Two sequential typhoons, separated by five days, Chan-hom and Nangka in the summer of 2015, provided a unique opportunity to study the oceanic response and cold wake evolution. The upper ocean response to the passage of these two typhoons was investigated using multi-satellite, Argo float data and HYCOM global model output. The sea surface cooling (SSC) induced by Chan-hom was gradually enhanced along its track when the storm was intensified while moving over the ocean with shallow mixed layer. The location of maximum cooling of sea surface was determined by the storm's translation speed as well as pre-typhoon oceanic conditions. As a fast-moving storm, Chan-hom induced significant SSC on the right side of its track. Localized maximum cooling patches are found over a cyclonic eddy (CE). An analysis of data from Argo floats near the track of Chan-hom demonstrated that the mixed layer temperature (MLT) and mixed layer depth (MLD) had more variabilities on the right side than those on the left side of Chan-hom's track, while mixed layer salinity (MLS) response was different from those of MLT and MLD with an increase in salinity to the right side and a decrease in salinity to the left side of the track. Subsequently, because of the remnant effect of Chan-hom, the strong upwelling induced by Typhoon Nangka, the pre-existing CE as well as a slow translation speed (<2 m s-1) of the storm, the most significant SSC ( 6 °C) was observed over the CE region in the wake of the storm. Further, Nangka experienced a rapid weakening suggesting immediate negative feedback from the intensified SSC occurred in the CE region. After these two typhoons, the CE was enhanced and the sea surface height of eddy core was depressed by 10 cm. It took more than one month for SSC to restore to its pre-typhoon conditions, with the anomalous geostrophic current advection playing an important role in the process. The enhancement of chlorophyll-a concentrations was also noticed at both the CE region and close to Chan-hom's track.

  18. ENSO related SST anomalies and relation with surface heat fluxes over south Pacific and Atlantic

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Nuncio, M.; Satheesan, K.

    2017-07-01

    The role of surface heat fluxes in Southern Pacific and Atlantic Ocean SST anomalies associated with El Nino Southern Oscillation (ENSO) is studied using observation and ocean reanalysis products. A prominent dipole structure in SST anomaly is found with a positive (negative) anomaly center over south Pacific (65S-45S, 120W-70W) and negative (positive) one over south Atlantic (50S-30S, 30W-0E) during austral summer (DJF) of El Nino (LaNina). During late austral spring-early summer (OND) of El Nino (LaNina), anomalous northerly (southerly) meridional moisture transport and a positive (negative) sea level pressure anomaly induces a suppressed (enhanced) latent heat flux from the ocean surface over south Pacific. This in turn results in a shallower than normal mixed layer depth which further helps in development of the SST anomaly. Mixed layer thins further due to anomalous shortwave radiation during summer and a well developed SST anomaly evolves. The south Atlantic pole exhibits exactly opposite characteristics at the same time. The contribution from the surface heat fluxes to mixed layer temperature change is found to be dominant over the advective processes over both the basins. Net surface heat fluxes anomaly is also found to be maximum during late austral spring-early summer period, with latent heat flux having a major contribution to it. The anomalous latent heat fluxes between atmosphere and ocean surface play important role in the growth of observed summertime SST anomaly. Sea-surface height also shows similar out-of-phase signatures over the two basins and are well correlated with the ENSO related SST anomalies. It is also observed that the magnitude of ENSO related anomalies over the southern ocean are weaker in LaNina years than in El Nino years, suggesting an intensified tropics-high latitude tele-connection during warm phases of ENSO.

  19. Turbulence Variability in the Upper Layers of the Southern Adriatic Sea Under a Variety of Atmospheric Forcing Conditions

    DTIC Science & Technology

    2012-01-01

    Commission. Joint Research Centre. Space Applications Institute. Ispra/ltaly. Signell. R.P., Carniel. S„ Cavaleri, L. Chiggiato , J.. Doyle. J.D... Chiggiato . J.. Carniel. S.. 2008. Variational analysis of drifter positions and model outputs for the reconstruc- tions of surface currents in the

  20. Small Flux Buoy for Characterizing Marine Surface Layers

    DTIC Science & Technology

    2013-06-01

    platform for air-sea interaction study since early 1960s (Fisher and Spiess 1963). It was designed to be a stable platform for mounting various types of...COARE algorithm. J. of Climate, 16, 571–591. Fisher F. H., and F. N. Spiess , 1963: FLIP-floating instrument platform. J. Acoust. Soc. Am., 35, 1633

  1. When a Slowly Rotating Aquaplanet is Coupled to a Dynamical Ocean

    NASA Astrophysics Data System (ADS)

    Salameh, J.; Marotzke, J.

    2017-12-01

    Planets orbiting in close distance from their stars have a high probability to be detected, and are expected to be slowly rotating due to strong tidal forces. By increasing the rotation period from 1 Earth-day to 365 Earth-days, we previously found that the global-mean surface temperature of an aquaplanet with a static mixed-layer ocean decreases by up to 27 K. The cooling is attributed to an increase of the planetary albedo with the rotation period, which is associated with the different distributions of the sea ice and the deep convective clouds. However, we had there assumed a fixed mixed-layer depth and a zero oceanic heat transport in the aquaplanet configuration. The limitations of these assumptions in such exotic climates are still unclear. We therefore perform coupled atmosphere-ocean aquaplanet simulations with the general circulation model ICON for various rotation periods ranging from 1 Earth-day to 365 Earth-days. We investigate how the underlying oceanic circulation modifies the mean climate of slowly rotating aquaplanets, and whether the day-to-night oceanic heat transport reduces the surface-temperature gradients and the sea-ice extent.

  2. Sustaining nutrient supply and carbon export in a seasonally-stratifying shelf sea through inconsistent production and remineralisation stoichiometry

    NASA Astrophysics Data System (ADS)

    Humphreys, Matthew; Moore, Mark; Achterberg, Eric; Chowdhury, Mohammed; Griffiths, Alex; Hartman, Susan; Hopkins, Joanne; Hull, Tom; Kivimäe, Caroline; Sivyer, Dave; Smilenova, Angelina; Wihsgott, Juliane; Woodward, Malcolm

    2017-04-01

    Continental shelf seas support 15-20% of global primary productivity despite covering only about 5% of the Earth's ocean surface area. As a result, they may have a significant role in oceanic uptake and storage of carbon dioxide (CO2) from the atmosphere, through the 'continental shelf pump' mechanism. The northwest European continental shelf, in particular the Celtic Sea (50°N 8°W), was the target of extensive biogeochemical sampling from March 2014 to September 2015, as part of the UK Shelf Sea Biogeochemistry research programme (UK-SSB). Here, we use the UK-SSB carbonate chemistry and macronutrient measurements to investigate the biogeochemical seasonality in the temperate, seasonally-stratifying Celtic Sea. During the spring-summer, near-surface biological activity removed dissolved inorganic carbon and nutrients, some of which were then exported into the deeper layer. We calculated vertical inventories of these variables throughout 1.5 seasonal cycles and attempted to correct these for air-sea CO2 exchange, advection and denitrification, thus isolating the combined effect of net community production and remineralisation on the inorganic macronutrient inventories, and revealing fluctuating deviations from Redfield stoichiometry. Here, we discuss the capacity of these stoichiometric inconsistencies to sustain the Celtic Sea nutrient supply, and thus examine whether an effective continental shelf pump for CO2 could operate in this region.

  3. A Marine Boundary Layer Water Vapor Climatology Derived from Microwave and Near-Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Millan Valle, L. F.; Lebsock, M. D.; Teixeira, J.

    2017-12-01

    The synergy of the collocated Advanced Microwave Scanning Radiometer (AMSR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global estimates of partial marine planetary boundary layer water vapor. AMSR microwave radiometry provides the total column water vapor, while MODIS near-infrared imagery provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor. Comparisons against radiosondes, and GPS-Radio occultation data demonstrate the robustness of these boundary layer water vapor estimates. We exploit the 14 years of AMSR-MODIS synergy to investigate the spatial, seasonal, and inter-annual variations of the boundary layer water vapor. Last, it is shown that the measured AMSR-MODIS partial boundary layer water vapor can be generally prescribed using sea surface temperature, cloud top pressure and the lifting condensation level. The multi-sensor nature of the analysis demonstrates that there exists more information on boundary layer water vapor structure in the satellite observing system than is commonly assumed when considering the capabilities of single instruments. 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

  4. The characteristics of dissolved organic matter (DOM) and chromophoric dissolved organic matter (CDOM) in Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Norman, Louiza; Thomas, David N.; Stedmon, Colin A.; Granskog, Mats A.; Papadimitriou, Stathys; Krapp, Rupert H.; Meiners, Klaus M.; Lannuzel, Delphine; van der Merwe, Pier; Dieckmann, Gerhard S.

    2011-05-01

    An investigation of coloured dissolved organic matter (CDOM) and its relationships to physical and biogeochemical parameters in Antarctic sea ice and oceanic water have indicated that ice melt may both alter the spectral characteristics of CDOM in Antarctic surface waters and serve as a likely source of fresh autochthonous CDOM and labile DOC. Samples were collected from melted bulk sea ice, sea ice brines, surface gap layer waters, and seawater during three expeditions: one during the spring to summer and two during the winter to spring transition period. Variability in both physical (temperature and salinity) and biogeochemical parameters (dissolved and particulate organic carbon and nitrogen, as well as chlorophyll a) was observed during and between studies, but CDOM absorption coefficients measured at 375 nm (a 375) did not differ significantly. Distinct peaked absorption spectra were consistently observed for bulk ice, brine, and gap water, but were absent in the seawater samples. Correlation with the measured physical and biogeochemical parameters could not resolve the source of these peaks, but the shoulders and peaks observed between 260 and 280 nm and between 320 to 330 nm respectively, particularly in the samples taken from high light-exposed gap layer environment, suggest a possible link to aromatic and mycosporine-like amino acids. Sea ice CDOM susceptibility to photo-bleaching was demonstrated in an in situ 120 hour exposure, during which we observed a loss in CDOM absorption of 53% at 280 nm, 58% at 330 nm, and 30% at 375 nm. No overall coincidental loss of DOC or DON was measured during the experimental period. A relationship between the spectral slope (S) and carbon-specific absorption (a *375) indicated that the characteristics of CDOM can be described by the mixing of two broad end-members; and aged material, present in brine and seawater samples characterised by high S values and low a *375; and a fresh material, due to elevated in situ production, present in the bulk ice samples characterised by low S and high a *375. The DOC data reported here have been used to estimate that approximately 8 Tg C yr -1 (˜11% of annual sea ice algae primary production) may be exported to the surface ocean during seasonal sea ice melt in the form of DOC.

  5. Remote sensing algorithm for sea surface CO2 in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Parard, G.; Charantonis, A. A.; Rutgerson, A.

    2014-08-01

    Studies of coastal seas in Europe have brought forth the high variability in the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes makes their accurate estimation an arduous task. This is more pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been as highly detailed as in the open oceans. In adition, the joint availability of in-situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, a combination of two existing methods (Self-Organizing-Maps and Multiple Linear regression) is used to estimate ocean surface pCO2 in the Baltic Sea from remotely sensed surface temperature, chlorophyll, coloured dissolved organic matter, net primary production and mixed layer depth. The outputs of this research have an horizontal resolution of 4 km, and cover the period from 1998 to 2011. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in-situ measurements, and a root mean square error is of 38 μatm. The removal of any of the satellite parameters degraded this reconstruction of the CO2 flux, and we chose therefore to complete any missing data through statistical imputation. The CO2 maps produced by this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data and we expect to be able to produce even more accurate reconstructions in the coming years, in view of the predicted acquisitions of new data.

  6. Summer and winter living coccolithophores in the Yellow Sea and the East China Sea

    NASA Astrophysics Data System (ADS)

    Gu, X. Y.; Feng, Y. Y.; Jin, S. F.; Jiang, W. S.; Jin, H. Y.; Chen, J. F.; Sun, J.

    2013-05-01

    To date, very little information on living coccolithophores species composition and distribution, especially the vertical profile has been reported around the world. This paper tries to fill this gap by descripting on living coccolithophores (LCs) distribution in the Yellow Sea and the East China Sea in summer and winter time in detail, and its relationship among enviromental factors by canonical correspondence analysis (CCA). We carried out the investigations on LC distribution in the Yellow Sea and the East China Sea in July and December 2011. 210 samples from different depths were collected from 44 stations in summer and 217 samples were collected from 45 stations in winter. Totally 20 taxa belonging to coccolithophyceae were identified using a polarized microscope at the 1000 × magnification. The dominant species of the two seasons were Gephyrocapsa oceanica, Emiliania huxleyi, Helicosphaera carteri, and Algirosphaera robusta. In summer the abundance of cells and coccoliths ranged 0 ~ 176.40 cells mL-1, and 0 ~ 2144.98 coccoliths mL-1, with the average values of 8.45 cells mL-1, and 265.42 coccoliths mL-1, respectively. And in winter the abundance of cells and coccoliths ranged 0 ~ 71.66 cells mL-1, and 0 ~ 4698.99 coccoliths mL-1, with the average values of 13.91 cells mL-1 and 872.56 coccoliths mL-1 respectively. In summer the LCs in surface layer were mainly observed on the coastal belt and southern part of the survey area. The highest abundance was found at the bloom station. In winter the LCs in surface layer had high value in the continental shelf area of section P. The comparison among section A, section F, section P and section E indicated lower species diversity and less abundance in the Yellow Sea than those of the East China Sea in both seasons. Temperature and the nitrate concentration may be the major environmental factors controlling the distribution and species composition of LCs in the studying area based on CCA.

  7. Violent storms within the sea: Dense water formation episodes in the Mediterranean.

    NASA Astrophysics Data System (ADS)

    Salat, J.

    2009-09-01

    The Mediterranean is a semi enclosed basin which receives surface water from the Atlantic Ocean. Most of this water is returned into the Ocean with higher density, spreading at more than 1000 m depth (the rest is transported by the atmosphere and the rivers to the Ocean surface). In terms of water budget, the Mediterranean is considered an evaporation basin, but the loss of water is neither the only process that increases the water density nor it is a steady or uniform process. The factors affecting the water density, temperature and salinity, are driven by mass and heat exchanges with the atmosphere. Those exchanges may be by direct contact or mediated by the land. Therefore, changes in water density depend on the water circulation and local weather conditions, both with seasonal and geographical constraints. As the compressibility of water is very low, stratification is expected and horizontal motion is the predominant in the sea interior. Among the few processes that may introduce a vertical component in the water motion are surface heat loss or evaporation that increase the surface water density triggering convective cells. Such processes will be enhanced by surface cooling or by dry continental winds, and counterbalanced by rain, river runoff, solar heating and condensation. Therefore dense water formation are more likely to occur when sea surface temperature is higher than the surface air temperature. There are several scales of convective motions in the ocean, starting from the formation of the surface mixed layer during summer, by night cooling, breezes, and occasional wind storms. During autumn and winter, the vertical scale of the mixing is increasing by steps, through wind storms and progressive cooling, to easily reach the bottom over the continental shelves, typically not deeper than 150 m. However, as the Gibraltar sill is relatively shallow (~350 m) in relation to the average Mediterranean basin (2000-3000 m), the stratification of the deeper layers is weak. Therefore, where and when the surface layer becomes well mixed, typically in winter, in the northern regions, conditions are given (pre-conditioning phase) to the occurrence of dense water formation episodes. Those episodes require the participation of strong cold and dry winds which force an intense evaporation. In the NW Mediterranean, such forcing may act over the continental shelves, like that of the Gulf of Lions, or over deep open seas, typically the central part east of Catalonia and south of Provence. Over the shelf, surface water is expected to be fresher because of the runoff (e.g. the Rhône). Along the continental margin the water circulation, geostrophically adapted, is cyclonic and the stratification in the centre is lower, then density reached may be higher in the central part than on the shelf. However, cooling will be more effective over the shelf as the heat content of the water column is lower because it is much shorter. Once density over the shelf is high enough, the bottom water overflows and violently sinks along the slope in relatively narrow areas through what has been called a cascading event. In the central part, dense water formed sinks almost vertically in funnels not larger than a few kilometres in diameter, and is accompanied by a compensating rise of water from great depth on all sides. In such open sea winter convection events, the dense water can sink some 800 m within a matter of hours and may reach the bottom level, >2500 m deep, within a couple of days. Such short and violent episodes, cascading or open sea convection, of a few days' duration supply enough water to feed the lower layer to compensate the outflow through the Strait of Gibraltar for several weeks. The repeated events in some few points across the Mediterranean, like those above mentioned, are maintaining the Mediterranean circulation and the water exchanges with the Ocean. The overall amount of dense water formed however is highly variable from one year to another according to the forcings involved and perturbations of the water circulation.

  8. Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible heat fluxes

    NASA Astrophysics Data System (ADS)

    Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.

    2016-12-01

    The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the AIRS temperature, moisture and surface data, we found that the Arctic surface moisture flux (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent heat), mostly in spring and fall near the Arctic coastal seas where large sea ice reduction and sea surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible heat flux (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud-driven turbulence appear to be dominant. Contrary to previous speculation, the efficiency of turbulent heat exchange is low. The SSHF contribution to ABL mixing is significant during the uplift (low-pressure) followed by the highly stable (stratus cloud) regime.

  9. Robust global ocean cooling trend for the pre-industrial Common Era

    NASA Astrophysics Data System (ADS)

    McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile

    2015-09-01

    The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years -- a key interval for understanding the present and future climate response to these forcings -- global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CE that is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.

  10. Robust global ocean cooling trend for the pre-industrial Common Era

    USGS Publications Warehouse

    McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile

    2015-01-01

    The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years — a key interval for understanding the present and future climate response to these forcings — global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CEthat is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.

  11. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea-ice

    NASA Astrophysics Data System (ADS)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2015-10-01

    The effect of aerosols on clouds and their radiative properties is one of the largest uncertainties in our understanding of radiative forcing. A recent study has concluded that better characterisation of pristine, natural aerosol processes leads to the largest reduction in these uncertainties. Antarctica, being far from anthropogenic activities, is an ideal location for the study of natural aerosol processes. Aerosol measurements in Antarctica are often limited to boundary layer air-masses at spatially sparse coastal and continental research stations, with only a handful of studies in the sea ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the ice-breaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the Polar Front, with mean Polar Cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air-masses quickly from the free-troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea ice boundary layer air-masses travelled equator-ward into the low albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei where, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between simulations and observations of cloud and aerosol over the Southern Ocean.

  12. Under-ice melt ponds in the Arctic

    NASA Astrophysics Data System (ADS)

    Smith, Naomi; Flocco, Daniela; Feltham, Daniel

    2017-04-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Double diffusion can lead to the formation of a sheet of ice, which is called a false bottom, at the interface between the fresh water and the ocean. These false bottoms isolate under-ice melt ponds from the ocean below, trapping the fresh water against the sea ice. These ponds and false bottoms have been estimated to cover between 5 and 40% of the base of the sea ice. [Notz et al. Journal of Geophysical Research 2003] We have developed a one-dimensional thermodynamic model of sea ice underlain by an under-ice melt pond and false bottom. Not only has this allowed us to simulate the evolution of under-ice melt ponds over time, identifying an alternative outcome than previously observed in the field, but sensitivity studies have helped us to estimate the impact that these pools of fresh water have on the mass-balance sea ice. We have also found evidence of a possible positive feedback cycle whereby increasingly less ice growth is seen due to the presence of under-ice melt ponds as the Arctic warms. Since the rate of basal ablation is affected by these phenomena, their presence alters the salt and freshwater fluxes from the sea ice into the ocean. We have coupled our under-ice melt pond model to a simple model of the oceanic mixed layer to determine how this affects mixed layer properties such as temperature, salinity, and depth. In turn, this changes the oceanic forcing reaching the sea ice.

  13. Sea-ice cover in the Nordic Seas and the sensitivity to Atlantic water temperatures

    NASA Astrophysics Data System (ADS)

    Jensen, Mari F.; Nisancioglu, Kerim H.; Spall, Michael A.

    2017-04-01

    Changes in the sea-ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. However, with its proximity to the warm Atlantic water, how a sea-ice cover can persist in the Nordic Seas is not well understood. In this study, we apply an eddy-resolving configuration of the Massachusetts Institute of Technology general circulation model with an idealized topography to study the presence of sea ice in a Nordic Seas-like domain. We assume an infinite amount of warm Atlantic water present in the south by restoring the southern area to constant temperatures. The sea-surface temperatures are restored toward cold, atmospheric temperatures, and as a result, sea ice is present in the interior of the domain. However, the sea-ice cover in the margins of the Nordic Seas, an area with a warm, cyclonic boundary current, is sensitive to the amount of heat entering the domain, i.e., the restoring temperature in the south. When the temperature of the warm, cyclonic boundary current is high, the margins are free of sea ice and heat is released to the atmosphere. We show that with a small reduction in the temperature of the incoming Atlantic water, the Nordic Seas-like domain is fully covered in sea ice. Warm water is still entering the Nordic Seas, however, this happens at depths below a cold, fresh surface layer produced by melted sea ice. Consequently, the heat release to the atmosphere is reduced along with the eddy heat fluxes. Results suggest a threshold value in the amount of heat entering the Nordic Seas before the sea-ice cover disappears in the margins. We study the sensitivity of this threshold to changes in atmospheric temperatures and vertical diffusivity.

  14. Biogeochemical characteristics of suspended particulate matter in deep chlorophyll maximum layers in the southern East China Sea

    NASA Astrophysics Data System (ADS)

    Liu, Qianqian; Kandasamy, Selvaraj; Lin, Baozhi; Wang, Huawei; Chen, Chen-Tung Arthur

    2018-04-01

    Continental shelves and marginal seas are key sites of particulate organic matter (POM) production, remineralization and sequestration, playing an important role in the global carbon cycle. Elemental and stable isotopic compositions of organic carbon and nitrogen are thus frequently used to characterize and distinguish POM and its sources in suspended particles and surface sediments in the marginal seas. Here we investigated suspended particulate matter (SPM) collected around deep chlorophyll maximum (DCM) layers in the southern East China Sea for particulate organic carbon and nitrogen (POC and PN) contents and their isotopic compositions (δ13CPOC and δ15NPN) to understand provenance and dynamics of POM. Hydrographic parameters (temperature, salinity and turbidity) indicated that the study area was weakly influenced by freshwater derived from the Yangtze River during summer 2013. Elemental and isotopic results showed a large variation in δ13CPOC (-25.8 to -18.2 ‰) and δ15NPN (3.8 to 8.0 ‰), but a narrow molar C / N ratio (4.1-6.3) and low POC / Chl a ratio ( < 200 g g-1) in POM, and indicated that the POM in DCM layers was newly produced by phytoplankton. In addition to temperature effects, the range and distribution of δ13CPOC were controlled by variations in primary productivity and phytoplankton species composition; the former explained ˜ 70 % of the variability in δ13CPOC. However, the variation in δ15NPN was controlled by the nutrient status and δ15NNO3- in seawater, as indicated by similar spatial distribution between δ15NPN and the current pattern and water masses in the East China Sea; although interpretations of δ15NPN data should be verified with the nutrient data in future studies. Furthermore, the POM investigated was weakly influenced by the terrestrial OM supplied by the Yangtze River during summer 2013 due to the reduced sediment supply by the Yangtze River and north-eastward transport of riverine particles to the northern East China Sea. We demonstrated that the composition of POM around DCM layers in the southern East China Sea is highly dynamic and largely driven by phytoplankton abundance. Nonetheless, additional radiocarbon and biomarker data are needed to re-evaluate whether or not the POM around the DCM water depths is influenced by terrestrial OM in the river-dominated East China Sea.

  15. [Distribution pattern of microphytoplankton in the Bering Sea during the summer of 2010].

    PubMed

    Lin, Geng-Ming; Yang, Qing-Liang; Wang, Yu

    2013-09-01

    Based on the analysis of 70 water samples collected by the Chinese icebreaker Xuelong in the areas of 52 degrees 42.29'-65 degrees 30.23' N and 169 degrees 20.85' E-179 degrees 30.37' W in the Bering Sea during the Chinese Arctic Research Expedition on July 10-19, 2010, a total of 143 phytoplankton species were identified, including 95 diatom species belonging to 37 genera, 44 dinoflagellate species belonging to 15 genera, 2 Chlorophyta species belonging to 2 genera, 1 Euglenophyta belonging to 1 genus, and 1 Chrysophyta species belonging to 1 genus. The cluster analysis revealed that the phytoplankton in the study areas could be divided as oceanic and shallow water groups. The oceanic group found in the western North Pacific Ocean and the Bering Basin was dominated by the boreal oceanic species such as Neodenticula seminae and Chaetoceros atlanticus and the cosmopolitan species such as Thalassionema nitzschioides and Chaetoceros compressus, with the characteristics of low abundance and high evenness of diversified species. The shallow water group found in the continental shelf and slope of Bering Sea was mostly composed of the pan-arctic neritic species such as Thalassiosira nordenskioldi and Chaetoceros furcellatus and the cosmopolitan species such as Leptocylindrus danicus and Chaetoceros curvisetus, with the characteristics of low species diversity and evenness index due to the high abundance in certain species. The phytoplankton abundance in the surface water layer distributed unevenly among the stations, ranging from 950 to 192400 cells x L(-1) and with an average of 58722 cells x L(-1). Horizontally, the abundance distribution trend was decreased in the order of the Bering Sea shelf, the Bering Sea slope, the Bering Sea basin, and the western North Pacific Ocean. Vertically, the abundance was lower in surface layer and maximized in the thermocline, suggesting that the phytoplankton abundance in vertical distribution varied with the regional thermocline.

  16. Erosion-corrosion and cavitation-erosion measurements on copper alloys utilizing thin layer activation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C.H.; Hsu, K.Y.; Kai, J.J.

    1992-12-31

    The surface layers of copper alloy specimens were made radioactive by bombarding with 5 MeV protons from a van de Graaff accelerator which converted Cu-65 into Zn-65 through (p,n) reaction. The amount of surface material loss could then be monitored by measuring the total remaining {gamma}-ray activity generated from Zn-65 decay. This technique, termed thin layer activation (TLA), has the advantage of in situ monitoring the rate of surface removal due to corrosion, erosion-corrosion, wearing, etc. In this work, the erosion-corrosion tests on aluminum brass and 90Cu-10Ni were conducted in circulating sea water and the erosion-corrosion rates measured using TLAmore » and conventional methods such as linear polarization resistance (LPR) method and weight loss coupons were compared. A vibrational cavitation-erosion test was also performed on aluminum bronze, in which the measurements by TLA were compared with those of weight loss measurements.« less

  17. Spatial and temporal variability of seawater pCO2 within the Canadian Arctic Archipelago and Baffin Bay during the summer and autumn 2011

    NASA Astrophysics Data System (ADS)

    Geilfus, N.-X.; Pind, M. L.; Else, B. G. T.; Galley, R. J.; Miller, L. A.; Thomas, H.; Gosselin, M.; Rysgaard, S.; Wang, F.; Papakyriakou, T. N.

    2018-03-01

    The partial pressure of CO2 in surface water (pCO2sw) measured within the Canadian Arctic Archipelago (CAA) and Baffin Bay was highly variable with values ranging from strongly undersaturated (118 μatm) to slightly supersaturated (419 μatm) with respect to the atmospheric levels ( 386 μatm) during summer and autumn 2011. During summer, melting sea ice contributed to cold and fresh surface water and enhanced the ice-edge bloom, resulting in strong pCO2sw undersaturation. Coronation Gulf was the only area with supersaturated pCO2sw, likely due to warm CO2-enriched freshwater input from the Coppermine River. During autumn, the entire CAA (including Coronation Gulf) was undersaturated, despite generally increasing pCO2sw. Coronation Gulf was the one place where pCO2sw decreased, likely due to seasonal reduction in discharge from the Coppermine River and the decreasing sea surface temperature. The seasonal summer-to-autumn increase in pCO2sw across the archipelago is attributed in part to the continuous uptake of atmospheric CO2 through both summer and autumn and to the seasonal deepening of the surface mixed layer, bringing CO2-rich waters to the surface. These observations demonstrate how freshwater from sea ice melt and rivers affect pCO2sw differently. The general pCO2sw undersaturation during summer-autumn 2011 throughout the CAA and Baffin Bay give an estimated net oceanic sink for atmospheric CO2 over the study period of 11.4 mmol CO2 m-2 d-1, assuming no sea-air CO2 flux exchange across the sea-ice covered areas.

  18. ONR Ocean Wave Dynamics Workshop

    NASA Astrophysics Data System (ADS)

    In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.

  19. The INCOMPASS project field and modelling campaign: Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea

    NASA Astrophysics Data System (ADS)

    Turner, Andrew; Bhat, Ganapati; Evans, Jonathan; Madan, Ranju; Marsham, John; Martin, Gill; Mitra, Ashis; Mrudula, Gm; Parker, Douglas; Pattnaik, Sandeep; Rajagopal, En; Taylor, Christopher; Tripathi, Sachchida

    2017-04-01

    The INCOMPASS project uses data from a field and aircraft measurement campaign during the 2016 monsoon onset to better understand and predict monsoon rainfall. The monsoon supplies the majority of water in South Asia, however modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly. Likely problems lie in physical parametrizations such as convection, the boundary layer and land surface. At the same time, lack of detailed observations prevents more thorough understanding of monsoon circulation and its interaction with the land surface; a process governed by boundary layer and convective cloud dynamics. From May to July 2016, INCOMPASS used a modified BAe-146 jet aircraft operated by the UK Facility for Airborne Atmospheric Measurements (FAAM), for the first project of this scale in India. The India and UK team flew around 100 hours of science sorties from bases in northern and southern India. Flights from Lucknow in the northern plains took measurements to the west and southeast to allow sampling of the complete contrast from dry desert air to the humid environment over the north Bay of Bengal. These routes were repeated in the pre-monsoon and monsoon phases, measuring contrasting surface and boundary layer structures. In addition, flights from the southern base in Bengaluru measured contrasts from the Arabian Sea, across the intense rains of the Western Ghats mountains, over the rain shadow in southeast India and over the southern Bay of Bengal. Flight planning was performed with the aid of forecasts from a new UK Met Office 4km limited area model. INCOMPASS also installed a network of surface flux towers, as well as operating a cloud-base ceilometer and performing intensive radiosonde launches from a supersite in Kanpur. Here we will outline preliminary results from the field campaign including new observations of the surface, boundary layer structure and atmospheric profiles from aircraft data. We also include initial results from nested high-resolution modelling experiments of the 2016 monsoon, at a resolution of 4km in comparison with bespoke regional forecasts run throughout the field campaign.

  20. Ciliate diversity and distribution patterns in the sediments of a seamount and adjacent abyssal plains in the tropical Western Pacific Ocean.

    PubMed

    Zhao, Feng; Filker, Sabine; Stoeck, Thorsten; Xu, Kuidong

    2017-09-12

    Benthic ciliates and the environmental factors shaping their distribution are far from being completely understood. Likewise, deep-sea systems are amongst the least understood ecosystems on Earth. In this study, using high-throughput DNA sequencing, we investigated the diversity and community composition of benthic ciliates in different sediment layers of a seamount and an adjacent abyssal plain in the tropical Western Pacific Ocean with water depths ranging between 813 m and 4566 m. Statistical analyses were used to assess shifts in ciliate communities across vertical sediment gradients and water depth. Nine out of 12 ciliate classes were detected in the different sediment samples, with Litostomatea accounting for the most diverse group, followed by Plagiopylea and Oligohymenophorea. The novelty of ciliate genetic diversity was extremely high, with a mean similarity of 93.25% to previously described sequences. On a sediment depth gradient, ciliate community structure was more similar within the upper sediment layers (0-1 and 9-10 cm) compared to the lower sediment layers (19-20 and 29-30 cm) at each site. Some unknown ciliate taxa which were absent from the surface sediments were found in deeper sediments layers. On a water depth gradient, the proportion of unique OTUs was between 42.2% and 54.3%, and that of OTUs shared by all sites around 14%. However, alpha diversity of the different ciliate communities was relatively stable in the surface layers along the water depth gradient, and about 78% of the ciliate OTUs retrieved from the surface layer of the shallowest site were shared with the surface layers of sites deeper than 3800 m. Correlation analyses did not reveal any significant effects of measured environmental factors on ciliate community composition and structure. We revealed an obvious variation in ciliate community along a sediment depth gradient in the seamount and the adjacent abyssal plain and showed that water depth is a less important factor shaping ciliate distribution in deep-sea sediments unlike observed for benthic ciliates in shallow seafloors. Additionally, an extremely high genetic novelty of ciliate diversity was found in these habitats, which points to a hot spot for the discovery of new ciliate species.

  1. A Model with Ellipsoidal Scatterers for Polarimetric Remote Sensing of Anisotropic Layered Media

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Kong, J. A.; Shin, R. T.

    1993-01-01

    This paper presents a model with ellipsoidal scatterers for applications to polarimetric remote sensing of anisotropic layered media at microwave frequencies. The physical configuration includes an isotropic layer covering an anisotropic layer above a homogeneous half space. The isotropic layer consists of randomly oriented spheroids. The anisotropic layer contains ellipsoidal scatterers with a preferential vertical alignment and random azimuthal orientations. Effective permittivities of the scattering media are calculated with the strong fluctuation theory extended to account for the nonspherical shapes and the scatterer orientation distributions. On the basis of the analytic wave theory, dyadic Green's functions for layered media are used to derive polarimetric backscattering coefficients under the distorted Born approximation. The ellipsoidal shape of the scatterers gives rise to nonzero cross-polarized returns from the untilted anisotropic medium in the first-order approximation. Effects of rough interfaces are estimated by an incoherent addition method. Theoretical results and experimental data are matched at 9 GHz for thick first-year sea ice with a bare surface and with a snow cover at Point Barrow, Alaska. The model is then used to study the sensitivity of polarimetric backscattering coefficients with respect to correlation lengths representing the geometry of brine inclusions. Polarimetric signatures of bare and snow-covered sea ice are also simulated based on the model to investigate effects of different scattering mechanisms.

  2. Extreme Marine Warming Across Tropical Australia During Austral Summer 2015-2016

    NASA Astrophysics Data System (ADS)

    Benthuysen, Jessica A.; Oliver, Eric C. J.; Feng, Ming; Marshall, Andrew G.

    2018-02-01

    During austral summer 2015-2016, prolonged extreme ocean warming events, known as marine heatwaves (MHWs), occurred in the waters around tropical Australia. MHWs arose first in the southeast tropical Indian Ocean in November 2015, emerging progressively east until March 2016, when all waters from the North West Shelf to the Coral Sea were affected. The MHW maximum intensity tended to occur in March, coinciding with the timing of the maximum sea surface temperature (SST). Large areas were in a MHW state for 3-4 months continuously with maximum intensities over 2°C. In 2016, the Indonesian-Australian Basin and areas including the Timor Sea and Kimberley shelf experienced the longest and most intense MHW from remotely sensed SST dating back to 1982. In situ temperature data from temperature loggers at coastal sites revealed a consistent picture, with MHWs appearing from west to east and peaking in March 2016. Temperature data from moorings, an Argo float, and Slocum gliders showed the extent of warming with depth. The events occurred during a strong El Niño and weakened monsoon activity, enhanced by the extended suppressed phase of the Madden-Julian Oscillation. Reduced cloud cover in January and February 2016 led to positive air-sea heat flux anomalies into the ocean, predominantly due to the shortwave radiation contribution with a smaller additional contribution from the latent heat flux anomalies. A data-assimilating ocean model showed regional changes in the upper ocean circulation and a change in summer surface mixed layer depths and barrier layer thicknesses consistent with past El Niño events.

  3. A revised global ozone dry deposition estimate based on a new two-layer parameterisation for air-sea exchange and the multi-year MACC composition reanalysis

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.; Woodhouse, Matthew T.; Galbally, Ian E.

    2018-03-01

    Dry deposition at the Earth's surface is an important sink of atmospheric ozone. Currently, dry deposition of ozone to the ocean surface in atmospheric chemistry models has the largest uncertainty compared to deposition to other surface types, with implications for global tropospheric ozone budget and associated radiative forcing. Most global models assume that the dominant term of surface resistance in the parameterisation of ozone dry deposition velocity at the oceanic surface is constant. There have been recent mechanistic parameterisations for air-sea exchange that account for the simultaneous waterside processes of ozone solubility, molecular diffusion, turbulent transfer, and first-order chemical reaction of ozone with dissolved iodide and other compounds, but there are questions about their performance and consistency. We present a new two-layer parameterisation scheme for the oceanic surface resistance by making the following realistic assumptions: (a) the thickness of the top water layer is of the order of a reaction-diffusion length scale (a few micrometres) within which ozone loss is dominated by chemical reaction and the influence of waterside turbulent transfer is negligible; (b) in the water layer below, both chemical reaction and waterside turbulent transfer act together and are accounted for; and (c) chemical reactivity is present through the depth of the oceanic mixing layer. The new parameterisation has been evaluated against dry deposition velocities from recent open-ocean measurements. It is found that the inclusion of only the aqueous iodide-ozone reaction satisfactorily describes the measurements. In order to better quantify the global dry deposition loss and its interannual variability, modelled 3-hourly ozone deposition velocities are combined with the 3-hourly MACC (Monitoring Atmospheric Composition and Climate) reanalysis ozone for the years 2003-2012. The resulting ozone dry deposition is found to be 98.4 ± 30.0 Tg O3 yr-1 for the ocean and 722.8 ± 87.3 Tg O3 yr-1 globally. The new estimate of the ocean component is approximately a third of the current model estimates. This reduction corresponds to an approximately 20 % decrease in the total global ozone dry deposition, which (with all other components being unchanged) is equivalent to an increase of approximately 5 % in the modelled tropospheric ozone burden and a similar increase in tropospheric ozone lifetime.

  4. Ocean Surface Wave Optical Roughness - Analysis of Innovative Measurements

    DTIC Science & Technology

    2012-09-30

    goals of the program are to (1) examine time -dependent oceanic radiance distribution in relation to dynamic surface boundary layer (SBL) processes; (2... Analysis of Innovative Measurements 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER...RESULTS An overview of results is provided by Zappa et al. [2012] and Dickey et al. [2012]. TOGA-COARE and Air-sea fluxes Time series

  5. Increased Surface Wind Speeds Follow Diminishing Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Mioduszewski, J.; Vavrus, S. J.; Wang, M.; Holland, M. M.; Landrum, L.

    2017-12-01

    Projections of Arctic sea ice through the end of the 21st century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic Basin, due to changes in atmospheric stability and/or baroclinicity. Prior research on future Arctic wind changes is limited and has focused mainly on the practical impacts on wave heights in certain seasons. Here we attempt to identify patterns and likely mechanisms responsible for surface wind changes in all seasons across the Arctic, particularly those associated with sea ice loss in the marginal ice zone. Sea level pressure, near-surface (10 m) and upper-air (850 hPa) wind speeds, and lower-level dynamic and thermodynamic variables from the Community Earth System Model Large Ensemble Project (CESM-LE) were analyzed for the periods 1971-2000 and 2071-2100 to facilitate comparison between a present-day and future climate. Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 90th percentile change even more, increasing in frequency by over 100%. The strengthened winds are closely linked to decreasing lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (locally over 20 ºC warmer in autumn and winter). A muted pattern of these future changes is simulated in CESM-LE historical runs from 1920-2005. The enhanced winds near the surface are mostly collocated with weaker winds above the boundary layer during autumn and winter, implying more vigorous vertical mixing and a drawdown of high-momentum air.The implications of stronger future winds include increased coastal hazards and the potential for a positive feedback with sea ice by generating higher winds and greater wave activity. Our findings suggest that increasing winds, along with retreating sea ice and thawing permafrost, represent another important contributor to the growing problem of Arctic coastal erosion.

  6. Observations of Sea Surface Mean Square Slope During the Southern Ocean Waves Experiment

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Vandemark, D. C.; Wright, C. W.; Banner, M. L.; Chen, W.; Swift, R. N.; Scott, J. F.; Hines, D. E.; Jensen, J.; Lee, S.; hide

    2001-01-01

    For the Southern Ocean Waves Experiment (SOWEX), conducted in June 1992 out of Hobart, Tasmania, the NASA Scanning Radar Altimeter (SRA) was shipped to Australia and installed on a CSIRO Fokker F-27 research aircraft instrumented to make comprehensive surface layer measurements of air-sea interaction fluxes. The SRA sweeps a radar beam of P (two-way) half-power width across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 cross-track positions. In realtime, the slant ranges are multiplied by the cosine of the off-nadir incidence angles (including the effect of aircraft roll attitude) to determine the vertical distances from the aircraft to the sea surface. These distances are subtracted from the aircraft height to produce a sea-surface elevation map, which is displayed on a monitor in the aircraft to enable real-time assessments of data quality and wave properties. The sea surface mean square slope (mss), which is predominantly caused by the short waves, was determined from the backscattered power falloff with incidence angle measured by the SRA in the plane normal to the aircraft heading. On each flight, data were acquired at 240 m altitude while the aircraft was in a 7 degree roll attitude, interrogating off-nadir incidence angles from -15 degrees through nadir to +29 degrees. The aircraft turned azimuthally through 810 degrees in this attitude, mapping the azimuthal dependence of the backscattered power falloff with incidence angle. Two sets of turning data were acquired on each day, before and after the aircraft measured wind stress at low altitude (12 meters to 65 meters). Wave topography and backscattered power for mss were also acquired during those level flight segments whenever the aircraft altitude was above the SRA minimum range of 35 m. Data were collected over a wide range of wind and sea conditions, from quiescent to gale force winds with 9 meter wave height.

  7. Observed variability in the upper layers at the Equator, 90°E in the Indian Ocean during 2001-2008, 1: zonal currents

    NASA Astrophysics Data System (ADS)

    Rao, R. R.; Horii, T.; Masumoto, Y.; Mizuno, K.

    2017-08-01

    The observed variability of zonal currents (ZC) at the Equator, 90°E shows a strong seasonal cycle in the near-surface 40-350 m water column with periodic east-west reversals most pronounced at semiannual frequency. Superposed on this, a strong intraseasonal variability of 30-90 day periodicity is also prominently seen in the near-surface layer (40-80 m) almost throughout the year with the only exception of February-March. An eastward flowing equatorial undercurrent (EUC) is present in the depth range of 80-160 m during March-April and October-November. The observed intraseasonal variability in the near-surface layer is primarily determined by the equatorial zonal westerly wind bursts (WWBs) through local frictional coupling between the zonal flow in the surface layer and surface zonal winds and shows large interannual variability. The eastward flowing EUC maintained by the ZPG set up by the east-west slope of the thermocline remotely controlled by the zonal wind (ZW) and zonally propagating wave fields also shows significant interannual variability. This observed variability on interannual time scales appears to be controlled by the corresponding variability in the alongshore winds off the Somalia coast during the preceding boreal winter, the ZW field along the equator, and the associated zonally propagating Kelvin and Rossby waves. The salinity induced vertical stratification observed in the near-surface layer through barrier layer thickness (BLT) effects also shows a significant influence on the ZC field on intraseasonal time scale. Interestingly, among all the 8 years (2001-2008), relatively weaker annual cycle is seen in both ZC in the 40-350 m water column and boreal spring sea surface temperature (SST) only during 2001 and 2008 along the equator caused through propagating wave dynamics.

  8. Role of physical processes in chlorophyll distribution in the western tropical Indian Ocean

    NASA Astrophysics Data System (ADS)

    George, Jenson V.; Nuncio, M.; Chacko, Racheal; Anilkumar, N.; Noronha, Sharon B.; Patil, Shramik M.; Pavithran, Sini; Alappattu, Denny P.; Krishnan, K. P.; Achuthankutty, C. T.

    2013-03-01

    Physical control of the chlorophyll a (chl a) distribution in the western tropical Indian Ocean (WTIO, 8°N to 18°S along 65°E) was studied during the 2008 winter monsoon (WM) and the 2009 summer monsoon (SM). During both seasons, a prominent deep chlorophyll maximum (DCM, 0.3-0.5 mg m- 3) was observed at all stations between 8°N and 10°S in the depth range of 50-75 m, but south of 10°S, this phenomenon was observed as deeper (~ 120 m) and relatively weak (0.15-0.3 mg m- 3). During the SM, in addition to seasonal forcing, eddies and a freshened surface layer also played major roles in controlling the DCM and the surface chl a concentrations in the southern Arabian Sea and the equatorial Indian Ocean. During the WM, surface freshening controlled the chl a distribution in the Seychelles Chagos Thermocline Ridge (SCTR, 5°S-10°S) region by modulating the static stability and mixed layer depth. It appears that the surface freshening in this region is associated with the core of the South Equatorial Current. South of the SCTR, the chl a distribution was predominantly determined by the anti-cyclonic eddies in both seasons. The spatial patterns of the Sea Level Anomaly (SLA) followed most of the thermocline features observed during the study period.

  9. Temporal variatiions of Sea ice cover in the Baltic Sea derived from operational sea ice products used in NWP.

    NASA Astrophysics Data System (ADS)

    Lange, Martin; Paul, Gerhard; Potthast, Roland

    2014-05-01

    Sea ice cover is a crucial parameter for surface fluxes of heat and moisture over water areas. The isolating effect and the much higher albedo strongly reduces the turbulent exchange of heat and moisture from the surface to the atmosphere and allows for cold and dry air mass flow with strong impact on the stability of the whole boundary layer and consequently cloud formation as well as precipitation in the downstream regions. Numerical weather centers as, ECMWF, MetoFrance or DWD use external products to initialize SST and sea ice cover in their NWP models. To the knowledge of the author there are mainly two global sea ice products well established with operational availability, one from NOAA NCEP that combines measurements with satellite data, and the other from OSI-SAF derived from SSMI/S sensors. The latter one is used in the Ostia product. DWD additionally uses a regional product for the Baltic Sea provided by the national center for shipping and hydrografie which combines observations from ships (and icebreakers) for the German part of the Baltic Sea and model analysis from the hydrodynamic HIROMB model of the Swedish meteorological service for the rest of the domain. The temporal evolution of the three different products are compared for a cold period in Februar 2012. Goods and bads will be presented and suggestions for a harmonization of strong day to day jumps over large areas are suggested.

  10. Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015)

    NASA Astrophysics Data System (ADS)

    Kayser, Markus; Maturilli, Marion; Graham, Robert M.; Hudson, Stephen R.; Rinke, Annette; Cohen, Lana; Kim, Joo-Hong; Park, Sang-Jong; Moon, Woosok; Granskog, Mats A.

    2017-10-01

    The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and boundary layer characteristics. We provide statistics of temperature inversion characteristics, static stability, and boundary layer extent. During winter, when radiative cooling is most effective, we find the strongest impact of synoptic cyclones. Changes to thermodynamic characteristics of the boundary layer are associated with transitions between the radiatively "clear" and "opaque" atmospheric states. In spring, radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. Further, we compare the N-ICE2015 static stability distributions to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Ålesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. For Ny-Ålesund, we observe similar characteristics above 1000 m, while the topography and ice-free fjord surrounding Ny-Ålesund generate great differences below. The long-term radiosonde record (1993-2014) from Ny-Ålesund indicates that during the N-ICE2015 spring period, temperatures were close to the climatological mean, while the lowest 3000 m were 1-3°C warmer than the climatology during winter.

  11. Effects of NO(y) aging on the dehydration dynamics of model sea spray aerosol.

    PubMed

    Woods, Ephraim; Heylman, Kevin D; Gibson, Amanda K; Ashwell, Adam P; Rossi, Sean R

    2013-05-23

    The reactions of NO(y) species in the atmosphere with sea spray aerosol replace halogen anions with nitrate. These experiments show the effect of increasing the nitrate content of model sea spray aerosol particles on the morphology changes and the phase transitions driven by changes in relative humidity (RH). The components of the model particles include H2O, Na+, Mg2+, Cl-, NO3-, and SO4(2-). Tandem differential mobility analyzer (TDMA) measurements yield the water content and efflorescence relative humidity (ERH) of these particles, and probe molecule spectroscopic measurements reveal subsequent phase transitions and partially characterize the salt composition on the surface of dry particles. The results show three effects of increasing the nitrate composition: decreasing the EFH (46 to 29%), production of a metastable aqueous layer on the surface of effloresced particles, and decreasing the sulfate content near the surface of dry particles. For the mixtures studied here, the initial crystallization event forms a core of NaCl. For particles that contain a substantial metastable aqueous layer following efflorescence, probe molecule spectroscopy shows a second crystallization at a lower RH. This subsequent phase transition is likely the formation of Na2SO4. Homogeneous nucleation theory (HNT) using a semiempirical formulation predicts the ERH of all mixtures within 2.0% RH, with a mean absolute deviation of 1.0%. The calculations suggest that structures associated with highly concentrated or supersaturated magnesium ions strongly affect the interfacial tension between the NaCl crystal nucleus and the droplet from which it forms.

  12. Midwestern streamflow, precipitation, and atmospheric vorticity influenced by Pacific sea-surface temperatures and total solar-irradiance variations

    USGS Publications Warehouse

    Perry, C.A.

    2006-01-01

    A solar effect on streamflow in the Midwestern United States is described and supported in a six-step physical connection between total solar irradiance (TSI), tropical sea-surface temperatures (SSTs), extratropical SSTs, jet-stream vorticity, surface-layer vorticity, precipitation, and streamflow. Variations in the correlations among the individual steps indicate that the solar/hydroclimatic mechanism is complex and has a time element (lag) that may not be constant. Correct phasing, supported by consistent spectral peaks between 0.092 and 0.096 cycles per year in all data sets within the mechanism is strong evidence for its existence. A significant correlation exists between total solar irradiance and the 3-year moving average of annual streamflow for Iowa (R = 0.67) and for the Mississippi River at St Louis, Missouri (R = 0.60), during the period 1950-2000. Published in 2005 by John Wiley & Sons, Ltd.

  13. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    PubMed Central

    Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Miller, Lisa A.; Papakyriakou, Tim; Liggio, John

    2017-01-01

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate. PMID:28559340

  14. Hydrocarbons in the Surface Layer of Bottom Sediments in the Northwestern Caspian Sea

    NASA Astrophysics Data System (ADS)

    Nemirovskaya, I. A.; Ostrovskaya, E. V.

    2018-03-01

    The paper presents research results on the concentrations and compositions of aliphatic and polycyclic aromatic hydrocarbons in the surface layer of bottom sediments in the Northwestern Caspian Sea (2014) and compares them to data for sediments of the Middle and Southern Caspian (2012-2013). The seepage of hydrocarbons out of the sediment mass, resulting in abnormally high concentrations of aliphatic hydrocarbons per dry weight (up to 468 μg/g), as well as within the Corg composition (up to 35.2%), is considered the main source of hydrocarbons in sediments in the surveyed area of the Northern Caspian. This is also confirmed by the absence of any correlation between the hydrocarbon and Corg distributions, as well as by the transformed oil composition of high-molecular alkanes. The distribution of markers within polycyclic aromatic hydrocarbons points to a mixed genesis—petrogenic and pyrogenic—with prevalence of the latter. Unlike the shallow-water northern part of the Caspian Sea, the content and composition of hydrocarbons in deep-seated sediments are affected by facial conditions of sedimentation and by matter exchange at the water-bottom interface. Therefore, despite high Corg concentrations (up to 9.9%), sediments in deep-water depressions are characterized by a quite low concentration of aliphatic hydrocarbons (52 μg/g on average; 0.2% of Corg) with prevailing natural allochthonous alkanes.

  15. Recent trends and variations in Baltic Sea temperature, salinity, stratification and circulation

    NASA Astrophysics Data System (ADS)

    Elken, Jüri; Lehmann, Andreas; Myrberg, Kai

    2015-04-01

    The presentation highlights the results of physical oceanography from BACC II (Second BALTEX Assessment of Climate Change for the Baltic Sea basin) book based on the review of recent literature published until 2013. We include also information from some more recent publications. A recent warming trend in sea surface waters has been clearly demonstrated by all available methods: in-situ measurements, remote sensing data and modelling tools. In particular, remote sensing data for the period 1990-2008 indicate that the annual mean SST has increased even by 1°C per decade, with the greatest increase in the northern Bothnian Bay and also with large increases in the Gulf of Finland, the Gulf of Riga, and the northern Baltic Proper. Although the increase in the northern areas is affected by the recent decline in the extent and duration of sea ice, and corresponding changes in surface albedo, warming is still evident during all seasons and with the greatest increase occurring in summer. The least warming of surface waters (0.3-0.5°C per decade) occurred northeast of Bornholm Island up to and along the Swedish coast, probably owing to an increase in the frequency of coastal upwelling forced by the westerly wind events. Comparing observations with the results of centennial-scale modelling, recent changes in sea water temperature appear to be within the range of the variability observed during the past 500 years. Overall salinity pattern and stratification conditions are controlled by river runoff, wind conditions, and salt water inflows through the Danish straits. The mean top-layer salinity is mainly influenced by the accumulated river runoff, with higher salinity during dry periods and lower salinity during wet periods. Observations reveal a low-salinity period above the halocline starting in the 1980s. The strength of stratification and deep salinity are reduced when the mean zonal wind stress increases, as it occurred since 1987. Major Baltic Inflows of highly saline water of North Sea origin occur sporadically and transport high-saline water into the deep layers of the Baltic Sea. These inflow events occur when high pressure over the Baltic region with easterly winds is followed by several weeks of strong westerly winds; changes in the inflow activity are related to the frequency of deep cyclones and their pathways over the Baltic area. Major inflows are often followed by a period of stagnation during which saline stratification decreases and oxygen deficiency develops in the deep basins of the central Baltic. Major inflows are usually of barotropic character. They normally occur during winter and spring and transport relatively cold, salty and oxygen-rich waters to the deep basins. Since 1996, another type of inflows have been observed during summer or early autumn. These inflows are of baroclinic character and transport high-saline, but warm and low-oxygen water into the deep layers of the Baltic Sea. Event-like water exchange and mixing anomalies, driven by specific atmospheric forcing patterns like sequences of deep cyclones, occur also in other parts of the Baltic Sea.

  16. Exchanges between the shelf and the deep Black Sea: an integrated analysis of physical mechanisms

    NASA Astrophysics Data System (ADS)

    Shapiro, Georgy; Wobus, Fred; Zatsepin, Andrei; Akivis, Tatiana; Zhou, Feng

    2017-04-01

    This study provides an integrated analysis of exchanges of water, salt and heat between the north-western Black Sea shelf and the deep basin. Three contributing physical mechanisms are quantified, namely: Ekman drift, transport by mesoscale eddies at the edge of the NW Black Sea shelf and non-local cascading assisted by the rim current and mesoscale eddies. The semi-enclosed nature of the Black Sea together with its unique combination of an extensive shelf area in the North West and the deep central part make it sensitive to natural variations of fluxes, including the fluxes between the biologically productive shelf and predominantly anoxic deep sea. Exchanges between the shelf and deep sea play an important role in forming the balance of waters, nutrients and pollution within the coastal areas, and hence the level of human-induced eutrophication of coastal waters (MSFD Descriptor 5). In this study we analyse physical mechanisms and quantify shelf-deep sea exchange processes in the Black Sea sector using the NEMO ocean circulation model. The model is configured and optimized taking into account specific features of the Black Sea, and validated against in-situ and satellite observations. The study uses NEMO-BLS24 numerical model which is based on the NEMO codebase v3.2.1 with amendments introduced by the UK Met Office. The model has a horizontal resolution of 1/24×1/24° and a hybrid s-on-top-of-z vertical coordinate system with a total of 33 layers. The horizontal viscosity/diffusivity operator is rotated to reduce the contamination of vertical diffusion/viscosity by large values of their horizontal counterparts. The bathymetry is processed from ETOPO5 and capped to 1550m. Atmospheric forcing for the period 1989-2012 is given by the Drakkar Forcing Set v5.2. For comparison, the NCEP atmospheric forcing also used for 2005. The climatological runoff from 8 major rivers is included. We run the model individually for 24 calendar years without data assimilation. For the analysis of propagation of cold waters formed on the NW Black Sea shelf we use a passive tracer method. The tracer is treated as an artificial dye that "stains" a water parcel within the defined area as soon as it cooled below a 7°C temperature. To quantify the shelf-deep sea exchange, the transport of water, salt and heat between the NW shelf and deep-sea regions is calculated across an enclosed boundary (a "fence") approximating the 200 m isobath on the NW shelf plus two short segments connected to the coast. Partial transports are also calculated for the surface layer (top 20 m) and the under-surface layer (from 20 m to the bottom). The 20 m level is approximately equal to the Ekman depth in summer. It is also close to the depth of the biologically active euphotic layer. For validation of the NEMO-BLS24 configuration we present comparisons of the model with satellite-derived sea surface temperature measurements and with ship-derived cross-sections that show the vertical structure. We also compare the model to observations carried out during Black Sea cruises in 2004, 2007 and 2008. The model represents well the sea surface temperature, the depth of the upper mixed layer and the depth of the CIL, while overestimating the temperature in the core of the CIL by approx. 0.5 °C. Mechanism 1: exchanges due to a frontal eddy. Numerical simulations for the year 2005 (for which comprehensive remote sensed data is available) shows that a significant cross-shelf transport was generated by a long-lived anticyclonic eddy impinging on the shelf, sometimes assisted by a cyclonic meander of the Rim Current. Over 69 days between April 23 and June 30, 2005, a volume of 2.84×10^12 m3 of water (102% of the entire volume of the shelf waters) was transported out of the shelf and a similar amount onto the shelf (see details in Zhou et al. 2014). Mechanism 2: exchanges due to Ekman drift. During the short but intensive wind events of April 15 - 22 and July 1 - 4, 2005, 23% and 16% of shelf waters, were moved into the deep-sea region, respectively. Due to the high intensity of cross-shelf exchanges, the average renewal time for the NW shelf in the Black Sea was only 28 days in the summer of 2005 (Zhou et al. 2014). Mechanism 3: exchanges due to assisted cascading. Using the model run for 2003 as an example, we examine the fate of the tracer after 5.5 months of model integration. At 100m depth we identify four anti-cyclonic eddies: two eddies west of the Crimea peninsula, one north of Sinop and one west of Batumi. These eddies can be seen to assist cascading into the basin interior of cold waters formed on a shallow NW shelf to a depth greater than at which they were originally formed. The important result is that for many of the 24 studied years a significant proportion of dense shelf water does not cascade locally off the NW shelf, but is transported by the Rim Current over hundreds of kilometres before cascading into the deep basin in the southern and southeastern Black Sea. This work has been supported by EU FP7 PERSEUS, EU H2020 Sea Basin checkpoints Lot4 - Black Sea and a number of Chinese and Russian national projects. References Zhou, F., G. I. Shapiro, and F. Wobus, 2014: Cross-shelf exchange in the northwestern Black Sea. Journal of Geophysical Research: Oceans, 119, 2143-2164.

  17. Tropical Indian Ocean surface salinity bias in Climate Forecasting System coupled models and the role of upper ocean processes

    NASA Astrophysics Data System (ADS)

    Parekh, Anant; Chowdary, Jasti S.; Sayantani, Ojha; Fousiya, T. S.; Gnanaseelan, C.

    2016-04-01

    In the present study sea surface salinity (SSS) biases and seasonal tendency over the Tropical Indian Ocean (TIO) in the coupled models [Climate Forecasting System version 1 (CFSv1) and version 2 (CFSv2)] are examined with respect to observations. Both CFSv1 and CFSv2 overestimate SSS over the TIO throughout the year. CFSv1 displays improper SSS seasonal cycle over the Bay of Bengal (BoB), which is due to weaker model precipitation and improper river runoff especially during summer and fall. Over the southeastern Arabian Sea (AS) weak horizontal advection associated with East Indian coastal current during winter limits the formation of spring fresh water pool. On the other hand, weaker Somali jet during summer results for reduced positive salt tendency in the central and eastern AS. Strong positive precipitation bias in CFSv1 over the region off Somalia during winter, weaker vertical mixing and absence of horizontal salt advection lead to unrealistic barrier layer during winter and spring. The weaker stratification and improper spatial distribution of barrier layer thickness (BLT) in CFSv1 indicate that not only horizontal flux distribution but also vertical salt distribution displays large discrepancies. Absence of fall Wyrtki jet and winter equatorial currents in this model limit the advection of horizontal salt flux to the eastern equatorial Indian Ocean. The associated weaker stratification in eastern equatorial Indian Ocean can lead to deeper mixed layer and negative Sea Surface Temperature (SST) bias, which in turn favor positive Indian Ocean Dipole bias in CFSv1. It is important to note that improper spatial distribution of barrier layer and stratification can alter the air-sea interaction and precipitation in the models. On the other hand CFSv2 could produce the seasonal evolution and spatial distribution of SSS, BLT and stratification better than CFSv1. However CFSv2 displays positive bias in evaporation over the whole domain and negative bias in precipitation over the BoB and equatorial Indian Ocean, resulting net reduction in the fresh water availability. This net reduction in fresh water forcing and the associated weaker stratification lead to deeper (than observed) mixed layer depth and is primarily responsible for the cold SST bias in CFSv2. However overall improvement of mean salinity distribution in CFSv2 is about 30 % and the mean error has reduced by more than 1 psu over the BoB. This improvement is mainly due to better fresh water forcing and model physics. Realistic run off information, better ocean model and high resolution in CFSv2 contributed for the improvement. Further improvement can be achieved by reducing biases in the moisture flux and precipitation.

  18. Study of the air-sea interactions at the mesoscale: the SEMAPHORE experiment

    NASA Astrophysics Data System (ADS)

    Eymard, L.; Planton, S.; Durand, P.; Le Visage, C.; Le Traon, P. Y.; Prieur, L.; Weill, A.; Hauser, D.; Rolland, J.; Pelon, J.; Baudin, F.; Bénech, B.; Brenguier, J. L.; Caniaux, G.; de Mey, P.; Dombrowski, E.; Druilhet, A.; Dupuis, H.; Ferret, B.; Flamant, C.; Flamant, P.; Hernandez, F.; Jourdan, D.; Katsaros, K.; Lambert, D.; Lefèvre, J. M.; Le Borgne, P.; Le Squere, B.; Marsoin, A.; Roquet, H.; Tournadre, J.; Trouillet, V.; Tychensky, A.; Zakardjian, B.

    1996-09-01

    The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale) experiment has been conducted from June to November 1993 in the Northeast Atlantic between the Azores and Madeira. It was centered on the study of the mesoscale ocean circulation and air-sea interactions. The experimental investigation was achieved at the mesoscale using moorings, floats, and ship hydrological survey, and at a smaller scale by one dedicated ship, two instrumented aircraft, and surface drifting buoys, for one and a half month in October-November (IOP: intense observing period). Observations from meteorological operational satellites as well as spaceborne microwave sensors were used in complement. The main studies undertaken concern the mesoscale ocean, the upper ocean, the atmospheric boundary layer, and the sea surface, and first results are presented for the various topics. From data analysis and model simulations, the main characteristics of the ocean circulation were deduced, showing the close relationship between the Azores front meander and the occurrence of Mediterranean water lenses (meddies), and the shift between the Azores current frontal signature at the surface and within the thermocline. Using drifting buoys and ship data in the upper ocean, the gap between the scales of the atmospheric forcing and the oceanic variability was made evident. A 2 °C decrease and a 40-m deepening of the mixed layer were measured within the IOP, associated with a heating loss of about 100 W m-2. This evolution was shown to be strongly connected to the occurrence of storms at the beginning and the end of October. Above the surface, turbulent measurements from ship and aircraft were analyzed across the surface thermal front, showing a 30% difference in heat fluxes between both sides during a 4-day period, and the respective contributions of the wind and the surface temperature were evaluated. The classical momentum flux bulk parameterization was found to fail in low wind and unstable conditions. Finally, the sea surface was investigated using airborne and satellite radars and wave buoys. A wave model, operationally used, was found to get better results compared with radar and wave-buoy measurements, when initialized using an improved wind field, obtained by assimilating satellite and buoy wind data in a meteorological model. A detailed analysis of a 2-day period showed that the swell component, propagating from a far source area, is underestimated in the wave model. A data base has been created, containing all experimental measurements. It will allow us to pursue the interpretation of observations and to test model simulations in the ocean, at the surface and in the atmospheric boundary layer, and to investigate the ocean-atmosphere coupling at the local and mesoscales.

  19. Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content

    NASA Astrophysics Data System (ADS)

    Roberts, C. D.; Palmer, M. D.; Allan, R. P.; Desbruyeres, D. G.; Hyder, P.; Liu, C.; Smith, D.

    2017-01-01

    We present an observation-based heat budget analysis for seasonal and interannual variations of ocean heat content (H) in the mixed layer (Hmld) and full-depth ocean (Htot). Surface heat flux and ocean heat content estimates are combined using a novel Kalman smoother-based method. Regional contributions from ocean heat transport convergences are inferred as a residual and the dominant drivers of Hmld and Htot are quantified for seasonal and interannual time scales. We find that non-Ekman ocean heat transport processes dominate Hmld variations in the equatorial oceans and regions of strong ocean currents and substantial eddy activity. In these locations, surface temperature anomalies generated by ocean dynamics result in turbulent flux anomalies that drive the overlying atmosphere. In addition, we find large regions of the Atlantic and Pacific oceans where heat transports combine with local air-sea fluxes to generate mixed layer temperature anomalies. In all locations, except regions of deep convection and water mass transformation, interannual variations in Htot are dominated by the internal rearrangement of heat by ocean dynamics rather than the loss or addition of heat at the surface. Our analysis suggests that, even in extratropical latitudes, initialization of ocean dynamical processes could be an important source of skill for interannual predictability of Hmld and Htot. Furthermore, we expect variations in Htot (and thus thermosteric sea level) to be more predictable than near surface temperature anomalies due to the increased importance of ocean heat transport processes for full-depth heat budgets.

  20. The frequency-domain approach for apparent density mapping

    NASA Astrophysics Data System (ADS)

    Tong, T.; Guo, L.

    2017-12-01

    Apparent density mapping is a technique to estimate density distribution in the subsurface layer from the observed gravity data. It has been widely applied for geologic mapping, tectonic study and mineral exploration for decades. Apparent density mapping usually models the density layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the gravity anomalies to determine the density of each prism. Conventionally, the frequency-domain approach, which assumes that both top and bottom surfaces of the layer are horizontal, is usually utilized for fast density mapping. However, such assumption is not always valid in the real world, since either the top surface or the bottom surface may be variable-depth. Here, we presented a frequency-domain approach for apparent density mapping, which permits both the top and bottom surfaces of the layer to be variable-depth. We first derived the formula for forward calculation of gravity anomalies caused by the density layer, whose top and bottom surfaces are variable-depth, and the formula for inversion of gravity anomalies for the density distribution. Then we proposed the procedure for density mapping based on both the formulas of inversion and forward calculation. We tested the approach on the synthetic data, which verified its effectiveness. We also tested the approach on the real Bouguer gravity anomalies data from the central South China. The top surface was assumed to be flat and was on the sea level, and the bottom surface was considered as the Moho surface. The result presented the crustal density distribution, which was coinciding well with the basic tectonic features in the study area.

Top