Sea level and turbidity controls on mangrove soil surface elevation change
Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.
2015-01-01
Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.
An alternative to reduction of surface pressure to sea level
NASA Technical Reports Server (NTRS)
Deardorff, J. W.
1982-01-01
The pitfalls of the present method of reducing surface pressure to sea level are reviewed, and an alternative, adjusted pressure, P, is proposed. P is obtained from solution of a Poisson equation over a continental region, using the simplest boundary condition along the perimeter or coastline where P equals the sea level pressure. The use of P would avoid the empiricisms and disadvantages of pressure reduction to sea level, and would produce surface pressure charts which depict the true geostrophic wind at the surface.
NASA Astrophysics Data System (ADS)
Anzenhofer, M.; Gruber, T.
1998-04-01
Global mean sea level observations are necessary to answer the urgent questions about climate changes and their impact on socio-economy. At GeoForschungsZentrum/Geman Processing and Archiving Facility ERS altimeter data is used to systematically generate geophysical products such as sea surface topography, high-resolution geoid and short- and long-period sea surface height models. On the basis of this experience, fully reprocessed ERS-1 altimeter data is used to generated a time series of monthly sea surface height models from April 1992 to April 1995. The reprocessing consists of improved satellite ephemerides, merging of Grenoble tidal model, and application of range corrections due to timing errors. With the new data set the TOPEX/POSEIDON prelaunch accuracy requirements are fulfilled. The 3-year time series is taken to estimate the rate of change of global mean sea level. A careful treatment of seasonal effects is considered. A masking of continents, sea ice, and suspect sea surface heights is chosen that is common for all sea surface height models. The obtained rate of change is compared to external results from tide gauge records and TOPEX/POSEIDON data. The relation of sea level changes and sea surface temperature variations is examined by means of global monthly sea surface temperature maps. Both global wind speed and wave height maps are investigated and correlated with sea surface heights and sea surface temperatures in order to find other indicators of climate variations. The obtained rate of changes of the various global maps is compared to an atmospheric CO2 anomaly record, which is highly correlated to El Niño events. The relatively short period of 3 years, however, does not allow definite conclusions with respect to possible long-term climate changes.
Seasonal Ice Zone Reconnaissance Surveys Coordination
2014-09-30
profiler (AXCP) ocean velocity shear (Morison), UpTempO buoy measurements of sea surface temperature (SST), sea level atmospheric pressure ( SLP ), and...and prediction…. Steele UpTempO buoy drops for SLP , SST, SSS, & surface velocity Visible and Thermal Images of the SIZ from the Coast Guard...Expendable CTD, AXCP= Air Expendable Current Profiler, SLP = Sea Level atmospheric Pressure, SST= Seas Surface Temperature, A/C= aircraft, SIC=Sea Ice
Potentiometric Surface of the Upper Patapsco Aquifer in Southern Maryland, September 1995
Curtin, Stephen E.; Andreasen, David C.; Mack, Frederick K.
1996-01-01
A map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Cretaceous age in southern Maryland during September 1995 was prepared from water-level measurements in 42 wells. The potentiometric surface was nearly 120 feet above sea level near the northwestern boundary and outcrop area of the aquifer in topographically high areas of Anne Arundel County, and 55 feet above sea level in a similar setting in Prince Georges County. From these high areas, the potentiometic surface declined to the south and southeast toward large well fields in the Annapolis and Waldorf areas and at the Chalk Point powerplant. Ground-water levels reached nearly 30 feet below sea level in the Annapolis area, 113 feet below sea level southwest of Waldorf, and more than 30 feet below sea level at the Chalk Point powerplant.
Potentiometric Surface of the Lower Patapsco Aquifer in Southern Maryland, September 2007
Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.
2009-01-01
This report presents a map showing the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 65 wells. The highest measured water level was 111 feet above sea level near the northwestern boundary and outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined towards well fields at Severndale and Arnold. The measured ground-water levels were 87 feet below sea level at Severndale, and 42 feet below sea level at Arnold. There was also a cone of depression covering a large area in Charles County that includes Waldorf, La Plata, Indian Head, and the Morgantown power plant. The ground-water levels measured were as low as 219 feet below sea level at Waldorf, 187 feet below sea level at La Plata, 106 feet below sea level at Indian Head, and 89 feet below sea level at the Morgantown power plant.
Pacific Dictates Droughts and Drenchings
2004-01-30
The latest remote sensing data from NASA's Jason satellite show that the equatorial Pacific sea surface levels are higher, indicating warmer sea surface temperatures in the central and west Pacific Ocean. This pattern has the appearance of La Niña rather than El Niño. This contrasts with the Bering Sea, Gulf of Alaska and U.S. West Coast where lower-than-normal sea surface levels and cool ocean temperatures continue (indicated by blue and purple areas). The image above is a global map of sea surface height, accurate to within 30 millimeters. The image represents data collected and composited over a 10-day period, ending on Jan 23, 2004. The height of the water relates to the temperature of the water. As the ocean warms, its level rises; and as it cools, its level falls. Yellow and red areas indicate where the waters are relatively warmer and have expanded above sea level, green indicates near normal sea level, and blue and purple areas show where the waters are relatively colder and the surface is lower than sea level. The blue areas are between 5 and 13 centimeters (2 and 5 inches) below normal, whereas the purple areas range from 14 to 18 centimeters (6 to 7 inches) below normal. http://photojournal.jpl.nasa.gov/catalog/PIA05071
Lovelock, Catherine E.; Bennion, Vicki; Grinham, Alistair; Cahoon, Donald R.
2011-01-01
Increases in the elevation of the soil surfaces of mangroves and salt marshes are key to the maintenance of these habitats with accelerating sea level rise. Understanding the processes that give rise to increases in soil surface elevation provides science for management of landscapes for sustainable coastal wetlands. Here, we tested whether the soil surface elevation of mangroves and salt marshes in Moreton Bay is keeping up with local rates of sea level rise (2.358 mm y-1) and whether accretion on the soil surface was the most important process for keeping up with sea level rise. We found variability in surface elevation gains, with sandy areas in the eastern bay having the highest surface elevation gains in both mangrove and salt marsh (5.9 and 1.9 mm y-1) whereas in the muddier western bay rates of surface elevation gain were lower (1.4 and -0.3 mm y-1 in mangrove and salt marsh, respectively). Both sides of the bay had similar rates of surface accretion (~7–9 mm y-1 in the mangrove and 1–3 mm y-1 in the salt marsh), but mangrove soils in the western bay were subsiding at a rate of approximately 8 mm y-1, possibly due to compaction of organic sediments. Over the study surface elevation increments were sensitive to position in the intertidal zone (higher when lower in the intertidal) and also to variation in mean sea level (higher at high sea level). Although surface accretion was the most important process for keeping up with sea level rise in the eastern bay, subsidence largely negated gains made through surface accretion in the western bay indicating a high vulnerability to sea level rise in these forests.
Potentiometric surface of the upper Patapsco Aquifer in southern Maryland, September 1994
Curtin, Stephen E.; Mack, Frederick K.; Andreasen, David C.
1995-01-01
A map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Cretaceous age in southern Maryland during September 1994 was prepared from water levels measured in 43 wells. The potentiometric surface was at least 70 feet above sea level near the northwestern boundary and outcrop area of the aquifer in a topographically high area of Anne Arundel County, and nearly 60 feet above sea level in a similar setting in Prince Georges County. From these high areas, the potentiometric surface declined to the south and southeast toward large well fields in the Annapolis and Waldorf areas and at the Chalk Point powerplant. Ground-water levels reached nearly 30 feet below sea level in the Annapolis area, nearly 110 feet below sea level southwest of Waldorf, and more than 25 feet below sea level at the Chalk Point powerplant.
The vertical correction of point cloud strips performed over the coastal zone of changing sea level
NASA Astrophysics Data System (ADS)
Gasińska-Kolyszko, Ewa; Furmańczyk, Kazimierz
2017-10-01
The main principle of LIDAR is to measure the accurate time of the laser pulses sent from the system to the target surface. In the operation, laser pulses gradually scan the water surface and in combination with aircraft speed they should perform almost simultaneous soundings of each strip. Vectors sent from aircraft to the Sea are linked to the position of the aircraft. Coordinates of the points - X, Y, Z, are calculated at the time of each measurement. LIDAR crosses the surface of the sea while other impulses pass through the water column and, depending on the depth of the water, reflect from the seabed. Optical receiver on board of the aircraft detects pulse reflections from the seabed and sea surface. On the tidal water basins lidar strips must be adjusted by the changes in sea level. The operation should be reduced to a few hours during low water level. Typically, a surface of 20 to 30 km2 should be covered in an hour. The Baltic Sea is an inland sea, and the surveyed area is located in its South - western part, where meteorological and hydrological conditions affect the sea level changes in a short period of time. A lidar measurement of sea surface, that was done within 2 days, in the coastal zone of the Baltic Sea and the sea level measured 6 times a day at 8, 12, 16, 20, 00, 04 by a water gauge located in the port of Dziwnów (Poland) were used for this study. On the basis of the lidar data, strips were compared with each other. Calculation of time measurement was made for each single line separately. Profiles showing the variability of sea level for each neighboring and overlapping strips were generated. Differences were calculated changes in sea level were identified and on such basis, an adjustment was possible to perform. Microstation software and terrasolid application were used during the research. The latter allowed automatically and manual classification of the point cloud. A sea surface class was distinguished that way. Point cloud was adjusted to flight lines in terms of time and then compared.
The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod
NASA Astrophysics Data System (ADS)
Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.
1991-07-01
Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.
Potentiometric Surface of the Lower Patapsco Aquifer in Southern Maryland, September 2009
Curtin, Stephen E.; Andreasin, David C.; Staley, Andrew W.
2010-01-01
This report presents a map showing the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 64 wells. The highest measured water level was 110 feet above sea level near the northwestern boundary and outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined towards well fields at Severndale, Broad Creek, and Arnold. The measured groundwater levels were 99 feet below sea level at Severndale, 50 feet below sea level at Broad Creek, and 36 feet below sea level at Arnold. There was also a cone of depression in Charles County that includes Waldorf, La Plata, Indian Head, and the Morgantown power plant. The groundwater levels measured were as low as 215 feet below sea level at Waldorf, 149 feet below sea level at La Plata, 121 feet below sea level at Indian Head, and 96 feet below sea level at the Morgantown power plant. The map also shows well yield in gallons per day for 2008 at wells or well fields.
NASA Astrophysics Data System (ADS)
Cho, K. H.; Chang, E. C.
2017-12-01
In this study, we performed sensitivity experiments by utilizing the Global/Regional Integrated Model system with different conditions of the sea ice concentration over the Kara-Barents (KB) Sea in autumn, which can affect winter temperature variability over East Asia. Prescribed sea ice conditions are 1) climatological autumn sea ice concentration obtained from 1982 to 2016, 2) reduced autumn sea ice concentration by 50% of the climatology, and 3) increased autumn sea ice concentration by 50% of climatology. Differently prescribed sea ice concentration changes surface albedo, which affects surface heat fluxes and near-surface air temperature. The reduced (increased) sea ice concentration over the KB sea increases (decreases) near-surface air temperature that leads the lower (higher) sea level pressure in autumn. These patterns are maintained from autumn to winter season. Furthermore, it is shown that the different sea ice concentration over the KB sea has remote effects on the sea level pressure patterns over the East Asian region. The lower (higher) sea level pressure over the KB sea by the locally decreased (increased) ice concentration is related to the higher (lower) pressure pattern over the Siberian region, which induces strengthened (weakened) cold advection over the East Asian region. From these sensitivity experiments it is clarified that the decreased (increased) sea ice concentration over the KB sea in autumn can lead the colder (warmer) surface air temperature over East Asia in winter.
Potentiometric Surface of the Patuxent Aquifer in Southern Maryland, September 2007
Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.
2009-01-01
This report presents a map showing the potentiometric surface of the Patuxent aquifer in the Patuxent Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 41 wells. The highest measured water level was 165 feet above sea level near the northwestern boundary and in the outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined south towards well fields at Glen Burnie, Bryans Road, the Morgantown power plant, and the Chalk Point power plant. The measured ground-water levels were 81 feet below sea level at Glen Burnie, 47 feet below sea level southwest of Bryans Road, 27 feet below sea level at the Morgantown power plant, and 24 feet below sea level at the Chalk Point power plant.
Potentiometric Surface of the Upper Patapsco Aquifer in Southern Maryland, September 2007
Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.
2009-01-01
This report presents a map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 50 wells. The highest measured water level was 120 feet above sea level near the northern boundary and outcrop area of the aquifer in northern Anne Arundel County. From this area, the potentiometric surface declined to the south toward a well field in the Annapolis-Arnold area, and from all directions toward four cones of depression. These cones are located in the Waldorf-La Plata area, Chalk Point-Prince Frederick area, Swan Point subdivision in southern Charles County, and the Lexington Park-St. Inigoes area. The lowest measured ground-water level was 44 feet below sea level at Arnold, 106 feet below sea level south of Waldorf, 54 feet below sea level at Swan Point, 59 feet below sea level at Chalk Point, and 58 feet below sea level at Lexington Park.
Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model
NASA Astrophysics Data System (ADS)
Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry
2016-12-01
As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG, ˜ 130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate-ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet-climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.
Sea level: measuring the bounding surfaces of the ocean
Tamisiea, Mark E.; Hughes, Chris W.; Williams, Simon D. P.; Bingley, Richard M.
2014-01-01
The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. PMID:25157196
Jason-3 Produces First Global Map of Sea Surface Height
2016-03-16
The U.S./European Jason-3 satellite has produced its first map of sea surface height, which corresponds well to data from its predecessor, Jason-2. Higher-than-normal sea levels are red; lower-than-normal sea levels are blue. El Niño is visible as the red blob in the eastern equatorial Pacific. Extending the timeline of ocean surface topography measurements begun by the Topex/Poseidon and Jason 1 and 2 satellites, Jason 3 will make highly detailed measurements of sea-level on Earth to gain insight into ocean circulation and climate change. http://photojournal.jpl.nasa.gov/catalog/PIA20532
Potentiometric Surface of the Patuxent Aquifer in Southern Maryland, September 2009
Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.
2010-01-01
This report presents a map showing the potentiometric surface of the Patuxent aquifer in the Patuxent Formation of Early Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 42 wells. The highest measured water level was 169 feet above sea level in the outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined south towards well fields at Glen Burnie, Bryans Road, the Morgantown power plant, and the Chalk Point power plant. The measured groundwater levels were 78 feet below sea level at Glen Burnie, 56 feet below sea level at Bryans Road, 29 feet below sea level at the Morgantown power plant, and 28 feet below sea level at the Chalk Point power plant. The map also shows well yield in gallons per day for 2008 at wells or well fields.
Seasonal Ice Zone Reconnaissance Surveys Coordination and Ocean Profiles
2015-09-30
Morison), UpTempO buoy measurements of sea surface temperature (SST), sea level atmospheric pressure ( SLP ), and velocity (Steele), and dropsonde...dropsondes, micro-aircraft), cloud top/base heights UpTempO buoys for understanding and prediction…. Steele UpTempO buoy drops for SLP , SST, SSS...Air Expendable Current Profiler, SLP = Sea Level atmospheric Pressure, SST= Seas Surface Temperature, A/C= aircraft, SIC=Sea Ice Concentration We
NASA Astrophysics Data System (ADS)
Fresnay, S.; Ponte, A. L.; Le Gentil, S.; Le Sommer, J.
2018-03-01
Several methods that reconstruct the three-dimensional ocean dynamics from sea level are presented and evaluated in the Gulf Stream region with a 1/60° realistic numerical simulation. The use of sea level is motivated by its better correlation with interior pressure or quasi-geostrophic potential vorticity (PV) compared to sea surface temperature and sea surface salinity, and, by its observability via satellite altimetry. The simplest method of reconstruction relies on a linear estimation of pressure at depth from sea level. Another method consists in linearly estimating PV from sea level first and then performing a PV inversion. The last method considered, labeled SQG for surface quasi-geostrophy, relies on a PV inversion but assumes no PV anomalies. The first two methods show comparable skill at levels above -800 m. They moderately outperform SQG which emphasizes the difficulty of estimating interior PV from surface variables. Over the 250-1,000 m depth range, the three methods skillfully reconstruct pressure at wavelengths between 500 and 200 km whereas they exhibit a rapid loss of skill between 200 and 100 km wavelengths. Applicability to a real case scenario and leads for improvements are discussed.
McLaughlin, P.I.; Brett, Carlton E.; Wilson, M.A.
2008-01-01
Sedimentological analyses of middle Paleozoic epeiric sea successions in North America suggest a hierarchy of discontinuity surfaces and condensed beds of increasing complexity. Simple firmgrounds and hardgrounds, which are comparatively ephemeral features, form the base of the hierarchy. Composite hardgrounds, reworked concretions, authigenic mineral crusts and monomictic intraformational conglomerates indicate more complex histories. Polymictic intraformational conglomerates, ironstones and phosphorites form the most complex discontinuity surfaces and condensed beds. Complexity of discontinuities is closely linked to depositional environments duration of sediment starvation and degree of reworking which in turn show a relationship to stratigraphic cyclicity. A model of cratonic sequence stratigraphy is generated by combining data on the complexity and lateral distribution of discontinuities in the context of facies successions. Lowstand, early transgressive and late transgressive systems tracts are representative of sea-level rise. Early and late transgressive systems tracts are separated by the maximum starvation surface (typically a polymictic intraformational conglomerate or condensed phosphorite), deposited during the peak rate of sea-level rise. Conversely the maximum flooding surface, representing the highest stand of sea level, is marked by little to no break in sedimentation. The highstand and falling stage systems tracts are deposited during relative sea-level fall. They are separated by the forced-regression surface, a thin discontinuity surface or condensed bed developed during the most rapid rate of sea-level fall. The lowest stand of sea level is marked by the sequence boundary. In subaerially exposed areas it is occasionally modified as a rockground or composite hardground.
Curtin, Stephen E.; Staley, Andrew W.; Andreasen, David C.
2016-01-01
Key Results This report presents potentiometric-surface maps of the Aquia and Magothy aquifers and the Upper Patapsco, Lower Patapsco, and Patuxent aquifer systems using water levels measured during September 2015. Water-level difference maps are also presented for these aquifers. The water-level differences in the Aquia aquifer are shown using groundwater-level data from 1982 and 2015, while the water-level differences are shown for the Magothy aquifer using data from 1975 and 2015. Water-level difference maps for both the Upper Patapsco and Lower Patapsco aquifer systems are shown using data from 1990 and 2015. The water-level differences in the Patuxent aquifer system are shown using groundwater-level data from 2007 and 2015. The potentiometric surface maps show water levels ranging from 53 feet above sea level to 164 feet below sea level in the Aquia aquifer, from 86 feet above sea level to 106 feet below sea level in the Magothy aquifer, from 115 feet above sea level to 115 feet below sea level in the Upper Patapsco aquifer system, from 106 feet above sea level to 194 feet below sea level in the Lower Patapsco aquifer system, and from 165 feet above sea level to 171 feet below sea level in the Patuxent aquifer system. Water levels have declined by as much as 116 feet in the Aquia aquifer since 1982, 99 feet in the Magothy aquifer since 1975, 66 and 83 feet in the Upper Patapsco and Lower Patapsco aquifer systems, respectively, since 1990, and 80 feet in the Patuxent aquifer system since 2007.
Sea level: measuring the bounding surfaces of the ocean.
Tamisiea, Mark E; Hughes, Chris W; Williams, Simon D P; Bingley, Richard M
2014-09-28
The practical need to understand sea level along the coasts, such as for safe navigation given the spatially variable tides, has resulted in tide gauge observations having the distinction of being some of the longest instrumental ocean records. Archives of these records, along with geological constraints, have allowed us to identify the century-scale rise in global sea level. Additional data sources, particularly satellite altimetry missions, have helped us to better identify the rates and causes of sea-level rise and the mechanisms leading to spatial variability in the observed rates. Analysis of all of the data reveals the need for long-term and stable observation systems to assess accurately the regional changes as well as to improve our ability to estimate future changes in sea level. While information from many scientific disciplines is needed to understand sea-level change, this review focuses on contributions from geodesy and the role of the ocean's bounding surfaces: the sea surface and the Earth's crust. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Processes contributing to resilience of coastal wetlands to sea-level rise
Stagg, Camille L.; Krauss, Ken W.; Cahoon, Donald R.; Cormier, Nicole; Conner, William H.; Swarzenski, Christopher M.
2016-01-01
The objectives of this study were to identify processes that contribute to resilience of coastal wetlands subject to rising sea levels and to determine whether the relative contribution of these processes varies across different wetland community types. We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to marsh by measuring processes controlling wetland elevation. We found that, over 5 years of measurement, TFFWs were resilient, although some marginally, and oligohaline marshes exhibited robust resilience to sea-level rise. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems. We showed that the relative importance of surface and subsurface processes in controlling wetland surface elevation change differed between TFFWs and oligohaline marshes. The marshes had significantly higher rates of surface accretion than the TFFWs, and in the marshes, surface accretion was the primary contributor to elevation change. In contrast, elevation change in TFFWs was more heavily influenced by subsurface processes, such as root zone expansion or compaction, which played an important role in determining resilience of TFFWs to rising sea level. When root zone contributions were removed statistically from comparisons between relative sea-level rise and surface elevation change, sites that previously had elevation rate deficits showed a surplus. Therefore, assessments of wetland resilience that do not include subsurface processes will likely misjudge vulnerability to sea-level rise.
NASA Astrophysics Data System (ADS)
Niiler, Pearn P.; Maximenko, Nikolai A.; McWilliams, James C.
2003-11-01
The 1992-2002 time-mean absolute sea level distribution of the global ocean is computed for the first time from observations of near-surface velocity. For this computation, we use the near-surface horizontal momentum balance. The velocity observed by drifters is used to compute the Coriolis force and the force due to acceleration of water parcels. The anomaly of horizontal pressure gradient is derived from satellite altimetry and corrects the temporal bias in drifter data distribution. NCEP reanalysis winds are used to compute the force due to Ekman currents. The mean sea level gradient force, which closes the momentum balance, is integrated for mean sea level. We find that our computation agrees, within uncertainties, with the sea level computed from the geostrophic, hydrostatic momentum balance using historical mean density, except in the Antarctic Circumpolar Current. A consistent horizontally and vertically dynamically balanced, near-surface, global pressure field has now been derived from observations.
Inversion of Solid Earth's Varying Shape 2: Using Self-Consistency to Infer Static Ocean Topography
NASA Astrophysics Data System (ADS)
Blewitt, G.; Clarke, P. J.
2002-12-01
We have developed a spectral approach to invert for the redistribution of mass on the Earth's surface given precise global geodetic measurements of the solid Earth's geometrical shape. We used the elastic load Love number formalism to characterize the redistributed mass as a spherical harmonic expansion, truncated at some degree and order n. [Clarke and Blewitt, this meeting]. Here we incorporate the additional physical constraint that the sea surface in hydrostatic equilibrium corresponds to an equipotential surface, to infer the non-steric component of static ocean topography. Our model rigorously accounts for self-gravitation of the ocean, continental surface mass, and the deformed solid Earth, such that the sea surface adopts a new equipotential surface consistent with ocean-land mass exchange, deformation of the geoid, deformation of the sea floor, and the geographical configuration of the oceans and continents. We develop a self-consistent spectral inversion method to solve for the distribution of continental surface mass that would generate geographic variations in relative mean sea level such that the total (ocean plus continental) mass distribution agrees with the original geodetic estimates to degree and order n. We apply this theory to study the contribution of seasonal inter-hemispheric (degree-1) mass transfer to seasonal variation in static ocean topography, using a published empirical seasonal model for degree-1 surface loading derived using GPS coordinate time series from the global IGS network [Blewitt et al., Science 294, 2,342-2,345, 2001]. The resulting predictions of seasonal variations of relative sea level strongly depend on location, with peak variations ranging from 3 mm to 19 mm. The largest peak variations are predicted in mid-August around Antarctica and the southern hemisphere in general; the lowest variations are predicted in the northern hemisphere. Corresponding maximum continental loading occurs in Canada and Siberia at the water-equivalent level of 200 mm. The RMS spatial variability about global mean sea level at any given time is 20% for geocentric sea level (as measured by satellite altimetry) versus relative sea level, which is a consequence of degree-1 sea floor displacement in the center of figure frame. While land-ocean mass exchange governs global mean relative sea level, at any given point the contribution of geoid deformation to relative sea level can be of similar magnitude, and so can almost cancel or double the effect of change in global mean sea level.While the sea surface takes on the shape of the deformed geoid, the sea surface everywhere seasonally oscillates about the deformed geoid with annual amplitude 6.1 mm. This effect is due mainly to an 8.0+/- 0.7~mm contribution from land-ocean mass exchange, which is then reduced by a 1.9 mm seasonal variation in the mean geoid height above the sea floor (to which a mass-conserved ocean cannot respond). Of this, 0.4 mm is due to the mean geocentric height of the sea floor, and 1.5 mm is due to the mean geocentric height of the geoid over oceanic areas. The seasonal gradients predicted by our inversion might be misinterpreted as basin-scale dynamics. Also, the oceans amplify a land degree-1 load by 20--30%, which suggests that deformation (and models of geocenter displacements) would be sensitive to the accuracy of ocean bottom pressure, particularly in the southern hemisphere.
Coral Microatolls and Their Role as Fixed Biological Indicators of Holocene Sea-Level Changes
NASA Astrophysics Data System (ADS)
Woodroffe, C. D.; Smithers, S. G.; McGregor, H. V.
2008-12-01
Corals microatolls are individual colonies of massive coral that have grown up to a level at which further upward growth is constrained by exposure at low tide, and which then continue to grow outwards, resulting in a flat-topped discoid morphology. Typically, microatolls comprise a single colony of massive Porites up to several metres in diameter. Modern microatolls are living on their outer margin but are predominantly dead on their upper surface. Microatolls are fixed biological sea-level indicators of the former upper limits to coral growth providing information on sea level at several temporal scales. Fossil microatolls have been used extensively to reconstruct broad patterns of Holocene sea-level trends in the Indo-Pacific reef province. Where they are preserved at a height above that of their living counterparts in the eastern Indian Ocean, Southeast Asia, northern Australia, and across much of the equatorial Pacific Ocean, they indicate that reef flats have experienced relatively higher sea levels in the mid- and late Holocene. Progressively lower corals have been interpreted to record the fall in sea level to its present position over millennial time scales. Large specimens of microatolls can reach several metres in diameter and contain a growth record of tens to hundreds of years; the upper surfaces of these can be used to track the pattern of sea-level variation over several decades. In this paper we explore the potential for using concentric annuli and subtle undulations preserved on microatoll upper surfaces to interpret sea-level changes over decadal to millennial time scales. We demonstrate that in the central Pacific modern microatolls preserve a surface morphology that reflects oscillations of sea level associated with El Niño. We evaluate the extent to which similar fluctuations may be recorded in the morphology of Indian Ocean microatolls, and the circumstances which promote the preservation of these morphological records of sea-level change over longer time scales. We discuss the potential to reconstruct extended records of sea-level change by using geochemical signatures preserved within microatoll skeletons to improve cross-correlations between colonies, and assess the precision with which sea level can be inferred.
NASA Astrophysics Data System (ADS)
Du, L.; Shi, H.; Zhang, S.
2017-12-01
Acting as the typical shelf seas in northwest Pacific Ocean, regional sea level along China coasts exhibits complicated and multiscale spatial-temporal characteristics under circumstance of global change. In this paper, sea level variability is investigated with tide gauges records, satellite altimetry data, reconstructed sea surface height, and CMIP simulation fields. Sea level exhibits the interannual variability imposing on a remarkable sea level rising in the China seas and coastal region, although its seasonal signals are significant as the results of global ocean. Sea level exhibits faster rising rate during the satellite altimetry era, nearly twice to the rate during the last sixty years. AVISO data and reconstructed sea surface heights illustrate good correlation coefficient, more than 0.8. Interannual sea level variation is mainly modulated by the low-frequency variability of wind fields over northern Pacific Ocean by local and remote processes. Meanwhile sea level varies obviously by the transport fluctuation and bimodality path of Kuroshio. Its variability possibly linked to internal variability of the ocean-atmosphere system influenced by ENSO oscillation. China Sea level have been rising during the 20th century, and are projected to continue to rise during this century. Sea level can reach the highest extreme level in latter half of 21st century. Modeled sea level including regional sea level projection combined with the IPCC climate scenarios play a significant role on coastal storm surge evolution. The vulnerable regions along the ECS coast will suffer from the increasing storm damage with sea level variations.
Potentiometric surface of the Upper Patapsco aquifer in southern Maryland, September 2009
Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.
2010-01-01
This report presents a map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 65 wells. The highest measured water level was 118 feet above sea level near the northern boundary and outcrop area of the aquifer in northern Anne Arundel County. From this area, the potentiometric surface declined to the south toward a well field in the Annapolis-Arnold area, and from all directions toward three additional cones of depression. These cones are located in the Waldorf-La Plata area, Chalk Point, and the Leonardtown-Lexington Park area. The lowest measured groundwater levels were 26 feet below sea level at Annapolis, 108 feet below sea level south of Waldorf, 60 feet below sea level at Chalk Point, and 83 feet below sea level at Leonardtown. The map also shows well yield in gallons per day for 2008 at wells or well fields.
Map showing the potentiometric surface of the Magothy Aquifer in southern Maryland, September 1979
Mack, Frederick K.; Wheeler, J.C.; Curtin, Stephen E.
1980-01-01
This map is based on measurements made on a network of 77 observation wells in southern Maryland. Highest levels of the potentiometric surface, 63 to 67 feet above sea level, were measured near the outcrop or subcrop of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. The surface slopes to the southeast to about 5 feet above sea level along much of the western shore of the Chesapeake Bay. Four separate, distinct, and extensive cones of depression have developed in the surface around the well fields of the city of Annapolis, Broadneck, town of Waldorf, and Chalk Point. Several square miles of each cone are below sea level and in localized areas at Chalk Point and Waldorf, the surface is 40 to 50 feet below sea level. The network of wells was developed as part of the cooperative program between the U.S. Geological Survey, the Maryland Geological Survey, and the Maryland Energy and Coastal Zone Administration. (USGS)
NASA Astrophysics Data System (ADS)
Andersen, O. B.; Passaro, M.; Benveniste, J.; Piccioni, G.
2016-12-01
A new initiative within the ESA Sea Level Climate Change initiative (SL-cci) framework to improve the Arctic sea level record has been initiated as a combined effort to reprocess and retrack past altimetry to create a 25-year combined sea level record for sea level research studies. One of the objectives is to retracked ERS-2 dataset for the high latitudes based on the ALES retracking algorithm through adapting the ALES retracker for retracking of specular surfaces (leads). Secondly a reprocessing using tailored editing to Arctic Conditions will be carried out also focusing on the merging of the multi-mission data. Finally an effort is to combine physical and empirical retracked sea surface height information to derive an experimental spatio-temporal enhanced sea level product for high latitude. The first results in analysing Arctic Sea level variations on annual inter-annual scales for the 1992-2015 from a preliminar version of this dataset is presented. By including the GRACE water storage estimates and NOAA halo- and thermo-steric sea level variatios since 2002 a preliminary attempt to close the Arctic Sea level budget is presented here. Closing the Arctic sea level budget is by no mean trivial as both steric data and satellite altimetry is both sparse temporally and limited geographically.
Copper in the sediment and sea surface microlayer near a fallowed, open-net fish farm.
Loucks, Ronald H; Smith, Ruth E; Fisher, Clyde V; Fisher, E Brian
2012-09-01
Sediment and sea surface microlayer samples near an open-net salmon farm in Nova Scotia, were analysed for copper. Copper is a constituent of the feed and is an active ingredient of anti-foulants. The salmon farm was placed in fallow after 15 years of production. Sampling was pursued over 27 months. Elevated copper concentrations in the sediments indicated the farm site as a source. Bubble flotation due to gas-emitting sediments from eutrophication is a likely process for accumulating copper in the sea surface microlayer at enriched concentrations. Elevated and enriched concentrations in the sea surface microlayer over distance from the farm site led, as a result of wind-drift, to an enlarged farm footprint. The levels of copper in both sediments and sea surface microlayer exceeded guidelines for protection of marine life. Over the 27 months period, copper levels persisted in the sediments and decreased gradually in the sea surface microlayer. Copyright © 2012 Elsevier Ltd. All rights reserved.
The vulnerability of Indo-Pacific mangrove forests to sea-level rise
Lovelock, Catherine E.; Cahoon, Donald R.; Friess, Daniel A.; Guntenspergen, Glenn R.; Krauss, Ken W.; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L.; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran
2015-01-01
Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world’s mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.
The vulnerability of Indo-Pacific mangrove forests to sea-level rise.
Lovelock, Catherine E; Cahoon, Donald R; Friess, Daniel A; Guntenspergen, Glenn R; Krauss, Ken W; Reef, Ruth; Rogers, Kerrylee; Saunders, Megan L; Sidik, Frida; Swales, Andrew; Saintilan, Neil; Thuyen, Le Xuan; Triet, Tran
2015-10-22
Sea-level rise can threaten the long-term sustainability of coastal communities and valuable ecosystems such as coral reefs, salt marshes and mangroves. Mangrove forests have the capacity to keep pace with sea-level rise and to avoid inundation through vertical accretion of sediments, which allows them to maintain wetland soil elevations suitable for plant growth. The Indo-Pacific region holds most of the world's mangrove forests, but sediment delivery in this region is declining, owing to anthropogenic activities such as damming of rivers. This decline is of particular concern because the Indo-Pacific region is expected to have variable, but high, rates of future sea-level rise. Here we analyse recent trends in mangrove surface elevation changes across the Indo-Pacific region using data from a network of surface elevation table instruments. We find that sediment availability can enable mangrove forests to maintain rates of soil-surface elevation gain that match or exceed that of sea-level rise, but for 69 per cent of our study sites the current rate of sea-level rise exceeded the soil surface elevation gain. We also present a model based on our field data, which suggests that mangrove forests at sites with low tidal range and low sediment supply could be submerged as early as 2070.
Seasonal Ice Zone Reconnaissance Surveys Coordination
2016-03-30
sea surface temperature (SST), sea level atmospheric pressure ( SLP ), and velocity (Steele), and dropsonde measurements of atmospheric properties...aircraft), cloud top/base heights UpTempO buoys for understanding and prediction…. Steele UpTempO buoy drops for SLP , SST, SSS, & surface velocity...reflectance, skin temperature, visible imagery AXCTD= Air Expendable CTD, AXCP= Air Expendable Current Profiler, SLP = Sea Level atmospheric
NASA Astrophysics Data System (ADS)
Abulaitijiang, Adili; Baltazar Andersen, Ole; Stenseng, Lars
2014-05-01
Cryosat-2 offers the first ever possibility to perform coastal altimetric studies using SAR-Interferometry. This enabled qualified measurements of sea surface height (SST) in the fjords in Greenland. Scoresbysund fjord on the east coast of Greenland is the largest fjord in the world which is also covered by CryoSat-2 SAR-In mask making it a good test region. Also, the tide gauge operated by DTU Space is sitting in Scoresbysund bay, which provides solid ground-based sea level variation records throughout the year. We perform an investigation into sea surface height variation since the start of the Cryosat-2 mission using SAR-In L1B data processed with baseline B processing. We have employed a new develop method for projecting all SAR-In observations in the Fjord onto a centerline up the Fjord. Hereby we can make solid estimates of the annual and (semi-) annual signal in sea level/sea ice freeboard within the Fjord. These seasonal height variations enable us to derive sea ice freeboard changes in the fjord from satellite altimetry. Derived sea level and sea-ice freeboard can be validated by comparison with the tide gauge observations for sea level and output from the Microwave Radiometer derived observations of sea ice freeboard developed at the Danish Meteorological Institute.
Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 1999
Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.
2001-01-01
This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 1999. The map is based on water-level measurements in 85 wells. The potentiometric surface was above sea level near the northern boundary and outcrop area of the aquifer in a topographically high area of Anne Arundel County, and was below sea level in the remainder of the study area. The hydraulic gradient was directed southeastward toward an extensive cone of depression around well fields at Lexington Park and Solomons Island. Ground-water levels were more than 80 feet below sea level in a 100-square-mile area surrounding the deepest part of the cone of depression. A cone of depression formed in northern Calvert County due to pumpage at Chesapeake Beach and North Beach. The water level has declined to 43 feet below sea level in this area. The lowest measurement was 164 feet below sea level in a well near the center of the cone of depression at Lexington Park.
NASA Astrophysics Data System (ADS)
Millan-Otoya, Juan C.
The present study had two main objectives. The first was to determine the degree of understanding of climate change, sea level and sea level rise among middle school students. Combining open-ended questions with likert-scaled questions, we identified student conceptions on these topics in 86 students from 7th and 8th grades during 2012 and 2013 before and after implementing a Curriculum Unit (CU). Additional information was obtained by adding drawings to the open-ended questions during the second year to gauge how student conceptions varied from a verbal and a visual perspective. Misconceptions were identified both pre- and post-CU among all the topics taught. Students commonly used climate and climate change as synonyms, sea level was often defined as water depth, and several students failed to understand the complexities that determine changes in sea level due to wind, tides, and changes in sea surface temperature. In general, 8th grade students demonstrated a better understanding of these topics, as reflected in fewer apparent misconceptions after the CU. No previous study had reported such improvement. This showed the value of implementing short lessons. Using Piaget's theories on cognitive development, the differences between 7th and 8th grade students reflect a transition to a more mature level which allowed students to comprehend more complex concepts that included multiple variables. The second objective was to determine if the frequency of sea level maxima not associated with tides over the last 100 years increased in two tide gauges located on the two extremes of the Panama canal, i.e. Balboa in the Pacific Ocean and Cristobal in the Caribbean Sea. These records were compared to time series of regional sea surface temperature, wind speed, atmospheric pressure, and El Nino-Southern Oscillation (ENSO), to determine if these played a role as physical drivers of sea level at either location. Neither record showed an increase in the frequency of sea level maxima events. No parameter analyzed explained variability in sea level maxima in Cristobal. There was a significant correlation between the zonal component of the wind and sea level at Balboa for the early record (r=0.153; p-value<0.05), but for the most part the p-values did not support the hypothesis of a correlation. Similarly, sea surface temperature had an effect on sea level at Balboa, but the null hypothesis that there is no correlation could not be rejected (p-value>0.05). There was a clear relationship between sea level maxima and ENSO. 70% of the years with higher counts of higher sea level events corresponded to El Nino years. A randomization test with 1000 iterations, shuffling the El Nino years, showed most of these randomizations grouped between 14-35% of the events occurring during a randomized El Nino year. In no iteration did the percentage of events that occurred during El Nino years rise above 65%. The correlation with zonal wind and the probable correlation with sea surface temperature can be linked via ENSO, since ENSO is associated with changes in the strength of the Trade Winds and positive anomalies in the sea surface temperature of the tropical Pacific Ocean.
Global mean sea level - Indicator of climate change
NASA Technical Reports Server (NTRS)
Robock, A.; Hansen, J.; Gornitz, V.; Lebedeff, S.; Moore, E.; Etkins, R.; Epstein, E.
1983-01-01
A critical discussion is presented on the use by Etkins and Epstein (1982) of combined surface air temperature and sea level time series to draw conclusions concerning the discharge of the polar ice sheets. It is objected by Robock that they used Northern Hemisphere land surface air temperature records which are unrepresentative of global sea surface temperature, and he suggests that externally imposed volcanic dust and CO2 forcings can adequately account for observed temperature changes over the last century, with global sea level changing in passive response to sea change as a result of thermal expansion. Hansen et al. adduce evidence for global cooling due to ice discharge that has not exceeded a few hundredths of a degree centigrade in the last century, precluding any importance of this phenomenon in the interpretation of global mean temperature trends for this period. Etkins and Epstein reply that since their 1982 report additional evidence has emerged for the hypothesis that the polar ice caps are diminishing. It is reasserted that each of the indices discussed, including global mean sea surface temperature and sea level, polar ice sheet mass balance, water mass characteristics, and the spin rate and axis of rotation displacement of the earth, are physically linked and can be systematically monitored, as is currently being planned under the auspices of the National Climate Program.
Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 2001
Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.
2002-01-01
This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2001. The map is based on water-level measurements in 76 wells. The potentiometric surface was highest at 40 feet above sea level near the northern boundary and outcrop area of the aquifer in the central part of Anne Arundel County, and was below sea level in the remainder of the study area. The hydraulic gradient was directed southeastward toward an extensive cone of depression around well fields at Lexington Park and Solomons Island. A cone of depression formed in northern Calvert County due to pumpage at Chesapeake Beach and North Beach. The water level has declined to 44 feet below sea level in this area. The lowest measurement was 160 feet below sea level at the center of a cone of depression at Lexington Park.
An Experimental Real-Time Ocean Nowcast/Forecast System for Intra America Seas
NASA Astrophysics Data System (ADS)
Ko, D. S.; Preller, R. H.; Martin, P. J.
2003-04-01
An experimental real-time Ocean Nowcast/Forecast System has been developed for the Intra America Seas (IASNFS). The area of coverage includes the Caribbean Sea, the Gulf of Mexico and the Straits of Florida. The system produces nowcast and up to 72 hours forecast the sea level variation, 3D ocean current, temperature and salinity fields. IASNFS consists an 1/24 degree (~5 km), 41-level sigma-z data-assimilating ocean model based on NCOM. For daily nowcast/forecast the model is restarted from previous nowcast. Once model is restarted it continuously assimilates the synthetic temperature/salinity profiles generated by a data analysis model called MODAS to produce nowcast. Real-time data come from satellite altimeter (GFO, TOPEX/Poseidon, ERS-2) sea surface height anomaly and AVHRR sea surface temperature. Three hourly surface heat fluxes, including solar radiation, wind stresses and sea level air pressure from NOGAPS/FNMOC are applied for surface forcing. Forecasts are produced with available NOGAPS forecasts. Once the nowcast/forecast are produced they are distributed through the Internet via the updated web pages. The open boundary conditions including sea surface elevation, transport, temperature, salinity and currents are provided by the NRL 1/8 degree Global NCOM which is operated daily. An one way coupling scheme is used to ingest those boundary conditions into the IAS model. There are 41 rivers with monthly discharges included in the IASNFS.
Map showing the potentiometric surface of the Magothy Aquifer in southern Maryland, September 1981
Mack, F.K.; Wheeler, J.C.; Curtin, S.E.
1982-01-01
The map is based on measurements from a network of 83 observation wells cased to the Magothy aquifer. Highest levels of the potentiometric surface, 59 to 60 feet above sea level, were measured near the outcrop-subcrop of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. The surface slopes to the southeast to above sea level along much of the western shore of Chesapeake Bay. Three separate, distinct, and extensive cones of depression have developed in the potentiometric surface around the well fields of the city of Annapolis-Broadneck Peninsula area, town of Waldorf, and Chalk Point. Several square miles of each cone are below sea level, and, in some areas at Chalk Point and Waldorf, the cone is 40 to 50 feet below sea level. The network of wells was developed as part of the cooperative program between the U.S. Geological Survey, the Maryland Geological Survey, and the Maryland Energy and Coastal Zone Administration. (USGS)
Map showing the potentiometric surface of the Magothy Aquifer in southern Maryland, September 1982
Mack, Frederick K.; Wheeler, Judith C.; Curtin, Stephen E.
1982-01-01
A map was prepared that shows the potentiometric surface of the Magothy aquifer in southern Maryland in September 1982. The map is based on measurements from a network of 83 observation wells. The highest levels of the potentiometric surface, 57 and 58 feet above sea level, were measured near the outcrop-subcrop of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. The potentiometric surface slopes to the southeast to about sea level along much of the western shore of the Chesapeake Bay. Three distinct and extensive cones of depression have developed in the potentiometric surface around the well fields of the Annapolis area, Waldorf area, and Chalk Point. Several square miles of each cone are below sea level, and in some areas at Chalk Point and Waldorf, the cone is more than 50 feet below sea level. The network of wells was developed as part of the cooperative program between the U.S. Geological Survey, the Maryland Geological Survey, and the Maryland Energy Administration. (USGS)
NASA Astrophysics Data System (ADS)
Ponte, Aurélien L.; Klein, Patrice; Dunphy, Michael; Le Gentil, Sylvie
2017-03-01
The performance of a tentative method that disentangles the contributions of a low-mode internal tide on sea level from that of the balanced mesoscale eddies is examined using an idealized high resolution numerical simulation. This disentanglement is essential for proper estimation from sea level of the ocean circulation related to balanced motions. The method relies on an independent observation of the sea surface water density whose variations are 1/dominated by the balanced dynamics and 2/correlate with variations of potential vorticity at depth for the chosen regime of surface-intensified turbulence. The surface density therefore leads via potential vorticity inversion to an estimate of the balanced contribution to sea level fluctuations. The difference between instantaneous sea level (presumably observed with altimetry) and the balanced estimate compares moderately well with the contribution from the low-mode tide. Application to realistic configurations remains to be tested. These results aim at motivating further developments of reconstruction methods of the ocean dynamics based on potential vorticity dynamics arguments. In that context, they are particularly relevant for the upcoming wide-swath high resolution altimetric missions (SWOT).
NASA Astrophysics Data System (ADS)
Plach, Andreas; Hestnes Nisancioglu, Kerim
2016-04-01
The contribution from the Greenland Ice Sheet (GIS) to the global sea level rise during the Eemian interglacial (about 125,000 year ago) was the focus of many studies in the past. A main reason for the interest in this period is the considerable warmer climate during the Eemian which is often seen as an equivalent for possible future climate conditions. Simulated sea level rise during the Eemian can therefore be used to better understand a possible future sea level rise. The most recent assessment report of the Intergovernmental Panel on Climate Change (IPCC AR5) gives an overview of several studies and discusses the possible implications for a future sea level rise. The report also reveals the big differences between these studies in terms of simulated GIS extent and corresponding sea level rise. The present study gives a more exhaustive review of previous work discussing sea level rise from the GIS during the Eemian interglacial. The smallest extents of the GIS simulated by various authors are shown and summarized. A focus is thereby given to the methods used to calculate the surface mass balance. A hypothesis of the present work is that the varying results of the previous studies can largely be explained due to the various methods used to calculate the surface mass balance. In addition, as a first step for future work, the surface mass balance of the GIS for a proxy-data derived forcing ("index method") and a direct forcing with a General Circulation Model (GCM) are shown and discussed.
Potentiometric surface of the middle Potomac Aquifer in Virginia 1993
Hammond, E.C.; McFarland, E.R.; Focazio, M.J.
1994-01-01
Ground-water level measurements from 50 wells in the middle Potomac aquifer in the Coastal Plain Physiographic Province of Virginia in 1993 were used to prepare a map of the potentiometric surface of the aquifer. The map shows the potentiometric surface of the middle Potomac aquifer sharply declining eastward from nearly 100 feet above sear level near the western boundary of the aquifer to 20 feet below sea level, and continues declining gradually toward the Chesapeake Bay and Atlantic Ocean. A cone of depression is apparent around well fields in Franklin, Virginia. The potentiometric surface also appears to be affected by pumping in the area of Henrico County and Hanover County, Virginia. The highest ground-water-level measurement was 89 feet above sea level in Chesterfield County near Richmond, and the lowest ground-water-level measurement was 179 feet below sea level in southeastern Isle of Wight County, Virginia.
2014-09-30
dropsondes, micro- aircraft), cloud top/base heights Arctic Ocean Surface Temperature project Steele Buoy drops for SLP , SST, SSS, & surface velocity...Colón & Vancas (NIC) Drop buoys for SLP , temperature and surface velocity Waves & Fetch in the MIZ Thompson SWIFTS buoys measuring wave energy...Expendable CTD, AXCP= Air Expendable Current Profiler, SLP = Sea Level atmospheric Pressure, SST= Seas Surface Temperature, A/C= aircraft, FSD= Floe Size Distribution, SIC=Sea Ice Concentration
Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model
Swain, Eric; Stefanova, Lydia; Smith, Thomas
2014-01-01
Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.
Potentiometric surface of the Magothy Aquifer in southern Maryland, September 1991
Curtin, Stephen E.; Andreasen, D.C.; Mack, Frederick K.
1993-01-01
A map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in southern Maryland during September 1991 was prepared from water levels measured in 89 wells. The potentiometric surface was highest near the northwestern boundary and outcrop area of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. Regionally, the potentiometric surface sloped gently downward toward the southeast, and the local gradients were directed toward the centers of 3 cones of depression that have developed in response to pumping. These cones were centered around well fields in the Annapolis, Waldorf, and Chalk Point areas. Groundwater levels were more than 50 feet below sea level in the Waldorf area, nearly 50 feet below sea level at Chalk Point, and greater than 10 feet below sea level near Annapolis.
Potentiometric surface of the Magothy Aquifer in southern Maryland, September 1994
Curtin, Stephen E.; Mack, Frederick K.; Andreasen, David C.
1995-01-01
A map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in southern Maryland during September 1994 was prepared from water levels measured in 85 wells. The potentiometric surface was highest near the northwestern boundary and outcrop area of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. Regionally, the potentiometric surface sloped gently downward toward the southeast, and the local gradients were directed toward the centers of three cones of depression that have developed in response to pumping. These cones were centered around well fields in the Annapolis, Waldorf, and Chalk Point areas. Ground-water levels were as low as 60 feet below sea level in the Waldorf area, more than 45 feet below sea level at Chalk Point, and almost 15 feet below sea level near Annapolis.
Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 1995
Curtin, Stephen E.; Andreasen, David C.; Mack, Frederick K.
1996-01-01
A map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Cretaceous age in southern Maryland during September 1995 was prepared from water-level measurements in 92 wells. The potentiometric surface was highest near the northwestern boundaryand outcrop area of the aquifer in topographically high areas of Anne Arundel and Prince Georges Counties. Regionally, the potentiometric surface sloped gently downward towards the southeast and the local gradients were directed toward the centers of three cones of depression that have developed in response to pumping. These cones were centeredaround well fields in the Annapolis, Waldorf, and Chalk Point areas. Ground-water levels were as low as 63 feet below sea level in the Waldorf area, more than 50 feet below sea level at Chalk Point, and almost 20 feet below sea level near Annapolis.
Steric and mass-induced Mediterranean sea level trends from 14 years of altimetry data
NASA Astrophysics Data System (ADS)
Criado-Aldeanueva, Francisco; Del Río Vera, Jorge; García-Lafuente, Jesús
2008-02-01
Long-term series of almost 14 years of altimetry data (1992-2005) have been analysed along with Sea Surface Temperature (SST) and temperature and salinity profiles to investigate sea level trends over the Mediterranean Sea. Although sea level variations are mainly driven by the steric contribution, the mass-induced component plays some role in modulating its oscillation. A spatially averaged positive trend of 2.1 ± 0.6 mm/year has been observed, but a change in sign in 2001 seems to appear. Steric effects (mainly on thermal origin) account for ˜ 55% of sea level trend. Although Mediterranean Sea is a semi-enclosed basin, this value is comparable to that reported for the global ocean. Sea level rise is particularly important in the Levantine basin south of Crete with values up to 10 ± 1 mm/year. Other areas of sea level rise are localised throughout the Levantine basin and in the Adriatic and Alboran Seas, with more moderate values. Sea level drop areas are localised in the Algerian basin, between the Balearic Islands and the African coasts and, particularly, in the Ionian basin. In this area, negative trends as high as - 10 ± 0.8 mm/year are detected mainly due to the mass-induced contribution, which suggests decadal changes of surface circulation. The inferred sea level trends have been correlated with North Atlantic Oscillation (NAO) indices and a low but significant correlation has been detected between sea level in the Levantine and Balearic basins and NAO index.
Improving NOAA's NWLON Through Enhanced Data Inputs from NASA's Ocean Surface Topography
NASA Technical Reports Server (NTRS)
Guest, DeNeice C.
2010-01-01
This report assesses the benefit of incorporating NASA's OSTM (Ocean Surface Topography Mission) altimeter data (C- and Ku-band) into NOAA's (National Oceanic and Atmospheric Administration) NWLON (National Water Level Observation Network) DSS (Decision Support System). This data will enhance the NWLON DSS by providing additional inforrnation because not all stations collect all meteorological parameters (sea-surface height, ocean tides, wave height, and wind speed over waves). OSTM will also provide data where NWLON stations are not present. OSTM will provide data on seasurface heights for determining sea-level rise and ocean circulation. Researchers and operational users currently use satellite altimeter data products with the GSFCOO NASA data model to obtain sea-surface height and ocean circulation inforrnation. Accurate and tirnely inforrnation concerning sea-level height, tide, and ocean currents is needed to irnprove coastal tidal predictions, tsunarni and storm surge warnings, and wetland restoration.
NASA Astrophysics Data System (ADS)
Oliver, Eric C. J.
2014-01-01
Intraseasonal variability of the tropical Indo-Pacific ocean is strongly related to the Madden-Julian Oscillation (MJO). Shallow seas in this region, such as the Gulf of Thailand, act as amplifiers of the direct ocean response to surface wind forcing by efficient setup of sea level. Intraseasonal ocean variability in the Gulf of Thailand region is examined using statistical analysis of local tide gauge observations and surface winds. The tide gauges detect variability on intraseasonal time scales that is related to the MJO through its effect on local wind. The relationship between the MJO and the surface wind is strongly seasonal, being most vigorous during the monsoon, and direction-dependent. The observations are then supplemented with simulations of sea level and circulation from a fully nonlinear barotropic numerical ocean model (Princeton Ocean Model). The numerical model reproduces well the intraseasonal sea level variability in the Gulf of Thailand and its seasonal modulations. The model is then used to map the wind-driven response of sea level and circulation in the entire Gulf of Thailand. Finally, the predictability of the setup and setdown signal is discussed by relating it to the, potentially predictable, MJO index.
Estimation of sea level variations with GPS/GLONASS-reflectometry technique
NASA Astrophysics Data System (ADS)
Padokhin, A. M.; Kurbatov, G. A.; Andreeva, E. S.; Nesterov, I. A.; Nazarenko, M. O.; Berbeneva, N. A.; Karlysheva, A. V.
2017-11-01
In the present paper we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSSreceiver, which are based on the multipath propagation effects caused by the reflection of navigational signals from the sea surface. Such multipath propagation results in the appearance of the interference pattern in the Signal-to-Noise Ratio (SNR) of GNSS signals at small satellite elevation angles, which parameters are determined by the wavelength of the navigational signal and height of the antenna phase center above the reflecting sea surface. In current work we used GPS and GLONASS signals and measurements at two working frequencies of both systems to study sea level variations which almost doubles the amount of observations compared to GPS-only tide gauge. For UNAVCO sc02 station and collocated Friday Harbor NOAA tide gauge we show good agreement between GNSS-reflectometry and traditional mareograph sea level data.
2003-11-18
Some climate forecast models indicate there is an above average chance that there could be a weak to borderline El Niño by the end of November 2003. However, the trade winds, blowing from east to west across the equatorial Pacific Ocean, remain strong. Thus, there remains some uncertainty among climate scientists as to whether the warm temperature anomaly will form again this year. The latest remote sensing data from NASA's Jason satellite show near normal conditions across the equatorial Pacific. There are currently no visible signs in sea surface height of an impending El Niño. This equatorial quiet contrasts with the Bering Sea, Gulf of Alaska and U.S. West Coast where lower-than-normal sea surface levels and cool ocean temperatures continue (indicated by blue and purple areas). The image above is a global map of sea surface height, accurate to within 30 millimeters. The image represents data collected and composited over a 10-day period, ending on Nov. 3, 2003. The height of the water relates to the temperature of the water. As the ocean warms, its level rises; and as it cools, its level falls. Yellow and red areas indicate where the waters are relatively warmer and have expanded above sea level, green indicates near normal sea level, and blue and purple areas show where the waters are relatively colder and the surface is lower than sea level. The blue areas are between 5 and 13 centimeters (2 and 5 inches) below normal, whereas the purple areas range from 14 to 18 centimeters (6 to 7 inches) below normal. http://photojournal.jpl.nasa.gov/catalog/PIA04878
Portrait of a Warming Ocean and Rising Sea Levels: Trend of Sea Level Change 1993-2008
NASA Technical Reports Server (NTRS)
2008-01-01
Warming water and melting land ice have raised global mean sea level 4.5 centimeters (1.7 inches) from 1993 to 2008. But the rise is by no means uniform. This image, created with sea surface height data from the Topex/Poseidon and Jason-1 satellites, shows exactly where sea level has changed during this time and how quickly these changes have occurred. It's also a road map showing where the ocean currently stores the growing amount of heat it is absorbing from Earth's atmosphere and the heat it receives directly from the Sun. The warmer the water, the higher the sea surface rises. The location of heat in the ocean and its movement around the globe play a pivotal role in Earth's climate. Light blue indicates areas in which sea level has remained relatively constant since 1993. White, red, and yellow are regions where sea levels have risen the most rapidly up to 10 millimeters per year and which contain the most heat. Green areas have also risen, but more moderately. Purple and dark blue show where sea levels have dropped, due to cooler water. The dramatic variation in sea surface heights and heat content across the ocean are due to winds, currents and long-term changes in patterns of circulation. From 1993 to 2008, the largest area of rapidly rising sea levels and the greatest concentration of heat has been in the Pacific, which now shows the characteristics of the Pacific Decadal Oscillation (PDO), a feature that can last 10 to 20 years or even longer. In this 'cool' phase, the PDO appears as a horseshoe-shaped pattern of warm water in the Western Pacific reaching from the far north to the Southern Ocean enclosing a large wedge of cool water with low sea surface heights in the eastern Pacific. This ocean/climate phenomenon may be caused by wind-driven Rossby waves. Thousands of kilometers long, these waves move from east to west on either side of the equator changing the distribution of water mass and heat. This image of sea level trend also reveals a significant area of rising sea levels in the North Atlantic where sea levels are usually low. This large pool of rapidly rising warm water is evidence of a major change in ocean circulation. It signals a slow down in the sub-polar gyre, a counter-clockwise system of currents that loop between Ireland, Greenland and Newfoundland. Such a change could have an impact on climate since the sub-polar gyre may be connected in some way to the nearby global thermohaline circulation, commonly known as the global conveyor belt. This is the slow-moving circulation in which water sinks in the North Atlantic at different locations around the sub-polar gyre, spreads south, travels around the globe, and slowly up-wells to the surface before returning around the southern tip of Africa. Then it winds its way through the surface currents in the Atlantic and eventually comes back to the North Atlantic. It is unclear if the weakening of the North Atlantic sub-polar gyre is part of a natural cycle or related to global warming. This image was made possible by the detailed record of sea surface height measurements begun by Topex/Poseidon and continued by Jason-1. The recently launched Ocean Surface Topography Mission on the Jason-2 satellite (OSTM/Jason-2) will soon take over this responsibility from Jason-1. The older satellite will move alongside OSTM/Jason-2 and continue to measure sea surface height on an adjacent ground track for as long as it is in good health. Topex/Poseidon and Jason-1 are joint missions of NASA and the French space agency, CNES. OSTM/Jason-2 is collaboration between NASA; the National Oceanic and Atmospheric Administration; CNES; and the European Organisation for the Exploitation of Meteorological Satellites. JPL manages the U.S. portion of the missions for NASA's Science Mission Directorate, Washington, D.C.Geomagnetic South Atlantic Anomaly and global sea level rise: A direct connection?
NASA Astrophysics Data System (ADS)
de Santis, A.; Qamili, E.; Spada, G.; Gasperini, P.
2012-01-01
We highlight the existence of an intriguing and to date unreported relationship between the surface area of the South Atlantic Anomaly (SAA) of the geomagnetic field and the current trend in global sea level rise. These two geophysical variables have been growing coherently during the last three centuries, thus strongly suggesting a causal relationship supported by some statistical tests. The monotonic increase of the SAA surface area since 1600 may have been associated with an increased inflow of radiation energy through the inner Van Allen belt with a consequent warming of the Earth's atmosphere and finally global sea level rise. An alternative suggestive and original explanation is also offered, in which pressure changes at the core-mantle boundary cause surface deformations and relative sea level variations. Although we cannot establish a clear connection between SAA dynamics and global warming, the strong correlation between the former and global sea level supports the idea that global warming may be at least partly controlled by deep Earth processes triggering geomagnetic phenomena, such as the South Atlantic Anomaly, on a century time scale.
NASA Astrophysics Data System (ADS)
Wu, Qing; Luu, Quang-Hung; Tkalich, Pavel; Chen, Ge
2018-04-01
Having great impacts on human lives, global warming and associated sea level rise are believed to be strongly linked to anthropogenic causes. Statistical approach offers a simple and yet conceptually verifiable combination of remotely connected climate variables and indices, including sea level and surface temperature. We propose an improved statistical reconstruction model based on the empirical dynamic control system by taking into account the climate variability and deriving parameters from Monte Carlo cross-validation random experiments. For the historic data from 1880 to 2001, we yielded higher correlation results compared to those from other dynamic empirical models. The averaged root mean square errors are reduced in both reconstructed fields, namely, the global mean surface temperature (by 24-37%) and the global mean sea level (by 5-25%). Our model is also more robust as it notably diminished the unstable problem associated with varying initial values. Such results suggest that the model not only enhances significantly the global mean reconstructions of temperature and sea level but also may have a potential to improve future projections.
EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice
NASA Astrophysics Data System (ADS)
Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.
2016-12-01
The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.
Plants Regulate Soil Organic Matter Decomposition in Response to Sea Level Rise
NASA Astrophysics Data System (ADS)
Megonigal, P.; Mueller, P.; Jensen, K.
2014-12-01
Tidal wetlands have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to their land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal wetlands become perched high in the tidal frame, decreasing their vulnerability to accelerated sea level rise. Plant growth responses to sea level rise are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of soil organic matter decomposition to rapid sea level rise. Here we quantified the effects of sea level on SOM decomposition rates by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian's Global Change Research Wetland. SOM decomposition rate was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated with a two end-member δ13C-CO2 model. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to flood duration over a 35 cm range in soil surface elevation. However, decomposition rates were strongly and positively related to aboveground biomass (R2≥0.59, p≤0.01). We conclude that soil carbon loss through decomposition is driven by plant responses to sea level in this intensively studied tidal marsh. If this result applies more generally to tidal wetlands, it has important implications for modeling soil organic matter and surface elevation change in response to accelerated sea level rise.
Sea-level and solid-Earth deformation feedbacks in ice sheet modelling
NASA Astrophysics Data System (ADS)
Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk
2014-05-01
The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.
NASA Astrophysics Data System (ADS)
Albrecht, F.; Pizarro, O.; Montecinos, A.
2016-12-01
The subtropical ocean gyre in the South Pacific is a large scale wind-driven ocean circulation, including the Peru-Chile Current, the westward South Equatorial Current, the East Australian Current, and the eastward South Pacific Current. Large scale ocean circulations play an essential role in the climate of the Earth over long and short term time scales.In the recent years a spin-up of this circulation has been recognized analyzing observations of sea level, temperature and salinity profiles, sea surface temperature and wind. Until now it is not clear whether this spin-up is decadal variability or whether it is a long-term trend introduced by anthropogenic forcing. This study aims to analyze whether and how anthropogenic forcing influences the position and the strength of the gyre in the 20th century. To determine that, yearly means of different variables of an ensemble of CMIP5 models are analyzed. The experiments 'historical' and 'historicalNat' are examined. The 'historical' experiment simulates the climate of the 20th century and the 'historicalNat' experiment covers the same time period, but only includes natural forcings. Comparing the outcomes of these two experiments is supposed to give information about the anthropogenic influence on the subtropical gyre of the South Pacific.The main variable we analyze is sea level change. This is directly related to the gyre circulation. The center of the gyre is characterized by a high pressure zone (high sea level) and the temporal and spatial variability of the sea level height field gives information about changes in the gyre circulation. The CMIP5 databank includes steric and dynamic sea level changes. Steric sea level, that is the contribution of temperature and salinity of the water, describes the major contribution to regional sea level change with respect to the global mean. Density changes contract or expand the water, which also changes the sea surface height. This does not only occur at the surface, but at all layers in the ocean. Sea level change thus integrates ocean variability throughout the depth of the ocean. Sea level simulations of the different experiments are compared using long-term trends, multi-year anomalies and EOF-Analysis. Changes in temperature and salinity in the deeper ocean are used to describe the development of the gyre below the surface.
Relative sea-level rise as indicated by gage data along the Mississippi and Alabama Gulf Coasts
Van Wilson, K.
2004-01-01
Global warming, or the increasing of earth's temperatures, leads to rising sea level as polar ice caps and mountain glaciers melt and ocean water undergoes thermal expansion. Tidal records collected by the U.S. Army Corps of Engineers (COE), Mobile District, at Gulfport, Biloxi, and Pascagoula, Mississippi, and at Mobile, Alabama, indicate trends of water-surface elevations increasing with time (relative sea-level rise). The trends indicated by the COE data were compared to relative sea-level trends indicated by the National Ocean Survey gages in the Gulf of Mexico. The average global rate of sea level rise has been suggested to approach about 2 mm/yr (0.007 ft/yr). Some leading scientists have suggested rates of sea level rise that are greater than 2 mm/yr, when accounting for effects of greenhouse gas emissions. As the sea level rises and inundates the coastal plain, structures along the existing coast and structures located in the back bays of estuaries will be even more adversely affected by future flooding. Also, if the land surface adjacent to the water also sinks due to soil compaction and other geologic processes (collectively call subsidence), additional land will be inundated. Copyright ASCE 2004.
NASA Astrophysics Data System (ADS)
Sheridan, S. C.; Lee, C. C.; Pirhalla, D.; Ransi, V.
2017-12-01
Sea-level fluctuations over time are a product of short-term weather events, as well as long-term secular trends in sea-level rise. With sea-levl rise, these fluctuations increasingly have substantial impacts upon coastal ecosystems and impact society through coastal flooding events. In this research, we assess the impact of short-term events, combined with sea-level rise, through synoptic climatological analysis, exploring whether circulation pattern identification can be used to enhance probabilistic forecasts of flood likelihood. Self-organizing maps (SOMs) were created for two discrete atmospheric variables: 700-hPa geopotential height (700z) and sea-level pressure (SLP). For each variable, a SOM array of patterns was created based on data spanning 25°-50°N and 60°-90°W for the period 1979-2014. Sea-level values were derived from tidal gauges between Cape May, New Jersey and Charleston, South Carolina, along the mid-Atlantic coast of the US. Both anomalous sea-level values, as well as nuisance flood occurrence (defined using the local gauge threshold), were assessed. Results show the impacts of both the inverted barometer effect as well as surface wind forcing on sea levels. With SLP, higher sea levels are associated with either patterns that were indicative of on-shore flow or cyclones. At 700z, ridges situated along the east coast are associated with higher sea levels. As the SOM matrix arranges atmospheric patterns in a continuum, the nodes of each SOM show a clear spatial pattern in terms of anomalous sea level, including some significant sea-level anomalies associated with relatively ambiguous pressure patterns. Further, multi-day transitions are also analyzed, showing rapidly deepening cyclones, or persistent onshore flow, can be associated with the greatest likelihood of nuisance floods. Results are weaker with 700z than SLP; however, in some cases, it is clear that the mid-tropospheric circulation can modulate the connection between sea-level anomalies and surface circulation.
NASA Astrophysics Data System (ADS)
Liu, X.; Bassis, J. N.
2015-12-01
With observations showing accelerated mass loss from the Greenland Ice Sheet due to surface melt, the Greenland Ice Sheet is becoming one of the most significant contributors to sea level rise. The contribution of the Greenland Ice Sheet o sea level rise is likely to accelerate in the coming decade and centuries as atmospheric temperatures continue to rise, potentially triggering ever larger surface melt rates. However, at present considerable uncertainty remains in projecting the contribution to sea level of the Greenland Ice Sheet both due to uncertainty in atmospheric forcing and the ice sheet response to climate forcing. Here we seek an upper bound on the contribution of surface melt from the Greenland to sea level rise in the coming century using a surface energy balance model coupled to an englacial model. We use IPCC Representative Concentration Pathways (RCP8.5, RCP6, RCP4.5, RCP2.6) climate scenarios from an ensemble of global climate models in our simulations to project the maximum rate of ice volume loss and related sea-level rise associated with surface melting. To estimate the upper bound, we assume the Greenland Ice Sheet is perpetually covered in thick clouds, which maximize longwave radiation to the ice sheet. We further assume that deposition of black carbon darkens the ice substantially turning it nearly black, substantially reducing its albedo. Although assuming that all melt water not stored in the snow/firn is instantaneously transported off the ice sheet increases mass loss in the short term, refreezing of retained water warms the ice and may lead to more melt in the long term. Hence we examine both assumptions and use the scenario that leads to the most surface melt by 2100. Preliminary models results suggest that under the most aggressive climate forcing, surface melt from the Greenland Ice Sheet contributes ~1 m to sea level by the year 2100. This is a significant contribution and ignores dynamic effects. We also examined a lower bound, assuming negligible longwave radiation and albedo near the maximum observed for freshly fallen snow. Even under this scenarios preliminary estimates suggest tens of centimeters of sea level rise by 2100.
Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 2007
Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.
2009-01-01
This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2007. The map is based on water-level measurements in 85 wells. The highest measured water level was 50 feet above sea level near the northern boundary and outcrop area of the aquifer in the central part of Anne Arundel County, and was below sea level just south of this area and in the remainder of the study area. The hydraulic gradient increased southeastward toward an extensive cone of depression around well fields at Lexington Park and Solomons Island. A water level measured west of the Cheasapeake Beach area has declined to 57 feet below sea level due to increased withdrawals. The lowest water level measured was 162 feet below sea level at the center of a cone of depression at Lexington Park.
Staley, Andrew W.; Andreasen, David C.; Curtin, Stephen E.
2014-01-01
The potentiometric surface maps show water levels ranging from 165 feet above sea level to 199 feet below sea level. Water levels have declined by as much as 113 feet in the Aquia aquifer since 1982, 81 feet in the Magothy aquifer since 1975, and 61 and 95 feet in the Upper Patapsco and Lower Patapsco aquifer systems, respectively, since 1990.
Changes of the Oceanic Long-term and seasonal variation in a Global-warming Climate
NASA Astrophysics Data System (ADS)
Xia, Q.; He, Y.; Dong, C.
2015-12-01
Abstract: Gridded absolute dynamic topography (ADT) from AVISO and outputs of sea surface height above geoid from a series of climate models run for CMIP5 are used to analysis global sea level variation. Variance has been calculated to determine the magnitude of change in sea level variation over two decades. Increasing trend of variance of ADT suggests an enhanced fluctuation as well as geostrophic shear of global ocean. To further determine on what scale does the increasing fluctuation dominate, the global absolute dynamic topography (ADT) has been separated into two distinguished parts: the global five-year mean sea surface (MSS) and the residual absolute dynamic topography (RADT). Increased variance of MSS can be ascribed to the nonuniform rising of global sea level and an enhancement of ocean gyres in the Pacific Ocean. While trend in the variance of RADT is found to be close to zero which suggests an unchanged ocean mesoscale variability. The Gaussian-like distribution of global ADT are used to study the change in extreme sea levels. Information entropy has also been adapted in our study. Increasing trend of information entropy which measures the degree of dispersion of a probability distribution suggests more appearance of extreme sea levels. Extreme high sea levels are increasing with a higher growing rate than the mean sea level rise.
New evidence for "far-field" Holocene sea level oscillations and links to global climate records
NASA Astrophysics Data System (ADS)
Leonard, N. D.; Welsh, K. J.; Clark, T. R.; Feng, Y.-x.; Pandolfi, J. M.; Zhao, J.-x.
2018-04-01
Rising sea level in the coming century is of significant concern, yet predicting relative sea level change in response to eustatic sea level variability is complex. Potential analogues are provided by the recent geological past but, until recently, many sea level reconstructions have been limited to millennial scale interpretations due to age uncertainties and paucity in proxy derived records. Here we present a sea level history for the tectonically stable "far-field" Great Barrier Reef, Australia, derived from 94 high precision uranium-thorium dates of sub-fossil coral microatolls. Our results provide evidence for at least two periods of relative sea level instability during the Holocene. These sea level oscillations are broadly synchronous with Indo-Pacific negative sea surface temperature anomalies, rapid global cooling events and glacial advances. We propose that the pace and magnitude of these oscillations are suggestive of eustatic/thermosteric processes operating in conjunction with regional climatic controls.
Dynamic sea surface topography from GEOS-3 altimetry - Determination of some dominant parameters
NASA Technical Reports Server (NTRS)
Mather, R. S.; Lerch, F. J.; Rizos, C.; Masters, E. G.; Hirsch, B.
1979-01-01
The second, third and fourth degree zonal harmonics of the quasi-stationary dynamic sea surface topography can be recovered from the GEOS-3 altimetry despite the adverse levels of noise indicated by the crossover discrepancies generated from the best orbits available at the end of 1977 and the GEOS-3 altimetry. Techniques for modelling the global sea surface topography are discussed along with methods for signal recovery in the presence of significant levels of noise. The analysis also provides a means of defining the geocentricity of the system of reference used in preparing the GEOS-3 ephemeris.
Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia
Rogers, K.; Saintilan, N.; Cahoon, D.
2005-01-01
Following the dieback of an interior portion of a mangrove forest at Homebush Bay, Australia, surface elevation tables and feldspar marker horizons were installed in the impacted, intermediate and control forest to measure vertical accretion, elevation change, and shallow subsidence. The objectives of the study were to determine current vertical accretion and elevation change rates as a guide to understanding mangrove dieback, ascertain the factors controlling surface elevation change, and investigate the sustainability of the mangrove forest under estimated sea-level rise conditions. The study demonstrates that the influences on surface dynamics are more complex than soil accretion and soil autocompaction alone. During strong vegetative regrowth in the impacted forest, surface elevation increase exceeded vertical accretion apparently as a result of belowground biomass production. In addition, surface elevation in all forest zones was correlated with total monthly rainfall during a severe El Ni?o event, highlighting the importance of rainfall to groundwater recharge and surface elevation. Surface elevation increase for all zones exceeded the 85-year sea level trend for Sydney Harbour. Since mean sea-level also decreased during the El Ni?o event, the decrease in surface elevation did not translate to an increase in inundation frequency or influence the sustainability of the mangrove forest. These findings indicate that subsurface soil processes such as organic matter accumulation and groundwater flux can significantly influence mangrove surface elevation, and contribute to the long-term sustainability of mangrove systems under a scenario of rising sea levels.
Mean age of oceanic lithosphere drives eustatic sea-level change since Pangea breakup
NASA Astrophysics Data System (ADS)
Cogné, Jean-Pascal; Humler, Eric; Courtillot, Vincent
2006-05-01
The Atlantic and Indian Oceans and the oceanic part of the Antarctic plate have formed at the expense of Panthalassa as a result of Pangea breakup over the last 180 Myr. This major plate reorganization has changed the age vs. surface distribution of oceanic lithosphere and has been a likely driver of sea-level change. Assuming that the age/surface structure of Panthalassa has remained similar to the present-day global distribution from 180 Ma to Present, and using the isochron patterns preserved in the newly formed oceans, we model resulting relative sea-level change. We find a first (slower) phase of sea-level rise (by 90 to 110 m), culminating between 120 and 50 Ma, followed by a (faster) phase of sea-level drop. We show that this result is not strongly sensitive to our hypothesis of constant mean age of Panthalassa, for which much of the information is now erased due to subduction. When the effects of oceanic plateau formation and ice cap development are added, the predicted sea-level curve fits remarkably well the first-order variations of observed sea-level change. We conclude that the changes in mean age of the oceanic lithosphere (varying between 56 and 62 ± 0.2 Myr), which are simply the expression of the Wilson cycle following Pangea breakup, are the main control, accounting for ˜ 70%, of first-order changes in sea-level.
Krauss, Ken W; Cormier, Nicole; Osland, Michael J; Kirwan, Matthew L; Stagg, Camille L; Nestlerode, Janet A; Russell, Marc J; From, Andrew S; Spivak, Amanda C; Dantin, Darrin D; Harvey, James E; Almario, Alejandro E
2017-04-21
Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr -1 ), with surface elevation change of 4.2-11.0 mm yr -1 compared with 1.5-7.2 mm yr -1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.
Krauss, Ken W.; Cormier, Nicole; Osland, Michael J.; Kirwan, Matthew L.; Stagg, Camille L.; Nestlerode, Janet A.; Russell, Marc J.; From, Andrew; Spivak, Amanda C.; Dantin, Darrin D.; Harvey, James E.; Almario, Alejandro E.
2017-01-01
Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem services are a global concern, prompting the restoration and creation of mangrove wetlands as a potential solution. Here, we investigate soil surface elevation change, and its components, in created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands were exceeding current relative sea-level rise rates (2.6 mm yr−1), with surface elevation change of 4.2–11.0 mm yr−1 compared with 1.5–7.2 mm yr−1 for nearby reference mangroves. While mangrove wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.
A comparison and evaluation between ICESat/GLAS altimetry and mean sea level in Thailand
NASA Astrophysics Data System (ADS)
Naksen, Didsaphan; Yang, Dong Kai
2015-10-01
Surface elevation is one of the importance information for GIS. Usually surface elevation can acquired from many sources such as satellite imageries, aerial photograph, SAR data or LiDAR by photogrammetry, remote sensing methodology. However the most trust information describe the actual surface elevation is Leveling from terrestrial survey. Leveling is giving the highest accuracy but in the other hand is also long period process spending a lot of budget and resources, moreover the LiDAR technology is new era to measure surface elevation. ICESat/GLAS is spaceborne LiDAR platform, a scientific satellite lunched by NASA in 2003. The study area was located at the middle part of Thailand between 12. ° - 14° North and 98° -100° East Latitude and Longitude. The main idea is to compare and evaluate about elevation between ICESat/GLAS Altimetry and mean sea level of Thailand. Data are collected from various sources, including the ICESat/GLAS altimetry data product from NASA, mean sea level from Royal Thai Survey Department (RTSD). For methodology, is to transform ICESat GLA14 from TOPX/Poseidon-Jason ellipsoid to WGS84 ellipsoid. In addition, ICESat/GLAS altimetry that extracted form centroid of laser footprint and mean sea level were compared and evaluated by 1st Layer National Vertical Reference Network. The result is shown that generally the range of elevation between ICESat/GLAS and mean sea level is wildly from 0. 8 to 25 meters in study area.
Using ship-borne GNSS data for geoid model validation at the Baltic Sea
NASA Astrophysics Data System (ADS)
Nordman, Maaria; Kuokkanen, Jaakko; Bilker-Koivula, Mirjam; Koivula, Hannu; Häkli, Pasi; Lahtinen, Sonja
2017-04-01
We present a study of geoid model validation using ship-borne GNSS data on the Bothnian Bay of the Baltic Sea. In autumn 2015 a dedicated gravity survey took place in the Bothnian Bay on board of the surveying vessel Airisto as a part of the FAMOS (Finalising surveys for the Baltic motorways of the sea) Freja project, which is supported by the European Commission with the Connecting Europe Facility. The gravity data was collected to test older existing gravity data in the area and to contribute to a new improved geoid model for the Baltic Sea. The raw GNSS and IMU data of the vessel were recorded in order to study the possibilities for validating geoid models at sea. In order to derive geoid heights from GNSS-measurements at sea, the GNSS measurements must first be reduced to sea level. The instant sea level, also called sea surface height, must then be modelled and removed in order to get the GNSS positions at the zero height. In theory, the resulting GNSS heights are the geoid heights, giving the distance between the ellipsoid and the geoid surface. There were altogether 46 lines measured during the campaign on the area. The 1 Hz GNSS-IMU observations were post-processed using the Applanix POSPac MMS 7.1 software. Different processing options were tested and the Single Base -solution was found to be the best strategy. There were some issues with the quality of the data and cycle slips and thus, 37 of the lines were of adequate quality for the geoid validation. The final coordinates were transferred to the coordinate systems related to the geoid models used. Translation of the processed heights to sea level was performed taking the pitch and roll effects of the vessel into account. Also the effects of static and dynamic draft (squat) were applied. For the reduction from sea surface to geoid surface, the sea surface heights were derived from tide gauge data and also from a physical model for the Baltic Sea. The residual errors between the GNSS-derived geoid heights and geoid heights from geoid models were as low as 2 mm on some lines. When the overall mean is taken from the mean of all lines, the lowest value of 2.1 cm, was achieved using a physical model for the sea surface and comparing with the NKG2015 geoid model. The NKG2015 model together with the tide gauge sea surface yield 3.1 cm. Comparing with Finnish geoid model gave 3.7 and 4.7 cm for the physical model and tide gauge surfaces, respectively. The mean standard deviations were below 5 cm, when the data was filtered with a 10 min. moving average. Thus, it can be said that with high quality GNSS solution and enough information on the coordinate systems, vessel movements and the sea surface heights, geoid heights can be recovered from GNSS observations at sea.
Potentiometric surface map of the Magothy aquifer in southern Maryland, September, 2003
Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.
2005-01-01
This report presents a map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Upper Cretaceous age in Southern Maryland during September 2002. The map is based on water-level measurements in 79 wells. The highest measured water level was 83 feet above sea level near the northern boundary and outcrop area of the aquifer in the north-central part of Anne Arundel County. The potentiometric surface declined towards the south and east. Local gradients were directed toward the centers of two cones of depression that developed in response to pumping. These cones of depression were centered around well fields in the Waldorf area and at the Chalk Point power plant. Measured ground-water levels were as low as 81 feet below sea level in the Waldorf area and 75 feet below sea level at Chalk Point.
Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 2002
Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.
2003-01-01
This report presents a map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Upper Cretaceous age in Southern Maryland during September 2002. The map is based on water-level measurements in 79 wells. The highest measured water level was 83 feet above sea level near the northern boundary and outcrop area of the aquifer in the north-central part of Anne Arundel County. The potentiometric surface declined towards the south and east. Local gradients were directed toward the centers of two cones of depression that developed in response to pumping. These cones of depression were centered around well fields in the Waldorf area and at the Chalk Point power plant. Measured ground-water levels were as low as 81 feet below sea level in the Waldorf area and 75 feet below sea level at Chalk Point.
Estimating relative sea-level rise and submergence potential at a coastal wetland
Cahoon, Donald R.
2015-01-01
A tide gauge records a combined signal of the vertical change (positive or negative) in the level of both the sea and the land to which the gauge is affixed; or relative sea-level change, which is typically referred to as relative sea-level rise (RSLR). Complicating this situation, coastal wetlands exhibit dynamic surface elevation change (both positive and negative), as revealed by surface elevation table (SET) measurements, that is not recorded at tide gauges. Because the usefulness of RSLR is in the ability to tie the change in sea level to the local topography, it is important that RSLR be calculated at a wetland that reflects these local dynamic surface elevation changes in order to better estimate wetland submergence potential. A rationale is described for calculating wetland RSLR (RSLRwet) by subtracting the SET wetland elevation change from the tide gauge RSLR. The calculation is possible because the SET and tide gauge independently measure vertical land motion in different portions of the substrate. For 89 wetlands where RSLRwet was evaluated, wetland elevation change differed significantly from zero for 80 % of them, indicating that RSLRwet at these wetlands differed from the local tide gauge RSLR. When compared to tide gauge RSLR, about 39 % of wetlands experienced an elevation rate surplus and 58 % an elevation rate deficit (i.e., sea level becoming lower and higher, respectively, relative to the wetland surface). These proportions were consistent across saltmarsh, mangrove, and freshwater wetland types. Comparison of wetland elevation change and RSLR is confounded by high levels of temporal and spatial variability, and would be improved by co-locating tide gauge and SET stations near each other and obtaining long-term records for both.
NASA Astrophysics Data System (ADS)
Xu, Tengfei; Li, Shujiang; Hamzah, Faisal; Setiawan, Agus; Susanto, R. Dwi; Cao, Guojiao; Wei, Zexun
2018-06-01
Sunda Strait is the outflow strait of the South China Sea branch of the Pacific to Indian Ocean Throughflow. The annual mean volume transport through the Sunda Strait is around 0.25 Sv from the Java Sea to the eastern Indian Ocean, only 2.5% of the IndonesianThroughflow, and thus has been ignored by previous investigations. However, the Nutrient concentrations in the Sunda Strait and its vicinity are found highly related to the water transport through the Sunda Strait. Particularly, our observation shows significant intraseasonal variability (ISV) of currents at period around 25-45 days in the Sunda Strait. Both remote and local wind forcing contribute to the ISVs in the Sunda Strait. The intraseasonal oscillation of sea surface wind in the central Indian Ocean drives upwelling/downwelling equatorial Kelvin waves to propagate along the equator and subsequently along the Sumatra-Java coasts, resulting in negative/positive sea level anomalies in the south of the Sunda Strait. The local intraseasonal sea surface wind anomalies also tend to induce negative/positive sea level anomalies in the south of the Sunda Strait by offshore/onshore Ekman transport while there are upwelling/downwelling events. The ensuring sea level gradient associated with the sea level anomalies in the south of the Sunda Strait induces intraseasonal outflow (from Indian Ocean to Java Sea) and inflow (from Java Sea to Indian Ocean) through the strait. Analyses also show that the chlorophyll-a concentrations in the south of the Sunda Strait are lower/higher during the inflow/outflow period of the ISV events in March through May. The mechanism attributes to both the nutrient-rich water transported by the intraseasonal flow in the Sunda Strait and by the upwelling and Ekman transport driven by the local sea surface wind anomalies.
The Ocean and Climate: Results from the TOPEX/POSEIDON Mission
NASA Technical Reports Server (NTRS)
Fu, L. -L.
1995-01-01
Since 1992, the TOPEX/POSEIDON satellite has been making altimetric sea surface observations with a sea level accuracy of 4.4 cm. This data can be used for studying regional and seasonal differences in sea level and for evaluating oceanic circulation models and tidal models. Longer term changes can also be studied, such as El Nino and overall sea level rising (although the latter is still within the margin of error).
Global sea level trend in the past century
NASA Technical Reports Server (NTRS)
Gornitz, V.; Lebedeff, S.; Hansen, J.
1982-01-01
Data derived from tide-gauge stations throughout the world indicate that the mean sea level rose by about 12 centimeters in the past century. The sea level change has a high correlation with the trend of global surface air temperature. A large part of the sea level rise can be accounted for in terms of the thermal expansion of the upper layers of the ocean. The results also represent weak indirect evidence for a net melting of the continental ice sheets.
Sea-Level Projections from the SeaRISE Initiative
NASA Technical Reports Server (NTRS)
Nowicki, Sophie; Bindschadler, Robert
2011-01-01
SeaRISE (Sea-level Response to Ice Sheet Evolution) is a community organized modeling effort, whose goal is to inform the fifth IPCC of the potential sea-level contribution from the Greenland and Antarctic ice sheets in the 21st and 22nd century. SeaRISE seeks to determine the most likely ice sheet response to imposed climatic forcing by initializing an ensemble of models with common datasets and applying the same forcing to each model. Sensitivity experiments were designed to quantify the sea-level rise associated with a change in: 1) surface mass balance, 2) basal lubrication, and 3) ocean induced basal melt. The range of responses, resulting from the multi-model approach, is interpreted as a proxy of uncertainty in our sea-level projections. http://websrv.cs .umt.edu/isis/index.php/SeaRISE_Assessment.
Three modes of interdecadal trends in sea surface temperature and sea surface height
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Pradal, M.
2013-12-01
It might be thought that sea surface height and sea surface temperature would be tightly related. We show that this is not necessarily the case on a global scale. We analysed this relationship in a suite of coupled climate models run under 1860 forcing conditions. The models are low-resolution variants of the GFDL Earth System Model, reported in Galbraith et al. (J. Clim. 2011). 1. Correlated changes in global sea surface height and global sea surface temperature. This mode corresponds to opening and closing of convective chimneys in the Southern Ocean. As the Southern Ocean destratifies, sea ice formation is suppressed during the winter and more heat is taken up during the summer. This mode of variability is highly correlated with changes in the top of the atmosphere radiative budget and weakly correlated with changes in the deep ocean circulation. 2. Uncorrelated changes in global sea surface height and global sea surface temperature. This mode of variability is associated with interdecadal variabliity in tropical winds. Changes in the advective flux of heat to the surface ocean play a critical role in driving these changes, which also result in significant local changes in sea level. Changes sea ice over the Southern Ocean still result in changes in solar absorption, but these are now largely cancelled by changes in outgoing longwave radiation. 3. Anticorrelated changes in global sea surface height and global sea surface temperatures. By varying the lateral diffusion coefficient in the ocean model, we are able to enhance and suppress convection in the Southern and Northern Pacific Oceans. Increasing the lateral diffusion coefficients shifts the balance sources of deep water away from the warm salty deep water of the North Atlantic and towards cold fresh deep water from the other two regions. As a result, even though the planet as a whole warms, the deep ocean cools and sea level falls, with changes of order 30 cm over 500 years. The increase in solar absorption in polar regions is more than compensated by an increase in outgoing longwave radiation. Relationship between global SSH trend over a decade and (A) local SSH change over a decade (m/m). (B) Global SST change over a decade (m/K) (C) Portion of decadal SST change correlated with net radiation at the top of the atmosphere (m/K) (D) Portion of decadal SST change not correlated with net radiation at the top of the atmosphere.
Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 2009
Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.
2010-01-01
This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2009. The map is based on water-level measurements in 82 wells. The highest measured water level was 48 feet above sea level near the northern boundary and in the outcrop area of the aquifer in the central part of Anne Arundel County. Water levels also were above sea level in Kent County and northern Queen Anne's County. Water levels were below sea level south and east of these areas and in the remainder of the study area. The hydraulic gradient increased southeastward toward a cone of depression around well fields at Lexington Park and Solomons Island. The lowest measured water level was 145 feet below sea level at the center of a cone of depression at Lexington Park. The map also shows well yield in gallons per day for 2008 at wells or well fields.
Constraining coastal change: A morpho-sedimentological concept to infer sea-level oscillation
NASA Astrophysics Data System (ADS)
Mauz, Barbara; Shen, Zhixiong
2016-04-01
One of the responders to Milankovitch-scale climate changes is sea level which, in turn, is a driver of coastal change. In literature, the sedimentary sequences representing the coastal change are often linked to high sea-level stands, to intermediate sea-level positions or to regressive shorelines. We note apparent contradictions that indicate a lack of concept and inconsistent usage of sea level-related terms. To overcome this, we combine an integrated morpho-sedimentological concept for microtidal, mid-latitudinal coasts with chronologies based on Bayesian statistics. The concept regards the coastal sedimentary system as a depositional complex consisting of shallow-marine, aeolian and alluvial facies. These facies are in juxtaposition and respond simultaneously to external forcing. Bayesian statistics constrains the timing of the sequence based on optical or radiocarbon ages. Here, we present the site Hergla located on the North African coast of the central Mediterranean Sea as a case study to illustrate how the approach helps eliminating contradictions. The site has been cited frequently for confirming the hypothesis of a global two peak sea-level highstand during the last interglacial (MIS 5e). The ~2 km cliff exposure at Hergla was surveyed, mapped, logged and sampled for further describing the sediments and their depositional environment through thin section and Bayesian modelling of optical ages. Using our concept based on sequence stratigraphy tools, the section is interpreted as representing a coastal barrier with two bounding surfaces in the succession. Both surfaces mark the falling sea level of, first, MIS 5e and, second, MIS 5a and hence bound the falling stage system tract of a forced regression. Part of the deposits between the two surfaces are pulled up onto the shoulder of a small rising horst and the associated tectonic event coincided with the MIS 5a sea-level rise enhancing locally the accommodation space for a second foreshore environment. Our presentation will provide theoretical background of the concept and critically discuss the global dataset for last interglacial sea-level oscillations using both the stratigraphic record and age distributions.
Quantifying surface water runoff from Wadi Arogut towards the Dead Sea
NASA Astrophysics Data System (ADS)
Geyer, Stefan; Khayat, Saed; Marei, Amer
2015-04-01
The surrounded area of the Dead Sea, especially the west side suffers from many hydrological problems. While the Dead Sea level drop considered a major problem that affect the quality of the surrounded freshwater resources, a lot of the surface water flood from the adjacent Wadi are lost through direct run off without any exploitation. Therefore, it is necessary to maintain a type of balance between surface water exploitation through the Wadi and at the same time allow a sufficient amount of flow to the Dead Sea to ensure its sustainability. In this study, we choose one of the larger tributaries in the western side of the Dead Sea basin. The stream was modelled for runoff response to different rainfall amount and climate conditions (dry, normal, and wet seasons) which were chosen from the rainy seasons in the previous 30 years. Finally, the amount of surface water contribution from each of the three seasons of the Dead Sea was quantified. The outcome of the model shows the results from the normal rainy season, which is frequently reoccurs and common in the region. The model data show that such events normally contribute with about 18-22 MCM annually to the Dead Sea. The problem is with the recurrence of dry season such as 2005/2006, by which the amount of the surface water decrease and consequently has adverse effect on the Dead Sea. However, the presence of less frequent thunder storm season such as that one in 1991/1992 has also a positive effect on the Dead Sea level. In the rainy season 1991/1992 there was a higher amount of rainfall over the study area that reaches around 155 MCM. Despite the presence of this high amount most of the recharge lost to the ground as groundwater recharge. The high amount of rain increases the amount of inundated surface water out of the Wadi banks and covers more surfaces all over the study area, which in role promote more water loss to the ground. That is why the total loss (rather than surface runoff) was much higher (77%). Moreover, 50% less precipitation in 2006 decrease the Dead Sea five metres within five years, and 60% 1992 increase of precipitation raise the water level two metre only for two to three next years. How can we balance the groundwater needs and the Dead Sea survival with those 40% surface water? By no mean: preventing the Dead Sea decline by increasing runoff will not only preventing the fresh water deterioration, but also it will be in the account of groundwater recharge in the surrounding aquifers of the Dead Sea. These conclusions suggest strongly the need of an integrated groundwater model, in order to quantify all scenarios.
Precise mean sea level measurements using the Global Positioning System
NASA Technical Reports Server (NTRS)
Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian
1994-01-01
This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and temporal resolution higher than that available from altimeter data.
Potentiometric Surface of the Aquia Aquifer in Southern Maryland, September 2002
Curtin, Stephen E.; Andreasen, David C.; Wheeler, Judith C.
2003-01-01
This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2002. The map is based on water-level measurements in 94 wells. The highest measured water level was 38 feet above sea level near the northern boundary and outcrop area of the aquifer in the central part of Anne Arundel County, and was below sea level just south of this area and in the remainder of the study area. The hydraulic gradient increased southeastward toward an extensive cone of depression around well fields at Lexington Park and Solomons Island. Another cone of depression occurred in northern Calvert County due to pumpage at and near Chesapeake Beach and North Beach. The water level measured in this area has declined to 55 feet below sea level. The lowest water level measured was 169 feet below sea level at the center of a cone of depression at Lexington Park.
Potentiometric surface of the Aquia Aquifer in southern Maryland, September 2003
Curtin, Stephen E.; Andreason, David C.; Wheeler, Judith C.
2005-01-01
This report presents a map showing the potentiometric surface of the Aquia aquifer in the Aquia Formation of Paleocene age in Southern Maryland during September 2003. The map is based on water-level measurements in 91 wells. The highest measured water level was 40 feet above sea level near the northern boundary and outcrop area of the aquifer in the central part of Anne Arundel County, and was below sea level just south of this area and in the remainder of the study area. The hydraulic gradient increased southeastward toward an extensive cone of depression around well fields at Lexington Park and Solomons Island. Another cone of depression occurred in northern Calvert County due to pumpage at and near North Beach and Chesapeake Beach. The water level measured in this area has declined to 48 feet below sea level. The lowest water level measured was 156 feet below sea level at the center of a cone of depression at Lexington Park.
Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.
Sea-level rise is a major factor in wetland loss worldwide, and inmuch of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mmyr -1 due to regional subsidence.Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, andmay exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidalmore » freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mmyr -1 in elevation on average, at least 5 mmyr -1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among themarshes studied, and ranged from-9.8 ± 6.9 to 4.5 ± 4.3 mmyr -1. Surface accretion of depositedmineral and organic matter was uniformly high across the estuary (~9–15 mmyr -1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. In conclusion, previous studies have focused on surface elevation change inmarshes of uniformsalinity (e.g., salt marshes); however, our findings highlight the need for elevation studies inmarshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.« less
Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise
Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.
2016-01-01
Sea-level rise is a major factor in wetland loss worldwide, and in much of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mm yr-1 due to regional subsidence. Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, and may exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidal freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mm yr-1 in elevation on average, at least 5 mm yr-1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among the marshes studied, and ranged from -9.8 ± 6.9 to 4.5 ± 4.3 mm yr-1. Surface accretion of deposited mineral and organic matter was uniformly high across the estuary (~9–15 mm yr-1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. Previous studies have focused on surface elevation change in marshes of uniform salinity (e.g., salt marshes); however, our findings highlight the need for elevation studies in marshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries. PMID:27467784
Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise
Beckett, Leah H.; Baldwin, Andrew H.; Kearney, Michael S.; ...
2016-07-28
Sea-level rise is a major factor in wetland loss worldwide, and inmuch of Chesapeake Bay (USA) the rate of sea-level rise is higher than the current global rate of 3.2 mmyr -1 due to regional subsidence.Marshes along estuarine salinity gradients differ in vegetation composition, productivity, decomposition pathways, and sediment dynamics, andmay exhibit different responses to sea-level rise. Coastal marshes persist by building vertically at rates at or exceeding regional sea-level rise. In one of the first studies to examine elevation dynamics across an estuarine salinity gradient, we installed 15 surface elevation tables (SET) and accretion marker-horizon plots (MH) in tidalmore » freshwater, oligohaline, and brackish marshes across a Chesapeake Bay subestuary. Over the course of four years, wetlands across the subestuary decreased 1.8 ± 2.7 mmyr -1 in elevation on average, at least 5 mmyr -1 below that needed to keep pace with global sea-level rise. Elevation change rates did not significantly differ among themarshes studied, and ranged from-9.8 ± 6.9 to 4.5 ± 4.3 mmyr -1. Surface accretion of depositedmineral and organic matter was uniformly high across the estuary (~9–15 mmyr -1), indicating that elevation loss was not due to lack of accretionary input. Position in the estuary and associated salinity regime were not related to elevation change or surface matter accretion. In conclusion, previous studies have focused on surface elevation change inmarshes of uniformsalinity (e.g., salt marshes); however, our findings highlight the need for elevation studies inmarshes of all salinity regimes and different geomorphic positions, and warn that brackish, oligohaline, and freshwater tidal wetlands may be at similarly high risk of submergence in some estuaries.« less
GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)
Xuan Shi, Dali Wang
2014-05-05
This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods
Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis
Sternai, Pietro; Caricchi, Luca; Garcia-Castellanos, Daniel; Jolivet, Laurent; Sheldrake, Tom E.; Castelltort, Sébastien
2017-01-01
Between 5 and 6 million years ago, during the so-called Messinian salinity crisis, the Mediterranean basin became a giant salt repository. The possibility of abrupt and kilometre-scale sea-level changes during this extreme event is debated. Messinian evaporites could signify either deep- or shallow-marine deposits, and ubiquitous erosional surfaces could indicate either subaerial or submarine features. Significant and fast reductions in sea level unload the lithosphere, which can increase the production and eruption of magma. Here we calculate variations in surface load associated with the Messinian salinity crisis and compile the available time constraints for pan-Mediterranean magmatism. We show that scenarios involving a kilometre-scale drawdown of sea level imply a phase of net overall lithospheric unloading at a time that appears synchronous with a magmatic pulse from the pan-Mediterranean igneous provinces. We verify the viability of a mechanistic link between unloading and magmatism using numerical modelling of decompression partial mantle melting and dike formation in response to surface load variations. We conclude that the Mediterranean magmatic record provides an independent validation of the controversial kilometre-scale evaporative drawdown and sheds new light on the sensitivity of magmatic systems to the surface forcing. PMID:29081834
Upwelling Dynamic Based on Satellite and INDESO Data in the Flores Sea
NASA Astrophysics Data System (ADS)
Kurniawan, Reski; Suriamihardja, D. A.; Hamzah Assegaf, Alimuddin
2018-03-01
Upwelling phenomenon is crucial to be forecasted, mainly concerning the information of potential fishery areas. Utilization of calibrated model for recorded upwelling such as INDESO gives benefit for historical result up to the present time. The aim of this study is to estimate areas and seasons of upwelling occurrences in the Flores Sea using data assimilation of satellite and modeling result. This study uses sea surface temperature, chlorophyll-a data from level 3 of MODIS image and sea surface height from satellite Jason-2 monthly for three years (2014-2016) and INDESO model data for sea surface temperature, sea surface height, and chlorophyll-a daily for three years (2014-2016). The upwelling is indicated by declining of sea surface temperature, sea surface height and increasing of chlorophyll-a. Verification is conducted by comparing the model result with recorded MODIS satellite image. The result shows that the area of southern Makassar Strait having occurrences of upwelling phenomenon every year starting in June, extended to July and August. The strongest upwelling occurred in 2015 covering more or less the area of 23,000 km2. The relation of monthly data of satellite has significantly correlated with daily data of INDESO model
Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation
NASA Technical Reports Server (NTRS)
Kwok, R.; Comiso, J. C.
2001-01-01
The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-year of data set from 1982 through 1998. We correlate the polar climate anomalies with the Southern Oscillation index (SOI) and examine the composites of these anomalies under the positive (SOI > 0), neutral (0 > SOI > -1), and negative (SOI < -1) phases of SOL The climate data set consists of sea-level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice data set describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables and the SOL The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen and Ross sea sectors. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillating climate anomalies that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea-level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are clearly evident. Recent anomalies in the sea ice cover that are apparently associated with the SOI include: the record decrease in the sea ice extent in the Bellingshausen Sea from mid- 1988 through early 199 1; the relationship between Ross Sea SST and ENSO signal, and reduced sea ice concentration in the Ross Sea; and, the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea, and the lengthening of the ice season in the western Ross Sea, Bellingshausen Sea and central Weddell Sea gyre over the period 1988-1994. Four ENSO episodes over the last 17 years contributed to a negative mean in the SOI (-0.5). In each of these episodes, significant retreats in the Bellingshausen/Amundsen Sea were observed providing direct confirmation of the impact of SO on the Antarctic sea ice cover.
Potentiometric surface of the upper Patapsco Aquifer in southern Maryland, September 1991
Curtin, Stephen E.; Andreasen, D.C.; Mack, Frederick K.
1993-01-01
A map showing the potentiometric surface of the upper Patapsco aquifer in the Patapsco Formation of Cretaceous age in southern Maryland during September 1991 was prepared from water levels measured in wells. The potentiometric surface was at least 70 feet above sea level near the northwestern boundary and outcrop area of the aquifer in a topographically high area of Anne Arundel County, and at least 56 feet above sea level in a similar setting in Prince Georges County. From these high areas, the potentiometric surface declined to the south and southeast toward large well fields in the Annapolis and Waldorf areas and at the Chalk Point powerplant.
Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation.
NASA Astrophysics Data System (ADS)
Kwok, R.; Comiso, J. C.
2002-03-01
The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-yr dataset from 1982 to 1998. The polar climate anomalies are correlated with the Southern Oscillation index (SOI) and the composites of these anomalies are examined under the positive (SOI > 0), neutral (0 > SOI > 1), and negative (SOI < 1) phases of SOI. The climate dataset consists of sea level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice dataset describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables with the SOI. The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen, and Ross Seas. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillations that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are evident. Recent anomalies in the sea ice cover that are clearly associated with the SOI include the following: the record decrease in the sea ice extent in the Bellingshausen Sea from mid-1988 to early 1991; the relationship between Ross Sea SST and the ENSO signal, and reduced sea ice concentration in the Ross Sea; and the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea and lengthening of the ice season in the western Ross Sea, Bellinghausen Sea, and central Weddell Sea gyre during the period 1988-94. Four ENSO episodes over the last 17 years contributed to a negative mean in the SOI (0.5). In each of these episodes, significant retreats in ice cover of the Bellingshausen and Amundsen Seas were observed showing a unique association of this region of the Antarctic with the Southern Oscillation.
[Survey of alkylphenols in aquatic environment of Zhujiang Delta].
Duan, Jing-chun; Chen, Bing; Mai, Bi-xian; Yang, Qing-shu; Sheng, Guo-ying; Fu, Jia-mo
2004-05-01
The summer contamination of dissolved nonylphenols (NPs) and octylphenol (OP) in surface water of Zhujiang estuary and other rivers of Zhujiang Delta was analyzed. The result reveals that NPs concentration in The Pearl River remains < 20-40 ng/L, apart from the NPs concentrations of the mouth of The Pingzhou Channel the mouth of The Shawan Channel and Hutiaomen reaching a higher level of 98.84, 129.82 and 164.98 ng/L respectively. The Lingding Sea and open sea surface water keep at a lower level with the NPs concentration of < 10-14 ng/L. In terms of OP concentration in The Pearl River, any other sampling location is below LOD 2 ng/L, except for Baiertan, the mouth of The Shawan Channel and Hutiaomen being 2.89, 2.44, 2.12 ng/L respectively and inside Macao harbor being the highest level of 8.54 ng/L. The OP concentrations of The Lingding Sea and open sea surface water are lower than LOD 1 ng/L.
Possible Evidence of Multiple Sea Level Oscillations in the Seychelles During the Last Interglacial
NASA Astrophysics Data System (ADS)
Dutton, A. L.; Vyverberg, K.; Webster, J.; Dechnik, B.; Zwartz, D.; Lambeck, K.
2013-12-01
In search of a eustatic sea level signal on glacial-interglacial timescales, the Seychelles ranks as one of the best places on the planet to study. Owing to its far-field location with respect to the former margins of Northern Hemisphere ice sheets, glacio-hydro-isostatic models predict that relative sea level in the Seychelles should lie within a few meters of the globally averaged eustatic signal during interglacial periods. We have surveyed and dated fossil coral reefs from the last interglacial period to determine the magnitude of peak sea level and to assess sedimentologic evidence of potential sea level oscillations. Numerous outcrops we studied in detail exhibit a stratigraphic sequence comprised of in situ coralgal framework at the base, capped by thick coralline algae crusts, and overlain by coral rubble deposits. We also observed a succession of three stacked coralgal reefs within a single outcrop, separated by hardgrounds that have been bored by molluscs. In general, the succession within each reef unit consists of interlayered corals and crusts of coralline algae-vermetid gastropods-encrusting foraminifera. The lower two reef units are capped by a well-cemented 5 to 10 cm thick carbonate mud layer that is heavily bored by molluscs. These two surfaces may represent exposure surfaces during brief sea level oscillations, where sea level fell and exposed the top of the reef sequence, which was subsequently bored when sea level rose again and reef growth resumed. The elevations of the corals in each reef unit provide minimum elevations of sea level during each of the three pulses of sea level highstands during the last interglacial period. Significantly, since many of these corals are capped by thick coralline algae layers that contain vermetid gastropods and encrusting foraminifera that are indicative of the intertidal zone, there is strong evidence that these corals grew in extremely shallow water, providing a robust indication of sea level position. These observations ostensibly support the notion that the last interglacial period was characterized by ice sheet instability, causing multiple sea level oscillations.
NASA Astrophysics Data System (ADS)
Bilskie, M. V.; Medeiros, S. C.; Hagen, S. C.
2012-12-01
Major Gulf hurricanes have a high probability of impacting the northern Gulf of Mexico, especially coastal Mississippi (Resio, 2007). Due to the wide and flat continental shelf, this area provides near-perfect geometry for high water levels under tropical cyclonic conditions. Further, it is generally agreed that global sea levels due to climate change will rise anywhere from 18 to 100 cm by the year 2100 (Donoghue, 2011, IPCC, 2007) with some projecting even higher. Further, it is recognized that coastal Mississippi is highly susceptible to a retreating shoreline from sea level rise coupled with predictions for less frequent, more intense tropical storms from an increase in sea surface temperature (SST) (Trenberth, 2005, Webster, et al., 2005). A fully-validated, state-of-the-art ADCIRC+UnSWAN hydrodynamic model of coastal Mississippi was utilized to simulate Hurricane Katrina with present day sea level conditions. Using present day as a base scenario, past and future sea level changes were simulated. A regression was performed at local tide gauges to estimate past and project future sea levels. Also, surface roughness (i.e. Manning's n and wind reduction factors) was adjusted to reflect past landcover conditions as well as estimate future landcover change. Here, past, present and future sea level scenarios are modeled using a dynamic approach, along with Hurricane Katrina, and compared to present dynamic responses to sea level rise. The dynamic results will be compared and contrasted with a simpler bathtub model (static) approach. It will be demonstrated that water levels do not change linearly with modeled sea level cases (i.e. a 50 cm rise in sea level will not result in an additional 50 cm of water level at a given location) and are highly variable to changes in local conditions (e.g. topography, bathymetry, and surface roughness). Further, nearshore wind-wave conditions are affected by changes in local sea level due to the changes in momentum transfer from the waves to the water column. The results will be used to gain insight into possible morphological changes given several sea level scenarios coupled with an intense tropical cyclone. References Donoghue, J. (2011). "Sea Level History of the Northern Gulf of Mexico Coast and Sea Level Rise Scenarios for the near Future." Climatic Change, 107(1-2), 17-33. IPCC (2007). "The Physical Sceince Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change." Climate Change 2007, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Avery, M. Tignor, and H. L. Miller, eds., Cambridge Univesity Press, Cambridge. Resio, D. T. (2007). "White Paper on Estimating Hurricane Inundation Probabilities." U.S. Army Engineering Research and Development Center, Vicksburg, MS, 125. Trenberth, K. (2005). "Uncertainty in Hurricanes and Global Warming." Science, 308(5729), 1753-1754. Webster, P. J., Holland, G. J., Curry, J. A., and Chang, H.-R. (2005). "Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment." Science, 309(5742), 1844-1846.
NASA Astrophysics Data System (ADS)
Vaid, B. H.
2017-02-01
The association of the biweekly intraseasonal (BWI) oscillation in the Sea Surface Temperature (SST) over the South China Sea (SCS) and the Western North Pacific Summer Monsoon is authenticated using version 4 the Tropical Rainfall Measuring Mission Microwave Imager data (SST and rain) and heat fluxes from Ocean Atmosphere Flux project data during 1998-2012. The results suggest that the SCS involves ocean-atmosphere coupling on biweekly timescales. The positive biweekly SST anomalies lead the rain anomalies over the SCS by 3 days, with a significant correlation coefficient ( r = 0.6, at 99 % significance levels) between the SST-rain anomalies. It is evident from lead/lag correlation between biweekly SST and zonal wind shear that warm ocean surface induced by wind shear may contribute to a favorable condition of the convective activity over the SCS. The present study suggests that ocean-to-atmospheric processes induced by the BWI oscillation in the SCS SST results in enhanced sea level pressure and surface shortwave radiation flux during the summer monsoon. Besides, it is observed that the SCS BWI oscillation in the changes of SST causes a feedback in the atmosphere by modifying the atmospheric instability. This suggests that the active/break biweekly cycle of the SST over the SCS is related by sea level pressure, surface heat fluxes and atmospheric instability. The potential findings here indicate that the biweekly SST over the SCS play an important role in the eastward and the southward propagation of the biweekly anomalies in the Western North Pacific.
Mai, Carolin; Theobald, Norbert; Hühnerfuss, Heinrich; Lammel, Gerhard
2016-12-01
Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were studied to determine occurrence, levels and spatial distribution in the marine atmosphere and surface seawater during cruises in the German Bight and the wider North Sea in spring and summer 2009-2010. In general, the concentrations found in air are similar to, or below, the levels at coastal or near-coastal sites in Europe. Hexachlorobenzene and α-hexachlorocyclohexane (α-HCH) were close to phase equilibrium, whereas net atmospheric deposition was observed for γ-HCH. The results suggest that declining trends of HCH in seawater have been continuing for γ-HCH but have somewhat levelled off for α-HCH. Dieldrin displayed a close to phase equilibrium in nearly all the sampling sites, except in the central southwestern part of the North Sea. Here atmospheric deposition dominates the air-sea exchange. This region, close to the English coast, showed remarkably increased surface seawater concentrations. This observation depended neither on riverine input nor on the elevated abundances of dieldrin in the air masses of central England. A net depositional flux of p,p'-DDE into the North Sea was indicated by both its abundance in the marine atmosphere and the changes in metabolite pattern observed in the surface water from the coast towards the open sea. The long-term trends show that the atmospheric concentrations of DDT and its metabolites are not declining. Riverine input is a major source of PCBs in the German Bight and the wider North Sea. Atmospheric deposition of the lower molecular weight PCBs (PCB28 and PCB52) was indicated as a major source for surface seawater pollution.
Measuring precise sea level from a buoy using the global positioning system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocken, C.; Kelecy, T.M.; Born, G.H.
1990-11-01
High-accuracy sea surface positioning is required for sea floor geodesy, satellite altimeter verification, and the study of sea level. An experiment to study the feasibility of using the Global Positioning System (GPS) for accurate sea surface positioning was conducted. A GPS-equipped buoy (floater) was deployed off the Scripps pier at La Jolla, California during December 13-15, 1989. Two reference GPS receivers were placed on land, one within {approximately}100 m of the floater, and the other about 80 km inland at the laser ranging site on Monument Peak. The position of the floater was determined relative to the land-fixed receivers using:more » (a) kinematic GPS processing software developed at the National Geodetic Survey (NGS), and (b) the Jet Propulsion Laboratory's GIPSY (GPS Inferred Positioning SYstem) software. Sea level and ocean wave spectra were calculated from GPPS measurements. These results were compared to measurements made with a NOAA tide gauge and a Paros{trademark} pressure transducer (PPT). GPS sea level for the short 100-m baseline agrees with the PPT sea level at the 1-cm level and has an rms variation of 5 mm over a period of 4 hours. Agreement between results with the two independent GPS analyses is on the order of a few millimeters. Processing of the longer Monument Peak - floater baseline is in progress and will require orbit adjustments and tropospheric modeling to obtain results comparable to the short baseline.« less
Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 2007
Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.
2009-01-01
This report presents a map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 69 wells. The highest measured water level was 85 feet above sea level near the northern boundary and outcrop area of the aquifer in the north-central part of Anne Arundel County. The potentiometric surface declined towards the south. Local gradients were directed toward the center of a cone of depression in the Waldorf area that developed in response to pumping. Measured ground-water levels were as low as 90 feet below sea level in the Waldorf area.
Recent Changes in Land Water Storage and its Contribution to Sea Level Variations
NASA Astrophysics Data System (ADS)
Wada, Yoshihide; Reager, John T.; Chao, Benjamin F.; Wang, Jida; Lo, Min-Hui; Song, Chunqiao; Li, Yuwen; Gardner, Alex S.
2017-01-01
Sea level rise is generally attributed to increased ocean heat content and increased rates glacier and ice melt. However, human transformations of Earth's surface have impacted water exchange between land, atmosphere, and ocean, ultimately affecting global sea level variations. Impoundment of water in reservoirs and artificial lakes has reduced the outflow of water to the sea, while river runoff has increased due to groundwater mining, wetland and endorheic lake storage losses, and deforestation. In addition, climate-driven changes in land water stores can have a large impact on global sea level variations over decadal timescales. Here, we review each component of negative and positive land water contribution separately in order to highlight and understand recent changes in land water contribution to sea level variations.
Recent Changes in Land Water Storage and Its Contribution to Sea Level Variations
NASA Technical Reports Server (NTRS)
Wada, Yoshihide; Reager, John T.; Chao, Benjamin F.; Wang, Jida; Lo, Min-Hui; Song, Chunqiao; Li, Yuwen; Gardner, Alex S.
2016-01-01
Sea level rise is generally attributed to increased ocean heat content and increased rates glacier and ice melt. However, human transformations of Earth's surface have impacted water exchange between land, atmosphere, and ocean, ultimately affecting global sea level variations. Impoundment of water in reservoirs and artificial lakes has reduced the outflow of water to the sea, while river runoff has increased due to groundwater mining, wetland and endorheic lake storage losses, and deforestation. In addition, climate-driven changes in land water stores can have a large impact on global sea level variations over decadal timescales. Here, we review each component of negative and positive land water contribution separately in order to highlight and understand recent changes in land water contribution to sea level variations.
Evaluation of East Asian climatology as simulated by seven coupled models
NASA Astrophysics Data System (ADS)
Jiang, Dabang; Wang, Huijun; Lang, Xianmei
2005-07-01
Using observation and reanalysis data throughout 1961 1990, the East Asian surface air temperature, precipitation and sea level pressure climatology as simulated by seven fully coupled atmosphere-ocean models, namely CCSR/NIES, CGCM2, CSIRO-Mk2, ECHAM4/OPYC3, GFDL-R30, HadCM3, and NCAR-PCM, are systematically evaluated in this study. It is indicated that the above models can successfully reproduce the annual and seasonal surface air temperature and precipitation climatology in East Asia, with relatively good performance for boreal autumn and annual mean. The models’ ability to simulate surface air temperature is more reliable than precipitation. In addition, the models can dependably capture the geographical distribution pattern of annual, boreal winter, spring and autumn sea level pressure in East Asia. In contrast, relatively large simulation errors are displayed when simulated boreal summer sea level pressure is compared with reanalysis data in East Asia. It is revealed that the simulation errors for surface air temperature, precipitation and sea level pressure are generally large over and around the Tibetan Plateau. No individual model is best in every aspect. As a whole, the ECHAM4/OPYC3 and HadCM3 performances are much better, whereas the CGCM2 is relatively poorer in East Asia. Additionally, the seven-model ensemble mean usually shows a relatively high reliability.
Ocean Surface Topography Mission/Jason 2 Artist Concept
2008-09-23
An artist concept of the Ocean Surface Topography Mission/Jason 2 Earth satellite. The Ocean Surface Topography Mission/Jason 2 is an Earth satellite designed to make observations of ocean topography for investigations into sea-level rise and the relationship between ocean circulation and climate change. The satellite also provides data on the forces behind such large-scale climate phenomena as El Niño and La Niña. The mission is a follow-on to the French-American Jason 1 mission, which began collecting data on sea-surface levels in 1992. http://photojournal.jpl.nasa.gov/catalog/PIA18158
NASA Astrophysics Data System (ADS)
Konrad, H.; Sasgen, I.; Thoma, M.; Klemann, V.; Grosfeld, K.; Martinec, Z.
2013-12-01
The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation, and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.
Evidence of exceptional oyster-reef resilience to fluctuations in sea level.
Ridge, Justin T; Rodriguez, Antonio B; Fodrie, F Joel
2017-12-01
Ecosystems at the land-sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea-level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10-30 cm) over month-to-year timescales due to interacting oceanic and atmospheric processes. To assess the response of oyster-reef ( Crassostrea virginica ) growth to interannual variations in mean sea level (MSL) and improve long-term forecasts of reef response to rising seas, we monitored the morphology of constructed and natural intertidal reefs over 5 years using terrestrial lidar. Timing of reef scans created distinct periods of high and low relative water level for decade-old reefs ( n = 3) constructed in 1997 and 2000, young reefs ( n = 11) constructed in 2011 and one natural reef (approximately 100 years old). Changes in surface elevation were related to MSL trends. Decade-old reefs achieved 2 cm/year growth, which occurred along higher elevations when MSL increased. Young reefs experienced peak growth (6.7 cm/year) at a lower elevation that coincided with a drop in MSL. The natural reef exhibited considerable loss during the low MSL of the first time step but grew substantially during higher MSL through the second time step, with growth peaking (4.3 cm/year) at MSL, reoccupying the elevations previously lost. Oyster reefs appear to be in dynamic equilibrium with short-term (month-to-year) fluctuations in sea level, evidencing notable resilience to future changes to sea level that surpasses other coastal biogenic habitat types. These growth patterns support the presence of a previously defined optimal growth zone that shifts correspondingly with changes in MSL, which can help guide oyster-reef conservation and restoration.
The absolute dynamic ocean topography (ADOT)
NASA Astrophysics Data System (ADS)
Bosch, Wolfgang; Savcenko, Roman
The sea surface slopes relative to the geoid (an equipotential surface) basically carry the in-formation on the absolute velocity field of the surface circulation. Pure oceanographic models may remain unspecific with respect to the absolute level of the ocean topography. In contrast, the geodetic approach to estimate the ocean topography as difference between sea level and the geoid gives by definition an absolute dynamic ocean topography (ADOT). This approach requires, however, a consistent treatment of geoid and sea surface heights, the first being usually derived from a band limited spherical harmonic series of the Earth gravity field and the second observed with much higher spectral resolution by satellite altimetry. The present contribution shows a procedure for estimating the ADOT along the altimeter profiles, preserving as much sea surface height details as the consistency w.r.t. the geoid heights will allow. The consistent treatment at data gaps and the coast is particular demanding and solved by a filter correction. The ADOT profiles are inspected for their innocent properties towards the coast and compared to external estimates of the ocean topography or the velocity field of the surface circulation as derived, for example, by ARGO floats.
Implications of multi-scale sea level and climate variability for coastal resources
Karamperidou, Christina; Engel, Victor; Lall, Upmanu; Stabenau, Erik; Smith, Thomas J.
2013-01-01
While secular changes in regional sea levels and their implications for coastal zone management have been studied extensively, less attention is being paid to natural fluctuations in sea levels, whose interaction with a higher mean level could have significant impacts on low-lying areas, such as wetlands. Here, the long record of sea level at Key West, FL is studied in terms of both the secular trend and the multi-scale sea level variations. This analysis is then used to explore implications for the Everglades National Park (ENP), which is recognized internationally for its ecological significance, and is the site of the largest wetland restoration project in the world. Very shallow topographic gradients (3–6 cm per km) make the region susceptible to small changes in sea level. Observations of surface water levels from a monitoring network within ENP exhibit both the long-term trends and the interannual-to-(multi)decadal variability that are observed in the Key West record. Water levels recorded at four long-term monitoring stations within ENP exhibit increasing trends approximately equal to or larger than the long-term trend at Key West. Time- and frequency-domain analyses highlight the potential influence of climate mechanisms, such as the El Niño/Southern Oscillation and the North Atlantic Oscillation (NAO), on Key West sea levels and marsh water levels, and the potential modulation of their influence by the background state of the North Atlantic Sea Surface Temperatures. In particular, the Key West sea levels are found to be positively correlated with the NAO index, while the two series exhibit high spectral power during the transition to a cold Atlantic Multidecadal Oscillation (AMO). The correlation between the Key West sea levels and the NINO3 Index reverses its sign in coincidence with a reversal of the AMO phase. Water levels in ENP are also influenced by precipitation and freshwater releases from the northern boundary of the Park. The analysis of both climate variability and climate change in such wetlands is needed to inform management practices in coastal wetland zones around the world.
NASA Astrophysics Data System (ADS)
Karabil, Sitar; Zorita, Eduardo; Hünicke, Birgit
2018-01-01
The main purpose of this study is to quantify the contribution of atmospheric factors to recent off-shore sea-level variability in the Baltic Sea and the North Sea on interannual timescales. For this purpose, we statistically analysed sea-level records from tide gauges and satellite altimetry and several climatic data sets covering the last century. Previous studies had concluded that the North Atlantic Oscillation (NAO) is the main pattern of atmospheric variability affecting sea level in the Baltic Sea and the North Sea in wintertime. However, we identify a different atmospheric circulation pattern that is more closely connected to sea-level variability than the NAO. This circulation pattern displays a link to sea level that remains stable through the 20th century, in contrast to the much more variable link between sea level and the NAO. We denote this atmospheric variability mode as the Baltic Sea and North Sea Oscillation (BANOS) index. The sea-level pressure (SLP) BANOS pattern displays an SLP dipole with centres of action located over (5° W, 45° N) and (20° E, 70° N) and this is distinct from the standard NAO SLP pattern in wintertime. In summertime, the discrepancy between the SLP BANOS and NAO patterns becomes clearer, with centres of action of the former located over (30° E, 45° N) and (20° E, 60° N). This index has a stronger connection to off-shore sea-level variability in the study area than the NAO in wintertime for the period 1993-2013, explaining locally up to 90 % of the interannual sea-level variance in winter and up to 79 % in summer. The eastern part of the Gulf of Finland is the area where the BANOS index is most sensitive to sea level in wintertime, whereas the Gulf of Riga is the most sensitive region in summertime. In the North Sea region, the maximum sea-level sensitivity to the BANOS pattern is located in the German Bight for both winter and summer seasons. We investigated, and when possible quantified, the contribution of several physical mechanisms which may explain the link between the sea-level variability and the atmospheric pattern described by the BANOS index. These mechanisms include the inverse barometer effect (IBE), freshwater balance, net energy surface flux and wind-induced water transport. We found that the most important mechanism is the IBE in both wintertime and summertime. Assuming a complete equilibration of seasonal sea level to the SLP gradients over this region, the IBE can explain up to 88 % of the sea-level variability attributed to the BANOS index in wintertime and 34 % in summertime. The net energy flux at the surface is found to be an important factor for the variation of sea level, explaining 35 % of sea-level variance in wintertime and a very small amount in summer. The freshwater flux could only explain 27 % of the variability in summertime and a negligible part in winter. In contrast to the NAO, the direct wind forcing associated with the SLP BANOS pattern does not lead to transport of water from the North Sea into the Baltic Sea in wintertime.
NASA Astrophysics Data System (ADS)
James, Noel P.; Desrochers, André; Kyser, Kurt T.
2015-04-01
Exquisitely preserved and well-exposed rocky paleoshoreline omission surfaces in Lower Silurian Chicotte Formation limestones on Anticosti Island, Quebec, are interpreted to be the product of combined marine and meteoric diagenesis. The different omission features include; 1) planar erosional bedding tops, 2) scalloped erosional surfaces, 3) knobs, ridges, and swales at bedding contacts, and 4) paleoscarps. An interpretation is proposed that relates specific omission surface styles to different diagenetic-depositional processes that took place in separate terrestrial-peritidal-shallow neritic zones. Such processes were linked to fluctuations in relative sea level with specific zones of diagenesis such as; 1) karst corrosion, 2) peritidal erosion, 3) subtidal seawater flushing and cementation, and 4) shallow subtidal deposition. Most surfaces are interpreted to have been the result of initial extensive shallow-water synsedimentary lithification that were, as sea level fell, altered by exposure and subaerial corrosion, only to be buried by sediments as sea level rose again. This succession was repeated several times resulting in a suite of recurring polyphase omission surfaces through many meters of stratigraphic section. Synsedimentary cloudy marine cements are well preserved and are thus interpreted to have been calcitic originally. Aragonite components are rare and thought to have to have been dissolved just below the Silurian seafloor. Large molluscs that survived such seafloor removal were nonetheless leached and the resultant megamoulds were filled with synsedimentary calcite cement. These Silurian inner neritic-strandline omission surfaces are temporally unique. They are part of a suite of marine omission surfaces that are mostly found in early Paleozoic neritic carbonate sedimentary rocks. These karsted hardgrounds formed during a calcite-sea time of elevated marine carbonate saturation and extensive marine cement precipitation. The contemporaneous greenhouse atmosphere was supercharged with CO2 leading to profound surface karst under strongly acid rain. Younger peritidal omission surfaces, although potentially formed during aragonite or calcite sea times, would have been subject to very different terrestrial diagenetic process with lower atmospheric pCO2 values but increasingly complex biogenic soils producing dissimilar alteration features.
A note on sea level variability at Clipperton Island from GEOSAT and in-situ observations
NASA Astrophysics Data System (ADS)
Maul, George A.; Hansen, Donald V.; Bravo, Nicolas J.
During the 1986-1989 Exact Repeat Mission (ERM) of GEOSAT, in-situ observations of sea level at Clipperton Island (10°N/109°W) and satellite-tracked free-drifting drogued buoys in the eastern tropical Pacific Ocean are concurrently available. A map of the standard deviations of GEOSAT sea surface heights (2.9 years) shows a variance maximum along ˜12°N from Central America, past Clipperton to ˜160°W. Sea floor pressure gauge observations from a shallow (10m depth) site on Clipperton Island and an ERM crossover point in deep water nearby show a correlation of r = 0.76 with a residual of ±6.7 cm RMS. Approximately 17% of the difference (GEOSAT minus sea level) is characterized by a 4 cm amplitude 0° phase annual harmonic, which is probably caused by unaccounted-for tropospheric water vapor affecting the altimeter and/or ERM orbit error removal. Wintertime anticyclonic mesoscale eddies advecting past Clipperton Island each year have GEOSAT sea surface height and in-situ sea level signals of more than 30 cm, some of which are documented by the satellite-tracked drifters. Meridional profiles of the annual harmonic of zonal geostrophic current from GEOSAT and from the drifters both show synchronous maxima in the North Equatorial Countercurrent and the North Equatorial Current. Other Clipperton sea level maxima seen during late spring of each year may involve anticyclonic vortices formed along Central America the previous winter.
Assessing sea wave and spray effects on Marine Boundary Layer structure
NASA Astrophysics Data System (ADS)
Stathopoulos, Christos; Galanis, George; Patlakas, Platon; Kallos, George
2017-04-01
Air sea interface is characterized by several mechanical and thermodynamical processes. Heat, moisture and momentum exchanges increase the complexity in modeling the atmospheric-ocean system. Near surface atmospheric levels are subject to sea surface roughness and sea spray. Sea spray fluxes can affect atmospheric stability and induce microphysical processes such as sea salt particle formation and condensation/evaporation of water in the boundary layer. Moreover, presence of sea spray can alter stratification over the ocean surface with further insertion of water vapor. This can lead to modified stability conditions and to wind profiles that deviate significantly from the logarithmic approximation. To model these effects, we introduce a fully coupled system consisting of the mesoscale atmospheric model RAMS/ICLAMS and the wave model WAM. The system encompasses schemes for ocean surface roughness, sea salt aerosols and droplet thermodynamic processes and handles sea salt as predictive quantity. Numerical experiments using the developed atmospheric-ocean system are performed over the Atlantic and Mediterranean shoreline. Emphasis is given to the quantification of the improvement obtained in the description of the marine boundary layer, particularly in its lower part as well as in wave characteristics.
NASA Astrophysics Data System (ADS)
Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.
1990-03-01
Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.
Daytime sea fog retrieval based on GOCI data: a case study over the Yellow Sea.
Yuan, Yibo; Qiu, Zhongfeng; Sun, Deyong; Wang, Shengqiang; Yue, Xiaoyuan
2016-01-25
In this paper, a new daytime sea fog detection algorithm has been developed by using Geostationary Ocean Color Imager (GOCI) data. Based on spectral analysis, differences in spectral characteristics were found over different underlying surfaces, which include land, sea, middle/high level clouds, stratus clouds and sea fog. Statistical analysis showed that the Rrc (412 nm) (Rayleigh Corrected Reflectance) of sea fog pixels is approximately 0.1-0.6. Similarly, various band combinations could be used to separate different surfaces. Therefore, three indices (SLDI, MCDI and BSI) were set to discern land/sea, middle/high level clouds and fog/stratus clouds, respectively, from which it was generally easy to extract fog pixels. The remote sensing algorithm was verified using coastal sounding data, which demonstrated that the algorithm had the ability to detect sea fog. The algorithm was then used to monitor an 8-hour sea fog event and the results were consistent with observational data from buoys data deployed near the Sheyang coast (121°E, 34°N). The goal of this study was to establish a daytime sea fog detection algorithm based on GOCI data, which shows promise for detecting fog separately from stratus.
NASA Astrophysics Data System (ADS)
Wu, Quran; Zhang, Xuebin; Church, John A.; Hu, Jianyu
2017-03-01
Previous studies have shown that regional sea level exhibits interannual and decadal variations associated with the modes of climate variability. A better understanding of those low-frequency sea level variations benefits the detection and attribution of climate change signals. Nonetheless, the contributions of thermosteric, halosteric, and mass sea level components to sea level variability and trend patterns remain unclear. By focusing on signals associated with dominant climate modes in the Indo-Pacific region, we estimate the interannual and decadal fingerprints and trend of each sea level component utilizing a multivariate linear regression of two adjoint-based ocean reanalyses. Sea level interannual, decadal, and trend patterns primarily come from thermosteric sea level (TSSL). Halosteric sea level (HSSL) is of regional importance in the Pacific Ocean on decadal time scale and dominates sea level trends in the northeast subtropical Pacific. The compensation between TSSL and HSSL is identified in their decadal variability and trends. The interannual and decadal variability of temperature generally peak at subsurface around 100 m but that of salinity tend to be surface-intensified. Decadal temperature and salinity signals extend deeper into the ocean in some regions than their interannual equivalents. Mass sea level (MassSL) is critical for the interannual and decadal variability of sea level over shelf seas. Inconsistencies exist in MassSL trend patterns among various estimates. This study highlights regions where multiple processes work together to control sea level variability and change. Further work is required to better understand the interaction of different processes in those regions.
Communist China. Section 23. Weather and Climate. Part 3 - North China
1964-06-01
Introduction 1 2. Climatic controls 2 a. General circulation and air masses 2 b. Migratory pressure systems and fronts 3 (1) Extratropical ...Sea-level pressure and surface airflow, January (map) 2 Fig. 2 Sea-level pressure and surface airflow, July (mop) 2 Fig. 3 Tracks of extratropical ...become weaker and less frequent as those of the invading monsoon become more prevalent. b. MIGRATORY PRESSURE SYSTEMS AND FRONTS (1) Extratropical
A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise
Webb, Edward L.; Friess, Daniel A.; Krauss, Ken W.; Cahoon, Donald R.; Guntenspergen, Glenn R.; Phelps, Jacob
2013-01-01
Sea-level rise threatens coastal salt-marshes and mangrove forests around the world, and a key determinant of coastal wetland vulnerability is whether its surface elevation can keep pace with rising sea level. Globally, a large data gap exists because wetland surface and shallow subsurface processes remain unaccounted for by traditional vulnerability assessments using tide gauges. Moreover, those processes vary substantially across wetlands, so modelling platforms require relevant local data. The low-cost, simple, high-precision rod surface-elevation table–marker horizon (RSET-MH) method fills this critical data gap, can be paired with spatial data sets and modelling and is financially and technically accessible to every country with coastal wetlands. Yet, RSET deployment has been limited to a few regions and purposes. A coordinated expansion of monitoring efforts, including development of regional networks that could support data sharing and collaboration, is crucial to adequately inform coastal climate change adaptation policy at several scales.
Constraining Future Sea Level Rise Estimates from the Amundsen Sea Embayment, West Antarctica
NASA Astrophysics Data System (ADS)
Nias, I.; Cornford, S. L.; Edwards, T.; Gourmelen, N.; Payne, A. J.
2016-12-01
The Amundsen Sea Embayment (ASE) is the primary source of mass loss from the West Antarctic Ice Sheet. The catchment is particularly susceptible to grounding line retreat, because the ice sheet is grounded on bedrock that is below sea level and deepening towards its interior. Mass loss from the ASE ice streams, which include Pine Island, Thwaites and Smith glaciers, is a major uncertainty on future sea level rise, and understanding the dynamics of these ice streams is essential to constraining this uncertainty. The aim of this study is to construct a distribution of future ASE sea level contributions from an ensemble of ice sheet model simulations and observations of surface elevation change. A 284 member ensemble was performed using BISICLES, a vertically-integrated ice flow model with adaptive mesh refinement. Within the ensemble parameters associated with basal traction, ice rheology and sub-shelf melt rate were perturbed, and the effect of bed topography and sliding law were also investigated. Initially each configuration was run to 50 model years. Satellite observations of surface height change were then used within a Bayesian framework to assign likelihoods to each ensemble member. Simulations that better reproduced the current thinning patterns across the catchment were given a higher score. The resulting posterior distribution of sea level contributions is narrower than the prior distribution, although the central estimates of sea level rise are similar between the prior and posterior. The most extreme simulations were eliminated and the remaining ensemble members were extended to 200 years, using a simple melt rate forcing.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francois; Bailey, Sean W.; Pietras, Christophe M.; Firestone, Elaine R. (Editor)
2000-01-01
This report documents the scientific activities that took place at the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea off the coast of Italy from 2-6 August 1999. The ultimate objective of the field campaign was to evaluate the capabilities of a new instrument called the SeaWiFS Photometer Revision for Incident Surface Measurements (SeaPRISM). SeaPRISM is based on a CE-318 sun photometer made by CIMEL Electronique (Paris, France). The CE-318 is an automated, robotic system which measures the direct sun irradiance plus the sky radiance in the sun plane and in the almucantar plane. The data are transmitted over a satellite link, and this remote operation capability has made the device very useful for atmospheric measurements. The revision to the CE-318 that makes the instrument potentially useful for SeaWiFS calibration and validation activities is to include a capability for measuring the radiance leaving the sea surface in wavelengths suitable for the determination of chlorophyll a concentration. The initial evaluation of this new capability involved above- and in-water measurement protocols. An intercomparison of the water-leaving radiances derived from SeaPRISM and an in-water system showed the overall spectral agreement was approximately 8.6%, but the blue-green channels intercompared at the 5% level. A blue-green band ratio comparison was at the 4% level.
NASA Astrophysics Data System (ADS)
Kurbatov, G. A.; Padokhin, A. M.
2017-12-01
In the present work we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSS-receiver, which are based on the multipath propagation effects (interference pattern in SNR of GNSS signals at small elevation angles) caused by the reflection of navigational signals from the sea surface. The measurements were carried out in the coastal zone of Black Sea at the Stationary Oceanographic Platform during one-week campaign in the summer 2017. GPS/GLONASS signals at two working frequencies of both systems were used to study sea level variations which almost doubled the amount of observations compared to GPS-only tide gauge. Moreover all the measurements were conducted with 4-antenna GNSS receiver providing the opportunity for different orientations of antennas including zenith and nadir looking ones as well as two horizontally oriented ones at different azimuths. As the reference we used data from co-located wire wave gauge which showed good correspondence of both datasets. Though tidal effects are not so pronounced for the Black Sea, the described experimental setup allowed to study the effects of sea surface roughness, driven by meteorological conditions (e.g. wind waves), as well as antenna directivity pattern effects on the observed interference patterns of GPS/GLONASS L1/L2 signals (relation of the main spectral peak to the noise power) and the quality of sea level estimations.
The Impact of Sea Level Rise on Florida's Everglades
NASA Astrophysics Data System (ADS)
Senarath, S. U.
2005-12-01
Global warming and the resulting melting of polar ice sheets could increase global sea levels significantly. Some studies have predicted mean sea level increases in the order of six inches to one foot in the next 25 to 50 years. This could have severe irreversible impacts on low-lying areas of Florida's Everglades. The key objective of this study is to evaluate the effects of a one foot sea level rise on Cape Sable Seaside Sparrow (CSSS) nesting areas within the Everglades National Park (ENP). A regional-scale hydrologic model is used to assess the sensitivities of this sea-level rise scenario. Florida's Everglades supports a unique ecosystem. At present, about 50 percent of this unique ecosystem has been lost due to urbanization and farming. Today, the water flow in the remnant Everglades is also regulated to meet a variety of competing environmental, water-supply and flood-control needs. A 30-year, eight billion dollar (1999 estimate) project has been initiated to improve Everglades' water flows. The expected benefits of this restoration project will be short-lived if the predicted sea level rise causes severe impacts on the environmentally sensitive areas of the Everglades. Florida's Everglades is home to many threatened and endangered species of wildlife. The Cape Sable Seaside Sparrow population in the ENP is one such species that is currently listed as endangered. Since these birds build their nests close to the ground surface (the base of the nest is approximately six inches from the ground surface), they are directly affected by any sea level induced ponding depth, frequency or duration change. Therefore, the CSSS population serves as a good indicator species for evaluating the negative impacts of sea level rise on the Everglades' ecosystem. The impact of sea level rise on the CSSS habitat is evaluated using the Regional Simulation Model (RSM) developed by the South Florida Water Management District. The RSM is an implicit, finite-volume, continuous, distributed, and integrated surface-water and ground-water model. It can simulate one-dimensional canal/stream flow and two-dimensional overland and groundwater flow in arbitrarily shaped areas using a variable triangular mesh. The overland and groundwater flow components are fully coupled in the RSM for a more realistic representation of runoff generation.
How mangrove forests adjust to rising sea level
Krauss, Ken W.; McKee, Karen L.; Lovelock, Catherine E.; Cahoon, Donald R.; Saintilan, Neil; Reef, Ruth; Chen, Luzhen
2014-01-01
Mangroves are among the most well described and widely studied wetland communities in the world. The greatest threats to mangrove persistence are deforestation and other anthropogenic disturbances that can compromise habitat stability and resilience to sea-level rise. To persist, mangrove ecosystems must adjust to rising sea level by building vertically or become submerged. Mangroves may directly or indirectly influence soil accretion processes through the production and accumulation of organic matter, as well as the trapping and retention of mineral sediment. In this review, we provide a general overview of research on mangrove elevation dynamics, emphasizing the role of the vegetation in maintaining soil surface elevations (i.e. position of the soil surface in the vertical plane). We summarize the primary ways in which mangroves may influence sediment accretion and vertical land development, for example, through root contributions to soil volume and upward expansion of the soil surface. We also examine how hydrological, geomorphological and climatic processes may interact with plant processes to influence mangrove capacity to keep pace with rising sea level. We draw on a variety of studies to describe the important, and often under-appreciated, role that plants play in shaping the trajectory of an ecosystem undergoing change.
NASA Astrophysics Data System (ADS)
Lotfata, A.; Ambinakudige, S.
2017-12-01
Coastal regions face a higher risk of flooding. A rise in sea-level increases flooding chances in low-lying areas. A major concern is the effect of sea-level rise on the depth of the fresh water/salt water interface in the aquifers of the coastal regions. A sea-level change rise impacts the hydrological system of the aquifers. Salt water intrusion into fresh water aquifers increase water table levels. Flooding prone areas in the coast are at a higher risk of salt water intrusion. The Gulf coast is one of the most vulnerable flood areas due to its natural weather patterns. There is not yet a local assessment of the relation between groundwater level and sea-level rising. This study investigates the projected sea-level rise models and the anomalous groundwater level during January 2002 to December 2016. We used the NASA Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System (GLDAS) satellite data in the analysis. We accounted the leakage error and the measurement error in GRACE data. GLDAS data was used to calculate the groundwater storage from the total water storage estimated using GRACE data (ΔGW=ΔTWS (soil moisture, surface water, groundwater, and canopy water) - ΔGLDAS (soil moisture, surface water, and canopy water)). The preliminary results indicate that the total water storage is increasing in parts of the Gulf of Mexico. GRACE data show high soil wetness and groundwater levels in Mississippi, Alabama and Texas coasts. Because sea-level rise increases the probability of flooding in the Gulf coast and affects the groundwater, we will analyze probable interactions between sea-level rise and groundwater in the study area. To understand regional sea-level rise patterns, we will investigate GRACE Ocean data along the Gulf coasts. We will quantify ocean total water storage, its salinity, and its relationship with the groundwater level variations in the Gulf coast.
Atmospheric Signature of the Agulhas Current
NASA Astrophysics Data System (ADS)
Nkwinkwa Njouodo, Arielle Stela; Koseki, Shunya; Keenlyside, Noel; Rouault, Mathieu
2018-05-01
Western boundary currents play an important role in the climate system by transporting heat poleward and releasing it to the atmosphere. While their influence on extratropical storms and oceanic rainfall is becoming appreciated, their coastal influence is less known. Using satellite and climate reanalysis data sets and a regional atmospheric model, we show that the Agulhas Current is a driver of the observed band of rainfall along the southeastern African coast and above the Agulhas Current. The Agulhas current's warm core is associated with sharp gradients in sea surface temperature and sea level pressure, a convergence of low-level winds, and a co-located band of precipitation. Correlations among wind convergence, sea level pressure, and sea surface temperature indicate that these features show high degree of similarity to those in the Gulf Stream region. Model experiments further indicate that the Agulhas Current mostly impacts convective rainfall.
Schiner, George R.; Hayes, Eugene C.
1984-01-01
This map shows the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 1984. The Upper Floridan aquifer is the principal source of potable water in the area. Water-level measurements were made on approximately 1,000 wells and on several springs. The potentiometric surface is shown mostly by 5-foot contour intervals. In the Fernandina Beach area a 40-foot interval is used to show a deep cone of depression. The potentiometric surface ranged from 126 feet above sea level in Polk County to 84 feet below sea level in Nassau County. Water levels in key wells were mostly above, or less frequently, slightly below averages for May in response to diverse area rainfall patterns. Most levels in the district were about the same, or more commonly, 1 to 2 feet lower than May 1983 levels. (USGS)
Walter, Donald A.; McCobb, Timothy D.; Masterson, John P.; Fienen, Michael N.
2016-05-25
In 2014, the U.S. Geological Survey, in cooperation with the Association to Preserve Cape Cod, the Cape Cod Commission, and the Massachusetts Environmental Trust, began an evaluation of the potential effects of sea-level rise on water table altitudes and depths to water on central and western Cape Cod, Massachusetts. Increases in atmospheric and oceanic temperatures arising, in part, from the release of greenhouse gases likely will result in higher sea levels globally. Increasing water table altitudes in shallow, unconfined coastal aquifer systems could adversely affect infrastructure—roads, utilities, basements, and septic systems—particularly in low-lying urbanized areas. The Sagamore and Monomoy flow lenses on Cape Cod are the largest and most populous of the six flow lenses that comprise the region’s aquifer system, the Cape Cod glacial aquifer. The potential effects of sea-level rise on water table altitude and depths to water were evaluated by use of numerical models of the region. The Sagamore and Monomoy flow lenses have a number of large surface water drainages that receive a substantial amount of groundwater discharge, 47 and 29 percent of the total, respectively. The median increase in the simulated water table altitude following a 6-foot sea-level rise across both flow lenses was 2.11 feet, or 35 percent when expressed as a percentage of the total sea-level rise. The response is nearly the same as the sea-level rise (6 feet) in some coastal areas and less than 0.1 foot near some large inland streams. Median water table responses differ substantially between the Sagamore and Monomoy flow lenses—at 29 and 49 percent, respectively—because larger surface water discharge on the Sagamore flow lens results in increased dampening of the water table response than in the Monomoy flow lens. Surface waters dampen water table altitude increases because streams are fixed-altitude boundaries that cause hydraulic gradients and streamflow to increase as sea-level rises, partially fixing the local water table altitude.The region has a generally thick vadose zone with a mean of about 38 feet; areas with depths to water of 5 feet or less, as estimated from light detection and ranging (lidar) data from 2011 and simulated water table altitudes, currently [2011] occur over about 24.9 square miles, or about 8.4 percent of the total land area of the Sagamore and Monomoy flow lenses, generally in low-lying coastal areas and inland near ponds and streams. Excluding potentially submerged areas, an additional 4.5, 9.8, and 15.9 square miles would have shallow depths to water (5 feet or less) for projected sea-level rises of 2, 4, and 6 feet above levels in 2011. The additional areas with shallow depths to water generally occur in the same areas as the areas with current [2011] depths to water of 5 feet or less: low-lying coastal areas and near inland surface water features. Additional areas with shallow depths to water for the largest sea-level rise prediction (6 feet) account for about 5.7 percent of the total land area, excluding areas likely to be inundated by seawater. The numerous surface water drainages will dampen the response of the water table to sea-level rise. This dampening, combined with the region’s thick vadose zone, likely will mitigate the potential for groundwater inundation in most areas. The potential does exist for groundwater inundation in some areas, but the effects of sea-level rise on depths to water and infrastructure likely will not be substantial on a regional level.
NASA Astrophysics Data System (ADS)
Kumar, V.; Melet, A.; Meyssignac, B.; Ganachaud, A.; Kessler, W. S.; Singh, A.; Aucan, J.
2018-02-01
Rising sea levels are a critical concern in small island nations. The problem is especially serious in the western south Pacific, where the total sea level rise over the last 60 years has been up to 3 times the global average. In this study, we aim at reconstructing sea levels at selected sites in the region (Suva, Lautoka—Fiji, and Nouméa—New Caledonia) as a multilinear regression (MLR) of atmospheric and oceanic variables. We focus on sea level variability at interannual-to-interdecadal time scales, and trend over the 1988-2014 period. Local sea levels are first expressed as a sum of steric and mass changes. Then a dynamical approach is used based on wind stress curl as a proxy for the thermosteric component, as wind stress curl anomalies can modulate the thermocline depth and resultant sea levels via Rossby wave propagation. Statistically significant predictors among wind stress curl, halosteric sea level, zonal/meridional wind stress components, and sea surface temperature are used to construct a MLR model simulating local sea levels. Although we are focusing on the local scale, the global mean sea level needs to be adjusted for. Our reconstructions provide insights on key drivers of sea level variability at the selected sites, showing that while local dynamics and the global signal modulate sea level to a given extent, most of the variance is driven by regional factors. On average, the MLR model is able to reproduce 82% of the variance in island sea level, and could be used to derive local sea level projections via downscaling of climate models.
NASA Astrophysics Data System (ADS)
Li, Yun; Ji, Rubao; Fratantoni, Paula S.; Chen, Changsheng; Hare, Jonathan A.; Davis, Cabell S.; Beardsley, Robert C.
2014-04-01
In this study, we examine the importance of regional wind forcing in modulating advective processes and hydrographic properties along the Northwest Atlantic shelf, with a focus on the Nova Scotian Shelf (NSS)-Gulf of Maine (GoM) region. Long-term observational data of alongshore wind stress, sea level slope, and along-shelf flow are analyzed to quantify the relationship between wind forcing and hydrodynamic responses on interannual time scales. Additionally, a simplified momentum balance model is used to examine the underlying mechanisms. Our results show significant correlation among the observed interannual variability of sea level slope, along-shelf flow, and alongshore wind stress in the NSS-GoM region. A mechanism is suggested to elucidate the role of wind in modulating the sea level slope and along-shelf flow: stronger southwesterly (northeastward) winds tend to weaken the prevailing southwestward flow over the shelf, building sea level in the upstream Newfoundland Shelf region, whereas weaker southwesterly winds allow stronger southwestward flow to develop, raising sea level in the GoM region. The wind-induced flow variability can influence the transport of low-salinity water from the Gulf of St. Lawrence to the GoM, explaining interannual variations in surface salinity distributions within the region. Hence, our results offer a viable mechanism, besides the freshening of remote upstream sources, to explain interannual patterns of freshening in the GoM.
Howell, Fergus W.; Haywood, Alan M.; Dolan, Aisling M.; Dowsett, Harry J.; Francis, Jane E; Hill, Daniel J.; Pickering, Steven J.; Pope, James O.; Salzmann, Ulrich; Wade, Bidget S
2014-01-01
General Circulation Model simulations of the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Myr ago) currently underestimate the level of warming that proxy data suggest existed at high latitudes, with discrepancies of up to 11°C for sea surface temperature estimates and 17°C for surface air temperature estimates. Sea ice has a strong influence on high-latitude climates, partly due to the albedo feedback. We present results demonstrating the effects of reductions in minimum sea ice albedo limits in general circulation model simulations of the mPWP. While mean annual surface air temperature increases of up to 6°C are observed in the Arctic, the maximum decrease in model-data discrepancies is just 0.81°C. Mean annual sea surface temperatures increase by up to 2°C, with a maximum model-data discrepancy improvement of 1.31°C. It is also suggested that the simulation of observed 21st century sea ice decline could be influenced by the adjustment of the sea ice albedo parameterization.
Haro, A.; Kynard, B.
1997-01-01
Movement and behavior of adult American shad Alosa sapidissima and sea lamprey Petromyzon marinus were monitored by closed-circuit video at several locations within a modified Ice Harbor fishway. American shad ascended and descended the fishway exclusively by surface weirs, while sea lampreys used both surface weirs and submerged orifices. Upstream movement of American shad during the day was higher than at night at both lower and middle fishway observation sites. Peak downstream movement of American shad at both locations was associated with decreasing light levels in the evening. Sea lampreys moved primarily at night at the lower and middle fishway sites. Mean daily passage efficiency was low (1% for American shad, -2% for sea lamprey) at the lower fishway surface weir, but passage efficiency at the middle fishway surface weir was moderate (70% for American shad, 35% for sea lamprey). High water velocity, air entrainment, and turbulence of the modified Ice Harbor fishway design appeared to inhibit American shad and sea lamprey passage by disrupting upstream migratory motivation and visual and rheotactic orientation.
Use of coastal altimeter and tide gauge data for a seamless land-sea vertical datum in Taiwan
NASA Astrophysics Data System (ADS)
Yen-Ti, C.; Hwang, C.
2017-12-01
Conventional topographic and hydrographic mappings use two separate reference surfaces, called orthometric datum (TWVD2001 in Taiwan) and chart datum. In Taiwan, land elevations are heights tied to a leveling control network with its zero height at the mean sea surface of Keelung Harbor (realized by the height of Benchmark K999). Ocean depths are counted from the lowest tidal surface defined by tidal measurements near the sites of depth measurements. This paper usesa new method to construct a unified vertical datum for land elevations and ocean depths around Taiwan. First, we determine an optimal mean sea surface model (MSSHM) using refined offshore altimeter data. Then, the ellipsoidal heights of the mean sea levels at 36 tide gauges around Taiwan are determined using GPS measurements at their nearby benchmarks, and are then combined with the altimeter-derived MSSHM to generate a final MSSHM that has a smooth transition from land to sea. We also construct an improved ocean tide model to obtain various tidal surfaces. Using the latest land, shipborne, airborne and altimeter-derived gravity data, we construct a hybrid geoid model to define a vertical datum on land. The final MSSHM is the zero surface that defines ocean tidal heights and lowest tidal values in a ellipsoidal system that is fully consistent with the geodetic system of GNSS. The use of the MSSHM and the hybrid geoid model enables a seamless connection to combine or compare coastal land and sea elevations from a wide range of sources.
NASA Astrophysics Data System (ADS)
Park, I. W.; Lee, S. H.; Lee, W. S.; Lee, C. K.; Lee, K. K.
2017-12-01
As global mean temperature increases, it affects increase in polar glacier melt and thermal expansion of sea, which contributed to global sea level rise. Unlike large sea level rise contributors in Western Antarctica (e. g. Pine island glacier, Thwaites glacier), glaciers in East Antarctica shows relatively stable and slow ice velocity. However, recent calving events related to increase of supraglacier lake in Nansen ice shelf arouse the questions in regards to future evolution of ice dynamics at Victoria Land, East Antarctica. Here, using Ice Sheet System Model (ISSM), a series of numerical simulations were carried out to investigate ice dynamics evolution (grounding line migration, ice velocity) and sea level rise contribution in response to external forcing conditions (surface mass balance, floating ice melting rate, and ice front retreat). In this study, we used control method to set ice dynamic properties (ice rigidity and friction coefficient) with shallow shelf approximation model and check each external forcing conditions contributing to sea level change. Before 50-year transient simulations were conducted based on changing surface mass balance, floating ice melting rate, and ice front retreat of Drygalski ice tongue and Nansen ice shelf, relaxation was performed for 10 years to reduce non-physical undulation and it was used as initial condition. The simulation results showed that sea level rise contribution were expected to be much less compared to other fast glaciers. Floating ice melting rate was most sensitive parameter to sea level rise, while ice front retreat of Drygalski tongue was negligible. The regional model will be further updated utilizing ice radar topography and measured floating ice melting rate.
Investigation Hydrometeorological Regime of the White Sea Based on Satellite Altimetry Data
NASA Astrophysics Data System (ADS)
Lebedev, Sergey A.
2016-08-01
The White Sea are the seas of the Arctic Ocean. Today complicated hydrodynamic, tidal, ice, and meteorological regimes of these seas may be investigated on the basis of remote sensing data, specifically of satellite altimetry data. Results of calibration and validation of satellite altimetry measurements (sea surface height and sea surface wind speed) and comparison with regional tidal model show that this type of data may be successfully used in scientific research and in monitoring of the environment. Complex analysis of the tidal regime of the White Sea and comparison between global and regional tidal models show advantages of regional tidal model for use in tidal correction of satellite altimetry data. Examples of using the sea level data in studying long-term variability of the Barents and White Seas are presented. Interannual variability of sea ice edge position is estimated on the basis of altimetry data.
NASA Astrophysics Data System (ADS)
Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike
2015-04-01
In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.
The Development of a Sea Surface Height Climate Data Record from Multi-mission Altimeter Data
NASA Astrophysics Data System (ADS)
Beckley, B. D.; Ray, R. D.; Lemoine, F. G.; Zelensky, N. P.; Desai, S. D.; Brown, S.; Mitchum, G. T.; Nerem, R.; Yang, X.; Holmes, S. A.
2011-12-01
The determination of the rate of change of mean sea level (MSL) has undeniable societal significance. The science value of satellite altimeter observations has grown dramatically over time as improved models and technologies have increased the value of data acquired on both past and present missions enabling credible MSL estimates. With the prospect of an observational time series extending into several decades from TOPEX/Poseidon through Jason-1 and the Ocean Surface Topography Mission (OSTM), and further in time with a future set of operational altimeters, researchers are pushing the bounds of current technology and modeling capability in order to monitor global and regional sea level rates at an accuracy of a few tenths of a mm/yr. GRACE data analysis suggests that the ice melt from Alaska alone contributes 0.3 mm/y to global sea level rise. The measurement of MSL change from satellite altimetry requires an extreme stability of the altimeter measurement system since the signal being measured is at the level of a few mm/yr. This means that the orbit and reference frame within which the altimeter measurements are situated, and the associated altimeter corrections, must be stable and accurate enough to permit a robust MSL estimate. Foremost, orbit quality and consistency are critical not only to satellite altimeter measurement accuracy across one mission, but also for the seamless transition between missions (Beckley, et. al, 2005). The analysis of altimeter data for TOPEX/Poseidon, Jason-1, and OSTM requires that the orbits for all three missions be in a consistent reference frame, and calculated with the best possible standards to minimize error and maximize the data return from the time series, particularly with respect to the demanding application of measuring sea level trends. In this presentation we describe the development and utility of the MEaSURE's TPJAOS V1.0 sea surface height Climate Data Record (http://podaac.jpl.nasa.gov/dataset/MERGED_TP_J1_OSTM_OST_ALL). We provide an assessment of recent improvements to the accuracy of the 19-year sea surface height time series, describe continuing calibration/validation activities, and evaluate the subsequent impact on global and regional mean sea level estimates.
Greenland Ice Sheet Surface Temperature, Melt, and Mass Loss: 2000-2006
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Williams, Richard S., Jr.; Luthcke, Scott B.; DiGirolamo, Nocolo
2007-01-01
Extensive melt on the Greenland Ice Sheet has been documented by a variety of ground and satellite measurements in recent years. If the well-documented warming continues in the Arctic, melting of the Greenland Ice Sheet will likely accelerate, contributing to sea-level rise. Modeling studies indicate that an annual or summer temperature rise of 1 C on the ice sheet will increase melt by 20-50% therefore, surface temperature is one of the most important ice-sheet parameters to study for analysis of changes in the mass balance of the ice-sheet. The Greenland Ice Sheet contains enough water to produce a rise in eustatic sea level of up to 7.0 m if the ice were to melt completely. However, even small changes (centimeters) in sea level would cause important economic and societal consequences in the world's major coastal cities thus it is extremely important to monitor changes in the ice-sheet surface temperature and to ultimately quantify these changes in terms of amount of sea-level rise. We have compiled a high-resolution, daily time series of surface temperature of the Greenland Ice Sheet, using the I-km resolution, clear-sky land-surface temperature (LST) standard product from the Moderate-Resolution Imaging Spectroradiometer (MODIS), from 2000 - 2006. We also use Gravity Recovery and Climate Experiment (GRACE) data, averaged over 10-day periods, to measure change in mass of the ice sheet as it melt and snow accumulates. Surface temperature can be used to determine frequency of surface melt, timing of the start and the end of the melt season, and duration of melt. In conjunction with GRACE data, it can also be used to analyze timing of ice-sheet mass loss and gain.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); McClain, Charles R.; Darzi, Michael; Barnes, Robert A.; Eplee, Robert E.; Firestone, James K.; Patt, Frederick S.; Robinson, Wayne D.; Schieber, Brian D.;
1996-01-01
This document provides five brief reports that address several quality control procedures under the auspices of the Calibration and Validation Element (CVE) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter 1 describes analyses of the 32 sensor engineering telemetry streams. Anomalies in any of the values may impact sensor performance in direct or indirect ways. The analyses are primarily examinations of parameter time series combined with statistical methods such as auto- and cross-correlation functions. Chapter 2 describes how the various onboard (solar and lunar) and vicarious (in situ) calibration data will be analyzed to quantify sensor degradation, if present. The analyses also include methods for detecting the influence of charged particles on sensor performance such as might be expected in the South Atlantic Anomaly (SAA). Chapter 3 discusses the quality control of the ancillary environmental data that are routinely received from other agencies or projects which are used in the atmospheric correction algorithm (total ozone, surface wind velocity, and surface pressure; surface relative humidity is also obtained, but is not used in the initial operational algorithm). Chapter 4 explains the procedures for screening level-, level-2, and level-3 products. These quality control operations incorporate both automated and interactive procedures which check for file format errors (all levels), navigation offsets (level-1), mask and flag performance (level-2), and product anomalies (all levels). Finally, Chapter 5 discusses the match-up data set development for comparing SeaWiFS level-2 derived products with in situ observations, as well as the subsequent outlier analyses that will be used for evaluating error sources.
2014-09-09
influences of changes in extreme sea levels as they affect the four mission areas of USACE: storm damage reduction, flood risk mitigation, ecosystems...winds and surface pressure can occur on the scale of the inundation area under investigation, cyclonic climatologies and more sophisticated inundation...Federal and State agencies (particularly the Bureau of Meteorology) providing forecast data (e.g. DIPNR, 2005, Appendix N). In more developed areas of
Secretary of the Navy Professor of Oceanography
2013-11-18
of better predicting polar ice melting processes and the associated global rise in sea level. 15. SUBJECT TERMS Wind-drag, ocean surface roughness...Ross Sea with the goal of better predicting polar ice melting processes and the associated global rise in sea level. PUBLICATIONS Farrell, W. and W...Oceanography, LaJolla, CA; 12 May 2011 Attended: International Symposium on Interactions of Glaciers and Ice Sheets with the Ocean SIO, Scripps Institution
Sea level change: lessons from the geologic record
,
1995-01-01
Rising sea level is potentially one of the most serious impacts of climatic change. Even a small sea level rise would have serious economic consequences because it would cause extensive damage to the world's coastal regions. Sea level can rise in the future because the ocean surface can expand due to warming and because polar ice sheets and mountain glaciers can melt, increasing the ocean's volume of water. Today, ice caps on Antarctica and Greenland contain 91 and 8 percent of the world's ice, respectively. The world's mountain glaciers together contain only about 1 percent. Melting all this ice would raise sea level about 80 meters. Although this extreme scenario is not expected, geologists know that sea level can rise and fall rapidly due to changing volume of ice on continents. For example, during the last ice age, about 18,000 years ago, continental ice sheets contained more than double the modem volume of ice. As ice sheets melted, sea level rose 2 to 3 meters per century, and possibly faster during certain times. During periods in which global climate was very warm, polar ice was reduced and sea level was higher than today.
Watkins, F.A.; Laughlin, C.P.; Hayes, E.C.
1977-01-01
This map presents the potentiometric surface of the Floridan aquifer in the St. Johns River Water Management District and vicinity for September 1977. The Floridan aquifer is the principal source of potable water in the area. Water-level measurements were made on approximately 900 wells and springs. The potentiometric surface is shown by 5-foot contours except in the Fernandina Beach area where 10- and 20-foot contours are used to show the deep cone of depression. This is the first map covering the entire St. Johns River Water Management District and vicinity for September, a high water-level period. The potentiometric surface ranged from 130 feet above mean sea level in Polk County to 131 feet below sea level in Nassau County. (Woodard-USGS)
Potentiometric Surface of the Magothy Aquifer in Southern Maryland, September 2009
Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.
2010-01-01
This report presents a map showing the potentiometric surface of the Magothy aquifer in the Magothy Formation of Late Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 66 wells. The highest measured water level was 85 feet above sea level near the northern boundary and outcrop area of the aquifer in the north-central part of Anne Arundel County. The potentiometric surface declined towards the south. Local hydraulic gradients were directed toward the center of a cone of depression in the Waldorf area that developed in response to pumping. Measured groundwater levels were as low as 71 feet below sea level in the Waldorf area. The map also shows well yield in gallons per day for 2008 at wells or well fields.
Iglesias, Isabel; Lorenzo, M Nieves; Lázaro, Clara; Fernandes, M Joana; Bastos, Luísa
2017-12-31
Sea level anomaly (SLA), provided globally by satellite altimetry, is considered a valuable proxy for detecting long-term changes of the global ocean, as well as short-term and annual variations. In this manuscript, monthly sea level anomaly grids for the period 1993-2013 are used to characterise the North Atlantic Ocean variability at inter-annual timescales and its response to the North Atlantic main patterns of atmospheric circulation variability (North Atlantic Oscillation, Eastern Atlantic, Eastern Atlantic/Western Russia, Scandinavian and Polar/Eurasia) and main driven factors as sea level pressure, sea surface temperature and wind fields. SLA variability and long-term trends are analysed for the North Atlantic Ocean and several sub-regions (North, Baltic and Mediterranean and Black seas, Bay of Biscay extended to the west coast of the Iberian Peninsula, and the northern North Atlantic Ocean), depicting the SLA fluctuations at basin and sub-basin scales, aiming at representing the regions of maximum sea level variability. A significant correlation between SLA and the different phases of the teleconnection patterns due to the generated winds, sea level pressure and sea surface temperature anomalies, with a strong variability on temporal and spatial scales, has been identified. Long-term analysis reveals the existence of non-stationary inter-annual SLA fluctuations in terms of the temporal scale. Spectral density analysis has shown the existence of long-period signals in the SLA inter-annual component, with periods of ~10, 5, 4 and 2years, depending on the analysed sub-region. Also, a non-uniform increase in sea level since 1993 is identified for all sub-regions, with trend values between 2.05mm/year, for the Bay of Biscay region, and 3.98mm/year for the Baltic Sea (no GIA correction considered). The obtained results demonstrated a strong link between the atmospheric patterns and SLA, as well as strong long-period fluctuations of this variable in spatial and temporal scales. Copyright © 2017 Elsevier B.V. All rights reserved.
STS-55 Earth observation of the Timor Sea
NASA Technical Reports Server (NTRS)
1993-01-01
STS-55 Earth observation taken from Columbia, Orbiter Vehicle (OV) 102, shows the Timor Sea along the south coast of Timor. The sunglint pattern shows a sharp boundary in sea surface temperature, with cooler water along the coast and warmer water offshore. The sunglint brightness reveals water surface roughness with bright indicating smooth water and dark representing rough water. Cooler water is smoother because it acts to stabilize the atmospheric boundary layer, while the warm water acts to destabilize the atmosphere. Another indication of water temperature is the cloud pattern. Advection within the atmosphere as a result of warming at the sea surface forms low-level clouds with the small, popcorn-like appearance seen in upper right corner of the photograph. The cool water, on the other hand, is relatively free of the popcorn-like clouds. The distribution of the clouds indicates that the wind is blowing toward the upper right corner of the photograph. Also note the line of low-level
NASA Astrophysics Data System (ADS)
Marra, Fabrizio; Florindo, Fabio; Anzidei, Marco; Sepe, Vincenzo
2016-09-01
Recently acquired geochronological and stratigraphic data provide new information on the sedimentary successions deposited by the Paleo-Tiber River in the coastal and near-coastal area of Rome in consequence of the glacio-eustatic changes, allowing to better define their inner geometry and palaeogeographic spatial distribution. In the present work we use this revised sedimentary dataset to provide a geochronologically constrained and tectonically adjusted record of paleo sea-level indicators. Aimed at this scope, we review literature data acquired in the last 35 years and using the new geochronological constraints we pinpoint the coastal-to-fluvial terraces of MIS 5 and MIS 7, mapping their relic surfaces in an area of 30 km along the coast north and south of the Tiber River mouth, and 20 km inland of the fluvial valleys of Tiber and Aniene rivers. The geometry of these paleo-surfaces provides constraints on the relative elevation of the sea-level during the last interglacials and on the uplift rates in this region during the last 200 ka. In particular, we recognize the previously undetected terraces of MIS 5.3 and MIS 5.1 interstadials, and we assess their spatial relationship with respect to MIS 5.5, providing important information on sea-level oscillations during this time span. Comparison with sea-level indicators provided by previous aggradational successions deposited during past interglacials spanning MIS 9 through MIS 21 in the coastal area of Rome, also allows us to reconstruct the tectonic history and investigate its relationships with the Middle-Pleistocene volcanic activity of the Roman Comagmatic Region along the Tyrrhenian Sea margin of Italy in the last 900 ka.
Development of sea level rise scenarios for climate change assessments of the Mekong Delta, Vietnam
Doyle, Thomas W.; Day, Richard H.; Michot, Thomas C.
2010-01-01
Rising sea level poses critical ecological and economical consequences for the low-lying megadeltas of the world where dependent populations and agriculture are at risk. The Mekong Delta of Vietnam is one of many deltas that are especially vulnerable because much of the land surface is below mean sea level and because there is a lack of coastal barrier protection. Food security related to rice and shrimp farming in the Mekong Delta is currently under threat from saltwater intrusion, relative sea level rise, and storm surge potential. Understanding the degree of potential change in sea level under climate change is needed to undertake regional assessments of potential impacts and to formulate adaptation strategies. This report provides constructed time series of potential sea level rise scenarios for the Mekong Delta region by incorporating (1) aspects of observed intra- and inter-annual sea level variability from tide records and (2) projected estimates for different rates of regional subsidence and accelerated eustacy through the year 2100 corresponding with the Intergovernmental Panel on Climate Change (IPCC) climate models and emission scenarios.
Surface deformation and elasticity studies in the Virgin Islands
NASA Technical Reports Server (NTRS)
Bilham, R.; Scholz, C. H.
1979-01-01
The report consists of four sections. The first section describes tilt and leveling measurements on Anegada, the most northerly of the British Virgin Islands; the second section contains a discussion of sea-level measurements that were initiated in the region and which played a significant role in the development of a network of sea-level monitors now telemetered via satellite from the Alaskan Shumagin Islands. The third part of the report is a brief description of surface deformation measurements in Iceland using equipment and techniques developed by the subject grant. The final part of the report describes the predicted effects of block surface fragmentation in tectonic areas on the measurement of tilt and strain.
LLWBCS changes through surface mesoscale activity and baroclinic tides in the Solomon Sea
NASA Astrophysics Data System (ADS)
Gourdeau, L.; Djath, B.; Ganachaud, A. S.; Tchilibou, M. L.; Verron, J. A.; Jouanno, J.
2016-02-01
In the south west Pacific, the Solomon Sea is on the pathway of the Low Latitudes Western Boundary Currents that connect the subtropics to the equator. Changes in their strengths, or in their water mass properties may have implication for ENSO and its low frequency modulation. During their transit in the Solomon Sea, the salinity maximum at thermocline level, characteristic of the South Pacific Tropical Waters (SPTW), is largely eroded. Different mechanisms could explain such salt erosion whose current/bathymetry interaction, internal tides, eddy activity. The Solomon Sea is an area of high level of eddy kinetic energy (EKE), especially in the surface layers, and its complex bathymetry is favourable for generation and dissipation of internal tides. Based on high resolution modelling, glider, and altimetric data mesoscale eddies observed at the surface are analysed in their 4D aspects. Their role on water mass transformation is explored. These eddies may affect the surface layers (σ<23.3) and the upper thermocline waters (23.3< σ <24.3), but they cannot explained the erosion of the salinity maximum below. Simulations with and without explicit tides provide a description of baroclinic tides in the Solomon Sea. Their role on water mixing is evaluated, especially for the SPTW.
NASA Astrophysics Data System (ADS)
Wang, Hui; Liu, Kexiu; Wang, Aimei; Feng, Jianlong; Fan, Wenjing; Liu, Qiulin; Xu, Yao; Zhang, Zengjian
2018-05-01
Based on coastal tide level, satellite altimetry, and sea surface temperature (SST) data of offshore areas of China's coast and the equatorial Pacific Ocean, the regional characteristics of the effects of the El Niño-Southern Oscillation (ENSO) on the sea level in the China Sea were investigated. Singular value decomposition results show a significant teleconnection between the sea level in the China Sea and the SST of the tropical Pacific Ocean; the correlation coefficient decreases from south to north. Data from tide gauges along China's coast show that the seasonal sea-level variations are significantly correlated with the ENSO. In addition, China's coast was divided into three regions based on distinctive regional characteristics. Results obtained show that the annual amplitude of sea level was low during El Niño developing years, and especially so during the El Niño year. The ENSO intensity determined the response intensity of the annual amplitude of the sea level. The response region (amplitude) was relatively large for strong ENSO intensities. Significant oscillation periods at a timescale of 4-7 years existed in the sea level of the three regions. The largest amplitude of oscillation was 1.5 cm, which was the fluctuation with the 7-year period in the South China Sea. The largest amplitude of oscillation in the East China Sea was about 1.3 cm. The amplitude of oscillation with the 6-year period in the Bohai Sea and Yellow Sea was the smallest (less than 1 cm).
Investigating Future Climate Scenarios
ERIC Educational Resources Information Center
Dempsey, Chris; Bodzin, Alec; Anastasio, David; Sahagian, Dork; Cirucci, Lori
2012-01-01
One of the most alarming impacts of projected climate change is a significant rise in sea level. Sea level has varied by hundreds of meters over geologic time, yet these changes have generally been slow paced, allowing ecosystems to adjust to changing land surface and marine habitats. Since the Industrial Revolution, anthropogenic emissions have…
A search for scale in sea-level studies
Larsen, C.E.; Clark, I.
2006-01-01
Many researchers assume a proportional relationship among the atmospheric CO2 concentration, temperature, and sea level. Thus, the rate of sea-level rise should increase in concert with the documented exponential increase in CO2. Although sea surface temperature has increased in places over the past century and short-term sea level rose abruptly during the 1990s, it is difficult to demonstrate a proportional relationship using existing geologic or historic records. Tide gauge records in the United States cover too short a time interval to verify acceleration in the rate of sea-level rise, although multicentury tide gauge and staff records from the Netherlands and Sweden suggest a mid-19th-century acceleration in sea-level rise. Reconstructions of sea-level changes for the past 1000 years derived using benthic foraminifer data from salt marshes along the East Coast of the United States suggest an increased rate of relative sea-level rise beginning in the 1600s. Geologic records of relative sea-level rise for the past 6000 years are available for several sites along the US East Coast from 14C-dated basal peat below salt marshes and estuarine sediments. When these three scales of sea-level variation are integrated, adjusted for postglacial isostatic movement, and replotted, the range of variation in sea level suggested by basal peat ages is within ??1 meter of the long-term trend. The reconstruction from Long Island Sound data shows a linear rise in sea level beginning in the mid-1600s at a rate consistent with the historic record of mean high water. Long-term tide gauge records from Europe and North America show similar trends since the mid-19th century. There is no clear proportional exponential increase in the rate of sea-level rise. If proportionality exists among sea level, atmospheric CO2, and temperature, there may be a significant time lag before an anthropogenic increase in the rate of sea-level rise occurs.
Implications of sediment redistribution on modeled sea-level changes over millennial timescales
NASA Astrophysics Data System (ADS)
Ferrier, Ken
2016-04-01
Sea level is a critical link in feedbacks among topography, tectonics, and climate. Over millennial timescales, changes in sea level reshape river networks, regulate organic carbon burial, influence sediment deposition, and set moving boundary conditions for landscape evolution. Sea-level changes influence tectonics by regulating rates and patterns of erosion and deposition, which perturb the surface loads that drive geodynamic processes at depth. These interactions are complex because sea-level changes are influenced by the geomorphic processes that they themselves modify, since sediment redistribution deforms the gravitational and crustal elevation fields that define sea level. A recent advance in understanding the coupling between sea level, tectonics, and topography was the incorporation of sediment redistribution into a gravitationally self-consistent sea-level model, which permits the computation of sea-level responses to erosion and deposition (Dalca et al., 2013, Geophysical Journal International). Here I use this model to quantify changes in sea level resulting from the erosion of some of the most rapidly eroding sites on Earth and the deposition of sediment offshore. These model results show that the sea-level fingerprints of sediment redistribution are strongly variable in space, and that they can represent a significant component of the total sea level change since the last interglacial. This work provides a basis for understanding a fundamental driver of landscape evolution at some of Earth's most geomorphically dynamic sites, and thus aids investigation of the couplings among tectonics, climate, and topography. References Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.
Black Sea outflow response to Holocene meltwater events.
Herrle, Jens O; Bollmann, Jörg; Gebühr, Christina; Schulz, Hartmut; Sheward, Rosie M; Giesenberg, Annika
2018-03-06
During the Holocene, North American ice sheet collapse and rapid sea-level rise reconnected the Black Sea with the global ocean. Rapid meltwater releases into the North Atlantic and associated climate change arguably slowed the pace of Neolithisation across southeastern Europe, originally hypothesized as a catastrophic flooding that fueled culturally-widespread deluge myths. However, we currently lack an independent record linking the timing of meltwater events, sea-level rise and environmental change with the timing of Neolithisation in southeastern Europe. Here, we present a sea surface salinity record from the Northern Aegean Sea indicative of two meltwater events at ~8.4 and ~7.6 kiloyears that can be directly linked to rapid declines in the establishment of Neolithic sites in southeast Europe. The meltwater events point to an increased outflow of low salinity water from the Black Sea driven by rapid sea level rise >1.4 m following freshwater outbursts from Lake Agassiz and the final decay of the Laurentide ice sheet. Our results shed new light on the link between catastrophic sea-level rise and the Neolithisation of southeastern Europe, and present a historical example of how coastal populations could have been impacted by future rapid sea-level rise.
NASA Astrophysics Data System (ADS)
Donders, Timme H.; van Helmond, Niels A. G. M.; Verreussel, Roel; Munsterman, Dirk; ten Veen, Johan; Speijer, Robert P.; Weijers, Johan W. H.; Sangiorgi, Francesca; Peterse, Francien; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S.; Lourens, Lucas; Kuhlmann, Gesa; Brinkhuis, Henk
2018-03-01
We assess the disputed phase relations between forcing and climatic response in the early Pleistocene with a spliced Gelasian (˜ 2.6-1.8 Ma) multi-proxy record from the southern North Sea basin. The cored sections couple climate evolution on both land and sea during the intensification of Northern Hemisphere glaciation (NHG) in NW Europe, providing the first well-constrained stratigraphic sequence of the classic terrestrial Praetiglian stage. Terrestrial signals were derived from the Eridanos paleoriver, a major fluvial system that contributed a large amount of freshwater to the northeast Atlantic. Due to its latitudinal position, the Eridanos catchment was likely affected by early Pleistocene NHG, leading to intermittent shutdown and reactivation of river flow and sediment transport. Here we apply organic geochemistry, palynology, carbonate isotope geochemistry, and seismostratigraphy to document both vegetation changes in the Eridanos catchment and regional surface water conditions and relate them to early Pleistocene glacial-interglacial cycles and relative sea level changes. Paleomagnetic and palynological data provide a solid integrated timeframe that ties the obliquity cycles, expressed in the borehole geophysical logs, to Marine Isotope Stages (MIS) 103 to 92, independently confirmed by a local benthic oxygen isotope record. Marine and terrestrial palynological and organic geochemical records provide high-resolution reconstructions of relative terrestrial and sea surface temperature (TT and SST), vegetation, relative sea level, and coastal influence.During the prominent cold stages MIS 98 and 96, as well as 94, the record indicates increased non-arboreal vegetation, low SST and TT, and low relative sea level. During the warm stages MIS 99, 97, and 95 we infer increased stratification of the water column together with a higher percentage of arboreal vegetation, high SST, and relative sea level maxima. The early Pleistocene distinct warm-cold alterations are synchronous between land and sea, but lead the relative sea level change by 3000-8000 years. The record provides evidence for a dominantly Northern Hemisphere-driven cooling that leads the glacial buildup and varies on the obliquity timescale. Southward migration of Arctic surface water masses during glacials, indicated by cool-water dinoflagellate cyst assemblages, is furthermore relevant for the discussion on the relation between the intensity of the Atlantic meridional overturning circulation and ice sheet growth.
Middle Tertiary continental rift and evolution of the Red Sea in southwestern Saudi Arabia
Schmidt, Dwight Lyman; Hadley, Donald G.; Brown, Glen F.
1983-01-01
Throughout early Tertiary time, the Arabian Shield erosion surface remained near sea level. First-stage uplift of the Red Sea Escarpment began during middle Miocene time, as evidenced by the coarse polymictic boulder conglomerate of the Bathan formation. Second-stage scarp uplift and second-stage sea-floor spreading followed during Pliocene, Pleistocene, and Holocene time.
Hughes, Joseph D.; White, Jeremy T.
2014-01-01
The model was designed specifically to evaluate the effect of groundwater pumpage on canal leakage at the surface-water-basin scale and thus may not be appropriate for (1) predictions that are dependent on data not included in the calibration process (for example, subdaily simulation of high-intensity events and travel times) and (or) (2) hydrologic conditions that are substantially different from those during the calibration and verification periods. The reliability of the model is limited by the conceptual model of the surface-water and groundwater system, the spatial distribution of physical properties, the scale and discretization of the system, and specified boundary conditions. Some of the model limitations are manifested in model errors. Despite these limitations, however, the model represents the complexities of the interconnected surface-water and groundwater systems that affect how the systems respond to groundwater pumpage, sea-level rise, and other hydrologic stresses. The model also quantifies the relative effects of groundwater pumpage and sea-level rise on the surface-water and groundwater systems.
NASA Astrophysics Data System (ADS)
Fanget, Anne-Sophie; Berné, Serge; Jouet, Gwénaël; Bassetti, Maria-Angela; Dennielou, Bernard; Maillet, Grégoire M.; Tondut, Mathieu
2014-05-01
The modern Rhone delta in the Gulf of Lions (NW Mediterranean) is a typical wave-dominated delta that developed after the stabilization of relative sea level following the last deglacial sea-level rise. Similar to most other deltas worldwide, it displays several stacked parasequences and lobes that reflect the complex interaction between accommodation, sediment supply and autogenic processes on the architecture of a wave-dominated delta. The interpretation of a large set of newly acquired very high-resolution seismic and sedimentological data, well constrained by 14C dates, provides a refined three-dimensional image of the detailed architecture (seismic bounding surfaces, sedimentary facies) of the Rhone subaqueous delta, and allows us to propose a scenario for delta evolution during the last deglaciation and Holocene. The subaqueous delta consists of “parasequence-like” depositional wedges, a few metres to 20-30 m in thickness. These wedges first back-stepped inland toward the NW in response to combined global sea-level rise and overall westward oceanic circulation, at a time when sediment supply could not keep pace with rapid absolute (eustatic) sea-level rise. At the Younger Dryas-Preboreal transition, more rapid sea-level rise led to the formation of a major flooding surface (equivalent to a wave ravinement surface). After stabilization of global sea level in the mid-Holocene, accommodation became the leading factor in controlling delta architecture. An eastward shift of depocentres occurred, probably favoured by higher subsidence rate within the thick Messinian Rhone valley fill. The transition between transgressive (backstepping geometry) and regressive (prograding geometry) (para)sequences resulted in creation of a Maximum Flooding Surface (MFS) that differs from a “classical” MFS described in the literature. It consists of a coarse-grained interval incorporating reworked shoreface material within a silty clay matrix. This distinct lithofacies results from condensation/erosion, which appears as an important process even within supply-dominated deltaic systems, due to avulsion of distributaries. The age of the MFS varies along-strike between ca. 7.8 and 5.6 kyr cal. BP in relation to the position of depocentres and climatically-controlled sediment supply. The last rapid climate change of the Holocene, the Little Ice Age (1250-1850 AD), had a distinct stratigraphic influence on the architecture and lithofacies of the Rhone subaqueous delta through the progradation of two deltaic lobes. In response to changes in sediment supply linked to rapid climate changes (and to anthropic factors), the Rhone delta evolved from wave-dominated to fluvial dominated, and then wave dominated again.
NASA Astrophysics Data System (ADS)
Yao, Yantao; Zhan, Wenhuan; Sun, Jie
2017-04-01
Most previous research on sea level indicators (including beachrock, abrasion platforms, notches and coral reefs) from coast of northern South China Sea suggested a higher sea level in the mid-Holocene. Microatolls, considered to be one of the most reliable indicators, led to an estimation of 2 to 3 m or even more higher sea levels in the mid-Holocene at southwest Leizhou Peninsula. Volcanic activities, however, occurred at several stages during the Quaternary at southern Leizhou Peninsula and northern Hainan Island, indicating a tectonically unstable local crust. Comprehensive comparison of microatolls between the volcanic and the non-volcanic coasts implied obvious uplift of the volcanic coast, where elevation of microatolls was higher than those on the non-volcanic coast. In addition, microatolls from the non-volcanic coast universally demonstrated a mid-Holocene higher sea level of less than 1 m. Similar studies to date at some tectonically stable locations, distant from the major glaciation centers (the far-field), provided evidence that the mid-Holocene sea level was not as high as that estimated before. On the longest and also the widest fringing reef of Hainan Island, 10 cores were drilled in a transect approximately perpendicular to coastline. Upper and lower unconformities for the layer of Holocene marine sediments witnessed the Holocene transgression and regression, respectively. U-series and AMS14C ages of in-situ surface corals and deposits from the unconformities, compiled with sedimentary characteristics, announced a highest sea level of 1.18 m in 5.30 cal ka BP. The rapid sea level rise mainly occurred in 6.25 5.75 cal ka BP at a rate up to 11.4 mm/a. From 5.30 cal ka BP to 4.50 cal ka BP, it can be regarded as a relative sea level stand, for most surface fossil microatolls on reef flat lived in this period. Since then there might be a sudden and fast sea level fall in 4.50 4.14 cal ka BP, resulting in fast exposure of the initial reef flat and then fast covering of sand dunes or beachrocks. As a result, fossil microtalls on the initial reef flat were well preserved, which were very important to indicating the mid-Holocene higher sea level. Acknowledgement: This research was supported by the National Program on Key Basic Research Project of China (2013CB956104)、National Natural Science Foundation of China (41376063) and the Chinese-Polish collaborated project ERES.
Isolating the atmospheric circulation response to Arctic sea-ice loss in the coupled climate system
NASA Astrophysics Data System (ADS)
Kushner, P. J.; Blackport, R.
2016-12-01
In the coupled climate system, projected global warming drives extensive sea-ice loss, but sea-ice loss drives warming that amplifies and can be confounded with the global warming process. This makes it challenging to cleanly attribute the atmospheric circulation response to sea-ice loss within coupled earth-system model (ESM) simulations of greenhouse warming. In this study, many centuries of output from coupled ocean/atmosphere/land/sea-ice ESM simulations driven separately by sea-ice albedo reduction and by projected greenhouse-dominated radiative forcing are combined to cleanly isolate the hemispheric scale response of the circulation to sea-ice loss. To isolate the sea-ice loss signal, a pattern scaling approach is proposed in which the local multidecadal mean atmospheric response is assumed to be separately proportional to the total sea-ice loss and to the total low latitude ocean surface warming. The proposed approach estimates the response to Arctic sea-ice loss with low latitude ocean temperatures fixed and vice versa. The sea-ice response includes a high northern latitude easterly zonal wind response, an equatorward shift of the eddy driven jet, a weakening of the stratospheric polar vortex, an anticyclonic sea level pressure anomaly over coastal Eurasia, a cyclonic sea level pressure anomaly over the North Pacific, and increased wintertime precipitation over the west coast of North America. Many of these responses are opposed by the response to low-latitude surface warming with sea ice fixed. However, both sea-ice loss and low latitude surface warming act in concert to reduce storm track strength throughout the mid and high latitudes. The responses are similar in two related versions of the National Center for Atmospheric Research earth system models, apart from the stratospheric polar vortex response. Evidence is presented that internal variability can easily contaminate the estimates if not enough independent climate states are used to construct them.
NASA Astrophysics Data System (ADS)
Palter, Jaime B.; Frölicher, Thomas L.; Paynter, David; John, Jasmin G.
2018-06-01
The Paris Agreement has initiated a scientific debate on the role that carbon removal - or net negative emissions - might play in achieving less than 1.5 K of global mean surface warming by 2100. Here, we probe the sensitivity of a comprehensive Earth system model (GFDL-ESM2M) to three different atmospheric CO2 concentration pathways, two of which arrive at 1.5 K of warming in 2100 by very different pathways. We run five ensemble members of each of these simulations: (1) a standard Representative Concentration Pathway (RCP4.5) scenario, which produces 2 K of surface warming by 2100 in our model; (2) a stabilization
pathway in which atmospheric CO2 concentration never exceeds 440 ppm and the global mean temperature rise is approximately 1.5 K by 2100; and (3) an overshoot
pathway that passes through 2 K of warming at mid-century, before ramping down atmospheric CO2 concentrations, as if using carbon removal, to end at 1.5 K of warming at 2100. Although the global mean surface temperature change in response to the overshoot pathway is similar to the stabilization pathway in 2100, this similarity belies several important differences in other climate metrics, such as warming over land masses, the strength of the Atlantic Meridional Overturning Circulation (AMOC), ocean acidification, sea ice coverage, and the global mean sea level change and its regional expressions. In 2100, the overshoot ensemble shows a greater global steric sea level rise and weaker AMOC mass transport than in the stabilization scenario, with both of these metrics close to the ensemble mean of RCP4.5. There is strong ocean surface cooling in the North Atlantic Ocean and Southern Ocean in response to overshoot forcing due to perturbations in the ocean circulation. Thus, overshoot forcing in this model reduces the rate of sea ice loss in the Labrador, Nordic, Ross, and Weddell seas relative to the stabilized pathway, suggesting a negative radiative feedback in response to the early rapid warming. Finally, the ocean perturbation in response to warming leads to strong pathway dependence of sea level rise in northern North American cities, with overshoot forcing producing up to 10 cm of additional sea level rise by 2100 relative to stabilization forcing.
Climate projection of synoptic patterns forming extremely high wind speed over the Barents Sea
NASA Astrophysics Data System (ADS)
Surkova, Galina; Krylov, Aleksey
2017-04-01
Frequency of extreme weather events is not very high, but their consequences for the human well-being may be hazardous. These seldom events are not always well simulated by climate models directly. Sometimes it is more effective to analyze numerical projection of large-scale synoptic event generating extreme weather. For example, in mid-latitude surface wind speed depends mainly on the sea level pressure (SLP) field - its configuration and horizontal pressure gradient. This idea was implemented for analysis of extreme wind speed events over the Barents Sea. The calendar of high surface wind speed V (10 m above the surface) was prepared for events with V exceeding 99th percentile value in the central part of the Barents Sea. Analysis of probability distribution function of V was carried out on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude) for the period 1981-2010. Storm wind events number was found to be 240 days. Sea level pressure field over the sea and surrounding area was selected for each storm wind event. For the climate of the future (scenario RCP8.5), projections of SLP from CMIP5 numerical experiments were used. More than 20 climate models results of projected SLP (2006-2100) over the Barents Sea were correlated with modern storm wind SLP fields. Our calculations showed the positive tendency of annual frequency of storm SLP patterns over the Barents Sea by the end of 21st century.
Aptian-Albian sea level history from Guyots in the western Pacific
NASA Astrophysics Data System (ADS)
RöHl, Ursula; Ogg, James G.
1996-10-01
Relative sea level fluctuations are an important control on patterns of sedimentation on continental margins and provide a valuable tool for regional correlations. One of the main objectives of combined Ocean Drilling Program Legs 143 and 144 was drilling the thick carbonate caps of a suite of seamounts, called guyots, scattered over the northwestern Pacific. The array of drowned Cretaceous banks includes four carbonate banks of Aptian-Albian age. These particular carbonate banks display emergent surfaces if regional sea level falls faster than the rate of guyot subsidence, or intervals of condensed parasequences and well-cemented peritidal crypto-algal flats if the rate of sea level fall is slightly less than guyot subsidence. Rapid rises of sea level following these sequence boundaries are recorded as drowning of the emergent horizons or as pronounced deepening of facies. The cored lithologies and downhole geophysical and geochemical logs were used to identify depositional sequences and surfaces of exceptional shallowing or deepening. A combination of biostratigraphic datums, carbon and strontium isotope curves, relative magnitude of surfaces of emergence, relative thicknesses of depositional sequences, sea level events, and counts of upward shallowing cycles or parasequences were used to correlate sequences among the four sites. After compensating for thermal subsidence rates at each guyot, an identical pattern of major Aptian-Albian eustatic sea level events is evident throughout this large portion of the Pacific Ocean. There are approximately 12 Aptian and 12 Albian significant sequence boundaries, of which a third were associated with major episodes of emergence. When these events are compared with Aptian-Albian relative sea level changes observed in European shelf successions, the major sequence boundaries and transgressive surges can be easily correlated, and it appears that both regions also display the same number of minor events. Therefore we can apply the relative timing of these events from the thermal subsidence rates and parasequence counts of the Pacific banks to construct an improved scaling of the associated ammonite zones and biostratigraphic datums in the Aptian-Albian interval. An electronic supplement of this material may be obtained on adiskette or via Anonymous FTP from KOSMOS.AGU.ORG (LOGINto AGU's FTP account using ANONYMOUS as the username andGUEST as the password. Go to the right directory by typing APEND.Diskette may be ordered from American Geophysical Union, 2000Florida Ave., N.W., Washington, D.C. 20009, $15.00. Payment mustaccompany order.
NASA Astrophysics Data System (ADS)
Kumar, Vandhna; Meyssignac, Benoit; Melet, Angélique; Ganachaud, Alexandre
2017-04-01
Rising sea levels are a critical concern in small island nations. The problem is especially serious in the western south Pacific, where the total sea level rise over the last 60 years is up to 3 times the global average. In this study, we attempt to reconstruct sea levels at selected sites in the region (Suva, Lautoka, Noumea - Fiji and New Caledonia) as a mutiple-linear regression of atmospheric and oceanic variables. We focus on interannual-to-decadal scale variability, and lower (including the global mean sea level rise) over the 1979-2014 period. Sea levels are taken from tide gauge records and the ORAS4 reanalysis dataset, and are expressed as a sum of steric and mass changes as a preliminary step. The key development in our methodology is using leading wind stress curl as a proxy for the thermosteric component. This is based on the knowledge that wind stress curl anomalies can modulate the thermocline depth and resultant sea levels via Rossby wave propagation. The analysis is primarily based on correlation between local sea level and selected predictors, the dominant one being wind stress curl. In the first step, proxy boxes for wind stress curl are determined via regions of highest correlation. The proportion of sea level explained via linear regression is then removed, leaving a residual. This residual is then correlated with other locally acting potential predictors: halosteric sea level, the zonal and meridional wind stress components, and sea surface temperature. The statistically significant predictors are used in a multi-linear regression function to simulate the observed sea level. The method is able to reproduce between 40 to 80% of the variance in observed sea level. Based on the skill of the model, it has high potential in sea level projection and downscaling studies.
NASA Astrophysics Data System (ADS)
Arndt, S.; Meiners, K.; Krumpen, T.; Ricker, R.; Nicolaus, M.
2016-12-01
Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.
NASA Astrophysics Data System (ADS)
Hughes, J. D.; Sifuentes, D. F.; White, J.
2015-12-01
Sea-level increases are expected to have an effect on the position of the freshwater-saltwater interface in the Biscayne aquifer in south Florida as a result of the low topographic relief of the area and high rates of groundwater withdrawal from the aquifer. To study the effects that future sea-level increases will have on saltwater intrusion in the Biscayne aquifer in Broward County, Florida, a three-dimensional, variable-density, groundwater-flow and transport model was developed. The model was calibrated to observed groundwater heads and chloride concentrations for a 62-year period that includes historic increases in sea level, development of a surface-water management system to control flooding, and increases in groundwater withdrawals as the area transitioned from agricultural to urban land uses. Sensitivity analyses indicate that downward leakage of saltwater from coastal canals and creeks was the primary source of saltwater to the Biscayne aquifer during the last 62-years in areas where the surface-water system is not actively managed and is tidally influenced. In areas removed from the coastal canals and creeks or under active surface-water management, historic groundwater withdrawals were the primary cause of saltwater intrusion into the aquifer. Simulation of future conditions suggests that possible increases in sea level will result in additional saltwater intrusion. Model scenarios suggest that additional saltwater intrusion will be greatest in areas where coastal canals and creeks were historically the primary source of seawater. Future saltwater intrusion in those areas, however, may be reduced by relocation of salinity-control structures.
Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise
NASA Astrophysics Data System (ADS)
Tjallingii, Rik; Stattegger, Karl; Wetzel, Andreas; Van Phach, Phung
2010-06-01
The abrupt transition from fluvial to marine deposition of incised-valley-fill sediments retrieved from the southeast Vietnamese shelf, accurately records the postglacial transgression after 14 ka before present (BP). Valley-filling sediments consist of fluvial mud, whereas sedimentation after the transgression is characterized by shallow-marine carbonate sands. This change in sediment composition is accurately marked in high-resolution X-ray fluorescence (XRF) core scanning records. Rapid aggradation of fluvial sediments at the river mouth nearly completely filled the Mekong incised valley prior to flooding. However, accumulation rates strongly reduced in the valley after the river-mouth system flooded and stepped back. This also affected the sediment supply to deeper parts of the southeast Vietnamese shelf. Comparison of the Mekong valley-filling with the East Asian sea-level history of sub- and inter-tidal sediment records shows that the transgressive surface preserved in the incised-valley-fill records is a robust sea-level indicator. The valley was nearly completely filled with fluvial sediments between 13.0 and 9.5 ka BP when sea-level rose rather constantly with approximately 10 mm/yr, as indicated by the East Asian sea-level record. At shallower parts of the shelf, significant sediment reworking and the establishment of estuarine conditions at the final stage of infilling complicates accurate dating of the transgressive surface. Nevertheless, incised-valley-fill records and land-based drill sites indicate a vast and rapid flooding of the shelf from the location of the modern Vietnamese coastline to the Cambodian lowlands between 9.5 ka and 8.5 ka BP. Fast flooding of this part of the shelf is related with the low shelf gradient and a strong acceleration of the East Asian sea-level rise from 34 to 9 meter below modern sea level (mbsl) corresponding to the sea-level jump of melt water pulse (MWP) 1C.
Stratigraphic response of salt marshes to slow rates of sea-level change
NASA Astrophysics Data System (ADS)
Daly, J.; Bell, T.
2006-12-01
Conventional models of salt-marsh development show an idealized spatial relationship between salt-marsh floral and foraminiferal zones, where the landward margin of the marsh gradually migrates inland in response to sea-level rise. This model predicts that transgression will result in persistent and possibly expanded salt marshes at the surface, depending on a variety of factors including sediment supply, hydrologic conditions, tidal range, and rate of sea-level rise. However, in areas with abundant sediment supply and slow rates of sea- level rise, the extent of back-barrier salt marshes may decline over time as the barrier-spits mature. Sea level around the northeast coast of Newfoundland is rising at a very slow rate during the late Holocene (<0.5 mm/yr). Sandy barrier-spits and tombolos are common coastal features, but salt marshes are rare. The generalized stratigraphy of dutch cores collected in back-barrier settings in this region is a surface layer of sphagnum peat with abundant woody roots, underlain by sedge-dominated peat that transitions gradually to a thin layer of Juncus sp. peat with agglutinated foraminifera, dominantly Jadammina macrescens and Balticammina pseudomacrescens. These basal peats are interpreted as salt-marsh peats, characterized by the presence of foraminifera that are absent in overlying peat units. This sequence indicates that salt marshes developed in back-barrier environments during the initial stages of barrier progradation, then gradually transitioned to environments increasingly dominated by freshwater flora. These transitions are interpreted to reflect the progradation of the spit, decreased tidal exchange in the back-barrier, and increased influence of freshwater streams discharging into the back-barrier setting. Decreased marine influence on the back-barrier environment leads to a floral and faunal shift associated with a regressive stratigraphy in an area experiencing sea-level rise. For studies of Holocene sea-level change requiring salt-marsh stratigraphic records, it is necessary to account for changing micro-environments to locate sites appropriate for study; salt marshes may play an important role in defining the record, but may not exist at the surface to guide investigation.
Keep up or drown: adjustment of western Pacific coral reefs to sea-level rise in the 21st century
van Woesik, R.; Golbuu, Y.; Roff, G.
2015-01-01
Since the Mid-Holocene, some 5000 years ago, coral reefs in the Pacific Ocean have been vertically constrained by sea level. Contemporary sea-level rise is releasing these constraints, providing accommodation space for vertical reef expansion. Here, we show that Porites microatolls, from reef-flat environments in Palau (western Pacific Ocean), are ‘keeping up’ with contemporary sea-level rise. Measurements of 570 reef-flat Porites microatolls at 10 locations around Palau revealed recent vertical skeletal extension (78±13 mm) over the last 6–8 years, which is consistent with the timing of the recent increase in sea level. We modelled whether microatoll growth rates will potentially ‘keep up’ with predicted sea-level rise in the near future, based upon average growth, and assuming a decline in growth for every 1°C increase in temperature. We then compared these estimated extension rates with rates of sea-level rise under four Representative Concentration Pathways (RCPs). Our model suggests that under low–mid RCP scenarios, reef-coral growth will keep up with sea-level rise, but if greenhouse gas concentrations exceed 670 ppm atmospheric CO2 levels and with +2.2°C sea-surface temperature by 2100 (RCP 6.0 W m−2), our predictions indicate that Porites microatolls will be unable to keep up with projected rates of sea-level rise in the twenty-first century. PMID:26587277
On the regional characteristics of past and future sea-level change (Invited)
NASA Astrophysics Data System (ADS)
Timmermann, A.; McGregor, S.
2010-12-01
Global sea-level rise due to the thermal expansion of the warming oceans and freshwater input from melting glaciers and ice-sheets is threatening to inundate low-lying islands and coast-lines worldwide. At present global mean sea level rises at 3.1 ± 0.7 mm/yr with an accelerating tendency. However, the magnitude of recent decadal sea-level trends varies greatly spatially attaining values of up to 10 mm/yr in some areas of the western tropical Pacific. Identifying the causes of recent regional sea-level trends and understanding the patterns of future projected sea-level change is of crucial importance. Using a wind-forced simplified dynamical ocean model, we show that the regional features of recent decadal and multidecadal sea-level trends in the tropical Indo-Pacific can be attributed to changes in the prevailing wind-regimes. Furthermore it is demonstrated that within an ensemble of ten state-of-the art coupled general circulation models, forced by increasing atmospheric CO2 concentrations over the next century, wind-induced re-distributions of upper-ocean water play a key role in establishing the spatial characteristics of projected regional sea-level rise. Wind-related changes in near- surface mass and heat convergence near the Solomon Islands, Tuvalu, Kiribati, the Cook Islands and French Polynesia oppose, but can not cancel the regional signal of global mean sea-level rise.
A coupled geomorphic and ecological model of tidal marsh evolution.
Kirwan, Matthew L; Murray, A Brad
2007-04-10
The evolution of tidal marsh platforms and interwoven channel networks cannot be addressed without treating the two-way interactions that link biological and physical processes. We have developed a 3D model of tidal marsh accretion and channel network development that couples physical sediment transport processes with vegetation biomass productivity. Tidal flow tends to cause erosion, whereas vegetation biomass, a function of bed surface depth below high tide, influences the rate of sediment deposition and slope-driven transport processes such as creek bank slumping. With a steady, moderate rise in sea level, the model builds a marsh platform and channel network with accretion rates everywhere equal to the rate of sea-level rise, meaning water depths and biological productivity remain temporally constant. An increase in the rate of sea-level rise, or a reduction in sediment supply, causes marsh-surface depths, biomass productivity, and deposition rates to increase while simultaneously causing the channel network to expand. Vegetation on the marsh platform can promote a metastable equilibrium where the platform maintains elevation relative to a rapidly rising sea level, although disturbance to vegetation could cause irreversible loss of marsh habitat.
ICESat Observations of Arctic Sea Ice: A First Look
NASA Technical Reports Server (NTRS)
Kwok, Ron; Zwally, H. Jay; Yi, Dong-Hui
2004-01-01
Analysis of near-coincident ICESat and RADARSAT imagery shows that the retrieved elevations from the laser altimeter are sensitive to new openings (containing thin ice or open water) in the sea ice cover as well as to surface relief of old and first-year ice. The precision of the elevation estimates, measured over relatively flat sea ice, is approx. 2 cm Using the thickness of thin-ice in recent openings to estimate sea level references, we obtain the sea-ice free-board along the altimeter tracks. This step is necessitated by the large uncertainties in the time-varying sea surface topography compared to that required for accurate determination of free-board. Unknown snow depth introduces the largest uncertainty in the conversion of free-board to ice thickness. Surface roughness is also derived, for the first time, from the variability of successive elevation estimates along the altimeter track Overall, these ICESat measurements provide an unprecedented view of the Arctic Ocean ice cover at length scales at and above the spatial dimension of the altimeter footprint.
Arctic Ocean Freshwater Content and Its Decadal Memory of Sea-Level Pressure
NASA Astrophysics Data System (ADS)
Johnson, Helen L.; Cornish, Sam B.; Kostov, Yavor; Beer, Emma; Lique, Camille
2018-05-01
Arctic freshwater content (FWC) has increased significantly over the last two decades, with potential future implications for the Atlantic meridional overturning circulation downstream. We investigate the relationship between Arctic FWC and atmospheric circulation in the control run of a coupled climate model. Multiple linear lagged regression is used to extract the response of total Arctic FWC to a hypothetical step increase in the principal components of sea-level pressure. The results demonstrate that the FWC adjusts on a decadal timescale, consistent with the idea that wind-driven ocean dynamics and eddies determine the response of Arctic Ocean circulation and properties to a change in surface forcing, as suggested by idealized models and theory. Convolving the response of FWC to a change in sea-level pressure with historical sea-level pressure variations reveals that the recent observed increase in Arctic FWC is related to natural variations in sea-level pressure.
NASA Astrophysics Data System (ADS)
Turki, Imen; Laignel, Benoit; Chevalier, Laetitia; Costa, Stephane
2014-05-01
Scientists and engineers need to understand the sea level variability in order to provide better estimates of the sea level rise for coastal defense using tide gauges and radar altimetry missions. The natural limitation of the tide gauge records is their geographical sparsity and confinement to coastlines. The future Surface Water and Ocean Topography (SWOT) mission will be launched in 2015 over a period of 5 years and will be designated to address this issue. This research was carried out in the framework of the program Surface Water and Ocean Topography (SWOT) which is a partnership between NASA and CNES. Using a series of statistical analyses, we point to characterize the sea level variability in the eastern English Channel (western France) from four tide gauges in Dunkirk, Dieppe, Le Havre and Cherbourg for the period 1964-2012. To assess the extent to which tide gauge point observations represent tide gauge data, we compare tide gauge records to SWOT measurements in their vicinity. Results have shown that the bimodality of the sea level, provided by the distribution analysis, can be reproduced by SWOT measurements with an overestimation of both modes and also the extreme values. The rate of the linear regression was also overestimated from 1.7-4 mm/yr to 2.6-5.4 mm/yr. The continuous wavelet transform of sea level records has shown the large-scale variability of annual (1-year band) and interannual cycles (2-6- and 6-12-year bands) in sea level, which can be explained by oceanographic and hydrological factors. High frequency dynamics of the sea level variability at short time-scales were extracted from SWOT measurements. They provide a good survey of the surge events (band of 3-4 months) and the spring-neap tidal cycle (band of 28 days). Then, tide gauges should be used in conjunction with satellite data to infer the full time-scale variability. Further studies are needed to refine the SWOT applicability in coastal areas. Key words: coastal zone, sea level variability, tide gauges, virtual SWOT measurements
Ryan, H.F.; Noble, M.
2002-01-01
Long-term monthly sea level and sea surface temperature (SST) anomalies from central California show that during winter months, positive anomalies are associated with El Nin??o events and the negative ones with La Nin??a events. There is no significant impact on monthly mean anomalies associated with Pacific decadal oscillations, although there is a tendency for more extreme events and greater variance during positive decadal oscillations. The very strong 1997-1998 El Nin??o was analyzed with respect to the long-term historic record to assess the forcing mechanisms for sea level and SST. Beginning in the spring of 1997, we observed several long-period (> 30days) fluctuations in daily sea level with amplitudes of over 10 cm at San Francisco, California. Fluctuations of poleward long-period alongshore wind stress anomalies (AWSA) are coherent with the sea level anomalies. However, the wind stress cannot entirely account for the observed sea level signals. The sea level fluctuations are also correlated with sea level fluctuations observed further south at Los Angeles and Tumaco, Columbia, which showed a poleward phase propagation of the sea level signal. We suggest that the sea level fluctuations were, to a greater degree, forced by the passage of remotely generated and coastally trapped waves that were generated along the equator and propagated to the north along the west coast of North America. However, both local and remote AWSA can significantly modulate the sea level signals. The arrival of coastally trapped waves began in the spring of 1997, which is earlier than previous strong El Nin??o events such as the 1982-1983 event. Published by Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Saenko, Oleg A.; Yang, Duo; Myers, Paul G.
2017-10-01
The response of the North Atlantic dynamic sea surface height (SSH) and ocean circulation to Greenland Ice Sheet (GrIS) meltwater fluxes is investigated using a high-resolution model. The model is forced with either present-day-like or projected warmer climate conditions. In general, the impact of meltwater on the North Atlantic SSH and ocean circulation depends on the surface climate. In the two major regions of deep water formation, the Labrador Sea and the Nordic Seas, the basin-mean SSH increases with the increase of the GrIS meltwater flux. This SSH increase correlates with the decline of the Atlantic meridional overturning circulation (AMOC). However, while in the Labrador Sea the warming forcing and GrIS meltwater input lead to sea level rise, in the Nordic Seas these two forcings have an opposite influence on the convective mixing and basin-mean SSH (relative to the global mean). The warming leads to less sea-ice cover in the Nordic Seas, which favours stronger surface heat loss and deep mixing, lowering the SSH and generally increasing the transport of the East Greenland Current. In the Labrador Sea, the increased SSH and weaker deep convection are reflected in the decreased transport of the Labrador Current (LC), which closes the subpolar gyre in the west. Among the two major components of the LC transport, the thermohaline and bottom transports, the former is less sensitive to the GrIS meltwater fluxes under the warmer climate. The SSH difference across the LC, which is a component of the bottom velocity, correlates with the long-term mean AMOC rate.
Deep Coherent Vortices and Their Sea Surface Expressions
NASA Astrophysics Data System (ADS)
Ienna, Federico; Bashmachnikov, Igor; Dias, Joaquim; Peliz, Alvaro
2017-04-01
Mediterranean Water eddies, known as Meddies, are an important dynamic process occurring at depths of 1000-meters in the Northeast Atlantic Ocean. Meddies occur as a direct result of the Mediterranean Outflow exiting through the Gibraltar Strait, and represent a prevalent mechanism that can be found extensively throughout the ocean. Moreover, Meddy cores are known to produce measurable expressions at the sea surface in the form of rotating coherent vortices, not only affecting the sea surface from beneath, but also allowing for the possibility to remotely study these deep phenomena through data gathered at the sea surface. While many past studies have focused on the properties of Meddy cores, only a handful of studies focus on the physical characteristics and behavior of the surface expressions produced. Are Meddy surface expressions different from other like vortices that dominate the physical ocean surface? What are the relationships between deep and surface mechanisms, and do any feedbacks exist? To shed light on these questions, we investigate the relationship between Meddies and their sea-surface expressions through observations using in-situ float and drifter profiles and satellite altimetry. A total of 782 Meddy cores were examined in the Northeast Atlantic using temperature and salinity data obtained by CTD and Argo during the Mecanismos de transporte e de dispersão da Água Mediterrânica no Atlântico Nordeste (MEDTRANS) project, and their corresponding sea-level expressions were geo-temporally matched in satellite altimetry data. We report several statistical properties of the sea-surface expressions of Meddies, including their mean diameter and vertical magnitude, and compare the properties of their surface features to the underlying Meddy cores. We investigate how the deep core affects the surface, and whether surface expressions may in return yield information about the underlying cores. Additionally, we examine the variability of the surface expressions, including seasonal and geographical variability.
Evidence of a Weakening Gulf Stream from In-situ Expendable Bathythermograph Data, 1996-2013
NASA Astrophysics Data System (ADS)
Roupe, L.; Baringer, M. O.
2014-12-01
A weakening of the Gulf Stream, the upper branch of the Atlantic Meridional Overturning Circulation system, has been hypothesized to accelerate sea level rise on the east coast of the United States, caused by changes in the Gulf Stream strength and, hence, sea level difference across the current. It still remains unclear if the Gulf Stream has in fact weakened or remains stable, along with the potential role of natural long-term variability. Tide gauges along the east coast show an accelerated sea level rise from Cape Hatteras to Cape Cod that is 3-4 times higher than global sea level rise. Satellite altimetry shows a weakening gradient in Gulf Stream sea surface height that is highly correlated (r=-0.85) with east coast sea level rise, however, direct velocity measurements showed no significant decrease in Gulf Stream strength over a similar time period. We introduce another in-situ dataset to examine the issues between these conflicting results. Expendable bathythermographs (XBTs) measure temperature at depth directly, and then depth and salinity can be inferred, along with geostrophic velocity and transport. XBT data has been used to measure transport in various current systems, however, the Gulf Stream transport has not been analyzed using the newest high-density XBT data made available since 1996. The trend in sea level difference is determined to be 3.3 +/- 3.2 mm/yr, resulting in an overall decrease of 5.2 cm in sea level from 1996-2013. This result agrees with satellite altimetry results that show a significant decrease in recent years. This data also shows a changing Gulf Stream core position, based on the 15°C isotherm at 200 m, of 0.03°N/yr that is negatively correlated with surface transport (r=-0.25). Issues remain in defining the core and width of the Gulf Stream and with eliminating the possibility of natural variability in the current system.
Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights
NASA Astrophysics Data System (ADS)
Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang
2017-04-01
The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.
Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice.
Li, Xichen; Holland, David M; Gerber, Edwin P; Yoo, Changhyun
2014-01-23
In recent decades, Antarctica has experienced pronounced climate changes. The Antarctic Peninsula exhibited the strongest warming of any region on the planet, causing rapid changes in land ice. Additionally, in contrast to the sea-ice decline over the Arctic, Antarctic sea ice has not declined, but has instead undergone a perplexing redistribution. Antarctic climate is influenced by, among other factors, changes in radiative forcing and remote Pacific climate variability, but none explains the observed Antarctic Peninsula warming or the sea-ice redistribution in austral winter. However, in the north and tropical Atlantic Ocean, the Atlantic Multidecadal Oscillation (a leading mode of sea surface temperature variability) has been overlooked in this context. Here we show that sea surface warming related to the Atlantic Multidecadal Oscillation reduces the surface pressure in the Amundsen Sea and contributes to the observed dipole-like sea-ice redistribution between the Ross and Amundsen-Bellingshausen-Weddell seas and to the Antarctic Peninsula warming. Support for these findings comes from analysis of observational and reanalysis data, and independently from both comprehensive and idealized atmospheric model simulations. We suggest that the north and tropical Atlantic is important for projections of future climate change in Antarctica, and has the potential to affect the global thermohaline circulation and sea-level change.
Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) PARM tape user's guide
NASA Technical Reports Server (NTRS)
Han, D.; Gloersen, P.; Kim, S. T.; Fu, C. C.; Cebula, R. P.; Macmillan, D.
1992-01-01
The Scanning Multichannel Microwave Radiometer (SMMR) instrument, onboard the Nimbus-7 spacecraft, collected data from Oct. 1978 until Jun. 1986. The data were processed to physical parameter level products. Geophysical parameters retrieved include the following: sea-surface temperatures, sea-surface windspeed, total column water vapor, and sea-ice parameters. These products are stored on PARM-LO, PARM-SS, and PARM-30 tapes. The geophysical parameter retrieval algorithms and the quality of these products are described for the period between Nov. 1978 and Oct 1985. Additionally, data formats and data availability are included.
Model projections of rapid sea-level rise on the northeast coast of the United States
NASA Astrophysics Data System (ADS)
Yin, Jianjun; Schlesinger, Michael E.; Stouffer, Ronald J.
2009-04-01
Human-induced climate change could cause global sea-level rise. Through the dynamic adjustment of the sea surface in response to a possible slowdown of the Atlantic meridional overturning circulation, a warming climate could also affect regional sea levels, especially in the North Atlantic region, leading to high vulnerability for low-lying Florida and western Europe. Here we analyse climate projections from a set of state-of-the-art climate models for such regional changes, and find a rapid dynamical rise in sea level on the northeast coast of the United States during the twenty-first century. For New York City, the rise due to ocean circulation changes amounts to 15, 20 and 21cm for scenarios with low, medium and high rates of emissions respectively, at a similar magnitude to expected global thermal expansion. Analysing one of the climate models in detail, we find that a dynamic, regional rise in sea level is induced by a weakening meridional overturning circulation in the Atlantic Ocean, and superimposed on the global mean sea-level rise. We conclude that together, future changes in sea level and ocean circulation will have a greater effect on the heavily populated northeastern United States than estimated previously.
Model Projections of Rapid Sea-Level Rise on the Northeast Coast of the United States
NASA Astrophysics Data System (ADS)
Yin, J.; Schlesinger, M.; Stouffer, R. J.
2009-12-01
Human-induced climate change could cause global sea-level rise. Through the dynamic adjustment of the sea surface in response to a possible slowdown of the Atlantic meridional overturning circulation, a warming climate could also affect regional sea levels, especially in the North Atlantic region, leading to high vulnerability for low-lying Florida and western Europe. In the present study, we analyse climate projections from a set of state-of-the-art climate models for such regional changes, and find a rapid dynamical rise in sea level on the northeast coast of the United States during the twenty-first century. For New York City, the rise due to ocean circulation changes amounts to 15, 20 and 21 cm for scenarios with low, medium and high rates of emissions respectively, at a similar magnitude to expected global thermal expansion. Analysing one of the climate models in detail, we find that a dynamic, regional rise in sea level is induced by a weakening meridional overturning circulation in the Atlantic Ocean, and superimposed on the global mean sea level rise. We conclude that together, future changes in sea level and ocean circulation will have a greater effect on the heavily populated northeastern United States than estimated previously.
NASA Technical Reports Server (NTRS)
Segawa, J.; Ganeko, Y.; Sasaki, M.; Mori, T.; Ooe, M.; Nakagawa, I.; Ishii, H.; Hagiwara, Y.
1991-01-01
Our program includes five research items: (1) determination of a precision geoid and gravity anomaly field; (2) precise leveling and detection of tidal changes of the sea surface and study of the role of the tide in the global energy exchange; (3) oceanic effect on the Earth's rotation and polar motion; (4) geological and geophysical interpretation of the altimetry gravity field; and (5) evaluation of the effectiveness of local tracking of TOPEX/POSEIDON by use of a laser tracker.
Airborne gravity measurement over sea-ice: The western Weddel Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brozena, J.; Peters, M.; LaBrecque, J.
1990-10-01
An airborne gravity study of the western Weddel Sea, east of the Antarctic Peninsula, has shown that floating pack-ice provides a useful radar altimetric reference surface for altitude and vertical acceleration corrections surface for alititude and vertical acceleration corrections to airborne gravimetry. Airborne gravimetry provides an important alternative to satellite altimetry for the sea-ice covered regions of the world since satellite alimeters are not designed or intended to provide accurate geoidal heights in areas where significant sea-ice is present within the radar footprint. Errors in radar corrected airborne gravimetry are primarily sensitive to the variations in the second derivative ofmore » the sea-ice reference surface in the frequency pass-band of interest. With the exception of imbedded icebergs the second derivative of the pack-ice surface closely approximates that of the mean sea-level surface at wavelengths > 10-20 km. With the airborne method the percentage of ice coverage, the mixture of first and multi-year ice and the existence of leads and pressure ridges prove to be unimportant in determining gravity anomalies at scales of geophysical and geodetic interest, provided that the ice is floating and not grounded. In the Weddell study an analysis of 85 crosstrack miss-ties distributed over 25 data tracks yields an rms error of 2.2 mGals. Significant structural anomalies including the continental shelf and offsets and lineations interpreted as fracture zones recording the early spreading directions within the Weddell Sea are observed in the gravity map.« less
NASA Astrophysics Data System (ADS)
Singarayer, Joy; Stone, Emma; Whipple, Matthew; Lunt, Dan; Bouttes, Nathaelle; Gregory, Jonathan
2014-05-01
Global sea level during the last interglacial is likely to have been between 5.5 and 9m above present (Dutton and Lambeck, 2012). Recent calculations, taking into account latest NEEM ice core information, suggest that Greenland would probably not have contributed more than 2.2m to this (Stone et al, 2013), implying a considerable contribution from Antarctica. Previous studies have suggested a significant loss from the West Antarctic ice-sheet (e.g. Holden et al, 2010), which could be initiated following a collapse of the Atlantic Meridional Overturning Circulation (AMOC) and resultant warming in the Southern Ocean. Here, model simulations with FAMOUS and HadCM3 have been performed of the last interglacial under various scenarios of reduced Greenland and Antarctic ice-sheet configurations, and with and without collapsed AMOC. Thermal expansion and changes in regional density structure (resulting from ocean circulation changes) can also influence sea level, in addition to ice mass effects discussed thus far. The HadCM3 and FAMOUS simulations will be used to estimate the contribution to global and regional sea level change in interglacials from the latter two factors using a similar methodology to the IPCC TAR/AR4 estimations of future sea level rise (Gregory and Lowe, 2000). The HadCM3 and FAMOUS both have a rigid lid in their ocean model, and consequently a fixed ocean volume. Thermal expansion can, however, be calculated as a volume change from in-situ density (a prognostic variable from the model). Relative sea surface topography will then be estimated from surface pressure gradients and changes in atmospheric pressure. Dutton A., and Lambeck K., 2013. Ice Volume and Sea Level During the Last Interglacial. Science, 337, 216-219 Gregory J.M. and Lowe J.A., 2000. Predictions of global and regional sea-level using AOGCMs with and without flux adjustment. GRL, 27, 3069-3072 Holden P. et al., 2010. Interhemispheric coupling, the West Antarctic Ice Sheet and warm Antarctic interglacials. Clim. Past, 6, 431-443 Stone E.J., et al., 2013. Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise. Clim. Past, 9, 621-639
McManus, B.C.
1995-01-01
A map showing ground-water levels in part of Lower Providence Township, Montgomery County, Pennsylvania, was constructed from water levels measured in 62 wells from May and June 1994. Observed water-level altitudes range from 60 feet above sea level near the Betzwood Picnic Area to 187 feet above sea level near the intersection of Egypt Road and Rittenhouse Road in Lower Providence Township.
Calving seismicity from iceberg-sea surface interactions
Bartholomaus, T.C.; Larsen, C.F.; O'Neel, S.; West, M.E.
2012-01-01
Iceberg calving is known to release substantial seismic energy, but little is known about the specific mechanisms that produce calving icequakes. At Yahtse Glacier, a tidewater glacier on the Gulf of Alaska, we draw upon a local network of seismometers and focus on 80 hours of concurrent, direct observation of the terminus to show that calving is the dominant source of seismicity. To elucidate seismogenic mechanisms, we synchronized video and seismograms to reveal that the majority of seismic energy is produced during iceberg interactions with the sea surface. Icequake peak amplitudes coincide with the emergence of high velocity jets of water and ice from the fjord after the complete submergence of falling icebergs below sea level. These icequakes have dominant frequencies between 1 and 3 Hz. Detachment of an iceberg from the terminus produces comparatively weak seismic waves at frequencies between 5 and 20 Hz. Our observations allow us to suggest that the most powerful sources of calving icequakes at Yahtse Glacier include iceberg-sea surface impact, deceleration under the influence of drag and buoyancy, and cavitation. Numerical simulations of seismogenesis during iceberg-sea surface interactions support our observational evidence. Our new understanding of iceberg-sea surface interactions allows us to reattribute the sources of calving seismicity identified in earlier studies and offer guidance for the future use of seismology in monitoring iceberg calving.
NASA Astrophysics Data System (ADS)
Bindschadler, Robert
2013-04-01
The SeaRISE (Sea-level Response to Ice Sheet Evolution) project achieved ice-sheet model ensemble responses to a variety of prescribed changes to surface mass balance, basal sliding and ocean boundary melting. Greenland ice sheet models are more sensitive than Antarctic ice sheet models to likely atmospheric changes in surface mass balance, while Antarctic models are most sensitive to basal melting of its ice shelves. An experiment approximating the IPCC's RCP8.5 scenario produces first century contributions to sea level of 22.3 and 7.3 cm from Greenland and Antarctica, respectively, with a range among models of 62 and 17 cm, respectively. By 200 years, these projections increase to 53.2 and 23.4 cm, respectively, with ranges of 79 and 57 cm. The considerable range among models was not only in the magnitude of ice lost, but also in the spatial pattern of response to identical forcing. Despite this variation, the response of any single model to a large range in the forcing intensity was remarkably linear in most cases. Additionally, the results of sensitivity experiments to single types of forcing (i.e., only one of the surface mass balance, or basal sliding, or ocean boundary melting) could be summed to accurately predict any model's result for an experiment when multiple forcings were applied simultaneously. This suggests a limited amount of feedback through the ice sheet's internal dynamics between these types of forcing over the time scale of a few centuries (SeaRISE experiments lasted 500 years).
Johnson, C.L.; Franseen, E.K.; Goldstein, R.H.
2005-01-01
This study utilized three-dimensional exposures to evaluate how sea-level position and palaeotopography control the facies and geometries of heterozoan carbonates. Heterozoan carbonates were deposited on top of a Neogene volcanic substrate characterized by palaeotopographic highs, palaeovalleys, and straits that were formed by subaerial erosion, possibly original volcanic topography, and faults prior to carbonate deposition. The depositional sequence that is the focus of this study (DS1B) consists of 7-10 fining upward cycles that developed in response to relative sea-level fluctuations. A complete cycle has a basal erosion surface overlain by deposits of debrisflows and high-density turbidity currents, which formed during relative sea-level fall. Overlying tractive deposits most likely formed during the lowest relative position of sea level. Overlying these are debrites grading upward to high-density turbidites and low-density turbidites that formed during relative sea-level rise. The tops of the cycles consist of hemipelagic deposits that formed during the highest relative position of sea level. The cycles fine upward because upslope carbonate production decreased as relative sea level rose due to less surface area available for shallow-water carbonate production and partial drowning of substrates. The cycles are dominated by two end-member types of facies associations and stratal geometries that formed in response to fluctuating sea-level position over variable substrate palaeotopography. One end-member is termed 'flank flow cycle' because this type of cycle indicates dominant sediment transport down the flanks of palaeovalleys. Those cycles drape the substrate, have more debrites, high-density turbidites and erosion on palaeovalley flanks, and in general, the lithofacies fine down the palaeovalley flanks into the palaeovalley axes. The second end-member is termed 'axial flow cycle' because it indicates a dominance of sediment transport down the axes of palaeovalleys. Those cycles are characterized by debrites and high-density turbidites in palaeovalley axes, and lap out of strata against the flanks of palaeovalleys. Where and when an axial flow cycle or flank flow cycle developed appears to be related to the intersection of sea level with areas of gentle or steep substrate slopes, during an overall relative rise in sea level. Results from this study provide a model for similar systems that must combine carbonate principles for sediment production, palaeotopographic controls, and physical principles of sediment remobilization into deep water. ?? 2005 International Association of Sedimentologists.
Proceedings of the Coastal Benthic Boundary Layer Key West Workshop
1997-06-24
depth are controlled by climatic changes which affect sea level and result in vastly different sedimentary regimes. After several hours of discussion...benthic boundary layer. EOS 75: 201- 206. Tom S.J. and Richardson M.D. (1996) The Key West campaign. Sea Technology 36:17-25. 6 Mi : VA1 I I AI T0. 03 a -1Z...reflectors appear to be unconformable surfaces based on the presence of karst, and probably represent erosion and cementation during sea -level lowstands
Watching the Blue Planet from Space over Recent Decades: What's up for Science and Society?
NASA Technical Reports Server (NTRS)
Lindstrom, Eric J.
2015-01-01
Since the first photographs of “Earth Rise” taken by the Apollo astronauts in the 1960s galvanized the environmental movement, imaging of our planet from low Earth orbit has grown more sophisticated and diverse. Satellite and astronaut observations and imagery of the changing ocean still have the power to galvanize oceanographers and society. So what are some of the key ideas for oceanography and society that come out of out recent decades of ocean observation from space? Satellite oceanography has made fundamental contributions to our understanding and estimation of changing sea level, winds and storminess over the oceans, primary productivity of the seas, the role of the ocean in the water cycle, and the changes in the ocean known as ocean acidification. Some of these phenomena interact in complex ways and Mother Nature hides the future well. However, some things are clear. Sea level rise has been monitored from space for more than 20 years and now we have a more nuanced understanding of regional variation in sea level rise and the contributions of ocean thermal expansion and the melting of glaciers and ice sheets. Wind vectors at the ocean surface have been measured for more than 2 decades and provide evidence for shifts in wind patterns that help, for example, explain some of the regional variations in sea level rise. Chlorophyll-a has been estimated in a multi-decadal record of observations and is being used to describe the shifts and trends in ocean primary productivity. Sea surface temperature estimation from space has records going back to the 1970s and provides critical information for the interaction of the ocean with the atmosphere. Sea surface salinity has been measured from space only within the last decade and provides a novel new view of regional, seasonal, and inter-annual changes in the ocean related to precipitation, river run-off, and eddy transport. Potential changes in the Earth’s water cycle have a huge societal impact.
Long-memory and the sea level-temperature relationship: a fractional cointegration approach.
Ventosa-Santaulària, Daniel; Heres, David R; Martínez-Hernández, L Catalina
2014-01-01
Through thermal expansion of oceans and melting of land-based ice, global warming is very likely contributing to the sea level rise observed during the 20th century. The amount by which further increases in global average temperature could affect sea level is only known with large uncertainties due to the limited capacity of physics-based models to predict sea levels from global surface temperatures. Semi-empirical approaches have been implemented to estimate the statistical relationship between these two variables providing an alternative measure on which to base potentially disrupting impacts on coastal communities and ecosystems. However, only a few of these semi-empirical applications had addressed the spurious inference that is likely to be drawn when one nonstationary process is regressed on another. Furthermore, it has been shown that spurious effects are not eliminated by stationary processes when these possess strong long memory. Our results indicate that both global temperature and sea level indeed present the characteristics of long memory processes. Nevertheless, we find that these variables are fractionally cointegrated when sea-ice extent is incorporated as an instrumental variable for temperature which in our estimations has a statistically significant positive impact on global sea level.
NASA Astrophysics Data System (ADS)
Corbett, Caroline M.; Subrahmanyam, Bulusu; Giese, Benjamin S.
2017-11-01
Sea surface salinity (SSS) variability during the 1997-1998 El Niño event and the failed 2012-2013 and 2014-2015 El Niño events is explored using a combination of observations and ocean reanalyses. Previously, studies have mainly focused on the sea surface temperature (SST) and sea surface height (SSH) variability. This analysis utilizes salinity data from Argo and the Simple Ocean Data Assimilation (SODA) reanalysis to examine the SSS variability. Advective processes and evaporation minus precipitation (E-P) variability is understood to influence SSS variability. Using surface wind, surface current, evaporation, and precipitation data, we analyze the causes for the observed SSS variability during each event. Barrier layer thickness and upper level salt content are also examined in connection to subsurface salinity variability. Both advective processes and E-P variability are important during the generation and onset of a successful El Niño, while a lack of one or both of these processes leads to a failed ENSO event.
NASA Astrophysics Data System (ADS)
Meier, W.; Stroeve, J.; Duerr, R. E.; Fetterer, F. M.
2009-12-01
The declining Arctic sea ice is one of the most dramatic indicators of climate change and is being recognized as a key factor in future climate impacts on biology, human activities, and global climate change. As such, the audience for sea ice data is expanding well beyond the sea ice community. The most comprehensive sea ice data are from a series of satellite-borne passive microwave sensors. They provide a near-complete daily timeseries of sea ice concentration and extent since late-1978. However, there are many complicating issues in using such data, particularly for novice users. First, there is not one single, definitive algorithm, but several. And even for a given algorithm, different processing and quality-control methods may be used, depending on the source. Second, for all algorithms, there are uncertainties in any retrieved value. In general, these limitations are well-known: low spatial-resolution results in an imprecise ice edge determination and lack of small-scale detail (e.g., lead detection) within the ice pack; surface melt depresses concentration values during summer; thin ice is underestimated in some algorithms; some algorithms are sensitive to physical surface temperature; other surface features (e.g., snow) can influence retrieved data. While general error estimates are available for concentration values, currently the products do not carry grid-cell level or even granule level data quality information. Finally, metadata and data provenance information are limited, both of which are essential for future reprocessing. Here we describe the progress to date toward development of sea ice concentration products and outline the future steps needed to complete a sea ice climate data record.
Determination of Interannual to Decadal Changes in Ice Sheet Mass Balance from Satellite Altimetry
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Busalacchi, Antonioa J. (Technical Monitor)
2001-01-01
A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the +/- 25% uncertainty in current mass balance corresponds to +/- 2 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. Although the overall ice mass balance and seasonal and inter-annual variations can be derived from time-series of ice surface elevations from satellite altimetry, satellite radar altimeters have been limited in spatial coverage and elevation accuracy. Nevertheless, new data analysis shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. In addition, observed seasonal and interannual variations in elevation demonstrate the potential for relating the variability in mass balance to changes in precipitation, temperature, and melting. From 2001, NASA's ICESat laser altimeter mission will provide significantly better elevation accuracy and spatial coverage to 86 deg latitude and to the margins of the ice sheets. During 3 to 5 years of ICESat-1 operation, an estimate of the overall ice sheet mass balance and sea level contribution will be obtained. The importance of continued ice monitoring after the first ICESat is illustrated by the variability in the area of Greenland surface melt observed over 17-years and its correlation with temperature. In addition, measurement of ice sheet changes, along with measurements of sea level change by a series of ocean altimeters, should enable direct detection of ice level and global sea level correlations.
NASA Astrophysics Data System (ADS)
Wakefield, Oliver J. W.; Mountney, Nigel P.
2013-12-01
The Pennsylvanian to Permian lower Cutler beds collectively form the lowermost stratigraphic unit of the Cutler Group in the Paradox Basin, southeast Utah. The lower Cutler beds represent a tripartite succession comprising lithofacies assemblages of aeolian, fluvial and shallow-marine origin, in near equal proportion. The succession results from a series of transgressive-regressive cycles, driven by repeated episodes of climatic variation and linked changes in relative sea-level. Relative sea-level changes created a number of incised-valleys, each forming through fluvial incision during lowered base-level. Aeolian dominance during periods of relative sea-level lowstand aids incised-valley identification as the erosive bounding surface juxtaposes incised-valley infill against stacked aeolian faces. Relative sea-level rises resulted in back-flooding of the incised-valleys and their infill via shallow-marine and estuarine processes. Back-flooded valleys generated marine embayments within which additional local accommodation was exploited. Back-filling is characterised by a distinctive suite of lithofacies arranged into a lowermost, basal fill of fluvial channel and floodplain architectural elements, passing upwards into barform elements with indicators of tidal influence, including inclined heterolithic strata and reactivation surfaces. The incised-valley fills are capped by laterally extensive and continuous marine limestone elements that record the drowning of the valleys and, ultimately, flooding and accumulation across surrounding interfluves (transgressive surface). Limestone elements are characterised by an open-marine fauna and represent the preserved expression of maximum transgression.
The Caribbean conundrum of Holocene sea level.
NASA Astrophysics Data System (ADS)
Jackson, Luke; Mound, Jon
2014-05-01
In the tropics, pre-historic sea-level curve reconstruction is often problematic because it relies upon sea-level indicators whose vertical relationship to the sea surface is poorly constrained. In the Caribbean, fossil corals, mangrove peats and shell material dominate the pre-historic indicator record. The common approach to reconstruction involves the use of modern analogues to these indicators to establish a fixed vertical habitable range. The aim of these reconstructions is to find spatial variability in the Holocene sea level in an area gradually subsiding (< 1.2 mm yr-1) due the water loading following the deglaciation of the Laurentide ice sheet. We construct two catalogues: one of published Holocene sea-level indicators and the other of published, modern growth rates, abundance and coverage of mangrove and coral species for different depths. We use the first catalogue to calibrate 14C ages to give a probabilistic age range for each indicator. We use the second catalogue to define a depth probability distribution function (pdf) for mangroves and each coral species. The Holocene indicators are grouped into 12 sub-regions around the Caribbean. For each sub-region we apply our sea-level reconstruction, which involves stepping a fixed-length time window through time and calculating the position (and rate) of sea-level (change) using a thousand realisations of the time/depth pdfs to define an envelope of probable solutions. We find that the sub-regional relative sea-level curves display spatio-temporal variability including a south-east to north-west 1500 year lag in the arrival of Holocene sea level to that of the present day. We demonstrate that these variations are primarily due to glacial-isostatic-adjustment induced sea-level change and that sub-regional variations (where sufficient data exists) are due to local uplift variability.
Sea level hazards: Altimetric monitoring of tsunamis and sea level rise
NASA Astrophysics Data System (ADS)
Hamlington, Benjamin Dillon
Whether on the short timescale of an impending tsunami or the much longer timescale of climate change-driven sea level rise, the threat stemming from rising and inundating ocean waters is a great concern to coastal populations. Timely and accurate observations of potentially dangerous changes in sea level are vital in determining the precautionary steps that need to be taken in order to protect coastal communities. While instruments from the past have provided in situ measurements of sea level at specific locations across the globe, satellites can be used to provide improved spatial and temporal sampling of the ocean in addition to producing more accurate measurements. Since 1993, satellite altimetry has provided accurate measurements of sea surface height (SSH) with near-global coverage. Not only have these measurements led to the first definitive estimates of global mean sea level rise, satellite altimetry observations have also been used to detect tsunami waves in the open ocean where wave amplitudes are relatively small, a vital step in providing early warning to those potentially affected by the impending tsunami. The use of satellite altimetry to monitor two specific sea level hazards is examined in this thesis. The first section will focus on the detection of tsunamis in the open ocean for the purpose of providing early warning to coastal inhabitants. The second section will focus on estimating secular trends using satellite altimetry data with the hope of improving our understanding of future sea level change. Results presented here will show the utility of satellite altimetry for sea level monitoring and will lay the foundation for further advancement in the detection of the two sea level hazards considered.
NASA Technical Reports Server (NTRS)
Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan
2011-01-01
This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.
NASA Astrophysics Data System (ADS)
Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman
2018-03-01
The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.
Rapid changes in the seasonal sea level cycle along the US Gulf coast in the early 21st century
NASA Astrophysics Data System (ADS)
Wahl, T.; Calafat, F. M.; Luther, M. E.
2013-12-01
The seasonal cycle is an energetic component in the sea level spectrum and dominates the intra-annual sea level variability outside the semidiurnal and diurnal tidal bands in most regions. Changes in the annual or semi-annual amplitudes or phase lags have an immediate impact on marine coastal systems. Increases in the amplitudes or phase shifts towards the storm surge season may for instance exacerbate the risk of coastal flooding and/or beach erosion, and the ecological health of estuarine systems is also coupled to the seasonal sea level cycle. Here, we investigate the temporal variability of the seasonal harmonics along the US Gulf of Mexico (GOM) coastline using records from 13 tide gauges providing at least 30 years of data in total and at least 15 years for the period after 1990. The longest records go back to the early 20th century. Running Fourier analysis (with a window length of 5-years) is used to extract the seasonal harmonics from the observations. The resulting time series show a considerable decadal variability and no longer-term changes are found in the phase lags and the semi-annual amplitude. The amplitude of the dominating annual cycle in contrast shows a tendency towards higher values since the turn of the century at tide gauges in the eastern part of the GOM. This increase of up to more than 25% is found to be significant at the 90% confidence level for most tide gauges along the coastline of West Florida and at the 75% confidence level for virtually all stations in the eastern GOM (from Key West to Dauphin Island). Monthly mean sea level sub-series show that the changes are partly due to smaller values in the cold season but mostly a result of higher values in the warm season, i.e. sea levels tend to be higher during the hurricane season. We use information on the steric sea level component, sea surface and air temperature, wind forcing, precipitation, and sea level pressure to explain the mechanisms driving the decadal variability in the annual amplitude and the rapid increase over the last decade in the eastern GOM. We have developed several multiple regression models (MRM) with a varying number of independent predictors to reconstruct the temporal changes back to the mid and early 20th century (depending on data availability of the predictors). The models are able to explain up to 85% of the observed variability (70% on average across sites) and major parts of the rapid increase in the early 21st century. Multicollinearity between the predictors makes it difficult to quantify the contribution of individual parameters to the increase but sensitivity tests outline that changes in the annual cycle of the air surface temperature (which in turn directly propagates into the sea surface temperature) played a dominant role. The MRMs allow us to reconstruct the seasonal sea level cycle back to the early 20th century at all tide gauge sites and will be used in a follow-up study in combination with regional climate model output to assess potential future changes.
2015-07-14
Development Program SLP - Sea Level Pressure SOI - Southern Oscillation Index SON - Statement of Need SST - Sea Surface Temperature iv SWL - Still Water...Level Pressure ( SLP ) from NCEP/NCAR reanalysis). Midway has known wave setup (Aucan et al., 2012) so we explored to what extent we could find an 12...Guam ONI 0.9 Kwajalein ONI 1.1 Pago Pago ONI 1.0 Honolulu SLP 1.3 Nawiliwili SLP 1.4 Kahului SLP 1.2 Hilo SLP 1.3 Mokuoloe SLP 1.2 Naha PDO 1.0 Kawaihae
NASA Astrophysics Data System (ADS)
Golbeck, Inga; Li, Xin; Janssen, Frank
2014-05-01
Several independent operational ocean models provide forecasts of the ocean state (e.g. sea level, temperature, salinity and ice cover) in the North Sea and the Baltic Sea on a daily basis. These forecasts are the primary source of information for a variety of information and emergency response systems used e.g. to issue sea level warnings or carry out oil drift forecast. The forecasts are of course highly valuable as such, but often suffer from a lack of information on their uncertainty. With the aim of augmenting the existing operational ocean forecasts in the North Sea and the Baltic Sea by a measure of uncertainty a multi-model-ensemble (MME) system for sea surface temperature (SST), sea surface salinity (SSS) and water transports has been set up in the framework of the MyOcean-2 project. Members of MyOcean-2, the NOOS² and HIROMB/BOOS³ communities provide 48h-forecasts serving as inputs. Different variables are processed separately due to their different physical characteristics. Based on the so far collected daily MME products of SST and SSS, a statistical method, Empirical Orthogonal Function (EOF) analysis is applied to assess their spatial and temporal variability. For sea surface currents, progressive vector diagrams at specific points are consulted to estimate the performance of the circulation models especially in hydrodynamic important areas, e.g. inflow/outflow of the Baltic Sea, Norwegian trench and English Channel. For further versions of the MME system, it is planned to extend the MME to other variables like e.g. sea level, ocean currents or ice cover based on the needs of the model providers and their customers. It is also planned to include in-situ data to augment the uncertainty information and for validation purposes. Additionally, weighting methods will be implemented into the MME system to develop more complex uncertainty measures. The methodology used to create the MME will be outlined and different ensemble products will be presented. In addition, some preliminary results based on the statistical analysis of the uncertainty measures provide first estimates of the regional and temporal performance of the ocean models for each parameter. ²Northwest European Shelf Operational Oceanography System ³High-resolution Operational Model of the Baltic / Baltic Operational Oceanographic System
NASA Technical Reports Server (NTRS)
Maximenko, Nikolai A.
2003-01-01
Mean absolute sea level reflects the deviation of the Ocean surface from geoid due to the ocean currents and is an important characteristic of the dynamical state of the ocean. Values of its spatial variations (order of 1 m) are generally much smaller than deviations of the geoid shape from ellipsoid (order of 100 m) that makes the derivation of the absolute mean sea level a difficult task for gravity and satellite altimetry observations. Technique used by Niiler et al. for computation of the absolute mean sea level in the Kuroshio Extension was then developed into more general method and applied by Niiler et al. (2003b) to the global Ocean. The method is based on the consideration of balance of horizontal momentum.
Earthquakes and sea level - Space and terrestrial metrology on a changing planet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilham, R.
1991-02-01
A review is presented of the stability and scale of crustal deformation metrology which has particular relevance to monitoring deformation associated with sea level and earthquakes. Developments in space geodesy and crustal deformation metrology in the last two decades have the potential to acquire a homogeneous global data set for monitoring relative horizontal and vertical motions of the earth's surface to within several millimeters. New tools discussed for forecasting sea level rise and damaging earthquakes include: very long baseline interferometry, satellite laser ranging, the principles of GPS geodesy, and new sea level sensors. Space geodesy permits a unified global basismore » for future metrology of the earth, and the continued availability of the GPS is currently fundamental to this unification.« less
Assimilating NOAA SST data into BSH operational circulation model for North and Baltic Seas
NASA Astrophysics Data System (ADS)
Losa, Svetlana; Schroeter, Jens; Nerger, Lars; Janjic, Tijana; Danilov, Sergey; Janssen, Frank
A data assimilation (DA) system is developed for BSH operational circulation model in order to improve forecast of current velocities, sea surface height, temperature and salinity in the North and Baltic Seas. Assimilated data are NOAA sea surface temperature (SST) data for the following period: 01.10.07 -30.09.08. All data assimilation experiments are based on im-plementation of one of the so-called statistical DA methods -Singular Evolutive Interpolated Kalman (SEIK) filter, -with different ways of prescribing assumed model and data errors statis-tics. Results of the experiments will be shown and compared against each other. Hydrographic data from MARNET stations and sea level at series of tide gauges are used as independent information to validate the data assimilation system. Keywords: Operational Oceanography and forecasting
McManus, B.C.; Schreffler, C.L.; Rowland, C.J.
1994-01-01
A map showing ground-water levels in Buckingham and Wrightstown Townships, Bucks County, Pennsylvania, was constructed from water levels measured in 251 wells and from 3 reported elevations of quarry sumps from June 1992 through January 1993. Observed water-level altitudes range from 459 feet above sea level along Burnt House Hill Road, south- west of Mechanicsville, to 10 feet above sea level along Swamp Road and Route 232, near Neshaminy Creek in Wrightstown Township.
Spatial diversity of bacterioplankton communities in surface water of northern South China Sea.
Li, Jialin; Li, Nan; Li, Fuchao; Zou, Tao; Yu, Shuxian; Wang, Yinchu; Qin, Song; Wang, Guangyi
2014-01-01
The South China Sea is one of the largest marginal seas, with relatively frequent passage of eddies and featuring distinct spatial variation in the western tropical Pacific Ocean. Here, we report a phylogenetic study of bacterial community structures in surface seawater of the northern South China Sea (nSCS). Samples collected from 31 sites across large environmental gradients were used to construct clone libraries and yielded 2,443 sequences grouped into 170 OTUs. Phylogenetic analysis revealed 23 bacterial classes with major components α-, β- and γ-Proteobacteria, as well as Cyanobacteria. At class and genus taxon levels, community structure of coastal waters was distinctively different from that of deep-sea waters and displayed a higher diversity index. Redundancy analyses revealed that bacterial community structures displayed a significant correlation with the water depth of individual sampling sites. Members of α-Proteobacteria were the principal component contributing to the differences of the clone libraries. Furthermore, the bacterial communities exhibited heterogeneity within zones of upwelling and anticyclonic eddies. Our results suggested that surface bacterial communities in nSCS had two-level patterns of spatial distribution structured by ecological types (coastal VS. oceanic zones) and mesoscale physical processes, and also provided evidence for bacterial phylogenetic phyla shaped by ecological preferences.
El Niño: The Weak, Getting Weaker
2005-03-14
Recent sea-level height data from NASA U.S./France Jason altimetric satellite during a 10-day cycle ending February 22, 2005, show that the central equatorial Pacific continues to exhibit an area of higher-than-normal sea surface heights.
Experiments in Reconstructing Twentieth-Century Sea Levels
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Douglas, Bruce C.
2011-01-01
One approach to reconstructing historical sea level from the relatively sparse tide-gauge network is to employ Empirical Orthogonal Functions (EOFs) as interpolatory spatial basis functions. The EOFs are determined from independent global data, generally sea-surface heights from either satellite altimetry or a numerical ocean model. The problem is revisited here for sea level since 1900. A new approach to handling the tide-gauge datum problem by direct solution offers possible advantages over the method of integrating sea-level differences, with the potential of eventually adjusting datums into the global terrestrial reference frame. The resulting time series of global mean sea levels appears fairly insensitive to the adopted set of EOFs. In contrast, charts of regional sea level anomalies and trends are very sensitive to the adopted set of EOFs, especially for the sparser network of gauges in the early 20th century. The reconstructions appear especially suspect before 1950 in the tropical Pacific. While this limits some applications of the sea-level reconstructions, the sensitivity does appear adequately captured by formal uncertainties. All our solutions show regional trends over the past five decades to be fairly uniform throughout the global ocean, in contrast to trends observed over the shorter altimeter era. Consistent with several previous estimates, the global sea-level rise since 1900 is 1.70 +/- 0.26 mm/yr. The global trend since 1995 exceeds 3 mm/yr which is consistent with altimeter measurements, but this large trend was possibly also reached between 1935 and 1950.
Chivas, Allan R.; Garcı́a, Adriana; van der Kaars, Sander; Couapel, Martine; Holt, Sabine; Reeves, Jessica M.; Wheeler, David J.; Switzer, Adam D.; Murray-Wallace, Colin V.; Banerjee, Debabrata; Price, David M.; Wang, Sue X.; Pearson, Grant; Edgar, N. Terry; Beaufort, Luc; de Deckker, Patrick; Lawson, Ewan; Cecil, C. Blaine
2001-01-01
The Gulf of Carpentaria is an epicontinental sea (maximum depth 70 m) between Australia and New Guinea, bordered to the east by Torres Strait (currently 12 m deep) and to the west by the Arafura Sill (53 m below present sea level). Throughout the Quaternary, during times of low sea-level, the Gulf was separated from the open waters of the Indian and Pacific Oceans, forming Lake Carpentaria, an isolation basin, perched above contemporaneous sea-level with outlet channels to the Arafura Sea. A preliminary interpretation is presented of the palaeoenvironments recorded in six sediment cores collected by the IMAGES program in the Gulf of Carpentaria. The longest core (approx. 15 m) spans the past 130 ka and includes a record of sea-level/lake-level changes, with particular complexity between 80 and 40 ka when sea-level repeatedly breached and withdrew from Gulf/Lake Carpentaria. Evidence from biotic remains (foraminifers, ostracods, pollen), sedimentology and geochemistry clearly identifies a final marine transgression at about 9.7 ka (radiocarbon years). Before this transgression, Lake Carpentaria was surrounded by grassland, was near full, and may have had a surface area approaching 600 km×300 km and a depth of about 15 m. The earlier rise in sea-level which accompanied the Marine Isotopic Stage 6/5 transgression at about 130 ka is constrained by sedimentological and biotic evidence and dated by optical- and thermoluminescence and amino acid racemisation methods.
Atmospherically-driven collapse of a marine-based ice stream
NASA Astrophysics Data System (ADS)
Greenwood, S. L.; Clason, C. C.
2016-12-01
Marine-terminating glaciers and the sectors of ice sheets that are grounded below sea level are widely considered to be vulnerable to unstable retreat. The southern sector of the retreating Fennoscandian Ice Sheet comprised a large, aqueous-terminating ice sheet catchment grounded well below sea level throughout its deglaciation. However, the behaviour, timing of and controls upon ice sheet retreat through the Baltic and Bothnian basins have thus far been inferred only indirectly from peripheral, terrestrial-based geological archives. Recent acquisition of high-resolution multibeam bathymetry opens these basins up, for the first time, to direct investigation of their glacial footprint and palaeo-ice sheet behaviour. Multibeam data reveal a rich glacial landform legacy of the Bothnian Sea deglaciation. A late-stage palaeo-ice stream formed a narrow corridor of fast flow. Its pathway is overprinted by a vast field of basal crevasse squeeze ridges, while abundant traces of high subglacial meltwater volumes call for considerable input of surface meltwater to the subglacial system. We interpret a short-lived ice stream event under high extension, precipitating large-scale hydrofracture-driven collapse of the ice sheet sector under conditions of high surface melting. Experiments with a physically-based numerical flowline model indicate that the rate and pattern of Bothnian Sea ice stream retreat are most sensitive to surface mass balance change and crevasse propagation, while remarkably insensitive to submarine melting and sea level change. We interpret strongly atmospherically-driven retreat of this marine-based ice sheet sector.
Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983
Eckel, J.A.; Walker, R.L.
1986-01-01
Water levels and changes in water levels in the major aquifers of the New Jersey Coastal Plain are documented. Water levels in 1,071 wells were measured in 1983, and are compared with 827 water level measurements made in the same wells in 1978. Increased groundwater withdrawals from the major artesian aquifers that underlie the New Jersey Coastal Plain have caused large cones of depression in the artesian heads. These cones are delineated on detailed potentiometric surface maps based on water level data collected in the fall of 1983. Hydrographs from observation wells show trends of water levels for the 6-year period of 1978 through 1983. The Potomac-Raritan-Magothy aquifer system is divided into the lower, middle, and upper aquifers. The potentiometric surfaces in these aquifers form large cones of depression centered in the Camden and Middlesex-Monmouth County areas. Measured water levels declined as much as 23 ft in these areas for the period of study. The lowest levels are 96 ft below sea level in Camden County and 91 ft below sea level in the Middlesex-Monmouth County area. Deep cones of depression in coastal Monmouth and Ocean counties in both the Englishtown aquifer system and Wenonah-Mount Laurel aquifer are similar in location and shape. This is because of an effective hydraulic connection between these aquifers. Measured water levels declined as much as 29 ft in the Englishtown aquifer system and 21 ft in the Wenonah-Mount Laurel aquifer during the period of study. The lowest levels are 249 ft below sea level in the Englishtown aquifer system and 196 ft below sea level in the Wenonah-Mount Laurel aquifer. Water levels in the Piney Point aquifer are as low as 75 ft below sea level at Seaside Park, Ocean County and 35 ft below sea level in southern Cumberland County. Water levels in Cumberland County are affected by large withdrawals of groundwater in Kent County, Delaware. Water levels in the Atlantic City 800 ft sand of the Kirkwood Formation define an extensive elongated cone of depression. Water levels are as low as 76 ft below sea level near Margate and Ventnor, Atlantic County. Measured water levels declined as much as 9 ft in the coastal region between Cape May County and Ocean County for the period of study. (Author 's abstract)
Global increasing of mean sea level and erroneous treatment of a role of thermal factors
NASA Astrophysics Data System (ADS)
Barkin, Yu. V.
2009-04-01
Satellite methods of studies of the ocean surface - methods of altimetry - have been obtained intensive development in the last decades (since 1993). However, altimetry studies with the help of special satellites such as TOPEX-Poseidon not only have not cleared up understanding of the phenomenon of increase of sea level (SLR), but have even more confused and without that a complex question on the reasons of increase of sea level. Appeared, that classical determinations of average velocity of increase of sea level on coastal observations (1.4-1.7 mm / yr) approximately for 0.8-1.0 mm / yr it is less, rather than by modern satellite determinations of satellites TOPEX - Poseidon etc. (2.5 - 2.8 mm / yr). On the basis of the data of altimetry observations of TOPEX-Poseidon and Jason for the period 1993-2003 for geocentric velocity of increase of sea level (of global ocean) the value 2.8+/-0.4 mm / yr [1] has been obtained. In the given report the full answer is actually is given to a question put by leading experts on research of the sea level: "The TOPEX/Poseidon and Jason satellite altimeter missions provided a 12 year record of sea level change, which show increase of global mean sea level of 2.8+/-0.4 mm/yr, with considerable geographic variation. An important question for climate studies is to determine the cause of this change - specifically how much of the change is due to steric (heating) versus eustatic (runoff, melting ice, etc.) contribution?" [1]. There is, a big value of average velocity of increase of the sea level on the satellite data, it is possible to explain only by kinematical effect in data of observations. The motion of the satellite "is concerned" to the centre of mass of our planet, and its position is determined by a geocentric radius - vector. Therefore northern drift of the centre of mass in the Earth body [2] as though results in reduction of distances from the satellite up to the sea surface in the southern hemisphere and to their reduction in the northern hemisphere. At averaging of measurements over all ocean surface (mainly located in a southern hemisphere where it occupies about 80 % of the areas) there will be an effect of apparent additional increase of the sea level. Therefore this ("apparent") velocity of increase of the sea level accepts the greater value (about 2.4 mm / year) in comparison with coastal determinations of this velocity that is rather close to the data of satellite observations. The additional effect in increase of the sea level is brought by deformation of the ocean bottom. The both mentioned phenomena: the secular drift of the center of mass of the Earth and the secular expansion of southern hemisphere of the Earth have been predicted by author [2], [3] and have obtained confirmations by space geodesy methods. The offered explanation has the extremely - important value for studying a possible role of thermal and climatic factors which can not apply any more for a big component attributed to it in change of the sea level. The account of fictitious component of this velocity results practically in real value of variation of the average sea level about 1.3-1.6 mm / yr, that completely coordinate positions of researchers of ocean by coastal and altimetry (satellite) methods. Moreover, the given work opens a direct opportunity for an explanation of increase of the sea level as result of deformation of the ocean bottom. This deformation is a major factor of change of the average sea level. Water superseded in a southern hemisphere gives the significant contribution to observably value of velocity of sea level rise up to 0.8-1.2 mm / yr [3, 4]. The work fulfilled at financial support of Russian projects of RFBR: N 07-05-00939 and N 06-02-16665. This abstract (without what or changes) has been accepted to EGU GA 2008 Session IS48 "75th Anniversary of the PSML"(Convener: Woodworth P.) but was not included in its program. References. [1] Nerem R.S., Leuliette E.W., Chambers D.P. (2005) An Integrated Study of Sea Level Change Using Altimetry, Gravity, and In Situ Measurements. Geophys. Res. Abstr., Vol. 7, 09831, Sref-ID: 1607-7962/gra/EGU05-A-09831. [2] Barkin, Yu.V. (1995) About Geocenter Motion Due to Global Changes of Its Dynamical Structure and Tidal Deformations. Vestn. Mosk. Un-ta. Fiz., Astron., Vol. 36, № 5, pp. 99-101 (in Russian). [3] Barkin Yu.V. (2007) Mechanisms of increase of mean sea level and solution of "attribution problem". "Geology of seas and oceans: Materials of XVII International scientific conference (scool) on mariner geology". V. IV. M.: GEOS. 2007. p. 21-23. [4] Barkin Yu.V. (2007) Global increase of mean sea level and erroneous treatment of a role of thermal factors. "Geology of seas and oceans: Materials of XVII International scientific conference (scool) on mariner geology". V. IV. M.: GEOS. 2007. p. 18-20.
NASA Astrophysics Data System (ADS)
Ebuchi, N.; Fukamachi, Y.; Ohshima, K. I.; Wakatsuchi, M.
2007-12-01
The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. The SWC flows into the Sea of Okhotsk from the Sea of Japan through the Soya/La Perouse Strait, which is located between Hokkaido, Japan, and Sakhalin, Russia. It supplies warm, saline water in the Sea of Japan to the Sea of Okhotsk and largely affects the ocean circulation and water mass formation in the Sea of Okhotsk, and local climate, environment and fishery in the region. However, the SWC has never been continuously monitored due to the difficulties involved in field observations related to, for example, severe weather conditions in the winter, political issues at the border strait, and conflicts with fishing activities in the strait. Detailed features of the SWC and its variations have not yet been clarified. In order to monitor variations in the SWC, three HF ocean radar stations were installed around the strait. The radar covers a range of approximately 70 km from the coast. It is shown that the HF radars clearly capture seasonal and subinertial variations of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in summer, and weakens in winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The surface transport by the Soya Warm Current shows a significant correlation with the sea level difference along the strait, as derived from coastal tide gauge records. The cross-current sea level difference, which is estimated from the sea level anomalies observed by the Jason-1 altimeter and a coastal tide gauge, also exhibits variation in concert with the surface transport and along-current sea level difference.
NASA Astrophysics Data System (ADS)
Seddik, H.; Greve, R.; Zwinger, T.; Gillet-Chaulet, F.; Gagliardini, O.
2011-12-01
The full Stokes thermo-mechanically coupled model Elmer/Ice is applied to the Greenland ice sheet. Elmer/Ice employs the finite element method to solve the full Stokes equations, the temperature evolution equation and the evolution equation of the free surface. The general framework of this modeling effort is a contribution to the Sea-level Response to Ice Sheet Evolution (SeaRISE) assessment project, a community-organized effort to estimate the likely range of ice sheet contributions to sea level rise over the next few hundred years (http://tinyurl.com/srise-lanl, http://tinyurl.com/srise-umt). The present geometry (surface and basal topographies) is derived from data where the basal topography was created with the preservation of the troughs at the Jakobshavn Ice Stream, Helheim, Kangerdlussuaq and Petermann glaciers. A mesh of the computational domain is created using an initial footprint which contains elements of 5 km horizontal resolution and to limit the number elements on the footprint while maximizing the spatial resolution, an anisotropic mesh adaptation scheme is employed based on the Hessian matrix of the observed surface velocities. The adaptation is carried out with the tool YAMS and the final footprint is vertically extruded to form a 3D mesh of 320880 elements with 17 equidistant, terrain-following layers. The numerical solution of the Stokes and the heat transfer equations employs direct solvers with stabilization procedures. The boundary conditions are such that the temperature at the surface uses the present-day mean annual air temperature given by a parameterization or directly from the available data, the geothermal heat flux at the bedrock is given by data and the lateral sides are open boundaries. A non-linear Weertman law is used for the basal sliding. Results for the SeaRISE 2011 sensitivity experiments are presented so that six different experiments have been conducted, grouped in two sets. The Set C (three experiments) applies a change to the surface precipitation and temperature and the set S (three experiments) applies an amplification factor to change the basal sliding velocity. The experiments are compared to a constant climate control run beginning at present (epoch 2004-1-1 0:0:0) and running up to 100 years holding the climate constant to its present state. The experiments with the amplification factor (Set S) show high sensitivities. Relative to the control run, the scenario with an amplification factor of 3x applied to the sliding velocity produces a Greenland contribution to sea level rise of ~25 cm. An amplification factor of 2.5x produces a contribution of ~16 cm and an amplification factor 2x produces a contribution of ~9 cm. The experiments with the changes to the surface precipitation and temperature (set C) show a contribution to sea level rise of ~4 cm when a factor 1x is applied to the temperature and precipitation anomalies. A factor 1.5x produces a sea level rise of ~8 cm and a factor 2x produces a sea level rise of ~12 cm.
Surface Energy and Mass Balance Model for Greenland Ice Sheet and Future Projections
NASA Astrophysics Data System (ADS)
Liu, Xiaojian
The Greenland Ice Sheet contains nearly 3 million cubic kilometers of glacial ice. If the entire ice sheet completely melted, sea level would raise by nearly 7 meters. There is thus considerable interest in monitoring the mass balance of the Greenland Ice Sheet. Each year, the ice sheet gains ice from snowfall and loses ice through iceberg calving and surface melting. In this thesis, we develop, validate and apply a physics based numerical model to estimate current and future surface mass balance of the Greenland Ice Sheet. The numerical model consists of a coupled surface energy balance and englacial model that is simple enough that it can be used for long time scale model runs, but unlike previous empirical parameterizations, has a physical basis. The surface energy balance model predicts ice sheet surface temperature and melt production. The englacial model predicts the evolution of temperature and meltwater within the ice sheet. These two models can be combined with estimates of precipitation (snowfall) to estimate the mass balance over the Greenland Ice Sheet. We first compare model performance with in-situ observations to demonstrate that the model works well. We next evaluate how predictions are degraded when we statistically downscale global climate data. We find that a simple, nearest neighbor interpolation scheme with a lapse rate correction is able to adequately reproduce melt patterns on the Greenland Ice Sheet. These results are comparable to those obtained using empirical Positive Degree Day (PDD) methods. Having validated the model, we next drove the ice sheet model using the suite of atmospheric model runs available through the CMIP5 atmospheric model inter-comparison, which in turn built upon the RCP 8.5 (business as usual) scenarios. From this exercise we predict how much surface melt production will increase in the coming century. This results in 4-10 cm sea level equivalent, depending on the CMIP5 models. Finally, we try to bound melt water production from CMIP5 data with the model by assuming that the Greenland Ice Sheet is covered in black carbon (lowering the albedo) and perpetually covered by optically thick clouds (increasing long wave radiation). This upper bound roughly triples surface meltwater production, resulting in 30 cm of sea level rise by 2100. These model estimates, combined with prior research suggesting an additional 40-100 cm of sea level rise associated with dynamical discharge, suggest that the Greenland Ice Sheet is poised to contribute significantly to sea level rise in the coming century.
New developments in satellite oceanography and current measurements
NASA Technical Reports Server (NTRS)
Huang, N. E.
1979-01-01
Principal satellite remote sensing techniques and instruments are described and attention is given to the application of such techniques to ocean current measurement. The use of radiometers, satellite tracking drifters, and altimeters for current measurement is examined. Consideration is also given to other applications of satellite remote sensing in physical oceanography, including measurements of surface wind stress, sea state, tides, ice, sea surface temperature, salinity, ocean color, and oceanic leveling.
NASA Technical Reports Server (NTRS)
Larson, Kristine M.; Ray, Richard D.; Williams, Simon D. P.
2017-01-01
A standard geodetic GPS receiver and a conventional Aquatrak tide gauge, collocated at Friday Harbor, Washington, are used to assess the quality of 10 years of water levels estimated from GPS sea surface reflections.The GPS results are improved by accounting for (tidal) motion of the reflecting sea surface and for signal propagation delay by the troposphere. The RMS error of individual GPS water level estimates is about 12 cm. Lower water levels are measured slightly more accurately than higher water levels. Forming daily mean sea levels reduces the RMS difference with the tide gauge data to approximately 2 cm. For monthly means, the RMS difference is 1.3 cm. The GPS elevations, of course, can be automatically placed into a well-defined terrestrial reference frame. Ocean tide coefficients, determined from both the GPS and tide gauge data, are in good agreement, with absolute differences below 1 cm for all constituents save K1 and S1. The latter constituent is especially anomalous, probably owing to daily temperature-induced errors in the Aquatrak tide gauge
NASA Astrophysics Data System (ADS)
Chesnaux, R.
2016-04-01
Closed-form analytical solutions for assessing the consequences of sea-level rise on fresh groundwater oceanic island lenses are provided for the cases of both strip and circular islands. Solutions are proposed for directly calculating the change in the thickness of the lens, the changes in volume and the changes in travel time of fresh groundwater within island aquifers. The solutions apply for homogenous aquifers recharged by surface infiltration and discharged by a down-gradient, fixed-head boundary. They also take into account the inland shift of the ocean due to land surface inundation, this shift being determined by the coastal slope of inland aquifers. The solutions are given for two simple island geometries: circular islands and strip islands. Base case examples are presented to illustrate, on one hand, the amplitude of the change of the fresh groundwater lens thickness and the volume depletion of the lens in oceanic island with sea-level rise, and on the other hand, the shortening of time required for groundwater to discharge into the ocean. These consequences can now be quantified and may help decision-makers to anticipate the effects of sea-level rise on fresh groundwater availability in oceanic island aquifers.
Wu, Zhongchen; Chen, Huanwen; Wang, Weiling; Jia, Bin; Yang, Tianlin; Zhao, Zhanfeng; Ding, Jianhua; Xiao, Xuxian
2009-10-28
Without any sample pretreatment, mass spectral fingerprints of 486 dried sea cucumber slices were rapidly recorded in the mass range of m/z 50-800 by using surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). A set of 162 individual sea cucumbers (Apostichopus japonicus Selenka) grown up in 3 different geographical regions (Weihai: 59 individuals, 177 slices; Yantai: 53 individuals, 159 slices; Dalian: 50 individuals, 150 slices;) in north China sea were successfully differentiated according to their habitats both by Principal Components Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) of the mass spectral raw data, demonstrating that DAPCI-MS is a practically convenient tool for high-throughput differentiation of sea cucumber products. It has been found that the difference between the body wall tissue and the epidermal tissue is heavily dependent on the habitats. The experimental data also show that the roughness of the sample surface contributes to the variance of the signal levels in a certain extent, but such variance does not fail the differentiation of the dried sea cucumber samples.
Atwater, Brian F.; Hedel, Charles W.; Helley, Edward J.
1977-01-01
Sediments collected for bridge foundation studies at southern San Francisco Bay, Calif., record estuaries that formed during Sangamon (100,000 years ago) and post-Wisconsin (less than 10,000 years ago) high stands of sea level. The estuarine deposits of Sangamon and post-Wisconsin ages are separated by alluvial and eolian deposits and by erosional unconformities and surfaces of nondeposition, features that indicate lowered base levels and oceanward migrations of the shoreline accompanying low stands of the sea. Estuarine deposits of mid-Wisconsin age appear to be absent, suggesting that sea level was not near its present height 30,000–40,000 years ago in central California. Holocene sea-level changes are measured from the elevations and apparent 14C ages of plant remains from 13 core samples. Uncertainties of ±2 to ±4 m in the elevations of the dated sea levels represent the sum of errors in determination of (1) sample elevation relative to present sea level, (2) sample elevation relative to sea level at the time of accumulation of the dated material, and (3) postdepositional subsidence of the sample due to compaction of underlying sediments. Sea level in the vicinity of southern San Francisco Bay rose about 2 cm/yr from 9,500 to 8,000 years ago. The rate of relative sea-level rise then declined about tenfold from 8,000 to 6,000 years ago, and it has averaged 0.1–0.2 cm/yr from 6,000 years ago to the present. This submergence history indicates that the rising sea entered the Golden Gate 10,000–11,000 years ago and spread across land areas as rapidly as 30 m/yr until 8,000 years ago. Subsequent shoreline changes were more gradual because of the decrease in rate of sea-level rise. Some of the sediments under southern San Francisco Bay appear to be below the level at which they initially accumulated. The vertical crustal movement suggested by these sediments may be summarized as follows: (1) Some Quaternary(?) sediments have sustained at least 100 m of tectonic subsidence in less than 1.5 million years (<0.07 mm/yr) relative to the likely elevation of the lowest Pleistocene land surface; (2) the deepest Sangamon estuarine deposits subsided tectonically about 20–40 m in about 0.1 million years (0.2±0.1–0.4±0.1 mm/yr) relative to the assumed initial elevations of the thalwegs buried by these sediments; and (3) Holocene salt-marsh deposits have undergone about 5 m of tectonic and possibly isostatic subsidence in about 6,000 years (0.8±.0.7 mm/yr) relative to elevations which might be expected from eustatic sea-level changes alone.
Turbulence structure of the marine stable boundary layer over the Baltic Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smedman, A.S.; Hoegstroem, U.
For more than half of the year the land surfaces surrounding the Baltic Sea is warmer than the sea surface, and the marine boundary layer over the Baltic is stable. Observations, at various sites in the Baltic Sea area during the last decade. also indicate frequent occurrence of low-level jets at the top of the stable boundary layer. In many cases the marine jet can be considered as an analogy in space to the evolution of the nocturnal jet with time. The frictional decoupling occurs when warm air over the land is flowing out over the sea. Data from twomore » areas together with model simulations are used in this study to characterize turbulence structure in the marine boundary layer. The measurements include profiles of wind and temperature on towers situated at two isolated islands, together with turbulence recordings and aircraft measurements. Also wave height and water surface temperature have been measured. The model simulations are performed with a second-order closure model.« less
Post-glacial sea-level history for NE Ireland (Belfast Lough) based on offshore evidence
NASA Astrophysics Data System (ADS)
Quinn, R.; Plets, R. M.; Callard, L.; Cooper, A.; Long, A. J.; Belknap, D. F.; Edwards, R.; Jackson, D.; Kelley, J. T.; Long, D.; Milne, G. A.; Monteys, X.
2013-12-01
Glacio-isostatic adjustment (GIA) models suggest a complex relative sea-level (RSL) pattern around the Irish Sea Basin after the Last Glacial Maximum (LGM), with modelled sea-level lowstands ranging from -12 m in the north to greater than -60 m in the south of the Basin. However, these GIA models are poorly constrained by observational data offshore. Belfast Lough, on the NE coast of Ireland, is one of seven sites chosen to investigate this complex RSL history as part of the project ';Late Glacial Sea level minima in the Western British Isles' (NERC NE/H024301/1). Belfast Lough was chosen as one of the candidate sites on the basis of location (at the northern end of the Irish Sea Basin), sedimentary environment (grossly depositional) and the fact that the lowstand predicted for the Belfast Lough area by a recent version of the GIA model (-16.5 m) differs significantly from the (limited) extant observational data, which interprets the lowstand at -30 m. In 2011 and 2012 we gathered new multi-beam echo-sounder data, >200 km trackline pinger- and boomer- seismic reflection data and 46 vibrocores in Belfast Lough. Radiocarbon dating and palaeoenvironmental analysis are used to constrain the interpretation of the seismic and sediment data. Five seismo-stratigraphic units are interpreted, with a distinct erosional surface between U3 and U4 interpreted as a transgressive surface associated with sea level rise post-dating a RSL lowstand. Foraminiferal evidence indicates an increase in marine species (from lagoonal/estuarine to fully marine) from U4 to U5. Integration of the seismic and core data indicate an erosional event prior to 12.7 cal yr BP resulting in a planated surface in the inner Lough and wave-eroded drumlins at the mouth of the Lough between -15 and -22 m, interpreted as a possible slowstand. On the basis of seismic evidence in the outer Lough, an as yet undated lowstand at -42 m is tentatively interpreted to pre-date this stillstand. These results will be used to tune the Earth and ice model parameters in a new run of the GIA model.
Post-glacial sea-level history for NE Ireland (Belfast Lough) based on offshore evidence
NASA Astrophysics Data System (ADS)
Quinn, Rory; Plets, Ruth; Callard, Louise; Cooper, Andrew; Antony, Long; Daniel, Belknap; Robin, Edwards; Derek, Jackson; Joseph, Kelley; David, Long; Glenn, Milne; Xavier, Monteys
2014-05-01
Glacio-isostatic adjustment (GIA) models suggest a complex relative sea-level (RSL) pattern around the Irish Sea Basin after the Last Glacial Maximum (LGM), with modelled sea-level lowstands ranging from -12 m in the north to greater than -60 m in the south of the Basin. However, these GIA models are poorly constrained by observational data offshore. Belfast Lough, on the NE coast of Ireland, is one of seven sites chosen to investigate this complex RSL history as part of the project 'Late Glacial Sea level minima in the Western British Isles' (NERC NE/H024301/1). Belfast Lough was chosen as one of the candidate sites on the basis of location (at the northern end of the Irish Sea Basin), sedimentary environment (grossly depositional) and the fact that the lowstand predicted for the Belfast Lough area by a recent version of the GIA model (-16.5 m) differs significantly from the (limited) extant observational data, which interprets the lowstand at -30 m. In 2011 and 2012 we gathered new multi-beam echo-sounder data, >200 km trackline pinger- and boomer- seismic reflection data and 46 vibrocores in Belfast Lough. Radiocarbon dating and palaeoenvironmental analysis are used to constrain the interpretation of the seismic and sediment data. Five seismo-stratigraphic units are interpreted, with a distinct erosional surface between U3 and U4 interpreted as a transgressive surface associated with sea level rise post-dating a RSL lowstand. Foraminiferal evidence indicates an increase in marine species (from lagoonal/estuarine to fully marine) from U4 to U5. Integration of the seismic and core data indicate an erosional event prior to 12.7 cal yr BP resulting in a planated surface in the inner Lough and wave-eroded drumlins at the mouth of the Lough between -15 and -22 m, interpreted as a possible slowstand. On the basis of seismic evidence in the outer Lough, an as yet undated lowstand at -42 m is tentatively interpreted to pre-date this stillstand. These results will be used to tune the Earth and ice model parameters in a new run of the GIA model.
NASA Astrophysics Data System (ADS)
Chen, Jia-Hong; Chyi, Shyh-Jeng; Yen, Jiun-Yee; Lin, Li-Hung; Yen, I.-Chin; Yu, Neng-Ti; Ho, Lih-Der; Jen, Chia-Hung
2017-04-01
The Gangkou River basin is the largest basin in the eastern Hengchun Peninsula of Taiwan. Its main river length is 31km and the basin area is 102sq. km. The width of the active channel is relatively narrow, but the valley from the middle to downstream is remarkably wide, indicating a feature of underfit stream. We drilled two sediment cores in the downstream area, including a 30m core (core-A) from a higher terrace, which is 14m above mean sea level, and a 20m core (core-B) from a lower terrace, which is 4m above mean sea level. Most of the sediments in the core-A are mud, which represents the flood plain facies, and 14C dates in the core-A range from 11ka to 7ka BP. Furthermore, the sediment layers reveal signals of marine events at the core depths of 5m to 11m by X-ray fluorescence. In the core-B, there is an erosional surface at the core depth of 5m. The age of the fluvial gravel layer above the erosional surface is about 0.4ka BP, and the mud layer top the surface is about 8.5ka BP. The preliminary results show that (1) as the tectonic uplift rate induced by the marine terraces around the basin is 1.0 to 2.5 mm/yr, and the accumulation rate of the mud layer in the basin is 6.7 to 8.7 mm/yr, the sediments infilling (more than 30-meters-thick) in the downstream area of the basin should be the results of the lower tectonic uplifting and the higher post-glacial sea level rise and; (2) the marine sediment layer with 14C dates of 7.5ka to 8.5ka BP is very likely the remain of the maximum flooding surface (MFS) in the early Holocene. These results indicate that the fluvial landscapes evolution of the basin was controlled by the sea-level; (3) the erosional surface in the core-B indicates the Gangkou River continuously erode the infilling sediments from 7ka to 0.4ka BP. Previous studies show that the sea-level around Taiwan gradually declined from its high stand since 6ka, we proposed that the continuous erosion was probably the results of tectonic uplifting and eustatic sea-level fall.
Measuring precise sea level from a buoy using the Global Positioning System
NASA Technical Reports Server (NTRS)
Rocken, Christian; Kelecy, Thomas M.; Born, George H.; Young, Larry E.; Purcell, George H., Jr.; Wolf, Susan Kornreich
1990-01-01
The feasibility of using the Global Positioning System (GPS) for accurate sea surface positioning was examined. An experiment was conducted on the Scripps pier at La Jolla, California from December 13-15, 1989. A GPS-equipped buoy was deployed about 100 m off the pier. Two fixed reference GPS receivers, located on the pier and about 80 km away on Monument Peak, were used to estimate the relative position of the floater. Kinematic GPS processing software, developed at the National Geodetic Survey, and the Jet Propulsion Laboratory's GPS Infrared Processing System software were used to determine the floater position relative to land-fixing receivers. Calculations were made of sea level and ocean wave spectra from GPS measurements. It is found that the GPS sea level for the short 100 m baseline agrees with the PPT sea level at the 1 cm level and has an rms variation of 5 mm over a period of 4 hours.
Coastal Sea Level along the North Eastern Atlantic Shelf from Delay Doppler Altimetry
NASA Astrophysics Data System (ADS)
Fenoglio-Marc, L.; Benveniste, J.; Andersen, O. B.; Gravelle, M.; Dinardo, S.; Uebbing, B.; Scharroo, R.; Kusche, J.; Kern, M.; Buchhaupt, C.
2017-12-01
Satellite altimetry data of the CryoSat-2 and Sentinel-3 missions processed with Delay Doppler methodology (DDA) provide improved coastal sea level measurements up to 2-4 km from coast, thanks to an along-track resolution of about 300m and a higher signal to noise ratio. We investigate the 10 Kilometre stripe along the North-Eastern Atlantic shelf from Lisbon to Bergen to detect the possible impacts in sea level change studies of this enhanced dataset. We consider SAR CryoSat-2 and Sentinel-3 altimetry products from the ESA GPOD processor and in-house reduced SAR altimetry (RDSAR) products. Improved processing includes in RDSAR the application of enhanced retrackers for the RDSAR waveform. Improved processing in SAR includes modification both in the generation of SAR waveforms, (as Hamming weighting window on the burst data prior to the azimuth FFT, zero-padding prior to the range FFT, doubling of the extension for the radar range swath) and in the SAMOSA2 retracker. Data cover the full lifetime of CryoSat-2 (6 years) and Sentinel-3 (1 year). Conventional altimetry are from the sea level CCI database. First we analyse the impact of these SAR altimeter data on the sea level trend and on the estimation of vertical motion from the altimeter minus tide gauge differences. VLM along the North-Eastern Atlantic shelf is generally small compared to the North-Western Atlantic Coast VLM, with a smaller signal to noise ratio. Second we investigate impact on the coastal mean sea level surface and the mean dynamic topography. We evaluate a mean surface from the new altimeter data to be combined to state of the art geoid models to derive the mean dynamic topography. We compare the results to existing oceanographic and geodetic mean dynamic topography solutions, both on grid and pointwise at the tide gauge stations. This study is supported by ESA through the Sea Level CCI and the GOCE++DYCOT projects
Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets
NASA Astrophysics Data System (ADS)
Deconto, R. M.; Pollard, D.
2017-12-01
New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100, implying that physically plausible upper limits on future sea-level rise might need to be reconsidered.
Sea ice roughness: the key for predicting Arctic summer ice albedo
NASA Astrophysics Data System (ADS)
Landy, J.; Ehn, J. K.; Tsamados, M.; Stroeve, J.; Barber, D. G.
2017-12-01
Although melt ponds on Arctic sea ice evolve in stages, ice with smoother surface topography typically allows the pond water to spread over a wider area, reducing the ice-albedo and accelerating further melt. Building on this theory, we simulated the distribution of meltwater on a range of statistically-derived topographies to develop a quantitative relationship between premelt sea ice surface roughness and summer ice albedo. Our method, previously applied to ICESat observations of the end-of-winter sea ice roughness, could account for 85% of the variance in AVHRR observations of the summer ice-albedo [Landy et al., 2015]. Consequently, an Arctic-wide reduction in sea ice roughness over the ICESat operational period (from 2003 to 2008) explained a drop in ice-albedo that resulted in a 16% increase in solar heat input to the sea ice cover. Here we will review this work and present new research linking pre-melt sea ice surface roughness observations from Cryosat-2 to summer sea ice albedo over the past six years, examining the potential of winter roughness as a significant new source of sea ice predictability. We will further evaluate the possibility for high-resolution (kilometre-scale) forecasts of summer sea ice albedo from waveform-level Cryosat-2 roughness data in the landfast sea ice zone of the Canadian Arctic. Landy, J. C., J. K. Ehn, and D. G. Barber (2015), Albedo feedback enhanced by smoother Arctic sea ice, Geophys. Res. Lett., 42, 10,714-10,720, doi:10.1002/2015GL066712.
Griffith, Kereen T.; Larriviere, Jack C.; Feher, Laura C.; Cahoon, Donald R.; Enwright, Nicholas M.; Oster, David A.; Tirpak, John M.; Woodrey, Mark S.; Collini, Renee C.; Baustian, Joseph J.; Breithaupt, Joshua L.; Cherry, Julia A.; Conrad, Jeremy R.; Cormier, Nicole; Coronado-Molina, Carlos A.; Donoghue, Joseph F.; Graham, Sean A.; Harper, Jennifer W.; Hester, Mark W.; Howard, Rebecca J.; Krauss, Ken W.; Kroes, Daniel E.; Lane, Robert R.; McKee, Karen L.; Mendelssohn, Irving A.; Middleton, Beth A.; Moon, Jena A.; Piazza, Sarai C.; Rankin, Nicole M.; Sklar, Fred H.; Steyer, Greg D.; Swanson, Kathleen M.; Swarzenski, Christopher M.; Vervaeke, William C.; Willis, Jonathan M.; Wilson, K. Van
2017-01-01
Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana’s network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change. PMID:28902904
Osland, Michael J.; Griffith, Kereen T.; Larriviere, Jack C.; Feher, Laura C.; Cahoon, Donald R.; Enwright, Nicholas M.; Oster, David A.; Tirpak, John M.; Woodrey, Mark S.; Collini, Renee C.; Baustian, Joseph J.; Breithaupt, Joshua L.; Cherry, Julia A; Conrad, Jeremy R.; Cormier, Nicole; Coronado-Molina, Carlos A.; Donoghue, Joseph F.; Graham, Sean A.; Harper, Jennifer W.; Hester, Mark W.; Howard, Rebecca J.; Krauss, Ken W.; Kroes, Daniel; Lane, Robert R.; Mckee, Karen L.; Mendelssohn, Irving A.; Middleton, Beth A.; Moon, Jena A.; Piazza, Sarai; Rankin, Nicole M.; Sklar, Fred H.; Steyer, Gregory D.; Swanson, Kathleen M.; Swarzenski, Christopher M.; Vervaeke, William; Willis, Jonathan M; Van Wilson, K.
2017-01-01
Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana’s network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change.
Osland, Michael J; Griffith, Kereen T; Larriviere, Jack C; Feher, Laura C; Cahoon, Donald R; Enwright, Nicholas M; Oster, David A; Tirpak, John M; Woodrey, Mark S; Collini, Renee C; Baustian, Joseph J; Breithaupt, Joshua L; Cherry, Julia A; Conrad, Jeremy R; Cormier, Nicole; Coronado-Molina, Carlos A; Donoghue, Joseph F; Graham, Sean A; Harper, Jennifer W; Hester, Mark W; Howard, Rebecca J; Krauss, Ken W; Kroes, Daniel E; Lane, Robert R; McKee, Karen L; Mendelssohn, Irving A; Middleton, Beth A; Moon, Jena A; Piazza, Sarai C; Rankin, Nicole M; Sklar, Fred H; Steyer, Greg D; Swanson, Kathleen M; Swarzenski, Christopher M; Vervaeke, William C; Willis, Jonathan M; Wilson, K Van
2017-01-01
Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana's network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used to transform a broadly disseminated and unplanned collection of SET-MH stations into a coordinated and strategic regional network. This regional network would provide data for predicting and preparing for the responses of coastal wetlands to accelerated sea-level rise and other aspects of global change.
The Impact of Water Loading on Estimates of Postglacial Decay Times in Hudson Bay
NASA Astrophysics Data System (ADS)
Han, H. K.; Gomez, N. A.
2016-12-01
Ongoing glacial isostatic adjustment (GIA) due to surface loading (ice and water) variations since the Last Glacial Maximum (LGM) has been contributing to sea level changes globally throughout the Holocene, especially in regions like the Canada that were heavily glaciated during the LGM. The spatial and temporal distribution of GIA and relative sea level change are attributed to the ice history and the rheological structure of the solid Earth, both of which are uncertain. It has been shown that relative sea level curves in previously glaciated regions follow an exponential-like form, and the post glacial decay times associated with that form have weak sensitivity to the details of the ice loading history (Andrews 1970, Walcott 1980, Mitrovica & Peltier 1995). Post glacial decay time estimates may therefore be used to constrain the Earth's structure and improve GIA predictions. However, estimates of decay times in Hudson Bay in the literature differ significantly due to a number of sources of uncertainty and bias (Mitrovica et al. 2000). Previous decay time analyses have not considered the potential bias that surface loading associated with Holocene sea level changes can introduce in decay time estimates derived from nearby relative sea level observations. We explore the spatial patterns of post glacial decay time predictions in previously glaciated regions, and their sensitivity to ice and water loading history. We compute post glacial sea level changes over the last deglaciation from 21ka to the modern associated with the ICE5G (Peltier, 2004) and ICE6G (Argus et al. 2014, Peltier et al. 2015) ice history models. We fit exponential curves to the modeled relative sea level changes, and compute maps of post glacial decay time predictions across North America and the Arctic. In addition, we decompose the modeled relative sea level changes into contributions from water and ice loading effects, and compute the impact of water loading redistribution since the LGM on present day decay times. We show that Holocene water loading in the Hudson Bay may introduce significant bias in decay time estimates and we highlight locations where biases are minimized.
Vertical transport of carbon-14 into deep-sea food webs
NASA Astrophysics Data System (ADS)
Pearcy, W. G.; Stuiver, Minze
1983-04-01
During the years 1973 to 1976 the carbon-14 content was higher in epipelagic and vertically migrating, upper mesopelagic animals (caught between 0 and 500 m) than in lower mesopelagic, bathypelagic, and abyssobenthic animals (500 to 5180 m) in the northeastern Pacific Ocean. Only one species of deep-sea fish had a Δ14C value as high as surface-caught fish. The 14C content of most animals was higher pre-bomb levels, but the relatively low 14C content of most deep-sea animals indicates that the majority of their carbon was not derived directly from a near-surface food chain labeled with bomb carbon. A mean residence time of about 35 y was estimated for the organic carbon pool for abyssobenthic animals based on the relative increase of radiocarbon in surface-dwelling animals since 1967. The results suggest that rapidly sinking particles from surface waters, such as fecal pellets, are not the major source of organic carbon for deep-sea fishes and large benthic invertebrates.
NASA Technical Reports Server (NTRS)
Loomis, B. D.; Luthcke, S. B.
2016-01-01
We present new measurements of mass evolution for the Mediterranean, Black, Red, and Caspian Seas as determined by the NASA Goddard Space Flight Center (GSFC) GRACE time-variable global gravity mascon solutions. These new solutions are compared to sea surface altimetry measurements of sea level anomalies with steric corrections applied. To assess their accuracy, the GRACE and altimetry-derived solutions are applied to the set of forward models used by GSFC for processing the GRACE Level-1B datasets, with the resulting inter-satellite range acceleration residuals providing a useful metric for analyzing solution quality.
NASA Technical Reports Server (NTRS)
Norris, Joel R.
2005-01-01
This study investigated the spatial pattern of linear trends in surface-observed upper-level (combined mid-level and High-level) cloud cover, precipitation, and surface divergence over the tropical Indo-Pacific Ocean during 1952-1957. Cloud values were obtained from the Extended Edited Cloud Report Archive (EECRA), precipitation values were obtained from the Hulme/Climate Research Unit Data Set, and surface divergence was alternatively calculated from wind reported Comprehensive Ocean-Atmosphere Data Set and from Smith and Reynolds Extended Reconstructed sea level pressure data.
Estimates of twenty-first century sea-level changes for Norway
NASA Astrophysics Data System (ADS)
Simpson, Matthew J. R.; Breili, Kristian; Kierulf, Halfdan P.
2014-03-01
In this work we establish a framework for estimating future regional sea-level changes for Norway. Following recently published works, we consider how different physical processes drive non-uniform sea-level changes by accounting for spatial variations in (1) ocean density and circulation (2) ice and ocean mass changes and associated gravitational effects on sea level and (3) vertical land motion arising from past surface loading change and associated gravitational effects on sea level. An important component of past and present sea-level change in Norway is glacial isostatic adjustment. Central to our study, therefore, is a reassessment of vertical land motion using a far larger set of new observations from a permanent GNSS network. Our twenty-first century sea-level estimates are split into two parts. Firstly, we show regional projections largely based on findings from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4) and dependent on the emission scenarios A2, A1B and B1. These indicate that twenty-first century relative sea-level changes in Norway will vary between -0.2 to 0.3 m (1-sigma ± 0.13 m). Secondly, we explore a high-end scenario, in which a global atmospheric temperature rise of up to 6 °C and emerging collapse for some areas of the Antarctic ice sheets are assumed. Using this approach twenty-first century relative sea-level changes in Norway are found to vary between 0.25 and 0.85 m (min/max ± 0.45 m). We attach no likelihood to any of our projections owing to the lack of understanding of some of the processes that cause sea-level change.
Air pollution, greenhouse gases and climate change : global and regional perspectives
DOT National Transportation Integrated Search
2009-01-01
Greenhouse gases (GHGs) warm the surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. What is less recognized than problems with GHGs, however, is a comparably major g...
Remote sensing of the coastal ocean with standard geodetic GNSS-equipment
NASA Astrophysics Data System (ADS)
Löfgren, J. S.; Haas, R.; Larson, K. M.; Scherneck, H.-G.
2012-04-01
We use standard geodetic Global Navigation Satellite System (GNSS) equipment to perform remote sensing measurements of the coastal ocean. This is done by a so-called GNSS-based tide gauge that uses both direct GNSS-signals and GNSS-signals that are reflected off the sea surface. Our installation is located at the Onsala Space Observatory (OSO) at the west coast of Sweden and consists of a zenith-looking Right Hand Circularly Polarized (RHCP) and a nadir-looking Left Hand Circularly Polarized (LHCP) antenna. Each antenna is connected to a standard geodetic-type GNSS-receiver. We applied two different analysis strategies to our GNSS data set. The first strategy is based on a traditional geodetic differential analysis [Löfgren et al., 2011] and makes use of the data from both receivers; connected to the zenith and the nadir looking antennae. This approach results in local sea level that is automatically corrected for land motion, meaning that the GNSS-based tide gauge can provide reliable sea-level estimates even in tectonic active regions. The second strategy focuses on the Signal-to-Noise Ratio (SNR) recorded with the receiver connected to the zenith-looking antenna [Larson et al., 2011]. The SNR is affected by multipath originating from the sea surface reflections. Analysis of the SNR data allows to determine the distance between the antenna and the reflecting surface, and thus to measure sea surface height. Results from both analysis strategies are compared to independently observed sea-level data from two stilling-well gauges operated by the Swedish Meteorological and Hydrological Institute (SMHI), which lie in a distance of several km from OSO. The root-mean-square agreement between the different time series of several month's length is on the order of 5 cm and better. These results indicate the large potential for using coastal GNSS-sites for the monitoring of the coastal ocean.
NASA Astrophysics Data System (ADS)
Ocakoğlu, Neslihan; İşcan, Yeliz; Kılıç, Fatmagül; Özel, Oğuz
2018-06-01
Multi-beam bathymetric and multi-channel seismic reflection data obtained offshore Cide-Sinop have revealed important records on the latest transgression of the Black Sea for the first time. A relatively large shelf plain within the narrow southern continental shelf characterized by a flat seafloor morphology at -100 water depth followed by a steep continental slope leading to -500 m depth. This area is widely covered by submerged morphological features such as dunes, lagoons, possible aeolianites, an eroded anticline and small channels that developed by aeolian and fluvial processes. These morphological features sit upon an erosional surface that truncates the top of all seismic units and constitutes the seafloor over the whole shelf. The recent prograded delta deposits around the shelf break are also truncated by the similar erosional surface. These results indicate that offshore Cide-Sinop was once a terrestrial landscape that was then submerged. The interpreted paleoshoreline varies from -100 to -120 m. This variation can be explained by not only sea level changes but also the active faults observed on the seismic section. The effective protection of morphological features on the seafloor is the evidence of abrupt submergence rather than gradual. In addition, the absence of coastal onlaps suggests that these morphological features should have developed at low sea level before the latest sea level rise in the Black Sea.
Grain-size based sea-level reconstruction in the south Bohai Sea during the past 135 kyr
NASA Astrophysics Data System (ADS)
Yi, Liang; Chen, Yanping
2013-04-01
Future anthropogenic sea-level rise and its impact on coastal regions is an important issue facing human civilizations. Due to the short nature of the instrumental record of sea-level change, development of proxies for sea-level change prior to the advent of instrumental records is essential to reconstruct long-term background sea-level changes on local, regional and global scales. Two of the most widely used approaches for past sea-level changes are: (1) exploitation of dated geomorphologic features such as coastal sands (e.g. Mauz and Hassler, 2000), salt marsh (e.g. Madsen et al., 2007), terraces (e.g. Chappell et al., 1996), and other coastal sediments (e.g. Zong et al., 2003); and (2) sea-level transfer functions based on faunal assemblages such as testate amoebae (e.g. Charman et al., 2002), foraminifera (e.g. Chappell and Shackleton, 1986; Horton, 1997), and diatoms (e.g. Horton et al., 2006). While a variety of methods has been developed to reconstruct palaeo-changes in sea level, many regions, including the Bohai Sea, China, still lack detailed relative sea-level curves extending back to the Pleistocene (Yi et al., 2012). For example, coral terraces are absent in the Bohai Sea, and the poor preservation of faunal assemblages makes development of a transfer function for a relative sea-level reconstruction unfeasible. In contrast, frequent alternations between transgression and regression has presumably imprinted sea-level change on the grain size distribution of Bohai Sea sediments, which varies from medium silt to coarse sand during the late Quaternary (IOCAS, 1985). Advantages of grainsize-based relative sea-level transfer function approaches are that they require smaller sample sizes, allowing for replication, faster measurement and higher spatial or temporal resolution at a fraction of the cost of detail micro-palaeontological analysis (Yi et al., 2012). Here, we employ numerical methods to partition sediment grain size using a combined database of marine surface and core samples, and to quantitatively reconstruct sea-level variation since the late Pleistocene in the south Bohai Sea, China. New insights into regional relative sea-level changes since the late Pleistocene are obtained (Yi et al., 2012): (1) The grain size of surface and core samples can be mathematically partitioned using the Weibull distribution into four components. These four components with differing modal sizes and percentages could be interpreted as a long-term suspension component, which only settles under low turbulence conditions, sortable silt and very fine sand components transported by suspension during greater turbulence and bedload transport component, respectively. (2) Through regression and rigorous verification techniques, the reference water level could be reconstructed from sediment grain size. The reconstruction quantitatively extends the regional relative sea-level history to the late Pleistocene, providing a comparatively long dataset to evaluate regional sea-level variability. (3) We find no evidence of a sea-level high stand during MIS3 but rather a substantial regression during 70-30 cal kyr BP and potentially exposed land during 38-20 cal kyr BP. These results for the south Bohai Sea are in good agreement with published global sea-level records for the late Pleistocene, implying similarities between local and global sea-level patterns. Therefore, it is concluded that grain-size based sea-level reconstruction provide results that are comparable to other reconstruction methods and demonstrates great potential application for future works. (The data was shared on http://hurricane.ncdc.noaa.gov/) References Chappell, J., Omura, A., Esat, T., McCulloch, M., Pandolfi, J., Ota, Y., Pillans, B., 1996. Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth and Planetary Science Letters 141, 227-236. Chappell, J., Shackleton, N.J., 1986. Oxygen isotopes and sea level. Nature 324, 137-140. Charman, D.J., Roe, H.M., Roland Gehrels, W., 2002. Modern distribution of saltmarsh testate amoebae: regional variability of zonation and response to environmental variables. Journal of Quaternary Science 17, 387-409. Horton, B.P., 1997. Quantification of the indicative meaning of a range of Holocene sea-level index points from the western North Sea, Department of Geography. University of Durham, Durham City, UK, p. 509. Horton, B.P., Corbett, R., Culver, S.J., Edwards, R.J., Hillier, C., 2006. Modern saltmarsh diatom distributions of the Outer Banks, North Carolina, and the development of a transfer function for high resolution reconstructions of sea level. Estuarine, Coastal and Shelf Science 69, 381-394. IOCAS (Institute of Oceanology, Chinese Academy of Sciences), 1985. Bohai Sea Geology. Science Press, Beijing, China. Madsen, A.T., Murray, A.S., Andersen, T.J., Pejrup, M., 2007. Temporal changes of accretion rates on an estuarine salt marsh during the late Holocene -Reflection of local sea level changes? The Wadden Sea, Denmark. Marine Geology 242, 221-233. Mauz, B., Hassler, U., 2000. Luminescence chronology of Late Pleistocene raised beaches in southern Italy: new data of relative sea-level changes. Marine Geology 170, 187-203. Yi, L., Yu, H.J., Ortiz, J.D., Xu, X.Y., Qiang, X.K., Huang, H.J., Shi, X., Deng, C.L., 2012. A reconstruction of late Pleistocene relative sea level in the south Bohai Sea, China, based on sediment grain-size analysis. Sedimentary Geology 281, 88-100. Zong, Y., Shennan, I., Combellick, R.A., Hamilton, S.L., Rutherford, M.M., 2003. Microfossil evidence for land movements associated with the AD 1964 Alaska earthquake. The Holocene 13, 7-20.
Schiffer, D.M.; O'Reilly, A. M.; Phelps, G.G.; Bradner, L.A.; Halford, K.J.; Spechler, R.M.
1994-01-01
This map depicts the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity for May 1994. The map is based on water-level measurements made at approximately 1,000 wells and several springs. Data on the map were contoured using 5-foot contour intervals in most areas. The potentiometric surface of this karstic aquifer generally reflects land surface topography. Potentiometric surface highs often correspond to topographic highs, which are areas of surficial recharge to the Upper Floridan aquifer. Springs within topographic lows along with areas of more diffuse upward leakage are natural zones of discharge. Municipal, agricultural, and industrial withdrawals have lowered the potentiometric surface in some areas. The potentiometric surface ranged from 125 feet above sea level in Polk County to 32 feet below sea level in Nassau County. Water levels in May 1994 generally were 0 to 3 feet lower than those measured in May 1993. Water levels in May 1994 in northeast Florida generally were 0 to 3 feet higher than in September 1993, except in the lower St. Johns River basin, where water levels were 0 to 4 feet lower than in September 1993. In the rest of the mapped area, water levels in May 1994 generally were 0 to 4 feet lower than those measured in September 1993.
Increased Surface Wind Speeds Follow Diminishing Arctic Sea Ice
NASA Astrophysics Data System (ADS)
Mioduszewski, J.; Vavrus, S. J.; Wang, M.; Holland, M. M.; Landrum, L.
2017-12-01
Projections of Arctic sea ice through the end of the 21st century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic Basin, due to changes in atmospheric stability and/or baroclinicity. Prior research on future Arctic wind changes is limited and has focused mainly on the practical impacts on wave heights in certain seasons. Here we attempt to identify patterns and likely mechanisms responsible for surface wind changes in all seasons across the Arctic, particularly those associated with sea ice loss in the marginal ice zone. Sea level pressure, near-surface (10 m) and upper-air (850 hPa) wind speeds, and lower-level dynamic and thermodynamic variables from the Community Earth System Model Large Ensemble Project (CESM-LE) were analyzed for the periods 1971-2000 and 2071-2100 to facilitate comparison between a present-day and future climate. Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 90th percentile change even more, increasing in frequency by over 100%. The strengthened winds are closely linked to decreasing lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (locally over 20 ºC warmer in autumn and winter). A muted pattern of these future changes is simulated in CESM-LE historical runs from 1920-2005. The enhanced winds near the surface are mostly collocated with weaker winds above the boundary layer during autumn and winter, implying more vigorous vertical mixing and a drawdown of high-momentum air.The implications of stronger future winds include increased coastal hazards and the potential for a positive feedback with sea ice by generating higher winds and greater wave activity. Our findings suggest that increasing winds, along with retreating sea ice and thawing permafrost, represent another important contributor to the growing problem of Arctic coastal erosion.
NASA Astrophysics Data System (ADS)
Centurioni, Luca
2017-04-01
The Global Drifter Program is the principal component of the Global Surface Drifting Buoy Array, a branch of NOAA's Global Ocean Observing System and a scientific project of the Data Buoy Cooperation Panel (DBCP). The DBCP is an international program coordinating the use of autonomous data buoys to observe atmospheric and oceanographic conditions over ocean areas where few other measurements are taken. The Global Drifter Program maintains an array of over 1,250 Lagrangian drifters, reporting in near real-time and designed measure 15 m depth Lagrangian currents, sea surface temperature (SST) and sea level atmospheric pressure (SLP), among others, to fulfill the needs to observe the air-sea interface at temporal and spatial scales adequate to support short to medium-range weather forecasting, ocean state estimates and climate science. This overview talk will discuss the main achievements of the program, the main impacts for satellite SST calibration and validation, for numerical weather prediction, and it will review the main scientific findings based on the use of Lagrangian currents. Finally, we will present new developments in Lagrangian drifter technology, which include special drifters designed to measure sea surface salinity, wind and directional wave spectra. New opportunities for expanding the scope of the Global Drifter Program will be discussed.
Monthly mean forecast experiments with the GISS model
NASA Technical Reports Server (NTRS)
Spar, J.; Atlas, R. M.; Kuo, E.
1976-01-01
The GISS general circulation model was used to compute global monthly mean forecasts for January 1973, 1974, and 1975 from initial conditions on the first day of each month and constant sea surface temperatures. Forecasts were evaluated in terms of global and hemispheric energetics, zonally averaged meridional and vertical profiles, forecast error statistics, and monthly mean synoptic fields. Although it generated a realistic mean meridional structure, the model did not adequately reproduce the observed interannual variations in the large scale monthly mean energetics and zonally averaged circulation. The monthly mean sea level pressure field was not predicted satisfactorily, but annual changes in the Icelandic low were simulated. The impact of temporal sea surface temperature variations on the forecasts was investigated by comparing two parallel forecasts for January 1974, one using climatological ocean temperatures and the other observed daily ocean temperatures. The use of daily updated sea surface temperatures produced no discernible beneficial effect.
NASA Astrophysics Data System (ADS)
Skourup, Henriette; Farrell, Sinéad Louise; Hendricks, Stefan; Ricker, Robert; Armitage, Thomas W. K.; Ridout, Andy; Andersen, Ole Baltazar; Haas, Christian; Baker, Steven
2017-11-01
State-of-the-art Arctic Ocean mean sea surface (MSS) models and global geoid models (GGMs) are used to support sea ice freeboard estimation from satellite altimeters, as well as in oceanographic studies such as mapping sea level anomalies and mean dynamic ocean topography. However, errors in a given model in the high-frequency domain, primarily due to unresolved gravity features, can result in errors in the estimated along-track freeboard. These errors are exacerbated in areas with a sparse lead distribution in consolidated ice pack conditions. Additionally model errors can impact ocean geostrophic currents, derived from satellite altimeter data, while remaining biases in these models may impact longer-term, multisensor oceanographic time series of sea level change in the Arctic. This study focuses on an assessment of five state-of-the-art Arctic MSS models (UCL13/04 and DTU15/13/10) and a commonly used GGM (EGM2008). We describe errors due to unresolved gravity features, intersatellite biases, and remaining satellite orbit errors, and their impact on the derivation of sea ice freeboard. The latest MSS models, incorporating CryoSat-2 sea surface height measurements, show improved definition of gravity features, such as the Gakkel Ridge. The standard deviation between models ranges 0.03-0.25 m. The impact of remaining MSS/GGM errors on freeboard retrieval can reach several decimeters in parts of the Arctic. While the maximum observed freeboard difference found in the central Arctic was 0.59 m (UCL13 MSS minus EGM2008 GGM), the standard deviation in freeboard differences is 0.03-0.06 m.
Tidal analysis of surface currents in the Porsanger fjord in northern Norway
NASA Astrophysics Data System (ADS)
Stramska, Malgorzata; Jankowski, Andrzej; Cieszyńska, Agata
2016-04-01
In this presentation we describe surface currents in the Porsanger fjord (Porsangerfjorden) located in the European Arctic in the vicinity of the Barents Sea. Our analysis is based on data collected in the summer of 2014 using High Frequency radar system. Our interest in this fjord comes from the fact that this is a region of high climatic sensitivity. One of our long-term goals is to develop an improved understanding of the undergoing changes and interactions between this fjord and the large-scale atmospheric and oceanic conditions. In order to derive a better understanding of the ongoing changes one must first improve the knowledge about the physical processes that create the environment of the fjord. The present study is the first step in this direction. Our main objective in this presentation is to evaluate the importance of tidal forcing. Tides in the Porsanger fjord are substantial, with tidal range on the order of about 3 meters. Tidal analysis attributes to tides about 99% of variance in sea level time series recorded in Honningsvåg. The most important tidal component based on sea level data is the M2 component (amplitude of ~90 cm). The S2 and N2 components (amplitude of ~ 20 cm) also play a significant role in the semidiurnal sea level oscillations. The most important diurnal component is K1 with amplitude of about 8 cm. Tidal analysis lead us to the conclusion that the most important tidal component in observed surface currents is also the M2 component. The second most important component is the S2 component. Our results indicate that in contrast to sea level, only about 10 - 20% of variance in surface currents can be attributed to tidal currents. This means that about 80-90% of variance can be credited to wind-induced and geostrophic currents. This work was funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support for MS comes from the Institute of Oceanology (IO PAN).
D'Sa, Eurico J; Ko, Dong S
2008-07-15
Energetic meteorological events such as frontal passages and hurricanes often impact coastal regions in the northern Gulf of Mexico that influence geochemical processes in the region. Satellite remote sensing data such as winds from QuikSCAT, suspended particulate matter (SPM) concentrations derived from SeaWiFS and the outputs (sea level and surface ocean currents) of a nested navy coastal ocean model (NCOM) were combined to assess the effects of frontal passages between 23-28 March 2005 on the physical properties and the SPM characteristics in the northern Gulf of Mexico. Typical changes in wind speed and direction associated with frontal passages were observed in the latest 12.5 km wind product from QuikSCAT with easterly winds before the frontal passage undergoing systematic shifts in direction and speed and turning northerly, northwesterly during a weak and a strong front on 23 and 27 March, respectively. A quantitative comparison of model sea level results with tide gauge observations suggest better correlations near the delta than in the western part of the Gulf with elevated sea levels along the coast before the frontal passage and a large drop in sea level following the frontal passage on 27 March. Model results of surface currents suggested strong response to wind forcing with westward and onshore currents before the frontal passage reversing into eastward, southeastward direction over a six day period from 23 to 28 March 2005. Surface SPM distribution derived from SeaWiFS ocean color data for two clear days on 23 and 28 March 2005 indicated SPM plumes to be oriented with the current field with increasing concentrations in nearshore waters due to resuspension and discharge from the rivers and bays and its seaward transport following the frontal passage. The backscattering spectral slope γ, a parameter sensitive to particle size distribution also indicated lower γ values (larger particles) in nearshore waters that decreased offshore (smaller particles). The use of both satellite and model results revealed the strong interactions between physical processes and the surface particulate field in response to the frontal passage in a large riverdominated coastal margin.
Funk, Christopher C.; Hoell, Andrew; Shukla, Shraddhanand; Blade, Ileana; Liebmann, Brant; Roberts, Jason B.; Robertson, Franklin R.
2014-01-01
In southern Ethiopia, Eastern Kenya, and southern Somalia poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009 and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers support disaster risk reduction while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we explore the dominant modes of East African rainfall variability, links between these modes and sea surface temperatures, and a simple index-based monitoring-prediction system suitable for drought early warning.
2014-09-30
Right) Sea Surface Temperature (SST) MODIS/Aqua level 1 image from 26th August 2004 (courtesy of Ocean Color Data Processing Archive, NASA/Goddard...was extremely good. The ADCPs and lower level temperature and salinity sensors all returned complete records. All 3 moorings also carried upper... Pavlov , and M. Kulakov (1999), The Siberian Coastal Current: a wind- and buoyancy-forced Arctic coastal current, J. Geophys. Res., 104(C12), 29697
Sea-level responses to sediment transport over the last ice age cycle
NASA Astrophysics Data System (ADS)
Ferrier, K.; Mitrovica, J. X.
2013-12-01
Sea-level changes over the last ice age cycle were instrumental in steering Earth's topographic evolution. These sea-level variations were driven by changes in surface mass loads, including not only ice and ocean mass variations but also the transfer of rock from eroding mountains to sedimentary deposits. Here we use an extended numerical model of ice age sea level (Dalca et al., 2013) to explore how sediment erosion and deposition affected global sea-level variations over the last ice age cycle. The model takes histories of ice and sediment loads as inputs, and it computes gravitationally self-consistent sea level responses by accounting for the deformational, gravitational, and rotational perturbations in the Earth's viscoelastic form. In these model simulations, we use published estimates of erosion rates, sedimentation rates, and ice sheet variations to constrain sediment and ice loading since the Last Interglacial. We explore sea-level responses to several erosional and depositional scenarios, and in each we quantify the relative contributions of crustal deformation and gravitational perturbation to the computed sea-level change. We also present a case study to illustrate the effects that sediment transfer can have on sea level at the regional scale. In particular, we focus on the region surrounding the Indus River, where fluvial sediment fluxes are among the highest on Earth. Preliminary model results suggest that sediment fluxes from Asia to the ocean are large enough to produce a significant response in sea level along the northeastern coast of the Arabian Sea. Moreover, they suggest that modeled sea-level histories are sensitive to the timing and spatial distribution of sediment erosion and deposition. For instance, sediment deposition along the continental shelf - which may have been the primary site of Indus River sediment deposition during the Holocene - produces a different sea-level response than sediment deposition on the deep-sea Indus Fan, where most of the Indus sediment may have been deposited during the glacial period preceding the Holocene. These simulations highlight the role that massive continent-to-ocean sediment fluxes can play in driving sea-level patterns over thousands of years. References: Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III: Incorporating sediment redistribution. Geophys. J. Int., doi: 10.1093/gji/ggt089.
NASA Astrophysics Data System (ADS)
Ionita, M.; Grosfeld, K.; Scholz, P.; Lohmann, G.
2016-12-01
Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad information interest exists on sea ice, its coverage, variability and long term change. Knowledge on sea ice requires high quality data on ice extent, thickness and its dynamics. However, its predictability depends on various climate parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal, we developed a robust statistical model based on ocean heat content, sea surface temperature and atmospheric variables to calculate an estimate of the September minimum sea ice extent for every year. Although previous statistical attempts at monthly/seasonal forecasts of September sea ice minimum show a relatively reduced skill, here it is shown that more than 97% (r = 0.98) of the September sea ice extent can predicted three months in advance by using previous months conditions via a multiple linear regression model based on global sea surface temperature (SST), mean sea level pressure (SLP), air temperature at 850hPa (TT850), surface winds and sea ice extent persistence. The statistical model is based on the identification of regions with stable teleconnections between the predictors (climatological parameters) and the predictand (here sea ice extent). The results based on our statistical model contribute to the sea ice prediction network for the sea ice outlook report (https://www.arcus.org/sipn) and could provide a tool for identifying relevant regions and climate parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.
Response to "The Iris Hypothesis: A Negative or Positive Cloud Feedback?"
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Lindzen, Richard S.; Hou, Arthur Y.; Lau, William K. M. (Technical Monitor)
2001-01-01
Based on radiance measurements of Japan's Geostationary Meteorological Satellite, Lindzen et al. found that the high-level cloud cover averaged over the tropical western Pacific decreases with increasing sea surface temperature. They further found that the response of high-level clouds to the sea surface temperature had an effect of reducing the magnitude of climate change, which is referred as a negative climate feedback. Lin et al. reassessed the results found by Lindzen et al. by analyzing the radiation and clouds derived from the Tropical Rainfall Measuring Mission Clouds and the Earth's Radiant Energy System measurements. They found a weak positive feedback between high-level clouds and the surface temperature. We have found that the approach taken by Lin et al. to estimating the albedo and the outgoing longwave radiation is incorrect and that the inferred climate sensitivity is unreliable.
Tanaka, Kazuki; Takesue, Nobuyuki; Nishioka, Jun; Kondo, Yoshiko; Ooki, Atsushi; Kuma, Kenshi; Hirawake, Toru; Yamashita, Youhei
2016-01-01
The spatial distribution of dissolved organic carbon (DOC) concentrations and the optical properties of dissolved organic matter (DOM) determined by ultraviolet-visible absorbance and fluorescence spectroscopy were measured in surface waters of the southern Chukchi Sea, western Arctic Ocean, during the early summer of 2013. Neither the DOC concentration nor the optical parameters of the DOM correlated with salinity. Principal component analysis using the DOM optical parameters clearly separated the DOM sources. A significant linear relationship was evident between the DOC and the principal component score for specific water masses, indicating that a high DOC level was related to a terrigenous source, whereas a low DOC level was related to a marine source. Relationships between the DOC and the principal component scores of the surface waters of the southern Chukchi Sea implied that the major factor controlling the distribution of DOC concentrations was the mixing of plural water masses rather than local production and degradation. PMID:27658444
NASA Astrophysics Data System (ADS)
Patil, Nitin; Venkataraman, Chandra; Muduchuru, Kaushik; Ghosh, Subimal; Mondal, Arpita
2018-05-01
Recent studies point to combined effects of changes in regional land-use, anthropogenic aerosol forcing and sea surface temperature (SST) gradient on declining trends in the South Asian monsoon (SAM). This study attempted disentangling the effects produced by changes in SST gradient from those by aerosol levels in an atmospheric general circulation model. Two pairs of transient ensemble simulations were made, for a 40-year period from 1971 to 2010, with evolving versus climatological SSTs and with anthropogenic aerosol emissions fixed at 1971 versus 2010, in each case with evolution of the other forcing element, as well as GHGs. Evolving SST was linked to a widespread feedback on increased surface temperature, reduced land-sea thermal contrast and a weakened Hadley circulation, with weakening of cross-equatorial transport of moisture transport towards South Asia. Increases in anthropogenic aerosol levels (1971 versus 2010), led to an intensification of drying in the peninsular Indian region, through several regional pathways. Aerosol forcing induced north-south asymmetries in temperature and sea-level pressure response, and a cyclonic circulation in the Bay of Bengal, leading to an easterly flow, which opposes the monsoon flow, suppressing moisture transport over peninsular India. Further, aerosol induced decreases in convection, vertically integrated moisture flux convergence, evaporation flux and cloud fraction, in the peninsular region, were spatially congruent with reduced convective and stratiform rainfall. Overall, evolution of SST acted through a weakening of cross-equatorial moisture flow, while increases in aerosol levels acted through suppression of Arabian Sea moisture transport, as well as, of convection and vertical moisture transport, to influence the suppression of SAM rainfall.
Atmospheric responses to sensible and latent heating fluxes over the Gulf Stream
NASA Astrophysics Data System (ADS)
Minobe, S.; Ida, T.; Takatama, K.
2016-12-01
Air-sea interaction over mid-latitude oceanic fronts such as the Gulf Stream attracted large attention in the last decade. Observational analyses and modelling studies revealed that atmospheric responses over the Gulf Stream including surface wind convergence, enhanced precipitation and updraft penetrating to middle-to-upper troposphere roughly on the Gulf Stream current axis or on the warmer flank of sea-surface temperature (SST) front of the Gulf Stream . For these atmospheric responses, oceanic information should be transmitted to the atmosphere via turbulent heat fluxes, and thus the mechanisms for atmospheric responses can be understood better by examining latent and sensible air-sea heat fluxes more closely. Thus, the roles of the sensible and latent heat fluxes are examined by conducting a series of numerical experiments using the IPRC Regional Atmospheric Model over the Gulf Stream by applying SST smoothing for latent and sensible heating separately. The results indicate that the sensible and latent heat fluxes affect the atmosphere differently. Sensible heat flux intensifies surface wind convergence to produce sea-level pressure (SLP) anomaly. Latent heat flux supplies moistures and maintains enhanced precipitation. The different heat flux components cause upward wind velocity at different levels.
Air-sea interactions during strong winter extratropical storms
Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John
2014-01-01
A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.
Using airborne laser scanning profiles to validate marine geoid models
NASA Astrophysics Data System (ADS)
Julge, Kalev; Gruno, Anti; Ellmann, Artu; Liibusk, Aive; Oja, Tõnis
2014-05-01
Airborne laser scanning (ALS) is a remote sensing method which utilizes LiDAR (Light Detection And Ranging) technology. The datasets collected are important sources for large range of scientific and engineering applications. Mostly the ALS is used to measure terrain surfaces for compilation of Digital Elevation Models but it can also be used in other applications. This contribution focuses on usage of ALS system for measuring sea surface heights and validating gravimetric geoid models over marine areas. This is based on the ALS ability to register echoes of LiDAR pulse from the water surface. A case study was carried out to analyse the possibilities for validating marine geoid models by using ALS profiles. A test area at the southern shores of the Gulf of Finland was selected for regional geoid validation. ALS measurements were carried out by the Estonian Land Board in spring 2013 at different altitudes and using different scan rates. The one wavelength Leica ALS50-II laser scanner on board of a small aircraft was used to determine the sea level (with respect to the GRS80 reference ellipsoid), which follows roughly the equipotential surface of the Earth's gravity field. For the validation a high-resolution (1'x2') regional gravimetric GRAV-GEOID2011 model was used. This geoid model covers the entire area of Estonia and surrounding waters of the Baltic Sea. The fit between the geoid model and GNSS/levelling data within the Estonian dry land revealed RMS of residuals ±1… ±2 cm. Note that such fitting validation cannot proceed over marine areas. Therefore, an ALS observation-based methodology was developed to evaluate the GRAV-GEOID2011 quality over marine areas. The accuracy of acquired ALS dataset were analyzed, also an optimal width of nadir-corridor containing good quality ALS data was determined. Impact of ALS scan angle range and flight altitude to obtainable vertical accuracy were investigated as well. The quality of point cloud is analysed by cross validation between overlapped flight lines and the comparison with tide gauge stations readings. The comparisons revealed that the ALS based profiles of sea level heights agree reasonably with the regional geoid model (within accuracy of the ALS data and after applying corrections due to sea level variations). Thus ALS measurements are suitable for measuring sea surface heights and validating marine geoid models.
NASA Technical Reports Server (NTRS)
Kocin, P. J.; Uccellini, L. W.
1985-01-01
Surface and upper-level characteristics of selected meteorological fields are summarized. Two major types of sea level development are described and applied to the cases at hand, with a few storm systems showing characteristics of both types. Aspects such as rapid sea level deepening, coastal frontogenesis, cold air damming, low level jet formation, the development of an S-shaped isotherm pattern, diffluence downwind of a negatively tilted upper level trough axis, upper level confluence and an increase of geopotential heights at the base of the upper level trough characterized the pre-cyclogenetic and cyclogenetic periods of many of the storm systems. Large variability was also observed, especially with regard to the spatial dimensions of the surface and upper level systems, as well as variations in trough/ridge amplification and the evolution of upper level jet streak systems. The influence of transverse circulations associated with a confluent jet streak entrance region and the diffluent exit region of a jet streak/trough system on the production of snowfall is also discussed.
NASA Astrophysics Data System (ADS)
Amora Jofipasi, Chesilia; Miftahuddin; Hizir
2018-05-01
Weather is a phenomenon that occurs in certain areas that indicate a change in natural activity. Weather can be predicted using data in previous periods over a period. The purpose of this study is to get the best ETS model to predict the weather in Aceh Besar. The ETS model is a time series univariate forecasting method; its use focuses on trend and seasonal components. The data used are air temperature, dew point, sea level pressure, station pressure, visibility, wind speed, and sea surface temperature from January 2006 to December 2016. Based on AIC, AICc and BIC the smallest values obtained the conclusion that the ETS (M, N, A) is used to predict air temperature, and sea surface temperature, ETS (A, N, A) is used to predict dew point, sea level pressure and station pressure, ETS (A, A, N) is used to predict visibility, and ETS (A, N, N) is used to predict wind speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, P.R.; Baum, G.R.
1991-03-01
Early Eocene to late Oligocene marine sedimentary units in southwestern Alabama were sampled at closely spaced intervals to derive a precise time-stratigraphic framework and to determine the paleoecological and mineralogical responses to fluctuations in sea level. Paleontologic control consisted of planktonic, smaller and larger benthonic foraminifera, calcareous nannofossils, dinoflagellates, and megafossils. Paleomagnetic reversals were delineated in two boreholes which, when supplemented by strontium isotope dates and the biostratigraphic control, provided a robust in situ chronostratigraphy for the Gulf Coast lower Tertiary. Paleoecologic trends in regression and transgression can be clearly correlated across major regional facies changes. Using the chronostratigraphy developedmore » here, the second-, third-, and fourth-orders of Vail's global sea-level cycles can be recognized and demonstrate the influence of sea-level change on sedimentation. Stratigraphic systems tracts (SSTs) and bounding surfaces in outcrop were determined by lithologic variations and paleoecologic trends, and additionally by gamma logs in the cores. The lower sequence boundary occurs at a contact where an older, relatively fine-grained, deep-water, fossiliferous unit was abruptly succeeded by a coarse-grained, shallow-water, poorly fossiliferous unit. The transgressive surface occurs at the base of a fining- and deepening-upwards unit that was commonly glauconitic and very fossiliferous. Transgression culminated with a pulse of planktonic microfossils in a bed having reduced clastic sedimentation; on the log the surface of maximum starvation was marked by a gamma spike.« less
Uranium-isotope variations in groundwaters of the Floridan aquifer and Boulder Zone of south Florida
Cowart, J.B.; Kaufman, M.I.; Osmond, J.K.
1978-01-01
Water samples from four wells from the main Floridan aquifer (300-400 m below mean sea level) in southeast Florida exhibit 234U 233U activity ratios that are significantly lower than the secular equilibrium value of 1.00. Such anomalous values have been observed previously only in waters from sedimentary aquifers in the near-surface oxidizing environments. These four wells differ from six others, all producing from the same general horizon, in being located in cavernous highly transmissive zones. We hypothesize that the low activity ratios are indicative of a relic circulation pattern whereby water from the surface aquifer was channelled to lower levels when sea level was much lower. At a deeper cavernous level, known as the Boulder Zone (800-1,000 m below mean sea level), the U isotopes, along with other chemical constituents, show progressive changes with increasing distance from an inferred flow source in the Straits of Florida. This tends to support the hypothesized landward flow (though with a more northerly component) of cold seawater in the extensively transmissive Boulder Zone. ?? 1978.
Isolating the atmospheric circulation response to Arctic sea-ice loss in the coupled climate system
NASA Astrophysics Data System (ADS)
Kushner, Paul; Blackport, Russell
2017-04-01
In the coupled climate system, projected global warming drives extensive sea-ice loss, but sea-ice loss drives warming that amplifies and can be confounded with the global warming process. This makes it challenging to cleanly attribute the atmospheric circulation response to sea-ice loss within coupled earth-system model (ESM) simulations of greenhouse warming. In this study, many centuries of output from coupled ocean/atmosphere/land/sea-ice ESM simulations driven separately by sea-ice albedo reduction and by projected greenhouse-dominated radiative forcing are combined to cleanly isolate the hemispheric scale response of the circulation to sea-ice loss. To isolate the sea-ice loss signal, a pattern scaling approach is proposed in which the local multidecadal mean atmospheric response is assumed to be separately proportional to the total sea-ice loss and to the total low latitude ocean surface warming. The proposed approach estimates the response to Arctic sea-ice loss with low latitude ocean temperatures fixed and vice versa. The sea-ice response includes a high northern latitude easterly zonal wind response, an equatorward shift of the eddy driven jet, a weakening of the stratospheric polar vortex, an anticyclonic sea level pressure anomaly over coastal Eurasia, a cyclonic sea level pressure anomaly over the North Pacific, and increased wintertime precipitation over the west coast of North America. Many of these responses are opposed by the response to low-latitude surface warming with sea ice fixed. However, both sea-ice loss and low latitude surface warming act in concert to reduce storm track strength throughout the mid and high latitudes. The responses are similar in two related versions of the National Center for Atmospheric Research earth system models, apart from the stratospheric polar vortex response. Evidence is presented that internal variability can easily contaminate the estimates if not enough independent climate states are used to construct them. References: Blackport, R. and P. Kushner, 2017: Isolating the atmospheric circulation response to Arctic sea-ice loss in the coupled climate system. J. Climate, in press. Blackport, R. and P. Kushner, 2016: The Transient and Equilibrium Climate Response to Rapid Summertime Sea Ice Loss in CCSM4. J. Climate, 29, 401-417, doi: 10.1175/JCLI-D-15-0284.1.
Long-term climate change commitment and reversibility: An EMIC intercomparison
NASA Astrophysics Data System (ADS)
Zickfeld, K.; Eby, M.; Weaver, A. J.
2012-12-01
This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to: (i) quantify the climate change "commitment" of a range of radiative forcing trajectories, and (ii) explore the extent to which climate change is reversible if atmospheric CO2 is left to evolve freely or is artificially restored to pre-industrial levels. All commitment simulations follow the four Representative Concentration Pathways (RCPs) and their extensions to 2300. Most EMICs simulate significant surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The additional warming by the year 3000 is 0.0-0.6 °C for RCP4.5 and 0.0-1.2 °C for RCP8.5, and the additional sea level rise is 0.1-1.0 m for RCP4.5 and 0.4-2.6 m for RCP8.5. Elimination of anthropogenic CO2 emissions results in constant or slightly decreasing surface air temperature in all EMICs. Thermosteric sea level rise continues after elimination of anthropogenic CO2 emissions, with additional sea level rise between 2300 and 3000 of 0.0-0.5 m for RCP4.5 and 0.2-2.4 m for RCP8.5. The largest warming and sea level rise commitment are simulated for the case with constant year-2300 CO2 emissions. Restoration of atmospheric CO2 from RCP to pre-industrial levels over 100-1000 years does not result in the simultaneous return to pre-industrial climate conditions, as surface air temperature and sea level rise exhibit a substantial time lag relative to atmospheric CO2, and requires large artificial removal of CO2 from the atmosphere. Results of the climate change commitment and reversibility simulations differ widely among EMICs, both in the physical and biogeochemical response. Particularly large differences are identified in the response of the terrestrial carbon cycle to atmospheric CO2 and climate, highlighting the need for improved understanding and representation of land carbon cycle processes in Earth System models.
TOPEX/El Nino Watch - Satellite shows El Nino-related Sea Surface Height, Mar, 14, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Mar. 14, 1998 and sea surface height is an indicator of the heat content of the ocean. The image shows that the sea surface height along the central equatorial Pacific has returned to a near normal state. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition. Remnants of the El Nino warm water pool, shown in red and white, are situated to the north and south of the equator. These sea surface height measurements have provided scientists with a detailed view of how the 1997-98 El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through the spring.
Dynamics of sea level rise and coastal flooding on a changing landscape
NASA Astrophysics Data System (ADS)
Bilskie, M. V.; Hagen, S. C.; Medeiros, S. C.; Passeri, D. L.
2014-02-01
Standard approaches to determining the impacts of sea level rise (SLR) on storm surge flooding employ numerical models reflecting present conditions with modified sea states for a given SLR scenario. In this study, we advance this paradigm by adjusting the model framework so that it reflects not only a change in sea state but also variations to the landscape (morphologic changes and urbanization of coastal cities). We utilize a numerical model of the Mississippi and Alabama coast to simulate the response of hurricane storm surge to changes in sea level, land use/land cover, and land surface elevation for past (1960), present (2005), and future (2050) conditions. The results show that the storm surge response to SLR is dynamic and sensitive to changes in the landscape. We introduce a new modeling framework that includes modification of the landscape when producing storm surge models for future conditions.
Numerical study of electromagnetic scattering from one-dimensional nonlinear fractal sea surface
NASA Astrophysics Data System (ADS)
Xie, Tao; He, Chao; William, Perrie; Kuang, Hai-Lan; Zou, Guang-Hui; Chen, Wei
2010-02-01
In recent years, linear fractal sea surface models have been developed for the sea surface in order to establish an electromagnetic backscattering model. Unfortunately, the sea surface is always nonlinear, particularly at high sea states. We present a nonlinear fractal sea surface model and derive an electromagnetic backscattering model. Using this model, we numerically calculate the normalized radar cross section (NRCS) of a nonlinear sea surface. Comparing the averaged NRCS between linear and nonlinear fractal models, we show that the NRCS of a linear fractal sea surface underestimates the NRCS of the real sea surface, especially for sea states with high fractal dimensions, and for dominant ocean surface gravity waves that are either very short or extremely long.
Impact of uncertainty in surface forcing on the new SODA 3 global reanalysis
NASA Astrophysics Data System (ADS)
Carton, J.; Chepurin, G. A.; Chen, L.
2016-02-01
An updated version of the Simple Ocean Data Assimilation reanalysis (SODA 3)has been constructed based on GFDL MOM ocean and sea ice numerics, with improved resolution and other changes. A series of three 30+ year long global ocean reanalysis experiments (1980-2014) have carried out which differ only in the choice of specified daily surface heat, momentum, and freshwater forcing: MERRA2, ERA-Int, and ERA-20. The first two forcing data sets make extensive use of satellite observations while the third only uses surface observations. The differences in the resulting SODA reanalysis experiments allow us to explore a major source of error in ocean reanalyses, which is the uncertainty introduced by errors in the surface forcing. The modest differences among the experiments tend to be concentrated at higher latitude where the MERRA2-SODA has a somewhat cooler (1C), saltier (1psu) surface leading to lower (10cm) sea level. Cooler conditions affect the upper 300m heat content at high latitude (although MERRA2-SODA HC300 is higher in the subtropics). RMS differences are small except for surface salinity at high latitude (1psu). The implications for such issues thermosteric sea level, the overturning circulation, and the rise of global heat storage will be discussed.
NASA Technical Reports Server (NTRS)
Sayer, Andrew M.; Hsu, N. Christina; Hsiao, Ta-Chih; Pantina, Peter; Kuo, Ferret; Ou-Yang, Chang-Feng; Holben, Brent N.; Janjai, Serm; Chantara, Somporn; Wang, Sheng-Hsiang;
2016-01-01
The spring 2015 deployment of a suite of instrumentation at Doi Ang Khang (DAK) in northwestern Thailand enabled the characterization of air masses containing smoke aerosols from burning predominantly in Myanmar. Aerosol Robotic Network (AERONET) Sun photometer data were used to validate Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 "Deep Blue" aerosol optical depth (AOD) retrievals; MODIS Terra and Aqua provided results of similar quality, with correlation coefficients of 0.93-0.94 and similar agreement within expected uncertainties to global-average performance. Scattering and absorption measurements were used to compare surface and total column aerosol single scatter albedo (SSA); while the two were well-correlated, and showed consistent positive relationships with moisture (increasing SSA through the season as surface relative humidity and total columnar water vapor increased), in situ surface-level SSA was nevertheless significantly lower by 0.12-0.17. This could be related to vertical heterogeneity and/or instrumental issues. DAK is at approximately 1,500 meters above sea level in heterogeneous terrain, and the resulting strong diurnal variability in planetary boundary layer depth above the site leads to high temporal variability in both surface and column measurements, and acts as a controlling factor to the ratio between surface particulate matter (PM) levels and column AOD. In contrast, while some hygroscopic effects were observed relating to aerosol particle size and Angstrom exponent, relative humidity variations appear to be less important for this ratio here. As part of the Seven South-East Asian Studies (7-SEAS) project, the Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles and Interactions Experiment (BASELInE) was intended to probe physicochemical processes, interactions, and feedbacks related to biomass burning aerosols and clouds during the spring burning season (February-April) in southeast Asia (SEA).
Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters
NASA Astrophysics Data System (ADS)
Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.
2012-08-01
A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 10.6 mmol m-2 sea ice d-1 or to 3.3 ton km-2 ice floe week-1. This is markedly higher than the estimated primary production within the ice floe of 0.3-1.3 mmol m-2 sea ice d-1. Finally, the presence of ikaite in sea ice and the dissolution of the mineral during melting of the sea ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.
Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss
Gomez, Natalya; Pollard, David; Holland, David
2015-01-01
The stability of marine sectors of the Antarctic Ice Sheet (AIS) in a warming climate has been identified as the largest source of uncertainty in projections of future sea-level rise. Sea-level fall near the grounding line of a retreating marine ice sheet has a stabilizing influence on the ice sheets, and previous studies have established the importance of this feedback on ice age AIS evolution. Here we use a coupled ice sheet–sea-level model to investigate the impact of the feedback mechanism on future AIS retreat over centennial and millennial timescales for a range of emission scenarios. We show that the combination of bedrock uplift and sea-surface drop associated with ice-sheet retreat significantly reduces AIS mass loss relative to a simulation without these effects included. Sensitivity analyses show that the stabilization tends to be greatest for lower emission scenarios and Earth models characterized by a thin elastic lithosphere and low-viscosity upper mantle, as is the case for West Antarctica. PMID:26554381
NASA Astrophysics Data System (ADS)
Roussel, Nicolas; Frappart, Frédéric; Ramillien, Guillaume; Darrozes, José; Cornu, Gwendolyne; Koummarasy, Khanithalath
2016-04-01
GNSS-Reflectometry (GNSS-R) altimetry has demonstrated a strong potential for sea level monitoring. Interference Pattern Technique (IPT) based on the analysis of the Signal-to-Noise Ratio (SNR) estimated by a GNSS receiver, presents the main advantage of being applicable everywhere by using a single geodetic antenna and receiver, transforming them to real tide gauges. Such a technique has already been tested in various configurations of acquisition of surface-reflected GNSS signals with an accuracy of a few centimeters. Nevertheless, the classical SNR analysis method for estimating the reflecting surface-antenna height is limited by an approximation: the vertical velocity of the reflecting surface must be negligible. Authors present a significant improvement of the SNR technique to solve this problem and broaden the scope of SNR-based tide monitoring. The performances achieved on the different GNSS frequency band (L1, L2 and L5) are analyzed. The method is based on a Least-Mean Square Resolution Method (LSM), combining simultaneous measurements from different GNSS constellations (GPS, GLONASS), which permits to take the dynamic of the surface into account. It was validated in situ [1], with an antenna placed at 60 meters above the Atlantic Ocean surface with variations reaching ±3 meters, and amplitude rate of the semi-diurnal tide up to 0.5 mm/s. Over the three months of SNR records on L1 frequency band for sea level determination, we found linear correlations of 0.94 by comparing with a classical tide gauge record. Our SNR-based time series was also compared to a tide theoretical model and amplitudes and phases of the main astronomical periods (6-, 12- and 24-h) were perfectly well detected. Waves and swell are also likely to be detected. If the validity of our method is already well-established with L1 band [1], the aim of our current study is to analyze the results obtained with the other GNSS frequency band: L2 and L5. L1 band seems to provide the best sea level estimation, but the combination of SNR data from each frequency increases the number of observables and thus the quality of the final estimation. [1] N. Roussel, G. Ramillien, F. Frappart, J. Darrozes, A. Gay, R. Biancale, N. Striebig, V. Hanquiez, X. Bertin, D. Allain : "Sea level monitoring and sea state estimate using a single geodetic receiver", Remote Sensing of Environment 171 (2015) 261-277.
NASA Astrophysics Data System (ADS)
Coianiz, Lisa; Ben-Avraham, Zvi; Lazar, Michael
2017-04-01
During the late Quaternary a series of lakes occupied the Dead Sea tectonic basin. The sediments that accumulated within these lakes preserved the environmental history (tectonic and climatic) of the basin and its vicinity. Most of the information on these lakes was deduced from exposures along the marginal terraces of the modern Dead Sea, e.g. the exposures of the last glacial Lake Lisan and Holocene Dead Sea. The International Continental Drilling Program (ICDP) project conducted in the Dead Sea during 2010-2011 recovered several cores that were drilled in the deep depocenter of the lake (water depth of 300 m) and at the margin (depth of 3 m offshore Ein Gedi spa). New high resolution logging data combined with a detailed lithological description and published age models for the deep 5017-1-A borehole were used to establish a sequence stratigraphic framework for the Lakes Amora, Samra, Lisan and Zeelim strata. This study presents a stratigraphic timescale for reconstructing the last ca 225 ka. It provides a context within which the timing of key sequence surfaces identified in the distal part of the basin can be mapped on a regional and stratigraphic time frame. In addition, it permitted the examination of depositional system tracts and related driving mechanisms controlling their formation. The sequence stratigraphic model developed for the Northern Dead Sea Basin is based on the identification of sequence bounding surfaces including: sequence boundary (SB), transgressive surface (TS) and maximum flooding surface (MFS). They enabled the division of depositional sequences into a Lowstand systems tracts (LST), Transgressive systems tracts (TST) and Highstand systems tracts (HST), which can be interpreted in terms of relative lake level changes. The analysis presented here show that system tract stacking patterns defined for the distal 5017-1-A borehole can be correlated to the proximal part of the basin, and widely support the claim that changes in relative lake levels were synchronous across the northern Dead Sea, although differences do exist. These discrepancies can possibly be explained in part by the tectonic nature of the basin. Within the 5017-1-A section, the interpreted changes in depositional environments derived primarily from the gamma ray log patterns show a good correlation in time with sequence-chronostratigraphic framework, extracted lake level curves and paleohydrological records of other areas worldwide. Sequence stratigraphic analysis presented here allows for a detailed, high resolution examination of the sedimentary sequences in the Northern Dead Sea Basin together with an independent proxy that is an indirect indicator of changes in relative lake level.
SeaWiFS calibration and validation plan, volume 3
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Mcclain, Charles R.; Esaias, Wayne E.; Barnes, William; Guenther, Bruce; Endres, Daniel; Mitchell, B. Greg; Barnes, Robert
1992-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will be the first ocean-color satellite since the Nimbus-7 Coastal Zone Color Scanner (CZCS), which ceased operation in 1986. Unlike the CZCS, which was designed as a proof-of-concept experiment, SeaWiFS will provide routine global coverage every 2 days and is designed to provide estimates of photosynthetic concentrations of sufficient accuracy for use in quantitative studies of the ocean's primary productivity and biogeochemistry. A review of the CZCS mission is included that describes that data set's limitations and provides justification for a comprehensive SeaWiFS calibration and validation program. To accomplish the SeaWiFS scientific objectives, the sensor's calibration must be constantly monitored, and robust atmospheric corrections and bio-optical algorithms must be developed. The plan incorporates a multi-faceted approach to sensor calibration using a combination of vicarious (based on in situ observations) and onboard calibration techniques. Because of budget constraints and the limited availability of ship resources, the development of the operational algorithms (atmospheric and bio-optical) will rely heavily on collaborations with the Earth Observing System (EOS), the Moderate Resolution Imaging Spectrometer (MODIS) oceans team, and projects sponsored by other agencies, e.g., the U.S. Navy and the National Science Foundation (NSF). Other elements of the plan include the routine quality control of input ancillary data (e.g., surface wind, surface pressure, ozone concentration, etc.) used in the processing and verification of the level-0 (raw) data to level-1 (calibrated radiances), level-2 (derived products), and level-3 (gridded and averaged derived data) products.
NASA Astrophysics Data System (ADS)
Li, X.; Zhu, J.; Xie, S. P.
2017-12-01
After the launch of the TOPEX/Poseidon satellite since 1992, a series of regional sea level changes have been observed. The northwestern Pacific is among the most rapid sea-level-rise regions all over the world. The rising peak occurs around 40°N, with the value reaching 15cm in the past two decades. Moreover, when investigating the projection of global sea level changes using CMIP5 rcp simulations, we found that the northwestern Pacific remains one of the most rapid sea-level-rise regions in the 21st century. To investigate the physical dynamics of present and future sea level changes over the Pacific, we performed a series of numerical simulations with a hierarchy of climate models, including earth system model, ocean model, and atmospheric models, with different complexity. Simulation results indicate that this regional sea level change during the past two decades is mainly caused by the shift of the Kuroshio, which is largely driven by the surface wind anomaly associated with an intensified and northward shifted north Pacific sub-tropical high. Further analysis and simulations show that these changes of sub-tropical high can be primarily attributed to the regional SST forcing from the Pacific Decadal Oscillation, and the remote SST forcings from the tropical Atlantic and the Indian Ocean. In the rcp scenario, on the other hand, two processes are crucial. Firstly, the meridional temperature SST gradient drives a northward wind anomaly across the equator, raising the sea level all over the North Pacific. Secondly, the atmospheric circulation changes around the sub-tropical Pacific further increase the sea level of the North Western Pacific. The coastal region around the Northwest Pacific is the most densely populated region around the world, therefore more attention must be paid to the sea level changes over this region, as suggested by our study.
Cosmogenic nuclides application on French Mediterranean shore platform development
NASA Astrophysics Data System (ADS)
Giuliano, Jérémy; Lebourg, Thomas; Godard, Vincent; Dewez, Thomas; Braucher, Régis; Bourlès, Didier; Marçot, Nathalie
2014-05-01
Rocky shorelines are among the most common elements of the world's littoral zone, and the potential effects of rising sea level on the ever increasing populations require a better understanding of their dynamics. The sinuosity and heterogeneity of the shoreline morphology at large and intermediate wavelengths (1-100 km) results from their constant evolution under the combined influence of marine and continental forcings. This macro-scale organization is the expression of the action of elementary erosion processes acting at shorter wavelengths (<1 km) which lead to the development of shore platforms by landward retreat of cliff edges. Modern analytical techniques (laser-scaning, micro-erosion meters, aerial surveys) constitute appropriate methods to identify and quantify processes of cliff retreat to 1-100 yrs time-scales. But over this time frame, shore platform development appears imperceptible. Precise knowledge of long-term erosion rates are needed to understand rocky shore evolution, and develop quantitative modeling of platform development. Rocky coasts constitute a Quaternary sea level evolution archive that is partly preserved and progressively destroyed. One major challenges is to determine the degree to which coast morphologies are (i) contemporary, (ii) or ancient features inherited, (iii) or partly inherited from Quaternary interglacial stages. In order to fill the lack of long term coast morphodynamic data, we use cosmogenic nuclides (36Cl) to study abrasion surfaces carved in carbonates lithologies along the French Mediterranean coast, in a microtidal environment (Côte Bleue, West of Marseille). 36Cl concentration heritage influences strongly our interpretations in terms of age and denudation of the surfaces. We propose to constrain heritage in sampling oldest relic marine surfaces at 10m of altitude, and along recent cliff scarp. 36Cl concentrations show that the lowest platforms near sea level are contemporary and the highest ones (8-14 m above sea level) marine surfaces are associated to MIS 5.5. A total of 50 samples allows to investigate the variations through time in relative sea level, climate and tectonic activity. Key words: cosmogenic, shore platform, rocky coast, Mediterranean, erosion rate.
The global signature of post-1900 land ice wastage on vertical land motion
NASA Astrophysics Data System (ADS)
Riva, Riccardo; Frederikse, Thomas; King, Matt; Marzeion, Ben; van den Broeke, Michiel
2017-04-01
The amount of ice stored on land has strongly declined during the 20th century, and melt rates showed a significant acceleration over the last two decades. Land ice wastage is well known to be one of the main drivers of global mean sea-level rise, as widely discussed in the literature and reflected in the last assessment report of the IPCC. A less obvious effect of melting land ice is the response of the solid earth to mass redistribution on its surface, which, in the first approximation, results in land uplift where the load reduces (e.g., close to the meltwater sources) and land subsidence where the load increases (e.g., under the rising oceans). This effect is nowadays well known within the cryospheric and sea level communities. However, what is often not realized is that the solid earth response is a truly global effect: a localized mass change does cause a large deformation signal in its proximity, but also causes a change of the position of every other point on the Earth's surface. The theory of the Earth's elastic response to changing surface loads forms the basis of the 'sea-level equation', which allows sea-level fingerprints of continental mass change to be computed. In this paper, we provide the first dedicated analysis of global vertical land motion driven by land ice wastage. By means of established techniques to compute the solid earth elastic response to surface load changes and the most recent datasets of glacier and ice sheet mass change, we show that land ice loss currently leads to vertical deformation rates of several tenths of mm per year at mid-latitudes, especially over the Northern Hemisphere where most sources are located. In combination with the improved accuracy of space geodetic techniques (e.g., Global Navigation Satellite Systems), this means that the effect of ice melt is non-negligible over a large part of the continents. In particular, we show how deformation rates have been strongly varying through the last century, which implies that they should be properly modelled before interpreting and extrapolating recent observations of vertical land motion and sea level change.
Contamination of the cement raw material in a quarry site by seawater intrusion, Darica-Turkey
NASA Astrophysics Data System (ADS)
Camur, M. Zeki; Doyuran, Vedat
2008-02-01
The open pit mining nearby shoreline is planned to be extended into below sea level in order to use additional reserves of the cement raw material (marl). The raw material is currently contaminated by seawater intrusion below a depth of 20 m up to the distance of 90 m from shoreline. Seawater intrusion related contamination of the material used for the cement production was investigated by means of diffusion process for the future two below sea level mining scenarios covering 43 years of period. According to the results, chloride concentrations higher than the tolerable limit of a cement raw material would be present in the material about 10-25 cm inward from each discontinuity surface, controlling groundwater flow, located between 170 and 300 m landward from the shoreline at below sea level mining depths of 0-30 m. The estimations suggest that total amounts of dilution required for the contaminated raw material to reduce its concentration level to the tolerance limit with uncontaminated raw material are about 113- to 124-fold for scenario I (13 years of below sea level mining after 30 years of above sea level mining) and about 126- to 138-fold for scenario II (43 years of simultaneous above and below sea level minings).
NASA Astrophysics Data System (ADS)
Goncalves Neto, A.; Johnson, R. J.; Bates, N. R.
2016-02-01
Rising sea level is one of the main concerns for human life in a scenario with global atmosphere and ocean warming, which is of particular concern for oceanic islands. Bermuda, located in the center of the Sargasso Sea, provides an ideal location to investigate sea level rise since it has a long term tide gauge (1933-present) and is in close proximity to deep ocean time-series sites, namely, Hydrostation `S' (1954-present) and the Bermuda Atlantic Time-Series Study site (1988-present). In this study, we use the monthly CTD deep casts at BATS to compute the contribution of steric height (SH) to the local sea surface height (SSH) for the past 24 years. To determine the relative contribution from the various water masses we first define 8 layers (Surface Layer, Upper Thermocline, Subtropical Mode-Water, Lower Thermocline, Antarctic Intermediate Water, Labrador Sea Water, Iceland-Scotland Overflow Water, Denmark Strait Overflow Water) based on neutral density criteria for which SH is computed. Additionally, we calculate the thermosteric and halosteric components for each of the defined neutral density layers. Surprisingly, the results show that, despite a 3.3mm/yr sea level rise observed at the Bermuda tide gauge, the steric contribution to the SSH at BATS has decreased at a rate of -1.1mm/yr during the same period. The thermal component is found to account for the negative trend in the steric height (-4.4mm/yr), whereas the halosteric component (3.3mm/yr) partially compensates the thermal signal and can be explained by an overall cooling and freshening at the BATS site. Although the surface layer and the upper thermocline waters are warming, all the subtropical and polar water masses, which represent most of the local water column, are cooling and therefore drive the overall SH contribution to the local SSH. Hence, it suggests that the mass contribution to the local SSH plays an important role in the sea level rise, for which we investigate with GRACE data.
Coastal and rain-induced wind variability depicted by scatterometers
NASA Astrophysics Data System (ADS)
Portabella, M.; Lin, W.; Stoffelen, A.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera, J.; Vogelzang, J.
2012-04-01
A detailed knowledge of local wind variability near the shore is very important since it strongly affects the weather and microclimate in coastal regions. Since coastal areas are densely populated and most activity at sea occurs near the shore, sea-surface wind field information is important for a number of applications. In the vicinity of land sea-breeze, wave fetch, katabatic and current effects are more likely than in the open ocean, thus enhancing air-sea interaction. Also very relevant for air-sea interaction are the rain-induced phenomena, such as downbursts and convergence. Relatively cold and dry air is effectively transported to the ocean surface and surface winds are enhanced. In general, both coastal and rain-induced wind variability are poorly resolved by Numerical Weather Prediction (NWP) models. Satellite real aperture radars (i.e., scatterometers) are known to provide accurate mesoscale (25-50 km resolution) sea surface wind field information used in a wide variety of applications. Nowadays, there are two operating scatterometers in orbit, i.e., the C-band Advanced Scatterometer (ASCAT) onboard Metop-A and the Ku-band scatterometer (OSCAT) onboard Oceansat-2. The EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) delivers several ASCAT level 2 wind products with 25 km and 12.5 km Wind Vector Cell (WVC) spacing, including a pre-operational coastal wind product as well as an OSCAT level 2 wind product with 50 km spacing in development status. Rain is known to both attenuate and scatter the microwave signal. In addition, there is a "splashing" effect. The roughness of the sea surface is increased because of splashing due to rain drops. The so-called "rain contamination" is larger for Ku-band scatterometer systems than for C-band systems. Moreover, the associated downdrafts lead to variable wind speeds and directions, further complicating the wind retrieval. The C-band ASCAT high resolution wind processing is validated under rainy conditions, using collocations with the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) rain data, and the tropical moored buoy wind and precipitation data. It turns out that the effect of low and moderate rain appears mainly in increasing the wind variability near the surface and, unlike for Ku-band scatterometers, the rain rate itself does not appear clearly as a limiting factor in ASCAT wind quality. Moreover, the downburst patterns as observed by ASCAT are unique and have large implications for air-sea exchange. At the conference, the main progress in scatterometer wind data processing will be shown.
Rising sea level may cause decline of fringing coral reefs
Field, Michael E.; Ogston, Andrea S.; Storlazzi, Curt D.
2011-01-01
Coral reefs are major marine ecosystems and critical resources for marine diversity and fisheries. These ecosystems are widely recognized to be at risk from a number of stressors, and added to those in the past several decades is climate change due to anthropogenically driven increases in atmospheric concentrations of greenhouse gases. Most threatening to most coral reefs are elevated sea surface temperatures and increased ocean acidity [e.g., Kleypas et al., 1999; Hoegh-Guldberg et al., 2007], but sea level rise, another consequence of climate change, is also likely to increase sedimentary processes that potentially interfere with photosynthesis, feeding, recruitment, and other key physiological processes (Figure 1). Anderson et al. [2010] argue compellingly that potential hazardous impacts to coastlines from 21st-century sea level rise are greatly underestimated, particularly because of the rapid rate of rise. The Intergovernmental Panel on Climate Change estimates that sea level will rise in the coming century (1990–2090) by 2.2–4.4 millimeters per year, when projected with little contribution from melting ice [Meehl et al., 2007]. New studies indicate that rapid melting of land ice could substantially increase the rate of sea level rise [Grinsted et al., 2009; Milne et al., 2009].
NASA Astrophysics Data System (ADS)
Bijl, P.; Cramwinckel, M.; Frieling, J.; Peterse, F.
2016-12-01
The early Eocene `hothouse' climate experienced paratropical vegetation on high latitudes and high (>1100 ppmv) atmospheric CO2 concentrations. It is generally considered as analogous to the endmember climate state should we use up all available fossil fuels. However, we do not know exactly through which processes this long-term warm episode came to be nor do we understand what the initial climate state was at the onset of this long-term climate. Deep-sea warming towards early Eocene hothouse conditions started in the mid-Paleocene, ending a 2 Myr time interval of relatively cold deep ocean temperatures. Reconstructed pCO2 concentrations of the mid-Paleocene seem to have been close to those of present-day, although data is scarce. The mid-Paleocene is notoriously sparsely represented in shelf sedimentary records, as most records show a conspicuous hiatus between 58 and 60 Mys. This gives the suggestion of a major global low in sea level, which is inconsistent with estimates of global ocean spreading rates, which suggest a relatively high sea level on long time scales for the Cretaceous-early Paleogene. The cold deep-sea temperatures, the conspicuously low sea level and low atmospheric CO2 during the mid-Paleocene have stimulated suggestions of the presence of major ice sheets on the poles, yet the absence of any trace for continental ice, either direct ice-proximal evidence or from benthic foraminiferal oxygen isotope records, calls the presence of such ice sheets into question. I will present a number of high resolution sea surface temperature records (based mostly on organic geochemical biomarker proxies) which start to reveal a latitudinal temperature gradient for the mid-Paleocene. Reconstructions come from shelf sediments from Tasmania, Australia, Tanzania, Tropical Atlantic Ocean, New Jersey). With these new records, I put Paleogene climate evolution into context. I will further present a review of shelf sedimentary records across the mid-paleocene to assess the sea level variability in this time, to verifiy the suspected presence of continental ice, and speculate on possible alternative mechanisms for sea level change.
NASA Astrophysics Data System (ADS)
Bhonde, Uday; Desai, Bhawanisingh G.
2011-08-01
The Okha Shell Limestone Member of Chaya Formation is the coarse grained, shell rich deposit commonly recognized as the beach rocks. It has been age bracketed between Late Pleistocene and Holocene. Late Quaternary sea level changes have been studied with beach rocks along the Saurashtra coastal region. The present study has been carried out in the Okhamandal area of the Saurashtra peninsula especially on the Okha Shell Limestone Member as exposed at various locations along the coast from north to south. Temporal and spatial correlations of the observations have revealed three events in the Okha Shell Limestone Member of Chaya Formation that are correlated laterally. The events show depositional breaks represented by discontinuity surfaces, the taphofacies varieties and ichnological variations. The present study in the context of available geochrnological data of the region suggests a prominent depositional break representing low sea level stand (regression) during an Early Holocene during the deposition of Okha Shell Limestone Member.
Sea Surface Temperature Products and Research Associated with GHRSST
NASA Astrophysics Data System (ADS)
Kaiser-Weiss, Andrea K.; Minnett, Peter J.; Kaplan, Alexey; Wick, Gary A.; Castro, Sandra; Llewellyn-Jones, David; Merchant, Chris; LeBorgne, Pierre; Beggs, Helen; Donlon, Craig J.
2012-03-01
GHRSST serves its user community through the specification of operational Sea Surface Temperature (SST) products (Level 2, Level 3 and Level 4) based on international consensus. Providers of SST data from individual satellites create and deliver GHRSST-compliant near-real time products to a global GHRSST data assembly centre and a long-term stewardship facility. The GHRSST-compliant data include error estimates and supporting data for interpretation. Groups organised within GHRSST perform research on issues relevant to applying SST for air-sea exchange, for instance the Diurnal Variability Working Group (DVWG) analyses the evolution of the skin temperature. Other GHRSST groups concentrate on improving the SST estimate (Estimation and Retrievals Working Group EARWiG) and on improving the error characterization, (Satellite SST Validation Group, ST-VAL) and on improving the methods for SST analysis (Inter-Comparison Technical Advisory Group, IC-TAG). In this presentation we cover the data products and the scientific activities associated with GHRSST which might be relevant for investigating ocean-atmosphere interactions.
2013-09-30
Right) Sea Surface Temperature (SST) MODIS/Aqua level 1 image from 26th August 2004 (courtesy of Ocean Color Data Processing Archive, NASA/Goddard Space...of Arctic bathymetry aids scientists and map makers, Eos Trans., 81(9), 89, 93, 96. Weingartner, T. J., S. Danielson, Y. Sasaki, V. Pavlov , and M
NASA Astrophysics Data System (ADS)
Wu, Xiangding; Lough, J. M.
1987-03-01
Sea-level pressure variations over the North Pacific Ocean influence the surface climate conditions of China and western North America. Documentary records of precipitation in China data back to the mid-15th century, and a well-replicated network of tree-ring chronologies from western North America dates to the early 17th century. These proxy climate records are used separately and together to estimate sea-level pressure variations over the North Pacific back to 1600 A.D. The models are calibrated over the period 1899 to 1950 and verified over the independent period, 1951 to 1963. The best estimates, derived from predictors in China and western North America, calibrate 44.7 % of summer sea-level pressure variance. The study demonstrates the potential of combining different proxy data sources to derive estimates of past climate.
NASA Astrophysics Data System (ADS)
Choi, Hyun-Jung; Lee, Hwa Woon; Jeon, Won-Bae; Lee, Soon-Hwan
2012-01-01
This study evaluated an atmospheric and air quality model of the spatial variability in low-level coastal winds and ozone concentration, which are affected by sea surface temperature (SST) forcing with different thermal gradients. Several numerical experiments examined the effect of sea surface SST forcing on the coastal atmosphere and air quality. In this study, the RAMS-CAMx model was used to estimate the sensitivity to two different resolutions of SST forcing during the episode day as well as to simulate the low-level coastal winds and ozone concentration over a complex coastal area. The regional model reproduced the qualitative effect of SST forcing and thermal gradients on the coastal flow. The high-resolution SST derived from NGSST-O (New Generation Sea Surface Temperature Open Ocean) forcing to resolve the warm SST appeared to enhance the mean response of low-level winds to coastal regions. These wind variations have important implications for coastal air quality. A higher ozone concentration was forecasted when SST data with a high resolution was used with the appropriate limitation of temperature, regional wind circulation, vertical mixing height and nocturnal boundary layer (NBL) near coastal areas.
Extensive Liquid Meltwater Storage in Firn Within the Greenland Ice Sheet
NASA Technical Reports Server (NTRS)
Forster, Richard R.; Box, Jason E.; vandenBroeke, Michael R.; Miege, Clement; Burgess, Evan W.; vanAngelen, Jan H.; Lenaerts, Jan T. M.; Koenig, Lora S.; Paden, John; Lewis, Cameron;
2013-01-01
The accelerating loss of mass from the Greenland ice sheet is a major contribution to current sea level rise. Increased melt water runoff is responsible for half of Greenlands mass loss increase. Surface melt has been increasing in extent and intensity, setting a record for surface area melt and runoff in 2012. The mechanisms and timescales involved in allowing surface melt water to reach the ocean where it can contribute to sea level rise are poorly understood. The potential capacity to store this water in liquid or frozen form in the firn (multi-year snow layer) is significant, and could delay its sea-level contribution. Here we describe direct observation of water within a perennial firn aquifer persisting throughout the winter in the southern ice sheet,where snow accumulation and melt rates are high. This represents a previously unknown storagemode for water within the ice sheet. Ice cores, groundairborne radar and a regional climatemodel are used to estimate aquifer area (70 plue or minus 10 x 10(exp 3) square kilometers ) and water table depth (5-50 m). The perennial firn aquifer represents a new glacier facies to be considered 29 in future ice sheet mass 30 and energy budget calculations.
The impact of land and sea surface variations on the Delaware sea breeze at local scales
NASA Astrophysics Data System (ADS)
Hughes, Christopher P.
The summertime climate of coastal Delaware is greatly influenced by the intensity, frequency, and location of the local sea breeze circulation. Sea breeze induced changes in temperature, humidity, wind speed, and precipitation influence many aspects of Delaware's economy by affecting tourism, farming, air pollution density, energy usage, and the strength, and persistence of Delaware's wind resource. The sea breeze front can develop offshore or along the coastline and often creates a near surface thermal gradient in excess of 5°C. The purpose of this dissertation is to investigate the dynamics of the Delaware sea breeze with a focus on the immediate coastline using observed and modeled components, both at high resolutions (~200m). The Weather Research and Forecasting model (version 3.5) was employed over southern Delaware with 5 domains (4 levels of nesting), with resolutions ranging from 18km to 222m, for June 2013 to investigate the sensitivity of the sea breeze to land and sea surface variations. The land surface was modified in the model to improve the resolution, which led to the addition of land surface along the coastline and accounted for recent urban development. Nine-day composites of satellite sea surface temperatures were ingested into the model and an in-house SST forcing dataset was developed to account for spatial SST variation within the inland bays. Simulations, which include the modified land surface, introduce a distinct secondary atmospheric circulation across the coastline of Rehoboth Bay when synoptic offshore wind flow is weak. Model runs using high spatial- and temporal-resolution satellite sea surface temperatures over the ocean indicate that the sea breeze landfall time is sensitive to the SST when the circulation develops offshore. During the summer of 2013 a field campaign was conducted in the coastal locations of Rehoboth Beach, DE and Cape Henlopen, DE. At each location, a series of eleven small, autonomous thermo-sensors (i-buttons) were placed along 1-km transects oriented perpendicular to the coastline where each sensor recorded temperatures at five-minute intervals. This novel approach allows for detailed characterization of the sea breeze front development over the immediate coastline not seen in previous studies. These observations provide evidence of significant variability in frontal propagation (advancing, stalling, and retrograding) within the first kilometer of the coast. Results from this observational study indicate that the land surface has the largest effect on the frontal location when the synoptic winds have a strong offshore component, which forces the sea breeze front to move slowly through the region. When this happens, the frequency of occurrence and sea breeze frontal speed decreases consistently across the first 500 m of Rehoboth Beach, after which, the differences become insignificant. At Cape Henlopen the decrease in intensity across the transect is much less evident and the reduction in frequency does not occur until after the front is 500 m from the coast. Under these conditions at Rehoboth Beach, the near surface air behind the front warms due to the land surface which, along with the large surface friction component of the urbanized land surface, causes the front to slow as it traverses the region. Observation and modeling results suggest that the influence of variations in the land and sea surface on the sea breeze circulation is complex and highly dependent on the regional synoptic wind regime. This result inspired the development of a sea breeze prediction algorithm using a generalized linear regression model which, incorporated real-time synoptic conditions to forecast the likelihood of a sea breeze front passing through a coastal station. The forecast skill increases through the morning hours after sunrise. The inland synoptic wind direction is the most influential variable utilized by the algorithm. Such a model could be enhanced to forecast local temperature with coonfidence, which could be useful in an economic or energy usage model.
Past sea-level data from Lakse Bugt, Disko Island, West Greenland from ground-penetrating radar data
NASA Astrophysics Data System (ADS)
Souza, Priscila E.; Nielsen, Lars; Kroon, Aart; Clemmensen, Lars B.
2016-04-01
Beach-ridge deposits have been used as sea-level indicators in numerous studies from temperate coastal regions. However, their present surface morphology in artic regions may not accurately correspond to past sea-level, because subsequent surface erosion, solifluction processes and/or later sediment deposition may have altered the surface significantly. The internal structure of these beach ridges, however, is often well-preserved and thus constitutes an important key to reconstruction of past sea levels as seen elsewhere. In the present study, high-resolution reflection GPR data and high-precision topographic data were collected at Lakse Bugt (Disko Island, West Greenland) using a shielded 250 MHz antennae system and a RTK-Trimble R8 DGPS, respectively. Three transects were collected across a sequence of fossil, raised beach ridge deposits, and two transects were obtained across modern beach deposits at the shoreline of the mesotidal regime. Along all radar profiles we observed downlap reflection points, which we interpret to represent the boundary between sediments deposited on the beachface and sediments deposited in the upper shoreface regime. Both the upper shoreface and the beachface deposits exhibit reflection patterns dipping in the seaward direction. The beachface deposits show the strongest dip. At or just below the downlap points strong diffractions are often observed indicating the presence of a layer containing stones. These stones are large enough to generate significant signal scattering. At the present day beach a sharp transition defined by the presence of large stones is observed near the low tide water level: cobbles characterize the seaside, while the land side is characterized by sand and gravel. Therefore, it seems reasonable to conclude that downlap points observed in the GPR data serve as indicators of past low-tide levels (at the time of deposition). The downlap points show a consistent offset with respect to present surface topography indicating that the beach ridge deposits are well-preserved in our study area. Samples taken for OSL dating have not been dated yet. Instead, a first order age model for the investigated area is based on extrapolation of dating made by others at different sites on Disko Island. This extrapolated age model is used in a first attempt to reconstruct relative sea-level change at Lakse Bugt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, D.; Moshkovitz, S.; Kramer, C.
1992-02-01
Stratigraphic sections in south-central Alabama were studied to test palynological evidence of sea-level change across the Cretaceous-Tertiary boundary. New evidence from both calcareous nannofossils and dinoflagellate cysts places the regional disconformity in Alabama (Type 1 sequence boundary) virtually at the K-T boundary. This suggests that sea-level fall may have contributed to mass-extinction event. Dinoflagellate diversity varies between systems tract components of coastal onlap. This parameter is useful for interpreting sea-level change in this part of the section, because dinoflagellates did not participate in the mass extinction. The iridium spikes in the roadcut near Braggs are of earliest Danian age andmore » correlate in relative magnitude with the lower values reported from directly above the K-T boundary in the Gubbio stratotype section. Iridium was concentrated in marine flooding surfaces in episodes of higher productivity of algal organic matter at the time when the iridium-enriched ocean encroached on the shelf during the first Cenozoic episode of sea-level rise.« less
NASA Astrophysics Data System (ADS)
Cowling, S. A.
2016-11-01
The role that changes in sea level have on potential carbon-climate feedbacks are discussed as a potential contributing mechanism for terminating glacial periods. Focus will be on coastal wetlands because these systems can be substantially altered by changing sea level and ground water table depth (WTD); in addition to being important moderators of the exchange of nutrients and energy between terrestrial and marine ecosystems. A hypothesis is outlined that describes how the release of carbon from formerly anaerobic wetland soils and sediments can influence climate when sea levels begin to decline. As ground WTD deepens and eventually recedes from the surface, coastal wetland basins may become isolated from their belowground source of water. With their primary source of base flow removed, coastal wetlands likely dried up, promoting decomposition of the carbon compounds buried in their sediments. Depending on the timing of basin isolation and the timing of decomposition, glacial sea level lows could have triggered a relatively large positive carbon feedback on climate warming, just at the time when a new interglacial period is about to begin.
Sea-Level Rise and Subsidence: Implications for Flooding in New Orleans, Louisiana
Burkett, V.R.; Zilkoski, D.B.; Hart, D.A.
2003-01-01
Global sea-level rise is projected to accelerate two-to four-fold during the next century, increasing storm surge and shoreline retreat along low-lying, unconsolidated coastal margins. The Mississippi River Deltaic Plain in southeastern Louisiana is particularly vulnerable to erosion and inundation due to the rapid deterioration of coastal barriers combined with relatively high rates of land subsidence. Land-surface altitude data collected in the leveed areas of the New Orleans metropolitan region during five survey epochs between 1951 and 1995 indicated mean annual subsidence of 5 millimeters per year. Preliminary results of other studies detecting the regional movement of the north-central Gulf Coast indicate that the rate may be as much as 1 centimeter per year. Considering the rate of subsidence and the mid-range estimate of sea-level rise during the next 100 years (480 millimeters), the areas of New Orleans and vicinity that are presently 1.5 to 3 meters below mean sea level will likely be 2.5 to 4.0 meters or more below mean sea level by 2100.
NASA Astrophysics Data System (ADS)
Just, Janna; Hübscher, Christian; Betzler, Christian; Lüdmann, Thomas; Reicherter, Klaus
2011-02-01
High-resolution multi-channel seismic data from continental slopes with minor sediment input off southwest Mallorca Island, the Bay of Oran (Algeria) and the Alboran Ridge reveal evidence that the Messinian erosional surface is terraced at an almost constant depth interval between 320 and 380 m below present-day sea level. It is proposed that these several hundred- to 2,000-m-wide terraces were eroded contemporaneously and essentially at the same depth. Present-day differences in these depths result from subsidence or uplift in the individual realms. The terraces are thought to have evolved during one or multiple periods of sea-level stagnancy in the Western Mediterranean Basin. According to several published scenarios, a single or multiple periods of relative sea-level stillstand occurred during the Messinian desiccation event, generally known as the Messinian Salinity Crisis. Some authors suggest that the stagnancy started during the refilling phase of the Mediterranean basins. When the rising sea level reached the height of the Sicily Sill, the water spilled over this swell into the eastern basin. The stagnancy persisted until sea level in the eastern basin caught up with the western Mediterranean water level. Other authors assigned periods of sea-level stagnancy to drawdown phases, when inflowing waters from the Atlantic kept the western sea level constant at the depth of the Sicily Sill. Our findings corroborate all those Messinian sea-level reconstructions, forwarding that a single or multiple sea-level stagnancies at the depth of the Sicily Sill lasted long enough to significantly erode the upper slope. Our data also have implications for the ongoing debate of the palaeo-depth of the Sicily Sill. Since the Mallorcan plateau experienced the least vertical movement, the observed terrace depth of 380 m there is inferred to be close to the Messinian depth of this swell.
Plants mediate soil organic matter decomposition in response to sea level rise.
Mueller, Peter; Jensen, Kai; Megonigal, James Patrick
2016-01-01
Tidal marshes have a large capacity for producing and storing organic matter, making their role in the global carbon budget disproportionate to land area. Most of the organic matter stored in these systems is in soils where it contributes 2-5 times more to surface accretion than an equal mass of minerals. Soil organic matter (SOM) sequestration is the primary process by which tidal marshes become perched high in the tidal frame, decreasing their vulnerability to accelerated relative sea level rise (RSLR). Plant growth responses to RSLR are well understood and represented in century-scale forecast models of soil surface elevation change. We understand far less about the response of SOM decomposition to accelerated RSLR. Here we quantified the effects of flooding depth and duration on SOM decomposition by exposing planted and unplanted field-based mesocosms to experimentally manipulated relative sea level over two consecutive growing seasons. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated via δ(13) CO2 . Despite the dominant paradigm that decomposition rates are inversely related to flooding, SOM decomposition in the absence of plants was not sensitive to flooding depth and duration. The presence of plants had a dramatic effect on SOM decomposition, increasing SOM-derived CO2 flux by up to 267% and 125% (in 2012 and 2013, respectively) compared to unplanted controls in the two growing seasons. Furthermore, plant stimulation of SOM decomposition was strongly and positively related to plant biomass and in particular aboveground biomass. We conclude that SOM decomposition rates are not directly driven by relative sea level and its effect on oxygen diffusion through soil, but indirectly by plant responses to relative sea level. If this result applies more generally to tidal wetlands, it has important implications for models of SOM accumulation and surface elevation change in response to accelerated RSLR. © 2015 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Guest, DeNeice
2007-01-01
The Nation uses water-level data for a variety of practical purposes, including nautical charting, maritime navigation, hydrography, coastal engineering, and tsunami and storm surge warnings. Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years. NOAA s PORTS (Physical Oceanographic Real-Time System) DST (decision support tool), managed by the Center for Operational Oceanographic Products and Services, supports safe and cost-efficient navigation by providing ship masters and pilots with accurate real-time information required to avoid groundings and collisions. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s PORTS. NASA has a long heritage of collecting data for ocean research, including its current Terra and Aqua missions. Numerous other missions provide additional important information for coastal management issues, and data collection will continue in the coming decade with such missions as the OSTM (Ocean Surface Topography Mission). OSTM will provide data on sea-surface heights for determining ocean circulation, climate change, and sea-level rise. We suggest that NASA incorporate OSTM altimeter data (C- and Ku-band) into NOAA s PORTS DST in support of NASA s Coastal Management National Application with secondary support to the Disaster Management and Public Health National Applications.
Surface data - sea 2 Vertical soundings (other than satellite) 3 Vertical soundings (satellite) 4 Single level upper-air data (other than satellite) 5 Single level upper-air data (satellite) 6 Radar data 7 tables, complete replacement or update 12 Surface data (satellite) 13 Forecasts 14 Warnings 15-19
Mckee, Karen L.; Vervaeke, William
2018-01-01
To avoid submergence during sea-level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea-level rise may change. To compare how well mangroves and salt marshes accommodate sea-level rise, we conducted a manipulative field experiment in a subtropical plant community in the subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing both species. To examine the effect of disturbance on elevation dynamics, vegetation in half of the plots was subjected to freezing (mangrove) or wrack burial (salt marsh), which caused shoot mortality. Vertical soil development was monitored for 6 years with the surface elevation table-marker horizon system. Comparison of land movement with relative sea-level rise showed that this plant community was experiencing an elevation deficit (i.e., sea level was rising faster than the wetland was building vertically) and was relying on elevation capital (i.e., relative position in the tidal frame) to survive. Although Avicennia plots had more elevation capital, suggesting longer survival, than Spartina or mixed plots, vegetation type had no effect on rates of accretion, vertical movement in root and sub-root zones, or net elevation change. Thus, these salt marsh and mangrove assemblages were accreting sediment and building vertically at equivalent rates. Small-scale disturbance of the plant canopy also had no effect on elevation trajectories—contrary to work in peat-forming wetlands showing elevation responses to changes in plant productivity. The findings indicate that in this deltaic setting with strong physical influences controlling elevation (sediment accretion, subsidence), mangrove replacement of salt marsh, with or without disturbance, will not necessarily alter vulnerability to sea-level rise.
2017-12-08
Melt water ponded at surface in the accumulation zone of Columbia Glacier, Alaska, in July 2008. To learn about the contributions of glaciers to sea level rise, visit: www.nasa.gov/topics/earth/features/glacier-sea-rise.html Credit: W. Tad Pfeffer, University of Colorado at Boulder NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Uncertainty estimates of altimetric Global Mean Sea Level timeseries
NASA Astrophysics Data System (ADS)
Scharffenberg, Martin; Hemming, Michael; Stammer, Detlef
2016-04-01
An attempt is being presented concerned with providing uncertainty measures for global mean sea level time series. For this purpose sea surface height (SSH) fields, simulated by the high resolution STORM/NCEP model for the period 1993 - 2010, were subsampled along altimeter tracks and processed similar to techniques used by five working groups to estimate GMSL. Results suggest that the spatial and temporal resolution have a substantial impact on GMSL estimates. Major impacts can especially result from the interpolation technique or the treatment of SSH outliers and easily lead to artificial temporal variability in the resulting time series.
Coral communities as indicators of ecosystem-level impacts of the Deepwater Horizon spill
Fisher, Charles R.; Demopoulos, Amanda W.J.; Cordes, Erik E.; Baums, Iliana B.; White, Helen K.; Bourque, Jill R.
2014-01-01
The Macondo oil spill released massive quantities of oil and gas from a depth of 1500 meters. Although a buoyant plume carried released hydrocarbons to the sea surface, as much as half stayed in the water column and much of that in the deep sea. After the hydrocarbons reached the surface, weathering processes, burning, and the use of a dispersant caused hydrocarbon-rich marine snow to sink into the deep sea. As a result, this spill had a greater potential to affect deep-sea communities than had any previous spill. Here, we review the literature on impacts on deep-sea communities from the Macondo blowout and provide additional data on sediment hydrocarbon loads and the impacts on sediment infauna in areas with coral communities around the Macondo well. We review the literature on the genetic connectivity of deep-sea species in the Gulf of Mexico and discuss the potential for wider effects on deep Gulf coral communities.
43 CFR 3931.60 - Maps of underground and surface mine workings and in situ surface operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... workings and in situ surface operations. 3931.60 Section 3931.60 Public Lands: Interior Regulations....60 Maps of underground and surface mine workings and in situ surface operations. Maps of underground... reference to sea level. When required by the BLM, include vertical projections and cross sections in plan...
NASA Astrophysics Data System (ADS)
Sandstrom, R. M.; O'Leary, M.; Barham, M.; Cai, Y.; Jacome, A. P.; Raymo, M. E.
2015-12-01
Correcting fossil shorelines for vertical displacement subsequent to deposition is a vital consideration in estimating sea level and ice volume during past warm periods. Field observations of paleo-sea level indicators must be adjusted for local tectonic deformation, subsequent sediment loading, dynamic topography (DT), and glacial isostatic adjustment (GIA). Dynamic topography is often the most difficult of these corrections to determine, especially on million year timescales, but is essential when providing constraints on sea level and ice volume changes. GIA effects from high latitude ice sheets minimally impact northwestern Australia, making this region well suited for observing surface displacement due to mantle and tectonic processes. This study presents centimeter accuracy paleo-shoreline data from four distinct marine terraces in the Cape Range National Park, Australia, which document vertical displacement history along 100 kilometers of coastline. The mapped region has an anticlinal structure in the center that has been slowly uplifting the three older reef complexes over the Neogene, constraining the timing of deformation. These neotectonics are probably caused by reactivation of ancient fault zones normal to the principal horizontal compressive stress, resulting in the warping of overlaying units. The elevation data also suggests minimal vertical displacement since the last interglacial highstand. Well-preserved fossil coral were collected from each terrace and will be geochemically dated using Sr isotope and U-series dating methods. This dataset provides a better understanding of DT and neotectonic deformation in this region (useful for improving mantle viscosity models), and offers a means for improving past sea level reconstructions in northwestern Australia.
Contribution of the Greenland Ice Sheet to Sea-Level over the Next Millennium
NASA Astrophysics Data System (ADS)
Aschwanden, A.; Fahnestock, M. A.; Truffer, M.
2017-12-01
The contribution of Greenland's outlet glaciers to sea-level remains a wild card in global sea level predictions but progress in mapping ice thickness combined with high-resolution flow modeling now allow to revisit questions about the long-term stability of the ice sheet. Here we present the first outlet glacier resolving assessment of Greenland's contribution to sea-level over the next millennium. We find that increased ice discharge resulting from acceleration of outlet glaciers due to ice melt at tidewater glacier margins dominates mass loss during the 21st century. However, as the ice sheet surfaces lowers, surface melt increases and over the course of the millennium, the relative contribution of ice discharge to total mass loss decreases. By the end of the 22nd century, most outlet glaciers in the north-west will have retreated out of tide-water, while in south-east enhanced precipitation partially offsets high ice discharge. The outlet glaciers of the central west coast, most notably Jakobshavn Isbrae, play a key role in dynamic mass loss due to their submarine connection to the interior reservoir. We find that coast-ward advection of cold ice from the interior counteracts outlet glacier acceleration by increasing ice viscosity and thereby reducing vertical shearing. Under the RCP 8.5 scenario, the ice margin in north and north-east Greenland retreats far enough to reach the vast interior where the subglacial topography is below sea level. This leads to a dramatic retreat in the second part of the millenium, and Greenland could shrink to 10% of its current volume by the end of the millennium.
NASA Technical Reports Server (NTRS)
Brenner, Anita C.; Zwally, H. Jay; Bentley, Charles R.; Csatho, Bea M.; Harding, David J.; Hofton, Michelle A.; Minster, Jean-Bernard; Roberts, LeeAnne; Saba, Jack L.; Thomas, Robert H.;
2012-01-01
The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them.
NASA Technical Reports Server (NTRS)
Shum, C. K.
1999-01-01
The Earth's modem climate change has been characterized by interlinked changes in temperature, CO2, ice sheets and sea level. Global sea level change is a critical indicator for study of contemporary climate change. Sea level rise appears to have accelerated since the ice sheet retreats have stopped some 5000 years ago and it is estimated that the sea level rise has been approx. 15 cm over the last century. Contemporary radar altimeters represent the only technique capable of monitoring global sea level change with accuracy approaching 1 mm/yr and with a temporal scale of days and a spatial scale of 100 km or longer. This report highlights the major accomplishments of the TOPEX/POSEIDON (T/P) Extended Mission and Jason-1 science investigation. The primary objectives of the investigation include the calibration and improvement of T/P and Jason-1 altimeter data for global sea level change and coastal tide and circulation studies. The scientific objectives of the investigation include: (1) the calibration and improvement of T/P and Jason-1 data as a reference measurement system for the accurate cross-linking with other altimeter systems (Seasat, Geosat, ERS-1, ERS-2, GFO-1, and Envisat), (2) the improved determination and the associated uncertainties of the long-term (15-year) global mean sea level change using multiple altimeters, (3) the characterization of the sea level change by analyses of independent data, including tide gauges, sea surface temperature, and (4) the improvement coastal radar altimetry for studies including coastal ocean tide modeling and coastal circulation. Major accomplishments of the investigation include the development of techniques for low-cost radar altimeter absolute calibration (including the associated GPS-buoy technology), coastal ocean tide modeling, and the linking of multiple altimeter systems and the resulting determination of the 15-year (1985-1999) global mean sea level variations. The current rate of 15-year sea level rise observed by multiple satellite altimetry is +2.3 +/- 1.2 mm/yr, which is in general agreement with the analysis of sparsely distributed tide gauge measurements for the same data span, and represents the first such determination of sea level change in its kind.
NASA Astrophysics Data System (ADS)
Kim, K.; Roh, J.
2009-12-01
The first three principal modes of wintertime surface temperature variability in Seoul, Korea (126.59°E, 37.33°N) are extracted from the 1979-2008 observed records via cyclostationary EOF (CSEOF) analysis. Then, physically consistent patterns of several key physical variables over East Asia (97.5°-152.5°E×22.5°-72.5°N) are derived from the NCEP/NCAR reanalysis data in order to understand the physical and dynamical mechanisms of the derived CSEOF modes. The first mode represents the seasonal cycle, the principle physical mechanism of which is associated with the continent/ocean sea level pressure contrast. The second mode mainly describes overall wintertime warming or cooling. The third mode depicts subseasonal fluctuations of surface temperature. Sea level pressure anomalies to the west of Korea (eastern China) and those with an opposite sign to the east of Korea (Japan) are a major physical mechanism both for the second mode and the third mode. These sea level pressure anomalies with opposite signs alter the amount of warm air to the south of Korea, which, in turn, varies the surface temperature in Korea. The PC time series of the seasonal cycle is significantly correlated with the East Asian winter monsoon index and exhibits a conspicuous downward trend. The PC time series of the second mode exhibits a positive trend. These trends imply that the wintertime surface temperature in Korea has increased and the seasonal cycle has weakened gradually in the past 30 years; the sign of greenhouse warming is clear in both PC time series. The seasonal cycle has decreased since the impact of warming as reflected in the sea level pressure change is much stronger over the continent than over the ocean; greater sea level pressure decrease over the continent than over the ocean reduces the wintertime sea level pressure contrast between the continent and the ocean thereby weakening the seasonal cycle. The ~7-day oscillations, also called the three-cold-day/four-warm-day events, are clearly seen in the second and the third CSEOF modes. The ~7-day oscillations are a major component of high-frequency variability in much of the analysis domain and are a manifestation of Rossby waves. Rossby waves aloft result in the concerted variation of physical variables in the atmospheric column; the nature of this response is of nearly barotropic and is clearly felt at the surface. Due to the stronger mean zonal wind, the disturbances by Rossby waves propagate eastward at ~8-12 m/sec; the passing of Rossby waves with alternating signs produces the ~7-day temperature oscillations in Korea. Thus, it is the speed of eastward propagation of Rossby waves not the phase speed of Rossby waves that determines the period of oscillations.
10-Year Observations of Cloud and Surface Longwave Radiation at Ny-Ålesund, Svalbard
NASA Astrophysics Data System (ADS)
Yeo, H.; Kim, S. W.; Kim, B. M.; Kim, J. H.; Shiobara, M.; Choi, T. J.; Son, S. W.; Kim, M. H.; Jeong, J. H.; Kim, S. J.
2015-12-01
Arctic clouds play a key role in surface radiation budget and may influence sea ice and snow melting. In this study, 10-year (2004-2013) observations of cloud from Micro-Pulse Lidar (MPL) and surface longwave (LW) radiation at Ny-Ålesund, Svalbard are analyzed to investigate cloud radiative effect. The cloud fraction (CF) derived from MPL shows distinct monthly variation, having higher CF (0.90) in summer and lower CF (0.79) in winter. Downward longwave radiation (DLW) during wintertime (Nov., Dec., Jan., and Feb.) decreases as cloud base height (CBH) increases. The DLW for CBH < 1km (264.7±35.4 W m-2) is approximately 1.46 times larger than that for cloud-free (181.8±25.8 W m-2) conditions. The temperature difference (ΔT) and DLW difference (ΔDLW), which are calculated as the difference of monthly mean temperature and DLW between all-sky and cloud-free conditions, are positively correlated (R2 = 0.83). This implies that an increase of DLW may influence surface warming, which can result in snow and sea ice melting. However, dramatic changes in surface temperature, cloud and DLW are observed with a time scale of a few days. The averaged surface temperature on the presence of low-level clouds (CBH < 2km) and under cloud-free conditions are estimated to be -6.9±6.1°C and -14.5±5.7°C, respectively. The duration of low-level clouds, showing relatively high DLW and high surface temperature, is about 2.5 days. This suggests that DLW induced by low-level clouds may not have a critical effect on surface temperature rising and sea ice melting.
NASA Astrophysics Data System (ADS)
Vandemark, Douglas; Feng, Hui; Greenslade, Margaret E.
2016-05-01
Estimating the variation in the spectral transmission and scattering of optical and near-IR radiation near the sea surface under a range of conditions should be feasible using historical data collected off the coast of New Hampshire USA and along the coastline in the Gulf of Maine. Presented here are long-term offshore aerosol optical depth measurements collected using an AERONET sun photometer from 2007-2011 and near-surface wind and (3 m) horizontal visibility measurements collected using surface meteorological buoys from 2001-present. Future analysis of these data can address their correlation with near-surface meteorological and sea state conditions and to exploit an intensive but limited subset of historical aerosol particle measurements collected here both during a large research ship surveys (ICARTT) as well as with a dedicated aerosol measurement station in summer 2005. Refractive index variation and relevant altitude-dependent differences in meteorological scalars are also investigated using unique offshore long-term measurements at 3 and 32 m above sea level. Overall project results should provide new information for assessment against several existing models for aerosol extinction in marine environments.
Barnhardt, W.A.; Belknap, D.F.; Kelley, J.T.
1997-01-01
Accumulations of deltaic and littoral sediments on the inner continental shelf of Maine, Gulf of Maine, preserve a record of postglacial sea-level changes and shoreline migrations. The depositional response of coastal environments to a cycle of regression, lowstand, and transgression was examined with seismic-reflection profiles, vibracores, and radiocarbon dates collected from sediments at the mouths of the Kennebec and Penobscot Rivers. Sequence-stratigraphie analysis of these data reveals two distinctly different successions of late Quaternary deposits that represent end members in an evolutionary model for this glaciated coast. Seaward of the Kennebec River, coarsegrained shorelines with foreset beds occur at depths of 20-60 m and outline the lobate margin of the Kennebec River paleodelta, a complex, rock-framed accumulation of glaciomarine and deltaic sediments capped by estuarine and marine deposits. Sand derived from this system today supports large barrier spits and extensive salt marshes. In contrast, the mouth of the Penobscot River is characterized by thick deposits of glaciomarine mud overlain by marine mud of Holocene age, including gas-charged zones that have locally evolved into fields of pockmarks. The distinct lack of sand and gravel seaward of the Penobscot River and its abundance seaward of the Kennebec River probably reflect differences in sediment sources and the physiography of the two watersheds. The contrasting stratigraphie framework of these systems demonstrates the importance of understanding local and regional differences in sediment supply, sea-level change, bedrock structure, and exposure to waves and tides in order to model river-mouth deposition on glaciated coasts. Evolution of shelf deposits was largely controlled by relative sea level, which locally fell from a highstand (+60 to +70 m at 14 ka) contemporary with deglaciation to a lowstand (-55 m at 10.8 ka). The sea-level lowering was accompanied by fluvial incision of older deposits, producing a regressive, basal unconformity. Major rivers deposited abundant sediment over this surface. Sea level then rose at varying rates, extensively reworking formerly emergent parts of the shelf and producing a shoreface ravinement surface in areas exposed to waves. A tidal ravinement surface has developed in sheltered embayments where erosion is due mainly to tidal currents. Incised valleys in both settings preserve transgressive estuarine deposits that contain lagoonal bivalves and salt-marsh foraminifera at depths of 15-30 m. These deposits accumulated ca. 9.2-7.3 ka, locally a period of relatively slow sea-level rise.
NASA Astrophysics Data System (ADS)
Toscano, Marguerite A.
2016-06-01
Sample elevations corrected for tectonic uplift and assessed relative to local modeled sea levels provide a new perspective on paleoenvironmental history at Cobbler's Reef, Barbados. Previously, 14C-dated surface samples of fragmented Acropora palmata plotted above paleo sea level based on their present (uplifted) elevations, suggesting supratidal rubble deposited during a period of extreme storms (4500-3000 cal BP), precipitating reef demise. At several sites, however, A. palmata persisted, existing until ~370 cal BP. Uplift-corrected A. palmata sample elevations lie below the western Atlantic sea-level curve, and ~2 m below ICE-6G-modeled paleo sea level, under slow rates of sea-level rise, negating the possibility that Cobbler's Reef is a supratidal storm ridge. Most sites show limited age ranges from corals likely damaged/killed on the reef crest, not the mixed ages of rubble ridges, strongly suggesting the reef framework died off in stages over 6500 yr. Reef crest death assemblages invoke multiple paleohistoric causes, from ubiquitous hurricanes to anthropogenic impacts. Comparison of death assemblage ages to dated regional paleotempestological sequences, proxy-based paleotemperatures, recorded hurricanes, tsunamis, European settlement, deforestation, and resulting turbidity, reveals many possible factors inimical to the survival of A. palmata along Cobbler's Reef.
NASA Astrophysics Data System (ADS)
Wang, Li; Luo, Xianxiang; Fan, Yuqing
2018-03-01
In this paper, the monitoring results of four heavy metals Cu, Pb, Zn and Hg at 10 sampling stations in Xiaoqing river estuary and its adjacent sea of Laizhou Bay in November 2008 were analyzed and evaluated. The results showed that the concentrations of heavy metals in the steam channel and estuary are higher than those in the adjacent sea, and the metal concentrations were below the standard for I class of marine sediment quality, excepting the station 2 in the steam channel and station 5 in the estuary. The assessment of the single-factor pollution index showed that the overall pollution level of the study area was relatively low, but there was serious pollution phenomenon in individual station. The potential ecological risk of heavy metals in the surface sediments was generally at a low level, and Hg had the highest potential risk.
A heavy sea fog event over the Yellow Sea in March 2005: Analysis and numerical modeling
NASA Astrophysics Data System (ADS)
Gao, Shanhong; Lin, Hang; Shen, Biao; Fu, Gang
2007-02-01
In this paper, a heavy sea fog episode that occurred over the Yellow Sea on 9 March 2005 is investigated. The sea fog patch, with a spatial scale of several hundred kilometers at its mature stage, reduced visibility along the Shandong Peninsula coast to 100 m or much less at some sites. Satellite images, surface observations and soundings at islands and coasts, and analyses from the Japan Meteorology Agency (JMA) are used to describe and analyze this event. The analysis indicates that this sea fog can be categorized as advection cooling fog. The main features of this sea fog including fog area and its movement are reasonably reproduced by the Fifth-generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5). Model results suggest that the formation and evolution of this event can be outlined as: (1) southerly warm/moist advection of low-level air resulted in a strong sea-surface-based inversion with a thickness of about 600 m; (2) when the inversion moved from the warmer East Sea to the colder Yellow Sea, a thermal internal boundary layer (TIBL) gradually formed at the base of the inversion while the sea fog grew in response to cooling and moistening by turbulence mixing; (3) the sea fog developed as the TIBL moved northward and (4) strong northerly cold and dry wind destroyed the TIBL and dissipated the sea fog. The principal findings of this study are that sea fog forms in response to relatively persistent southerly warm/moist wind and a cold sea surface, and that turbulence mixing by wind shear is the primary mechanism for the cooling and moistening the marine layer. In addition, the study of sensitivity experiments indicates that deterministic numerical modeling offers a promising approach to the prediction of sea fog over the Yellow Sea but it may be more efficient to consider ensemble numerical modeling because of the extreme sensitivity to model input.
NASA Astrophysics Data System (ADS)
Hu, A.; Bates, S. C.
2017-12-01
Observations indicate that the global mean surface temperature is rising, so does the global mean sea level. Sea level rise (SLR) can impose significant impacts on island and coastal communities, especially when SLR is compounded with storm surges. Here, via analyzing results from two sets of ensemble simulations from the Community Earth System Model version 1, we investigate how the potential SLR benefits through mitigating the future emission scenarios from business as usual to a mild-mitigation over the 21st Century would be affected by internal climate variability. Results show that there is almost no SLR benefit in the near term due to the large SLR variability due to the internal ocean dynamics. However, toward the end of the 21st century, the SLR benefit can be as much as a 26±1% reduction of the global mean SLR due to seawater thermal expansion. Regionally, the benefits from this mitigation for both near and long terms are heterogeneous. They vary from just a 11±5% SLR reduction in Melbourne, Australia to a 35±6% reduction in London. The processes contributing to these regional differences are the coupling of the wind-driven ocean circulation with the decadal scale sea surface temperature mode in the Pacific and Southern Oceans, and the changes of the thermohaline circulation and the mid-latitude air-sea coupling in the Atlantic.
Late Holocene sea level variability and Atlantic Meridional Overturning Circulation
Cronin, Thomas M.; Farmer, Jesse R.; Marzen, R. E.; Thomas, E.; Varekamp, J.C.
2014-01-01
Pre-twentieth century sea level (SL) variability remains poorly understood due to limits of tide gauge records, low temporal resolution of tidal marsh records, and regional anomalies caused by dynamic ocean processes, notably multidecadal changes in Atlantic Meridional Overturning Circulation (AMOC). We examined SL and AMOC variability along the eastern United States over the last 2000 years, using a SL curve constructed from proxy sea surface temperature (SST) records from Chesapeake Bay, and twentieth century SL-sea surface temperature (SST) relations derived from tide gauges and instrumental SST. The SL curve shows multidecadal-scale variability (20–30 years) during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA), as well as the twentieth century. During these SL oscillations, short-term rates ranged from 2 to 4 mm yr−1, roughly similar to those of the last few decades. These oscillations likely represent internal modes of climate variability related to AMOC variability and originating at high latitudes, although the exact mechanisms remain unclear. Results imply that dynamic ocean changes, in addition to thermosteric, glacio-eustatic, or glacio-isostatic processes are an inherent part of SL variability in coastal regions, even during millennial-scale climate oscillations such as the MCA and LIA and should be factored into efforts that use tide gauges and tidal marsh sediments to understand global sea level rise.
NASA Technical Reports Server (NTRS)
Beckley, B. D.; Zelensky, N. P.; Holmes, S. A.; Lemoine, F. G.; Ray, R. D.; Mitchum, G. T.; Dedai, S. D.; Brown, S. T.
2010-01-01
The Jason-2 (OSTM) follow-on mission to Jason-I provides for the continuation of global and regional mean sea level estimates along the ground-track of the initial phase of the TOPEX/Poseidon mission. During the first several months, Jason-I and Jason-2 flew in formation separated by only 55 seconds, enabling the isolation of intermission instrument biases through direct collinear differencing of near simultaneous observations. The Jason-2 Ku-band range bias with respect to Jason-I is estimated to be -84 +/- 9 mm, based on the orbit altitudes provided on the Geophysical Data Records. Modest improved agreement is achieved with the GSFC replacement orbits, which further enables the isolation of subtle 1 cm) instrument-dependent range correction biases. Inter-mission bias estimates are confirmed with an independent assessment from comparisons to a 64-station tide-gauge network, also providing an estimate of the stability of the 17-year time series to be less than 0.1 mm/yr +/- 0.4 mm/yr. The global mean sea level derived from the multi-mission altimeter sea-surface height record from January 1993 through September 2009 is 3.3 +/- 0.4 mm/yr. Recent trends over the period from 2004 through 2008 are smaller and estimated to be 2.0 +/- 0.4 mm/yr.
NASA Astrophysics Data System (ADS)
Birol, Florence; Delebecque, Caroline
2014-01-01
Satellite altimetry, measuring sea surface heights (SSHs), has unique capabilities to provide information about the ocean dynamics. In this paper, the skill of the original full rate (10/20 Hz) measurements, relative to conventional 1-Hz data, is evaluated in the context of coastal studies in the Northwestern Mediterranean Sea. The performance and the question of the measurement noise are quantified through a comparison with different tide gauge sea level time series. By applying a specific processing, closer than 30 km to the land, the number of valid data is higher for the 10/20-Hz than for the 1-Hz observations: + 4.5% for T/P, + 10.3 for Jason-1 and + 13% for Jason-2. By filtering higher sampling rate measurements (using a 30-km cut-off low-pass Lanczos filter), we can obtain the same level of sea level accuracy as we would using the classical 1-Hz altimeter data. The gain in near-shore data results in a better observation of the Liguro-Provençal-Catalan Current. The seasonal evolution of the currents derived from 20-Hz data is globally consistent with patterns derived from the corresponding 1-Hz observations. But the use of higher frequency altimeter measurements allows us to observe the variability of the regional flow closer to the coast (~ 10-15 km from land).
NASA Astrophysics Data System (ADS)
Conrad, Clinton P.; Steinberger, Bernhard; Torsvik, Trond H.
2017-04-01
Earth's surface is deflected vertically by stresses associated with convective mantle flow. Although dynamic topography is important for both sea level change and continental uplift and subsidence, the time history of dynamic topography is difficult to constrain because the time-dependence of mantle flow is not known. However, the motions of the tectonic plates contain information about the mantle flow patterns that drive them. In particular, we show that the longest wavelengths of mantle flow are tightly linked to the dipole and quadrupole moments (harmonic degrees 1 and 2) of plate motions. This coupling allows us to infer patterns of long-wavelength mantle flow, and the associated dynamic topography, from tectonic plate motions. After calibrating this linkage using models of present-day mantle flow, we can use reconstructions of global plate motions to infer the basic patterns of long-wavelength dynamic topography back to 250 Ma. We find relatively stable dynamic uplift persists above large-scale mantle upwelling beneath Africa and the Central Pacific. Regions of major downwelling encircled the periphery of these stable upwellings, alternating between primarily east-west and north-south orientations. The amplitude of long-wavelength dynamic topography was likely largest in the Cretaceous, when global plate motions were fastest. Continental motions over this time-evolving dynamic topography predict patterns of continental uplift and subsidence that are confirmed by geological observations of continental surfaces relative to sea level. Net uplift or subsidence of the global seafloor can also induce eustatic sea level changes. We infer that dispersal of the Pangean supercontinent away from stable upwelling beneath Africa may have exposed the seafloor to an increasingly larger area of growing positive dynamic topography during the Mesozoic. This net uplift of the seafloor caused 60 m of sea level rise during the Triassic and Jurassic, ceasing in the Cenozoic once continents fully override degree-2 downwellings. These sea level changes represent a significant component of the estimated 200 m of sea level variations during the Phanerozoic, which exhibit a similar temporal pattern.
The influence of tide on sea surface temperature in the marginal sea of northwest Pacific Ocean
NASA Astrophysics Data System (ADS)
Huang, Shih-Jen; Tsai, Yun-Chan; Ho, Chung-Ru; Lo, Yao-Tsai; Kuo, Nan-Jung
2017-10-01
Tide gauge data provided by the University of Hawaii Sea Level Center and daily sea surface temperature (SST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) product are used in this study to analyze the influence of tide on the SST in the seas of Northwestern Pacific. In the marginal region, the climatology SST is lower in the northwestern area than that in the southeastern area. In the coastal region, the SST at spring tide is higher than that at neap tide in winter, but it is lower in other seasons. In the adjacent waters of East China Sea and Yellow Sea, the SST at spring tide is higher than that at neap tide in winter and summer but it is lower in spring and autumn. In the open ocean region, the SST at spring tide is higher than that at neap tide in winter, but it is lower in other seasons. In conclusion, not only the river discharge and topography, but also tides could influence the SST variations, especially in the open ocean region.
Ogston, A.S.; Field, M.E.
2010-01-01
Accelerating sea-level rise associated with global climate change will affect sedimentary processes on coral reefs and other shoreline environments by increasing energy and sediment resuspension. On reefs, sedimentation is known to increase coral stress and bleaching as particles that settle on coral surfaces interfere with photosynthesis and feeding, and turbidity induced by suspended sediment reduces incident light levels. Using relationships developed from observations of wave orbital velocity, water-surface elevation, and suspended-sediment concentration on a fringing reef flat of Molokai, Hawaii, predictions of the average daily maximum in suspended-sediment concentration increase from ~11 mg/l to ~20 mg/l with 20 cm sea-level rise. The duration of time concentrations exceeds 10 mg/l increases from 9 to 37. An evaluation of the reduction of wave energy flux through breaking and frictional dissipation across the reef flat shows an increase of ~80 relative to the present will potentially reach the shoreline as sea level increases by 20 cm. Where the shoreline exists on low, flat terrain, the increased energy could cause significant erosion of the shoreline. Considering the sediment budget, the sediment flux is predicted to increase and removal of fine-grained sediment may be expedited on some fringing reefs, and sediment in storage on the inner reef could ultimately be reduced. However, increased shoreline erosion may add sediment and offset removal from the reef flat. The shifts in sediment availability and transport that will occur as result of a modest increase in sea level have wide application to fringing coral reefs elsewhere, as well as other shoreline environments. ?? 2010 the Coastal Education & Research Foundation (CERF).
Assessing Sea Level Rise Impacts on the Surficial Aquifer in the Kennedy Space Center Region
NASA Astrophysics Data System (ADS)
Xiao, H.; Wang, D.; Hagen, S. C.; Medeiros, S. C.; Warnock, A. M.; Hall, C. R.
2014-12-01
Global sea level rise in the past century due to climate change has been seen at an average rate of approximately 1.7-2.2 mm per year, with an increasing rate over the next century. The increasing SLR rate poses a severe threat to the low-lying land surface and the shallow groundwater system in the Kennedy Space Center in Florida, resulting in saltwater intrusion and groundwater induced flooding. A three-dimensional groundwater flow and salinity transport model is implemented to investigate and evaluate the extent of floods due to rising water table as well as saltwater intrusion. The SEAWAT model is chosen to solve the variable-density groundwater flow and salinity transport governing equations and simulate the regional-scale spatial and temporal evolution of groundwater level and chloride concentration. The horizontal resolution of the model is 50 m, and the vertical domain includes both the Surficial Aquifer and the Floridan Aquifer. The numerical model is calibrated based on the observed hydraulic head and chloride concentration. The potential impacts of sea level rise on saltwater intrusion and groundwater induced flooding are assessed under various sea level rise scenarios. Based on the simulation results, the potential landward movement of saltwater and freshwater fringe is projected. The existing water supply wells are examined overlaid with the projected salinity distribution map. The projected Surficial Aquifer water tables are overlaid with data of high resolution land surface elevation, land use and land cover, and infrastructure to assess the potential impacts of sea level rise. This study provides useful tools for decision making on ecosystem management, water supply planning, and facility management.
Upper Ocean Measurements from Profiling Floats in the Arabian Sea During NASCar
2015-09-30
top-level goals] OBJECTIVES The work proposed here is designed to examine the seasonal evolution of the upper ocean in the northern Arabian...Sea over several seasonal cycles, with the specific objectives of (1) Documenting the spatial variations in the seasonal cycle of the upper ocean...circulation of the Arabian Sea and the seasonal and spatial evolution of the surface mixed layer, and would be used in conjunction with HYCOM model
Water input requirements of the rapidly shrinking Dead Sea
NASA Astrophysics Data System (ADS)
Abu Ghazleh, Shahrazad; Hartmann, Jens; Jansen, Nils; Kempe, Stephan
2009-05-01
The deepest point on Earth, the Dead Sea level, has been dropping alarmingly since 1978 by 0.7 m/a on average due to the accelerating water consumption in the Jordan catchment and stood in 2008 at 420 m below sea level. In this study, a terrain model of the surface area and water volume of the Dead Sea was developed from the Shuttle Radar Topography Mission data using ArcGIS. The model shows that the lake shrinks on average by 4 km2/a in area and by 0.47 km3/a in volume, amounting to a cumulative loss of 14 km3 in the last 30 years. The receding level leaves almost annually erosional terraces, recorded here for the first time by Differential Global Positioning System field surveys. The terrace altitudes were correlated among the different profiles and dated to specific years of the lake level regression, illustrating the tight correlation between the morphology of the terrace sequence and the receding lake level. Our volume-level model described here and previous work on groundwater inflow suggest that the projected Dead Sea-Red Sea channel or the Mediterranean-Dead Sea channel must have a carrying capacity of >0.9 km3/a in order to slowly re-fill the lake to its former level and to create a sustainable system of electricity generation and freshwater production by desalinization. Moreover, such a channel will maintain tourism and potash industry on both sides of the Dead Sea and reduce the natural hazard caused by the recession.
1990-02-01
in the sample by inserting a probe thermometer into a transverse hole that was prepared with a hand drill . Then a portion of the ice was cut into...WeddellSea duringJuly-September 1986. holes drilled had the ice surface at or below sea level The symbols show positions where ice cores were at the...flux argument cannot be Table 3. Frequency of drilled statistically confirmed from the observations. holes with negative ice free- board. Measurement
Soil organic matter decomposition follows plant productivity response to sea-level rise
NASA Astrophysics Data System (ADS)
Mueller, Peter; Jensen, Kai; Megonigal, James Patrick
2015-04-01
The accumulation of soil organic matter (SOM) is an important mechanism for many tidal wetlands to keep pace with sea-level rise. SOM accumulation is governed by the rates of production and decomposition of organic matter. While plant productivity responses to sea-level rise are well understood, far less is known about the response of SOM decomposition to accelerated sea-level rise. Here we quantified the effects of sea-level rise on SOM decomposition by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian Global Change Research Wetland, a micro tidal brackish marsh in Maryland, US. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated using a stable carbon isotope approach. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to varying flood duration over a 35 cm range in surface elevation in unplanted mesocoms. In the presence of plants, decomposition rates were strongly and positively related to aboveground biomass (p≤0.01, R2≥0.59). We conclude that rates of soil carbon loss through decomposition are driven by plant responses to sea level in this intensively studied tidal marsh. If our result applies more generally to tidal wetlands, it has important implications for modeling carbon sequestration and marsh accretion in response to accelerated sea-level rise.
NASA Astrophysics Data System (ADS)
Radenac, Marie-Hélène; Léger, Fabien; Messié, Monique; Dutrieux, Pierre; Menkes, Christophe; Eldin, Gérard
2016-04-01
Satellite observations of wind, sea level and derived currents, sea surface temperature (SST), and chlorophyll are used to expand our understanding of the physical and biological variability of the ocean surface north of New Guinea. Based on scarce cruise and mooring data, previous studies differentiated a trade wind situation (austral winter) when the New Guinea Coastal Current (NGCC) flows northwestward and a northwest monsoon situation (austral summer) when a coastal upwelling develops and the NGCC reverses. This circulation pattern is confirmed by satellite observations, except in Vitiaz Strait where the surface northwestward flow persists. We find that intraseasonal and seasonal time scale variations explain most of the variance north of New Guinea. SST and chlorophyll variabilities are mainly driven by two processes: penetration of Solomon Sea waters and coastal upwelling. In the trade wind situation, the NGCC transports cold Solomon Sea waters through Vitiaz Strait in a narrow vein hugging the coast. Coastal upwelling is generated in westerly wind situations (westerly wind event, northwest monsoon). Highly productive coastal waters are advected toward the equator and, during some westerly wind events, toward the eastern part of the warm pool. During El Niño, coastal upwelling events and northward penetration of Solomon Sea waters combine to influence SST and chlorophyll anomalies.
NASA Astrophysics Data System (ADS)
Virtasalo, Joonas J.; Endler, Michael; Moros, Matthias; Jokinen, Sami A.; Hämäläinen, Jyrki; Kotilainen, Aarno T.
2016-12-01
Many modern epicontinental seas were dry land before their marine flooding by the mid-Holocene glacioeustatic sea-level rise, whereas the Baltic Sea Basin was covered by a huge postglacial lake. This change from a postglacial lake to the present-day semi-enclosed brackish-water sea is studied here in sediment cores and acoustic profiles from the Baltic Sea major sub-basins, based on novel datasets combined with information extracted from earlier publications. In shallow areas (<50m water depth), the base of the brackish-water mud is erosional and covered by a patchy, thin, transgressive silt-sand sheet resulting from decreased sediment supply, winnowing and the redistribution of material from local coarse-grained deposits during transgression. This erosional marine flooding surface becomes sharp and possibly erosional in deep areas (>50m water depth), where it may be locally less clearly expressed due to reworking and bioturbation. Both in the shallow and deep areas, the brackish-water mud is strongly enriched in organic matter compared to underlying sediments. Bioturbation type changes at the flooding surface in response to the increased sedimentary organic content, but no firm-ground ichnofacies were developed because of low erosion. It is concluded that the base of the brackish-water mud is a robust allostratigraphic bounding surface that is identifiable by the lithologic examination of cores over the Baltic Sea. The surface is a distinct reflector in seismic-acoustic profiles, which facilitates mapping and basin-wide stratigraphic subdivision. Detailed geochronologic studies are required to confirm if sediments immediately overlying the erosional flooding surface in shallow areas are younger than the basal part of the brackish-water mud in deep areas that is predicted to be time-equivalent to the erosion.
Understanding the science of climate change: Talking points - Impacts to the Gulf Coast
Rachel Loehman; Greer Anderson
2010-01-01
Predicted climate changes in the Gulf Coast bioregion include increased air and sea surface temperatures, altered fire regimes and rainfall patterns, increased frequency of extreme weather events, rising sea levels, increased hurricane intensity, and potential destruction of coastal wetlands and the species that reside within them. Prolonged drought conditions, storm...
NASA Astrophysics Data System (ADS)
Jisan, M. A.; Bao, S.; Pietrafesa, L.; Pullen, J.
2017-12-01
An interactively coupled atmosphere-ocean model was used to investigate the impacts of future ocean warming, both at the surface and the layers below, on the track and intensity of a hurricane and its associated storm surge and inundation. The category-5 hurricane Matthew (2016), which made landfall on the South Carolina coast of the United States, was used for the case study. Future ocean temperature changes and sea level rise (SLR) were estimated based on the projection of Inter-Governmental Panel on Climate Change (IPCC)'s Representative Concentration Pathway scenarios RCP 2.6 and RCP 8.5. After being validated with the present-day observational data, the model was applied to simulate the changes in track, intensity, storm surge and inundation that Hurricane Matthew would cause under future climate change scenarios. It was found that a significant increase in hurricane intensity, storm surge water level, and inundation area for Hurricane Matthew under future ocean warming and SLR scenarios. For example, under the RCP 8.5 scenario, the maximum wind speed would increase by 17 knots (14.2%), the minimum sea level pressure would decrease by 26 hPa (2.85%), and the inundated area would increase by 401 km2 (123%). By including the effect of SLR for the middle-21st-century scenario, the inundated area will further increase by up to 49.6%. The increase in the hurricane intensity and the inundated area was also found for the RCP 2.6 scenario. The response of sea surface temperature was analyzed to investigate the change in intensity. A comparison was made between the impacts when only the sea surface warming is considered versus when both the sea surface and the underneath layers are considered. These results showed that even without the effect of SLR, the storm surge level and the inundated area would be higher due to the increased hurricane intensity under the influence of the future warmer ocean temperature. The coupled effect of ocean warming and SLR would cause the hurricane-induced storm surge and inundation to be amplified. The relative importance of the ocean warming versus the SLR was evaluated. Keywords: Hurricane Matthew, Global Warming, Coupled Atmosphere-Ocean Model, Air-Sea interactions, Storm Surge, Inundation
Sea Surface Scanner: An advanced catamaran to study the sea surface
NASA Astrophysics Data System (ADS)
Wurl, O.; Mustaffa, N. I. H.; Ribas Ribas, M.
2016-02-01
The Sea Surface Scanner is a remote-controlled catamaran with the capability to sample the sea-surface microlayer in high resolution. The catamaran is equipped with a suite of sensors to scan the sea surface on chemical, biological and physical parameters. Parameters include UV absorption, fluorescence spectra, chlorophyll-a, photosynthetic efficiency, chromophoric dissolved organic matter (CDOM), dissolved oxygen, pH, temperature, and salinity. A further feature is a capability to collect remotely discrete water samples for detailed lab analysis. We present the first high-resolution (< 30 sec) data on the sea surface microlayer. We discuss the variability of biochemical properties of the sea surface and its implication on air-sea interaction.
Short-term climatic fluctuations forced by thermal anomalies
NASA Technical Reports Server (NTRS)
Hanna, A. F.
1982-01-01
A two level, global, spectral model using pressure as a vertical coordinate was developed. The system of equations describing the model is nonlinear and quasi-geostrophic (linear balance). Static stability is variable in the model. A moisture budget is calculated in the lower layer only. Convective adjustment is used to avoid supercritical temperature lapse rates. The mechanical forcing of topography is introduced as a vertical velocity at the lower boundary. Solar forcing is specified assuming a daily mean zenith angle. The differential diabatic heating between land and sea is paramterized. On land and sea ice surfaces, a steady state thermal energy equation is solved to calculate the surface temperature. On the oceans, the sea surface temperature is specified as the climatological average for January. The model is used to simulate the January, February and March circulations.
Simulation of an oil film at the sea surface and its radiometric properties in the SWIR
NASA Astrophysics Data System (ADS)
Schwenger, Frédéric; Van Eijk, Alexander M. J.
2017-10-01
The knowledge of the optical contrast of an oil layer on the sea under various surface roughness conditions is of great interest for oil slick monitoring techniques. This paper presents a 3D simulation of a dynamic sea surface contaminated by a floating oil film. The simulation considers the damping influence of oil on the ocean waves and its physical properties. It calculates the radiance contrast of the sea surface polluted by the oil film in relation to a clean sea surface for the SWIR spectral band. Our computer simulation combines the 3D simulation of a maritime scene (open clear sea/clear sky) with an oil film at the sea surface. The basic geometry of a clean sea surface is modeled by a composition of smooth wind driven gravity waves. Oil on the sea surface attenuates the capillary and short gravity waves modulating the wave power density spectrum of these waves. The radiance of the maritime scene is calculated in the SWIR spectral band with the emitted sea surface radiance and the specularly reflected sky radiance as components. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of the sky radiance at the clean sea surface is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For oil at the sea surface, a specific BRDF is used influenced by the reduced surface roughness, i.e., the modulated wave density spectrum. The radiance contrast of an oil film in relation to the clean sea surface is calculated for different viewing angles, wind speeds, and oil types characterized by their specific physical properties.
NASA Astrophysics Data System (ADS)
Mirkhalili, Seyedhamzeh
2016-07-01
Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.
Increasing the highest storm surge in Busan harbor
NASA Astrophysics Data System (ADS)
Oh, Sang Myeong; Moon, Il-Ju; Kwon, Suk Jae
2017-04-01
One of the most pronounced effects of climate change in coastal regions is sea level rise and storm surges. Busan in particular, the fifth largest container handling port in the world, has suffered from serious storm surges and experienced a remarkable mean sea level (MSL) rise. This study investigates a long-term variation of annual maximum surge height (AMSH) using sea level data observed in Busan over 53 years (1962 2014). The decomposition of astronomical tides and surge components shows that the AMSH has increased 18 cm over 53 years (i.e., 3.5 mm/year), which is much larger than the MSL trend (2.5 mm/year) in Busan. This significant increase in AMSH is mostly explained by the increased intensity of landfall typhoons over the Korean peninsula (KP), which is associated with the increase of sea surface temperature and the decrease of vertical wind shear at mid-latitudes of the western North Pacific. In a projected future warming environment, the combination of an increasing MSL and AMSH will accelerate the occurrence of record-breaking extreme sea levels, which will be a potential threat in Busan harbor.
Observing and Studying Extreme Low Pressure Events with Altimetry
Carrère, Loren; Mertz, Françoise; Dorandeu, Joel; Quilfen, Yves; Patoux, Jerome
2009-01-01
The ability of altimetry to detect extreme low pressure events and the relationship between sea level pressure and sea level anomalies during extra-tropical depressions have been investigated. Specific altimeter treatments have been developed for tropical cyclones and applied to obtain a relevant along-track sea surface height (SSH) signal: the case of tropical cyclone Isabel is presented here. The S- and C-band measurements are used because they are less impacted by rain than the Ku-band, and new sea state bias (SSB) and wet troposphere corrections are proposed. More accurate strong altimeter wind speeds are computed thanks to the Young algorithm. Ocean signals not related to atmospheric pressure can be removed with accuracy, even within a Near Real Time context, by removing the maps of sea level anomaly (SLA) provided by SSALTO/Duacs. In the case of Extra-Tropical Depressions, the classical altimeter processing can be used. Ocean signal not related to atmospheric pressure is along-track filtered. The sea level pressure (SLP)-SLA relationship is investigated for the North Atlantic, North Pacific and Indian oceans; three regression models are proposed allowing restoring an altimeter SLP with a mean error of 5 hPa if compared to ECMWF or buoys SLP. The analysis of barotropic simulation outputs points out the regional variability of the SLP/Model Sea Level relationship and the wind effects. PMID:22573955
NASA Technical Reports Server (NTRS)
Chow, S. H.
1974-01-01
The possible response of the atmosphere, as simulated by the two level Mintz-Arakawa global general circulation model, to a transient North Pacific sea surface temperature anomaly is investigated in terms of the energetics both in the spatial and wave number domains. Results indicate that the transient SST variations of reasonable magnitude in the North Pacific Ocean can induce a disturbing effect on the global energetics both in the spatial and wave number domains. The ability of the two level Mintz-Arakawa model to simulate the atmospheric energetics is also examined. Except in the tropics, the model exhibits a reasonable and realistic energy budget.
NASA Astrophysics Data System (ADS)
Godoi Rezende Costa, C.; Castro, B. M.; Blumberg, A. F.; Leite, J. R. B., Sr.
2017-12-01
Santos City is subject to an average of 12 storm tide events per year. Such events bring coastal flooding able to threat human life and damage coastal infrastructure. Severe events have forced the interruption of ferry boat services and ship traffic through Santos Harbor, causing great impacts to Santos Port, the largest in South America, activities. Several studies have focused on the hydrodynamics of storm tide events but only a few of those studies have pursued an operational initiative to predict short term (< 3 days) sea level variability. The goals of this study are (i) to describe the design of an operational forecasting system built to predict sea surface elevation and currents in the Santos Estuarine System and (ii) to evaluate model performance in simulating observed sea surface elevation. The Santos Operational Forecasting System (SOFS) hydrodynamic module is based on the Stevens Institute Estuarine and Coastal Ocean Model (sECOM). The fully automated SOFS is designed to provide up to 71 h forecast of sea surface elevations and currents every day. The system automatically collects results from global models to run the SOFS nested into another sECOM based model for the South Brazil Bight (SBB). Global forecasting results used to force both models come from Mercator Ocean, released by Copernicus Marine Service, and from the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) stablished by the Center for Weather Forecasts and Climate Studies (with Portuguese acronym CPTEC). The complete routines task take about 8 hours of run time to finish. SOFS was able to hindcast a severe storm tide event that took place in Santos on August 21-22, 2016. Comparisons with observed sea level provided skills of 0.92 and maximum root mean square errors of 25 cm. The good agreement with observed data shows the potential of the designed system to predict storm tides and to support both human and assets protection.
Stanton, Gregory P.
1997-01-01
The Sparta and Memphis aquifers in eastern and south-central Arkansas are a major source of water for industrial, public supply, and agricultural uses. An estimated 240 million gallons per day was withdrawn from the Sparta and Memphis aquifers in 1995, an increase of about 17 million gallons per day from 1990. During the spring and early summer of 1995, the water level in the Sparta and Memphis aquifers was measured in 145 wells, the specific conductance of 101 ground-water samples collected from those aquifers was measured. Maps of areal distribution of potentiometric surface and specific conductance generated from these data reveal spatial trends in these parameters across the eastern and south-central Arkansas study area. The altitude of the potentiometric surface ranged from about 206 feet below sea level in Union County to about 307 feet above sea level in Saline County. The potentiometric surface of the Sparta and Memphis aquifers contains cones of depression descending below sea level in the central and southern portions of the study area, and a potentiometric high along the western study area boundary. Major recharge areas exhibit potentiometric highs greater than 200 feet above sea level and specific conductance values less than 200 microsiemens per centimeter, and generally are located in the outcrop/subcrop areas on the southern one-third of the western boundary and the northern portion of the study area. The regional direction of ground-water flow is from the north and west to the south and east, away from the outcrop and subcrop and northern regions, except near areas affected by intense ground-water withdrawals; such areas are manifested by large cones of depression centered in Columbia, Jefferson, and Union Counties. The cones of depression in adjoining Columbia and Union Counties are coalescing at or near sea level. The lowest water level measured was about 206 feet below sea level in Union County. Increased specific conductance values were measured in the areas of the cones of depression in Columbia and Union Counties. The cones of depression centered in Jefferson County coincides with an elongate area where ground water in the aquifer has low specific conductance. This area extends eastward from the outcrop/subcrop region of recharge. This extension of ground water with low specific conductance possibly indicates increased ground-water movement to the east-southeast from the outcrop/subcrop area induced by ground- water withdrawals in Jefferson County. Specific conductance increases markedly to the northeast and gradually to the south of this area. Long-term hydrographs of eight wells in the study areas, during the period 1970-1995, reveal water-level declines ranging from less than 0.5 foot per year in Phillips County to more than 2.0 feet per year in Union County. Water-level declines of greater than 1.5 feet per year generally are associated with the cones of depression centered in Columbia, Jefferson, and Union Counties.
Synthesizing long-term sea level rise projections - the MAGICC sea level model v2.0
NASA Astrophysics Data System (ADS)
Nauels, Alexander; Meinshausen, Malte; Mengel, Matthias; Lorbacher, Katja; Wigley, Tom M. L.
2017-06-01
Sea level rise (SLR) is one of the major impacts of global warming; it will threaten coastal populations, infrastructure, and ecosystems around the globe in coming centuries. Well-constrained sea level projections are needed to estimate future losses from SLR and benefits of climate protection and adaptation. Process-based models that are designed to resolve the underlying physics of individual sea level drivers form the basis for state-of-the-art sea level projections. However, associated computational costs allow for only a small number of simulations based on selected scenarios that often vary for different sea level components. This approach does not sufficiently support sea level impact science and climate policy analysis, which require a sea level projection methodology that is flexible with regard to the climate scenario yet comprehensive and bound by the physical constraints provided by process-based models. To fill this gap, we present a sea level model that emulates global-mean long-term process-based model projections for all major sea level components. Thermal expansion estimates are calculated with the hemispheric upwelling-diffusion ocean component of the simple carbon-cycle climate model MAGICC, which has been updated and calibrated against CMIP5 ocean temperature profiles and thermal expansion data. Global glacier contributions are estimated based on a parameterization constrained by transient and equilibrium process-based projections. Sea level contribution estimates for Greenland and Antarctic ice sheets are derived from surface mass balance and solid ice discharge parameterizations reproducing current output from ice-sheet models. The land water storage component replicates recent hydrological modeling results. For 2100, we project 0.35 to 0.56 m (66 % range) total SLR based on the RCP2.6 scenario, 0.45 to 0.67 m for RCP4.5, 0.46 to 0.71 m for RCP6.0, and 0.65 to 0.97 m for RCP8.5. These projections lie within the range of the latest IPCC SLR estimates. SLR projections for 2300 yield median responses of 1.02 m for RCP2.6, 1.76 m for RCP4.5, 2.38 m for RCP6.0, and 4.73 m for RCP8.5. The MAGICC sea level model provides a flexible and efficient platform for the analysis of major scenario, model, and climate uncertainties underlying long-term SLR projections. It can be used as a tool to directly investigate the SLR implications of different mitigation pathways and may also serve as input for regional SLR assessments via component-wise sea level pattern scaling.
Masterson, John P.
2004-01-01
The U.S. Geological Survey, in cooperation with the National Park Service, Massachusetts Executive Office of Environmental Affairs, Cape Cod Commission, and the Towns of Eastham, Provincetown, Truro, and Wellfleet, began an investigation in 2000 to improve the understanding of the hydrogeology of the four freshwater lenses of the Lower Cape Cod aquifer system and to assess the effects of changing ground-water pumping, recharge conditions, and sea level on ground-water flow in Lower Cape Cod, Massachusetts. A numerical flow model was developed with the computer code SEAWAT to assist in the analysis of freshwater and saltwater flow. Model simulations were used to determine water budgets, flow directions, and the position and movement of the freshwater/saltwater interface. Model-calculated water budgets indicate that approximately 68 million gallons per day of freshwater recharge the Lower Cape Cod aquifer system with about 68 percent of this water moving through the aquifer and discharging directly to the coast, 31 percent flowing through the aquifer, discharging to streams, and then reaching the coast as surface-water discharge, and the remaining 1 percent discharging to public-supply wells. The distribution of streamflow varies greatly among flow lenses and streams; in addition, the subsurface geology greatly affects the position and movement of the underlying freshwater/saltwater interface. The depth to the freshwater/saltwater interface varies throughout the study area and is directly proportional to the height of the water table above sea level. Simulated increases in sea level appear to increase water levels and streamflows throughout the Lower Cape Cod aquifer system, and yet decrease the depth to the freshwater/saltwater interface. The resulting change in water levels and in the depth to the freshwater/saltwater interface from sea-level rise varies throughout the aquifer system and is controlled largely by non-tidal freshwater streams. Pumping from large-capacity municipal-supply wells increases the potential for effects on surface-water bodies, which are affected by pumping and wastewater-disposal locations and rates. Pumping wells that are upgradient of surface-water bodies potentially capture water that would otherwise discharge to these surface-water bodies, thereby reducing streamflow and pond levels. Kettle-hole ponds, such as Duck Pond in Wellfleet, that are near the top of a freshwater flow lens, appear to be more susceptible to changing pumping and recharge conditions than kettle-hole ponds closer to the coast or near discharge boundaries, such as the Herring River.
Wind Stress Forcing of the North Sea "Pole Tide"
NASA Technical Reports Server (NTRS)
OConnor, William P.; Chao, Benjamin Fong; Zheng, Dawei; Au, Andrew Y.
1998-01-01
We conducted numerical simulations of the wind-forcing of the sea level variations in the North Sea using a barotropic ocean model with realistic geography, bathymetry, and boundary conditions, to examine the forcing of the 14-month "pole tide" which is known to be strong along the Denmark- Netherlands coast. The simulation input is the monthly-mean surface wind stress field from the National Centers for Environmental Prediction (NCEP) reanalysis for the 40-year period 1958-1997. The output sea level response was then compared with 10 coastal tide gauge records from the Permanent Service for Mean Sea Level (PSMSL). Besides the strong seasonal variations, several prominent quasi-periodicities exist at around 7 years, 3 years, 14 months, 9 months, and 6.5 months. Correlation and spectral analyses show remarkable agreement between the model output and the observations, particularly in the 14-month, or Chandler period band. The latter indicates that the enhanced pole tide found in the North Sea along the Denmark-Netherlands coast is actually the coastal setup response to wind stress forcing with a periodicity of 14 months. We find no need to invoke a geophysical explanation involving resonance-enhancement of pole tide in the North Sea to explain the observations.
NASA Astrophysics Data System (ADS)
Bressan, Lidia; Valentini, Andrea; Paccagnella, Tiziana; Montani, Andrea; Marsigli, Chiara; Stefania Tesini, Maria
2017-04-01
At the Hydro-meteo-climate service of the Regional environmental agency of Emilia-Romagna, Italy (Arpae-SIMC), the oceanographic numerical model AdriaROMS is used in the operational forecasting suite to compute sea level, temperature, salinity and 3-D current fields of the Adriatic Sea (northern Mediterranean Sea). In order to evaluate the performance of the sea-level forecast and to study different configurations of the ROMS model, two marine storms occurred on the Emilia Romagna coast during the winter 2015-2016 are investigated. The main focus of this study is to analyse the sensitivity of the model to the horizontal resolution and to the meteorological forcing. To this end, the model is run with two different configurations and with two horizontal grids at 1 and 2 km resolution. To study the influence of the meteorological forcing, the two storms have been reproduced by running ROMS in ensemble mode, forced by the 16-members of the meteorological ensemble COSMO-LEPS system. Possible optimizations of the model set-up are deduced by the comparison of the different run outputs.
Ikaite crystals in melting sea ice - implications for pCO2 and pH levels in Arctic surface waters
NASA Astrophysics Data System (ADS)
Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.
2012-03-01
A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (CaCO3·6H2O) in Arctic and Antarctic sea ice, which indicate that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from an actively melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the sea ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures gradually disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice flow thickness by ca. 0.2 m per week and resulted in an estimated 1.6 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 11 mmol m-2 sea ice d-1 or to 3.5 ton km-2 ice floe week-1.
NASA Astrophysics Data System (ADS)
Turki, Imen; Laignel, Benoit; Kakeh, Nabil; Chevalier, Laetitia; Costa, Stephane
2015-04-01
This research is carried out in the framework of the program Surface Water and Ocean Topography (SWOT) which is a partnership between NASA and CNES. Here, a new hybrid model is implemented for filling gaps and forecasting the hourly sea level variability by combining classical harmonic analyses to high statistical methods to reproduce the deterministic and stochastic processes, respectively. After simulating the mean trend sea level and astronomical tides, the nontidal residual surges are investigated using an autoregressive moving average (ARMA) methods by two ways: (1) applying a purely statistical approach and (2) introducing the SLP in ARMA as a main physical process driving the residual sea level. The new hybrid model is applied to the western Atlantic sea and the eastern English Channel. Using ARMA model and considering the SLP, results show that the hourly sea level observations of gauges with are well reproduced with a root mean square error (RMSE) ranging between 4.5 and 7 cm for 1 to 30 days of gaps and an explained variance more than 80 %. For larger gaps of months, the RMSE reaches 9 cm. The negative and the positive extreme values of sea levels are also well reproduced with a mean explained variance between 70 and 85 %. The statistical behavior of 1-year modeled residual components shows good agreements with observations. The frequency analysis using the discrete wavelet transform illustrate strong correlations between observed and modeled energy spectrum and the bands of variability. Accordingly, the proposed model presents a coherent, simple, and easy tool to estimate the total sea level at timescales from days to months. The ARMA model seems to be more promising for filling gaps and estimating the sea level at larger scales of years by introducing more physical processes driving its stochastic variability.
Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology
NASA Astrophysics Data System (ADS)
Parard, G.; Charantonis, A. A.; Rutgerson, A.
2015-06-01
Studies of coastal seas in Europe have noted the high variability of the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes, complicates the accurate estimation of these mechanisms. This is particularly pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been characterized in as much detail as in the open oceans. In addition, the joint availability of in situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, we used the SOMLO (self-organizing multiple linear output; Sasse et al., 2013) methodology, which combines two existing methods (i.e. self-organizing maps and multiple linear regression) to estimate the ocean surface partial pressure of CO2 (pCO2) in the Baltic Sea from the remotely sensed sea surface temperature, chlorophyll, coloured dissolved organic matter, net primary production, and mixed-layer depth. The outputs of this research have a horizontal resolution of 4 km and cover the 1998-2011 period. These outputs give a monthly map of the Baltic Sea at a very fine spatial resolution. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in situ measurements and a root mean square error of 36 μatm. Removing any of the satellite parameters degraded this reconstructed CO2 flux, so we chose to supply any missing data using statistical imputation. The pCO2 maps produced using this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data, and we expect to be able to produce even more accurate reconstructions in coming years, given the predicted acquisition of new data.
OSTM/Jason-2 and Jason-1 Tandem Mission View of the Gulf Stream
2009-04-27
Created with altimeter data from NASA's Ocean Surface Topography Mission (OSTM)/Jason-2 satellite and the Jason-1 satellite, this image shows a portion of the Gulf Stream off the east coast of the United States. It demonstrates how much more detail is visible in the ocean surface when measured by two satellites than by one alone. The image on the left was created with data from OSTM/Jason-2. The image on the right is the same region but made with combined data from OSTM/Jason-2 and Jason-1.It shows the Gulf Stream's eddies and rings much more clearly. This image is a product of the new interleaved tandem mission of the Jason-1 and Ocean Surface Topography Mission (OSTM)/Jason-2 satellites. (The first global map from this tandem mission is available at PIA11859.) In January 2009, Jason-1 was maneuvered into orbit on the opposite side of Earth from its successor, OSTM/Jason-2 satellite. It takes 10 days for the satellites to cover the globe and return to any one place over the ocean. So, in this new tandem configuration, Jason-1 flies over the same region of the ocean that OSTM/Jason-2 flew over five days earlier. Its ground tracks fall mid-way between those of Jason-2, which are about 315 kilometers (195 miles) apart at the equator. Working together, the two spacecraft measure the surface topography of the ocean twice as often as would be possible with one satellite, and over a 10-day period, they return twice the amount of detailed measurements. Combining data from the two satellites makes it possible to map smaller, more rapidly changing features than one satellite could alone. These images show sea-level anomaly data from the first 14 days of the interleaved orbit of Jason-1 and OSTM/Jason-2, the period beginning on Feb. 20, 2009. An anomaly is a departure from a value averaged over a long period of time. Red and yellow are regions where sea levels are higher than normal. Purple and dark blue show where sea levels are lower. A higher-than-normal sea surface is usually a sign of warm waters below, while lower sea levels indicate cooler than normal temperatures. http://photojournal.jpl.nasa.gov/catalog/PIA11997
NASA Astrophysics Data System (ADS)
Su, H.; Yan, X. H.
2017-12-01
Subsurface thermal structure of the global ocean is a key factor that reflects the impact of the global climate variability and change. Accurately determining and describing the global subsurface and deeper ocean thermal structure from satellite measurements is becoming even more important for understanding the ocean interior anomaly and dynamic processes during recent global warming and hiatus. It is essential but challenging to determine the extent to which such surface remote sensing observations can be used to develop information about the global ocean interior. This study proposed a Support Vector Regression (SVR) method to estimate Subsurface Temperature Anomaly (STA) in the global ocean. The SVR model can well estimate the global STA upper 1000 m through a suite of satellite remote sensing observations of sea surface parameters (including Sea Surface Height Anomaly (SSHA), Sea Surface Temperature Anomaly (SSTA), Sea Surface Salinity Anomaly (SSSA) and Sea Surface Wind Anomaly (SSWA)) with in situ Argo data for training and testing at different depth levels. Here, we employed the MSE and R2 to assess SVR performance on the STA estimation. The results from the SVR model were validated for the accuracy and reliability using the worldwide Argo STA data. The average MSE and R2 of the 15 levels are 0.0090 / 0.0086 / 0.0087 and 0.443 / 0.457 / 0.485 for 2-attributes (SSHA, SSTA) / 3-attributes (SSHA, SSTA, SSSA) / 4-attributes (SSHA, SSTA, SSSA, SSWA) SVR, respectively. The estimation accuracy was improved by including SSSA and SSWA for SVR input (MSE decreased by 0.4% / 0.3% and R2 increased by 1.4% / 4.2% on average). While, the estimation accuracy gradually decreased with the increase of the depth from 500 m. The results showed that SSSA and SSWA, in addition to SSTA and SSHA, are useful parameters that can help estimate the subsurface thermal structure, as well as improve the STA estimation accuracy. In future, we can figure out more potential and useful sea surface parameters from satellite remote sensing as input attributes so as to further improve the STA sensing accuracy from machine learning. This study can provide a helpful technique for studying thermal variability in the ocean interior which has played an important role in recent global warming and hiatus from satellite observations over global scale.
Data requirements in support of the marine weather service program
NASA Technical Reports Server (NTRS)
Travers, J.; Mccaslin, R. W.; Mull, M.
1972-01-01
Data support activities for the Marine Weather Service Program are outlined. Forecasts, cover anomolous water levels, including sea and swell, surface and breakers, and storm surge. Advisories are also provided for sea ice on the Great Lake and Cook inlet in winter, and in the Bering, Chukchi, and Beaufort Seas in summer. Attempts were made to deal with ocean currents in the Gulf Stream, areas of upwelling, and thermal structure at least down through the mixed layer.
Biophysical Variability in the Kuroshio Extension from Altimeter and SeaWiFS
2010-06-01
Prediction Laboratory Department of Oceanography Naval Postgraduate School Monterey, CA 93943 Abstract— Ten years (1998- 2007 ) of Sea Level Anomaly...heights have been measured by the ERS 1/2 and TOPEX/Poseidon satellites from 1 January 1998 to 31 December 2007 at 7-day intervals. Radar altimeters...3) from January 1998 to December 2007 (10 years period). Temporal variations of sea surface elevation residuals and Chl-a along the mean KE axis
Liu, Dan; Hou, Xiaolin; Du, Jinzhou; Zhang, Luyuan; Zhou, Weijian
2016-01-01
Anthropogenic 129I as a long-lived radioisotope of iodine has been considered as an ideal oceanographic tracer due to its high residence time and conservative property in the ocean. Surface water samples collected from the East China Sea (ECS) in August 2013 were analyzed for 129I, 127I and their inorganic chemical species in the first time. The measured 129I/127I ratio is 1–3 orders of magnitude higher than the pre-nuclear level, indicating its dominantly anthropogenic sources. Relatively high 129I levels were observed in the Yangtze River and its estuary, as well as in the southern Yellow Sea, and 129I level in seawater declines towards the ECS shelf. In the open sea, 129I and 127I in surface water exists mainly as iodate, while in Yangtze River estuary and some locations, iodide is dominated. The results indicate that the Fukushima nuclear accident has no detectable effects in the ECS until August 2013. The obtained results are used for investigation of interaction of various water masses and water circulation in the ECS, as well as the marine environment in this region. Meanwhile this work provides essential data for evaluation of the possible influence of the increasing NPPs along the coast of the ECS in the future. PMID:27849026
NASA Astrophysics Data System (ADS)
Qaisar, Maha
2016-07-01
Pakistan's periled treasures of mangroves require protection from devastating anthropogenic activities, which can only be achieved through the identification and management of this habitat. The primary objective of this study is to identify the potential habitat of mangroves along the coastline of Pakistan with the help of Remote Sensing (RS) and Geographical Information System (GIS) techniques. Once the mangroves were identified, species of mangroves need to be separated through Object Based Image Analysis (OBIA) which gave the area of mangroves and non mangroves sites. Later other parameters of Sea Surface Temperature, Sea Surface Salinity, chlorophyll-a along with altimetry data were used to assess the climatic variations on the spatio-temporal distribution of mangroves. Since mangroves provide economical, ecological, biological indication of Coastal Change or Sea Level Rise. Therefore, this provides a strong platform to assess the climatic variations which are posing negative impacts on the mangroves ecosystem. The results indicate that mangroves are present throughout along the coastline, proving that Pakistan is rich in these diverse ecosystems. Pakistan being at important geo strategic position can also benefit from its vast mangroves and other coastal resources such as coral reefs and fish varieties. Moreover, coastal zone management through involvement of the local community and establishment of Marine Protected Area (MPA) is the need of the hour to avoid deforestation of mangroves, which can prove to be deadly damaging for the fish populace since it provides habitats to various marine animals. However, the established relationship among SST, SSS, chlorophyll-a and altimetry data assisted to know the suitable sites for mangroves. But due to enhanced climatic impacts these relationships are distorted which has posed devastating effects on the growth and distribution of mangroves. Study area was Karachi Coast, Pakistan. The total area of Karachi is about 70 km long with vital importance of ecological, economical and biological indication of sea level rise. The desktop work was started with the acquisition of Landsat 8 image then pre-processing was applied, that includes stacking of bands, digitizing of study area and latterly sub setting of this area. Now spectral indices were applied to enhance water and vegetation. Normalized Difference Vegetative Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated. Object Based Image Analysis (OBIA) was performed on land covers to get the land cover maps. However, other parameters of SST, chlorophyll-a of the study area were also estimated using MODIS products to establish the relationship for ascertaining the mangroves growth and distribution. Whereas, sea level in relation with mangroves has a substantial correlation i.e. when the sea level is not changing relative to the mangrove surface, mangrove position remains generally stable. Whereas, if the sea level is falling relative to the mangrove surface, mangrove margins migrate seaward and possibly laterally if these areas adjacent to the mangrove develop conditions suitable for mangrove establishment. Moreover, if sea-level is rising relative to the elevation of the mangrove sediment surface, the mangrove's seaward and landward margins retreat landward as the mangrove species maintain their preferred hydro period. The mangrove may also expand laterally into areas of higher elevation. Therefore, the study of altimetry provides a milestone in the spatio-temporal growth and distribution of mangrove. Thus, this established study can help coastal related agencies to work more efficiently in the field of research and even for the welfare of the coastal community so that the risk of climate variability on the mangrove ecosystem can be minimized.
Engels, M.S.; Fletcher, C.H.; Field, M.; Conger, C.L.; Bochicchio, C.
2008-01-01
Twelve cores from the protected reef-flat of Molokai revealed that carbonate sediment accumulation, ranging from 3 mm year-1 to less than 1 mm year-1, ended on average 2,500 years ago. Modern sediment is present as a mobile surface veneer but is not trapped within the reef framework. This finding is consistent with the arrest of deposition at the end of the mid-Holocene highstand, known locally as the "Kapapa Stand of the Sea," ???2 m above the present datum ca. 3,500 years ago in the main Hawaiian Islands. Subsequent erosion, non-deposition, and/or a lack of rigid binding were probable factors leading to the lack of reef-flat accumulation during the late Holocene sea-level fall. Given anticipated climate changes, increased sedimentation of reef-flat environments is to be expected as a consequence of higher sea level. ?? 2008 Springer-Verlag.
WPC North American Surface Analyses
window and is a pdf file (requires Adobe Acrobat Reader to view). Create a Surface Analysis Loop North U.S. (South) Alaska Gulf of Alaska Color on White Black and White Display Loop Loop the sea-level
NASA Astrophysics Data System (ADS)
Tjernström, Michael; Sotiropoulou, Georgia; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara; Brooks, Ian; Persson, Ola; Prytherch, John; Salsbury, Dominic; Shupe, Matthew; Johnston, Paul; Wolfe, Dan
2016-04-01
With more open water present in the Arctic summer, an understanding of atmospheric processes over open-water and sea-ice surfaces as summer turns into autumn and ice starts forming becomes increasingly important. The Arctic Clouds in Summer Experiment (ACSE) was conducted in a mix of open water and sea ice in the eastern Arctic along the Siberian shelf during late summer and early autumn 2014, providing detailed observations of the seasonal transition, from melt to freeze. Measurements were taken over both ice-free and ice-covered surfaces, offering an insight to the role of the surface state in shaping the lower troposphere and the boundary-layer conditions as summer turned into autumn. During summer, strong surface inversions persisted over sea ice, while well-mixed boundary layers capped by elevated inversions were frequent over open-water. The former were often associated with advection of warm air from adjacent open-water or land surfaces, whereas the latter were due to a positive buoyancy flux from the warm ocean surface. Fog and stratus clouds often persisted over the ice, whereas low-level liquid-water clouds developed over open water. These differences largely disappeared in autumn, when mixed-phase clouds capped by elevated inversions dominated in both ice-free and ice-covered conditions. Low-level-jets occurred ~20-25% of the time in both seasons. The observations indicate that these jets were typically initiated at air-mass boundaries or along the ice edge in autumn, while in summer they appeared to be inertial oscillations initiated by partial frictional decoupling as warm air was advected in over the sea ice. The start of the autumn season was related to an abrupt change in atmospheric conditions, rather than to the gradual change in solar radiation. The autumn onset appeared as a rapid cooling of the whole atmosphere and the freeze up followed as the warm surface lost heat to the atmosphere. While the surface type had a pronounced impact on boundary-layer structure in summer, the surface was often warmer than the atmosphere in autumn, regardless of surface type. Hence the autumn boundary-layer structure was more dependent on synoptic scale meteorology.
NASA Astrophysics Data System (ADS)
Dukhovniy, Viktor; Stulina, Galina; Eshchanov, Odylbek
2013-04-01
The tragedy of disappearing of Aral Sea is well known to the World. Before and after collapse of Soviet Union, a huge quantity of scientific and popular editions described with grief the situation around the Aral Sea. After the NIS states became independent, World Bank, UNDP, UNEP in proper competition with each other had provided some assessment of the situation through presentation of some small and medium grants, but after 2000, the local population remained alone with own problems. Although on the eyes of the present generation a unique transformation of great water body into deserts took place, the global scientific community did not find forces and financing for real and detail investigation of the processes accompanying the Sea shrinking and land formation. We should acknowledge and give big respect to NATO, later to German Government that through GTZ (now GIZ) - German International Collaboration Agency - and GFZ (Potzdam) paid attention to this area of environment crisis and organized scientific and protective design in the so-called Priaralie - the territory around the drying Sea and delta of the two rivers - Amudarya and Syrdarya. Thank to this assistance, the local specialists in collaboration with limited a number of foreign scientists (N.Aladin, P.Zavialov, Joop de Schutter, Hans Wilps, Hedi Oberhansli) organized significant works for detail socioeconomic, ecological and hydrological assessment situation in Priaralie and on the Aral sea coast. On this base, Ministry of Agriculture and Water resources of Uzbekistan and State Committee of Water resources of Kazakhstan developed a plan of rehabilitation of Amudarya and Syrdarya deltas and started implementation of these projects. If Kazakh water authority moved ahead in wetland restoration faster, a forestation of delta and drying bed of Aral Sea got big success in Uzbek territory. 244 thousands hectares of saxsaul and tamarix were planted for protection of the Priaralie. By request of GTZ SIC, ICWC organized in 2005-2009 sixth expeditions for complex remote sensing and ground investigations Aral Sea former bottom that were complemented in 2010 -2011 by two expeditions with GFZ. As a result, the landscape, soils and environment mapping was done with determination of ecologically unstable zones and assessment total change of lands situation compared with the pre-independence time. Moreover - methodic of monitoring water, environment and hydro geological indicators on the all deltas area was elaborated, organized its testing and combined with remote sensing data on Amudarya delta for 2009-2012. It permits to SIC ICWC to organize systematic permanent (decadal) monitoring and recording of size, volume and level of water in Aral Sea. Since the beginning of regular observations over the Aral Sea level, 2 periods can be emphasized: 1. Conditionally natural period - 1911-1960 - characterized by a relatively stable hydrological regime, with fluctuations in the level around 53 m and the range of inter-annual fluctuations at no more than 1 m., when the sea received annually about a half of the run-off in the Syrdarya and Amudarya Rivers, i.e. 50-60 km3/yr. 2. Intensive anthropogenic impact period - since the 1960s, a vast extension of irrigable land was carried out in Central Asia that resulted in intensive diversion of river run-off. Since then, the sea level has been falling steadily, causing a dramatic reduction in the water surface area, a decrease in water volume and depths, great changes in shoreline configuration and an expansion of the desert areas adjacent to the Aral Sea. From 1960-1985, when the sea was an integral water body, slight lowering in the sea level took place until the 1970s, when the sea-level decreased with the mean level lowering 1 m. The desiccation process accelerated visibly from the mid 1970s. In 1975-1980, the level decreased by 0.65 m a year on average. Moreover, the level dropped greatly, when the run-off of the Amudarya did not reach the Aral Sea any more (1980-1990). Kokaral was the first of the large islands becoming a peninsula, separating the Small Aral Sea in the north-east by joining the shoreline in the west. By 1986, the peninsula practically detached the small Aral Sea from the large Aral Sea, leaving only a narrow flow passage in the east. Since that time, the hydrological regimes of the Small and Large Seas have become separated. The construction of Kokaral dam in Kazakhstan, 12 km long and 8 m high, then completely separated the small Aral Sea from the large Aral Sea and changed the hydrological regimes of the water bodies. Level of this part of Sea became from this moment permanently higher than in the large Aral Sea on 42 m a.s.l. The eastern part of the sea, where the bed is much shallower and the slope is gentler is more subjected to shrinking then the western part. 2005 year became threshold, from which Eastern Aral Sea began new story - deviation from almost empty water body to almost 4 meters depth. Present assessment of water balance of Aral Sea and delta at whole dependent from delivery water river and drainage flow through control section of Samanbay on the Amudarya and some cross sections on the enter main collectors to the delta boundary. These hydrological characteristics accepted on the base of information from BWO Amudarya and our monitoring of allocation of different waters on the delta. Water volume and water surface area of Eastern and Western Aral Sea bowls were definite on the result RS data from Landsat. Bathymetric curves gave ability to assess dynamic levels of Seas. After series of enough water years 2002 - 2005 with average water income to south Priaralie 12.5 km3 period of water scarce years lead to sharp decrease of surface water area of the Eastern bowl from 1010,5 th.ha on average on two time with failure of level from 31,1 m up to average 28,5 m. But phase of permanent reducing all indicators water body changed in 2008 on deviation in range from 26.3 m to 29.5 m. Some time sharp changes in the level of water in 2.0 m take place in time one year. These changes same as degree of deltas' watering depends fully from inflow water to boundary of deltas. At the same time, the Western bowl remained more or less stable and without direct flow of surface water supported own water stability based on balance between evaporation and precipitation plus presumably the inflow of deep ground water.
NASA Astrophysics Data System (ADS)
Han, Weiqing; Meehl, Gerald A.; Hu, Aixue; Alexander, Michael A.; Yamagata, Toshio; Yuan, Dongliang; Ishii, Masayoshi; Pegion, Philip; Zheng, Jian; Hamlington, Benjamin D.; Quan, Xiao-Wei; Leben, Robert R.
2014-09-01
Previous studies have linked the rapid sea level rise (SLR) in the western tropical Pacific (WTP) since the early 1990s to the Pacific decadal climate modes, notably the Pacific Decadal Oscillation in the north Pacific or Interdecadal Pacific Oscillation (IPO) considering its basin wide signature. Here, the authors investigate the changing patterns of decadal (10-20 years) and multidecadal (>20 years) sea level variability (global mean SLR removed) in the Pacific associated with the IPO, by analyzing satellite and in situ observations, together with reconstructed and reanalysis products, and performing ocean and atmosphere model experiments. Robust intensification is detected for both decadal and multidecadal sea level variability in the WTP since the early 1990s. The IPO intensity, however, did not increase and thus cannot explain the faster SLR. The observed, accelerated WTP SLR results from the combined effects of Indian Ocean and WTP warming and central-eastern tropical Pacific cooling associated with the IPO cold transition. The warm Indian Ocean acts in concert with the warm WTP and cold central-eastern tropical Pacific to drive intensified easterlies and negative Ekman pumping velocity in western-central tropical Pacific, thereby enhancing the western tropical Pacific SLR. On decadal timescales, the intensified sea level variability since the late 1980s or early 1990s results from the "out of phase" relationship of sea surface temperature anomalies between the Indian and central-eastern tropical Pacific since 1985, which produces "in phase" effects on the WTP sea level variability.
The climate response of the Indo-Pacific warm pool to glacial sea level
NASA Astrophysics Data System (ADS)
Di Nezio, Pedro N.; Timmermann, Axel; Tierney, Jessica E.; Jin, Fei-Fei; Otto-Bliesner, Bette; Rosenbloom, Nan; Mapes, Brian; Neale, Rich; Ivanovic, Ruza F.; Montenegro, Alvaro
2016-06-01
Growing climate proxy evidence suggests that changes in sea level are important drivers of tropical climate change on glacial-interglacial timescales. These paleodata suggest that rainfall patterns over the Indo-Pacific warm pool (IPWP) are highly sensitive to the landmass configuration of the Maritime Continent and that lowered sea level contributed to large-scale drying during the Last Glacial Maximum (LGM, approximately 21,000 years B.P.). Using the Community Earth System Model Version 1.2 (CESM1), we investigate the mechanisms by which lowered sea level influenced the climate of the IPWP during the LGM. The CESM1 simulations show that, in agreement with previous hypotheses, changes in atmospheric circulation are initiated by the exposure of the Sunda and Sahul shelves. Ocean dynamical processes amplify the changes in atmospheric circulation by increasing the east-west sea surface temperature (SST) gradient along the equatorial Indian Ocean. The coupled mechanism driving this response is akin to the Bjerknes feedback and results in a large-scale climatic reorganization over the Indian Ocean with impacts extending from east Africa to the western tropical Pacific. Unlike exposure of the Sunda shelf, exposure of Sahul shelf and the associated changes in surface albedo play a key role because of the positive feedback. This mechanism could explain the pattern of dry (wet) eastern (western) Indian Ocean identified in climate proxies and LGM simulations. However, this response also requires a strengthened SST gradient along the equatorial Indian Ocean, a pattern that is not evident in marine paleoreconstructions. Strategies to resolve this issue are discussed.
NASA Astrophysics Data System (ADS)
Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Xie, Jun; Ge, Qian
2017-02-01
Using statistically downscaled atmospheric forcing, we performed a numerical investigation to evaluate future climate's impact on storm surges along the Gulf of Mexico and U.S. east coast. The focus is on the impact of climatic changes in wind pattern and surface pressure while neglecting sea level rise and other factors. We adapted the regional ocean model system (ROMS) to the study region with a mesh grid size of 7-10 km in horizontal and 18 vertical layers. The model was validated by a hindcast of the coastal sea levels in the winter of 2008. Model's robustness was confirmed by the good agreement between model-simulated and observed sea levels at 37 tidal gages. Two 10-year forecasts, one for the IPCC Pre-Industry (PI) and the other for the A1FI scenario, were conducted. The differences in model-simulated surge heights under the two climate scenarios were analyzed. We identified three types of responses in extreme surge heights to future climate: a clear decrease in Middle Atlantic Bight, an increase in the western Gulf of Mexico, and non-significant response for the remaining area. Such spatial pattern is also consistent with previous projections of sea surface winds and ocean wave heights.
NASA Astrophysics Data System (ADS)
Closson, D.; Abou Karaki, N.; Milisavljevic, N.; Pasquali, P.; Holecz, F.; Bouaraba, A.
2012-04-01
For several decades, surface water and groundwater located in the closed Dead Sea basin experience excessive exploitation. In fifty years, the level of the terminal lake has fallen by about 30 meters and its surface shrunk by one third. The coastal zone is the one that best shows the stigma of the general environmental degradation. Among these are the sinkholes, landslides and subsidence. For years, these phenomena are relatively well documented, particularly sinkholes and subsidence. Over the past five years, field observations combined with ground deformations measurements by radar interferometric stacking techniques have shown that the intensity (size, frequency) of the collapses is increasing in the most affected part of the southern Dead Sea area. The zones of the dried up Lynch Strait, the Lisan peninsula and Ghor Al Haditha in Jordan seem the most affected. Very high resolution (0.5 to 2 m) GeoEye satellite images have shown that many sinkholes also formed below the level of the Dead Sea. The water transparency allows observations up to several meters deep. These data contribute to the validation of the models developed in connection with the deformation of the fresh/saline water interface due to an imbalance always more pronounced between the levels of the surrounding groundwaters and of the terminal lake.
Monitoring Sea Level At L'Estartit, Spain
NASA Astrophysics Data System (ADS)
Martinez-Benjamin, J.; Ortiz Castellon, M.; Martinez-Garcia, M.; Talaya, J.; Rodriguez Velasco, G.; Perez, B.
2007-12-01
Sea level is an environmental variable which is widely recognised as being important in many scientific disciplines as a control parameter for coastal dynamical processes or climate processes in the coupled atmosphere-ocean systems, as well as engineering applications. A major source of sea-level data are the national networks of coastal tide gauges, in Spain belonging to different institutions as the Instituto Geográfico Nacional (IGN), Puertos del Estado (PE), Instituto Hidrográfico de la Marina (IHM), Ports de la Generalitat, etc. Three Begur Cape experiences on radar altimeter calibration and marine geoid mapping made on 1999, 2000 and 2002 are overviewed. The marine geoid has been used to relate the coastal tide gauge data from l'Estartit harbour to off-shore altimetric data. The necessity to validate and calibrate the satellite's altimeter due to increasing needs in accuracy and long term integrity implies establishing calibration sites with enhanced ground based methods for sea level monitoring. A technical Spanish contribution to the calibration experience has been the design of GPS buoys and GPS catamaran taking in account the University of Colorado at Boulder and Senetosa/Capraia designs. Altimeter calibration is essential to obtain an absolute measure of sea level, as are knowing the instrument's drifts and bias. Specially designed tidegauges are necessary to improve the quality of altimetric data, preferably near the satellite track. Further, due to systematic differences a month instruments onboard different satellites, several in-situ calibrations are essentials to tie their systematic differences. L'Estartit tide gauge is a classical floating tide gauge set up in l'Estartit harbour (NE Spain) in 1990. It provides good quality information about the changes in the sea heights at centimetre level, that is the magnitude of the common tides in theMediterranean. In the framework of a Spanish Space Project, ref:ESP2001- 4534-PE, the instrumentation of sea level measurements as been improved by providing this site with a radar tide gauge and with a continuous GPS station nearby. This will have a significant incidence in the satellite altimeter calibration activities. The radar tide gauge with data recorder and transmitter is a Datamar 3000C with 26 GHz frequency, 1mm resolution, 8º beam width incorporating a GPS receiver for automatic clock synchronization and a Thales Navigation Internet-Enabled GPS Continuous Geodetic Reference Station (iCGRS) with a choke ring antenna. It is intended that the overall system will constitute a CGPS Station of the ESEAS (European Sea Level) and TIGA (GPS Tide Gauge Benchmark Monitoring) networks. A Partenavia P-68 airborne LIDAR campaign carrying an Optech Lidar ALT-3025 has been made in June 2007 to test the potential of Lidar to connect sea level measurements from tide gauges at the coast with satellite (as Jason-1 or Envisat) altimetry measurements offshore. The calibrated airborne Lidar can then be used over ocean to detect the sea surface height. In consequence, the objective is to check that the coastal sea level can be observed with GPS buoys and may be Lidar campaigns for get detailed regional geoid and sea surface topography models for referencing satellite altimeter measurements.
NASA Astrophysics Data System (ADS)
Adhikari, Surendra; Ivins, Erik R.; Larour, Eric
2016-03-01
A classical Green's function approach for computing gravitationally consistent sea-level variations associated with mass redistribution on the earth's surface employed in contemporary sea-level models naturally suits the spectral methods for numerical evaluation. The capability of these methods to resolve high wave number features such as small glaciers is limited by the need for large numbers of pixels and high-degree (associated Legendre) series truncation. Incorporating a spectral model into (components of) earth system models that generally operate on a mesh system also requires repetitive forward and inverse transforms. In order to overcome these limitations, we present a method that functions efficiently on an unstructured mesh, thus capturing the physics operating at kilometer scale yet capable of simulating geophysical observables that are inherently of global scale with minimal computational cost. The goal of the current version of this model is to provide high-resolution solid-earth, gravitational, sea-level and rotational responses for earth system models operating in the domain of the earth's outer fluid envelope on timescales less than about 1 century when viscous effects can largely be ignored over most of the globe. The model has numerous important geophysical applications. For example, we compute time-varying computations of global geodetic and sea-level signatures associated with recent ice-sheet changes that are derived from space gravimetry observations. We also demonstrate the capability of our model to simultaneously resolve kilometer-scale sources of the earth's time-varying surface mass transport, derived from high-resolution modeling of polar ice sheets, and predict the corresponding local and global geodetic signatures.
Zhang, Lei; Qin, Yan-wen; Ma, Ying-qun; Zhao, Yan-min; Shi, Yao
2014-09-01
The aim of this article was to explore the pollution level of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area. The contents and spatial distribution of As, Cd, Cr, Cu, Ph and Zn in surface water, suspended solids and surface sediments were analyzed respectively. The integrated pollution index and geoaccumulation index were used to evaluate the contamination degree of heavy metals in surface water and surface sediments respectively. The results indicated that the contents of heavy metals in surface water was in the order of Pb < Cu < Cd < Cr < As < Zn. The heavy metal contents in surface water increased from river to sea. Compared with the contents of heavy metals in surface water of the typical domestic estuary in China, the overall contents of heavy metals in surface water were at a higher level. The contents of heavy metals in suspended solids was in the order of Cd < Cu < As < Cr
Li, Lei; Zheng, Hongyuan; Wang, Tieyu; Cai, Minghong; Wang, Pei
2018-03-16
The bioaccumulative, persistent and toxic properties of long-chain perfluoroalkyl acids (PFAAs) resulted in strict regulations on PFAAs, especially in developed countries. Consequently, the industry manufacturing of PFAAs shifts from long-chain to short-chain. In order to better understand the pollution situation of PFAAs in marine environment under this new circumstance, the occurrence of 17 linear PFAAs was investigated in 30 surface seawater samples from the North Pacific to Arctic Ocean (123°E to 24°W, 32 to 82°N) during the sixth Chinese Arctic Expedition in 2014. Total concentrations of PFAAs (∑PFAAs) were between 346.9 pg per liter (pg/L) to 3045.3 pg/L. The average concentrations of ∑PFAAs decreased in the order of East China Sea (2791.4 pg/L, n = 2), Sea of Japan (East Sea) (832.8 pg/L, n = 6), Arctic Ocean (516.9 pg/L, n = 7), Chukchi Sea (505.2 pg/L, n = 4), Bering Sea (501.2 pg/L, n = 8) and Sea of Okhotsk (417.7 pg/L, n = 3). C4 to C9 perfluoroalkyl carboxylic acids (PFCAs) were detected in more than 80% of the surface water samples. Perfluorobutanoic acid (PFBA) was the most prevalent compound and perfluorooctanoic acid (PFOA) was the second abundant homolog. The concentration of individual PFAAs in the surface seawater of East China Sea was much higher than other sampling seas. As the spatial distribution of PFAAs in the marine environment was mainly influenced by the river inflow from the basin countries, which proved the large input from China. Furthermore, the marginal seas of China were found with the greatest burden of PFOA comparing the pollution level in surface seawater worldwide. PFBA concentration in the surrounding seas of China was also high, but distributed more evenly with an obvious increase in recent years. This large-scale monitoring survey will help the improvement and development of PFAAs regulations and management, where production shift should be taken into consideration. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Susanto, R. D.; Setiawan, A.; Zheng, Q.; Sulistyo, B.; Adi, T. R.; Agustiadi, T.; Trenggono, M.; Triyono, T.; Kuswardani, A.
2016-12-01
The seasonal variability of a full lifetime of Aquarius sea surface salinity time series from August 25, 2011 to June 7, 2015 is compared to salinity time series obtained from in situ observations in the Karimata Strait. The Karimata Strait plays dual roles in water exchange between the Pacific and the Indian Ocean. The salinity in the Karimata Strait is strongly affected by seasonal monsoon winds. During the boreal winter monsoon, northwesterly winds draws low salinity water from the South China Sea into the Java Sea and at the same time, the Java Sea receives an influx of the Indian Ocean water via the Sunda Strait. The Java Sea water will reduce the main Indonesian throughflow in the Makassar Strait. Conditions are reversed during the summer monsoon. Low salinity water from the South China Sea also controls the vertical structure of water properties in the upper layer of the Makassar Strait and the Lombok Strait. As a part of the South China Sea and Indonesian Seas Transport/Exchange (SITE) program, trawl resistance bottom mounted CTD was deployed in the Karimata Strait in mid-2010 to mid-2016 at water depth of 40 m. CTD casts during the mooring recoveries and deployments are used to compare the bottom salinity data. This in situ salinity time series is compared with various Aquarius NASA salinity products (the level 2, level 3 ascending and descending tracks and the seven-days rolling averaged) to check the consistency, correlation and statistical analysis. The preliminary results show that the seasonal variability of Aquarius salinity time series has larger amplitude variability compared to that of in situ data.
NASA Astrophysics Data System (ADS)
Nag, B.
2016-12-01
The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aims to take advantage of a merged C3M data (CALIPSO, CloudSat, CERES, and MODIS) product from the NASA's A-Train Series to explore the sea-ice and atmospheric conditions in the Arctic on a spatial coverage spanning 70N to 80N. This study is aimed at the interactions or the feedbacks processes among sea-ice, clouds and the atmosphere. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture and its impacts. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally. The effect of the marginal sea-ice cover becomes more and more pronounced in the winter. The seasonal variation of the dependence of the atmospheric moisture on the surface and the subsequent feedback effects is controlled by the atmospheric stability measured as a difference between the potential temperature at the surface and the 700hPa level. It is found that a stronger stability cover in the winter is responsible for the longwave cloud radiative feedback in winter which is missing during the summer. A regional analysis of the same suggests that most of the depiction of the variations observed is contributed from the North Atlantic region.
NASA Astrophysics Data System (ADS)
Rose, S. A.; Wrathall, D.
2017-12-01
Over the coming centuries and millennia, sea level rise will greatly redistribute global human population through displacement and migration. Sudden, large-scale displacement is extremely disruptive to society both for migrants and host communities, and there is a great scientific and policy need to anticipate where, when and how this could happen around sea level rise. We can meet these needs by examining how long-term coastal inundation of settlements has already occurred. Using two global geospatial data sets, the Global Human Settlement Layer and the Global Surface Water Layer, we examine the global spatial concentration of settlement inundation that occurred between 1990 and 2015. We focus on the eight sea level rise hotspots identified in Clark et al (2016), which include Bangladesh, Mekong Delta, Indonesia, Japan, Nile Delta, Philippines, and the US Mid-Atlantic and Gulf of Mexico, and examine areas of convergence between settlement loss density and negative population change. This analysis reveals specific areas of concern within vulnerable countries, and forms the basis for focused investigations of the long-term impact of coastal inundation on various migration systems. This analysis shows us how long-term sets of satellite derived data on human population can help anticipate how sea level rise will alter future patterns of human settlement and migration into the 21st century and beyond.
NASA Astrophysics Data System (ADS)
Adhikari, S.; Ivins, E. R.; Larour, E. Y.
2015-12-01
Perturbations in gravitational and rotational potentials caused by climate driven mass redistribution on the earth's surface, such as ice sheet melting and terrestrial water storage, affect the spatiotemporal variability in global and regional sea level. Here we present a numerically accurate, computationally efficient, high-resolution model for sea level. Unlike contemporary models that are based on spherical-harmonic formulation, the model can operate efficiently in a flexible embedded finite-element mesh system, thus capturing the physics operating at km-scale yet capable of simulating geophysical quantities that are inherently of global scale with minimal computational cost. One obvious application is to compute evolution of sea level fingerprints and associated geodetic and astronomical observables (e.g., geoid height, gravity anomaly, solid-earth deformation, polar motion, and geocentric motion) as a companion to a numerical 3-D thermo-mechanical ice sheet simulation, thus capturing global signatures of climate driven mass redistribution. We evaluate some important time-varying signatures of GRACE inferred ice sheet mass balance and continental hydrological budget; for example, we identify dominant sources of ongoing sea-level change at the selected tide gauge stations, and explain the relative contribution of different sources to the observed polar drift. We also report our progress on ice-sheet/solid-earth/sea-level model coupling efforts toward realistic simulation of Pine Island Glacier over the past several hundred years.
Contribution of climate-driven change in continental water storage to recent sea-level rise
Milly, P. C. D.; Cazenave, A.; Gennero, C.
2003-01-01
Using a global model of continental water balance, forced by interannual variations in precipitation and near-surface atmospheric temperature for the period 1981–1998, we estimate the sea-level changes associated with climate-driven changes in storage of water as snowpack, soil water, and ground water; storage in ice sheets and large lakes is not considered. The 1981–1998 trend is estimated to be 0.12 mm/yr, and substantial interannual fluctuations are inferred; for 1993–1998, the trend is 0.25 mm/yr. At the decadal time scale, the terrestrial contribution to eustatic (i.e., induced by mass exchange) sea-level rise is significantly smaller than the estimated steric (i.e., induced by density changes) trend for the same period, but is not negligibly small. In the model the sea-level rise is driven mainly by a downtrend in continental precipitation during the study period, which we believe was generated by natural variability in the climate system. PMID:14576277
Mangrove sedimentation and response to relative sea-level rise
Woodroffe, CD; Rogers, K.; Mckee, Karen L.; Lovelock, CE; Mendelssohn, IA; Saintilan, N.
2016-01-01
Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions influence mangrove distributions, primarily related to elevation and hydroperiod; this review considers how these adjust through time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks; tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon, but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas Surface Elevation Table-Marker Horizon measurements (SET-MH) provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in continuing decline in their extent throughout the tropics.
Contribution of climate-driven change in continental water storage to recent sea-level rise
Milly, P.C.D.; Cazenave, A.; Gennero, M.C.
2003-01-01
Using a global model of continental water balance, forced by interannual variations in precipitation and near-surface atmospheric temperature for the period 1981-1998, we estimate the sea-level changes associated with climate-driven changes in storage of water as snowpack, soil water, and ground water; storage in ice sheets and large lakes is not considered. The 1981-1998 trend is estimated to be 0.12 mm/yr, and substantial interannual fluctuations are inferred; for 1993-1998, the trend is 0.25 mm/yr. At the decadal time scale, the terrestrial contribution to eustatic (i.e., induced by mass exchange) sea-level rise is significantly smaller than the estimated steric (i.e., induced by density changes) trend for the same period, but is not negligibly small. In the model the sea-level rise is driven mainly by a downtrend in continental precipitation during the study period, which we believe was generated by natural variability in the climate system.
A Preliminary Assessment of the S-3A SRAL Performances in SAR Mode
NASA Astrophysics Data System (ADS)
Dinardo, Salvatore; Scharroo, Remko; Bonekamp, Hans; Lucas, Bruno; Loddo, Carolina; Benveniste, Jerome
2016-08-01
The present work aims to assess and characterize the S3-A SRAL Altimeter performance in closed-loop tracking mode and in open ocean conditions. We have processed the Sentinel-3 SAR data products from L0 until L2 using an adaptation of the ESRIN GPOD CryoSat-2 Processor SARvatore.During the Delay-Doppler processing, we have chosen to activate the range zero-padding option.The L2 altimetric geophysical parameters, that are to be validated, are the sea surface height above the ellipsoid (SSH), sea level anomaly (SLA), the significant wave height (SWH) and wind speed (U10), all estimated at 20 Hz.The orbit files are the POD MOE, while the geo- corrections are extracted from the RADS database.In order to assess the accuracy of the wave&wind products, we have been using an ocean wave&wind speed model output (wind speed at 10 meter high above the sea surface) from the ECMWF.We have made a first order approximation of the sea state bias as -4.7% of the SWH.In order to assess the precision performance of SRAL SAR mode, we compute the level of instrumental noise (range, wave height and wind speed) for different conditions of sea state.
Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn.
Harper, J; Humphrey, N; Pfeffer, W T; Brown, J; Fettweis, X
2012-11-08
Surface melt on the Greenland ice sheet has shown increasing trends in areal extent and duration since the beginning of the satellite era. Records for melt were broken in 2005, 2007, 2010 and 2012. Much of the increased surface melt is occurring in the percolation zone, a region of the accumulation area that is perennially covered by snow and firn (partly compacted snow). The fate of melt water in the percolation zone is poorly constrained: some may travel away from its point of origin and eventually influence the ice sheet's flow dynamics and mass balance and the global sea level, whereas some may simply infiltrate into cold snow or firn and refreeze with none of these effects. Here we quantify the existing water storage capacity of the percolation zone of the Greenland ice sheet and show the potential for hundreds of gigatonnes of meltwater storage. We collected in situ observations of firn structure and meltwater retention along a roughly 85-kilometre-long transect of the melting accumulation area. Our data show that repeated infiltration events in which melt water penetrates deeply (more than 10 metres) eventually fill all pore space with water. As future surface melt intensifies under Arctic warming, a fraction of melt water that would otherwise contribute to sea-level rise will fill existing pore space of the percolation zone. We estimate the lower and upper bounds of this storage sink to be 322 ± 44 gigatonnes and 1,289(+388)(-252) gigatonnes, respectively. Furthermore, we find that decades are required to fill this pore space under a range of plausible future climate conditions. Hence, routing of surface melt water into filling the pore space of the firn column will delay expansion of the area contributing to sea-level rise, although once the pore space is filled it cannot quickly be regenerated.
Quantifying Uncertainty in the Greenland Surface Mass Balance Elevation Feedback
NASA Astrophysics Data System (ADS)
Edwards, T.
2015-12-01
As the shape of the Greenland ice sheet responds to changes in surface mass balance (SMB) and dynamics, it affects the surface mass balance through the atmospheric lapse rate and by altering atmospheric circulation patterns. Positive degree day models include simplified representations of this feedback, but it is difficult to simulate with state-of-the-art models because it requires coupling of regional climate models with dynamical ice sheet models, which is technically challenging. This difficulty, along with the high computational expense of regional climate models, also drastically limits opportunities for exploring the impact of modelling uncertainties on sea level projections. We present a parameterisation of the SMB-elevation feedback in the MAR regional climate model that provides a far easier and quicker estimate than atmosphere-ice sheet model coupling, which can be used with any ice sheet model. This allows us to use ensembles of different parameter values and ice sheet models to assess the effect of uncertainty in the feedback and ice sheet model structure on future sea level projections. We take a Bayesian approach to uncertainty in the feedback parameterisation, scoring the results from multiple possible "SMB lapse rates" according to how well they reproduce a MAR simulation with altered ice sheet topography. We test the impact of the resulting parameterisation on sea level projections using five ice sheet models forced by MAR (in turned forced by two different global climate models) under the emissions scenario A1B. The estimated additional sea level contribution due to the SMB-elevation feedback is 4.3% at 2100 (95% credibility interval 1.8-6.9%), and 9.6% at 2200 (3.6-16.0%).
Sea Surface Temperature and Ocean Color Variability in the South China Sea
NASA Astrophysics Data System (ADS)
Conaty, A. P.
2001-12-01
The South China Sea is a marginal sea in the Southeast Asian region whose surface circulation is driven by monsoons and whose surface currents have complex seasonal patterns. Its rich natural resources and strategic location have made its small islands areas of political dispute among the neighboring nations. This study aims to show the seasonal and interannual variability of sea surface temperature and ocean color in South China Sea. It makes use of NOAA's Advanced Very High Resolution Radiometer (AVHRR) satellite data sets on sea surface temperature for the period 1981-2000 and NASA's Nimbus-7 Coastal Zone Color Scanner (CZCS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite data sets on pigment concentration (ocean color) for the period 1981-1996 and 1997-2000, respectively. Transect lines were drawn along several potential hotspot areas to show the variability in sea surface temperature and pigment concentration through time. In-situ data on sea surface temperature along South China Sea were likewise plotted to see the variability with time. Higher seasonal variability in sea surface temperature was seen at higher latitudes. Interannual variability was within 1-3 Kelvin. In most areas, pigment concentration was higher during northern hemisphere winter and autumn, after the monsoon rains, with a maximum of 30 milligrams per cubic meter.
Sea Level Rise in the 21st Century: Will projections ever become reliable?
NASA Astrophysics Data System (ADS)
Willis, J. K.
2014-12-01
Global sea level rise has the potential to become one of the most costly and least well predicted impacts of human caused climate change. Unlike global surface temperature, the spread of possible scenarios (as little as 1 foot and as much as 6 feet by 2100) is not due to uncertainty about future rates of greenhouse gas emissions, but rather by a fundamental lack of knowledge about how the major ice sheets will behave in a warming climate. Clearly improved projections of sea level rise should become a major research priority in the next decade. At present, controversial techniques based on comparison with historical analogs and rates of recent warming and sea level rise are often used to create projections for the 21st Century. However, many in the scientific community feel that reliable projections must be based on a sound knowledge of the physics governing sea level rise, and particularly ice sheet behavior. In particular, large portions of the West Antarctic Ice Sheet and parts of the Greenland Ice Sheet rest on solid earth that sits below sea level. These regions may be threatened, not by atmospheric warming or changes in precipitation, but rather by direct forcing from the ocean. Fledgling efforts to understand these ocean ice interactions are already underway, as are efforts to make improved models of ice sheet behavior. However a great deal of work is still needed before widely accepted projections of sea level rise become a reality. This paper will highlight the hurdles to making such projections today and suggest ways forward in this critical area of research.
Energy Balance, Evapo-transpiration and Dew deposition in the Dead Sea Valley
NASA Astrophysics Data System (ADS)
Metzger, Jutta; Corsmeier, Ulrich
2016-04-01
The Dead Sea is a unique place on earth. It is a terminal hypersaline lake, located at the lowest point on earth with a lake level of currently -429 m above mean sea level (amsl). It is located in a transition zone of semiarid to arid climate conditions, which makes it highly sensible to climate change (Alpert1997, Smiatek2011). The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric hydrological, and lithospheric processes in the changing environment of the Dead Sea. At the moment the most prominent environmental change is the lake level decline of approximately 1 m / year due to anthropogenic interferences (Gertman, 2002). This leads to noticeable changes in the fractions of the existing terrestrial surfaces - water, bare soil and vegetated areas - in the valley. Thus, the partitioning of the net radiation in the valley changes as well. To thoroughly study the atmospheric and hydrological processes in the Dead Sea valley, which are driven by the energy balance components, sound data of the energy fluxes of the different surfaces are necessary. Before DESERVE no long-term monitoring network simultaneously measuring the energy balance components of the different surfaces in the Dead Sea valley was available. Therefore, three energy balance stations were installed at three characteristic sites at the coast-line, over bare soil, and within vegetation, measuring all energy balance components by using the eddy covariance method. The results show, that the partitioning of the energy into sensible and latent heat flux on a diurnal scale is totally different at the three sites. This results in gradients between the sites, which are e.g. responsible for the typical diurnal wind systems at the Dead Sea. Furthermore, driving forces of evapo-transpiration at the sites were identified and a detailed analysis of the daily evaporation and dew deposition rates for a whole annual cycle will be presented. Alpert, P., Shafir, H., & Issahary, D. (1997). Recent changes in the climate at the Dead Sea-a preliminary study. Climatic Change, 37(3), 513-537. Gertman, I., & Hecht, A. (2002). The Dead Sea hydrography from 1992 to 2000. Journal of marine systems, 35(3), 169-181. Smiatek, G., Kunstmann, H., & Heckl, A. (2011). High-resolution climate change simulations for the Jordan River area. Journal of Geophysical Research: Atmospheres (1984-2012), 116(D16).
Eddy-induced Sea Surface Salinity changes in the tropical Pacific
NASA Astrophysics Data System (ADS)
Delcroix, T. C.; Chaigneau, A.; Soviadan, D.; Boutin, J.
2017-12-01
We analyse the Sea Surface Salinity (SSS) signature of westward propagating mesoscale eddies in the tropical Pacific by collocating 5 years (2010-2015) of SMOS (Soil Moisture and Ocean Salinity) SSS and altimetry-derived sea level anomalies. The main characteristics of mesoscale eddies are first identified in SLA maps. Composite analyses in the Central and Eastern ITCZ regions then reveal regionally dependent impacts with opposite SSS anomalies for the cyclonic and anticyclonic eddies. In the Central region (where we have the largest meridional SSS gradient), we found dipole-like SSS changes with maximum anomalies on the leading edge of the eddy. In the Eastern region (where we have the largest near-surface vertical salinity gradient) we found monopole-like SSS changes with maximum anomalies in the eddy centre. These dipole/monopole patterns and the rotational sense of eddies suggest the dominant role of horizontal and vertical advection in the Central and Eastern ITCZ regions, respectively.
Talas, Ezgi; Duman, Muhammet; Küçüksezgin, Filiz; Brennan, Michael L; Raineault, Nicole A
2015-06-15
Investigations carried out on surface sediments collected from the Anaximander mud volcanoes in the Eastern Mediterranean Sea to determine sedimentary and geochemical properties. The sediment grain size distribution and geochemical contents were determined by grain size analysis, organic carbon, carbonate contents and element analysis. The results of element contents were compared to background levels of Earth's crust. The factors that affect element distribution in sediments were calculated by the nine push core samples taken from the surface of mud volcanoes by the E/V Nautilus. The grain size of the samples varies from sand to sandy silt. Enrichment and Contamination factor analysis showed that these analyses can also be used to evaluate of deep sea environmental and source parameters. It is concluded that the biological and cold seep effects are the main drivers of surface sediment characteristics from the Anaximander mud volcanoes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea
NASA Astrophysics Data System (ADS)
Bi, X.; Huang, J.; Gao, Z.; Liu, Y.
2017-12-01
This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.
Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.A
Cahoon, D.R.; Lynch, J.C.
1997-01-01
Simultaneous measurements of vertical accretion from artificial soil marker horizons and soil elevation change from sedimentation-erosion table (SET) plots were used to evaluate the processes related to soil building in range, basin, and overwash mangrove forests located in a low-energy lagoon which recieves minor inputs of terregenous sediments. Vertical accretion measures reflect the contribution of surficial sedimentation (sediment deposition and surface root growth). Measures of elevation change reflect not only the contributions of vertical accretion but also those of subsurface processes such as compaction, decomposition and shrink-swell. The two measures were used to calculate amounts of shallow subsidence (accretion minus elevation change) in each mangrove forest. The three forest types represent different accretionary envrionments. The basin forest was located behind a natural berm. Hydroperiod here was controlled primarily by rainfall rather than tidal exchange, although the basin flooded during extreme tidal events. Soil accretion here occurred primarily by autochthonous organic matter inputs, and elevation was controlled by accretion and shrink-swell of the substrate apparently related to cycles of flooding-drying and/or root growth-decomposition. This hydrologically-restricted forest did not experience an accretion or elevation deficit relative to sea-level rise. The tidally dominated fringe and overwash island forests accreted through mineral sediment inputs bound in place by plant roots. Filamentous turf algae played an important role in stabilizing loose muds in the fringe forest where erosion was prevalent. Elevation in these high-energy environments was controlled not only by accretion but also by erosion and/or shallow subsidence. The rate of shallow subsidence was consistently 3-4 mm y-1 in the fringe and overwash island forests but was negligible in the basin forest. Hence, the vertical development of mangrove soils was influenced by both surface and subsurface processes and the procces controlling soil elevation differed among forest types. The mangrove ecosystem at Rookery Bay has remained stable as sea level has risen during the past 70 years. Yet, lead-210 accretion data suggest a substantial accretion deficit has occurred in the past century (accretion was 10-20 cm < sea-level rise from 1930 to 1990) in the fringe and island forests at Rookery Bay. In contrast, our measures of elevation change mostly equalled the estimates of sea-level rise and shallow subsidence. These data suggest that (1) vertical accretion in this system is driven by local sea-level rise and shallow subsidence, and (2) the mangrove forests are mostly keeping pace with sea-level rise. Thus, the vulnerability of this mangrove ecosystem to sea-level rise is best described in terms of an elevation deficit (elevation change minus sea-level rise) based on annual measures rather than an accretion deficit (accretion minus sea-level rise) based on decadal measures.
Accurate Modelling of Surface Currents and Internal Tides in a Semi-enclosed Coastal Sea
NASA Astrophysics Data System (ADS)
Allen, S. E.; Soontiens, N. K.; Dunn, M. B. H.; Liu, J.; Olson, E.; Halverson, M. J.; Pawlowicz, R.
2016-02-01
The Strait of Georgia is a deep (400 m), strongly stratified, semi-enclosed coastal sea on the west coast of North America. We have configured a baroclinic model of the Strait of Georgia and surrounding coastal waters using the NEMO ocean community model. We run daily nowcasts and forecasts and publish our sea-surface results (including storm surge warnings) to the web (salishsea.eos.ubc.ca/storm-surge). Tides in the Strait of Georgia are mixed and large. The baroclinic model and previous barotropic models accurately represent tidal sea-level variations and depth mean currents. The baroclinic model reproduces accurately the diurnal but not the semi-diurnal baroclinic tidal currents. In the Southern Strait of Georgia, strong internal tidal currents at the semi-diurnal frequency are observed. Strong semi-diurnal tides are also produced in the model, but are almost 180 degrees out of phase with the observations. In the model, in the surface, the barotropic and baroclinic tides reinforce, whereas the observations show that at the surface the baroclinic tides oppose the barotropic. As such the surface currents are very poorly modelled. Here we will present evidence of the internal tidal field from observations. We will discuss the generation regions of the tides, the necessary modifications to the model required to correct the phase, the resulting baroclinic tides and the improvements in the surface currents.
Bibliography of Soviet Laser Developments, November-December 1987
1988-12-22
study plasma formation processes corresponding to different altitudes above sea level. CVSIJAZAt, 9th, Tuapse, 24-26 Sep 1986. Trudy. Part 2. IOA...V.M. (.Allowing for non-orthotropism in the reflection of radiation from the sea surface during remote measuring in the optical range. CVSLAZAt, 9th...445. Bondur,V.G.; Bor1sov,B.D.; Genin,V.N.; Kulakov,V.V.; Krutikov,V.A.; Murynin,A.B.; Tikhostup,M.T. (). Syste.m for optical ranging of the sea
Passive monitoring of a sea dike during a tidal cycle using sea waves as a seismic noise source
NASA Astrophysics Data System (ADS)
Joubert, Anaëlle; Feuvre, Mathieu Le; Cote, Philippe
2018-05-01
Over the past decade, ambient seismic noise has been used successfully to monitor various geological objects with high accuracy. Recently, it has been shown that surface seismic waves propagating within a sea dike body can be retrieved from the cross-correlation of ambient seismic noise generated by sea waves. We use sea wave impacts to monitor the response of a sea dike during a tidal cycle using empirical Green's functions. These are obtained either by cross-correlation or deconvolution, from signals recorded by sensors installed linearly on the crest of a dike. Our analysis is based on delay and spectral amplitude measurements performed on reconstructed surface waves propagating along the array. We show that localized variations of velocity and attenuation are correlated with changes in water level as a probable consequence of water infiltration inside the structure. Sea dike monitoring is of critical importance for safety and economic reasons, as internal erosion is generally only detected at late stages by visual observations. The method proposed here may provide a solution for detecting structural weaknesses, monitoring progressive internal erosion, and delineating areas of interest for further geotechnical studies, in view to understanding the erosion mechanisms involved.
NASA Astrophysics Data System (ADS)
Ji, Chenxu; Zhang, Yuanzhi; Cheng, Qiuming; Tsou, JinYeu; Jiang, Tingchen; Liang, X. San
2018-06-01
In this study, we analyze spatial and temporal sea surface temperature (SST) and chlorophylla (Chl-a) concentration in the East China Sea (ECS) during the period 2003-2016. Level 3 (4 km) monthly SST and Chl-a data from the Moderate Resolution Imaging Spectroradiometer Satellite (MODIS-Aqua) were reconstructed using the data interpolation empirical orthogonal function (DINEOF) method and used to evaluated the relationship between the two variables. The approaches employed included correlation analysis, regression analysis, and so forth. Our results show that certain strong oceanic SSTs affect Chl-a concentration, with particularly high correlation seen in the coastal area of Jiangsu and Zhejiang provinces. The mean temperature of the high correlated region was 18.67 °C. This finding may suggest that the SST has an important impact on the spatial distribution of Chl-a concentration in the ECS.
Atmospheric model development in support of SEASAT. Volume 2: Analysis models
NASA Technical Reports Server (NTRS)
Langland, R. A.
1977-01-01
As part of the SEASAT program of NASA, two sets of analysis programs were developed for the Jet Propulsion Laboratory. One set of programs produce 63 x 63 horizontal mesh analyses on a polar stereographic grid. The other set produces 187 x 187 third mesh analyses. The parameters analyzed include sea surface temperature, sea level pressure and twelve levels of upper air temperature, height and wind analyses. The analysis output is used to initialize the primitive equation forecast models.
Occurrence and Risk Assessment of PAHs in Surface Sediments from Western Arctic and Subarctic Oceans
Lin, Yan; Cai, Minggang; Zhang, Jingjing; Zhang, Yuanbiao; Kuang, Weiming; Liu, Lin; Huang, Peng; Ke, Hongwei
2018-01-01
In the fourth Chinese National Arctic Research Expedition (from July to September, 2010), 14 surface sediment samples were collected from the Bering Sea, Chukchi Sea, and Canadian Basin to examine the spatial distributions, potential sources, as well as ecological and health risk assessment of polycyclic aromatic hydrocarbons (PAHs). The ∑PAH (refers to the sum of 16 priority PAHs) concentration range from 27.66 ng/g to 167.48 ng/g (dry weight, d.w.). Additionally, the concentrations of ∑PAH were highest in the margin edges of the Canadian Basin, which may originate from coal combustion with an accumulation of Canadian point sources and river runoff due to the surface ocean currents. The lowest levels occurred in the northern of Canadian Basin, and the levels of ∑PAH in the Chukchi Sea were slightly higher than those in the Being Sea. Three isomer ratios of PAHs (Phenanthrene/Anthracene, BaA/(BaA+Chy), and LMW/HMW) were used to investigate the potential sources of PAHs, which showed the main source of combustion combined with weaker petroleum contribution. Compared with four sediment quality guidelines, the concentrations of PAH are much lower, indicating a low potential ecological risk. All TEQPAH also showed a low risk to human health. Our study revealed the important role of the ocean current on the redistribution of PAHs in the Arctic. PMID:29649142
Behavioral responses of Atlantic cod to sea temperature changes.
Freitas, Carla; Olsen, Esben Moland; Moland, Even; Ciannelli, Lorenzo; Knutsen, Halvor
2015-05-01
Understanding responses of marine species to temperature variability is essential to predict impacts of future climate change in the oceans. Most ectotherms are expected to adjust their behavior to avoid extreme temperatures and minimize acute changes in body temperature. However, measuring such behavioral plasticity in the wild is challenging. Combining 4 years of telemetry-derived behavioral data on juvenile and adult (30-80 cm) Atlantic cod (Gadus morhua), and in situ ocean temperature measurements, we found a significant effect of sea temperature on cod depth use and activity level in coastal Skagerrak. During summer, cod were found in deeper waters when sea surface temperature increased. Further, this effect of temperature was stronger on larger cod. Diel vertical migration, which consists in a nighttime rise to shallow feeding habitats, was stronger among smaller cod. As surface temperature increased beyond ∼15°C, their vertical migration was limited to deeper waters. In addition to larger diel vertical migrations, smaller cod were more active and travelled larger distances compared to larger specimens. Cold temperatures during winter tended, however, to reduce the magnitude of diel vertical migrations, as well as the activity level and distance moved by those smaller individuals. Our findings suggest that future and ongoing rises in sea surface temperature may increasingly deprive cod in this region from shallow feeding areas during summer, which may be detrimental for local populations of the species.
Behavioral responses of Atlantic cod to sea temperature changes
Freitas, Carla; Olsen, Esben Moland; Moland, Even; Ciannelli, Lorenzo; Knutsen, Halvor
2015-01-01
Understanding responses of marine species to temperature variability is essential to predict impacts of future climate change in the oceans. Most ectotherms are expected to adjust their behavior to avoid extreme temperatures and minimize acute changes in body temperature. However, measuring such behavioral plasticity in the wild is challenging. Combining 4 years of telemetry-derived behavioral data on juvenile and adult (30–80 cm) Atlantic cod (Gadus morhua), and in situ ocean temperature measurements, we found a significant effect of sea temperature on cod depth use and activity level in coastal Skagerrak. During summer, cod were found in deeper waters when sea surface temperature increased. Further, this effect of temperature was stronger on larger cod. Diel vertical migration, which consists in a nighttime rise to shallow feeding habitats, was stronger among smaller cod. As surface temperature increased beyond ∼15°C, their vertical migration was limited to deeper waters. In addition to larger diel vertical migrations, smaller cod were more active and travelled larger distances compared to larger specimens. Cold temperatures during winter tended, however, to reduce the magnitude of diel vertical migrations, as well as the activity level and distance moved by those smaller individuals. Our findings suggest that future and ongoing rises in sea surface temperature may increasingly deprive cod in this region from shallow feeding areas during summer, which may be detrimental for local populations of the species. PMID:26045957
Simulation of Wind-Driven Circulation in the Salton Sea: Implications for Indigenous Ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Chris B.; Orlob, Gerald T.; Huston, David W.
The Salton Sea Authority is seeking methods for reducing water levels and controlling salinity within ranges that will protect beneficial uses of the Sea, its adjacent lands, and its indigenous ecosystems. Proposed solutions include various physical changes in the bathymetry and configuration of the Sea. Because circulation in the Sea is driven primarily by wind stresses imposed on the water surface, and circulation changes are likely to affect the Sea?s quality and ecology, a methodology for quantifying the effects of specific alternatives is required. For this purpose a mathematical model for simulation of the hydrodynamic behavior of the Sea hasmore » been developed, calibrated to data gathered by a field investigation conducted in 1997, and applied to alternative schemes that will isolate sections of the southern basin. The Salton Sea Hydrodynamic/Water Quality Model is constructed using the finite element method to represent the bathymetry of the Sea in a three-dimensional grid. Given certain boundary conditions, for example wind stresses imposed on the surface, the model solves the three-dimensional equations of motion and continuity, the advection-dispersion equation, and an equation of state dependent upon temperature and salinity, to obtain temporal and spatial descriptions of velocities and temperatures over a specified period of time. The model successfully replicated principal features of the Sea's behavior, especially the persistence of a counterclockwise gyre in the southern basin and seasonal stratification. Once calibrated, the model was applied to evaluate the possible effects of changing water surface elevations in the Sea and altering its configuration to isolate sections for evaporative concentration of salts. These effects, evident in changes in velocity, were quantified with regard to their possible impacts on the aquatic habitat and the health of the Salton Sea ecology. A comparative evaluation of alternatives is presented.« less
Satellite Sea-surface Salinity Retrieval Dependencies
NASA Astrophysics Data System (ADS)
Bayler, E. J.; Ren, L.
2016-02-01
Comparing satellite sea-surface salinity (SSS) measurements and in situ observations reveals large-scale differences. What causes these differences? In this study, five boxes, sampling various oceanic regimes of the global ocean, provide insights on the relative performance of satellite SSS retrievals with respect to the influences of SST, precipitation and wind speed. The regions sampled are: the Inter-tropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), NASA's Salinity Processes of the Upper-ocean Regional Study (SPURS) area, the North Pacific subarctic region, and the southern Indian Ocean. This study examines satellite SSS data from NASA's Aquarius Mission and ESA's Soil Moisture - Ocean Salinity (SMOS) mission, specifically: Aquarius official Aquarius Data Processing System (ADPS) Level-2 data, experimental Aquarius Combined Active-Passive (CAP) Level-2 SSS data developed by NASA's Jet Propulsion Laboratory (JPL), and SMOS Level-2 data.
Contrasting Decadal-Scale Changes in Elevation and ...
Northeastern US salt marshes face multiple co-stressors, including accelerating rates of relative sea level rise (RSLR), elevated nutrient inputs, and low sediment supplies. In order to evaluate how marsh surface elevations respond to such factors, we used surface elevation tables (SETs) and surface elevation pins to measure changes in marsh surface elevation in two eastern Long Island Sound salt marshes, Barn Island and Mamacoke marshes. We compare marsh elevation change at these two systems with recent rates of RSLR and find evidence of differences between the two sites; Barn Island is maintaining its historic rate of elevation gain (2.3 ± 0.24 mm year−1 from 2003 to 2013) and is no longer keeping pace with RSLR, while Mamacoke shows evidence of a recent increase in rates (4.2 ± 0.52 mm year−1 from 1994 to 2014) to maintain its elevation relative to sea level. In addition to data on short-term elevation responses at these marshes, both sites have unusually long and detailed data on historic vegetation species composition extending back more than half a century. Over this study period, vegetation patterns track elevation change relative to sea levels, with the Barn Island plant community shifting towards those plants that are found at lower elevations and the Mamacoke vegetation patterns showing little change in plant composition. We hypothesize that the apparent contrasting trend in marsh elevation at the sites is due to differences in sediment a
Temporal variability of the Antarctic Ice sheet observed from space-based geodesy
NASA Astrophysics Data System (ADS)
Memin, A.; King, M. A.; Boy, J. P.; Remy, F.
2017-12-01
Quantifying the Antarctic Ice Sheet (AIS) mass balance still remains challenging as several processes compete to differing degrees at the basin scale with regional variations, leading to multiple mass redistribution patterns. For instance, analysis of linear trends in surface-height variations from 1992-2003 and 2002-2006 shows that the AIS is subject to decimetric scale variability over periods of a few years. Every year, snowfalls in Antarctica represent the equivalent of 6 mm of the mean sea level. Therefore, any fluctuation in precipitation can lead to changes in sea level. Besides, over the last decade, several major glaciers have been thinning at an accelerating rate. Understanding the processes that interact on the ice sheet is therefore important to precisely determine the response of the ice sheet to a rapid changing climate and estimate its contribution to sea level changes. We estimate seasonal and interannual changes of the AIS between January 2003 and October 2010 and to the end of 2016 from a combined analysis of surface-elevation and surface-mass changes derived from Envisat data and GRACE solutions, and from GRACE solutions only, respectively. While we obtain a good correlation for the interannual signal between the two techniques, important differences (in amplitude, phase, and spatial pattern) are obtained for the seasonal signal. We investigate these discrepancies by comparing the crustal motion observed by GPS and those predicted using monthly surface mass balance derived from the regional atmospheric climate model RACMO.
Land Surface Data Assimilation and the Northern Gulf Coast Land/Sea Breeze
NASA Technical Reports Server (NTRS)
Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske; Arnold, James E. (Technical Monitor)
2002-01-01
A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSU/NCAR MM5 V3-4 and applied on a 4-km domain for this particular application. It is recognized that a 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.
Application of Land Surface Data Assimilation to Simulations of Sea Breeze Circulations
NASA Technical Reports Server (NTRS)
Mackaro, Scott; Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske
2003-01-01
A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite- observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSUNCAR MM5 V3-5 and applied at spatial resolutions of 12- and 4-km. It is recognized that even 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.
Sea-level variability over the Common Era
NASA Astrophysics Data System (ADS)
Kopp, Robert; Horton, Benjamin; Kemp, Andrew; Engelhart, Simon; Little, Chris
2017-04-01
The Common Era (CE) sea-level response to climate forcing, and its relationship to centennial-timescale climate variability such as the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA), is fragmentary relative to other proxy-derived climate records (e.g. atmospheric surface temperature). However, the Atlantic coast of North America provides a rich sedimentary record of CE relative sea level with sufficient spatial and temporal resolution to inform mechanisms underlying regional and global sea level variability and their relationship to other climate proxies. This coast has a small tidal range, improving the precision of sea-level reconstructions. Coastal subsidence (from glacial isostatic adjustment, GIA) creates accommodation space that is filled by salt-marsh peat and preserves accurate and precise sea-level indicators and abundant material for radiocarbon dating. In addition to longer term GIA induced land-level change from ongoing collapse of the Laurentide forebulge, these records are ideally situated to capture climate-driven sea level changes. The western North Atlantic Ocean sea level is sensitive to static equilibrium effects from melting of the Greenland Ice Sheet, as well as large-scale changes in ocean circulation and winds. Our reconstructions reveal two distinct patterns in sea-level during the CE along the United States Atlantic coast: (1) South of Cape Hatteras, North Carolina, to Florida sea-level rise is essentially flat, with the record dominated by long-term geological processes until the onset of historic rates of rise in the late 19th century; (2) North of Cape Hatteras to Connecticut, sea level rise to maximum around 1000CE, a sea-level minimum around 1500 CE, and a long-term sea-level rise through the second half of the second millennium. The northern-intensified sea-level fall beginning 1000 is coincident with shifts toward persistent positive NAO-like atmospheric states inferred from other proxy records and is consistent with climate model simulations forced with sustained NAO-like heat fluxes. Changes in the wind-driven ocean circulation may also contribute to alongshore sea level variability over the CE. To reveal global mean sea level variability, we combine the salt-marsh data from North American Atlantic coast with tide-gauge records and other high resolution proxies from the northern and southern hemispheres. All reconstructions are from coasts that are tectonically stable and are based on four types of proxy archives (archaeological indicators, coral microatolls, salt marsh sediments and vermetid [mollusk] bioconstructions) that are best capable of capturing submeter-scale RSL changes. The database consists of reconstructions from Australasia (n = 2), Europe (n=5), Greenland (n = 3), North America (n = 6), the northern Gulf of Mexico (n = 3), the Mediterranean (n = 1), South Africa (n = 2), South America (n =2) and the South Pacific (n =3). We apply a noisy-input Gaussian process spatio-temporal modeling framework, which identifies a long-term falling global mean sea-level, interrupted in the middle of the 19th century by an acceleration yielding a 20th century rate of rise extremely likely (probability P = 0:95) faster than any previous century in the CE.
Surface Deformation and Gravity Changes from Surface and Internal Loads
NASA Technical Reports Server (NTRS)
Hager, Bradford H.; Fang, Ming
2002-01-01
Air and space borne remote sensing have made it possible to monitor the mass and energy transport at various scales within the cryosphere-hydrosphere-atmosphere system. The recent surface mass balance (the rate of net gain of snow and ice at a geographic point) map for the Antarctic ice sheet is constructed by interpolating sparse in situ observations (about 1,800 points) with empirically calibrated satellite data of passive back emission of microwaves. The digital elevation model obtained from satellite radar altimetry is used to improve the delineation of the ice flow drainage basins. As important as these results are, the uncertainty remains up to about 2 mm/yr of eustatic sea level change with the net imbalance. In other words, we are still unable to determine even the sign of the contribution of the Antarctic ice sheet to contemporary sea level change. The problem is more likely with the discharge rather than accumulation.
Agah, Homira; Mehdinia, Ali; Bastami, Kazem Darvish; Rahmanpour, Shirin
2017-02-15
In the present study, the concentrations and distribution of 16 polycyclic aromatic hydrocarbons (PAHs) in the water and surface sediments from the Chabahar Bay, Oman Sea, were investigated in May (premonsoon) and December (postmonsoon) 2012. The concentrations of PAHs in the surface water samples ranged from 1.7 to 2.8ngl -1 and from 0.04 to 59.6ngl -1 in pre- and postmonsoon, respectively. In general, the PAH levels of the water samples from Chabahar Bay were higher in postmonsoon than in premonsoon (p<0.05). The concentrations of PAHs in the sediment samples varied from undetectable levels to 92.8ngg -1 d.w. in both seasons. The seasonal comparison of the results in sediment samples showed that the overall concentration of PAH compounds was higher in the postmonsoon season (p<0.05). Copyright © 2016. Published by Elsevier Ltd.
Sea surface temperature of the coastal zones of France. Heat Capacity Mapping Mission (HCMM)
NASA Technical Reports Server (NTRS)
Deschamps, P. Y.; Frouin, R.; Cassanet, G.; Verger, F. (Principal Investigator)
1979-01-01
The author has identified the following significant results. HCMM data analysis shows some mesoscale features which were previously expected to occur: summer coastal upwellings in the Gulf of Lions, tidal fronts bordering the English Channel, and cooler surface waters at the continental shelf break. The analysis of the spectral variance density spectra show that the interpretation of the data usually is limited by the HCMM radiometric performance (noise levels) at wavenumbers below 5 km in the oceanic areas; from this analysis it may also be concluded that a decrease of the radiometric noise level down to 0.1 k against an increase of the ground resolution up to 2 km would give a better optimum of the radiometric performances in the oceanic areas. HCMM data appear to be useful for analysis of the sea surface temperature field, particularly in the very coastal area by profiting from the ground resolution of 500 m.
Cloud and boundary layer interactions over the Arctic sea-ice in late summer
NASA Astrophysics Data System (ADS)
Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.
2013-05-01
Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back trajectory analyses suggest that these warm airmasses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these airmasses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing processes kept the mixed layer in equilibrium with the near-surface environment. Rather than contributing buoyancy forcing for the mixed-layer dynamics, the surface instead simply appeared to respond to the mixed-layer processes aloft. Clouds in these cases often contained slightly higher condensed water amounts, potentially due to additional moisture sources from below.
Cloud and boundary layer interactions over the Arctic sea ice in late summer
NASA Astrophysics Data System (ADS)
Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.
2013-09-01
Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near-surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back-trajectory analyses suggest that these warm air masses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these air masses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing processes kept the mixed layer in equilibrium with the near-surface environment. Rather than contributing buoyancy forcing for the mixed-layer dynamics, the surface instead simply appeared to respond to the mixed-layer processes aloft. Clouds in these cases often contained slightly higher condensed water amounts, potentially due to additional moisture sources from below.
Collapse of the 2017 Winter Beaufort High: A Response to Thinning Sea Ice?
NASA Astrophysics Data System (ADS)
Moore, G. W. K.; Schweiger, A.; Zhang, J.; Steele, M.
2018-03-01
The winter Arctic atmosphere is under the influence of two very different circulation systems: extratropical cyclones travel along the primary North Atlantic storm track from Iceland toward the eastern Arctic, while the western Arctic is characterized by a quasi-stationary region of high pressure known as the Beaufort High. The winter (January through March) of 2017 featured an anomalous reversal of the normally anticyclonic surface winds and sea ice motion in the western Arctic. This reversal can be traced to a collapse of the Beaufort High as the result of the intrusion of low-pressure systems from the North Atlantic, along the East Siberian Coast, into the Arctic Basin. Thin sea ice as the result of an extremely warm autumn (October through December) of 2016 contributed to the formation of an anomalous thermal low over the Barents Sea that, along with a northward shift of the tropospheric polar vortex, permitted this intrusion. The collapse of the Beaufort High during the winter of 2017 was associated with simultaneous 2-sigma sea level pressure, surface wind, and sea ice circulation anomalies in the western Arctic. As the Arctic sea ice continues to thin, such reversals may become more common and impact ocean circulation, sea ice, and biology.
NASA Astrophysics Data System (ADS)
Mugisidi, Dan; Heriyani, Okatrina
2018-02-01
Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3), chloride, sodium, sulphate, and (KMnO4). In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.
2014-12-01
anticyclone. Vertical wind shear was low, while a moderate level of upper level diffluence existed. The minimum sea level pressure ( SLP ) was estimated...pre-Sinlaku disturbance. At this time, JTWC estimated maximum surface level winds to be 15 to 20 kt, with a SLP near 1005 hPa. 17 Figure 11...poleward side of the circulation. Surface winds had increased to near 23 kt as the SLP continued to fall to 1004 hPa. JTWC forecasters upgraded the
NASA Astrophysics Data System (ADS)
Nikitina, Daria; Kemp, Andrew; Horton, Benjamin; Van, Christopher; Potapova, Marina; Culver, Stephen; Repkina, Tatyana; Hill, David
2017-04-01
We investigated the utility of foraminifera, diatoms and bulk-sediment geochemistry (δ13C and parameters measured by RockEval pyrolysis) as sea-level indicators in Eurasian sub-Arctic salt marshes. At three salt marshes in Dvina Bay (White Sea, Russia), we collected surface sediment samples along transects sequentially crossing sub-tidal, tidal-flat, salt-marsh and Taiga forest environments. Foraminifera formed bipartite assemblages, where elevations below mean high higher water (MHHW) were dominated by Miliammina spp. and elevations between MHHW and the highest occurrence of foraminifera were dominated by Jadammina macrescens and Balticammina pseudomacrescens. Both assemblages existed on all three transects and we conclude that foraminifera are sea-level indicators in Eurasian sub-Arctic salt marshes. Five, high-diversity groups of diatoms were identified and they displayed geographic variability among the study sites (<15 km apart). RockEval pyrolysis and δ13C measurements recognized two groups (clastic-dominated environments below MHHW and organic-rich environments above MHHW). Since one group included sub-tidal elevations and the other supra-tidal elevations, we conclude that the measured geochemical parameters do not meet the criteria for being stand-alone sea-level indicators. Core JT2012 captured a regressive sediment sequence of clastic, tidal-flat sediment overlain by salt-marsh organic silt and freshwater peat. The salt-marsh sediment accumulated at 2804 ± 52 years BP years before present and preserved foraminifera (J. macrescens and B. pseudomacrescens) with a high degree of analogy to modern assemblages indicating that relative sea level was 2.60 ± 0.47 m above present at this time. Diatoms confirm that marine influence decreased through time, but the lack of analogy between modern and core assemblages limits their utility as sea-level indicators in this setting.
Effects of Sediment Loading in Northern Europe During the Last Glacial
NASA Astrophysics Data System (ADS)
van der Wal, W.; IJpelaar, M.
2014-12-01
Over the years the framework of GIA modelling has been subject to continuous improvements, e.g. the addition of time dependent coastal margins and rotational feedback. The latest addition to this framework is the incorporation of sediment as a time-varying surface load while accounting for sea-level variations associated with the sediment transport (Dalca et al., GJI 2013). The effects of sediment loading during a glacial cycle have not been extensively investigated even though it is known that large sediment transport took place, for example in the Barents Sea region and Fennoscandia. This study investigates the effect of sediment transport on relative sea level change and present-day rates of gravity and vertical deformation in those regions. While the ice sheet history during the last glacial period has been modelled extensively there are no full-scale models of paleo-erosion and -deposition rates for regions such as Fennoscandia. Here we create end-member paleo-sedimentary models by combining geological observations of continuous erosion and deposition and large scale failure events. These models, in combination with the ICE-5G ice sheet history, serve as an input for a GIA model for a spherically symmetric incompressible Earth with the full sea-level equation. The results from this model, i.e. (rates of) relative sea level change and crustal deformation, are obtained for different viscosity models fitting best with the local rheology of Fennoscandia. By comparing GPS measurements, GRACE observations and relative sea level records with these modelled predictions the effects of sedimentary isostasy in the Fennoscandian region are studied. The sediment load does not significantly affect the modelled relative sea level curves, nor vertical deformation rates at the location of GPS measurements. However, gravity rates over the Barents Sea region are influenced significantly
A numerical study of the South China Sea Warm Current during winter monsoon relaxation
NASA Astrophysics Data System (ADS)
Zhang, Cong; Ding, Yang; Bao, Xianwen; Bi, Congcong; Li, Ruixiang; Zhang, Cunjie; Shen, Biao; Wan, Kai
2018-03-01
Using a Finite-Volume Community Ocean Model, we investigated the dynamic mechanism of the South China Sea Warm Current (SCSWC) in the northern South China Sea (NSCS) during winter monsoon relaxation. The model reproduces the mean surface circulation of the NSCS during winter, while model-simulated subtidal currents generally capture its current pattern. The model shows that the current over the continental shelf is generally southwestward, under a strong winter monsoon condition, but a northeastward counter-wind current usually develops between 50-and 100-m isobaths, when the monsoon relaxes. Model experiments, focusing on the wind relaxation process, show that sea level is elevated in the northwestern South China Sea (SCS), related to the persistent northeasterly monsoon. Following wind relaxation, a high sea level band builds up along the mid-shelf, and a northeastward current develops, having an obvious vertical barotropic structure. Momentum balance analysis indicates that an along-shelf pressure gradient provides the initial driving force for the SCSWC during the first few days following wind relaxation. The SCSWC subsequently reaches a steady quasi-geostrophic balance in the cross-shelf direction, mainly linked to sea level adjustment over the shelf. Lagrangian particle tracking experiments show that both the southwestward coastal current and slope current contribute to the northeastward movement of the SCSWC during winter monsoon relaxation.
NASA Astrophysics Data System (ADS)
Rowley, David
2017-04-01
On a spherical Earth, the mean elevation ( -2440m) would be everywhere at a mean Earth radius from the center. This directly links an elevation at the surface to physical dimensions of the Earth, including surface area and volume that are at most very slowly evolving components of the Earth system. Earth's mean elevation thus provides a framework within which to consider changes in heights of Earth's solid surface as a function of time. In this paper the focus will be on long-term, non-glacially controlled sea level. Long-term sea level has long been argued to be largely controlled by changes in ocean basin volume related to changes in area-age distribution of oceanic lithosphere. As generally modeled by Pitman (1978) and subsequent workers, the age-depth relationship of oceanic lithosphere, including both the ridge depth and coefficients describing the age-depth relationship are assumed constant. This paper examines the consequences of adhering to these assumptions when placed within the larger framework of maintaining a constant mean radius of the Earth. Self-consistent estimates of long-term sea level height and changes in mean depth of the oceanic crust are derived from the assumption that the mean elevation and corresponding mean radius are unchanging aspects of Earth's shorter-term evolution. Within this context, changes in mean depth of the oceanic crust, corresponding with changes in mean age of the oceanic lithosphere, acting over the area of the oceanic crust represent a volume change that is required to be balanced by a compensating equal but opposite volume change under the area of the continental crust. Models of paleo-cumulative hypsometry derived from a starting glacial isostatic adjustment (GIA)-corrected ice-free hypsometry that conserve mean elevation provide a basis for understanding how these compensating changes impact global hypsometry and particularly estimates of global mean shoreline height. Paleo-shoreline height and areal extent of flooding can be defined as the height and corresponding cumulative area of the solid surface of the Earth at which the integral of area as a function of elevation, from the maximum depth upwards, equals the volume of ocean water filling it with respect to cumulative paleo-hypsometry. Present height of the paleo-shoreline is the height on the GIA-corrected cumulative hypsometry at an area equal to the areal extent of flooding. Paleogeographic estimates of global extent of ocean flooding from the Middle Jurassic to end Eocene, when combined with conservation of mean elevation and ocean water volume allow an explicit estimate of the paleo-height and present height of the paleo-shoreline. The best-fitting estimate of present height of the paleo-shoreline, equivalent to a long-term "eustatic" sea level curve, implies very modest (25±22m) changes in long-term sea level above the ice-free sea level height of +40m. These, in turn, imply quite limited changes in mean depth of the oceanic crust (15±11m), and mean age of the oceanic lithosphere ( 62.1±2.4 my) since the Middle Jurassic.
NASA Technical Reports Server (NTRS)
Myint, S. W.; Walker, N. D.
2002-01-01
The ability to quantify suspended sediment concentrations accurately over both time and space using satellite data has been a goal of many environmental researchers over the past few decades This study utilizes data acquired by the NOAA Advanced Very High Resolution Radiometer (AVHRR) and the Orbview-2 Sea-viewing wide field-of-view (SeaWiFS) ocean colour sensor, coupled with field measurements to develop statistical models for the estimation of near-surface suspended sediment and suspended solids "Ground truth" water samples were obtained via helicopter, small boat and automatic water sampler within a few hours of satellite overpasses The NOAA AVHRR atmospheric correction was modified for the high levels of turbidity along the Louisiana coast. Models were developed based on the field measurements and reflectance/radiance measurements in the visible and near infrared Channels of NOAA-14 and Orbview-2 SeaWiFS. The best models for predicting surface suspended sediment concentrations were obtained with a NOAA AVHRR Channel 1 (580-680nm) cubic model, Channel 2 (725-1100 nm) linear mod$ and SeaWiFs Channel 6 (660-68Onm) power modeL The suspended sediment models developed using SeaWiFS Channel 5 (545-565 nm) were inferior, a result that we attribute mainly to the atmospheric correction technique, the shallow depth of the water samples and absorption effects from non-sediment water constituents.
Dialogue on Climate, Water, Energy and Human Security in Africa
2014-07-01
winter periods. The influence of the ocean mass on the coastal areas can be seen, with slightly lower increases in average temperatures. Figure 1...adaptation 1 1’ ~ + -foradaptllion m \\...A..AJ to reduce risk .... :’\\: " -••• \\ Warming Extreme Extreme Damaging Ocean Sea surface I Precipitation Sea...level Risk level with Risk level with trend temperature precipitation cyclone acidification temperature high adaptation cuJTentadaptation Institutions
He, Min; Hu, Yongxiang; Huang, Jian Ping; Stamnes, Knut
2016-12-26
There are considerable demands for accurate atmospheric correction of satellite observations of the sea surface or subsurface signal. Surface and sub-surface reflection under "clear" atmospheric conditions can be used to study atmospheric correction for the simplest possible situation. Here "clear" sky means a cloud-free atmosphere with sufficiently small aerosol particles. The "clear" aerosol concept is defined according to the spectral dependence of the scattering cross section on particle size. A 5-year combined CALIPSO and AMSR-E data set was used to derive the aerosol optical depth (AOD) from the lidar signal reflected from the sea surface. Compared with the traditional lidar-retrieved AOD, which relies on lidar backscattering measurements and an assumed lidar ratio, the AOD retrieved through the surface reflectance method depends on both scattering and absorption because it is based on two-way attenuation of the lidar signal transmitted to and then reflected from the surface. The results show that the clear sky AOD derived from the surface signal agrees with the clear sky AOD available in the CALIPSO level 2 database in the westerly wind belt located in the southern hemisphere, but yields significantly higher aerosol loadings in the tropics and in the northern hemisphere.
Parker, Garald G.; Ferguson, G.E.; Love, S.K.
1955-01-01
The circulation of water, in any form, from the surface of the earth to the atmosphere and back again is called the hydrologic cycle. A comprehensive study of the water resources of any area must, therefore, include data on the climate of the area. The humid subtropical climate of southeast Florida is characterized by relatively high temperatures, alternating semi-annual wet and dry season, and usually light put persistent winds. The recurrence of drought in an area having relatively large rainfall such as southeastern Florida indicates that the agencies that remove water are especially effective. Two of the most important of the agencies associated with climate are evaporation and transpiration, or 'evapotranspiraton'. Evaporation losses from permanent water areas are believed to average between 40 and 45 inches per year. Over land areas indirect methods much be used to determine losses by evapotranspiration; necessarily, there values are not precise. Because of their importance in the occurrence and movement of both surface and ground waters, detailed studies were made of the geology and geomorphology of southern Florida. As a result of widespread crustal movements, southern Florida emerged from the sea in later Pliocene time and probably was slightly tilted to the west. At the beginning of the Pleistocene the continent emerged still farther as a result of the lowering of sea level attending the first widespread glaciation. During this epoch, south Florida may have stood several hundred feet above sea level. During the interglacial ages the sea repeatedly flooded southern Florida. The marine members of the Fort Thompson formation in the Lake Okeechobee-Everglades depression and the Calossahatchee River Valley apparently are the deposits of the interglacial invasions by the sea. The fresh-water marls, sands, and organic deposits of the Fort Thompson formation appear to have accumulated during glacial ages when seas level was low and the area was a land surface partly occupied by fresh-water lakes and marshes. Elsewhere in southern Florida the deposits are mainly limestone and sandy terrace deposits. The Pliocene surface upon which there Pleistocene sediments were deposited was highest to the north and west of the present Everglades and Kissimmee River basin, and it sloped gently to the south, southeast, and east. On this slightly sloping floor, alternately submerged and emerged, the later materials were built; these materials, modified by wind, rain, and surface and ground waters. Have largely determined the present topographic and ecologic character of southern Florida. The most important aquifer in southern Florida, and the one in which most of the wells are developed, is the Biscayne aquifer. It is composed of parts of the Tamiami formation (Miocene), Caloosahatchee marl (Pliocene), fort Thompson formation, Anastasia formation, Key Largo limestone, Miami oolite, and Pamlico sand (Pleistoncene). In some parts of southern Florida, the Pamlico sand and the Anastasia formation are not a part of the Biscayne aquifer; however, they are utilized in the development of small water supplies. Most of the Calossahatchee marl and the Fort Thompson formation in the Lake Okeechobeee area is of very low permeability. In the northern Everglades their less permeable parts contain highly mineralized waters, which appear to have been trapped since the invasions by the Pleistocene seas. These waters have been modified by dilution with fresh ground water and by chemical reactions with surrounding materials. Sea-level fluctuations, starting at the close of the Pliocene with highest levels and progressing toward the Recent with successively lower levels. Have built a series of nearly flat marine terraces abutting against one another much like a series of broad stairsteps. Erosion and solution have deface and, in places, have obliterated the original surficial forms of these old sea bottoms, shores, and shoreline feathers,
Zhao, Zhen; Tang, Jianhui; Mi, Lijie; Tian, Chongguo; Zhong, Guangcai; Zhang, Gan; Wang, Shaorui; Li, Qilu; Ebinghaus, Ralf; Xie, Zhiyong; Sun, Hongwen
2017-12-01
Polyfluoroalkyl and perfluoroalkyl substances (PFASs), in the forms of neutral polyfluoroalkyl substances in the gas phase of air and ionic perfluoroalkyl substances in the dissolved phase of surface water, were investigated during a sampling campaign in the Bohai Sea, Yellow Sea, and Yangtze River estuary in May 2012. In the gas phase, the concentrations of neutral ∑PFASs were within the range of 76-551pg/m 3 . Higher concentrations were observed in the South Yellow Sea. 8:2 fluorotelomer alcohol (FTOH) was the predominant compound as it accounted for 92%-95% of neutral ∑PFASs in all air samples. Air mass backward trajectory analysis indicated that neutral ∑PFASs came mainly from the coast of the Yellow Sea, including the Shandong, Jiangsu, and Zhejiang provinces of China, and the coastal region of South Korea. The fluxes of gas phase dry deposition were simulated for neutral PFASs, and neutral ∑PFASs fluxes varied from 0.37 to 2.3pg/m 2 /s. In the dissolved phase of the surface water, concentrations of ionic ∑PFASs ranged from 1.6 to 118ng/L, with the Bohai Sea exhibiting higher concentrations than both the Yellow Sea and the Yangtze River estuary. Perfluorooctanoic acid (PFOA) was the predominant compound accounting for 51%-90% of the ionic ∑PFAS concentrations. Releases from industrial and domestic activities as well as the semiclosed geographical conditions increased the level of ionic ∑PFASs in the Bohai Sea. The spatial distributions of perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs) were different significantly. The Laizhou Bay was the major source region of PFCAs and the Yangtze River estuary was the major source of PFSAs. Copyright © 2017 Elsevier B.V. All rights reserved.
A global low order spectral model designed for climate sensitivity studies
NASA Technical Reports Server (NTRS)
Hanna, A. F.; Stevens, D. E.
1984-01-01
A two level, global, spectral model using pressure as a vertical coordinate is developed. The system of equations describing the model is nonlinear and quasi-geostrophic. A moisture budget is calculated in the lower layer only with moist convective adjustment between the two layers. The mechanical forcing of topography is introduced as a lower boundary vertical velocity. Solar forcing is specified assuming a daily mean zenith angle. On land and sea ice surfaces a steady state thermal energy equation is solved to calculate the surface temperature. Over the oceans the sea surface temperatures are prescribed from the climatological average of January. The model is integrated to simulate the January climate.
NASA Astrophysics Data System (ADS)
Grant, K. M.; Grimm, R.; Mikolajewicz, U.; Marino, G.; Ziegler, M.; Rohling, E. J.
2016-05-01
The Mediterranean basin is sensitive to global sea-level changes and African monsoon variability on orbital timescales. Both of these processes are thought to be important to the deposition of organic-rich sediment layers or 'sapropels' throughout the eastern Mediterranean, yet their relative influences remain ambiguous. A related issue is that an assumed 3-kyr lag between boreal insolation maxima and sapropel mid-points remains to be tested. Here we present new geochemical and ice-volume-corrected planktonic foraminiferal stable isotope records for sapropels S1 (Holocene), S3, S4, and S5 (Marine Isotope Stage 5) in core LC21 from the southern Aegean Sea. The records have a radiometrically constrained chronology that has already been synchronised with the Red Sea relative sea-level record, and this allows detailed examination of the timing of sapropel deposition relative to insolation, sea-level, and African monsoon changes. We find that sapropel onset was near-synchronous with monsoon run-off into the eastern Mediterranean, but that insolation-sapropel/monsoon phasings were not systematic through the last glacial cycle. These latter phasings instead appear to relate to sea-level changes. We propose that persistent meltwater discharges into the North Atlantic (e.g., at glacial terminations) modified the timing of sapropel deposition by delaying the timing of peak African monsoon run-off. These observations may reconcile apparent model-data offsets with respect to the orbital pacing of the African monsoon. Our observations also imply that the previous assumption of a systematic 3-kyr lag between insolation maxima and sapropel midpoints may lead to overestimated insolation-sapropel phasings. Finally, we surmise that both sea-level rise and monsoon run-off contributed to surface-water buoyancy changes at times of sapropel deposition, and their relative influences differed per sapropel case, depending on their magnitudes. Sea-level rise was clearly important for sapropel S1, whereas monsoon forcing was more important for sapropels S3, S4, and S5.
Benthic foraminifera as indicators of pollution in high latitude marine environments
NASA Astrophysics Data System (ADS)
Dijkstra, N.; Junttila, J.; Husum, K.; Carroll, J.; Klitgaard-Kristensen, D.; Hald, M.
2012-04-01
An increasing number of studies demonstrate the potential of benthic foraminifera to characterize ecological status. However, the use of benthic foraminifera as bio-indicators has previously not been tested in high latitudes. This research contributes to the development of foraminifera as a bio-monitoring technique for the Arctic region, as industrial activities in this region will increase in the coming years. Surface sediments (0-1 cm) from sites close to gas fields in the SW Barents Sea were studied. In addition, to elucidate the range from less to very affected, surface sediments from the harbor of the town of Hammerfest (70° N) were studied. At least 300 living benthic foraminifera from the size fraction 100 µm-1 mm were counted and identified at species level. Pollution levels (heavy metals and persistent organic pollutants) and sediment properties (grainsize and TOC) were also analyzed. Pollution levels at the sea floor in the SW Barents Sea are of background to good level (level I-II) according to the definitions by the Water Framework Directorate (WFD). Benthic foraminiferal assemblages are influenced by natural environmental parameters such as water mass properties, water depth, nutrient availability, bottom current strength, and grain size. Surface sediments from the Hammerfest harbor are of moderate environmental status (WFD level II-III) based on heavy metal concentrations and of bad environmental status (WFD IV-V) based on persistent organic pollutant concentrations. Opportunistic benthic foraminifera are dominating the assemblages. The most polluted areas in the harbor are barren for foraminifera or have high amounts of deformed shells. In both environments the foraminiferal diversity of the samples, does not correspond to expected environmental status based on the pollution levels of the sediments. Environmental status classes, based on benthic foraminifera instead of macrofauna, would allow rapid analyses of the environmental impact of pollution.
Nugraha, Andri Dian; Indrastuti, Novianti; Kusnandar, Ridwan; Gunawan, Hendra; McCausland, Wendy A.; Aulia, Atin Nur; Harlianti, Ulvienin
2018-01-01
We conducted travel time tomography using P- and S-wave arrival times of volcanic-tectonic (VT) events that occurred between November and December 2013 to determine the three-dimensional (3D) seismic velocity structure (Vp, Vs, and Vp/Vs) beneath Sinabung volcano, Indonesia in order to delineate geological subsurface structure and to enhance our understanding of the volcanism itself. This was a time period when phreatic explosions became phreatomagmatic and then magma migrated to the surface forming a summit lava dome. We used 4846 VT events with 16,138 P- and 16,138 S-wave arrival time phases recorded by 6 stations for the tomographic inversion. The relocated VTs collapse into three clusters at depths from the surface to sea level, from 2 to 4 km below sea level, and from 5 to 8.5 km below sea level. The tomographic inversion results show three prominent regions of high Vp/Vs (~ 1.8) beneath Sinabung volcano at depths consistent with the relocated earthquake clusters. We interpret these anomalies as intrusives associated with previous eruptions and possibly surrounding the magma conduit, which we cannot resolve with this study. One anomalous region might contain partial melt, at sea level and below the eventual eruption site at the summit. Our results are important for the interpretation of a conceptual model of the “plumbing system” of this hazardous volcano.
Distribution and ventilation of water masses in the western Ross Sea inferred from CFC measurements
NASA Astrophysics Data System (ADS)
Rivaro, Paola; Ianni, Carmela; Magi, Emanuele; Massolo, Serena; Budillon, Giorgio; Smethie, William M.
2015-03-01
During the CLIMA Project (R.V. Italica cruise PNRA XVI, January-February 2001), hydrographic and chlorofluorocarbons (CFCs) observations were obtained, particularly in the western Ross Sea. Their distribution demonstrated water mass structure and ventilation processes in the investigated areas. In the surface waters (AASW) the CFC saturation levels varied spatially: CFCs were undersaturated in all the areas (range from 80 to 90%), with the exception of few stations sampled near Ross Island. In particular, the Terra Nova Bay polynya, where high salinity shelf water (HSSW) is produced, was a low-saturated surface area (74%) with respect to CFCs. Throughout most of the shelf area, the presence of modified circumpolar deep water (MCDW) was reflected in a mid-depth CFC concentration minima. Beneath the MCDW, CFC concentrations generally increased in the shelf waters towards the seafloor. We estimated that the corresponding CFCs saturation level in the source water region for HSSW was about 68-70%. Waters with high CFC concentrations were detected in the western Ross Sea on the down slope side of the Drygalski Trough, indicating that AABW was being supplied to the deep Antarctic Basin. Estimates of ventilation ages depend strongly on the saturation levels. We calculated ventilation ages using the saturation level calibrated tracer ratio, CFC11/CFC12. We deduced a mean residence time of the shelf waters of about 6-7 years between the western Ross Sea source and the shelf break.
Coral ages and island subsidence, Hilo drill hole
Moore, J.G.; Ingram, B.L.; Ludwig, K. R.; Clague, D.A.
1996-01-01
A 25.8-m-thick sedimentary section containing coral fragments occurs directly below a surface lava flow (the ???1340 year old Panaewa lava flow) at the Hilo drill hole. Ten coral samples from this section dated by accelerator mass spectrometry (AMS) radiocarbon and five by thermal infrared multispectral scanner (TIMS) 230Th/U methods show good agreement. The calcareous unit is 9790 years old at the bottom and 1690 years old at the top and was deposited in a shallow lagoon behind an actively growing reef. This sedimentary unit is underlain by a 34-m-thick lava flow which in turn overlies a thin volcaniclastic silt with coral fragments that yield a single 14C date of 10,340 years. The age-depth relations of the dated samples can be compared with proposed eustatic sea level curves after allowance for island subsidence is taken. Island subsidence averages 2.2 mm/yr for the last 47 years based on measurements from a tide gage near the drill hole or 2.5-2.6 mm/yr for the last 500,000 years based on the ages and depths of a series of drowned coral reefs offshore from west Hawaii. The age-depth measurements of coral fragments are more consistent with eustatic sea levels as determined by coral dating at Barbados and Albrolhos Islands than those based on oxygen isotopic data from deep sea cores. The Panaewa lava flow entered a lagoon underlain by coral debris and covered the drill site with 30.9 m of lava of which 11 m was above sea level. This surface has now subsided to 4.2 m above sea level, but it demonstrates how a modern lava flow entering Hilo Bay would not only change the coastline but could extensively modify the offshore shelf.
NASA Technical Reports Server (NTRS)
Ballabrera-Poy, J.; Busalacchi, A.; Murtugudde, R.
2000-01-01
A reduced order Kalman Filter, based on a simplification of the Singular Evolutive Extended Kalman (SEEK) filter equations, is used to assimilate observed fields of the surface wind stress, sea surface temperature and sea level into the nonlinear coupled ocean-atmosphere model of Zebiak and Cane. The SEEK filter projects the Kalman Filter equations onto a subspace defined by the eigenvalue decomposition of the error forecast matrix, allowing its application to high dimensional systems. The Zebiak and Cane model couples a linear reduced gravity ocean model with a single vertical mode atmospheric model of Zebiak. The compatibility between the simplified physics of the model and each observed variable is studied separately and together. The results show the ability of the model to represent the simultaneous value of the wind stress, SST and sea level, when the fields are limited to the latitude band 10 deg S - 10 deg N In this first application of the Kalman Filter to a coupled ocean-atmosphere prediction model, the sea level fields are assimilated in terms of the Kelvin and Rossby modes of the thermocline depth anomaly. An estimation of the error of these modes is derived from the projection of an estimation of the sea level error over such modes. This method gives a value of 12 for the error of the Kelvin amplitude, and 6 m of error for the Rossby component of the thermocline depth. The ability of the method to reconstruct the state of the equatorial Pacific and predict its time evolution is demonstrated. The method is shown to be quite robust for predictions up to six months, and able to predict the onset of the 1997 warm event fifteen months before its occurrence.
NASA Technical Reports Server (NTRS)
Ballabrera-Poy, Joaquim; Busalacchi, Antonio J.; Murtugudde, Ragu
2000-01-01
A reduced order Kalman Filter, based on a simplification of the Singular Evolutive Extended Kalman (SEEK) filter equations, is used to assimilate observed fields of the surface wind stress, sea surface temperature and sea level into the nonlinear coupled ocean-atmosphere model. The SEEK filter projects the Kalman Filter equations onto a subspace defined by the eigenvalue decomposition of the error forecast matrix, allowing its application to high dimensional systems. The Zebiak and Cane model couples a linear reduced gravity ocean model with a single vertical mode atmospheric model of Zebiak. The compatibility between the simplified physics of the model and each observed variable is studied separately and together. The results show the ability of the model to represent the simultaneous value of the wind stress, SST and sea level, when the fields are limited to the latitude band 10 deg S - 10 deg N. In this first application of the Kalman Filter to a coupled ocean-atmosphere prediction model, the sea level fields are assimilated in terms of the Kelvin and Rossby modes of the thermocline depth anomaly. An estimation of the error of these modes is derived from the projection of an estimation of the sea level error over such modes. This method gives a value of 12 for the error of the Kelvin amplitude, and 6 m of error for the Rossby component of the thermocline depth. The ability of the method to reconstruct the state of the equatorial Pacific and predict its time evolution is demonstrated. The method is shown to be quite robust for predictions I up to six months, and able to predict the onset of the 1997 warm event fifteen months before its occurrence.
NASA Astrophysics Data System (ADS)
Pal, J.; Chaudhuri, S.; Mukherjee, S.; Chowdhury, A. Roy
2017-10-01
Inter-annual variability in the onset of monsoon over Kerala (MOK), India, is investigated using daily temperature; mean sea level pressure; winds at 850, 500 and 200 hPa pressure levels; outgoing longwave radiation (OLR); sea surface temperature (SST) and vertically integrated moisture content anomaly with 32 years (1981-2013) observation. The MOK is classified as early, delayed, or normal by considering the mean monsoon onset date over Kerala to be the 1st of June with a standard deviation of 8 days. The objective of the study is to identify the synoptic setup during MOK and comparison with climatology to estimate the predictability of the onset type (early, normal, or delayed) with 5, 10, and 15 days lead time. The study reveals that an enhanced convection observed over the Bay of Bengal during early MOK is found to shift over the Arabian Sea during delayed MOK. An intense high-pressure zone observed over the western south Indian Ocean during early MOK shifts to the east during delayed MOK. Higher tropospheric temperature (TT) over the western Equatorial Ocean during early MOK and lower TT over the Indian subcontinent intensify the land-ocean thermal contrast that leads to early MOK. The sea surface temperature (SST) over the Arabian Sea is observed to be warmer during delayed than early MOK. During early MOK, the source of 850 hPa southwesterly wind shifts to the west equatorial zone while a COL region has been found during delayed MOK at that level. The study further reveals that the wind speed anomaly at the 200-hPa pressure level coincides inversely with the anomaly of tropospheric temperature.
NASA Astrophysics Data System (ADS)
Bábek, Ondřej; Faměra, Martin; Šimíček, Daniel; Weinerová, Hedvika; Hladil, Jindřich; Kalvoda, Jiří
2018-01-01
The Devonian marine stratigraphic record is characterized by a number of bioevents - overturns in pelagic and benthic faunal assemblages, which are associated with distinct changes in lithology. The coincidence of lithologic and biotic changes can be explained by the causal link between biotic evolution, carbonate production and relative sea-level changes. To gain insight into the sea-level history of Early and Middle Devonian bioevents (the Lochkovian/Pragian Event, Basal Zlíchovian E., Daleje E., and Choteč E.) we carried out a sequence-stratigraphic analysis of carbonate-dominated successions in the Prague Basin (peri-Gondwana), a classic area of Devonian bioevents. The study is based on a basin-wide correlation of facies and field gamma-ray spectrometry (GRS) logs from 18 sections (Lochkovian to Eifelian), supported by element geochemistry and published biostratigraphic and carbon isotope data. Devonian carbonate deposition in the Prague Basin alternated between two end-member modes: an oligotrophic, homoclinal ramp (Praha and Daleje-Třebotov Formations) and a mesotrophic, distally steepened ramp (Lochkov, Zlíchov, and Choteč Formations). They show contrasting facies, particularly the absence/presence of gravity-flow deposits, allochem composition, U/Th ratios, and geochemical composition (productivity proxies such as P/Al, Si/Al, Zn/Al, TOC and stable carbon isotopes). The mesotrophic systems reflect an increased availability of nutrients on the shelf during the late Lochkovian, early Emsian (Zlíchovian), and Eifelian periods when sea surface temperature, pCO2, and silicate weathering rates were higher. The oligotrophic systems deposited during the Pragian-to-earliest Emsian and late Emsian (Dalejan) periods reflect reversed palaeoclimatic trends. We identified three depositional sequences (DS), DS1 (base of Pragian to early Emsian); DS2 (early Emsian to mid Emsian); and DS3 (mid Emsian to mid Eifelian). These sequences were integrated into a peri-Gondwana relative sea-level curve, which was then compared with the Euramerican sea-level curve of Johnson et al. (1985). The bioevents coincided with several sequence stratigraphic surfaces, representing variable limbs of the relative sea-level curve. On the other hand, their conspicuous coincidence with the switching intervals between the colder oligotrophic and warmer mesotrophic modes suggests that organic production linked to global climate was the primary control on biotic overturns, while sea-level fluctuations may have only amplified its effects.
Implementation of Barcelona, L'estartit and Ibiza Sites for Altimeter Calibration
NASA Astrophysics Data System (ADS)
Martinez-Benjamin, J. J.; Gili, J.; Lopez, R.; Tapia, A.; Bosch, E.; Perez, B.; Pros, F.
2012-12-01
A marine campaign to compute the sea surface data along the Spanish Mediterranean coastline and Balearic Islands is being prepared for 2013. Jason-2 (period ~10 days) and Saral/AltiKa (period of 35 days and expected launch in 2012) altimetric data and on-board GPS data will be used. Many GPS Buoy sessions along the ship route will be performed.Sea height estimates (instantaneous and mean sea levels) will be compared. Recently some geodetic improvements has been made in specific coastal spanish sites in the NW Mediterranean Sea for monitoring sea level. The goal is to maintain and improve the quality of the observation of the sea level change in the three sites. The information is coming from Puertos del Estado www.puertos.es L'Estartit tide gauge has been co-located with geodetic techniques (GPS measurements of XU, Utilitary Network, and XdA, Levelling Network,) and it is tied to the SPGIC (Integrated Geodetic Positioning System of Catalonia) project of the Cartographic Institute of Catalunya (ICC). In the past three calibration campaigns for Topex/Poseidon and Jason-1 in March 1999, August 2000 and July 2002 near Cape of Begur. At Barcelona harbour there is one MIROS radar tide gauge belonging to Puertos del Estado (Spanish Harbours).The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. The information includes wave forescast (mean period, significant wave height, sea level, etc.This sensor also measures agitation and sends wave parameters each 20 min. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna 1202. Bathymetric campaigns inside the harbour have been made. At Ibiza site new measurements and levelling between the GPS reference station and a Radar MIROS, both from Puertos del Estado, has been made recently. A calibration campaign for Jason-1 was made in June 2003 in the Ibiza area, main calibration site. The presentation is directed to the description of the actual situation of the geodetic infrastructure of Barcelona, l'Estartit sites for sea level determination and complementing Ibiza site for a new altimeter calibration campaign of Jason-2 and Saral/AltiKa satellites to be made in 2013. Specifications of the new marine calibration campaign will be presented.
Comparison of Bottomless Lift Nets and Breder Traps for Sampling Salt-Marsh Nekton
Vegetated salt-marsh surfaces provide refuge, forage, and spawning habitat for estuarine nekton, yet are threatened by accelerating rates of sea-level rise in southern New England and elsewhere. Nekton responses to ongoing marsh surface changes need to be evaluated with effective...
Storlazzi, Curt D.; Griggs, Gary B.
2000-01-01
Significant sea-cliff erosion and storm damage occurred along the central coast of California during the 1982–1983 and 1997–1998 El Niño winters. This generated interest among scientists and land-use planners in how historic El Niño–Southern Oscillation (ENSO) winters have affected the coastal climate of central California. A relative ENSO intensity index based on oceanographic and meteorologic data defines the timing and magnitude of ENSO events over the past century. The index suggests that five higher intensity (relative values 4–6) and 17 lower intensity (relative values 1–3) ENSO events took place between 1910 and 1995. The ENSO intensity index correlates with fluctuations in the time series of cyclone activity, precipitation, detrended sea level, wave height, sea-surface temperature, and sea-level barometric pressure. Wave height, sea level, and precipitation, which are the primary external forcing parameters in sea-cliff erosion, increase nonlinearly with increasing relative ENSO event intensity. The number of storms that caused coastal erosion or storm damage and the historic occurrence of large-scale sea-cliff erosion along the central coast also increase nonlinearly with increasing relative event intensity. These correlations and the frequency distribution of relative ENSO event intensities indicate that moderate- to high-intensity ENSO events cause the most sea-cliff erosion and shoreline recession over the course of a century.
NASA Astrophysics Data System (ADS)
Saha, Upal; Siingh, Devendraa; Midya, S. K.; Singh, R. P.; Singh, A. K.; Kumar, S.
2017-11-01
The present analysis investigates the spatio-temporal variability of the convective parameters and associated lightning flash rates during the period 1997-2013 including the El Niño and La Niña episode. It reveals that north-western and north-eastern part along the foothills of Himalayas as well as Indo-China peninsular region and South China Sea are much convective prone zones over the South/South-East Asia. The terrain/orography of the Himalayan range, the influence of cross-equatorial low-level jet and large-scale circulation during pre-monsoon and active phase of monsoon, the western Pacific Warm Pool with increased sea surface temperature as well as the solar-heating-originated local instability instigate the convective anomaly to propagate over the north-western and north eastern Indian sub-continent along with the Indo-China peninsula and South China Sea respectively. The land surfaces of the Indian sub-continent and the sea surface of South China Sea possesses significant correlation with lightning flash rates and convective parameters whereas the sea surface surrounding Indian sub-continent do not show such good correlations among them. Although, the occurrence of convective activities during the El Niño (La Niña) gets reduced (increased), the occurrence of lightning flashes gets enhanced (diminished) during this period which may be the direct consequence of warming atmosphere in relation to changing patterns of regional climate. Fig. S2 Spatial trend distribution per year of (a) LFR, (b) CAPE, (c) SCP, (d) LI, (e) CINE and (f) AT anomaly over South/South-East Asia during January-December for the years 1997-2013 (Trend is significant at 95% confidence level). Fig. S3 Correlation maps of LFR with (a) CAPE, (b) SCP, (c) CINE and (d) LI over South/South-East Asia during January-December for the years 1997-2013. Fig. S4 Synoptic wind direction patterns during (a)-(b) El Niño (May 2002 - February 2003) conditions and (c)-(d) La Niña (July 1998 - March 2001) conditions at 1000 hPa and 850 hPa pressure levels respectively over South/South-East Asia region.
NASA Astrophysics Data System (ADS)
Guest, P. S.; Persson, O. P. G.; Blomquist, B.; Fairall, C. W.
2016-02-01
"Background" stability refers to the effect of vertical virtual temperature variations above the surface layer on fluxes within the surface layer. This is different from the classical surface layer stability quantified by the Obhukhov length scale. In most locations, changes in the background stability do not have a significant direct impact on surface fluxes. However in polar regions, where there is usually a strong low-level temperature inversion capping the boundary layer, changes in background stability can have big impacts on surface fluxes. Therefore, in the Arctic, there is potential for a positive feedback effect between ice cover and surface wind speed (and momentum flux) due to the background stability effects. As the surface becomes more ice free, heat fluxes from the surface weaken the temperature inversion which in turn increases the surface wind speed which further increases the surface turbulent heat fluxes and removes more sea ice by melting or advection. It is not clear how important feedbacks involving the background stability are during the fall freeze up of the Arctic Ocean; that will be the focus of this study. As part of an ONR-sponsored cruise in the fall of 2015 to examine sea state and boundary layer processes in the Beaufort Sea on the R/V Sikuliaq, the authors will perform a variety of surface layer and upper level atmospheric measurements of temperature, humidity and wind vector using ship platform instruments, radiosonde weather balloons, tethered balloons, kites, and miniature quad-rotor unmanned aerial vehicles. In addition, the authors will deploy a full suite of turbulent and radiational flux measurements from the vessel. These measurements will be used to quantify the impact of changing surface conditions on atmospheric structure and vice-versa. The goal is to directly observe how the surface and atmosphere above the surface layer interact and feedback with each other through radiational and turbulent fluxes.
Flores, Romeo M.; Myers, Mark D.; Houseknecht, David W.; Stricker, Gary D.; Brizzolara, Donald W.; Ryherd, Timothy J.; Takahashi, Kenneth I.
2007-01-01
Stratigraphic and sedimentologic studies of facies of the Upper Cretaceous rocks along the Colville River Bluffs in the west-central North Slope of Alaska identified barrier shoreface deposits consisting of vertically stacked, coarsening-upward parasequences in the Schrader Bluff Formation. This vertical stack of parasequence deposits represents progradational sequences that were affected by shoaling and deepening cycles caused by fluctuations of sea level. Further, the vertical stack may have served to stabilize accumulation of voluminous coal deposits in the Prince Creek Formation, which formed braided, high-sinuosity meandering, anastomosed, and low-sinuosity meandering fluvial channels and related flood plain deposits. The erosional contact at the top of the uppermost coarsening-upward sequence, however, suggests a significant drop of base level (relative sea level) that permitted a semiregional subaerial unconformity to develop at the contact between the Schrader Bluff and Prince Creek Formations. This drop of relative sea level may have been followed by a relative sea-level rise to accommodate coal deposition directly above the unconformity. This rise was followed by a second drop of relative sea level, with formation of incised valley topography as much as 75 ft deep and an equivalent surface of a major marine erosion or mass wasting, or both, either of which can be traced from the Colville River Bluffs basinward to the subsurface in the west-central North Slope. The Prince Creek fluvial deposits represent late Campanian to late Maastrichtian depositional environments that were affected by these base level changes influenced by tectonism, basin subsidence, and sea-level fluctuations.
TOPEX/El Nino Watch - El Nino Warm Water Pool Returns to Near Normal State, Mar, 14, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Mar. 14, 1998 and sea surface height is an indicator of the heat content of the ocean. The image shows that the sea surface height along the central equatorial Pacific has returned to a near normal state. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition. Remnants of the El Nino warm water pool, shown in red and white, are situated to the north and south of the equator. These sea surface height measurements have provided scientists with a detailed view of how the 1997-98 El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through the spring.
For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.govBiomass changes and trophic amplification of plankton in a warmer ocean.
Chust, Guillem; Allen, J Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason; Tsiaras, Kostas; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle; Daewel, Ute; Wakelin, Sarah L; Machu, Eric; Pushpadas, Dhanya; Butenschon, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris; Garçon, Veronique; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier
2014-07-01
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels. © 2014 John Wiley & Sons Ltd.
Understanding the Effects of Sea-Level Rise on Coastal Wetlands: The Human Dimension
NASA Astrophysics Data System (ADS)
Reed, Denise
2010-05-01
In the 21st century coastal systems are subject to the pressures of centuries of population growth and resource exploitation. In 2003, in the US approximately 153 million people (53 percent of the population) lived in coastal counties, an increase of 33 million people since 1980 and this is expected to increase by approximately 7 million by the year 2008. Eight of the world's top ten largest cities are located at the coast, 44 % of the world's population (more people than inhabited the entire globe in 1950) live within 150 km of the coast and in 2001 over half the world's population lived within 200 km of a coastline. . Increased population density at the coasts often brings pollution and habitat degradation - decreasing the value of many of the resources that initially attract the coastal development - and it also means the effect of sea-level rise on coastal geomorphic systems must be seen in the context of additional human pressures. For global sea-level debate centers on the magnitude and rate of the rise around most of the world; the exception being those areas still experiencing falling sea-levels due to isostatic rebound. Many coastal island states are clearly vulnerable. While the ‘lurid and misleading maps' of the 1980's used by many to indicate areas to be flooded by rising seas in the future, have been replaced by more considered discussion of the response of coastal dynamics to rising seas there is still considerable debate about the amount of sea-level rise shorelines will experience in the 21st century. For coastal wetlands four main sets of physical factors - fine sediment regime; tidal conditions; coastal configuration; and relative sea-level change - define the geomorphic context for coastal marsh development and survival during the 21st century. Each of these factors is influenced by changes in climate and human alterations to coastal and inshore environments. In turn changes in sediment dynamics are mediated by both physical forcing and biotic factors, and plant growth is an additional factor influencing the survival of more organic marshes. Salt marsh surfaces are frequently considered to be in an equilibrium relationship with local mean sea level but the projection of salt marsh sustainability under future climate scenarios is a complex issue and depends on: the relative importance of organic matter to marsh vertical development; the complexities governing organic matter accumulation during rising sea level; the importance of subsurface processes in determining surface elevation change; and the role of storm events and hydrologic changes in controlling sediment deposition, soil conditions and plant growth. The effects of global change, both climate and human induced, on coastal wetlands will be manifest differently among various geomorphic settings but their vulnerability to global change in the 21st century should be taken seriously by coastal managers and policy-makers alike.
Cadol, Daniel; Elmore, Andrew J.; Guinn, Steven M.; Engelhardt, Katharina A. M.; Sanders, Geoffrey
2016-01-01
Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested. PMID:27788209
Cadol, Daniel; Elmore, Andrew J; Guinn, Steven M; Engelhardt, Katharina A M; Sanders, Geoffrey
2016-01-01
Tidal habitats host a diversity of species and provide hydrological services such as shoreline protection and nutrient attenuation. Accretion of sediment and biomass enables tidal marshes and swamps to grow vertically, providing a degree of resilience to rising sea levels. Even if accelerating sea level rise overcomes this vertical resilience, tidal habitats have the potential to migrate inland as they continue to occupy land that falls within the new tide range elevations. The existence of developed land inland of tidal habitats, however, may prevent this migration as efforts are often made to dyke and protect developments. To test the importance of inland migration to maintaining tidal habitat abundance under a range of potential rates of sea level rise, we developed a spatially explicit elevation tracking and habitat switching model, dubbed the Marsh Accretion and Inundation Model (MAIM), which incorporates elevation-dependent net land surface elevation gain functions. We applied the model to the metropolitan Washington, DC region, finding that the abundance of small National Park Service units and other public open space along the tidal Potomac River system provides a refuge to which tidal habitats may retreat to maintain total habitat area even under moderate sea level rise scenarios (0.7 m and 1.1 m rise by 2100). Under a severe sea level rise scenario associated with ice sheet collapse (1.7 m by 2100) habitat area is maintained only if no development is protected from rising water. If all existing development is protected, then 5%, 10%, and 40% of the total tidal habitat area is lost by 2100 for the three sea level rise scenarios tested.
Price, Stephen F.; Payne, Antony J.; Howat, Ian M.; Smith, Benjamin E.
2011-01-01
We use a three-dimensional, higher-order ice flow model and a realistic initial condition to simulate dynamic perturbations to the Greenland ice sheet during the last decade and to assess their contribution to sea level by 2100. Starting from our initial condition, we apply a time series of observationally constrained dynamic perturbations at the marine termini of Greenland’s three largest outlet glaciers, Jakobshavn Isbræ, Helheim Glacier, and Kangerdlugssuaq Glacier. The initial and long-term diffusive thinning within each glacier catchment is then integrated spatially and temporally to calculate a minimum sea-level contribution of approximately 1 ± 0.4 mm from these three glaciers by 2100. Based on scaling arguments, we extend our modeling to all of Greenland and estimate a minimum dynamic sea-level contribution of approximately 6 ± 2 mm by 2100. This estimate of committed sea-level rise is a minimum because it ignores mass loss due to future changes in ice sheet dynamics or surface mass balance. Importantly, > 75% of this value is from the long-term, diffusive response of the ice sheet, suggesting that the majority of sea-level rise from Greenland dynamics during the past decade is yet to come. Assuming similar and recurring forcing in future decades and a self-similar ice dynamical response, we estimate an upper bound of 45 mm of sea-level rise from Greenland dynamics by 2100. These estimates are constrained by recent observations of dynamic mass loss in Greenland and by realistic model behavior that accounts for both the long-term cumulative mass loss and its decay following episodic boundary forcing. PMID:21576500
Coupling landscapes to solid-Earth deformation over the ice-age
NASA Astrophysics Data System (ADS)
Pico, T.; Mitrovica, J. X.; Ferrier, K.; Braun, J.
2016-12-01
We present initial results of a coupled ice-age sea level - landscape evolution code. Deformation of the solid Earth in response to the growth and ablation of continental ice sheets produces spatially-variable patterns of sea-level change. Recent modeling has considered the impact of sedimentation and erosion on sea level predictions across the last glacial cycle, but these studies have imposed, a-priori, a record of sediment flux and erosion, rather than computing them from a physics-based model of landscape evolution in the presence of sea-level (topography) changes. These topography changes range from 1-10 m/kyr in the near and intermediate field of the Late Pleistocene ice cover, and are thus comparable to (or exceed) tectonic rates in such regions. Our simulations aim to address the following question: how does solid-Earth deformation influence the evolution of landscapes over glacial periods? To address this issue, we couple a highly-efficient landscape evolution code, Fastscape (Braun & Willett, 2013), to a global, gravitationally-self consistent sea-level theory. Fastscape adopts standard geomorphic laws governing incision and marine deposition, and the sea-level model is based on the canonical work of Farrell & Clark (1976), with extensions to include the effects of rotation and time varying shoreline geometries (Kendall et al., 2005), and sediment erosion and deposition (Dalca et al, 2013). We will present global results and focus on a few regional case studies where deposition rates from a dataset of sedimentary cores can be used as a check on the simulations. These predictions quantify the influence of sea-level change (including that associated with sedimentation and erosion) on geomorphic drivers of landscape evolution, and in turn, the solid Earth deformation caused by these surface processes over an ice age.
Price, Stephen F; Payne, Antony J; Howat, Ian M; Smith, Benjamin E
2011-05-31
We use a three-dimensional, higher-order ice flow model and a realistic initial condition to simulate dynamic perturbations to the Greenland ice sheet during the last decade and to assess their contribution to sea level by 2100. Starting from our initial condition, we apply a time series of observationally constrained dynamic perturbations at the marine termini of Greenland's three largest outlet glaciers, Jakobshavn Isbræ, Helheim Glacier, and Kangerdlugssuaq Glacier. The initial and long-term diffusive thinning within each glacier catchment is then integrated spatially and temporally to calculate a minimum sea-level contribution of approximately 1 ± 0.4 mm from these three glaciers by 2100. Based on scaling arguments, we extend our modeling to all of Greenland and estimate a minimum dynamic sea-level contribution of approximately 6 ± 2 mm by 2100. This estimate of committed sea-level rise is a minimum because it ignores mass loss due to future changes in ice sheet dynamics or surface mass balance. Importantly, > 75% of this value is from the long-term, diffusive response of the ice sheet, suggesting that the majority of sea-level rise from Greenland dynamics during the past decade is yet to come. Assuming similar and recurring forcing in future decades and a self-similar ice dynamical response, we estimate an upper bound of 45 mm of sea-level rise from Greenland dynamics by 2100. These estimates are constrained by recent observations of dynamic mass loss in Greenland and by realistic model behavior that accounts for both the long-term cumulative mass loss and its decay following episodic boundary forcing.
Modeling of Long-Term Evolution of Hydrophysical Fields of the Black Sea
NASA Astrophysics Data System (ADS)
Dorofeyev, V. L.; Sukhikh, L. I.
2017-11-01
The long-term evolution of the Black Sea dynamics (1980-2020) is reconstructed by numerical simulation. The model of the Black Sea circulation has 4.8 km horizontal spatial resolution and 40 levels in z-coordinates. The mixing processes in the upper layer are parameterized by Mellor-Yamada turbulent model. For the sea surface boundary conditions, atmospheric forcing functions were used, provided for the Black Sea region by the Euro mediterranean Center on Climate Change (CMCC) from the COSMO-CLM regional climate model. These data have a spatial resolution of 14 km and a daily temporal resolution. To evaluate the quality of the hydrodynamic fields derived from the simulation, they were compared with in-situ hydrological measurements and similar results from physical reanalysis of the Black Sea.
Effect of climate change on sea water intrusion in coastal aquifers
NASA Astrophysics Data System (ADS)
Sherif, Mohsen M.; Singh, Vijay P.
1999-06-01
There is increasing debate these days on climate change and its possible consequences. Much of this debate has focused in the context of surface water systems. In many arid areas of the world, rainfall is scarce and so is surface runoff. These areas rely heavily on groundwater. The consequences of climate change on groundwater are long term and can be far reaching. One of the more apparent consequences is the increased migration of salt water inland in coastal aquifers. Using two coastal aquifers, one in Egypt and the other in India, this study investigates the effect of likely climate change on sea water intrusion. Three realistic scenarios mimicking climate change are considered. Under these scenarios, the Nile Delta aquifer is found to be more vulnerable to climate change and sea level rise.
Morphology of GALÁPAGOS Platform Seamounts: a History of Emergence and Submergmence
NASA Astrophysics Data System (ADS)
Soule, S. A.; Wanless, V. D.; Fornari, D. J.; Jones, M.; Schwartz, D. M.; Richards, M. A.
2016-12-01
The morphology of submarine volcanoes is generally well-preserved due to the lack of erosion. However, when submarine volcanoes breach the sea surface, significant erosion can occur through wave action. New bathymetric mapping of seamounts around the Galápagos Islands of Santiago, Floreana, and Isabela show evidence of such subaerial erosion despite currently residing at depths >100m. We present results from a Sept. 2015 cruise to the Galapagos platform on the M/V Alucia including ship-based bathymetric mapping, AUV-based bathymetric and sidescan sonar mapping, and observations and samples from human-occupied submersible dives. The bathymetric mapping reveals dozens of previously unknown seamounts on the relatively unexplored shallow Galápagos platform (<1000m). Among these seamounts, many display evidence of having been previously above sea level including erosional benches (insular shelves) or entirely flat tops along, heavily eroded cobbles and beach deposits, and subaerially erupted lavas at depths from 120m to >200m. Seamounts, however, can develop flat tops without having been exposed above sea level. Thus, we combine a variety of data sets to determine whether seamounts were exposed above sea level and how the morphology of those seamounts can be discriminated from seamounts that have never reached the sea surface. Included in these data sets are measurements of cosmogenic Helium that provides an independent means to confirm which seamounts were emergent. The existence of broad areas of originally-subaerial lava flows on the Galápagos platform that are now at water depths >200 m requires that in addition to ice-age-related sea level excursions, there has also been at least 100m (and perhaps more) dynamic subsidence of the platform as it has passed over the active Galapagos plume. As a result, much of the platform may have been exposed subaerially during the past several million years, with significant implications for speciation among the endemic fauna.
Satellite monitoring of sea surface pollution. [North and Irish Seas
NASA Technical Reports Server (NTRS)
Fielder, G.; Hall, T. S. (Principal Investigator); Telfer, D. J.; Wilson, L.; Fryer, R. J.
1980-01-01
Thermal IR data from NASA's Heat Capacity Mapping Mission were used in a study of the feasibility of detecting oil spills in the seas around the UK. The period of observation covered the years 1978/9, in which there were no major spills in the area. A video processor capable of generating false color renderings of any satellite image from eight density levels was used in the synoptic search for spills. Other laboratory equipment, and associated analyses, were used to study the thermal behavior of oil spills on water. Oil spills may appear to be warmer or cooler that the surrounding sea, depending on numerous factors.
Interannual Variability of Sea Level in Tropical Pacific during 1993-2014
NASA Astrophysics Data System (ADS)
Zhu, X.; Greatbatch, R. J.; Claus, M.
2016-12-01
More than 40 years ago, sea level variability in the tropical Pacific was being studied using linear shallow water models driven by observed estimates of the surface wind stress. At that time, the only available sea level data was from the sparse tide gauge record. However, with the advent of satellite data, there has been a revolution in the available data coverage for sea level. Here, a linear model, consisting of the first five baroclinic normal modes, and driven by ERA-Interim monthly wind stress anomalies, is used to investigate interannual variability in tropical Pacific sea level as seen in satellite altimeter data. The model output is fitted to the altimeter data along the equator, in order to derive the vertical profile for the wind forcing, and showing that a signature from modes higher than mode six cannot be extracted from the altimeter data. It is shown that the model has considerable skill at capturing interannual sea level variability both on and off the equator. The correlation between modelled and satellite-derived sea level data exceeds 0.8 over a wide range of longitudes along the equator and readily captures the observed ENSO events. Overall, the combination of the first, second and third and fifth modes can provide a robust estimate of the interannual sea level variability, the second mode being the most dominant. A remarkable feature of both the model and the altimeter data is the presence of a pivot point in the western Pacific on the equator. We show that the westward displacement of the pivot point from the centre of the basin is partly a signature of the recharge/discharge mechanism but is also strongly influenced by the fact that most of the wind stress variance along the equator is found in the western part of the basin. We also show that the Sverdrup transport plays no role in the recharge/discharge mechanism in our model.
Larsen, Curt; Clark, Inga; Guntenspergen, Glenn; Cahoon, Don; Caruso, Vincent; Hupp, Cliff; Yanosky, Tom
2004-01-01
The Blackwater National Wildlife Refuge (BNWR), on the Eastern Shore of Chesapeake Bay (figure 1), occupies an area less than 1 meter above sea level. The Refuge has been featured prominently in studies of the impact of sea level rise on coastal wetlands. Most notably, the refuge has been sited by the Intergovernmental Panel on Climate Change (IPCC) as a key example of 'wetland loss' attributable to rising sea level due to global temperature increase. Comparative studies of aerial photos taken since 1938 show an expanding area of open water in the central area of the refuge. The expanding area of open water can be shown to parallel the record of sea level rise over the past 60 years. The U.S. Fish and Wildlife Service (FWS) manages the refuge to support migratory waterfowl and to preserve endangered upland species. High marsh vegetation is critical to FWS waterfowl management strategies. A broad area once occupied by high marsh has decreased with rising sea level. The FWS needs a planning tool to help predict current and future areas of high marsh available for waterfowl. 'Wetland loss' is a relative term. It is dependant on the boundaries chosen for measurement. Wetland vegetation, zoned by elevation and salinity (figure 3), respond to rising sea level. Wetlands migrate inland and upslope and may vary in areas depending on the adjacent land slopes. Refuge managers need a geospatial tool that allows them to predict future areas that will be converted to high and intertidal marsh. Shifts in location and area of coverage must be anticipated. Viability of a current marsh area is also important. When will sea level rise make short-term management strategies to maintain an area impractical? The USGS has developed an inundation model for the BNWR centered on the refuge and surrounding areas. Such models are simple in concept, but they require a detailed topographic map upon which to superimpose future sea level positions. The new system of LIDAR mapping of land and shallow water surfaces has solved this problem. Our team has developed a detailed LIDAR map of the BNWR area at a 30 centimeter (ca. 1 ft) contour interval (figure 2). The new map allows us to identify the present marsh vegetation zones and to predict the location and area of future zones on a decade-by- decade basis over the next century at increments of sea level rise on the order of 3 cm/decade (ca. 1 inch). We have developed two scenarios for the model. The first is a steady-state model that uses the historic rate of sea level rise of 3.1 mm/yr to predict marsh areas. The second is a 'global warming' scenario utilizing a conservative IPCC model with an exponentially-increasing rate of sea level rise. Under either scenario, the BNWR is progressively inundated with an expanding core of open water. Although their positions change in the future, the areas of intertidal marsh as well as those of the critical high marsh remain fairly constant until the year 2050. Beyond that time, the low-lying land surface is overtopped by rising sea level and the area is dominated by open water. Our model suggests that wetland habitat in the Blackwater area might be maintained and sustained through a combination of public and private preservation efforts through easements in combination with judicious Federal land acquisition into the predicted areas of suitable marsh formation - but for only the next 50 years. Beyond that time much of this area will become open water.
Key roles of sea ice in inducing contrasting modes of glacial AMOC and climate
NASA Astrophysics Data System (ADS)
Sherriff-Tadano, S.; Abe-Ouchi, A.
2017-12-01
Gaining a better understanding of glacial Atlantic meridional overturning circulation (AMOC) is important to interpret the glacial climate changes such as the Heinrich event. Recent studies suggest that changes in sea ice over the North Atlantic largely affect the surface wind. Since changes in surface wind have a large impact on the AMOC, this implies a role of sea ice in modifying the AMOC though surface wind. However, the impact of sea ice on the surface winds and the impact of changes in the winds on the AMOC remain unclear. In this study, we first assess the impact of sea ice expansion on the winds. We then explore whether the changes in winds play a role in modifying the AMOC and climate. For this purpose, results from MIROC4m are analyzed (Kawamura et al. 2017). To clarify the impact of changes in sea ice on the surface wind, sensitivity experiments are conducted with an atmospheric general circulation model (AGCM). In the AGCM experiments, we modify the sea ice to extract the impact of sea ice on the winds. Partial decouple experiments are conducted with the coupled model MIROC4m, which we modify the surface winds to assess the impact of changes in the surface wind due to sea ice expansion on the AMOC. Results show that expansion of sea ice substantially weakens the surface wind over the northern North Atlantic. AGCM experiments show that a drastic decrease in surface temperature duo to a suppression of sensible heat flux plays a dominant role in weakening the surface winds through increasing the static stability of the air column near the surface. Partial decouple experiments with MIROC4m show that the weakening of the surface wind due to the expansion of sea ice plays an important role in maintaining the weak AMOC. Thus, these experiments show that the weakening of the surface winds due to sea ice expansion plays a role in stabilizing the AMOC.
Assessment of metal contamination in surface sediments from Zhelin Bay, the South China Sea.
Wang, Zhao-Hui; Feng, Jie; Jiang, Tao; Gu, Yang-Guang
2013-11-15
Metals and biogenic elements were analyzed from surface sediments collected from Zhelin Bay in the South China Sea in December 2008. The high concentrations of TOC, TN and BSi indicate the high nutrient level and diatom productivity in Zhelin Bay. The concentrations of metals were generally far lower than the effects-range-low (ERL) values that define pollutant levels. Enrichment factors (EF) and geoaccumulation indices (Igeo) suggest there are pollution levels of Cd, Cu and Zn at some stations. As, Cu, and Pb are potentially biotoxic in some stations. Correlation and principal component analyses indicate that most of the metals primarily originate from natural sources, and from maricultural activities as well. Mariculture contributes considerable Cd and Cu contamination. As and Pb comes primarily from combustion of gasoline and diesel fuel by ships. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Romanski, Joy; Hameed, Sultan
2015-01-01
Interannual variations of latent heat fluxes (LHF) and sensible heat fluxes (SHF) over the Mediterranean for the boreal winter season (DJF) show positive trends during 1958-2011. Comparison of correlations between the heat fluxes and the intensity and location of the Azores High (AH), and the NAO and East Atlantic-West Russia (EAWR) teleconnections, along with analysis of composites of surface temperature, humidity and wind fields for different teleconnection states, demonstrates that variations of the AH are found to explain the heat flux changes more successfully than the NAO and the EAWR. Trends in sea level pressure and longitude of the Azores High during DJF show a strengthening, and an eastward shift. DJF Azores High pressure and longitude are shown to co-vary such that variability of the Azores High occurs along an axis defined by lower pressure and westward location at one extreme, and higher pressure and eastward location at the other extreme. The shift of the Azores High from predominance of the low/west state to the high/east state induces trends in Mediterranean Sea surface winds, temperature and moisture. These, combined with sea surface warming trends, produce trends in wintertime Mediterranean Sea sensible and latent heat fluxes.
NASA Astrophysics Data System (ADS)
Lawrence, S. P.; Llewellyn-Jones, D. T.; Smith, S. J.
2004-08-01
Global sea-surface temperature is an important indicator of climate change, with the ability to reflect warming/cooling climate trends. The detection of such trends requires rigorous measurements that are global, accurate, and consistent. Space instruments can provide the means to achieve these required attributes in sea-surface temperature data. Analyses of two independent data sets from the Advanced Very High Resolution and Along Track Scanning Radiometers series of space sensors during the period 1985 to 2000 reveal trends of increasing global temperature with magnitudes of 0.09°C and 0.13°C per decade, respectively, closely matching that expected due to current levels of greenhouse gas exchange. In addition, an analysis based upon singular value decomposition, allowing the removal of El Niño in order to examine areas of change other than the tropical Pacific region, indicates that the 1997 El Niño event affected sea-surface temperature globally. The methodology demonstrated here can be applied to other data sets, which cover long time series observations of geophysical observations in order to characterize long-term change. The conclusion is that satellite sea-surface temperature provides an important means to quantify and explore the processes of climate change.
Global climate change will change environmental conditions including temperature, precipitation, surface radiation, humidity, soil moisture, and sea level, and impact significantly the regional-scale hydrologic processes such as evapotranspiration (ET), runoff, groundwater levels...
Mesoscale resolution capability of altimetry: Present and future
NASA Astrophysics Data System (ADS)
Dufau, Claire; Orsztynowicz, Marion; Dibarboure, Gérald; Morrow, Rosemary; Le Traon, Pierre-Yves
2016-07-01
Wavenumber spectra of along-track Sea Surface Height from the most recent satellite radar altimetry missions [Jason-2, Cryosat-2, and SARAL/Altika) are used to determine the size of ocean dynamical features observable with the present altimetry constellation. A global analysis of the along-track 1-D mesoscale resolution capability of the present-day altimeter missions is proposed, based on a joint analysis of the spectral slopes in the mesoscale band and the error levels observed for horizontal wavelengths lower than 20km. The global sea level spectral slope distribution provided by Xu and Fu with Jason-1 data is revisited with more recent altimeter missions, and maps of altimeter error levels are provided and discussed for each mission. Seasonal variations of both spectral slopes and altimeter error levels are also analyzed for Jason-2. SARAL/Altika, with its lower error levels, is shown to detect smaller structures everywhere. All missions show substantial geographical and temporal variations in their mesoscale resolution capabilities, with variations depending mostly on the error level change but also on slight regional changes in the spectral slopes. In western boundary currents where the signal to noise ratio is favorable, the along-track mesoscale resolution is approximately 40 km for SARAL/AltiKa, 45 km for Cryosat-2, and 50 km for Jason-2. Finally, a prediction of the future 2-D mesoscale sea level resolution capability of the Surface Water and Ocean Topography (SWOT) mission is given using a simulated error level.
Contrasting Decadal-Scale Changes in Elevation and Vegetation in Two Long Island Sound Salt Marshes
Northeastern US salt marshes face multiple co-stressors, including accelerating rates of relative sea level rise (RSLR), elevated nutrient inputs, and low sediment supplies. In order to evaluate how marsh surface elevations respond to such factors, we used surface elevation table...
In Situ Global Sea Surface Salinity and Variability from the NCEI Global Thermosalinograph Database
NASA Astrophysics Data System (ADS)
Wang, Z.; Boyer, T.; Zhang, H. M.
2017-12-01
Sea surface salinity (SSS) plays an important role in the global ocean circulations. The variations of sea surface salinity are key indicators of changes in air-sea water fluxes. Using nearly 30 years of in situ measurements of sea surface salinity from thermosalinographs, we will evaluate the variations of the sea surface salinity in the global ocean. The sea surface salinity data used are from our newly-developed NCEI Global Thermosalinograph Database - NCEI-TSG. This database provides a comprehensive set of quality-controlled in-situ sea-surface salinity and temperature measurements collected from over 340 vessels during the period 1989 to the present. The NCEI-TSG is the world's most complete TSG dataset, containing all data from the different TSG data assembly centers, e.g. COAPS (SAMOS), IODE (GOSUD) and AOML, with more historical data from NCEI's archive to be added. Using this unique dataset, we will investigate the spatial variations of the global SSS and its variability. Annual and interannual variability will also be studied at selected regions.
NASA Astrophysics Data System (ADS)
Yamamoto, Takashi; Kokubun, Nobuo; Kikuchi, Dale M.; Sato, Nobuhiko; Takahashi, Akinori; Will, Alexis P.; Kitaysky, Alexander S.; Watanuki, Yutaka
2016-04-01
Seasonal sea-ice cover has been decreasing in the southeastern Bering Sea shelf, which might affect ecosystem dynamics and availability of food resources to marine top predators breeding in the region. In this study, we investigated the foraging responses of two seabird species, surface-foraging red-legged kittiwakes Rissa brevirostris (hereafter, RLKI) and pursuit-diving foraging thick-billed murres Uria lomvia (TBMU) to different marine environmental conditions over 2 years. At-sea distributions of RLKI and TBMU breeding on St. George Island, the largest seabird colony in the region, were recorded using GPS loggers, and blood samples were taken to examine their physiological condition and isotopic foraging niche in a given year. Between the study years, winter ice retreated earlier and summer water temperatures were relatively warmer in 2014 compared to those in 2013. RLKI foraging occurred mostly over the oceanic basin in both years. TBMU, however, foraged mostly over the shelf but showed a relatively higher use of the shelf break and oceanic basin in 2013. The foraging distances from the colony peaked at 250-300 km in 2013 and bimodally at 150-250 and 300-350 km in 2014 for RLKI and tended to be farther in 2013 compared to those in 2014 for TBMU. Plasma levels of corticosterone did not differ between the years in RLKI but differed in TBMU, showing higher levels of physiological stress incurred by murres in 2013, the year of relatively cooler sea surface temperatures with later sea-ice retreat. δ13N (a proxy of trophic level of prey) did not differ between the years in either RLKI or TBMU. These results suggest that the response of ecosystem dynamics to climate variability in the southeastern Bering Sea may differ between the ocean basin and continental shelf regions, which, in turn, may generate differential responses in seabirds relying on those habitats for foraging.
Reconstruction from EOF analysis of SMOS salinity data in Mediterranean Sea
NASA Astrophysics Data System (ADS)
Parard, Gaelle; Alvera-Azcárate, Aida; Barth, Alexander; Olmedo, Estrella; Turiel, Antonio; Becker, Jean-Marie
2017-04-01
Sea Surface Salinity (SSS) data from the Soil Moisture and Ocean Salinity (SMOS) mission is reconstructed in the North Atlantic and the Mediterranean Sea using DINEOF (Data Interpolating Empirical Orthogonal Functions). We used the satellite data Level 2 from SMOS Barcelona Expert Centre between 2011 and 2015. DINEOF is a technique that reconstructs missing data and removes noise by retaining only an optimal set of EOFs. DINEOF analysis is used to detect and remove outliers from the SMOS SSS daily field. The gain obtained with DINEOF method and L2 SMOS data give a higher spatial and temporal resolution between 2011 and 2015, allow to study the SSS variability from daily to seasonal resolution. In order to improve the SMOS salinity data reconstruction we combine with other parameters measured from satellite such chlorophyll, sea surface temperature, precipitation and CDOM variability. After a validation of the SMOS satellite data reconstruction with in situ data (CTD, Argo float salinity measurement) in the North Atlantic and Mediterranean Sea, the main SSS processes and their variability are studied. The gain obtained with the higher spatial and temporal resolution with SMOS salinity data give assess to study the characteristics of oceanic structures in North Atlantic and Mediterranean Sea.
Simulation of laser beam reflection at the sea surface
NASA Astrophysics Data System (ADS)
Schwenger, Frédéric; Repasi, Endre
2011-05-01
A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for both the calculation of images of SWIR (short wave infrared) imaging sensor and for determination of total detected power of reflected laser light for a bistatic configuration of laser source and receiver at different atmospheric conditions. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. The propagation model for water waves is applied for sea surface animation. To predict the view of a camera in the spectral band SWIR the sea surface radiance must be calculated. This is done by considering the emitted sea surface radiance and the reflected sky radiance, calculated by MODTRAN. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled in the SWIR band considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). This BRDF model considers the statistical slope statistics of waves and accounts for slope-shadowing of waves that especially occurs at flat incident angles of the laser beam and near horizontal detection angles of reflected irradiance at rough seas. Simulation results are presented showing the variation of the detected laser power dependent on the geometric configuration of laser, sensor and wind characteristics.
Tropical Ocean Global Atmosphere (TOGA) Meteorological and Oceanographic Data Sets for 1985 and 1986
NASA Technical Reports Server (NTRS)
Halpern, D.; Ashby, H.; Finch, C.; Smith, E.; Robles, J.
1990-01-01
The Tropical Ocean Global Atmosphere (TOGA) Program is a component of the World Meteorological Organization (WMO)/International Council of Scientific Unions (ICSU) World Climate Research Program (WCRP). One of the objectives of TOGA, which began in 1985, is to determine the limits of predictability of monthly mean sea surface temperature variations in tropical regions. The TOGA program created a raison d'etre for an explosive growth of the tropical ocean observing system and a substantial improvement in numerical simulations from atmospheric and oceanic general circulation models. Institutions located throughout the world are involved in the TOGA-distributed active data archive system. The diverse TOGA data sets for 1985 and 1986, including results from general circulation models, are included on a CD-ROM. Variables on the CD-ROM are barometric pressure, surface air temperature, dewpoint temperature Cartesian components of surface wind, surface sensible and latent heat fluxes,Cartesian components of surface wind stress and of an index of surface wind stress, sea level, sea surface temperature, and depth profiles of temperature and current in the upper ocean. Some data sets are global in extent, some are regional and cover portions of an ocean basin. Data on the CD-ROM can be extracted with an Apple Macintosh or an IBM PC.
Raising the Dead without a Red Sea-Dead Sea Canal? A hydro-economic-institutional analysis
NASA Astrophysics Data System (ADS)
Rosenberg, D. E.
2010-12-01
Presently, just 100 million cubic meters per year (MCM/year) of the 1,000+ MCM/year that historically flowed in the lower Jordan River reach the Dead Sea. Israeli, Jordanian, and Syrian dam and extraction projects built over seven decades have principally caused the reduced flow, associated falling Dead Sea level, shrinking surface area, sink holes, salinity, and other catastrophic problems. These problems will be magnified in the face of up to 20% reductions in precipitation expected with climate change. The fix proposed by Jordan, Israel, and Palestine—and now under study by the World Bank—envisions building a $US 5 billion multipurpose canal from the Red Sea to the Dead Sea that would also generate hydropower and desalinated water. Yet alternatives to raise the Dead Sea level that could take advantage of hydrologic variability remain unstudied. Here we show system-wide hydrologic and economic impacts of and discusses institutional management for alternatives to raise the Dead Sea level. Hydro-economic model results for the inter-tied Israel-Jordan-Palestinian water systems show the desalination component of the Red Sea-Dead Sea project is economically unviable. Further, many decentralized new supply, wastewater reuse, conveyance, conservation, and leak reduction projects and programs in each country together increase economic benefits and can reliably deliver up to 900 MCM/year to the Dead Sea. In all cases, results show that net benefits fall and water scarcity rises as the flow volume delivered to the Dead Sea increases. These findings suggest that (i) each country has little individual incentive to allow water to flow to the Dead Sea, and (ii) outside institutions—such as the World Bank—that seek to raise the Dead should instead offer the countries direct incentives to deliver water rather than build them new infrastructure. The work expands the set of viable options to raise the Dead Sea level and can help the World Bank and others recommend whether to move forward with the Red Sea-Dead Sea project.
Thinning of the ice sheet in northwest Greenland over the past forty years.
Paterson, W S; Reeh, N
2001-11-01
Thermal expansion of the oceans, as well as melting of glaciers, ice sheets and ice caps have been the main contributors to global sea level rise over the past century. The greatest uncertainty in predicting future sea level changes lies with our estimates of the mass balance of the ice sheets in Greenland and Antarctica. Satellite measurements have been used to determine changes in these ice sheets on short timescales, demonstrating that surface-elevation changes on timescales of decades or less result mainly from variations in snow accumulation. Here we present direct measurements of the changes in surface elevation between 1954 and 1995 on a traverse across the north Greenland ice sheet. Measurements over a time interval of this length should reflect changes in ice flow-the important quantity for predicting changes in sea level-relatively unperturbed by short-term fluctuations in snow accumulation. We find only small changes in the eastern part of the transect, except for some thickening of the north ice stream. On the west side, however, the thinning rates of the ice sheet are significantly higher and thinning extends to higher elevations than had been anticipated from previous studies.
Ice-sheet contributions to future sea-level change.
Gregory, J M; Huybrechts, P
2006-07-15
Accurate simulation of ice-sheet surface mass balance requires higher spatial resolution than is afforded by typical atmosphere-ocean general circulation models (AOGCMs), owing, in particular, to the need to resolve the narrow and steep margins where the majority of precipitation and ablation occurs. We have developed a method for calculating mass-balance changes by combining ice-sheet average time-series from AOGCM projections for future centuries, both with information from high-resolution climate models run for short periods and with a 20km ice-sheet mass-balance model. Antarctica contributes negatively to sea level on account of increased accumulation, while Greenland contributes positively because ablation increases more rapidly. The uncertainty in the results is about 20% for Antarctica and 35% for Greenland. Changes in ice-sheet topography and dynamics are not included, but we discuss their possible effects. For an annual- and area-average warming exceeding 4.5+/-0.9K in Greenland and 3.1+/-0.8K in the global average, the net surface mass balance of the Greenland ice sheet becomes negative, in which case it is likely that the ice sheet would eventually be eliminated, raising global-average sea level by 7m.
The GEOS-iODAS: Description and Evaluation
NASA Technical Reports Server (NTRS)
Vernieres, Guillaume; Rienecker, Michele M.; Kovach, Robin; Keppenne, Christian L.
2012-01-01
This report documents the GMAO's Goddard Earth Observing System sea ice and ocean data assimilation systems (GEOS iODAS) and their evolution from the first reanalysis test, through the implementation that was used to initialize the GMAO decadal forecasts, and to the current system that is used to initialize the GMAO seasonal forecasts. The iODAS assimilates a wide range of observations into the ocean and sea ice components: in-situ temperature and salinity profiles, sea level anomalies from satellite altimetry, analyzed SST, and sea-ice concentration. The climatological sea surface salinity is used to constrain the surface salinity prior to the Argo years. Climatological temperature and salinity gridded data sets from the 2009 version of the World Ocean Atlas (WOA09) are used to help constrain the analysis in data sparse areas. The latest analysis, GEOS ODAS5.2, is diagnosed through detailed studies of the statistics of the innovations and analysis departures, comparisons with independent data, and integrated values such as volume transport. Finally, the climatologies of temperature and salinity fields from the Argo era, 2002-2011, are presented and compared with the WOA09.
Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry
NASA Astrophysics Data System (ADS)
Babonis, G. S.; Csatho, B.; Schenk, T.
2016-06-01
During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.
Greenland meltwater storage in firn limited by near-surface ice formation
NASA Astrophysics Data System (ADS)
Machguth, Horst; Macferrin, Mike; van As, Dirk; Box, Jason E.; Charalampidis, Charalampos; Colgan, William; Fausto, Robert S.; Meijer, Harro A. J.; Mosley-Thompson, Ellen; van de Wal, Roderik S. W.
2016-04-01
Approximately half of Greenland’s current annual mass loss is attributed to runoff from surface melt. At higher elevations, however, melt does not necessarily equal runoff, because meltwater can refreeze in the porous near-surface snow and firn. Two recent studies suggest that all or most of Greenland’s firn pore space is available for meltwater storage, making the firn an important buffer against contribution to sea level rise for decades to come. Here, we employ in situ observations and historical legacy data to demonstrate that surface runoff begins to dominate over meltwater storage well before firn pore space has been completely filled. Our observations frame the recent exceptional melt summers in 2010 and 2012 (refs ,), revealing significant changes in firn structure at different elevations caused by successive intensive melt events. In the upper regions (more than ~1,900 m above sea level), firn has undergone substantial densification, while at lower elevations, where melt is most abundant, porous firn has lost most of its capability to retain meltwater. Here, the formation of near-surface ice layers renders deep pore space difficult to access, forcing meltwater to enter an efficient surface discharge system and intensifying ice sheet mass loss earlier than previously suggested.
NASA Astrophysics Data System (ADS)
Humbert, A.; Rückamp, M.; Falk, U.; Frieler, K.
2017-12-01
Sea level rise associated with changing climate is expected to pose a major challenge for societies. Here, we estimate the future contribution of the Greenland ice sheet (GrIS) to sea level change in terms of different emission scenarios. We investigate the effect of different pathways of global warming on the dynamics and mass balance of the GrIS with a focus on scenarios in line with limiting global warming to 2.0° or even 1.5° by the end of 2100 (Paris Agreement). We particularly address the issue of peak and decline scenarios temporarily exceeding a given temperature limit. This kind of overshooting might have strong effects on the evolution of the GrIS. Furthermore, we investigate the long-term effects of different levels of climate change to estimate the threshold for stabilizing the GrIS. For modeling the flow dynamics and future evolution of the GrIS, we apply the thermo-mechanical coupled Ice Sheet System Model (ISSM). The model is forced with anomalies for temperature and surface mass balance derived from different GCM data from the CMIP5 RCP2.6 scenario provided from the ISIMIP2b project. In order to obtain these anomalies from the GCM data, a surface energy balance model is applied.
Vitamin A deficiency and hepatic retinol levels in sea otters, Enhydra lutris.
St Leger, Judy A; Righton, Alison L; Nilson, Erika M; Fascetti, Andrea J; Miller, Melissa A; Tuomi, Pamela A; Goertz, Caroline E C; Puschner, Birgit
2011-03-01
Vitamin A deficiency has rarely been reported in captive or free-ranging wildlife species. Necropsy findings in two captively housed southern sea otters (Enhydra lutris nereis) included irregular thickening of the calvaria characterized by diffuse hyperostoses on the internal surface. One animal also had moderate squamous metaplasia of the seromucinous glands of the nose. There was no measurable retinol in the liver of either sea otter. For comparison, hepatic retinol concentration was determined for 23 deceased free-ranging southern and northern (Enhydra lutris kenyoni) sea otters from California and Alaska. Free-ranging otters were found to have similar hepatic retinol concentrations (316 +/- 245 mg/kg wet weight) regardless of their location and subspecies. All of these values were significantly higher than the levels in the affected animals. Consumption of a diet with very low vitamin A concentrations and noncompliance in daily supplementation are hypothesized as the causes of vitamin A deficiency in these two sea otters.
Growth and degradation of Hawaiian volcanoes: Chapter 3 in Characteristics of Hawaiian volcanoes
Clague, David A.; Sherrod, David R.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.
2014-01-01
Large Hawaiian volcanoes can persist as islands through the rapid subsidence by building upward rapidly enough. But in the long run, subsidence, coupled with surface erosion, erases any volcanic remnant above sea level in about 15 m.y. One consequence of subsidence, in concert with eustatic changes in sea level, is the drowning of coral reefs that drape the submarine flanks of the actively subsiding volcanoes. At least six reefs northwest of the Island of Hawai‘i form a stairstep configuration, the oldest being deepest.
NASA Astrophysics Data System (ADS)
Patteson, R. N.
2017-12-01
Mixing mechanisms of the Arctic Ocean have profound impacts on sea ice, global ocean dynamics, and arctic communities. This project used a two-year long time series of ocean current velocities collected from eight moorings located on the Eurasian basin, as well as ERA-interim wind data, to compare and assess relationships between current and wind velocities at different depths. Determining the strength of these correlations will further scientific understanding of the degree to which wind influences mixing, with implications for heat flux, diffusion, and sea ice changes. Using statistical analysis, I calculated whether a significant relationship between wind velocity and ocean currents existed beginning at the surface level ( 50m) .The final correlation values, ranging from R = 0.11 to R = 0.28, indicated a weak relationship between wind velocity and ocean currents at the surface for all eight mooring sites. The results for the surface depth imply that correlation likely decreases with increasing depths, and thus further testing of deeper depth levels was unnecessary. This finding suggests that there is another dominant factor at play in the ocean; we postulate that topography exerts a significant influence on subsurface mixing. This study highlights the need for further research of the different mechanisms and their importance in influencing the dynamic structure of the ocean.
Anima, R.J.; Eittreim, S.L.; Edwards, B.D.; Stevenson, A.J.
2002-01-01
A combination of side-scanning sonar and high-resolution seismic reflection data image seafloor bedrock exposures and erosional features across the nearshore shelf. Sediment-filled troughs incise the inner shelf rock exposures and tie directly to modern coastal streams. The resulting bedrock geometry can be related to its resistance to erosion. Comparison of the depth of the transgressive erosional surface to recently developed sea level curves suggests a period of slow sea level rise during the early stages of post-interglacial marine transgression. The slow rise of sea level suggests an erosional episode that limited the preservation of buried paleo-channels beyond 70 m water depth. Seafloor features suggest that localized faulting in the area may have influenced the morphology of bedrock exposures and the coastline. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Drozdowska, Violetta; Wróbel, Iwona; Piskozub, Jacek
2017-04-01
The sea surface is a highly productive and active interface between the sea and the atmosphere. Sea surface films are created by organic matter from sea and land sources and they dissipate due to loss of material at the sea surface, including microbial degradation, chemical and photo chemical processes, and loss due to absorption and adsorption onto particulates. However the surface microlayer is almost ubiquitous and cover most of the surface of the ocean, even under conditions of high turbulence. Surface active molecules (surfactants) present in the surface microlayer (SML) may modify the number of physical processes taking place there: among others they affect the depth of penetration of solar radiation and gas exchange. Therefore, research on the influence of surfactants on the sea surface properties become an important task, especially in coastal waters and in vicinity of the river mouths. Surfactants comprises a mixture of organic molecules rich in lipids, polymeric and humus whose proportions determine the various properties of the SML. A unique structure of the energy levels of the organic molecules results in a unique spectral distribution of the light intensity absorbed and emitted by the molecules. Hence, the absorption and fluorescence spectra of organic compounds may allow the identification of the sources of organic matter. Additionally, several absorption (E2:E3, S, SR) and fluorescence (fluorescence intensities at peaks: A, C, M, T, the ratio (M+T)/(A+C), HIX) indices help in describing the changes in molecular size and weight as well as composition of organic matter during the humification processes and caused by photobleaching and biodegradation. Investigations included the region of Gulf of Gdańsk, along a transect from the Vistula River outlet to open sea. The fluorescence and absorption measurements of the samples collected from a surface films and a subsurface layer (SS, a depth of 1 m) during three research cruises in Gulf of Gdańsk, the Baltic Sea, as well as hydrophysical studies and meteorological observations allowed to assess (i) the contribution of two terrestrial components (A and C) decreased with increasing salinity ( 1.64% and 1.89 % in SML and 0.78 and 0.71 % in SS, respectively), while the contribution of, in-situ, in the sea produced components (M and T) increased with salinity ( 0.52% and 2.83% in SML and 0.98% and 1.87 % in SS, respectively), (ii) the biggest relative changes of the FDOM component composition, along the transect from the Vistula River outlet to Gdańsk Deep, were recorded for component T, both in SML and SS (about 18.5 % and 12.3 %, respectively), (iii) the ratio E2:E3 points to discrete changes in molecular weight/size, effected by photobleaching, while (iv) HIX index reflects the humification/condensation processes more sensitively and effectively in SS. The organic molecules included in the SML can specifically modify the physical processes associated with the sea surface microlayers. It should be necessary to continue a study on the physical properties of surface microlayer in the future, especially in less urbanized and more natural and pristine region, like Arctic.
Sea-Level Rise and Flood Potential along the California Coast
NASA Astrophysics Data System (ADS)
Delepine, Q.; Leung, C.
2013-12-01
Sea-level rise is becoming an ever-increasing problem in California. Sea-level is expected to rise significantly in the next 100 years, which will raise flood elevations in coastal communities. This will be an issue for private homeowners, businesses, and the state. One study suggests that Venice Beach could lose a total of at least $440 million in tourism spending and tax dollars from flooding and beach erosion if sea level rises 1.4 m by 2100. In addition, several airports, such as San Francisco International Airport, are located in coastal regions that have flooded in the past and will likely be flooded again in the next 30 years, but sea-level rise is expected to worsen the effects of flooding in the coming decades It is vital for coastal communities to understand the risks associated with sea-level rise so that they can plan to adapt to it. By obtaining accurate LiDAR elevation data from the NOAA Digital Coast Website (http://csc.noaa.gov/dataviewer/?keyword=lidar#), we can create flood maps to simulate sea level rise and flooding. The data are uploaded to ArcGIS and contour lines are added for different elevations that represent future coastlines during 100-year flooding. The following variables are used to create the maps: 1. High-resolution land surface elevation data - obtained from NOAA 2. Local mean high water level - from USGS 3. Local 100-year flood water level - from the Pacific Institute 4. Sea-level rise projections for different future dates (2030, 2050, and 2100) - from the National Research Council The values from the last three categories are added to represent sea-level rise plus 100-year flooding. These values are used to make the contour lines that represent the projected flood elevations, which are then exported as KML files, which can be opened in Google Earth. Once these KML files are made available to the public, coastal communities will gain an improved understanding of how flooding and sea-level rise might affect them in the future. This would allow them to plan ahead to reduce the level of risk to homes, industry, and infrastructure San Francisco International Airport will be most likely be flooded in the next 30 years. Blue lines indicate current Mean High Water Levels. Yellow lines indicate the Mean High Water level combined with flood levels for 2030. Green, 2050, and Red lines, 2100
SeaShark and Starfish opertional data processing schemes for AVHRR and SeaWiFs
NASA Astrophysics Data System (ADS)
Flowerdew, R. J.; Corlyon, Anaa M.; Greer, W. A. D.; Newby, Steve J.; Winder, C. P.
1997-02-01
SeaShark is an operational software package for processing, archiving and cataloguing AVHRR and SeaWiFS data using an operator friendly GUI. Upon receipt of a customer order, it produces standard AVHRR data products, including Sea Surface Temperature (SST) and it has recently been modified to include SeaWiFS level 2 data processing. This uses an atmospheric correction scheme developed by the Plymouth Marine Laboratory, UK (PML) that builds upon the standard Gordon and Wang approach to be applicable over both case 1 and case 2 waters. Higher level products are then generated using PML algorithms, including chlorophyll a, a CZCS-type pigment, Kd, and suspended particulate matter. Outputs are in CEOS-compatible format. The software also produces fast delivery products (FDPs) of chlorophyll a and SST. These FDPs are combined in the StarFish software package to provide maps indicating potential location of phytoplankton and the preferred thermal environment of certain pelagic fish species. Fishing vessels may obtain these maps over Inmarsat, allowing them to achieve a greater efficiency hence lower cost.
A cross-assessment of CCI-ECVs and RCSM simulations over the Mediterranean area
NASA Astrophysics Data System (ADS)
D'Errico, Miriam; Planton, Serge; Nabat, Pierre
2017-04-01
A first objective of this study, conducted in the framework of the Climate Modelling Users Group (CMUG), one of the projects of the European Space Agency Climate Change Initiative (ESA CCI) program, is a cross-assessment of simulations of a Med-CORDEX regional climate system model (CNRM-RCSM5) and a sub-set of atmosphere, marine and surface interrelated Satellite-Derived Essential Climate Variables (CCI-ECVs) (i.e. sea surface temperature, sea level, aerosols and soil moisture content) over the Mediterranean area. The consistency between the model and the CCI-ECVs is evaluated through the analysis of a climate specific event that can be observed with the CCI-ECVs, in atmospheric reanalysis and reproduced in the RCSM simulations. In this presentation we focus on the July 2006 heat wave that affected the western part of the Mediterranean continental and marine area. The application of a spectral nudging method using ERA-Interim reanalysis in our simulation allows to reproduce this event with a proper chronology. As a result we show that the consistency between the simulated model aerosol optical depth and the ECV products (being produced by the ESA Aerosol CCI project consortium) depends on the choice of the algorithm used to infer the variable from the satellite observations. In particular the heat wave main characteristics become consistent between the model and the satellite-derived observations for sea surface temperature, soil moisture and sea level. The link between the atmospheric circulation and the aerosols distribution is also investigated.
Modelling storm development and the impact when introducing waves, sea spray and heat fluxes
NASA Astrophysics Data System (ADS)
Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik
2015-04-01
In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal Netherlands Meteorological Institute.
Zhu, Lin; Bai, Huaiyu; Chen, Bijuan; Sun, Xuemei; Qu, Keming; Xia, Bin
2018-09-15
Microplastics are emerging contaminants and have attracted widespread environmental concerns about their negative effects on the marine ecosystems. In this study, we investigated the abundances, distributions and characteristics of microplastics in surface seawater and sediments from the North Yellow Sea. The results showed that the abundance of microplastics was 545 ± 282 items/m 3 in surface seawater and 37.1 ± 42.7 items/kg dry weight in sediments, representing a medium microplastic pollution level compared with other sea areas. Small microplastics (<1 mm) made up >70% of the total microplastic numbers. Films and fibers were the dominant shapes of microplastics in both the surface seawater and sediments. Transparent microplastics were generally more common than microplastics of other colors. Based on the identification by a Fourier transform infrared microscope, polyethylene (PE) was the dominant composition of microplastics in surface seawater, while polypropylene (PP) was the most common polymer type in sediments. These results will improve our understanding of the environmental risks posed by microplastics to marine ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.
TEAM - Titan Exploration Atmospheric Microprobes
NASA Astrophysics Data System (ADS)
Nixon, Conor; Esper, Jaime; Aslam, Shahid; Quilligan, Gerald
2016-10-01
The astrobiological potential of Titan's surface hydrocarbon liquids and probable interior water ocean has led to its inclusion as a destination in NASA's "Ocean Worlds" initiative, and near-term investigation of these regions is a high-level scientific goal. TEAM is a novel initiative to investigate the lake and sea environs using multiple dropsondes -scientific probes derived from an existing cubesat bus architecture (CAPE - the Cubesat Application for Planetary Exploration) developed at NASA GSFC. Each 3U probe will parachute to the surface, making atmospheric structure and composition measurements during the descent, and photographing the surface - land, shoreline and seas - in detail. TEAM probes offer a low-cost, high-return means to explore multiple areas on Titan, yielding crucial data about the condensing chemicals, haze and cloud layers, winds, and surface features of the lakes and seas. These microprobes may be included on a near-term New Frontiers class mission to the Saturn system as additional payload, bringing increased scientific return and conducting reconnaissance for future landing zones. In this presentation we describe the probe architecture, baseline payload, flight profile and the unique engineering and science data that can be returned.
Seabird drift as a proxy to estimate surface currents in the western Mediterranean?
NASA Astrophysics Data System (ADS)
Gomez-Navarro, Laura; Sánchez-Román, Antonio; Pascual, Ananda; Fablet, Ronan; Hernandez-Carrasco, Ismael; Mason, Evan; Arcos, José Manuel; Oro, Daniel
2017-04-01
Seabird trajectories can be used as proxies to investigate the dynamics of marine systems and their spatiotemporal evolution. Previous studies have mainly been based on analyses of long range flights, where birds are travelling at high velocities over long time periods. Such data have been used to study wind patterns, and areas of avian feeding and foraging have also been used to study oceanic fronts. Here we focus on "slow moving" periods (which we associate to when birds appear to be drifting on the sea surface), in order to investigate bird drift as a proxy for sea surface currents in the western Mediterranean Sea. We analyse trajectories corresponding to "slow moving" periods recorded by GPSs attached to individuals of the species Calonectris diomedea ( Scopoli's shearwater) from mid August to mid September 2012. The trajectories are compared with sea level anomaly (SLA), sea surface temperature (SST), Finite Size Lyapunov Exponents (FSLE), wind fields, and the outputs from an automated sea-surface-height based eddy tracker. The SLA and SST datasets were obtained from the Copernicus Marine Environment Monitoring Service (CMEMS) with a spatial resolution of 1/8 ̊ and 1/100 ̊ respectively while the FSLEs were computed from the SLA dataset. Finally, the wind data comes from the outputs of the CCMPv2 numerical model. This model has a global coverage with a spatial resolution of 1/4 ̊. Interesting relationships between the trajectories and SLA fields are found. According to the angle between the SLA gradient and the trajectories of birds, we classify drifts into three scenarios: perpendicular, parallel and other, which are associated with different driving forces. The first scenario implies that bird drift is driven by geostrophic sea surface currents. The second we associate with wind drag as the main driving force. This is validated through the wind dataset. Moreover, from the SST, FSLEs and the eddy tracker, we obtain supplementary information on the presence of oceanic structures (such as eddies or fronts), not observed in the SLA field due to its limited spatial and temporal resolutions. Therefore, this data helps to explain some of the third case scenario trajectories.
Observations of Sea Surface Mean Square Slope During the Southern Ocean Waves Experiment
NASA Technical Reports Server (NTRS)
Walsh, E. J.; Vandemark, D. C.; Wright, C. W.; Banner, M. L.; Chen, W.; Swift, R. N.; Scott, J. F.; Hines, D. E.; Jensen, J.; Lee, S.;
2001-01-01
For the Southern Ocean Waves Experiment (SOWEX), conducted in June 1992 out of Hobart, Tasmania, the NASA Scanning Radar Altimeter (SRA) was shipped to Australia and installed on a CSIRO Fokker F-27 research aircraft instrumented to make comprehensive surface layer measurements of air-sea interaction fluxes. The SRA sweeps a radar beam of P (two-way) half-power width across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 cross-track positions. In realtime, the slant ranges are multiplied by the cosine of the off-nadir incidence angles (including the effect of aircraft roll attitude) to determine the vertical distances from the aircraft to the sea surface. These distances are subtracted from the aircraft height to produce a sea-surface elevation map, which is displayed on a monitor in the aircraft to enable real-time assessments of data quality and wave properties. The sea surface mean square slope (mss), which is predominantly caused by the short waves, was determined from the backscattered power falloff with incidence angle measured by the SRA in the plane normal to the aircraft heading. On each flight, data were acquired at 240 m altitude while the aircraft was in a 7 degree roll attitude, interrogating off-nadir incidence angles from -15 degrees through nadir to +29 degrees. The aircraft turned azimuthally through 810 degrees in this attitude, mapping the azimuthal dependence of the backscattered power falloff with incidence angle. Two sets of turning data were acquired on each day, before and after the aircraft measured wind stress at low altitude (12 meters to 65 meters). Wave topography and backscattered power for mss were also acquired during those level flight segments whenever the aircraft altitude was above the SRA minimum range of 35 m. Data were collected over a wide range of wind and sea conditions, from quiescent to gale force winds with 9 meter wave height.
NASA Astrophysics Data System (ADS)
Frey, K. E.; Grebmeier, J. M.; Cooper, L. W.; Wood, C.; Panday, P. K.
2011-12-01
The northern Bering and Chukchi Seas in the Pacific Arctic Region (PAR) are among the most productive marine ecosystems in the world and act as important carbon sinks, particularly during May and June when seasonal sea ice-associated phytoplankton blooms occur throughout the region. Recent dramatic shifts in seasonal sea ice cover across the PAR should have profound consequences for this seasonal phytoplankton production as well as the intimately linked higher trophic levels. In order to investigate ecosystem responses to these observed recent shifts in sea ice cover, the development of a prototype Distributed Biological Observatory (DBO) is now underway in the PAR. The DBO is being developed as an internationally-coordinated change detection array that allows for consistent sampling and monitoring at five spatially explicit biologically productive locations across a latitudinal gradient: (1) DBO-SLP (south of St. Lawrence Island (SLI)), (2) DBO-NBS (north of SLI), (3) DBO-SCS (southern Chukchi Sea), (4) DBO-CCS (central Chukchi Sea), and (5) DBO-BCA (Barrow Canyon Arc). Standardized measurements at many of the DBO sites were made by multiple research cruises during the 2010 and 2011 pilot years, and will be expanded with the development of the DBO in coming years. In order to provide longer-term context for the changes occurring across the PAR, we utilize multi-sensor satellite data to investigate recent trends in sea ice cover, chlorophyll biomass, and sea surface temperatures for each of the five DBO sites, as well as a sixth long-term observational site in the Bering Strait. Satellite observations show that over the past three decades, trends in sea ice cover in the PAR have been heterogeneous, with significant declines in the Chukchi Sea, slight declines in the Bering Strait region, but increases in the northern Bering Sea south of SLI. Declines in the persistence of seasonal sea ice cover in the Chukchi Sea and Bering Strait region are due to both earlier sea ice breakup and later sea ice formation. Sea surface temperatures have also shown warming, where sites show significant warming particularly during August, September, and October. Satellite-derived chlorophyll-a concentrations over the past decade have shown trends seemingly in direct response to changing sea ice conditions, with increasing trends in chlorophyll-a concentrations when sea ice declines (and vice versa). In some cases, however, satellite-derived chlorophyll-a concentrations do not show expected changes with sea ice variability, indicating that limitations on biological productivity in this region are complex and spatially heterogeneous. An understanding of these spatial and temporal complexities impacting biological productivity is needed for the accurate prediction of how overall ecosystems may be altered with further expected warming sea surface temperatures and declines in sea ice cover.
TOPEX/El Nino Watch - Warm Water Pool is Thinning, Feb, 5, 1998
NASA Technical Reports Server (NTRS)
1998-01-01
This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Feb. 5, 1998 and sea surface height is an indicator of the heat content of the ocean. The area and volume of the El Nino warm water pool that is affecting global weather patterns remains extremely large, but the pool has thinned along the equator and near the coast of South America. This 'thinning' means that the warm water is not as deep as it was a few months ago. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition that they would expect to see during the ocean's gradual transition back to normal sea level. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through the spring.
For more information, please visit the TOPEX/Poseidon project web page at http://topex-www.jpl.nasa.govMapping coastal sea level at high resolution with radar interferometry: the SWOT Mission
NASA Astrophysics Data System (ADS)
Fu, L. L.; Chao, Y.; Laignel, B.; Turki, I., Sr.
2017-12-01
The spatial resolution of the present constellation of radar altimeters in mapping two-dimensional sea surface height (SSH) variability is approaching 100 km (in wavelength). At scales shorter than 100 km, the eddies and fronts are responsible for the stirring and mixing of the ocean, especially important in the various coastal processes. A mission currently in development will make high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT will carry a pair of interferometry radars and make 2-dimensional SSH measurements over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. The synthetic aperture radar of SWOT will make SSH measurement at extremely high resolution of 10-70 m. SWOT will also carry a nadir looking conventional altimeter and make 1-dimensional SSH measurements along the nadir gap. The temporal sampling varies from 2 repeats per 21 days at the equator to more than 4 repeats at mid latitudes and more than 6 at high latitudes. This new mission will allow a continuum of fine-scale observations from the open ocean to the coasts, estuaries and rivers, allowing us to investigate a number of scientific and technical questions in the coastal and estuarine domain to assess the coastal impacts of regional sea level change, such as the interaction of sea level with river flow, estuary inundation, storm surge, coastal wetlands, salt water intrusion, etc. As examples, we will illustrate the potential impact of SWOT to the studies of the San Francisco Bay Delta, and the Seine River estuary, etc. Preliminary results suggest that the SWOT Mission will provide fundamental data to map the spatial variability of water surface elevations under different hydrodynamic conditions and at different scales (local, regional and global) to improve our knowledge of the complex physical processes in the coastal and estuarine systems in response to global sea level changes.
Odum, J.K.; Yehle, L.A.; Schmoll, H.R.; Gilbert, Chuck
1986-01-01
This map shows the potentiometric surface of the Upper Floridan aquifer in the St. Johns River Water Management District and vicinity, Florida, for May 1986. The Upper Floridan aquifer is the principal source of potable water in the area. Water level measurements were made on approximately 1,000 wells and on several springs. The potentiometric surface is shown mostly by 5-foot contour intervals. In the Fernandina Beach area of Nassau County, a 30-ft. interval is used to show a deep cone of depression. The potentiometric surface ranged from 125 feet above sea level in Polk County to 75 feet below sea level in Nassau County. Water levels in most key wells ranged from 1 to 9 feet below the May average in response to the lack of recharge from rainfall and an attendant increase in pumpage. Many levels in the district were equal to or lower than the below average levels of May 1985. Declines of about a foot from May 1985 levels were common in the eastern half of the district. However, the largest declines from May 1985 levels, as much as 7 to 9 feet, were mostly in well fields along the coastline. Levels in many wells approached, and in a few wells exceeded, record lows. (USGS)
NASA Astrophysics Data System (ADS)
Yu, Shaohua; Zheng, Zhuo; Chen, Fang; Jing, Xia; Kershaw, Peter; Moss, Patrick; Peng, Xuechao; Zhang, Xin; Chen, Chixin; Zhou, Yang; Huang, Kangyou; Gan, Huayang
2017-02-01
This study presents a marine palynological record of the Asian summer monsoon and sea level change in the Last Glacial Maximum (LGM) and the deglacial period in the northern South China Sea (SCS). A fossil core STD 235 (855 cm in length) and 273 surface sediment samples from the northern SCS were pollen analysed to reconstruct the paleoenvironment of the continental shelf during the last glacial period. Results from fossil pollen show that the main pollen source region fundamentally changed from the LGM to the deglacial period as sea level rapidly rose. The modern marine surface samples show that pollen concentrations in the estuary of the Pearl River are extremely high, and modern pollen assemblages are in good agreement with the regional vegetation. However, wind transport becomes more important in the deeper ocean as the percentages of Pinus, a taxon with very high pollen production and dispersal capacity, is highest in these sediments, which otherwise have very low pollen concentrations. The concentration of total pollen between surface and fossil pollen samples is compared in order to determine the possible vegetation sources areas for the marine core. Pollen concentration as high as >100 grains/g at the LGM suggested that the paleo-shoreline was located within 80 km of the core. Consequently, pollen would mostly have derived from the exposed continental shelf in the northern SCS. By contrast, pollen concentrations were very low due to a much greater transport distance (318 km at present, core STD 235) under higher sea levels, and windblown pollen played a more important role because of the limitation of riverine input into the deep ocean during this highstand period. Such alternation of pollen flux and source distance should be repeated during all glacial-interglacial cycles, reflecting closely sea level and climate dynamics. According to fossil pollen assemblages from Core STD 235, we conclude that wetland and/or grassland communities with sparse subtropical trees dominated most of the exposed shelf during the LGM rather than forest that characterizes the region today. The existence of a predominantly open landscape on the exposed continental shelf suggests lower precipitation during the LGM, which in turn indicates a weaker Asian summer monsoon. This finding is supported by other records from the Okinawa Trough and the East China Sea, suggesting that a weaker summer monsoon was a key characteristic of the LGM in East Asia.
The Orinoco megadelta as a conservation target in the face of the ongoing and future sea level rise.
Vegas-Vilarrúbia, T; Hernández, E; Rull, Valentí; Rull Vegas, Elisa
2015-05-15
Currently, risk assessments related to rising sea levels and the adoption of defensive or adaptive measures to counter these sea level increases are underway for densely populated deltas where economic losses might be important, especially in the developed world. However, many underpopulated deltas harbouring high biological and cultural diversity are also at risk but will most likely continue to be ignored as conservation targets. In this study, we explore the potential effects of erosion, inundation and salinisation on one of the world's comparatively underpopulated megadeltas, the Orinoco Delta. With a 1 m sea level rise expected to occur by 2100, several models predict a moderate erosion of the delta's shorelines, migration or loss of mangroves, general inundation of the delta with an accompanying submersion of wetlands, and an increase in the distance to which sea water intrudes into streams, resulting in harm to the freshwater biota and resources. The Warao people are the indigenous inhabitants of the Orinoco Delta and currently are subject to various socioeconomic stressors. Changes due to sea level rise will occur extremely rapidly and cause abrupt shifts in the Warao's traditional environments and resources, resulting in migrations and abandonment of their ancestral territories. However, evidence indicates that deltaic aggradation/accretion processes at the Orinoco delta due to allochthonous sediment input and vegetation growth could be elevating the surface of the land, keeping pace with the local sea level rise. Other underpopulated and large deltas of the world also may risk immeasurable biodiversity and cultural losses and should not be forgotten as important conservation targets. Copyright © 2015. Published by Elsevier B.V.
Gravity Field Changes due to Long-Term Sea Level Changes
NASA Astrophysics Data System (ADS)
Makarynskyy, O.; Kuhn, M.; Featherstone, W. E.
2004-12-01
Long-term sea level changes caused by climatic changes (e.g. global warming) will alter the system Earth. This includes the redistribution of ocean water masses due to the migration of cold fresh water from formerly ice-covered regions to the open oceans mainly caused by the deglaciation of polar ice caps. Consequently also a change in global ocean circulation patterns will occur. Over a longer timescale, such mass redistributions will be followed by isostatic rebound/depression due to the changed surface un/loading, resulting in variable sea level change around the world. These, in turn, will affect the gravity field, location of the geocentre, and the Earth's rotation vector. This presentation focuses mainly on gravity field changes induced by long-term (hundredths to many thousand years) sea level changes using an Earth System Climate Model (ESCM) of intermediate complexity. In this study, the coupled University of Victoria (Victoria, Canada) Earth System Climate Model (Uvic ESCM) was used, which embraces the primary thermodynamic and hydrological components of the climate system including sea and land-ice information. The model was implemented to estimate changes in global precipitation, ocean mass redistribution, seawater temperature and salinity on timescales from hundreds to thousands years under different greenhouse warming scenarios. The sea level change output of the model has been converted into real mass changes by removing the steric effect, computed from seawater temperature and salinity information at different layers also provided by Uvic ESCM. Finally the obtained mass changes have been converted into changes of the gravitational potential and subsequently of the geoid height using a spherical harmonic representation of the different data. Preliminary numerical results are provided for sea level change as well as change in geoid height.
A Powerful Method of Measuring Sea Wave Spectra and their Direction
NASA Astrophysics Data System (ADS)
Blasi, Christoph; Mai, Stephan; Wilhelmi, Jens; Zenz, Theodor; Barjenbruch, Ulrich
2014-05-01
Besides the need of precise measurements of water levels of the sea, there is an increasing demand for assessing waves in height and direction for different purposes like sea-wave modelling and coastal engineering. The design of coastal structures such as piles, breakwaters, and offshore structures like wind farms must take account of the direction of the impacting waves. To date, records of wave directions are scarce. The reason for this might be the high costs of purchasing and operating such measuring devices. These are usually buoys, which require regular maintenance. Against this background, the German Federal Institute of Hydrology (BfG) developed a low-cost directional sea-wave monitoring system that is based on commercially available liquid-level radar sensors. These sensors have the advantage that they have no contact to the fluid, i.e. the corrosive sea water. The newly developed device was tested on two sites. One is the tide gauge 'Borkum Südstrand' that is located in the southern North Sea off the island of Borkum. The other one is the 'Research Platform FINO1' approximately 45 km north of the island of Borkum. The main focus of these tests is the comparison of the data measured by the radar-based system with those of a conventional Directional Wave Rider Buoy. The general conditions at the testing sites are good for the tests. At the tide gauge 'Borkum Südstrand' waves propagate in different directions, strongly influenced by the morphological conditions like shallow waters of the Wadden Seas and the coast of the island of Borkum. Whereas on the open sea, at the site FINO1, the full physical conditions of the sea state, like heavy storms etc. play an important role. To determine and measure the direction of waves, the device has to be able to assess the wave movements in two dimensions. Therefore, an array of several radar sensors is required. Radar sensors are widely used and well established in measuring water levels, e.g. in tanks and basins. They operate by emitting a chain of electromagnetic pulses at a frequency of 26 GHz twice per second and, in turn, detect the backscatter information from the water surface. As the travelling time of each pulse is proportional to the distance between water surface and sensor, the height of the water surface can be easily calculated. To obtain the directional information of the sea state, all four radar sensors in the array have to collect simultaneously the wave profiles at fixed points. The Wave Rider Buoy works in a completely different way. Here, the wave height is calculated by the double integration of the measured vertical acceleration. By correlating the three-dimensional motion data, which are gained from gravity-stabilized vertical and horizontal accelerometers, the directional wave spectrum can be derived. Data of both devices were collected and analysed. During the hurricane Xaver, extreme water levels and heavy sea hit the North Sea coast on 5 and 6 December 2013. The radar array at the testing site FINO1 measured wave heights in the order of 15.5 meters. Furthermore, it was possible to detect significant wave heights, the mean wave direction, and the spread of the sea state. For the first time the accuracy of the wave height distribution could be determined as well.
NASA Astrophysics Data System (ADS)
Pietrzak, Julie D.; de Boer, Gerben J.; Eleveld, Marieke A.
2011-04-01
Thermal and optical remote sensing data were used to investigate the spatial and temporal distribution of sea surface temperature (SST) and of suspended particulate matter (SPM) in the southern North Sea. Monthly SST composites showed pronounced seasonal warming of the southern North Sea and delineated the English coastal and continental coastal waters. The East-Anglia Plume is the dominant feature of the English coastal waters in the winter and autumn SPM composites, and the Rhine region of freshwater influence (ROFI), including the Flemish Banks, is the dominant feature of the continental waters. These mesoscale spatial structures are also influenced by the evolution of fronts, such as the seasonal front separating well-mixed water in the southern Bight, from the seasonally stratified central North Sea waters. A harmonic analysis of the SST and SPM images showed pronounced seasonal variability, as well as spring-neap variations in the level of tidal mixing in the East Anglia Plume, the Rhine ROFI and central North Sea. The harmonic analysis indicates the important role played by the local meteorology and tides in governing the SST and near-surface SPM concentrations in the southern North Sea. In the summer, thermal stratification affects the visibility of SPM to satellite sensors in the waters to the north of the Flamborough and Frisian Fronts. Haline stratification plays an important role in the visibility of SPM in the Rhine ROFI throughout the year. When stratified, both regions typically exhibit low surface SPM values. A numerical model study, together with the harmonic analysis, highlights the importance of tides and waves in controlling the stratification in the southern North Sea and hence the visibility of SPM.
NASA Astrophysics Data System (ADS)
Tokano, Tetsuya; Lorenz, Ralph D.
2016-05-01
Density-driven circulation in Titan's seas forced by solar heating and methane evaporation/precipitation is simulated by an ocean circulation model. If the sea is transparent to sunlight, solar heating can induce anti-clockwise gyres near the sea surface and clockwise gyres near the sea bottom. The gyres are in geostrophic balance between the radially symmetric pressure gradient force and Coriolis force. If instead the sea is turbid and most sunlight is absorbed near the sea surface, the sea gets stratified in warm seasons and the circulation remains weak. Precipitation causes compositional stratification of the sea to an extent that the sea surface temperature can be lower than the sea interior temperature without causing a convective overturning. Non-uniform precipitation can also generate a latitudinal gradient in the methane mole fraction and density, which drives a meridional overturning with equatorward currents near the sea surface and poleward currents near the sea bottom. However, gyres are more ubiquitous than meridional overturning.
The Impact of Sea Surface Temperature Front on Stratus-Sea Fog over the Yellow and East China Seas
NASA Astrophysics Data System (ADS)
Zhang, S.; Li, M.; Liu, F.
2013-12-01
A stratus-sea fog event occurred on 3 June 2011 over the Yellow and East China Seas (as shown in figure) is investigated observationally and numerically. Emphasis is put on the influences of the sea surface temperature front (SSTF) and of the synoptic circulations on the transition of stratus to sea fog. The southerly winds from a synoptic high pressure transport water vapor from the East China Sea to the Yellow Sea, while the subsidence induced by the high contributes to the formation of the temperature inversion on the top of the stratus or stratocumulus that appears mainly over the warm flank of a sea surface temperature front in the East China Sea. Forced by the SSTF, there is a secondary cell within the atmospheric boundary layer (ABL), with a sinking branch on the cold flank and a rising one on the warm flank of the SSTF. This sinking branch, in phase with the synoptic subsidence, forces the stratus or stratocumulus to lower in the elevation getting close to the sea surface as these clouds move northward driven by the southerly winds. The cloud droplets can either reach to the sea surface directly or evaporate into water vapor that may condense again when coming close to the cold sea surface to form fog. In this later case, the stratus and fog may separate. The cooling effect of cold sea surface counteracts the adiabatic heating induced by the subsidence and thus helps the transition of stratus to sea fog in the southern Yellow Sea. By smoothing the SSTF in the numerical experiment, the secondary cell weakens and the sea fog patches shrink obviously over the cold flank of the SSTF though the synoptic subsidence and moist advection still exist. A conceptual model is suggested for the transition of stratus to sea fog in the Yellow and East China Seas, which is helpful for the forecast of sea fog over these areas. The satellite visible image of the stratus-fog event. The fog appears in the Yellow Sea and the stratocumulus in the East China Sea.
Erwin, R. Michael; Cahoon, Donald R.; Prosser, Diann J.; Sanders, Geoffrey; Hensel, Philippe
2006-01-01
Mid Atlantic coastal salt marshes contain a matrix of vegetation diversified by tidal pools, pannes, and creeks, providing habitats of varying importance to many species of breeding, migrating, and wintering waterbirds. We hypothesized that changes in marsh elevation were not sufficient to keep pace with those of sea level in both vegetated and unvegetated Spartina alterniflora sites at a number of mid lagoon marsh areas along the Atlantic coast. We also predicted that northern areas would suffer less of a deficit than would southern sites. Beginning in August 1998, we installed surface elevation tables at study sites on Cape Cod, Massachusetts, southern New Jersey, and two locations along Virginia's eastern shore. We compared these elevation changes over the 4-4.5 yr record with the long-term (> 50 yr) tidal records for each locale. We also collected data on waterbird use of these sites during all seasons of the year, based on ground surveys and replicated surveys from observation platforms. Three patterns of marsh elevation change were found. At Nauset Marsh, Cape Cod, the Spartina marsh surface tracked the pond surface, both keeping pace with regional sea-level rise rates. In New Jersey, the ponds are becoming deeper while marsh surface elevation remains unchanged from the initial reading. This may result in a submergence of the marsh in the future, assuming sea-level rise continues at current rates. Ponds at both Virginia sites are filling in, while marsh surface elevation rates do not seem to be keeping pace with local sea-level rise. An additional finding at all sites was that subsidence in the vegetated marsh surfaces was less than in unvegetated areas, reflecting the importance of the root mat in stabilizing sediments. The implications to migratory waterbirds are significant. Submergence of much of the lagoonal marsh area in Virginia and New Jersey over the next century could have major negative (i.e., flooding) effects on nesting populations of marsh-dependent seaside sparrows Ammodramus maritimus, saltmarsh sharp-tailed sparrows A. caudacutus, black rails Laterallus jamaicensis, clapper rails Rallus longirostris, Forster's terns Sterna forsteri, common terns Sterna hirundo, and gull-billed terns Sterna nilotica. Although short-term inundation of many lagoonal marshes may benefit some open-water feeding ducks, geese, and swans during winter, the long-term ecosystem effects may be detrimental, as wildlife resources will be lost or displaced. With the reduction in area of emergent marsh, estuarine secondary productivity and biotic diversity will also be reduced.
Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes
NASA Astrophysics Data System (ADS)
Zhang, Ting; Song, Jinbao
2018-04-01
The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.
NASA Astrophysics Data System (ADS)
Dutkiewicz, Adriana; Müller, Dietmar; O'Callaghan, Simon
2017-04-01
World's ocean basins contain a rich and nearly continuous record of environmental fluctuations preserved as different types of deep-sea sediments. The sediments represent the largest carbon sink on Earth and its largest geological deposit. Knowing the controls on the distribution of these sediments is essential for understanding the history of ocean-climate dynamics, including changes in sea-level and ocean circulation, as well as biological perturbations. Indeed, the bulk of deep-sea sediments comprises the remains of planktonic organisms that originate in the photic zone of the global ocean implying a strong connection between the seafloor and the sea surface. Machine-learning techniques are perfectly suited to unravelling these controls as they are able to handle large sets of spatial data and they often outperform traditional spatial analysis approaches. Using a support vector machine algorithm we recently created the first digital map of seafloor lithologies (Dutkiewicz et al., 2015) based on 14,400 surface samples. This map reveals significant deviations in distribution of deep-sea lithologies from hitherto hand-drawn maps based on far fewer data points. It also allows us to explore quantitatively, for the first time, the relationship between oceanographic parameters at the sea surface and lithologies on the seafloor. We subsequently coupled this global point sample dataset of 14,400 seafloor lithologies to bathymetry and oceanographic grids (sea-surface temperature, salinity, dissolved oxygen and dissolved inorganic nutrients) and applied a probabilistic Gaussian process classifier in an exhaustive combinatorial fashion (Dutkiewicz et al., 2016). We focused on five major lithologies (calcareous sediment, diatom ooze, radiolarian ooze, clay and lithogenous sediment) and used a computationally intensive five-fold cross-validation, withholding 20% of the data at each iteration, to assess the predictive performance of the machine learning method. We find that the occurrence of five major lithologies in the world's ocean can be predicted on the basis of just two or three parameters, notably sea-surface salinity and sea-surface temperature. These parameters control the growth and composition of plankton and specific salinities and temperatures are also associated with the influx of non-aerosol terrigenous material into the ocean. Bathymetry is an important parameter for discriminating the occurrence of calcareous sediment, clay and coarse lithogenous sediment from each other but it is not important for biosiliceous oozes. Consequently, radiolarian and diatom oozes are poor indicators of palaeo-depth. Contrary to widely held view, we find that calcareous and siliceous oozes are not linked to high surface productivity. Our analysis shows that small shifts in surface ocean conditions significantly affect the lithology of modern seafloor sediments on a global scale and that these relationships need to be incorporated into interpretations of the geological record of ocean basins. Dutkiewicz, A., Müller, R. D., O'Callaghan, S., and Jónasson, H., 2015, Census of seafloor sediments in the world's ocean: Geology, v. 43, no. 9, p. 795-798. Dutkiewicz, A., O'Callaghan, S., and Müller, R. D., 2016, Controls on the distribution of deep-sea sediments: Geochem. Geophys. Geosyst., v. 17, p. 1-24.
Role of Western Hemisphere Warm Pool in Rapid Climate Changes over the Western North Pacific
NASA Astrophysics Data System (ADS)
Kug, Jong-Seong; Park, Jae-Heung; An, Soon-Il
2017-04-01
Oceanic states over the western North Pacific (WNP), which is surrounded by heavily populated countries, are closely tied to the lives of the people in East Asia in regards to both climate and socioeconomics. As global warming continues, remarkable increases in sea surface temperature (SST) and sea surface height (SSH) have been observed in the WNP in recent decades. Here, we show that the SST increase in the western hemisphere warm pool (WHWP), which is the second largest warm pool on the globe, has contributed considerably to the rapid surface warming and sea level rise in the WNP via its remote teleconnection along the Pacific Intertropical Convergence Zone (ITCZ). State-of-the-art climate models strongly support the role of the WHWP not only on interannual time sales but also in long-term climate projections. We expect that understanding the processes initiated by the WHWP-SST could permit better forecasts of western North Pacific climate and the further development of the socioeconomics of East Asia.
Morphology of a submerged insular shelves in the West Alboran Basin.
NASA Astrophysics Data System (ADS)
Lafosse, Manfred; Le Roy, Pascal; Gorini, Christian; Rabineau, Marina; d'Acremont, Elia; Rabaute, Alain
2017-04-01
The dynamic of the seafloor in the Western Mediterranean Sea reflects the variety of the natural processes shaping it. Each of the sub-surface features is the result of tectonic, sedimentary and oceanic processes and eustatic sea-level variations. This study is focused on the morphology of three flat bathymetric highs and on the continental shelf in the Alboran Sea that show a variety of detailed seabed features that we attribute to a combination of present-day Mediterranean water mass flows, Quaternary active folding and faulting, differential erosion linked to relative-sea-level variation and local hydrodynamic. Swath bathymetry and reflectivity data, 2D seismic lines of multiple resolutions (12 channels, SPARKER source, and TOPAS seismic lines) have been acquired during three successive cruises: the MARLBORO-1 (2011), the MARLBORO-2 (2012) and the SARAS (2012) surveys. Our study deciphers the seabed structure of the banks with morphometric measurements (slope gradient, plan curvature, and topographic index) and correlates these structures to the stratigraphy of surrounding shelf. We show that the competition between active folding of the Miocene units and the erosion linked to the late Quaternary lowstands is creates the topography of the banks. The elevations of the flat surfaces measured on the banks are close to -110m and -80m. They are interpreted as submerged depositional surfaces linked to glacial and post-glacial deposit and wave-ravinement erosional surfaces as observed in other Mediterranean continental shelves. The analysis of the altitudinal spacing of these marine terraces indicates a spatial pattern with varying uplift rates. Furthermore, the characterization of sub-aqueous dune patterns locally linked to potential cold carbonate seamount could reflect the influence of water-masses current on the stratigraphic organization.
Phillips, A M B; Depaola, A; Bowers, J; Ladner, S; Grimes, D J
2007-04-01
The U.S. Food and Drug Administration recently published a Vibrio parahaemolyticus risk assessment for consumption of raw oysters that predicts V. parahaemolyticus densities at harvest based on water temperature. We retrospectively compared archived remotely sensed measurements (sea surface temperature, chlorophyll, and turbidity) with previously published data from an environmental study of V. parahaemolyticus in Alabama oysters to assess the utility of the former data for predicting V. parahaemolyticus densities in oysters. Remotely sensed sea surface temperature correlated well with previous in situ measurements (R(2) = 0.86) of bottom water temperature, supporting the notion that remotely sensed sea surface temperature data are a sufficiently accurate substitute for direct measurement. Turbidity and chlorophyll levels were not determined in the previous study, but in comparison with the V. parahaemolyticus data, remotely sensed values for these parameters may explain some of the variation in V. parahaemolyticus levels. More accurate determination of these effects and the temporal and spatial variability of these parameters may further improve the accuracy of prediction models. To illustrate the utility of remotely sensed data as a basis for risk management, predictions based on the U.S. Food and Drug Administration V. parahaemolyticus risk assessment model were integrated with remotely sensed sea surface temperature data to display graphically variations in V. parahaemolyticus density in oysters associated with spatial variations in water temperature. We believe images such as these could be posted in near real time, and that the availability of such information in a user-friendly format could be the basis for timely and informed risk management decisions.