Application of topography survey on the green sea turtle (Chelonia mydas) conservation
NASA Astrophysics Data System (ADS)
Fan, Yuan-Yu; Lo, Liu-Chih; Peng, Kuan-Chieh
2017-04-01
Taiwan is located in the Western Pacific monsoon region, typhoon is one of the common natural disasters. Taiwan is hit by typhoons 6 times on average each year, and 2016 have 5. Typhoon not only caused the loss of nature environment in Taiwan but also decreased the endangered species- green sea turtle's breeding success rate. In Wangan island, Penghu, green sea turtle nesting beach's slop is too steep to form the dune cliff, block the way which green sea turtle should nesting above the vegetation line. Nesting under the dune cliff is disturbed easily by the swell from typhoon, Leading to the whole nest was emptied or hatching rate decreased due to water content changed. In order to reduce the threat of typhoon on the green sea turtle, and promote the success of green sea turtle reproduction, we used LiDAR(Light Detection And Ranging) to monitor the topographic change of the green sea turtle nesting habitat and compare the invasion and deposition of the green sea turtle nests before and after the occurrence of typhoons. The results showed that the breeding success rate before the typhoon (2016/09/12) was 93%, which was not affected by the swell. The breeding success rate at the higher position after the typhoon was 95%, and under the dune cliff, 10 nests reproduction failed due to the swell changing the sand layer thickness. The production of dune cliffs is formed by the roots of coastal sand-fixation plants. In the past, the residents collected the coastal plants for fuel, after collecting, sparse vegetation is good to form the flat beach, and to promote green sea turtle nesting on the higher position from the disturbance of typhoon. In the future, to protect the success of green sea turtle's reproduction, should increase the human intervention that disturb the nesting beach's vegetation appropriately, Or cutting the roots directly to reduce the dune cliffs before the nesting season, help the green sea turtle nesting in a higher beach, improve the green sea turtle's breeding success rate.
Cohen, J.B.
2005-01-01
Executive Summary 1. The southeast U.S. population of the loggerhead turtle (Caretta caretta) has increased since the species was listed as federally threatened in 1978. Since standardized monitoring began in North Carolina in 1995, the number of nests at Cape Hatteras National Seashore (CAHA) fluctuated from year to year, and was lowest in 1996 and 1997 (39 nests) and highest in 2003 (101 nests). Green turtles (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) have nested in small numbers at CAHA, sporadically over time. 2. Hatching success of sea turtle nests typically approaches 80%. At CAHA hatching success from 1999-2003 was low when hurricanes hit during the nesting season (30%-38%), and ranged from 52%-70% otherwise. Hatching success at CAHA is usually correlated with hatching success in the surrounding subpopulation (north Florida to North Carolina). 3. Inclement weather, predation, and human recreation can negatively impact nesting rate and hatching success. 4. Currently there is little protection from recreation at CAHA for nesting females and nests that have not been found by monitors. We propose three management options to provide such protection, and to increase protection for known nests and hatchlings. We propose an adaptive management framework for assessing the effectiveness of these management options in improving sea turtle nesting rate and nest and hatchling survival. 5. We recommend continued efforts to trap and remove mammalian predators from all sea turtle habitat. We further recommend intensive monitoring and surveillance of protected areas to determine the extent and timing of threats to nests and broods, including nest overwash, predation, and disturbance or vandalism by humans. 6. Continue to relocate nests and assist stranded turtles according to North Carolina Wildlife Resources Commission guidelines. 7. Artificial light sources pose a serious threat to sea turtles in some parts of CAHA, which must be remedied immediately. We recommend that CAHA enact turtle-friendly lighting regulations and work with the communities within its borders to reduce light pollution and to eliminate artificial light sources that are directly visible from sea turtle nesting areas. 8. We recommend increased education and outreach to CAHA visitors, including requiring participation in an educational program before being granted nighttime beach access. The long-term success of sea turtle recovery will depend on public cooperation and positive public attitudes toward sea turtles and turtle management actions.
Predaceous ants, beach replenishment, and nest placement by sea turtles.
Wetterer, James K; Wood, Lawrence D; Johnson, Chris; Krahe, Holly; Fitchett, Stephanie
2007-10-01
Ants known for attacking and killing hatchling birds and reptiles include the red imported fire ant (Solenopsis invicta Buren), tropical fire ant [Solenopsis geminata (Fabr.)], and little fire ant [Wasmannia auropunctata (Roger)]. We tested whether sea turtle nest placement influenced exposure to predaceous ants. In 2000 and 2001, we surveyed ants along a Florida beach where green turtles (Chelonia mydas L.), leatherbacks (Dermochelys coriacea Vandelli), and loggerheads (Caretta caretta L.) nest. Part of the beach was artificially replenished between our two surveys. As a result, mean beach width experienced by nesting turtles differed greatly between the two nesting seasons. We surveyed 1,548 sea turtle nests (2000: 909 nests; 2001: 639 nests) and found 22 ant species. S. invicta was by far the most common species (on 431 nests); S. geminata and W. auropunctata were uncommon (on 3 and 16 nests, respectively). In 2000, 62.5% of nests had ants present (35.9% with S. invicta), but in 2001, only 30.5% of the nests had ants present (16.4% with S. invicta). Turtle nests closer to dune vegetation had significantly greater exposure to ants. Differences in ant presence on turtle nests between years and among turtle species were closely related to differences in nest placement relative to dune vegetation. Beach replenishment significantly lowered exposure of nests to ants because on the wider beaches turtles nested farther from the dune vegetation. Selective pressures on nesting sea turtles are altered both by the presence of predaceous ants and the practice of beach replenishment.
1987-10-01
Turtles (Cheidra serptina)," Canadian Journal of Zoology, Vol 62, pp 2401-2403. Hendrickson, J. R. 1958. " The Green Turtle , CheZonia mydas (Linn.), in...sea turtle nests in the United States are located in beaches that have been nourished or renourished. Questions have been raised about how physical...changes In the beaches will affect the nesting activities of these sea turtles that use nourished beaches for nesting.’) This study was conducted to
Raccoon removal reduces sea turtle nest depredation in the Ten Thousand Islands of Florida
Garmestani, A.S.; Percival, H.F.
2005-01-01
Predation by raccoons, Procyon lotor marinus (L.), is the primary cause of sea turtle nest loss in the Ten Thousand Islands archipelago. Four islands within Ten Thousand Islands National Wildlife Refuge were surveyed for sea turtle nesting activity from 1991-95. Raccoons depredated 76-100% of nests on Panther Key from 1991-94, until 14 raccoons were removed in 1995 resulting in 0% depredation and 2 more were removed in 1996 resulting in 0% depredation. Raccoon removal may be an effective management option for increasing sea turtle nest survival on barrier islands.
LOGGERHEAD SEA TURTLE LATE NESTING ECOLOGY IN VIRGINIA BEACH, VIRGINIA
T'he.loggerhead sea turtle (Caretta came is the only recurrent nesting species of sea turtle in southeastern Virginia (Lutcavage & Musick, 1985; Dodd, 1988). Inasmuch as the loggerhead is a federally threatened species, the opportunity to gather data on its nesting ecology is imp...
The effects of large beach debris on nesting sea turtles
Fujisaki, Ikuko; Lamont, Margaret M.
2016-01-01
A field experiment was conducted to understand the effects of large beach debris on sea turtle nesting behavior as well as the effectiveness of large debris removal for habitat restoration. Large natural and anthropogenic debris were removed from one of three sections of a sea turtle nesting beach and distributions of nests and false crawls (non-nesting crawls) in pre- (2011–2012) and post- (2013–2014) removal years in the three sections were compared. The number of nests increased 200% and the number of false crawls increased 55% in the experimental section, whereas a corresponding increase in number of nests and false crawls was not observed in the other two sections where debris removal was not conducted. The proportion of nest and false crawl abundance in all three beach sections was significantly different between pre- and post-removal years. The nesting success, the percent of successful nests in total nesting attempts (number of nests + false crawls), also increased from 24% to 38%; however the magnitude of the increase was comparably small because both the number of nests and false crawls increased, and thus the proportion of the nesting success in the experimental beach in pre- and post-removal years was not significantly different. The substantial increase in sea turtle nesting activities after the removal of large debris indicates that large debris may have an adverse impact on sea turtle nesting behavior. Removal of large debris could be an effective restoration strategy to improve sea turtle nesting.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-09
... tag live sea turtles; transport live and dead sea turtles to rehabilitation facilities, satellite transmitter attachment sites, and necropsy sites and necropsy dead sea turtles and collect samples; examine gut contents from dead sea turtles; attach satellite transmitters to nesting Kemp's ridley turtles...
Influence of incubation temperature on sea turtle hatchling quality.
Booth, David T
2017-09-01
Since the 1980s it has been known that incubation temperature influences the sex ratio of sea turtle hatchlings emerging from their nests, and there has been much speculation on how global climate change might threaten sea turtle populations by raising nest temperatures and causing highly female-biased hatchling sex ratios. More recently, studies have indicated that incubation temperature can also influence the size and locomotor performance of sea turtle hatchlings. Here I review recent studies that have explored the influence of incubation temperature on sea turtle hatchling quality in terms of hatchling morphology and locomotor performance. I also discuss the likely underlying mechanisms responsible for incubation temperature-induced differences in hatchling locomotor performance, and how an increase in nest temperature associated with global warming might affect recruitment of sea turtle hatchlings. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Who are the important predators of sea turtle nests at Wreck Rock beach?
Booth, David T.
2017-01-01
Excessive sea turtle nest predation is a problem for conservation management of sea turtle populations. This study assessed predation on nests of the endangered loggerhead sea turtle (Caretta caretta) at Wreck Rock beach adjacent to Deepwater National Park in Southeast Queensland, Australia after a control program for feral foxes was instigated. The presence of predators on the nesting dune was evaluated by tracking plots (2 × 1 m) every 100 m along the dune front. There were 21 (2014–2015) and 41 (2015–2016) plots established along the dune, and these were monitored for predator tracks daily over three consecutive months in both nesting seasons. Predator activities at nests were also recorded by the presence of tracks on top of nests until hatchlings emerged. In addition, camera traps were set to record the predator activity around selected nests. The tracks of the fox (Vulpes vulpes) and goanna (Varanus spp) were found on tracking plots. Tracking plots, nest tracks and camera traps indicated goanna abundance varied strongly between years. Goannas were widely distributed along the beach and had a Passive Activity Index (PAI) (0.31 in 2014–2015 and 0.16 in 2015–2016) approximately seven times higher than that of foxes (PAI 0.04 in 2014–2015 and 0.02 in 2015–2016). Five hundred and twenty goanna nest visitation events were recorded by tracks but no fox tracks were found at turtle nests. Camera trap data indicated that yellow-spotted goannas (Varanus panoptes) appeared at loggerhead turtle nests more frequently than lace monitors (V. varius) did, and further that lace monitors only predated nests previously opened by yellow-spotted goannas. No foxes were recorded at nests with camera traps. This study suggests that large male yellow-spotted goannas are the major predator of sea turtle nests at the Wreck Rock beach nesting aggregation and that goanna activity varies between years. PMID:28674666
Are thermal barriers "higher" in deep sea turtle nests?
Santidrián Tomillo, Pilar; Fonseca, Luis; Paladino, Frank V; Spotila, James R; Oro, Daniel
2017-01-01
Thermal tolerances are affected by the range of temperatures that species encounter in their habitat. Daniel Janzen hypothesized in his "Why mountain passes are higher in the tropics" that temperature gradients were effective barriers to animal movements where climatic uniformity was high. Sea turtles bury their eggs providing some thermal stability that varies with depth. We assessed the relationship between thermal uniformity and thermal tolerance in nests of three species of sea turtles. We considered that barriers were "high" when small thermal changes had comparatively large effects and "low" when the effects were small. Mean temperature was lower and fluctuated less in species that dig deeper nests. Thermal barriers were comparatively "higher" in leatherback turtle (Dermochelys coriacea) nests, which were the deepest, as embryo mortality increased at lower "high" temperatures than in olive ridley (Lepidochelys olivacea) and green turtle (Chelonia mydas) nests. Sea turtles have temperature-dependent sex determination (TSD) and embryo mortality increased as temperature approached the upper end of the transitional range of temperatures (TRT) that produces both sexes (temperature producing 100% female offspring) in leatherback and olive ridley turtles. As thermal barriers are "higher" in some species than in others, the effects of climate warming on embryo mortality is likely to vary among sea turtles. Population resilience to climate warming may also depend on the balance between temperatures that produce female offspring and those that reduce embryo survival.
Sea turtle species vary in their susceptibility to tropical cyclones.
Pike, David A; Stiner, John C
2007-08-01
Severe climatic events affect all species, but there is little quantitative knowledge of how sympatric species react to such situations. We compared the reproductive seasonality of sea turtles that nest sympatrically with their vulnerability to tropical cyclones (in this study, "tropical cyclone" refers to tropical storms and hurricanes), which are increasing in severity due to changes in global climate. Storm surges significantly decreased reproductive output by lowering the number of nests that hatched and the number of hatchlings that emerged from nests, but the severity of this effect varied by species. Leatherback turtles (Dermochelys coriacea) began nesting earliest and most offspring hatched before the tropical cyclone season arrived, resulting in little negative effect. Loggerhead turtles (Caretta caretta) nested intermediately, and only nests laid late in the season were inundated with seawater during storm surges. Green turtles (Chelonia mydas) nested last, and their entire nesting season occurred during the tropical cyclone season; this resulted in a majority (79%) of green turtle nests incubating in September, when tropical cyclones are most likely to occur. Since this timing overlaps considerably with the tropical cyclone season, the developing eggs and nests are extremely vulnerable to storm surges. Increases in the severity of tropical cyclones may cause green turtle nesting success to worsen in the future. However, published literature suggests that loggerhead turtles are nesting earlier in the season and shortening their nesting seasons in response to increasing sea surface temperatures caused by global climate change. This may cause loggerhead reproductive success to improve in the future because more nests will hatch before the onset of tropical cyclones. Our data clearly indicate that sympatric species using the same resources are affected differently by tropical cyclones due to slight variations in the seasonal timing of nesting, a key life history process.
Hays, G C
2000-09-21
Sea turtles nest on sandy beaches and tend to show high fidelity to specific nesting areas, but, despite this fidelity, the inter-annual variation in nesting numbers may be large. This variation may reflect the fact that turtles do not usually nest in consecutive years. Here, theoretical models are developed in which the interval between successive nesting years (the remigration interval) reflects conditions encountered on the feeding grounds, with good feeding years leading to a reduction in the remigration interval and vice versa. These simple models produce high levels of inter-annual variation in nesting numbers with, on occasion, almost no turtles nesting in some years even when the population is large and stable. The implications for assessing the size of sea turtle populations are considered. Copyright 2000 Academic Press.
Stormy oceans are associated with declines in sea turtle hatching.
Van Houtan, Kyle S; Bass, Oron L
2007-08-07
Many sea turtle populations are below 10% of their pre-Columbian numbers [1-4]. Though historic and systematic over-exploitation is the principal cause of these declines, sea turtles face similar threats today. Adults and juveniles are actively hunted and commercial fisheries catch them incidentally. Nesting suffers from beach development, egg poaching and the poaching of nesting females. Accompanying these familiar hazards is the largely unknown consequences of recent climate change. Here we report monitoring surveys from the Dry Tortugas National Park (DTNP, 24.64N 82.86W), Florida, and show that hurricanes and other storm events are an additional and increasing threat to loggerhead turtle (Caretta caretta) and green sea turtle (Chelonia mydas) nesting. Both species are listed by the US Endangered Species Act and the IUCN considers them 'endangered'.
Hu, Zhiyong; Hu, Hongda; Huang, Yuxia
2018-08-01
Artificial lighting at night has becoming a new type of pollution posing an important anthropogenic environmental pressure on organisms. The objective of this research was to examine the potential association between nighttime artificial light pollution and nest densities of the three main sea turtle species along Florida beaches, including green turtles, loggerheads, and leatherbacks. Sea turtle survey data was obtained from the "Florida Statewide Nesting Beach Survey program". We used the new generation of satellite sensor "Visible Infrared Imaging Radiometer Suite (VIIRS)" (version 1 D/N Band) nighttime annual average radiance composite image data. We defined light pollution as artificial light brightness greater than 10% of the natural sky brightness above 45° of elevation (>1.14 × 10 -11 Wm -2 sr -1 ). We fitted a generalized linear model (GLM), a GLM with eigenvectors spatial filtering (GLM-ESF), and a generalized estimating equations (GEE) approach for each species to examine the potential correlation of nest density with light pollution. Our models are robust and reliable in terms of the ability to deal with data distribution and spatial autocorrelation (SA) issues violating model assumptions. All three models found that nest density is significantly negatively correlated with light pollution for each sea turtle species: the higher light pollution, the lower nest density. The two spatially extended models (GLM-ESF and GEE) show that light pollution influences nest density in a descending order from green turtles, to loggerheads, and then to leatherbacks. The research findings have an implication for sea turtle conservation policy and ordinance making. Near-coastal lights-out ordinances and other approaches to shield lights can protect sea turtles and their nests. The VIIRS DNB light data, having significant improvements over comparable data by its predecessor, the DMSP-OLS, shows promise for continued and improved research about ecological effects of artificial light pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamamoto, Kristina H.; Anderson, Sharolyn J.; Sutton, Paul C.
2015-10-01
Sea turtle nesting beaches in southeastern Florida were evaluated for changes from 1999 to 2005 using LiDAR datasets. Changes to beach volume were correlated with changes in several elevation-derived characteristics, such as elevation and slope. In addition, these changes to beach geomorphology were correlated to changes in nest success, illustrating that beach alterations may affect sea turtle nesting behavior. The ability to use LiDAR datasets to quickly and efficiently conduct beach comparisons for habitat use represents another benefit to this high spatial resolution data.
Are thermal barriers "higher" in deep sea turtle nests?
Santidrián Tomillo, Pilar; Fonseca, Luis; Paladino, Frank V.; Spotila, James R.; Oro, Daniel
2017-01-01
Thermal tolerances are affected by the range of temperatures that species encounter in their habitat. Daniel Janzen hypothesized in his “Why mountain passes are higher in the tropics” that temperature gradients were effective barriers to animal movements where climatic uniformity was high. Sea turtles bury their eggs providing some thermal stability that varies with depth. We assessed the relationship between thermal uniformity and thermal tolerance in nests of three species of sea turtles. We considered that barriers were “high” when small thermal changes had comparatively large effects and “low” when the effects were small. Mean temperature was lower and fluctuated less in species that dig deeper nests. Thermal barriers were comparatively “higher” in leatherback turtle (Dermochelys coriacea) nests, which were the deepest, as embryo mortality increased at lower “high” temperatures than in olive ridley (Lepidochelys olivacea) and green turtle (Chelonia mydas) nests. Sea turtles have temperature-dependent sex determination (TSD) and embryo mortality increased as temperature approached the upper end of the transitional range of temperatures (TRT) that produces both sexes (temperature producing 100% female offspring) in leatherback and olive ridley turtles. As thermal barriers are “higher” in some species than in others, the effects of climate warming on embryo mortality is likely to vary among sea turtles. Population resilience to climate warming may also depend on the balance between temperatures that produce female offspring and those that reduce embryo survival. PMID:28545092
The role of geomagnetic cues in green turtle open sea navigation.
Benhamou, Simon; Sudre, Joël; Bourjea, Jérome; Ciccione, Stéphane; De Santis, Angelo; Luschi, Paolo
2011-01-01
Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas) displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km) post-nesting migrations no differently from controls. In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS), which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24-48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected) homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home) likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues.
Alkindi, A Y A; Al-Habsi, A A; Mahmoud, I Y
2008-02-01
Plasma concentrations of stress hormones [adrenaline (ADR), noradrenaline (NR)], lactate, glucose and CO2 were monitored during peak nesting period (May-October) at different phases of nesting in the green turtle, Chelonia mydas. These include, emergence from sea, excavating body and nest chambers, oviposition, covering and camouflaging the nest and then returning to sea. Turtles that completed all phases of nesting including oviposition before returning to sea were considered "successful" turtles, while those that completed all phases but failed to lay their eggs were "unsuccessful". Blood samples were taken from the cervical sinus within 5min of capture to avoid stress due to handling. The turtles were usually sampled for blood between 20:00 and 1:00h of nesting time to ensure uniformity in the sampling. Plasma ADR and NR values were highly significant (P<0.001) in successful turtles over emergence, excavating and unsuccessful turtles. Plasma glucose levels remained stable throughout the nesting phases while lactate levels were significantly higher in successful turtles over the other phases (P<0.05) which signifies anaerobic metabolism during nesting. Plasma CO2 values were negatively correlated with ADR and NR (r=-0.258, P=0.03; r=-0.304, P=0.010), respectively. Hematocrit was significantly higher in successful phase (P<0.05) compared to other phases, and this may signify a higher degree of stress in successful turtles. Body temperature were significantly lower (P<0.005) in the excavating phase compared to the other three phases. Overall, body temperatures were lower than sand temperatures around the nest, which may indicate a behavioral thermoregulation used by the turtles during nesting. This information will be of value to the ongoing conservation program at Ras Al-Hadd Reserve in the Sultanate of Oman.
Anti-predator meshing may provide greater protection for sea turtle nests than predator removal.
O'Connor, Julie M; Limpus, Colin J; Hofmeister, Kate M; Allen, Benjamin L; Burnett, Scott E
2017-01-01
The problem of how to protect sea turtle nests from terrestrial predators is of worldwide concern. On Queensland's southern Sunshine Coast, depredation of turtle nests by the introduced European red fox (Vulpes vulpes) has been recorded as the primary terrestrial cause of egg and hatchling mortality. We investigated the impact of foxes on the nests of the loggerhead turtle (Caretta caretta) and occasional green turtle (Chelonia mydas) over ten nesting seasons. Meshing of nests with fox exclusion devices (FEDs) was undertaken in all years accompanied by lethal fox control in the first five-year period, but not in the second five-year period. Lethal fox control was undertaken in the study area from 2005 to February 2010, but foxes still breached 27% (range19-52%) of turtle nests. In the second five-year period, despite the absence of lethal fox control, the average percentage of nests breached was less than 3% (range 0-4%). Comparison of clutch depredation rates in the two five-year periods demonstrated that continuous nest meshing may be more effective than lethal fox control in mitigating the impact of foxes on turtle nests. In the absence of unlimited resources available for the eradication of exotic predators, the use of FEDs and the support and resourcing of a dedicated volunteer base can be considered an effective turtle conservation tool on some beaches.
Flower, Jennifer E; Norton, Terry M; Andrews, Kimberly M; Nelson, Steven E; Parker, Clare E; Romero, L Michael; Mitchell, Mark A
2015-01-01
The evaluation of hormonal responses to stress in reptiles relies on acquisition of baseline corticosterone concentrations; however, the stress associated with the restraint needed to collect the blood samples can affect the results. The purpose of this study was to determine a time limit for the collection of blood samples to evaluate baseline corticosterone, haematological and biochemical results in nesting (n = 11) and rehabilitating (n = 16) loggerhead sea turtles (Caretta caretta). Blood samples were collected from the dorsal cervical sinus of each turtle immediately after touching the animal (t 0; 0-3 min) and 3 (t 3; 3-6 min), 6 (t 6; 6-9 min; nesting turtles only), 10 (t 10; 10-13 min) and 30 min (t 30; rehabilitating turtles only) after the initial hands-on time. Consistent between the rehabilitating and nesting turtles, there was a subtle yet significant increase in white blood cell counts over time. Despite the fact that white blood cell counts increased during the sampling period, there was no direct correlation between white blood cell count and corticosterone in the sampled turtles. In the nesting turtles, significant elevations in corticosterone were noted between t 0 and t 3 (P = 0.014) and between t 0 and t 6 (P = 0.022). Values at t 10 were not significantly different from those at t 0 (P = 0.102); however, there was a trend for the corticosterone values to continue to increase. These results suggest that sampling of nesting loggerhead sea turtles within 3 min of handling will provide baseline corticosterone concentrations in their natural environment. Significant elevations in corticosterone were also noted in the rehabilitating loggerhead sea turtles between t 0 and t 10 (P = 0.02) and between t 0 and t 30 of sampling (P = 0.0001). These results suggest that sampling of loggerhead sea turtles within 6 min of handling should provide baseline corticosterone concentrations in a rehabilitation setting. The delay in the corticosterone response noted in the rehabilitating turtles may be associated with the daily contact (visual or direct) they have with their human caretakers.
2015-10-15
Munsell Color • Light Attenuation and Turbidity • Sea turtle nesting • Conclusions • Traditional vs. Cross Shore Swash Zone Placement • Acknowledgments...Light Attenuation Long-term Monitoring Dredging 19 Nov. – 28 Dec. Dredging 21 Jan. – 6 Mar. BUILDING STRONG® Sea Turtle Nesting 2015 Traditional...Traditional Placement • Less linear feet of beach impacted for equivalent volume • Reduced environmental Impacts • Turtle nest relocations • Ponding
How Much Are Floridians Willing to Pay for Protecting Sea Turtles from Sea Level Rise?
NASA Astrophysics Data System (ADS)
Hamed, Ahmed; Madani, Kaveh; Von Holle, Betsy; Wright, James; Milon, J. Walter; Bossick, Matthew
2016-01-01
Sea level rise (SLR) is posing a great inundation risk to coastal areas. Some coastal nesting species, including sea turtle species, have experienced diminished habitat from SLR. Contingent valuation method (CVM) was used in an effort to assess the economic loss impacts of SLR on sea turtle nesting habitats for Florida coasts; and to elicit values of willingness to pay (WTP) of Central Florida residents to implement certain mitigation strategies, which would protect Florida's east coast sea turtle nesting areas. Using the open-ended and dichotomous choice CVM, we sampled residents of two Florida communities: Cocoa Beach and Oviedo. We estimated the WTP of households from these two cities to protect sea turtle habitat to be between 42 and 57 per year for 5 years. Additionally, we attempted to assess the impact of the both the respondents' demographics and their perception toward various situations on their WTP value. Findings include a negative correlation between the age of a respondent and the probability of an individual willing to pay the hypothetical WTP amount. We found that WTP of an individual was not dependent on prior knowledge of the effects of SLR on sea turtle habitat. The greatest indicators of whether or not an individual was willing to pay to protect sea turtle habitat were the respondents' perception regarding the trustworthiness and efficiency of the party which will implement the conservation measures and their confidence in the conservation methods used. Respondents who perceive sea turtles having an effect on their life were also more likely to pay.
How Much Are Floridians Willing to Pay for Protecting Sea Turtles from Sea Level Rise?
Hamed, Ahmed; Madani, Kaveh; Von Holle, Betsy; Wright, James; Milon, J Walter; Bossick, Matthew
2016-01-01
Sea level rise (SLR) is posing a great inundation risk to coastal areas. Some coastal nesting species, including sea turtle species, have experienced diminished habitat from SLR. Contingent valuation method (CVM) was used in an effort to assess the economic loss impacts of SLR on sea turtle nesting habitats for Florida coasts; and to elicit values of willingness to pay (WTP) of Central Florida residents to implement certain mitigation strategies, which would protect Florida's east coast sea turtle nesting areas. Using the open-ended and dichotomous choice CVM, we sampled residents of two Florida communities: Cocoa Beach and Oviedo. We estimated the WTP of households from these two cities to protect sea turtle habitat to be between $42 and $57 per year for 5 years. Additionally, we attempted to assess the impact of the both the respondents' demographics and their perception toward various situations on their WTP value. Findings include a negative correlation between the age of a respondent and the probability of an individual willing to pay the hypothetical WTP amount. We found that WTP of an individual was not dependent on prior knowledge of the effects of SLR on sea turtle habitat. The greatest indicators of whether or not an individual was willing to pay to protect sea turtle habitat were the respondents' perception regarding the trustworthiness and efficiency of the party which will implement the conservation measures and their confidence in the conservation methods used. Respondents who perceive sea turtles having an effect on their life were also more likely to pay.
Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles.
Brothers, J Roger; Lohmann, Kenneth J
2015-02-02
Natal homing is a pattern of behavior in which animals migrate away from their geographic area of origin and then return to reproduce in the same location where they began life [1-3]. Although diverse long-distance migrants accomplish natal homing [1-8], little is known about how they do so. The enigma is epitomized by loggerhead sea turtles (Caretta caretta), which leave their home beaches as hatchlings and migrate across entire ocean basins before returning to nest in the same coastal area where they originated [9, 10]. One hypothesis is that turtles imprint on the unique geomagnetic signature of their natal area and use this information to return [1]. Because Earth's field changes over time, geomagnetic imprinting should cause turtles to change their nesting locations as magnetic signatures drift slightly along coastlines. To investigate, we analyzed a 19-year database of loggerhead nesting sites in the largest sea turtle rookery in North America. Here we report a strong association between the spatial distribution of turtle nests and subtle changes in Earth's magnetic field. Nesting density increased significantly in coastal areas where magnetic signatures of adjacent beach locations converged over time, whereas nesting density decreased in places where magnetic signatures diverged. These findings confirm central predictions of the geomagnetic imprinting hypothesis and provide strong evidence that such imprinting plays an important role in natal homing in sea turtles. The results give credence to initial reports of geomagnetic imprinting in salmon [11, 12] and suggest that similar mechanisms might underlie long-distance natal homing in diverse animals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Salvarani, Patricia I; Vieira, Luis R; Ku-Peralta, Wiliam; Morgado, Fernando; Osten, Jaime Rendón-von
2018-06-06
Because of their vulnerable population status, assessing exposure levels and impacts of toxicants on the health status of Gulf of Mexico marine turtle populations is essential, and this study was aimed to obtain baseline information on oxidative stress indicators in hawksbill sea turtle (Eretmochelys imbricata). In order to evaluate the health status of sea turtles and the effect of organochlorine compounds (OC) in the southern part of the Gulf of Mexico, we searched for relationships between carapace size and the activity of antioxidant enzymes in the blood of the hawksbill sea turtle. The level of oxidative stress biomarkers such as the enzymes catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione S-transferase (GST), and acetylcholinesterase (Ache) in the hawksbill sea turtle was analysed during nesting season in the years 2014-2015 at Punta Xen (Campeche, Mexico). The results of this study provide insight into data of antioxidant enzyme activities in relation to contaminant OCPs in hawksbill sea turtles and the possible health impacts of contaminant in sea turtles.
Effect of tidal overwash on the embryonic development of leatherback turtles in French Guiana.
Caut, Stéphane; Guirlet, Elodie; Girondot, Marc
2010-05-01
In marine turtles, the physical conditions experienced by eggs during incubation affect embryonic development. In the leatherback, hatching success is known to be low in relation to other marine turtles as a result of high embryonic mortality. Moreover, the hatching success on Yalimapo in French Guiana, one major nesting beach for this species, is lower compared to other nesting sites. We assessed the rate of leatherback turtle embryonic mortality in order to investigate the tolerance of leatherback turtle clutches laid on Yalimapo beach to tidal overwash, and we highlight causes of poor hatching success. Of the 89 nests studied, 27 were overlapped by tide at least once during the incubation period (of which five nests were lost by erosion). The hatching success was on average significantly lower in overwashed nests than in non-overwashed, highlighting the existence of embryonic developmental arrest linked to tidal inundation. The stages of developmental arrest and their proportion are linked with time, frequency and level of overwash events. In the context of global warming and associated sea-level rise, understanding the detrimental effect of tidal inundation on the development of marine turtle nests is of interest in nesting sites where turtles are likely to be forced to nest closer to the tide line, thus exposing their nests to greater risk of nest overlap with sea and tidal inundation. Copyright 2009 Elsevier Ltd. All rights reserved.
Magnetic Navigation in Sea Turtles: Insights from Secular Variation
NASA Astrophysics Data System (ADS)
Putman, N. F.; Lohmann, K.
2011-12-01
Sea turtles are iconic migrants that posses a sensitive magnetic-sense that guides their long-distance movements in a variety of contexts. In the first few hours after hatching turtles use the magnetic field to maintain an offshore compass heading to reach deeper water, out of the reach of nearshore predators. Young turtles engage in directed swimming in response to regional magnetic fields that exist along their transoceanic migratory path. Older turtles also use magnetic information to relocate foraging sites and islands used for nesting after displacement. Numerous hypotheses have been put forth to explain how magnetic information functions in these movements, however, there is little consensus among animal navigation researchers. A particular vexing issue is how magnetic navigation can function under the constraints of the constant, gradual shifting of the earth's magnetic field (secular variation). Here, I present a framework based on models of recent geomagnetic secular variation to explore several navigational mechanisms proposed for sea turtles. I show that while examination of secular variation likely falsifies some hypothetical navigational strategies, it provides key insights into the selective pressures that could maintain other navigational mechanisms. Moreover, examination of secular variation's influence on the navigational precision in reproductive migrations of sea turtles offers compelling explanations for the population structure along sea turtle nesting beaches as well as spatiotemporal variation in nesting turtle abundance.
Nest inundation from sea-level rise threatens sea turtle population viability.
Pike, David A; Roznik, Elizabeth A; Bell, Ian
2015-07-01
Contemporary sea-level rise will inundate coastal habitats with seawater more frequently, disrupting the life cycles of terrestrial fauna well before permanent habitat loss occurs. Sea turtles are reliant on low-lying coastal habitats worldwide for nesting, where eggs buried in the sand remain vulnerable to inundation until hatching. We show that saltwater inundation directly lowers the viability of green turtle eggs (Chelonia mydas) collected from the world's largest green turtle nesting rookery at Raine Island, Australia, which is undergoing enigmatic decline. Inundation for 1 or 3 h reduced egg viability by less than 10%, whereas inundation for 6 h reduced viability by approximately 30%. All embryonic developmental stages were vulnerable to mortality from saltwater inundation. Although the hatchlings that emerged from inundated eggs displayed normal physical and behavioural traits, hypoxia during incubation could influence other aspects of the physiology or behaviour of developing embryos, such as learning or spatial orientation. Saltwater inundation can directly lower hatching success, but it does not completely explain the consistently low rates of hatchling production observed on Raine Island. More frequent nest inundation associated with sea-level rise will increase variability in sea turtle hatching success spatially and temporally, due to direct and indirect impacts of saltwater inundation on developing embryos.
Nest inundation from sea-level rise threatens sea turtle population viability
Pike, David A.; Roznik, Elizabeth A.; Bell, Ian
2015-01-01
Contemporary sea-level rise will inundate coastal habitats with seawater more frequently, disrupting the life cycles of terrestrial fauna well before permanent habitat loss occurs. Sea turtles are reliant on low-lying coastal habitats worldwide for nesting, where eggs buried in the sand remain vulnerable to inundation until hatching. We show that saltwater inundation directly lowers the viability of green turtle eggs (Chelonia mydas) collected from the world's largest green turtle nesting rookery at Raine Island, Australia, which is undergoing enigmatic decline. Inundation for 1 or 3 h reduced egg viability by less than 10%, whereas inundation for 6 h reduced viability by approximately 30%. All embryonic developmental stages were vulnerable to mortality from saltwater inundation. Although the hatchlings that emerged from inundated eggs displayed normal physical and behavioural traits, hypoxia during incubation could influence other aspects of the physiology or behaviour of developing embryos, such as learning or spatial orientation. Saltwater inundation can directly lower hatching success, but it does not completely explain the consistently low rates of hatchling production observed on Raine Island. More frequent nest inundation associated with sea-level rise will increase variability in sea turtle hatching success spatially and temporally, due to direct and indirect impacts of saltwater inundation on developing embryos. PMID:26587269
The Role of Geomagnetic Cues in Green Turtle Open Sea Navigation
Benhamou, Simon; Sudre, Joël; Bourjea, Jérome; Ciccione, Stéphane; De Santis, Angelo; Luschi, Paolo
2011-01-01
Background Laboratory and field experiments have provided evidence that sea turtles use geomagnetic cues to navigate in the open sea. For instance, green turtles (Chelonia mydas) displaced 100 km away from their nesting site were impaired in returning home when carrying a strong magnet glued on the head. However, the actual role of geomagnetic cues remains unclear, since magnetically treated green turtles can perform large scale (>2000 km) post-nesting migrations no differently from controls. Methodology/Principal Findings In the present homing experiment, 24 green turtles were displaced 200 km away from their nesting site on an oceanic island, and tracked, for the first time in this type of experiment, with Global Positioning System (GPS), which is able to provide much more frequent and accurate locations than previously used tracking methods. Eight turtles were magnetically treated for 24–48 h on the nesting beach prior to displacement, and another eight turtles had a magnet glued on the head at the release site. The last eight turtles were used as controls. Detailed analyses of water masses-related (i.e., current-corrected) homing paths showed that magnetically treated turtles were able to navigate toward their nesting site as efficiently as controls, but those carrying magnets were significantly impaired once they arrived within 50 km of home. Conclusions/Significance While green turtles do not seem to need geomagnetic cues to navigate far from the goal, these cues become necessary when turtles get closer to home. As the very last part of the homing trip (within a few kilometers of home) likely depends on non-magnetic cues, our results suggest that magnetic cues play a key role in sea turtle navigation at an intermediate scale by bridging the gap between large and small scale navigational processes, which both appear to depend on non-magnetic cues. PMID:22046329
Global Distribution of Two Fungal Pathogens Threatening Endangered Sea Turtles
Sarmiento-Ramírez, Jullie M.; Abella-Pérez, Elena; Phillott, Andrea D.; Sim, Jolene; van West, Pieter; Martín, María P.; Marco, Adolfo; Diéguez-Uribeondo, Javier
2014-01-01
Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide. PMID:24465748
Global distribution of two fungal pathogens threatening endangered sea turtles.
Sarmiento-Ramírez, Jullie M; Abella-Pérez, Elena; Phillott, Andrea D; Sim, Jolene; van West, Pieter; Martín, María P; Marco, Adolfo; Diéguez-Uribeondo, Javier
2014-01-01
Nascent fungal infections are currently considered as one of the main threats for biodiversity and ecosystem health, and have driven several animal species into critical risk of extinction. Sea turtles are one of the most endangered groups of animals and only seven species have survived to date. Here, we described two pathogenic species, i.e., Fusarium falciforme and Fusarium keratoplasticum, that are globally distributed in major turtle nesting areas for six sea turtle species and that are implicated in low hatch success. These two fungi possess key biological features that are similar to emerging pathogens leading to host extinction, e.g., high virulence, and a broad host range style of life. Their optimal growth temperature overlap with the optimal incubation temperature for eggs, and they are able to kill up to 90% of the embryos. Environmental forcing, e.g., tidal inundation and clay/silt content of nests, were correlated to disease development. Thus, these Fusarium species constitute a major threat to sea turtle nests, especially to those experiencing environmental stressors. These findings have serious implications for the survival of endangered sea turtle populations and the success of conservation programs worldwide.
Salmon, Michael; Carthy, Raymond R.; Lohmann, Catherine M. F.; Lohmann, Kenneth J.; Wyneken, Jeanette
2012-01-01
In numerous studies involving hatchling sea turtles, researchers have collected small numbers of hatchlings from nests a few hours before the turtles would otherwise have emerged naturally. This procedure makes it possible to do experiments in which the behavioral or physiological responses of numerous hatchlings must be tested in a limited period of time, and also allows hatchlings to be released back into the sea in time to migrate offshore before dawn. In principle, however, the procedure might inadvertently reduce nest productivity (the number of hatchlings that successfully leave the nest), if digging into a nest prior to emergence somehow reduces the ability of the remaining turtles to emerge. We compared nest productivity in 67 experimental loggerhead nests, from which we removed 10 hatchlings before a natural emergence, to 95 control nests left undisturbed before a natural emergence. The 2 groups showed no statistical differences in productivity. We conclude that taking a few hatchlings from a loggerhead nest shortly before a natural emergence has no negative impact on hatchling production if sampling is done with care at locations where there are few nest predators, and at sites where an emergence can be predicted because nest deposition dates are known.
Flower, Jennifer E.; Norton, Terry M.; Andrews, Kimberly M.; Nelson, Steven E.; Parker, Clare E.; Romero, L. Michael; Mitchell, Mark A.
2015-01-01
The evaluation of hormonal responses to stress in reptiles relies on acquisition of baseline corticosterone concentrations; however, the stress associated with the restraint needed to collect the blood samples can affect the results. The purpose of this study was to determine a time limit for the collection of blood samples to evaluate baseline corticosterone, haematological and biochemical results in nesting (n = 11) and rehabilitating (n = 16) loggerhead sea turtles (Caretta caretta). Blood samples were collected from the dorsal cervical sinus of each turtle immediately after touching the animal (t0; 0–3 min) and 3 (t3; 3–6 min), 6 (t6; 6–9 min; nesting turtles only), 10 (t10; 10–13 min) and 30 min (t30; rehabilitating turtles only) after the initial hands-on time. Consistent between the rehabilitating and nesting turtles, there was a subtle yet significant increase in white blood cell counts over time. Despite the fact that white blood cell counts increased during the sampling period, there was no direct correlation between white blood cell count and corticosterone in the sampled turtles. In the nesting turtles, significant elevations in corticosterone were noted between t0 and t3 (P = 0.014) and between t0 and t6 (P = 0.022). Values at t10 were not significantly different from those at t0 (P = 0.102); however, there was a trend for the corticosterone values to continue to increase. These results suggest that sampling of nesting loggerhead sea turtles within 3 min of handling will provide baseline corticosterone concentrations in their natural environment. Significant elevations in corticosterone were also noted in the rehabilitating loggerhead sea turtles between t0 and t10 (P = 0.02) and between t0 and t30 of sampling (P = 0.0001). These results suggest that sampling of loggerhead sea turtles within 6 min of handling should provide baseline corticosterone concentrations in a rehabilitation setting. The delay in the corticosterone response noted in the rehabilitating turtles may be associated with the daily contact (visual or direct) they have with their human caretakers. PMID:27293688
Sinaei, Mahmood; Bolouki, Mehdi
2017-11-01
The green sea turtle (Chelonia mydas) has been a species of global concern for decades. In this study, heavy metals (mercury: Hg; Cadmium: Cd; Lead: Pb; Copper: Cu; and Zinc: Zn) were measured in blood and three egg fraction of green sea turtles nesting on the northern coast of Sea of Oman. Heavy metals concentrations in blood, yolk, albumen, and egg shell ranged between 0.16-36.78, 0.006-33.88, 0.003-4.02, and 0.002-6.85 μg/g (ww), respectively. According to the results, all heavy metals found in blood samples (n = 12) also were detected in the various parts of the eggs (n = 48). Moreover, there were no significant differences between concentrations of heavy metals in different clutches laid in a nesting season. However, Pb concentrations in blood samples significantly increased in later clutches (p < 0.05), whereas Cu concentrations in blood samples exhibit a declining trend (p < 0.05). These results reveal the existence of maternal transfer phenomenon in green sea turtles on the northern coast of Sea of Oman. Results of this study suggest that heavy metals could be one of the factors influencing reductions in fertilization and hatching success. Results also indicate that green sea turtle on the northern coast of Sea of Oman have high capacity in rapid response and detoxification of heavy metals and/or from the low exposure levels of these turtles to the heavy metals. Further research is required concerning the effects of heavy metals on green sea turtles, especially on their possible influence of fetal development of turtles.
Camacho, María; Luzardo, Octavio P; Boada, Luis D; López Jurado, Luis F; Medina, María; Zumbado, Manuel; Orós, Jorge
2013-08-01
The Cape Verde nesting population of loggerhead sea turtles (Caretta caretta) is the third largest population of this species in the world. For conservation purposes, it is essential to determine how these reptiles respond to different types of anthropogenic contaminants. We evaluated the presence of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) in the plasma of adult nesting loggerheads from Boa Vista Island, Cape Verde, and studied the effects of the contaminants on the health status of the turtles using hematological and biochemical parameters. All turtles had detectable levels of non-dioxin like PCBs, whereas dioxin-like congeners (DL-PCBs) were detected in only 30% of the turtles. Packed cell volume decreased with higher concentrations of PCBs, which suggests that PCB exposure could result in anemia in sea turtles. In addition, a negative association between some OCPs and white blood cells (WBC) and thrombocyte estimate was noted. The DDT-metabolite, p,p'-DDE was negatively correlated with the Na/K ratio and, additionally, a number of correlations between certain PAHs and electrolyte balances were found, which suggest that exposure to these environmental contaminants could affect the kidneys and salt glands in sea turtles. Additionally, several correlations were observed between these environmental pollutants (OCPs and PAHs) and enzyme activity (GGT, ALT, ALP and amylase) and serum protein levels, pointing to the possibility that these contaminants could induce adverse metabolic effects in sea turtles. Our results indicate that anthropogenic pollutants are present in the Cape Verde loggerhead turtle nesting population and could exert negative effects on several health parameters. Because of the importance of this loggerhead nesting population, protective regulations at national and international levels as well as international action are necessary for assuring the conservation of this population. Copyright © 2013 Elsevier B.V. All rights reserved.
Ives, A-K; Antaki, E; Stewart, K; Francis, S; Jay-Russell, M T; Sithole, F; Kearney, M T; Griffin, M J; Soto, E
2017-09-01
Salmonellae are Gram-negative zoonotic bacteria that are frequently part of the normal reptilian gastrointestinal flora. The main objective of this project was to estimate the prevalence of non-typhoidal Salmonella enterica in the nesting and foraging populations of sea turtles on St. Kitts and in sand from known nesting beaches. Results suggest a higher prevalence of Salmonella in nesting leatherback sea turtles compared with foraging green and hawksbill sea turtles. Salmonella was cultured from 2/9 and identified by molecular diagnostic methods in 3/9 leatherback sea turtle samples. Salmonella DNA was detected in one hawksbill turtle, but viable isolates were not recovered from any hawksbill sea turtles. No Salmonella was detected in green sea turtles. In samples collected from nesting beaches, Salmonella was only recovered from a single dry sand sample. All recovered isolates were positive for the wzx gene, consistent with the O:7 serogroup. Further serotyping characterized serovars Montevideo and Newport present in cloacal and sand samples. Repetitive-element palindromic PCR (rep-PCR) fingerprint analysis and pulsed-field gel electrophoresis of the 2014 isolates from turtles and sand as well as archived Salmonella isolates recovered from leatherback sea turtles in 2012 and 2013, identified two distinct genotypes and four different pulsotypes, respectively. The genotyping and serotyping were directly correlated. To determine the persistence of representative strains of each serotype/genotype in these environments, laboratory-controlled microcosm studies were performed in water and sand (dry and wet) incubated at 25 or 35°C. Isolates persisted for at least 32 days in most microcosms, although there were significant decreases in culturable bacteria in several microcosms, with the greatest reduction in dry sand incubated at 35°C. This information provides a better understanding of the epizootiology of Salmonella in free-ranging marine reptiles and the potential public health risks associated with human interactions with these animals in the Caribbean. © 2016 Blackwell Verlag GmbH.
1986-01-01
green turtles dig a deep body pit when nesting. LIFE HISTORY - 5. The greatest...were loggerheads, but greens and Kemp’s ridleys were also found . (Joyce 1982). Since the turtles were discovered during the winter, were covered...Preferences in the Loggerhead Sea Turtle , Caretta caretta," Copeia, Vol 1982, No. 4, pp 965-969. Hendrickson, J. R. 1958. " The Green Sea Turtle
Sea turtles, light pollution, and citizen science: A preliminary report
Afford, Heather; Teel, Susan; Nicholas, Mark; Stanley, Thomas; White, Jeremy
2017-01-01
such as entanglement in fishing gear and ingestion of marine debris, as well as possible changes in sex ratios due to increasing temperatures related to human-induced global warming. Locally, light pollution from residential, commercial, and industrial neighborhoods from nearby cities impacts the entirety of Gulf Islands, which spans 160 miles along the Gulf Coast, from Florida to Mississippi, and includes critical habitat for threatened and endangered sea turtles. Because light pollution has been hypothesized to negatively impact sea turtle nesting and hatchling survival, Gulf Islands undertook an effort to understand the relationship between light pollution and sea turtles and create unique educational and outreach opportunities by launching a citizen science program called Turtle Teens Helping in the Seashore (Turtle THIS). At the onset, the Turtle THIS program had two primary goals: quantify the association between light pollution and sea turtle nesting and hatching events using rigorous scientific methods; and initiate a citizen science volunteer program to provide youth with hands-on science and environmental stewardship roles, where they also gain employable skills and career opportunities. With multiple scientific hypotheses to consider, the development of a citizen science program became crucial. Such circumstances allowed Turtle THIS to grow a volunteer and intern program, quantify hypothesized light effects on sea turtles through developed methods, and begin to gather preliminary findings.
Wyneken, Jeanette; Lolavar, Alexandra
2015-05-01
It has been proposed that because marine turtles have environmentally determined sex by incubation temperature, elevated temperatures might skew sex ratios to unsustainable levels, leading to extinction. Elevated temperatures may also reduce availability of suitable nesting sites via sea level rise. Increased tropical storm activity can directly affect nest site moisture, embryonic development, and the probability that nests will survive. Here, we question some of these assumptions and review the limits of sex ratio estimates. Sea turtles may be more resilient to climate change than previously thought, in part because of hitherto unappreciated mechanisms for coping with variable incubation conditions. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Culver, M.; Gibeaut, J. C.; Shaver, D. J.; Tissot, P.; Starek, M. J.
2017-12-01
The Kemp's ridley sea turtle (Lepidochelys kempii) is the most endangered sea turtle in the world, largely due to the limited geographic range of its nesting habitat. In the U.S., the majority of nesting occurs along Padre Island National Seashore (PAIS) in Texas. There has been limited research regarding the connection between beach geomorphology and Kemp's ridley nesting patterns, but studies concerning other sea turtle species suggest that certain beach geomorphology variables, such as beach slope and width, influence nest site selection. This research investigates terrestrial habitat variability of the Kemp's ridley sea turtle and quantifies the connection between beach geomorphology and Kemp's ridley nest site selection on PAIS and South Padre Island, Texas. Airborne topographic lidar data collected annually along the Texas coast from 2009 through 2012 was utilized to extract beach geomorphology characteristics, such as beach slope and width, dune height, and surface roughness, among others. The coordinates of observed Kemp's ridley nests from corresponding years were integrated with the aforementioned data in statistical models, which analyzed the influence of both general trends in geomorphology and individual morphologic variables on nest site selection. This research identified the terrestrial habitat variability of the Kemp's ridley and quantified the range of geomorphic characteristics of nesting beaches. Initial results indicate that dune width, beach width, and wind speed are significant variables in relation to nest presence, using an alpha of 0.1. Higher wind speeds and narrower beaches and foredunes favor nest presence. The average nest elevation is 1.13 m above mean sea level, which corresponds to the area directly below the potential vegetation line, and the majority of nesting occurs between the elevations of 0.68 m and 1.4 m above mean sea level. The results of this study include new information regarding Kemp's ridley beach habitat and its influence on nesting patterns that could be useful for the conservation and management of the species.
Morreale, Stephen J.; Saba, Vincent S.; Panagopoulou, Aliki; Margaritoulis, Dimitris; Spotila, James R.
2016-01-01
Sea turtles are vulnerable to climate change impacts in both their terrestrial (nesting beach) and oceanic habitats. From 1982 to 2012, air and sea surface temperatures at major high use foraging and nesting regions (n = 5) of loggerhead turtles (Caretta caretta) nesting in Greece have steadily increased. Here, we update the established relationships between sea surface temperature and nesting data from Zakynthos (latitude: 37.7°N), a major nesting beach, while also expanding these analyses to include precipitation and air temperature and additional nesting data from two other key beaches in Greece: Kyparissia Bay (latitude: 37.3°N) and Rethymno, Crete (latitude: 35.4°N). We confirmed that nesting phenology at Zakynthos has continued to be impacted by breeding season temperature; however, temperature has no consistent relationship with nest numbers, which are declining on Zakynthos and Crete but increasing at Kyparissia. Then using statistically downscaled outputs of 14 climate models assessed by the Intergovernmental Panel on Climate Change (IPCC), we projected future shifts in nesting for these populations. Based on the climate models, we projected that temperature at the key foraging and breeding sites (Adriatic Sea, Aegean Sea, Crete, Gulf of Gabès and Zakynthos/Kyparissia Bay; overall latitudinal range: 33.0°—45.8°N) for loggerhead turtles nesting in Greece will rise by 3–5°C by 2100. Our calculations indicate that the projected rise in air and ocean temperature at Zakynthos could cause the nesting season in this major rookery to shift to an earlier date by as much as 50–74 days by 2100. Although an earlier onset of the nesting season may provide minor relief for nest success as temperatures rise, the overall climatic changes to the various important habitats will most likely have an overall negative impact on this population. PMID:27332550
NASA Astrophysics Data System (ADS)
Callegary, J. B.; Norman, L.; Eastoe, C. J.; Sankey, J. B.; Youberg, A.
2016-12-01
The Kemp's ridley sea turtle (Lepidochelys kempii) is the most endangered sea turtle in the world, largely due to the limited geographic range of its nesting habitat. In the U.S., the majority of nesting occurs along Padre Island National Seashore (PAIS) in Texas. There has been limited research regarding the connection between beach geomorphology and Kemp's ridley nesting patterns, but studies concerning other sea turtle species suggest that certain beach geomorphology variables, such as beach slope and width, influence nest site selection. This research investigates terrestrial habitat variability of the Kemp's ridley sea turtle and quantifies the connection between beach geomorphology and Kemp's ridley nest site selection on PAIS and South Padre Island, Texas. Airborne topographic lidar data collected annually along the Texas coast from 2009 through 2012 was utilized to extract beach geomorphology characteristics, such as beach slope and width, dune height, and surface roughness, among others. The coordinates of observed Kemp's ridley nests from corresponding years were integrated with the aforementioned data in statistical models, which analyzed the influence of both general trends in geomorphology and individual morphologic variables on nest site selection. This research identified the terrestrial habitat variability of the Kemp's ridley and quantified the range of geomorphic characteristics of nesting beaches. Initial results indicate that dune width, beach width, and wind speed are significant variables in relation to nest presence, using an alpha of 0.1. Higher wind speeds and narrower beaches and foredunes favor nest presence. The average nest elevation is 1.13 m above mean sea level, which corresponds to the area directly below the potential vegetation line, and the majority of nesting occurs between the elevations of 0.68 m and 1.4 m above mean sea level. The results of this study include new information regarding Kemp's ridley beach habitat and its influence on nesting patterns that could be useful for the conservation and management of the species.
Patel, Samir H; Morreale, Stephen J; Saba, Vincent S; Panagopoulou, Aliki; Margaritoulis, Dimitris; Spotila, James R
2016-01-01
Sea turtles are vulnerable to climate change impacts in both their terrestrial (nesting beach) and oceanic habitats. From 1982 to 2012, air and sea surface temperatures at major high use foraging and nesting regions (n = 5) of loggerhead turtles (Caretta caretta) nesting in Greece have steadily increased. Here, we update the established relationships between sea surface temperature and nesting data from Zakynthos (latitude: 37.7°N), a major nesting beach, while also expanding these analyses to include precipitation and air temperature and additional nesting data from two other key beaches in Greece: Kyparissia Bay (latitude: 37.3°N) and Rethymno, Crete (latitude: 35.4°N). We confirmed that nesting phenology at Zakynthos has continued to be impacted by breeding season temperature; however, temperature has no consistent relationship with nest numbers, which are declining on Zakynthos and Crete but increasing at Kyparissia. Then using statistically downscaled outputs of 14 climate models assessed by the Intergovernmental Panel on Climate Change (IPCC), we projected future shifts in nesting for these populations. Based on the climate models, we projected that temperature at the key foraging and breeding sites (Adriatic Sea, Aegean Sea, Crete, Gulf of Gabès and Zakynthos/Kyparissia Bay; overall latitudinal range: 33.0°-45.8°N) for loggerhead turtles nesting in Greece will rise by 3-5°C by 2100. Our calculations indicate that the projected rise in air and ocean temperature at Zakynthos could cause the nesting season in this major rookery to shift to an earlier date by as much as 50-74 days by 2100. Although an earlier onset of the nesting season may provide minor relief for nest success as temperatures rise, the overall climatic changes to the various important habitats will most likely have an overall negative impact on this population.
Environmental Warming and Feminization of One of the Largest Sea Turtle Populations in the World.
Jensen, Michael P; Allen, Camryn D; Eguchi, Tomoharu; Bell, Ian P; LaCasella, Erin L; Hilton, William A; Hof, Christine A M; Dutton, Peter H
2018-01-08
Climate change affects species and ecosystems around the globe [1]. The impacts of rising temperature are particularly pertinent in species with temperature-dependent sex determination (TSD), where the sex of an individual is determined by incubation temperature during embryonic development [2]. In sea turtles, the proportion of female hatchlings increases with the incubation temperature. With average global temperature predicted to increase 2.6°C by 2100 [3], many sea turtle populations are in danger of high egg mortality and female-only offspring production. Unfortunately, determining the sex ratios of hatchlings at nesting beaches carries both logistical and ethical complications. However, sex ratio data obtained at foraging grounds provides information on the amalgamation of immature and adult turtles hatched from different nesting beaches over many years. Here, for the first time, we use genetic markers and a mixed-stock analysis (MSA), combined with sex determination through laparoscopy and endocrinology, to link male and female green turtles foraging in the Great Barrier Reef (GBR) to the nesting beach from which they hatched. Our results show a moderate female sex bias (65%-69% female) in turtles originating from the cooler southern GBR nesting beaches, while turtles originating from warmer northern GBR nesting beaches were extremely female-biased (99.1% of juvenile, 99.8% of subadult, and 86.8% of adult-sized turtles). Combining our results with temperature data show that the northern GBR green turtle rookeries have been producing primarily females for more than two decades and that the complete feminization of this population is possible in the near future. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Estimating total population size for adult female sea turtles: Accounting for non-nesters
Kendall, W.L.; Richardson, J.I.; Rees, Alan F.
2008-01-01
Assessment of population size and changes therein is important to sea turtle management and population or life history research. Investigators might be interested in testing hypotheses about the effect of current population size or density (number of animals per unit resource) on future population processes. Decision makers might want to determine a level of allowable take of individual turtles of specified life stage. Nevertheless, monitoring most stages of sea turtle life histories is difficult, because obtaining access to individuals is difficult. Although in-water assessments are becoming more common, nesting females and their hatchlings remain the most accessible life stages. In some cases adult females of a given nesting population are sufficiently philopatric that the population itself can be well defined. If a well designed tagging study is conducted on this population, survival, breeding probability, and the size of the nesting population in a given year can be estimated. However, with published statistical methodology the size of the entire breeding population (including those females skipping nesting in that year) cannot be estimated without assuming that each adult female in this population has the same probability of nesting in a given year (even those that had just nested in the previous year). We present a method for estimating the total size of a breeding population (including nesters those skipping nesting) from a tagging study limited to the nesting population, allowing for the probability of nesting in a given year to depend on an individual's nesting status in the previous year (i.e., a Markov process). From this we further develop estimators for rate of growth from year to year in both nesting population and total breeding population, and the proportion of the breeding population that is breeding in a given year. We also discuss assumptions and apply these methods to a breeding population of hawksbill sea turtles (Eretmochelys imbricata) from the Caribbean. We anticipate that this method could also be useful for in-water studies of well defined populations.
Sea Turtle Navigation and the Detection of Geomagnetic Field Features
NASA Astrophysics Data System (ADS)
Lohmann, Kenneth J.; Lohmann, Catherine M. F.
The lives of sea turtles consist of a continuous series of migrations. As hatchlings, the turtles swim from their natal beaches into the open sea, often taking refuge in circular current systems (gyres) that serve as moving, open-ocean nursery grounds. The juveniles of many populations subsequently take up residence in coastal feeding areas that are located hundreds or thousands of kilometres from the beaches on which the turtles hatched; some juveniles also migrate between summer and winter habitats. As adults, turtles periodically leave their feeding grounds and migrate to breeding and nesting regions, after which many return to their own specific feeding sites. The itinerant lifestyle characteristic of most sea turtle species is thus inextricably linked to an ability to orient and navigate accurately across large expanses of seemingly featureless ocean.In some sea turtle populations, migratory performance reaches extremes. The total distances certain green turtles (Chelonia mydas) and loggerheads (Caretta caretta) traverse over the span of their lifetimes exceed tens of thousands of kilometres, several times the diameter of the turtle's home ocean basin. Adult migrations between feeding and nesting habitats can require continuous swimming for periods of several weeks. In addition, the paths of migrating turtles often lead almost straight across the open ocean and directly to the destination, leaving little doubt that turtles can navigate to distant target sites with remarkable efficiency.
Phenology of marine turtle nesting revealed by statistical model of the nesting season.
Girondot, Marc; Rivalan, Philippe; Wongsopawiro, Ronald; Briane, Jean-Paul; Hulin, Vincent; Caut, Stéphane; Guirlet, Elodie; Godfrey, Matthew H
2006-08-31
Marine turtles deposit their eggs on tropical or subtropical beaches during discrete nesting seasons that span several months. The number and distribution of nests laid during a nesting season provide vital information on various aspects of marine turtle ecology and conservation. In the case of leatherback sea turtles nesting in French Guiana, we developed a mathematical model to explore the phenology of their nesting season, derived from an incomplete nest count dataset. We detected 3 primary components in the nest distribution of leatherbacks: an overall shape that corresponds to the arrival and departure of leatherback females in the Guianas region, a sinusoidal pattern with a period of approximately 10 days that is related to physiological constraints of nesting female leatherbacks, and a sinusoidal pattern with a period of approximately 15 days that likely reflects the influence of spring high tides on nesting female turtles. The model proposed here offers a variety of uses for both marine turtles and also other taxa when individuals are observed in a particular location for only part of the year.
Neeman, Noga; Spotila, James R; O'Connor, Michael P
2015-09-07
Variation in the yearly number of sea turtles nesting at rookeries can interfere with population estimates and obscure real population dynamics. Previous theoretical models suggested that this variation in nesting numbers may be driven by changes in resources at the foraging grounds. We developed a physiologically-based model that uses temperatures at foraging sites to predict foraging conditions, resource accumulation, remigration probabilities, and, ultimately, nesting numbers for a stable population of sea turtles. We used this model to explore several scenarios of temperature variation at the foraging grounds, including one-year perturbations and cyclical temperature oscillations. We found that thermally driven resource variation can indeed synchronize nesting in groups of turtles, creating cohorts, but that these cohorts tend to break down over 5-10 years unless regenerated by environmental conditions. Cohorts were broken down faster at lower temperatures. One-year perturbations of low temperature had a synchronizing effect on nesting the following year, while high temperature perturbations tended to delay nesting in a less synchronized way. Cyclical temperatures lead to cyclical responses both in nesting numbers and remigration intervals, with the amplitude and lag of the response depending on the duration of the cycle. Overall, model behavior is consistent with observations at nesting beaches. Future work should focus on refining the model to fit particular nesting populations and testing further whether or not it may be used to predict observed nesting numbers and remigration intervals. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Clusters of Fusarium solani infection in juvenile captive born Caretta caretta sea turtles].
Garcia-Hartmann, M; Hennequin, C; Catteau, S; Béatini, C; Blanc, V
2017-03-01
Various yeasts and filamentous fungi are described as the cause of infection in sea turtles. Among them, Fusarium solani is responsible both for superficial and invasive infection in weakened adults (capture, stranding), and wild nest contamination, causing massive losses during hatching. We illustrate the pathogenicity of this fungus in sea turtles, through our experience with the species Caretta caretta (loggerhead turtle) and its reproduction, which was obtained for the first time in 2010 at the marine park Marineland, Antibes and renewed in 2011 and 2013. The first generation (6 viable newborns e.g. 0.9% of the nest) was severely affected by an infectious agent causing skin and multifocal organ lesions. Microbiological samples allowed to establish F. solani as the etiological agent. Antifungal therapy with posaconazole cured 2 (33%) of the brood. Epidemiological investigations, infection control and hygiene measures as well as diagnosis criteria, preemptive and curative treatment procedures allowed better prevention and cure and finally higher survival rates in subsequent broods, in 2011 and 2013 (80 viable newborns e.g. 6.6% of the nest and 50% survival rate). F. solani appears as a major threat for the successful reproduction of sea turtles in the wild. As observed, this threat is also of concern during captive breeding. The conditions of transmission and pathogenicity of Fusarium spp. in these animals are discussed in light of the literature cases that occurred in adult sea turtles and in wild nests, and of our breeding experience. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Nel, Ronel; Punt, André E; Hughes, George R
2013-01-01
Sea turtles are highly migratory and usually dispersed, but aggregate off beaches during the nesting season, rendering them vulnerable to coastal threats. Consequently, coastal Marine Protection Areas (MPAs) have been used to facilitate the recovery of turtle populations, but the effectiveness of these programs is uncertain as most have been operating for less than a single turtle generation (or<20 yr). South Africa, however, hosts one of the longest running conservation programs, protecting nesting loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) turtles since 1963 in a series of coastal MPAs. This provides a unique opportunity to evaluate the long-term effect of spatial protection on the abundance of two highly migratory turtle species with different life history characteristics. Population responses were assessed by modeling the number of nests over time in an index area (13 km) and an expanded monitoring area (53 km) with varying survey effort. Loggerhead abundance increased dramatically from∼250 to>1700 nests pa (index area) especially over the last decade, while leatherback abundance increased initially∼10 to 70 nests pa (index area), but then stabilized. Although leatherbacks have higher reproductive output per female and comparable remigration periods and hatching success to loggerheads, the leatherback population failed to expand. Our results suggest that coastal MPAs can work but do not guarantee the recovery of sea turtle populations as pressures change over time. Causes considered for the lack of population growth include factors in the MPA (expansion into unmonitored areas or incubation environment) of outside of the MPA (including carrying capacity and fishing mortality). Conservation areas for migratory species thus require careful design to account for species-specific needs, and need to be monitored to keep track of changing pressures.
Nel, Ronel; Punt, André E.; Hughes, George R.
2013-01-01
Sea turtles are highly migratory and usually dispersed, but aggregate off beaches during the nesting season, rendering them vulnerable to coastal threats. Consequently, coastal Marine Protection Areas (MPAs) have been used to facilitate the recovery of turtle populations, but the effectiveness of these programs is uncertain as most have been operating for less than a single turtle generation (or<20 yr). South Africa, however, hosts one of the longest running conservation programs, protecting nesting loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) turtles since 1963 in a series of coastal MPAs. This provides a unique opportunity to evaluate the long-term effect of spatial protection on the abundance of two highly migratory turtle species with different life history characteristics. Population responses were assessed by modeling the number of nests over time in an index area (13 km) and an expanded monitoring area (53 km) with varying survey effort. Loggerhead abundance increased dramatically from∼250 to>1700 nests pa (index area) especially over the last decade, while leatherback abundance increased initially∼10 to 70 nests pa (index area), but then stabilized. Although leatherbacks have higher reproductive output per female and comparable remigration periods and hatching success to loggerheads, the leatherback population failed to expand. Our results suggest that coastal MPAs can work but do not guarantee the recovery of sea turtle populations as pressures change over time. Causes considered for the lack of population growth include factors in the MPA (expansion into unmonitored areas or incubation environment) of outside of the MPA (including carrying capacity and fishing mortality). Conservation areas for migratory species thus require careful design to account for species-specific needs, and need to be monitored to keep track of changing pressures. PMID:23671683
Increased levels of arginine vasotocin and neurophysin during nesting in sea turtles.
Figler, R A; MacKenzie, D S; Owens, D W; Licht, P; Amoss, M S
1989-02-01
Arginine vasotocin (AVT) and neurophysin (NP) levels were measured by radioimmunoassay in two species of sea turtle, the olive ridley, Lepidochelys olivacea, and the loggerhead, Caretta caretta, during the brief period of nesting and oviposition. In both species, AVT was low in animals which were not reproductively active. AVT was also low at the time animals emerged from the surf to nest, but increased significantly during oviposition and then declined as the animals returned to the water. NP increased in concert with AVT, also reaching highest levels during oviposition. In both species, however, NP levels remained elevated over prenesting levels at the time of return to the water. These findings are consistent with the hypothesis that an AVT-neurophysin complex is released from the neurohypophysis during nesting, and that AVT is a physiological regulator of oviducal contractions in sea turtles.
A genetic test of the natal homing versus social facilitation models for green turtle migration.
Meylan, A B; Bowen, B W; Avise, J C
1990-05-11
Female green turtles exhibit strong nest-site fidelity as adults, but whether the nesting beach is the natal site is not known. Under the natal homing hypothesis, females return to their natal beach to nest, whereas under the social facilitation model, virgin females follow experienced breeders to nesting beaches and after a "favorable" nesting experience, fix on that site for future nestings. Differences shown in mitochondrial DNA genotype frequency among green turtle colonies in the Caribbean Sea and Atlantic Ocean are consistent with natal homing expectations and indicate that social facilitation to nonnatal sites is rare.
Perrault, Justin R; Miller, Debra L; Garner, Jeanne; Wyneken, Jeanette
2013-10-01
Leatherback sea turtles (Dermochelys coriacea) are long-distance migrants that travel thousands of km from foraging grounds to breeding and nesting grounds. These extensive journeys are fueled by ingestion of an estimated 300-400 kg of prey/d and likely result in exposure to high concentrations of environmental toxicants (e.g., mercury compounds). Increased bodily concentrations of mercury and its compounds in nesting female turtles may have detrimental effects on reproductive success. Leatherbacks have relatively low reproductive success compared with other sea turtles (global average hatching success ~50-60%). To assess toxicants and necessary nutrients as factors affecting leatherback turtle reproductive success at Sandy Point National Wildlife Refuge (SPNWR), St. Croix, U.S. Virgin Islands, we collected blood from nesting female leatherbacks and tissues from their hatchlings (blood from live turtles, liver and yolk sac from dead turtles). We compared the concentrations in those tissues to hatching and emergence success. We found that on SPNWR, hatching and emergence success were more closely related to seasonal factors than to total mercury and selenium concentrations in both nesting females and hatchlings. Selenium concentrations of nesting females were positively correlated with those of their hatchlings. Mercury and selenium in the liver of hatchlings were positively correlated with one another. Turtles with greater remigration intervals tended to have higher blood selenium concentrations, suggesting that selenium accumulates in leatherbacks through time. Through hazard quotients, we found evidence that selenium may be at or above concentrations that may cause physiologic harm to hatchlings. We also found evidence that population level differences exist for these trace elements. The concentrations of mercury and selenium established in this manuscript form a baseline for future toxicant studies. Copyright © 2013 Elsevier B.V. All rights reserved.
Distorting Gene Pools by Conservation: Assessing the Case of Doomed Turtle Eggs
NASA Astrophysics Data System (ADS)
Mrosovsky, N.
2006-10-01
Sea turtles have a high reproductive output and high mortality at early stages of the life cycle. In particular, many nests are laid below or close to high tide lines, and subsequently large numbers of eggs may be inundated and destroyed. A common conservation procedure is to relocate such doomed eggs to higher ground. This article examines this practice in the light of recent data revealing that some individual turtles tend to nest relatively near the water and others relatively higher up the beach. Discussion is focused on the question of why apparently poor placement of nests has not been selected against. Comparison between the ecology of leatherback and hawksbill turtle nesting beaches suggests that predictability of environmental conditions on the nesting beaches has an important influence on patterns of nest-site selection. Options are outlined for the management of nesting beaches where a high proportion of turtle eggs is subject to destruction by flooding.
Distorting gene pools by conservation: Assessing the case of doomed turtle eggs.
Mrosovsky, N
2006-10-01
Sea turtles have a high reproductive output and high mortality at early stages of the life cycle. In particular, many nests are laid below or close to high tide lines, and subsequently large numbers of eggs may be inundated and destroyed. A common conservation procedure is to relocate such doomed eggs to higher ground. This article examines this practice in the light of recent data revealing that some individual turtles tend to nest relatively near the water and others relatively higher up the beach. Discussion is focused on the question of why apparently poor placement of nests has not been selected against. Comparison between the ecology of leatherback and hawksbill turtle nesting beaches suggests that predictability of environmental conditions on the nesting beaches has an important influence on patterns of nest-site selection. Options are outlined for the management of nesting beaches where a high proportion of turtle eggs is subject to destruction by flooding.
Shaver, Donna J.; Lamont, Margaret M.; Maxwell, Sharon; Walker, Jennifer Shelby; Dillingham, Ted
2016-01-01
A head-started Kemp’s ridley sea turtle (Lepidochelys kempii) was documented nesting on South Walton Beach, Florida on 25 May 2015. This record supports the possibility that exposure to Florida waters after being held in captivity through 1–3 yrs of age during the head-starting process may have influenced future nest site selection of this and perhaps other Kemp’s ridley turtles. Such findings could have important ramifications for marine water experimentation and release site selection for turtles that have been reared in captivity.
How numbers of nesting sea turtles can be overestimated by nearly a factor of two
Esteban, Nicole; Mortimer, Jeanne A.
2017-01-01
Estimating the absolute number of individuals in populations and their fecundity is central to understanding the ecosystem role of species and their population dynamics as well as allowing informed conservation management for endangered species. Estimates of abundance and fecundity are often difficult to obtain for rare or cryptic species. Yet, in addition, here we show for a charismatic group, sea turtles, that are neither cryptic nor rare and whose nesting is easy to observe, that the traditional approach of direct observations of nesting has likely led to a gross overestimation of the number of individuals in populations and underestimation of their fecundity. We use high-resolution GPS satellite tags to track female green turtles throughout their nesting season in the Chagos Archipelago (Indian Ocean) and assess when and where they nested. For individual turtles, nest locations were often spread over several tens of kilometres of coastline. Assessed by satellite observations, a mean of 6.0 clutches (range 2–9, s.d. = 2.2) was laid by individuals, about twice as many as previously assumed, a finding also reported in other species and ocean basins. Taken together, these findings suggest that the actual number of nesting turtles may be almost 50% less than previously assumed. PMID:28202810
How numbers of nesting sea turtles can be overestimated by nearly a factor of two.
Esteban, Nicole; Mortimer, Jeanne A; Hays, Graeme C
2017-02-22
Estimating the absolute number of individuals in populations and their fecundity is central to understanding the ecosystem role of species and their population dynamics as well as allowing informed conservation management for endangered species. Estimates of abundance and fecundity are often difficult to obtain for rare or cryptic species. Yet, in addition, here we show for a charismatic group, sea turtles, that are neither cryptic nor rare and whose nesting is easy to observe, that the traditional approach of direct observations of nesting has likely led to a gross overestimation of the number of individuals in populations and underestimation of their fecundity. We use high-resolution GPS satellite tags to track female green turtles throughout their nesting season in the Chagos Archipelago (Indian Ocean) and assess when and where they nested. For individual turtles, nest locations were often spread over several tens of kilometres of coastline. Assessed by satellite observations, a mean of 6.0 clutches (range 2-9, s.d. = 2.2) was laid by individuals, about twice as many as previously assumed, a finding also reported in other species and ocean basins. Taken together, these findings suggest that the actual number of nesting turtles may be almost 50% less than previously assumed. © 2017 The Author(s).
Parris, L.B.; Lamont, M.M.; Carthy, R.R.
2002-01-01
Hatching sea turtles may be at risk to fire ant predation during egg incubation, and especially at risk once pipped from the egg, prior to hatchling emergence from the nest. In addition to direct mortality, fire ants have the potential to inflict debilitating injuries that may directly affect survival of the young. The increased incidence of red imported fire ant induced mortality and envenomization of loggerhead sea turtle hatchlings on Cape San Blas suggests this invasive ant species may pose a serious threat to the future of this genetically distinct population.
Whiting, Scott D; Murray, Wendy; Macrae, Ismail; Thorn, Robert; Chongkin, Mohammad; Koch, Andrea U
2008-04-01
Green sea turtles (Chelonia mydas) are renowned for their long-distance migrations but have less fame for short-distance migrations or non-migratory behavior. We present satellite telemetric evidence from Cocos (Keeling) Islands, Indian Ocean for the first predominantly non-migratory green sea turtle (C. mydas) population. The mean migration distance from the nesting beach to the foraging grounds was 35.5 km with a maximum mean transit time of 3.4 days. The behavior of this population has major implications for our general understanding of green turtle behavior and their life cycle and for conservation. Firstly, these results indicate a level of juvenile or adult non-breeding homing behavior from the open ocean to foraging grounds adjacent to their natal nesting beach. Secondly, a non-migratory breeding phase reduces the consumption of reproductive energy utilized, potentially resulting in higher fecundity for this population. Thirdly, the close proximity of the nesting and foraging habitats allows for uniformity in management and conservation strategies rarely possible for wide-ranging green turtle populations.
NASA Astrophysics Data System (ADS)
Whiting, Scott D.; Murray, Wendy; Macrae, Ismail; Thorn, Robert; Chongkin, Mohammad; Koch, Andrea U.
2008-04-01
Green sea turtles ( Chelonia mydas) are renowned for their long-distance migrations but have less fame for short-distance migrations or non-migratory behavior. We present satellite telemetric evidence from Cocos (Keeling) Islands, Indian Ocean for the first predominantly non-migratory green sea turtle ( C. mydas) population. The mean migration distance from the nesting beach to the foraging grounds was 35.5 km with a maximum mean transit time of 3.4 days. The behavior of this population has major implications for our general understanding of green turtle behavior and their life cycle and for conservation. Firstly, these results indicate a level of juvenile or adult non-breeding homing behavior from the open ocean to foraging grounds adjacent to their natal nesting beach. Secondly, a non-migratory breeding phase reduces the consumption of reproductive energy utilized, potentially resulting in higher fecundity for this population. Thirdly, the close proximity of the nesting and foraging habitats allows for uniformity in management and conservation strategies rarely possible for wide-ranging green turtle populations.
Bézy, Vanessa S.; Valverde, Roldán A.; Plante, Craig J.
2015-01-01
Several studies have suggested that significant embryo mortality is caused by microbes, while high microbial loads are generated by the decomposition of eggs broken by later nesting turtles. This occurs commonly when nesting density is high, especially during mass nesting events (arribadas). However, no previous research has directly quantified microbial abundance and the associated effects on sea turtle hatching success at a nesting beach. The aim of this study was to test the hypothesis that the microbial abundance in olive ridley sea turtle nest sand affects the hatching success at Ostional, Costa Rica. We applied experimental treatments to alter the microbial abundance within the sand into which nests were relocated. We monitored temperature, oxygen, and organic matter content throughout the incubation period and quantified the microbial abundance within the nest sand using a quantitative polymerase chain reaction (qPCR) molecular analysis. The most successful treatment in increasing hatching success was the removal and replacement of nest sand. We found a negative correlation between hatching success and fungal abundance (fungal 18S rRNA gene copies g-1 nest sand). Of secondary importance in determining hatching success was the abundance of bacteria (bacterial 16S rRNA gene copies g-1 g-1 nest sand). Our data are consistent with the hypothesis that high microbial activity is responsible for the lower hatching success observed at Ostional beach. Furthermore, the underlying mechanism appears to be the deprivation of oxygen and exposure to higher temperatures resulting from microbial decomposition in the nest. PMID:25714355
Wibbels, T; Owens, D W; Licht, P; Limpus, C; Reed, P C; Amoss, M S
1992-07-01
Changes in serum concentrations of gonadotropins and gonadal steroids during the periovulatory period were monitored in green, Chelonia mydas, and loggerhead, Caretta caretta, sea turtles. Turtles were from natural populations that nest on a coral island on the Great Barrier Reef. After nesting, each turtle was transferred to a holding tank and held for a maximum of 8 days. A time series of blood samples was obtained from each of five sea turtles (three C. mydas and two C. caretta) starting immediately after nesting and then at approximately 12-hr intervals until the time of release. Prior to release back into the ocean, each turtle was examined by laparoscopy to verify that ovulation had occurred. Serum concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH), progesterone (PRO), and testosterone (T) in both species exhibited significant changes during this period. Surges of FSH, LH, and PRO were evident within approximately 20 to 50 hr after each turtle had nested. The significant change in FSH concentration during the periovulatory period is the first such report for a reptile. Coincident with maximal concentrations of FSH, LH, and PRO was a decline in T concentrations in both species. Estradiol-17 beta concentrations were near or below assay sensitivity in the C. mydas, whereas those in the C. caretta were detectable but exhibited no significant changes. The dynamic changes in FSH, LH, PRO, and T concentrations are consistent with the hypothesis that these hormones facilitate specific physiological events during ovulation and egg production.
Encroachment of Human Activity on Sea Turtle Nesting Sites
NASA Astrophysics Data System (ADS)
Ziskin, D.; Aubrecht, C.; Elvidge, C.; Tuttle, B.; Baugh, K.; Ghosh, T.
2008-12-01
The encroachment of anthropogenic lighting on sea turtle nesting sites poses a serious threat to the survival of these animals [Nicholas, 2001]. This danger is quantified by combining two established data sets. The first is the Nighttime Lights data produced by the NOAA National Geophysical Data Center [Elvidge et al., 1997]. The second is the Marine Turtle Database produced by the World Conservation Monitoring Centre (WCMC). The technique used to quantify the threat of encroachment is an adaptation of the method described in Aubrecht et al. [2008], which analyzes the stress on coral reef systems by proximity to nighttime lights near the shore. Nighttime lights near beaches have both a direct impact on turtle reproductive success since they disorient hatchlings when they mistake land-based lights for the sky-lit surf [Lorne and Salmon, 2007] and the lights are also a proxy for other anthropogenic threats. The identification of turtle nesting sites with high rates of encroachment will hopefully steer conservation efforts to mitigate their effects [Witherington, 1999]. Aubrecht, C, CD Elvidge, T Longcore, C Rich, J Safran, A Strong, M Eakin, KE Baugh, BT Tuttle, AT Howard, EH Erwin, 2008, A global inventory of coral reef stressors based on satellite observed nighttime lights, Geocarto International, London, England: Taylor and Francis. In press. Elvidge, CD, KE Baugh, EA Kihn, HW Kroehl, ER Davis, 1997, Mapping City Lights with Nighttime Data from the DMSP Operational Linescan System, Photogrammatic Engineering and Remote Sensing, 63:6, pp. 727-734. Lorne, JK, M Salmon, 2007, Effects of exposure to artificial lighting on orientation of hatchling sea turtles on the beach and in the ocean, Endangered Species Research, Vol. 3: 23-30. Nicholas, M, 2001, Light Pollution and Marine Turtle Hatchlings: The Straw that Breaks the Camel's Back?, George Wright Forum, 18:4, p77-82. Witherington, BE, 1999, Reducing Threats To Nesting Habitat, Research and Management Techniques for the Conservation of Sea Turtles, KL Eckert, KA Bjorndal, FAA Grobois, M Donnelly, eds., IUCN/SSC Marine Turtle Specialist Group.
Deforestation: risk of sex ratio distortion in hawksbill sea turtles.
Kamel, Stephanie Jill; Mrosovsky, N
2006-06-01
Phenotypic sex in sea turtles is determined by nest incubation temperatures, with warmer temperatures producing females and cooler temperatures producing males. The common finding of highly skewed female-biased hatchling sex ratios in sea turtle populations could have serious repercussions for the long-term survival of these species and prompted us to examine the thermal profile of a relatively pristine hawksbill nesting beach in Guadeloupe, French West Indies. Data loggers placed at nest depth revealed that temperatures in the forested areas were significantly cooler than temperatures in the more open, deforested areas. Using these temperatures as a predictor of sex ratio, we were able to assess the relative contributions of the different beach zones to the primary sex ratio: significantly more males were likely to be produced in the forested areas. Coastal forests are therefore important male-producing areas for the hawksbill sea turtle, and this has urgent conservation implications. On Guadeloupe, as on many Caribbean islands, deforestation rates are high and show few signs of slowing, as there is continual pressure to develop beachfront areas. The destruction of coastal forest could have serious consequences both in terms of local nesting behavior and of regional demography through the effects on population sex ratios. Human alterations to nesting habitat in other reptile taxa have been shown to modify the thermal properties of nest sites in ways that can disrupt their ecology by allowing parasite transmission, increasing vulnerability to climate change, or rendering existing habitat unsuitable.
Nesting Ecology of Hawksbill Sea Turtles (Eretmochelys imbricata) on Utila, Honduras
NASA Astrophysics Data System (ADS)
Damazo, Lindsey Renee Eggers
The hawksbill sea turtle (Eretmochelys imbricata) has a circumtropical distribution and plays an important role in maintaining the health of coral reefs. Unfortunately, hawksbill populations have been decimated, and estimated numbers in the Caribbean are less than 10% of populations a century ago. The hawksbill is considered Critically Endangered, and researchers are coordinating worldwide efforts to protect this species. One country where we lack knowledge regarding hawksbills is Honduras. This study aimed to increase our understanding of hawksbill nesting ecology in Caribbean Honduras. Characteristics of hawksbill nesting activity and a nesting beach on the island of Utila were elucidated using satellite telemetry, beach profiling, vegetation surveys, beach monitoring, and nest temperature profiles. We affixed satellite transmitters to two nesting hawksbills, and found the turtles migrated to different countries. One turtle traveled 403 km to a bay in Mexico, and the other traveled 181 km to a Marine Protected Area off Belize. This study presents the first description of hawksbill migration routes from Honduras, facilitating protection efforts for turtles that traverse international waters. To investigate nesting beach and turtle characteristics, we conducted beach monitoring during the 2012 nesting season. Nesting turtle carapace sizes were similar to worldwide values, but hatchlings were heavier. To measure nest temperatures, we placed thermocouple data loggers in four nests and four pseudo-nests. Data suggested metabolic heating may be maintaining nest temperatures above the pivotal temperature. However, large temperature fluctuations corresponding to rainfall from Hurricane Ernesto (as determined using a time series cross-correlation analysis) make it difficult to predict sex ratios, and underscore the impact stochastic events can have on nest temperatures. We created topographic and substrate profiles of the beach, and found it was 475 m long, yet hawksbills preferentially nested along 80 m that differed from the remainder of the beach in having higher elevation and extensive forest cover. This is the first study from Honduras to report a regular nesting population of hawksbills as well as characterize a nesting beach for this species. It provides an important foundation for hawksbill research in Honduras, a region where we have insufficient knowledge to adequately protect this critically endangered species.
Tremblay, Nelly; Ortíz Arana, Alejandro; González Jáuregui, Mauricio; Rendón-von Osten, Jaime
2017-03-01
Data on the impact of environmental pollution on the homeostasis of sea turtles remains scarce, particularly in the Southern Gulf of Mexico. As many municipalities along the coastline of the Yucatan Peninsula do not rely on a waste treatment plant, these organisms could be particularly vulnerable. We searched for relationships between the presence of organochlorine pesticides (OCP) and the level of several oxidative and pollutant stress indicators of the hawksbill sea turtle (Eretmochelys imbricata) during the 2010 nesting season at Punta Xen (Campeche, Mexico). Of the 30 sampled sea turtles, endosulfans, aldrin related (aldrin, endrin, dieldrin, endrin ketone, endrin aldehyde) and dichlorodiphenyldichloroethylene (DDT) families were detected in 17, 21 and 26, respectively. Significant correlation existed between the size of sea turtles with the concentration of methoxychlor, cholinesterase activity in plasma and heptachlors family, and catalase activity and hexachlorohexane family. Cholinesterase activity in washed erythrocytes and lipid peroxidation were positively correlated with glutathione reductase activity. Antioxidant enzyme actions seem adequate as no lipids damages were correlated with any OCPs. Future studies are necessary to evaluate the effect of OCPs on males of the area due to the significant detection of methoxychlor, which target endocrine functioning and increases its concentration with sea turtles size.
First approximation to congenital malformation rates in embryos and hatchlings of sea turtles.
Bárcenas-Ibarra, Annelisse; de la Cueva, Horacio; Rojas-Lleonart, Isaias; Abreu-Grobois, F Alberto; Lozano-Guzmán, Rogelio Iván; Cuevas, Eduardo; García-Gasca, Alejandra
2015-03-01
Congenital malformations in sea turtles have been considered sporadical. Research carried out in the Mexican Pacific revealed high levels of congenital malformations in the olive ridley, but little or no information is available for other species. We present results from analyses of external congenital malformations in olive ridley, green, and hawskbill sea turtles from Mexican rookeries on the Pacific coast and Gulf of Mexico. We examined 150 green and hawksbill nests and 209 olive ridley nests during the 2010 and 2012 nesting seasons, respectively. Olive ridley eggs were transferred to a hatchery and incubated in styrofoam boxes. Nests from the other two species were left in situ. Number of eggs, live and dead hatchlings, and eggs with or without embryonic development were registered. Malformation frequency was evaluated with indices of prevalence and severity. Mortality levels, prevalence and severity were higher in olive ridley than in hawksbill and green sea turtles. Sixty-three types of congenital malformations were observed in embryos, and dead or live hatchlings. Of these, 38 are new reports; 35 for wild sea turtles, three for vertebrates. Thirty-one types were found in hawksbill, 23 in green, and 59 in olive ridley. The head region showed a higher number of malformation types. Malformation levels in the olive ridley were higher than previously reported. Olive ridleys seem more prone to the occurrence of congenital malformations than the other two species. Whether the observed malformation levels are normal or represent a health problem cannot be currently ascertained without long-term assessments. © 2015 Wiley Periodicals, Inc.
Read, Tyffen C.; Wantiez, Laurent; Werry, Jonathan M.; Farman, Richard; Petro, George; Limpus, Colin J.
2014-01-01
Marine megafauna tend to migrate vast distances, often crossing national borders and pose a significant challenge to managers. This challenge is particularly acute in the Pacific, which contains numerous small island nations and thousands of kilometers of continental margins. The green sea turtle, Chelonia mydas, is one such megafauna that is endangered in Pacific waters due to the overexploitation of eggs and adults for human consumption. Data from long-term tagging programs in Queensland (Australia) and New Caledonia were analysed to investigate the migrations by C. mydas across the Coral Sea between their nesting site and their feeding grounds. A review of data collected over the last 50 years by different projects identified multiple migrations of C. mydas to and from New Caledonia (n = 97) and indicate that turtles foraging in New Caledonia nest in the Great Barrier Reef (Australia) and vice versa. Several explanations exist for turtles exhibiting this energetically costly movement pattern from breeding to distant foraging grounds (1200–2680 km away) despite viable foraging habitat being available in the local vicinity. These include hatchling drift, oceanic movements and food abundance predictability. Most of the tag recoveries in New Caledonia belonged to females from the south Great Barrier Reef genetic stock. Some females (n = 2) even showed fidelity to foraging sites located 1200 km away from the nesting site located in New Caledonia. This study also reveals previously unknown migrations pathways of turtles within the Coral Sea. PMID:24940598
Read, Tyffen C; Wantiez, Laurent; Werry, Jonathan M; Farman, Richard; Petro, George; Limpus, Colin J
2014-01-01
Marine megafauna tend to migrate vast distances, often crossing national borders and pose a significant challenge to managers. This challenge is particularly acute in the Pacific, which contains numerous small island nations and thousands of kilometers of continental margins. The green sea turtle, Chelonia mydas, is one such megafauna that is endangered in Pacific waters due to the overexploitation of eggs and adults for human consumption. Data from long-term tagging programs in Queensland (Australia) and New Caledonia were analysed to investigate the migrations by C. mydas across the Coral Sea between their nesting site and their feeding grounds. A review of data collected over the last 50 years by different projects identified multiple migrations of C. mydas to and from New Caledonia (n = 97) and indicate that turtles foraging in New Caledonia nest in the Great Barrier Reef (Australia) and vice versa. Several explanations exist for turtles exhibiting this energetically costly movement pattern from breeding to distant foraging grounds (1200-2680 km away) despite viable foraging habitat being available in the local vicinity. These include hatchling drift, oceanic movements and food abundance predictability. Most of the tag recoveries in New Caledonia belonged to females from the south Great Barrier Reef genetic stock. Some females (n = 2) even showed fidelity to foraging sites located 1200 km away from the nesting site located in New Caledonia. This study also reveals previously unknown migrations pathways of turtles within the Coral Sea.
Páez-Osuna, F; Calderón-Campuzano, M F; Soto-Jiménez, M F; Ruelas-Inzunza, J
2011-06-01
Mercury concentrations were assessed in the sea turtle Lepidochelys olivacea from a nesting colony of Oaxaca, Mexico; 25 female turtles were sampled, a total of 250 eggs were collected during the season 2005-2006. Higher concentrations were found in yolk fraction, while in blood and albumen mean levels were below of 0.0010μg g(-1) dry wt. On the basis of one nesting season, the maternal transfer of Hg via eggs-laying was estimated in 2.0±1.1%. According to international norms, the health of this population and its habitats is acceptable for Hg and corresponds to baseline levels of a nearly pristine environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hays, Graeme C; Fossette, Sabrina; Katselidis, Kostas A; Mariani, Patrizio; Schofield, Gail
2010-09-06
Long distance migration occurs in a wide variety of taxa including birds, insects, fishes, mammals and reptiles. Here, we provide evidence for a new paradigm for the determinants of migration destination. As adults, sea turtles show fidelity to their natal nesting areas and then at the end of the breeding season may migrate to distant foraging sites. For a major rookery in the Mediterranean, we simulated hatchling drift by releasing 288 000 numerical particles in an area close to the nesting beaches. We show that the pattern of adult dispersion from the breeding area reflects the extent of passive dispersion that would be experienced by hatchlings. Hence, the prevailing oceanography around nesting areas may be crucial to the selection of foraging sites used by adult sea turtles. This environmental forcing may allow the rapid evolution of new migration destinations if ocean currents alter with climate change.
Hays, Graeme C.; Fossette, Sabrina; Katselidis, Kostas A.; Mariani, Patrizio; Schofield, Gail
2010-01-01
Long distance migration occurs in a wide variety of taxa including birds, insects, fishes, mammals and reptiles. Here, we provide evidence for a new paradigm for the determinants of migration destination. As adults, sea turtles show fidelity to their natal nesting areas and then at the end of the breeding season may migrate to distant foraging sites. For a major rookery in the Mediterranean, we simulated hatchling drift by releasing 288 000 numerical particles in an area close to the nesting beaches. We show that the pattern of adult dispersion from the breeding area reflects the extent of passive dispersion that would be experienced by hatchlings. Hence, the prevailing oceanography around nesting areas may be crucial to the selection of foraging sites used by adult sea turtles. This environmental forcing may allow the rapid evolution of new migration destinations if ocean currents alter with climate change. PMID:20236958
Muñoz, Cynthia C; Vermeiren, Peter
2018-04-01
Knowledge of spatial variation in pollutant profiles among sea turtle nesting locations is limited. This poses challenges in identifying processes shaping this variability and sets constraints to the conservation management of sea turtles and their use as biomonitoring tools for environmental pollutants. We aimed to increase understanding of the spatial variation in polycyclic aromatic hydrocarbon (PAH), organochlorine pesticide (OCP) and polychlorinated biphenyl (PCB) compounds among nesting beaches. We link the spatial variation to turtle migration patterns and the persistence of these pollutants. Specifically, using gas chromatography, we confirmed maternal transfer of a large number of compounds (n = 68 out of 69) among 104 eggs collected from 21 nests across three nesting beaches within the Yucatán Peninsula, one of the world's most important rookeries for hawksbill turtles (Eretmochelys imbricata). High variation in PAH profiles was observed among beaches, using multivariate correspondence analysis and univariate Peto-Prentice tests, reflecting local acquisition during recent migration movements. Diagnostic PAH ratios reflected petrogenic origins in Celestún, the beach closest to petroleum industries in the Gulf of Mexico. By contrast, pollution profiles of OCPs and PCBs showed high similarity among beaches, reflecting the long-term accumulation of these pollutants at regional scales. Therefore, spatial planning of protected areas and the use of turtle eggs in biomonitoring needs to account for the spatial variation in pollution profiles among nesting beaches. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hart, Kristen M.; Zawada, David G.; Fujisaki, Ikuko; Lidz, Barbara H.
2010-01-01
The loggerhead sea turtle Caretta caretta faces declining nest numbers and bycatches from commercial longline fishing in the southeastern USA. Understanding spatial and temporal habitat-use patterns of these turtles, especially reproductive females in the neritic zone, is critical for guiding management decisions. To assess marine turtle habitat use within the Dry Tortugas National Park (DRTO), we used satellite telemetry to identify core-use areas for 7 loggerhead females inter-nesting and tracked in 2008 and 2009. This effort represents the first tracking of DRTO loggerheads, a distinct subpopulation that is 1 of 7 recently proposed for upgrading from threatened to endangered under the US Endangered Species Act. We also used a rapid, high-resolution, digital imaging system to map benthic habitats in turtle core-use areas (i.e. 50% kernel density zones). Loggerhead females were seasonal residents of DRTO for 19 to 51 d, and individual inter-nesting habitats were located within 1.9 km (2008) and 2.3 km (2009) of the nesting beach and tagging site. The core area common to all tagged turtles was 4.2 km2 in size and spanned a depth range of 7.6 to 11.5 m. Mapping results revealed the diversity and distributions of benthic cover available in the core-use area, as well as a heavily used corridor to/from the nesting beach. This combined tagging-mapping approach shows potential for planning and improving the effectiveness of marine protected areas and for developing spatially explicit conservation plans.
Population genetics and phylogeography of sea turtles.
Bowen, B W; Karl, S A
2007-12-01
The seven species of sea turtles occupy a diversity of niches, and have a history tracing back over 100 million years, yet all share basic life-history features, including exceptional navigation skills and periodic migrations from feeding to breeding habitats. Here, we review the biogeographic, behavioural, and ecological factors that shape the distribution of genetic diversity in sea turtles. Natal homing, wherein turtles return to their region of origin for mating and nesting, has been demonstrated with mtDNA sequences. These maternally inherited markers show strong population structure among nesting colonies while nuclear loci reveal a contrasting pattern of male-mediated gene flow, a phenomenon termed 'complex population structure'. Mixed-stock analyses indicate that multiple nesting colonies can contribute to feeding aggregates, such that exploitation of turtles in these habitats can reduce breeding populations across the region. The mtDNA data also demonstrate migrations across entire ocean basins, some of the longest movements of marine vertebrates. Multiple paternity occurs at reported rates of 0-100%, and can vary by as much as 9-100% within species. Hybridization in almost every combination among members of the Cheloniidae has been documented but the frequency and ultimate ramifications of hybridization are not clear. The global phylogeography of sea turtles reveals a gradient based on habitat preference and thermal regime. The cold-tolerant leatherback turtle (Dermochelys coriacea) shows no evolutionary partitions between Indo-Pacific and Atlantic populations, while the tropical green (Chelonia mydas), hawksbill (Eretmochelys imbricata), and ridleys (Lepidochelys olivacea vs. L. kempi) have ancient separations between oceans. Ridleys and loggerhead (Caretta caretta) also show more recent colonization between ocean basins, probably mediated by warm-water gyres that occasionally traverse the frigid upwelling zone in southern Africa. These rare events may be sufficient to prevent allopatric speciation under contemporary geographic and climatic conditions. Genetic studies have advanced our understanding of marine turtle biology and evolution, but significant gaps persist and provide challenges for the next generation of sea turtle geneticists.
Maxwell, Sara M.; Breed, Greg A.; Nickel, Barry A.; Makanga-Bahouna, Junior; Pemo-Makaya, Edgard; Parnell, Richard J.; Formia, Angela; Ngouessono, Solange; Godley, Brendan J.; Costa, Daniel P.; Witt, Matthew J.; Coyne, Michael S.
2011-01-01
Tractable conservation measures for long-lived species require the intersection between protection of biologically relevant life history stages and a socioeconomically feasible setting. To protect breeding adults, we require knowledge of animal movements, how movement relates to political boundaries, and our confidence in spatial analyses of movement. We used satellite tracking and a switching state-space model to determine the internesting movements of olive ridley sea turtles (Lepidochelys olivacea) (n = 18) in Central Africa during two breeding seasons (2007-08, 2008-09). These movements were analyzed in relation to current park boundaries and a proposed transboundary park between Gabon and the Republic of Congo, both created to reduce unintentional bycatch of sea turtles in marine fisheries. We additionally determined confidence intervals surrounding home range calculations. Turtles remained largely within a 30 km radius from the original nesting site before departing for distant foraging grounds. Only 44.6 percent of high-density areas were found within the current park but the proposed transboundary park would incorporate 97.6 percent of high-density areas. Though tagged individuals originated in Gabon, turtles were found in Congolese waters during greater than half of the internesting period (53.7 percent), highlighting the need for international cooperation and offering scientific support for a proposed transboundary park. This is the first comprehensive study on the internesting movements of solitary nesting olive ridley sea turtles, and it suggests the opportunity for tractable conservation measures for female nesting olive ridleys at this and other solitary nesting sites around the world. We draw from our results a framework for cost-effective protection of long-lived species using satellite telemetry as a primary tool. PMID:21589942
Global sea turtle conservation successes
Mazaris, Antonios D.; Schofield, Gail; Gkazinou, Chrysoula; Almpanidou, Vasiliki; Hays, Graeme C.
2017-01-01
We document a tendency for published estimates of population size in sea turtles to be increasing rather than decreasing across the globe. To examine the population status of the seven species of sea turtle globally, we obtained 299 time series of annual nesting abundance with a total of 4417 annual estimates. The time series ranged in length from 6 to 47 years (mean, 16.2 years). When levels of abundance were summed within regional management units (RMUs) for each species, there were upward trends in 12 RMUs versus downward trends in 5 RMUs. This prevalence of more upward than downward trends was also evident in the individual time series, where we found 95 significant increases in abundance and 35 significant decreases. Adding to this encouraging news for sea turtle conservation, we show that even small sea turtle populations have the capacity to recover, that is, Allee effects appear unimportant. Positive trends in abundance are likely linked to the effective protection of eggs and nesting females, as well as reduced bycatch. However, conservation concerns remain, such as the decline in leatherback turtles in the Eastern and Western Pacific. Furthermore, we also show that, often, time series are too short to identify trends in abundance. Our findings highlight the importance of continued conservation and monitoring efforts that underpin this global conservation success story. PMID:28948215
Inter-seasonal maintenance of individual nest site preferences in hawksbill sea turtles.
Kamel, Stephanie J; Mrosovsky, N
2006-11-01
Within a single population of hawksbill sea turtles (Eretmochelys imbricata), we found a behavioral polymorphism for maternal nest site choice with respect to beach microhabitat characteristics. Some females preferred to nest in littoral forest and in places with overstory vegetation cover, and others preferred to nest in more open, deforested areas. Nest site choice was consistent within and between nesting seasons two years apart. This was not a result of females simply returning to the same location along the shoreline; beach sections used by individual turtles varied between seasons. Nest site choice was not influenced by changes in beach environment (e.g., beach width and foliage cover) or by changes in females' reproductive output (e.g., clutch size), suggesting that fidelity to particular microhabitats is a major determinant of the observed nesting patterns. Because hawksbills exhibit temperature-dependent sex determination, if the behavioral polymorphism in nest site choice has a genetic basis, as is plausible, then this would have implications for sex ratio evolution and offspring survival. By taking an individual-based approach to the study of maternal behavior we reveal previously overlooked individual variation and hope to provide some impetus for more detailed studies of nest site choice.
Stacy, Brian A; Foley, Allen; Garner, Michael M; Mettee, Nancy
2013-12-01
Case information and postmortem examination findings are presented for 11 adult female sea turtles in reproductive form that died in Florida, USA. All had abundant, large vitellogenic follicles, and most were either gravid or had recently nested. Species included six loggerheads (Caretta caretta) and five green turtles (Chelonia mydas). Identified proximate causes of death included falls or entrapment by obstructions on nesting beaches, burial under collapsed dunes, and other traumatic injuries of different causes. Evidence of yolk embolization was found in 10 cases and suspected in an 11th turtle. Ten turtles also had various amounts of free intracoelomic yolk. Although the effects of yolk embolization are uncertain at this time, precedence of pathologic importance in other species suggests that embolism may complicate traumatic injuries, including seemingly minor events.
1987-11-01
favorable nesting habitats. Viosca (1961) felt ridleys preferred to nest in the loose sand of the Chandeleur Islands rather than the compacted...Ceorgia. Southeastern Wildlife Services, Inc. Athens, Ca. 24 p. In Rabalais and Rabalais 1980. Hughes, G.R. 1972. The olive ridley sea-turtle...that may be potentially impacted by the proposed activity are the Kemp’s (Atlantic) ridley sea turtle, Lepidochelys kempi, which is endangered, and
Leighton, Patrick A; Horrocks, Julia A; Krueger, Barry H; Beggs, Jennifer A; Kramer, Donald L
2008-11-07
Because species respond differently to habitat boundaries and spatial overlap affects encounter rates, edge responses should be strong determinants of spatial patterns of species interactions. In the Caribbean, mongooses (Herpestes javanicus) prey on hawksbill sea turtle (Eretmochelys imbricata) eggs. Turtles nest in both open sand and vegetation patches, with a peak in nest abundance near the boundary between the two microhabitats; mongooses rarely leave vegetation. Using both artificial nests and hawksbill nesting data, we examined how the edge responses of these species predict the spatial patterns of nest mortality. Predation risk was strongly related to mongoose abundance but was not affected by nest density or habitat type. The product of predator and prey edge response functions accurately described the observed pattern of total prey mortality. Hawksbill preference for vegetation edge becomes an ecological trap in the presence of mongooses. This is the first study to predict patterns of predation directly from continuous edge response functions of interacting species, establishing a link between models of edge response and species interactions.
Leighton, Patrick A; Horrocks, Julia A; Krueger, Barry H; Beggs, Jennifer A; Kramer, Donald L
2008-01-01
Because species respond differently to habitat boundaries and spatial overlap affects encounter rates, edge responses should be strong determinants of spatial patterns of species interactions. In the Caribbean, mongooses (Herpestes javanicus) prey on hawksbill sea turtle (Eretmochelys imbricata) eggs. Turtles nest in both open sand and vegetation patches, with a peak in nest abundance near the boundary between the two microhabitats; mongooses rarely leave vegetation. Using both artificial nests and hawksbill nesting data, we examined how the edge responses of these species predict the spatial patterns of nest mortality. Predation risk was strongly related to mongoose abundance but was not affected by nest density or habitat type. The product of predator and prey edge response functions accurately described the observed pattern of total prey mortality. Hawksbill preference for vegetation edge becomes an ecological trap in the presence of mongooses. This is the first study to predict patterns of predation directly from continuous edge response functions of interacting species, establishing a link between models of edge response and species interactions. PMID:18647718
Booth, David T; Evans, Andrew
2011-01-01
For sea turtles nesting on beaches surrounded by coral reefs, the most important element of hatchling recruitment is escaping predation by fish as they swim across the fringing reef, and as a consequence hatchlings that minimize their exposure to fish predation by minimizing the time spent crossing the fringing reef have a greater chance of surviving the reef crossing. One way to decrease the time required to cross the fringing reef is to maximize swimming speed. We found that both water temperature and nest temperature influence swimming performance of hatchling green turtles, but in opposite directions. Warm water increases swimming ability, with hatchling turtles swimming in warm water having a faster stroke rate, while an increase in nest temperature decreases swimming ability with hatchlings from warm nests producing less thrust per stroke.
Nesting fidelity and molecular evidence for natal homing in the freshwater turtle, Graptemys kohnii
Freedberg, Steven; Ewert, Michael A; Ridenhour, Benjamin J; Neiman, Maurine; Nelson, Craig E
2005-01-01
Numerous studies of sea turtle nesting ecology have revealed that females exhibit natal homing, whereby they imprint on the nesting area from which they hatch and subsequently return there to nest as adults. Because freshwater turtles comprise the majority of reptiles known to display environmental sex determination (ESD), the study of natal homing in this group may shed light on recent evolutionary models of sex allocation that are predicated on natal homing in reptiles with ESD. We examined natal homing in Graptemys kohnii, a freshwater turtle with ESD, using mitochondrial sequencing, microsatellite genotyping and mark and recapture of 290 nesting females. Females showed high fidelity to nesting areas, even after being transplanted several kilometres away. A Mantel test revealed significant genetic isolation by distance with respect to nesting locations (r=0.147; p<0.05), suggesting that related females nest in close proximity to one another. The patterns of fidelity and genotype distributions are consistent with homing at a scale that may affect population sex ratios. PMID:16006324
Trophic status drives interannual variability in nesting numbers of marine turtles.
Broderick, A C; Godley, B J; Hays, G C
2001-07-22
Large annual fluctuations are seen in breeding numbers in many populations of non-annual breeders. We examined the interannual variation in nesting numbers of populations of green (Chelonia mydas) (n = 16 populations), loggerhead (Caretta caretta) (n = 10 populations), leatherback (Dermochelys coriacea) (n = 9 populations) and hawksbill turtles (Eretmochelys imbricata) (n = 10 populations). Interannual variation was greatest in the green turtle. When comparing green and loggerhead turtles nesting in Cyprus we found that green turtles were more likely to change the interval between laying seasons and showed greater variation in the number of clutches laid in a season. We suggest that these differences are driven by the varying trophic statuses of the different species. Green turtles are herbivorous, feeding on sea grasses and macro-algae, and this primary production will be more tightly coupled with prevailing environmental conditions than the carnivorous diet of the loggerhead turtle.
Reproductive Disorders and Perinatology of Sea Turtles.
Spadola, Filippo; Morici, Manuel; Santoro, Mario; Oliveri, Matteo; Insacco, Gianni
2017-05-01
Sea turtles' reproductive disorders are underdiagnosed, but potentially, there are several diseases that may affect gonads, genitalia, and annexes. Viruses, bacteria, and parasites may cause countless disorders, but more frequently the cause is traumatic or linked to human activities. Furthermore, veterinary management of the nest is of paramount importance as well as the care of newborns (also in captivity). This article gives an overview on the methods used to manage nests and reproductive activities of these endangered chelonians species. Copyright © 2016 Elsevier Inc. All rights reserved.
Sources of Vibrio mimicus Contamination of Turtle Eggs
Acuña, María T.; Díaz, Gerardo; Bolaños, Hilda; Barquero, Candy; Sánchez, Olga; Sánchez, Luz M.; Mora, Grettel; Chaves, Anny; Campos, Elena
1999-01-01
Vibrio mimicus contamination of sand increased significantly during the arrival of the olive ridley sea turtles (Lepidochelys olivacea) at Ostional anidation beach, Costa Rica. Statistical analysis supports that eggs are contaminated with V. mimicus by contact with the sand nest. V. mimicus was isolated from eggs of all nests tested, and ctxA+ strains were found in 31% of the nests, all of which were near the estuary. PMID:9872804
2012-10-01
source of nutrition for juvenile green sea turtles. The beaches and spoil areas may also be utilized by nesting and foraging shorebirds including the...include the upper west coast of Florida, the northwestern coast of the Yucatan Peninsula, the south coast of Cuba, the Mosquito Coast of Nicaragua...1997. Foraging ecology and nutrition of sea turtles. Pages 199-233 In: Lutz, P.L. and J.A. Musick, eds., The Biology of Sea Turtles. CRC Press, New
Hart, Kristen M.; Lamont, Margaret M.; Sartain, Autumn R.; Fujisaki, Ikuko; Stephens, Brail S.
2013-01-01
Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta) tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ∼250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles was 1422.0±930.8 km. In-water inter-nesting sites, delineated using 50% kernel density estimation (KDE), were located a mean distance of 33.0 km from land, in water with mean depth of −31.6 m; other in-water inter-nesting sites, delineated using minimum convex polygon (MCP) approach, were located a mean 13.8 km from land and in water with a mean depth of −15.8 m. Mean size of in-water inter-nesting habitats were 61.9 km2 (50% KDEs, n = 10) and 741.4 km2 (MCPs, n = 30); these areas overlapped significantly with trawling and oil and gas extraction activities. Abundance estimates for this nesting subpopulation may be inaccurate in light of how much spread there is between nests of the same individual. Further, our results also have consequences for critical habitat designations for northern Gulf loggerheads, as protection of one nesting beach would not encompass the entire range used by turtles during breeding seasons. PMID:23843971
Hart, Kristen M.; Lamont, Margaret M.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko; Stephens, Brail S.
2013-01-01
Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta) tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ~250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles was 1422.0±930.8 km. In-water inter-nesting sites, delineated using 50% kernel density estimation (KDE), were located a mean distance of 33.0 km from land, in water with mean depth of −31.6 m; other in-water inter-nesting sites, delineated using minimum convex polygon (MCP) approach, were located a mean 13.8 km from land and in water with a mean depth of −15.8 m. Mean size of in-water inter-nesting habitats were 61.9 km2 (50% KDEs, n = 10) and 741.4 km2 (MCPs, n = 30); these areas overlapped significantly with trawling and oil and gas extraction activities. Abundance estimates for this nesting subpopulation may be inaccurate in light of how much spread there is between nests of the same individual. Further, our results also have consequences for critical habitat designations for northern Gulf loggerheads, as protection of one nesting beach would not encompass the entire range used by turtles during breeding seasons.
Hart, Kristen M; Lamont, Margaret M; Sartain, Autumn R; Fujisaki, Ikuko; Stephens, Brail S
2013-01-01
Nesting strategies and use of important in-water habitats for far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on habitat-use by marine turtles in the northern Gulf of Mexico, we used satellite transmitters in 2010 through 2012 to track movements of 39 adult female breeding loggerhead turtles (Caretta caretta) tagged on nesting beaches at three sites in Florida and Alabama. During the nesting season, recaptured turtles emerged to nest 1 to 5 times, with mean distance between emergences of 27.5 km; however, several turtles nested on beaches separated by ~250 km within a single season. Mean total distances traveled throughout inter-nesting periods for all turtles was 1422.0 ± 930.8 km. In-water inter-nesting sites, delineated using 50% kernel density estimation (KDE), were located a mean distance of 33.0 km from land, in water with mean depth of -31.6 m; other in-water inter-nesting sites, delineated using minimum convex polygon (MCP) approach, were located a mean 13.8 km from land and in water with a mean depth of -15.8 m. Mean size of in-water inter-nesting habitats were 61.9 km(2) (50% KDEs, n = 10) and 741.4 km(2) (MCPs, n = 30); these areas overlapped significantly with trawling and oil and gas extraction activities. Abundance estimates for this nesting subpopulation may be inaccurate in light of how much spread there is between nests of the same individual. Further, our results also have consequences for critical habitat designations for northern Gulf loggerheads, as protection of one nesting beach would not encompass the entire range used by turtles during breeding seasons.
Perrault, Justin R; Miller, Debra L; Eads, Erica; Johnson, Chris; Merrill, Anita; Thompson, Larry J; Wyneken, Jeanette
2012-01-01
Of the seven sea turtle species, the critically endangered leatherback sea turtle (Dermochelys coriacea) exhibits the lowest and most variable nest success (i.e., hatching success and emergence success) for reasons that remain largely unknown. In an attempt to identify or rule out causes of low reproductive success in this species, we established the largest sample size (n = 60-70 for most values) of baseline blood parameters (protein electrophoresis, hematology, plasma biochemistry) for this species to date. Hematologic, protein electrophoretic and biochemical values are important tools that can provide information regarding the physiological condition of an individual and population health as a whole. It has been proposed that the health of nesting individuals affects their reproductive output. In order to establish correlations with low reproductive success in leatherback sea turtles from Florida, we compared maternal health indices to hatching success and emergence success of their nests. As expected, hatching success (median = 57.4%) and emergence success (median = 49.1%) in Floridian leatherbacks were low during the study period (2007-2008 nesting seasons), a trend common in most nesting leatherback populations (average global hatching success = ∼50%). One protein electrophoretic value (gamma globulin protein) and one hematologic value (red blood cell count) significantly correlated with hatching success and emergence success. Several maternal biochemical parameters correlated with hatching success and/or emergence success including alkaline phosphatase activity, blood urea nitrogen, calcium, calcium:phosphorus ratio, carbon dioxide, cholesterol, creatinine, and phosphorus. Our results suggest that in leatherbacks, physiological parameters correlate with hatching success and emergence success of their nests. We conclude that long-term and comparative studies are needed to determine if certain individuals produce nests with lower hatching success and emergence success than others, and if those individuals with evidence of chronic suboptimal health have lower reproductive success.
Perrault, Justin R.; Miller, Debra L.; Eads, Erica; Johnson, Chris; Merrill, Anita; Thompson, Larry J.; Wyneken, Jeanette
2012-01-01
Of the seven sea turtle species, the critically endangered leatherback sea turtle (Dermochelys coriacea) exhibits the lowest and most variable nest success (i.e., hatching success and emergence success) for reasons that remain largely unknown. In an attempt to identify or rule out causes of low reproductive success in this species, we established the largest sample size (n = 60–70 for most values) of baseline blood parameters (protein electrophoresis, hematology, plasma biochemistry) for this species to date. Hematologic, protein electrophoretic and biochemical values are important tools that can provide information regarding the physiological condition of an individual and population health as a whole. It has been proposed that the health of nesting individuals affects their reproductive output. In order to establish correlations with low reproductive success in leatherback sea turtles from Florida, we compared maternal health indices to hatching success and emergence success of their nests. As expected, hatching success (median = 57.4%) and emergence success (median = 49.1%) in Floridian leatherbacks were low during the study period (2007–2008 nesting seasons), a trend common in most nesting leatherback populations (average global hatching success = ∼50%). One protein electrophoretic value (gamma globulin protein) and one hematologic value (red blood cell count) significantly correlated with hatching success and emergence success. Several maternal biochemical parameters correlated with hatching success and/or emergence success including alkaline phosphatase activity, blood urea nitrogen, calcium, calcium∶phosphorus ratio, carbon dioxide, cholesterol, creatinine, and phosphorus. Our results suggest that in leatherbacks, physiological parameters correlate with hatching success and emergence success of their nests. We conclude that long-term and comparative studies are needed to determine if certain individuals produce nests with lower hatching success and emergence success than others, and if those individuals with evidence of chronic suboptimal health have lower reproductive success. PMID:22359635
Arendt, Michael D.; Schwenter, Jeffrey A.; Witherington, Blair E.; Meylan, Anne B.; Saba, Vincent S.
2013-01-01
A recent analysis suggested that historical climate forcing on the oceanic habitat of neonate sea turtles explained two-thirds of interannual variability in contemporary loggerhead (Caretta caretta) sea turtle nest counts in Florida, where nearly 90% of all nesting by this species in the Northwest Atlantic Ocean occurs. Here, we show that associations between annual nest counts and climate conditions decades prior to nest counts and those conditions one year prior to nest counts were not significantly different. Examination of annual nest count and climate data revealed that statistical artifacts influenced the reported 31-year lag association with nest counts. The projected importance of age 31 neophytes to annual nest counts between 2020 and 2043 was modeled using observed nest counts between 1989 and 2012. Assuming consistent survival rates among cohorts for a 5% population growth trajectory and that one third of the mature female population nests annually, the 41% decline in annual nest counts observed during 1998–2007 was not projected for 2029–2038. This finding suggests that annual nest count trends are more influenced by remigrants than neophytes. Projections under the 5% population growth scenario also suggest that the Peninsular Recovery Unit could attain the demographic recovery criteria of 106,100 annual nests by 2027 if nest counts in 2019 are at least comparable to 2012. Because the first year of life represents only 4% of the time elapsed through age 31, cumulative survival at sea across decades explains most cohort variability, and thus, remigrant population size. Pursuant to the U.S. Endangered Species Act, staggered implementation of protection measures for all loggerhead life stages has taken place since the 1970s. We suggest that the 1998–2007 nesting decline represented a lagged perturbation response to historical anthropogenic impacts, and that subsequent nest count increases since 2008 reflect a potential recovery response. PMID:24339901
Arendt, Michael D; Schwenter, Jeffrey A; Witherington, Blair E; Meylan, Anne B; Saba, Vincent S
2013-01-01
A recent analysis suggested that historical climate forcing on the oceanic habitat of neonate sea turtles explained two-thirds of interannual variability in contemporary loggerhead (Caretta caretta) sea turtle nest counts in Florida, where nearly 90% of all nesting by this species in the Northwest Atlantic Ocean occurs. Here, we show that associations between annual nest counts and climate conditions decades prior to nest counts and those conditions one year prior to nest counts were not significantly different. Examination of annual nest count and climate data revealed that statistical artifacts influenced the reported 31-year lag association with nest counts. The projected importance of age 31 neophytes to annual nest counts between 2020 and 2043 was modeled using observed nest counts between 1989 and 2012. Assuming consistent survival rates among cohorts for a 5% population growth trajectory and that one third of the mature female population nests annually, the 41% decline in annual nest counts observed during 1998-2007 was not projected for 2029-2038. This finding suggests that annual nest count trends are more influenced by remigrants than neophytes. Projections under the 5% population growth scenario also suggest that the Peninsular Recovery Unit could attain the demographic recovery criteria of 106,100 annual nests by 2027 if nest counts in 2019 are at least comparable to 2012. Because the first year of life represents only 4% of the time elapsed through age 31, cumulative survival at sea across decades explains most cohort variability, and thus, remigrant population size. Pursuant to the U.S. Endangered Species Act, staggered implementation of protection measures for all loggerhead life stages has taken place since the 1970s. We suggest that the 1998-2007 nesting decline represented a lagged perturbation response to historical anthropogenic impacts, and that subsequent nest count increases since 2008 reflect a potential recovery response.
Harris, Heather S; Benson, Scott R; James, Michael C; Martin, Kelly J; Stacy, Brian A; Daoust, Pierre-Yves; Rist, Paul M; Work, Thierry M; Balazs, George H; Seminoff, Jeffrey A
2016-03-01
Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45-90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.
Harris, Heather S.; Benson, Scott R.; James, Michael C.; Martin, Kelly J.; Stacy, Brian A.; Daoust, Pierre-Yves; Rist, Paul M.; Work, Thierry M.; Balazs, George H.; Seminoff, Jeffrey A.
2016-01-01
Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45–90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species.
Wilson, Maria; Tucker, Anton D; Beedholm, Kristian; Mann, David A
2017-10-01
To improve conservation strategies for threatened sea turtles, more knowledge on their ecology, behavior, and how they cope with severe and changing weather conditions is needed. Satellite and animal motion datalogging tags were used to study the inter-nesting behavior of two female loggerhead turtles in the Gulf of Mexico, which regularly has hurricanes and tropical storms during nesting season. We contrast the behavioral patterns and swimming energetics of these two turtles, the first tracked in calm weather and the second tracked before, during and after a tropical storm. Turtle 1 was highly active and swam at the surface or submerged 95% of the time during the entire inter-nesting period, with a high estimated specific oxygen consumption rate (0.95 ml min -1 kg -0.83 ). Turtle 2 was inactive for most of the first 9 days of the inter-nesting period, during which she rested at the bottom (80% of the time) with low estimated oxygen consumption (0.62 ml min -1 kg -0.83 ). Midway through the inter-nesting period, turtle 2 encountered a tropical storm and became highly active (swimming 88% of the time during and 95% after the storm). Her oxygen consumption increased significantly to 0.97 ml min -1 kg -0.83 during and 0.98 ml min -1 kg -0.83 after the storm. However, despite the tropical storm, turtle 2 returned to the nesting beach, where she successfully re-nested 75 m from her previous nest. Thus, the tropical storm had a minor effect on this female's individual nesting success, even though the storm caused 90% loss nests at Casey Key. © 2017. Published by The Company of Biologists Ltd.
Wibbels, T; Owens, D W; Limpus, C J; Reed, P C; Amoss, M S
1990-07-01
Adult male loggerhead sea turtles, Caretta caretta, exhibited a "prenuptial" spermatogenic cycle that was coincident with increased concentrations of serum testosterone (T). Serum T was high during the months when migration and mating have been recorded for males. In contrast to females, males appear to be annual breeders. Nine reproductively active female C. caretta (as verified through laparoscopy) were tagged with sonic transmitters and were repeatedly bled prior to migration. Four months prior to the nesting season, the ovaries of reproductively active females had hundreds of vitellogenic follicles of approximately 1.5 cm in diameter (i.e., half the size of ovulatory follicles). Approximately 4-6 weeks prior to migration from feeding grounds to mating and nesting areas, serum estradiol-17 beta (E2) concentrations increased significantly and remained high for approximately 4 weeks, suggesting a period of increased vitellogenesis. During a 1- to 2-week period prior to migration, serum E2 decreased significantly, while serum T concentrations increased (at least) until the time of migration. Serum T, E2, and progesterone (PRO) were elevated during nesting if a turtle was going to nest again during that nesting season. During the last nesting of a season, turtles had low serum concentrations of T, E2, and Pro. The prenuptial pattern of gonadal recrudescence and gonadal steroid production in both male and female C. caretta contrasts with those of many temperate freshwater turtles, and this type of reproductive pattern may have been facilitated by adaptation to a tropical marine environment.
Girondot, Marc; Kaska, Yakup
2015-01-01
While climate change is now fully recognised as a reality, its impact on biodiversity is still not completely understood. To predict its impact, proxies coherent with the studied ecosystem or species are thus required. Marine turtles are threatened worldwide (though some populations are recovering) as they are particularly sensitive to temperature throughout their entire life cycle. This is especially true at the embryo stage when temperature affects both growth rates and sex determination. Nest temperature is thus of prime importance to understand the persistence of populations in the context of climate change. We analysed the nest temperature of 21 loggerheads (Caretta caretta) originating from Dalyan Beach in Turkey using day-lagged generalised mixed models with autocorrelation. Surprisingly, the selected model for nest temperature includes an effect for sea surface temperature 4-times higher than for air temperature. We also detected a very significant effect of metabolic heating during development compatible with what is already known about marine turtle nests. Our new methodology allows the prediction of marine turtle nest temperatures with good precision based on a combination of air temperature measured at beach level and sea surface temperature in front of the beach. These data are available in public databases for most of the beaches worldwide. Copyright © 2014 Elsevier Ltd. All rights reserved.
Goldberg, Daphne Wrobel; Leitão, Santiago Alonso Tobar; Godfrey, Matthew H.; Lopez, Gustave Gilles; Santos, Armando José Barsante; Neves, Fabiana Alves; de Souza, Érica Patrícia Garcia; Moura, Anibal Sanchez; Bastos, Jayme da Cunha; Bastos, Vera Lúcia Freire da Cunha
2013-01-01
Female sea turtles have rarely been observed foraging during the nesting season. This suggests that prior to their migration to nesting beaches the females must store sufficient energy and nutrients at their foraging grounds and must be physiologically capable of undergoing months without feeding. Leptin (an appetite-suppressing protein) and ghrelin (a hunger-stimulating peptide) affect body weight by influencing energy intake in all vertebrates. We investigated the levels of these hormones and other physiological and nutritional parameters in nesting hawksbill sea turtles in Rio Grande do Norte State, Brazil, by collecting consecutive blood samples from 41 turtles during the 2010–2011 and 2011–2012 reproductive seasons. We found that levels of serum leptin decreased over the nesting season, which potentially relaxed suppression of food intake and stimulated females to begin foraging either during or after the post-nesting migration. Concurrently, we recorded an increasing trend in ghrelin, which may have stimulated food intake towards the end of the nesting season. Both findings are consistent with the prediction that post-nesting females will begin to forage, either during or immediately after their post-nesting migration. We observed no seasonal trend for other physiological parameters (values of packed cell volume and serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, γ-glutamyl transferase, low-density lipoprotein, and high-density lipoprotein). The observed downward trends in general serum biochemistry levels were probably due to the physiological challenge of vitellogenesis and nesting in addition to limited energy resources and probable fasting. PMID:27293600
Goldberg, Daphne Wrobel; Leitão, Santiago Alonso Tobar; Godfrey, Matthew H; Lopez, Gustave Gilles; Santos, Armando José Barsante; Neves, Fabiana Alves; de Souza, Érica Patrícia Garcia; Moura, Anibal Sanchez; Bastos, Jayme da Cunha; Bastos, Vera Lúcia Freire da Cunha
2013-01-01
Female sea turtles have rarely been observed foraging during the nesting season. This suggests that prior to their migration to nesting beaches the females must store sufficient energy and nutrients at their foraging grounds and must be physiologically capable of undergoing months without feeding. Leptin (an appetite-suppressing protein) and ghrelin (a hunger-stimulating peptide) affect body weight by influencing energy intake in all vertebrates. We investigated the levels of these hormones and other physiological and nutritional parameters in nesting hawksbill sea turtles in Rio Grande do Norte State, Brazil, by collecting consecutive blood samples from 41 turtles during the 2010-2011 and 2011-2012 reproductive seasons. We found that levels of serum leptin decreased over the nesting season, which potentially relaxed suppression of food intake and stimulated females to begin foraging either during or after the post-nesting migration. Concurrently, we recorded an increasing trend in ghrelin, which may have stimulated food intake towards the end of the nesting season. Both findings are consistent with the prediction that post-nesting females will begin to forage, either during or immediately after their post-nesting migration. We observed no seasonal trend for other physiological parameters (values of packed cell volume and serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, γ-glutamyl transferase, low-density lipoprotein, and high-density lipoprotein). The observed downward trends in general serum biochemistry levels were probably due to the physiological challenge of vitellogenesis and nesting in addition to limited energy resources and probable fasting.
Fitzpatrick, Richard; Thums, Michele; Bell, Ian; Meekan, Mark G; Stevens, John D; Barnett, Adam
2012-01-01
During the reproductive season, sea turtles use a restricted area in the vicinity of their nesting beaches, making them vulnerable to predation. At Raine Island (Australia), the highest density green turtle Chelonia mydas rookery in the world, tiger sharks Galeocerdo cuvier have been observed to feed on green turtles, and it has been suggested that they may specialise on such air-breathing prey. However there is little information with which to examine this hypothesis. We compared the spatial and temporal components of movement behaviour of these two potentially interacting species in order to provide insight into the predator-prey relationship. Specifically, we tested the hypothesis that tiger shark movements are more concentrated at Raine Island during the green turtle nesting season than outside the turtle nesting season when turtles are not concentrated at Raine Island. Turtles showed area-restricted search behaviour around Raine Island for ∼3-4 months during the nesting period (November-February). This was followed by direct movement (transit) to putative foraging grounds mostly in the Torres Straight where they switched to area-restricted search mode again, and remained resident for the remainder of the deployment (53-304 days). In contrast, tiger sharks displayed high spatial and temporal variation in movement behaviour which was not closely linked to the movement behaviour of green turtles or recognised turtle foraging grounds. On average, tiger sharks were concentrated around Raine Island throughout the year. While information on diet is required to determine whether tiger sharks are turtle specialists our results support the hypothesis that they target this predictable and plentiful prey during turtle nesting season, but they might not focus on this less predictable food source outside the nesting season.
Fitzpatrick, Richard; Thums, Michele; Bell, Ian; Meekan, Mark G.; Stevens, John D.; Barnett, Adam
2012-01-01
During the reproductive season, sea turtles use a restricted area in the vicinity of their nesting beaches, making them vulnerable to predation. At Raine Island (Australia), the highest density green turtle Chelonia mydas rookery in the world, tiger sharks Galeocerdo cuvier have been observed to feed on green turtles, and it has been suggested that they may specialise on such air-breathing prey. However there is little information with which to examine this hypothesis. We compared the spatial and temporal components of movement behaviour of these two potentially interacting species in order to provide insight into the predator-prey relationship. Specifically, we tested the hypothesis that tiger shark movements are more concentrated at Raine Island during the green turtle nesting season than outside the turtle nesting season when turtles are not concentrated at Raine Island. Turtles showed area-restricted search behaviour around Raine Island for ∼3–4 months during the nesting period (November–February). This was followed by direct movement (transit) to putative foraging grounds mostly in the Torres Straight where they switched to area-restricted search mode again, and remained resident for the remainder of the deployment (53–304 days). In contrast, tiger sharks displayed high spatial and temporal variation in movement behaviour which was not closely linked to the movement behaviour of green turtles or recognised turtle foraging grounds. On average, tiger sharks were concentrated around Raine Island throughout the year. While information on diet is required to determine whether tiger sharks are turtle specialists our results support the hypothesis that they target this predictable and plentiful prey during turtle nesting season, but they might not focus on this less predictable food source outside the nesting season. PMID:23284819
Beach Clean-Up near Historic Beach House
2017-04-12
About 50 participants led by NASA Kennedy Space Center's Employee Resource Groups picked up about 20 bags of trash and other large debris along the center's shoreline before turtle-nesting season as a community service. Sea turtle-nesting season begins in about one month. Unlike what might be found along a public beach, all of the debris that litters Kennedy’s restricted beaches washes ashore after being discarded at sea. Of the 72 miles of beach that form the eastern boundary of Brevard County, Florida, about six of those miles line Kennedy.
Respiration in neonate sea turtles.
Price, Edwin R; Paladino, Frank V; Strohl, Kingman P; Santidrián T, Pilar; Klann, Kenneth; Spotila, James R
2007-03-01
The pattern and control of respiration is virtually unknown in hatchling sea turtles. Using incubator-raised turtles, we measured oxygen consumption, frequency, tidal volume, and minute volume for leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) turtle hatchlings for the first six days after pipping. In addition, we tested the hatchlings' response to hypercapnic, hyperoxic, and hypoxic challenges over this time period. Hatchling sea turtles generally showed resting ventilation characteristics that are similar to those of adults: a single breath followed by a long respiratory pause, slow frequency, and high metabolic rate. With hypercapnic challenge, both species responded primarily by elevating respiratory frequency via a decrease in the non-ventilatory period. Leatherback resting tidal volume increased with age but otherwise, neither species' resting respiratory pattern nor response to gas challenge changed significantly over the first few days after hatching. At the time of nest emergence, sea turtles have achieved a respiratory pattern that is similar to that of actively diving adults.
An Immunohistochemical Approach to Identify the Sex of Young Marine Turtles.
Tezak, Boris M; Guthrie, Kathleen; Wyneken, Jeanette
2017-08-01
Marine turtles exhibit temperature-dependent sex determination (TSD). During critical periods of embryonic development, the nest's thermal environment directs whether an embryo will develop as a male or female. At warmer sand temperatures, nests tend to produce female-biased sex ratios. The rapid increase of global temperature highlights the need for a clear assessment of its effects on sea turtle sex ratios. However, estimating hatchling sex ratios at rookeries remains imprecise due to the lack of sexual dimorphism in young marine turtles. We rely mainly upon laparoscopic procedures to verify hatchling sex; however, in some species, morphological sex can be ambiguous even at the histological level. Recent studies using immunohistochemical (IHC) techniques identified that embryonic snapping turtle (Chelydra serpentina) ovaries overexpressed a particular cold-induced RNA-binding protein in comparison to testes. This feature allows the identification of females vs. males. We modified this technique to successfully identify the sexes of loggerhead sea turtle (Caretta caretta) hatchlings, and independently confirmed the results by standard histological and laparoscopic methods that reliably identify sex in this species. We next tested the CIRBP IHC method on gonad samples from leatherback turtles (Dermochelys coriacea). Leatherbacks display delayed gonad differentiation, when compared to other sea turtles, making hatchling gonads difficult to sex using standard H&E stain histology. The IHC approach was successful in both C. caretta and D. coriacea samples, offering a much-needed tool to establish baseline hatchling sex ratios, particularly for assessing impacts of climate change effects on leatherback turtle hatchlings and sea turtle demographics. Anat Rec, 300:1512-1518, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Chemosensory orientation behavior in juvenile sea turtles.
Grassman, M
1993-01-01
It has been widely believed for several decades that hatchling sea turtles imprint to chemical cues characteristic of their natal beach and use this information as part of a repertoire of mechanisms enabling their return to the same beach for mating and nesting. This has proven very difficult to test. Although the imprinting theory is conceptually simple, functionally it is quite complex. This involves not only chemical imprinting of nestlings but growth and migration to habitats where the adults are found, long-term memory of their earlier chemical exposure, reproductive maturation, and homing. A few studies have been conducted to examine these elements of the imprinting theory. Experiments involving the exposure of embryos and hatchlings to chemicals suggest that juvenile turtles 'imprint' to the chemical environment of their nest. This can be termed chemical imprinting. Loggerhead turtles, Caretta caretta, and ridley turtles, Lepidochelys kempi, appear to be attracted to chemicals (morpholine and natural seawater, respectively) to which they were exposed as embryos. The strongest support for chemical imprinting is that six-month-old green turtles, Chelonia mydas, exposed to either morpholine or 2-phenylethanol in the nest and for a period of time after hatching, respond similarly to the chemical to which they were exposed as nestlings. Although chemical imprinting does not 'prove' the imprinting theory of turtle homing, it is a necessary component of the theory not previously examined.
Silva, Elton; Marco, Adolfo; da Graça, Jesemine; Pérez, Héctor; Abella, Elena; Patino-Martinez, Juan; Martins, Samir; Almeida, Corrine
2017-08-01
The introduction of artificial light into wildlife habitats is a rapidly expanding aspect of global change, which has many negative impacts on a wide range of taxa. In this experimental study, which took place on a beach located on the island of Boa Vista (Cabo Verde), three types of artificial light were tested on nesting loggerhead sea turtles as well as on ghost crabs, which intensively predate on nests and hatchlings, to determine the effects they would produce on the behavior of both species. Over the course of 36days, female loggerheads and ghost crabs were studied under yellow, orange and red lights, with observations also being made on dark nights that served as a control treatment. During this period, the frequencies of nesting attempts, the time taken by turtles to complete each phase of the nesting process, and ghost crab abundance and behaviors were carefully recorded. 1146 loggerhead nesting attempts were observed and recorded during the experiments, and results showed a decrease in nesting attempts of at least 20% when artificial lighting was present. A significant decline in successful attempts was also observed within the central sections of the beach, which corresponded to those that received more light. This artificial lighting significantly increased the time that turtles spent on the nesting process and forced them to do more extensive beach crawls. Despite this, the presence of light had no apparent effect on the final selection of the nesting site. Yellow and orange lights significantly disrupted the sea finding behavior and turtles were often unable to orient themselves seaward under these color lights. Disoriented turtles were observed crawling in circuitous paths in front of the light source for several minutes. In addition, artificial lights had the potential to increase the number of ghost crabs present within the illuminated stretches of the beach. However, only yellow lighting produced a significant change on aggressive and prey searching behaviors. These changes in abundance and behavior could cause a greater predation on loggerhead turtle nests. Red light had no significant impact on the behavior of either species. It should be a priority to enforce preventive measures and light mitigation strategies to ensure the conservation of important loggerhead rookeries. Copyright © 2017 Elsevier B.V. All rights reserved.
Lewison, R.L.; Crowder, L.B.; Shaver, D.J.
2003-01-01
The Sea Turtle Stranding and Salvage Network has been monitoring turtle strandings for more than 20 years in the United States. High numbers of strandings in the early to mid-1980s prompted regulations to require turtle excluder devices (TEDs) on shrimping vessels (trawlers). Following year-round TED implementation in 1991, however, stranding levels in the Gulf of Mexico increased. We evaluated the efficacy of TEDs and other management actions (e.g., fisheries closures) on loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) turtle populations by analyzing a long-term, stranding data set from the western Gulf of Mexico. Our analyses suggest that both sea turtle population growth and shrimping activity have contributed to the observed increase in strandings. Compliance with regulations requiring turtle excluder devices was a significant factor in accounting for annual stranding variability: low compliance was correlated with high levels of strandings. Our projections suggest that improved compliance with TED regulations will reduce strandings to levels that, in conjunction with other protective measures, should promote population recoveries for loggerhead and Kemp's ridley turtles. Local, seasonal fisheries closures, concurrent with TED enforcement, could reduce strandings to even lower levels. A seasonal closure adjacent to a recently established Kemp's ridley nesting beach may also reduce mortality of nesting adults and thus promote long-term population persistence by fostering the establishment of a robust secondary nesting site.
Piniak, Wendy E. D.; Mann, David A.; Harms, Craig A.; Jones, T. Todd; Eckert, Scott A.
2016-01-01
Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2–39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment. PMID:27741231
Piniak, Wendy E D; Mann, David A; Harms, Craig A; Jones, T Todd; Eckert, Scott A
2016-01-01
Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2-39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment.
NASA Astrophysics Data System (ADS)
Kaska, Yakup; Ilgaz, Çetin; Özdemir, Adem; Başkale, Eyüp; Türkozan, Oğuz; Baran, Ibrahim; Stachowitsch, Michael
2006-07-01
Hatchling sex ratios in the loggerhead turtle ( Caretta caretta) were estimated by placing electronic temperature recorders in 21 nests at Fethiye beach during 2000 2002. Over the seasons, the mean temperature in the middle third of the incubation period ranged from 26.7 to 32.1°C, and incubation periods ranged from 49 to 67 days. Based on the mean temperatures during the middle third of the incubation period, and on histologically sexed dead hatchlings, the sex ratios of hatchlings at Fethiye beach were roughly equal, i.e. 60 65% of the hatchlings were females. This contrasts with the highly female-skewed sex ratios in loggerhead turtles elsewhere; Fethiye has a relatively high proportion of male hatchlings. For endangered sea turtles, the knowledge of hatchling sex ratios at different beaches, coupled with appropriate conservation measures, can make an important contribution to their survival.
Learning from Experience: A Report from Mexico's Turtle Trip 2000.
ERIC Educational Resources Information Center
Jankowska, Marta Maja
2000-01-01
Fifteen high school students and adults from Idaho traveled to Mexico to assist the One World Workforce with monitoring the nests of olive ridley sea turtles. Only 1 percent of these endangered turtles mature to adulthood. The volunteers protected the eggs from poachers and helped the hatchlings get safely to the water. (TD)
Hamann, Mark; Limpus, Colin J; Whittier, Joan M
2003-02-15
We investigated three aspects of potential interrenal regulation of reproduction in female green sea turtles, Chelonia mydas. First, seasonal trends in plasma catecholamines were examined from female C. mydas at different stages of their reproductive cycles. Second, variation in catecholamine levels during a nesting season were analysed in relation to restraint time, and ecological variables such as nesting habitat, body size, and reproductive investment. Third, catecholamine and corticosterone (CORT) induced lipolysis was investigated with adipose tissue collected from gravid green turtles, using in vitro incubations. Plasma epinephrine (EPI) was lowest in non-vitellogenic (1.55 +/- 0.26 ng/ml) and post-breeding (1.57 +/- 0.22 ng/ml) females, and highest in courting females (2.87 +/- 0.28). Concentrations of norepinephrine (NE) and EPI were relatively constant throughout a nesting season, and not significantly related to restraint time, reproductive investment or nesting habitat. In vitro concentrations of CORT (>3 ng/ml) and NE (2 ng/ml) induced significant release of glycerol after 6h of incubation. Epinephrine tended to induce an antilipolytic affect at low concentrations (0.25 ng/ml) and a net lipolytic response at higher concentrations (>1 ng/ml). Our data suggest that EPI may play a role in regulating body condition during vitellogenesis, and maintaining energy stores during prolonged aphagia during courtship and nesting in female green sea turtles. Furthermore, we provide preliminary evidence that suggests that catecholamine production may be either down regulated or de-sensitised in gravid female C. mydas. Copyright 2003 Elsevier Science (USA)
Endres, Courtney S; Putman, Nathan F; Ernst, David A; Kurth, Jessica A; Lohmann, Catherine M F; Lohmann, Kenneth J
2016-01-01
Sea turtles are capable of navigating across large expanses of ocean to arrive at remote islands for nesting, but how they do so has remained enigmatic. An interesting example involves green turtles (Chelonia mydas) that nest on Ascension Island, a tiny land mass located approximately 2000 km from the turtles' foraging grounds along the coast of Brazil. Sensory cues that turtles are known to detect, and which might hypothetically be used to help locate Ascension Island, include the geomagnetic field, airborne odorants, and waterborne odorants. One possibility is that turtles use magnetic cues to arrive in the vicinity of the island, then use chemical cues to pinpoint its location. As a first step toward investigating this hypothesis, we used oceanic, atmospheric, and geomagnetic models to assess whether magnetic and chemical cues might plausibly be used by turtles to locate Ascension Island. Results suggest that waterborne and airborne odorants alone are insufficient to guide turtles from Brazil to Ascension, but might permit localization of the island once turtles arrive in its vicinity. By contrast, magnetic cues might lead turtles into the vicinity of the island, but would not typically permit its localization because the field shifts gradually over time. Simulations reveal, however, that the sequential use of magnetic and chemical cues can potentially provide a robust navigational strategy for locating Ascension Island. Specifically, one strategy that appears viable is following a magnetic isoline into the vicinity of Ascension Island until an odor plume emanating from the island is encountered, after which turtles might either: (1) initiate a search strategy; or (2) follow the plume to its island source. These findings are consistent with the hypothesis that sea turtles, and perhaps other marine animals, use a multi-modal navigational strategy for locating remote islands.
Persistent leatherback turtle migrations present opportunities for conservation.
Shillinger, George L; Palacios, Daniel M; Bailey, Helen; Bograd, Steven J; Swithenbank, Alan M; Gaspar, Philippe; Wallace, Bryan P; Spotila, James R; Paladino, Frank V; Piedra, Rotney; Eckert, Scott A; Block, Barbara A
2008-07-15
Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea) in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004-2005, 2005-2006, and 2007) satellite tracking dataset (12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre.
Asynchronous emergence by loggerhead turtle (Caretta caretta) hatchlings.
Houghton, J D; Hays, G C
2001-03-01
For many decades it has been accepted that marine turtle hatchlings from the same nest generally emerge from the sand together. However, for loggerhead turtles (Caretta caretta) nesting on the Greek Island of Kefalonia, a more asynchronous pattern of emergence has been documented. By placing temperature loggers at the top and bottom of nests laid on Kefalonia during 1998, we examined whether this asynchronous emergence was related to the thermal conditions within nests. Pronounced thermal variation existed not only between, but also within, individual nests. These within-nest temperature differences were related to the patterns of hatchling emergence, with hatchlings from nests displaying large thermal ranges emerging over a longer time-scale than those characterised by more uniform temperatures. In many egg-laying animals, parental care of the offspring may continue while the eggs are incubating and also after they have hatched. Consequently, the importance of the nest site for determining incubation conditions may be reduced since the parents themselves may alter the local environment. By contrast, in marine turtles, parental care ceases once the eggs have been laid and the nest site covered. The positioning of the nest site, in both space and time, may therefore have profound effects for marine turtles by affecting, for example, the survival of the eggs and hatchlings as well as their sex (Janzen and Paukstis 1991). During incubation, sea turtle embryos grow from a few cells at oviposition to a self-sufficient organism at hatching some 50-80 days later (Ackerman 1997). After hatching, the young turtles dig up through the sand and emerge typically en masse at the surface 1-7 nights later, with a number of stragglers following over the next few nights (Christens 1990). This contrasts with the frequently observed pattern of hatching asynchrony in birds. It has been suggested that the cause of mass emergence in turtles is that eggs within a clutch are fertilised within a short period of time and then, when thermal conditions within the nest are uniform, develop at very similar rates and hence hatch and emerge together (Porter 1972). As a corollary of this idea, it would be predicted that when there are pronounced within-nest thermal gradients, development rates of siblings will be different and hence asynchronous hatching and emergence might occur. While it may be energetically beneficial for hatchlings to emerge in a group (Carr and Hirth 1961), if the extent of hatching asynchrony is marked then there may be severe costs for individuals if they wait for all their siblings to hatch before attempting to dig out of the sand (Hays and Speakman 1992). Under such conditions, the protracted emergence of small groups of hatchlings over several nights may be favoured. Examination of the literature suggests that emergence asynchrony may be more widespread than generally considered. For example, Witherington et al. (1990) described loggerhead turtle hatchlings (Caretta caretta) emerging over 4 days in Florida; for green turtles (Chelonia mydas), Hendrickson (1958) documented that nests in Malaysia and Sarawak produced hatchlings for up to 8 days; whilst Diamond (1976) found that hawksbill (Eretmochelys imbricata) nests on Cousin Island, Seychelles, were active for up to 4 days. Similarly, on the Greek Island of Kefalonia, we have shown that emergence from individual loggerhead turtle nests may occur on up to 11 nights (Hays and Speakman 1992). It is logical to suppose that asynchronous emergence relates to thermal gradients within nests, since the incubation duration of sea turtle eggs is related to temperature, with eggs hatching quicker when the temperature is higher. Here we test this hypothesis by measuring thermal variations within loggerhead turtle nests and comparing these variations to the patterns of hatchling emergence.
Endres, Courtney S.; Putman, Nathan F.; Ernst, David A.; Kurth, Jessica A.; Lohmann, Catherine M. F.; Lohmann, Kenneth J.
2016-01-01
Sea turtles are capable of navigating across large expanses of ocean to arrive at remote islands for nesting, but how they do so has remained enigmatic. An interesting example involves green turtles (Chelonia mydas) that nest on Ascension Island, a tiny land mass located approximately 2000 km from the turtles’ foraging grounds along the coast of Brazil. Sensory cues that turtles are known to detect, and which might hypothetically be used to help locate Ascension Island, include the geomagnetic field, airborne odorants, and waterborne odorants. One possibility is that turtles use magnetic cues to arrive in the vicinity of the island, then use chemical cues to pinpoint its location. As a first step toward investigating this hypothesis, we used oceanic, atmospheric, and geomagnetic models to assess whether magnetic and chemical cues might plausibly be used by turtles to locate Ascension Island. Results suggest that waterborne and airborne odorants alone are insufficient to guide turtles from Brazil to Ascension, but might permit localization of the island once turtles arrive in its vicinity. By contrast, magnetic cues might lead turtles into the vicinity of the island, but would not typically permit its localization because the field shifts gradually over time. Simulations reveal, however, that the sequential use of magnetic and chemical cues can potentially provide a robust navigational strategy for locating Ascension Island. Specifically, one strategy that appears viable is following a magnetic isoline into the vicinity of Ascension Island until an odor plume emanating from the island is encountered, after which turtles might either: (1) initiate a search strategy; or (2) follow the plume to its island source. These findings are consistent with the hypothesis that sea turtles, and perhaps other marine animals, use a multi-modal navigational strategy for locating remote islands. PMID:26941625
Diel foraging behavior of gravid leatherback sea turtles in deep waters of the Caribbean Sea.
Casey, James; Garner, Jeanne; Garner, Steve; Williard, Amanda Southwood
2010-12-01
It is generally assumed that leatherback turtles (Dermochelys coriacea), like other species of sea turtle, do not feed while offshore from nesting beaches, and rely instead on fat reserves to fuel reproductive activities. Recent studies, however, provide evidence that leatherbacks may forage during the internesting interval while offshore in the Western Atlantic Ocean and Caribbean Sea. Bio-logging technology was used to investigate the foraging behavior of female leatherback turtles at St Croix, US Virgin Islands. Leatherback gastrointestinal tract temperatures (T(GT)) were analyzed for sudden fluctuations indicative of ingestions, and laboratory ingestion simulations were used to characterize temperature fluctuations associated with ingestion of prey versus seawater. Dive patterns associated with prey ingestion were characterized and the proportion of prey ingestion during the day (05:00-18:59 h) and night (19:00-04:59 h) were compared. A combined total of 111 prey ingestions for seven leatherback turtles were documented during the internesting interval. The number of prey ingestions ranged from six to 48 for individual turtles, and the majority (87.4%) of these events occurred during the daytime. Prey ingestions were most frequently associated with V-shaped dives, and the mean (±1 s.d.) maximum dive depth with prey ingestion ranged from 154±51 to 232±101 m for individual turtles. Although leatherbacks were found to opportunistically feed during the internesting interval, the low prey ingestion rates indicate that energy reserves acquired prior to the breeding season are critical for successful reproduction by leatherbacks from the St Croix, USVI nesting population.
Life history and environmental requirements of loggerhead turtles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, D.A.
1988-08-01
In the United States scattered nestings of loggerhead sea turtles (Caretta caretta) may occur in most of its range from Texas to Florida and Florida to New Jersey; however, nesting concentrations occur on coastal islands of North Carolina, South Carolina, and Georgia and on the coasts of Florida. The greatest portion of a loggerhead's life is spent in ocean and estuarine waters where it breeds in shallow waters adjacent to nesting beaches, feeds on a variety of fish and shellfish, and migrates generally north in the spring and summer and south in the fall and winter. The other part ofmore » its life is spent on coastal beaches where the female digs a nest, lays her eggs (average 120 eggs), the eggs hatch (in 46 to 65 days), and the hatchlings emerge from the nest as a group and orient seaward to become part of the aquatic system again. Nesting activity begins in the spring, peaks in midsummer, and declines until completion in late summer. A loggerhead female generally nests every other or every third year. Beach sand temperatures may affect nest site selection by females, the incubation time and hatching success of eggs, and the sex and emergence timing of hatchlings. Most management of sea turtles has been directed toward increasing hatching and hatchling success through predator control, egg relocation, and raising captive hatchlings. 183 refs.; 10 figs.; 3 tabs.« less
Bevan, Elizabeth; Whiting, Scott; Tucker, Tony; Guinea, Michael; Raith, Andrew; Douglas, Ryan
2018-01-01
Drones are being increasingly used in innovative ways to enhance environmental research and conservation. Despite their widespread use for wildlife studies, there are few scientifically justified guidelines that provide minimum distances at which wildlife can be approached to minimize visual and auditory disturbance. These distances are essential to ensure that behavioral and survey data have no observer bias and form the basis of requirements for animal ethics and scientific permit approvals. In the present study, we documented the behaviors of three species of sea turtle (green turtles, Chelonia mydas, flatback turtles, Natator depressus, hawksbill turtles, Eretmochelys imbricata), saltwater crocodiles (Crocodylus porosus), and crested terns (Thalasseus bergii) in response to a small commercially available (1.4 kg) multirotor drone flown in Northern Territory and Western Australia. Sea turtles in nearshore waters off nesting beaches or in foraging habitats exhibited no evasive behaviors (e.g. rapid diving) in response to the drone at or above 20-30 m altitude, and at or above 10 m altitude for juvenile green and hawksbill turtles foraging on shallow, algae-covered reefs. Adult female flatback sea turtles were not deterred by drones flying forward or stationary at 10 m altitude when crawling up the beach to nest or digging a body pit or egg chamber. In contrast, flyovers elicited a range of behaviors from crocodiles, including minor, lateral head movements, fleeing, or complete submergence when a drone was present below 50 m altitude. Similarly, a colony of crested terns resting on a sand-bank displayed disturbance behaviors (e.g. flight response) when a drone was flown below 60 m altitude. The current study demonstrates a variety of behavioral disturbance thresholds for diverse species and should be considered when establishing operating conditions for drones in behavioral and conservation studies.
Acuña-Marrero, David; Smith, Adam N H; Hammerschlag, Neil; Hearn, Alex; Anderson, Marti J; Calich, Hannah; Pawley, Matthew D M; Fischer, Chris; Salinas-de-León, Pelayo
2017-01-01
The potential effectiveness of marine protected areas (MPAs) as a conservation tool for large sharks has been questioned due to the limited spatial extent of most MPAs in contrast to the complex life history and high mobility of many sharks. Here we evaluated the movement dynamics of a highly migratory apex predatory shark (tiger shark Galeocerdo cuvier) at the Galapagos Marine Reserve (GMR). Using data from satellite tracking passive acoustic telemetry, and stereo baited remote underwater video, we estimated residency, activity spaces, site fidelity, distributional abundances and migration patterns from the GMR and in relation to nesting beaches of green sea turtles (Chelonia mydas), a seasonally abundant and predictable prey source for large tiger sharks. Tiger sharks exhibited a high degree of philopatry, with 93% of the total satellite-tracked time across all individuals occurring within the GMR. Large sharks (> 200 cm TL) concentrated their movements in front of the two most important green sea turtle-nesting beaches in the GMR, visiting them on a daily basis during nocturnal hours. In contrast, small sharks (< 200 cm TL) rarely visited turtle-nesting areas and displayed diurnal presence at a third location where only immature sharks were found. Small and some large individuals remained in the three study areas even outside of the turtle-nesting season. Only two sharks were satellite-tracked outside of the GMR, and following long-distance migrations, both individuals returned to turtle-nesting beaches at the subsequent turtle-nesting season. The spatial patterns of residency and site fidelity of tiger sharks suggest that the presence of a predictable source of prey and suitable habitats might reduce the spatial extent of this large shark that is highly migratory in other parts of its range. This highly philopatric behaviour enhances the potential effectiveness of the GMR for their protection.
Smith, Adam N. H.; Hammerschlag, Neil; Hearn, Alex; Anderson, Marti J.; Calich, Hannah; Pawley, Matthew D. M.; Fischer, Chris; Salinas-de-León, Pelayo
2017-01-01
The potential effectiveness of marine protected areas (MPAs) as a conservation tool for large sharks has been questioned due to the limited spatial extent of most MPAs in contrast to the complex life history and high mobility of many sharks. Here we evaluated the movement dynamics of a highly migratory apex predatory shark (tiger shark Galeocerdo cuvier) at the Galapagos Marine Reserve (GMR). Using data from satellite tracking passive acoustic telemetry, and stereo baited remote underwater video, we estimated residency, activity spaces, site fidelity, distributional abundances and migration patterns from the GMR and in relation to nesting beaches of green sea turtles (Chelonia mydas), a seasonally abundant and predictable prey source for large tiger sharks. Tiger sharks exhibited a high degree of philopatry, with 93% of the total satellite-tracked time across all individuals occurring within the GMR. Large sharks (> 200 cm TL) concentrated their movements in front of the two most important green sea turtle-nesting beaches in the GMR, visiting them on a daily basis during nocturnal hours. In contrast, small sharks (< 200 cm TL) rarely visited turtle-nesting areas and displayed diurnal presence at a third location where only immature sharks were found. Small and some large individuals remained in the three study areas even outside of the turtle-nesting season. Only two sharks were satellite-tracked outside of the GMR, and following long-distance migrations, both individuals returned to turtle-nesting beaches at the subsequent turtle-nesting season. The spatial patterns of residency and site fidelity of tiger sharks suggest that the presence of a predictable source of prey and suitable habitats might reduce the spatial extent of this large shark that is highly migratory in other parts of its range. This highly philopatric behaviour enhances the potential effectiveness of the GMR for their protection. PMID:28829820
Lamont, Margaret M.; Houser, Chris
2014-01-01
As coastlines change due to sea level rise and an increasing human presence, understanding how species, such as marine turtles, respond to alterations in habitat is necessary for proper management and conservation. Survey data from a major nesting beach in the northern Gulf of Mexico, where a revetment was installed, was used to assess spatial distribution of loggerhead emergences. Through use of Quadrat analysis and piecewise linear regression with breakpoint, we present evidence to suggest that nest site selection in loggerheads is determined in the nearshore environment, and by characteristics such as wave height, alongshore currents, depth and patterns of erosion and accretion. Areas of relatively dense nesting were found in areas with relatively strong alongshore currents, relatively small waves, a steep offshore slope and the largest historical rates of erosion. Areas of relatively dense nesting also corresponded to areas of low nesting success. Both nesting and non-nesting emergences were clustered immediately adjacent to the revetment and at other eroding sites along the beach. These results suggest that alterations to the nearshore environment from activities such as construction of a jetty, dredging or installation of pilings, may impact sea turtle nest distribution alongshore. We also show that piecewise linear regression with breakpoint is a technique that can be used with geomorphological and oceanographic data to predict locations of nest clumping and may be useful for managers at other nesting beaches.
Carreras, Carlos; Godley, Brendan J; León, Yolanda M; Hawkes, Lucy A; Revuelta, Ohiana; Raga, Juan A; Tomás, Jesús
2013-01-01
Nesting by three species of marine turtles persists in the Dominican Republic, despite historic threats and long-term population decline. We conducted a genetic survey of marine turtles in the Dominican Republic in order to link them with other rookeries around the Caribbean. We sequenced a 740bp fragment of the control region of the mitochondrial DNA of 92 samples from three marine turtle species [hawksbill (n = 48), green (n = 2) and leatherback (n = 42)], and incorporated published data from other nesting populations and foraging grounds. The leatherback turtle (Dermochelys coriacea) in the Dominican Republic appeared to be isolated from Awala-Yalimapo, Cayenne, Trinidad and St. Croix but connected with other Caribbean populations. Two distinct nesting populations of hawksbill turtles (Eremochelys imbricata) were detected in the Dominican Republic and exhibited interesting patterns of connectivity with other nesting sites and juvenile and adult male foraging aggregations. The green sea turtle (Chelonia mydas) has almost been extirpated from the Dominican Republic and limited inference could be made from our samples. Finally, results were compared with Lagrangian drifting buoys and published Lagrangian virtual particles that travelled through the Dominican Republic and Caribbean waters. Conservation implications of sink-source effects or genetic isolation derived from these complex inter-connections are discussed for each species and population.
Contextualising the Last Survivors: Population Structure of Marine Turtles in the Dominican Republic
Carreras, Carlos; Godley, Brendan J.; León, Yolanda M.; Hawkes, Lucy A.; Revuelta, Ohiana; Raga, Juan A.; Tomás, Jesús
2013-01-01
Nesting by three species of marine turtles persists in the Dominican Republic, despite historic threats and long-term population decline. We conducted a genetic survey of marine turtles in the Dominican Republic in order to link them with other rookeries around the Caribbean. We sequenced a 740bp fragment of the control region of the mitochondrial DNA of 92 samples from three marine turtle species [hawksbill (n = 48), green (n = 2) and leatherback (n = 42)], and incorporated published data from other nesting populations and foraging grounds. The leatherback turtle (Dermochelys coriacea) in the Dominican Republic appeared to be isolated from Awala-Yalimapo, Cayenne, Trinidad and St. Croix but connected with other Caribbean populations. Two distinct nesting populations of hawksbill turtles (Eremochelys imbricata) were detected in the Dominican Republic and exhibited interesting patterns of connectivity with other nesting sites and juvenile and adult male foraging aggregations. The green sea turtle (Chelonia mydas) has almost been extirpated from the Dominican Republic and limited inference could be made from our samples. Finally, results were compared with Lagrangian drifting buoys and published Lagrangian virtual particles that travelled through the Dominican Republic and Caribbean waters. Conservation implications of sink-source effects or genetic isolation derived from these complex inter-connections are discussed for each species and population. PMID:23840394
Current transport of leatherback sea turtles (Dermochelys coriacea) in the ocean.
Luschi, P; Sale, A; Mencacci, R; Hughes, G R; Lutjeharms, J R E; Papi, F
2003-11-07
While the long-distance movements of pelagic vertebrates are becoming known thanks to satellite telemetry, the factors determining their courses have hardly been investigated. We have analysed the effects of oceanographic factors on the post-nesting movements of three satellite-tracked leatherback turtles (Dermochelys coriacea) moving in the southwest Indian Ocean. By superimposing the turtle tracks on contemporaneous images of sea-surface temperatures and sea height anomalies, we show that currentrelated features dominate the shape of the reconstructed routes. After an initial offshore movement, turtles moved along straight routes when in the core of the current, or executed loops within eddies. Large parts of the routes were strikingly similar to those of surface drifters tracked in the same region. These findings document that long-lasting oceanic movements of marine turtles may be shaped by oceanic currents.
Current transport of leatherback sea turtles (Dermochelys coriacea) in the ocean.
Luschi, P; Sale, A; Mencacci, R; Hughes, G R; Lutjeharms, J R E; Papi, F
2003-01-01
While the long-distance movements of pelagic vertebrates are becoming known thanks to satellite telemetry, the factors determining their courses have hardly been investigated. We have analysed the effects of oceanographic factors on the post-nesting movements of three satellite-tracked leatherback turtles (Dermochelys coriacea) moving in the southwest Indian Ocean. By superimposing the turtle tracks on contemporaneous images of sea-surface temperatures and sea height anomalies, we show that currentrelated features dominate the shape of the reconstructed routes. After an initial offshore movement, turtles moved along straight routes when in the core of the current, or executed loops within eddies. Large parts of the routes were strikingly similar to those of surface drifters tracked in the same region. These findings document that long-lasting oceanic movements of marine turtles may be shaped by oceanic currents. PMID:14667360
Spanier, Matthew J
2010-12-01
Leatherback sea turtles (Dermochelys coriacea) nest on dynamic, erosion-prone beaches. Erosive processes and resulting nest loss have long been presumed to be a hindrance to clutch survival. In order to better understand how leatherbacks cope with unstable nesting beaches, I investigated the role of beach erosion in leatherback nest site selection at Playa Gandoca, Costa Rica. I also examined the potential effect of nest relocation, a conservation strategy in place at Playa Gandoca to prevent nest loss to erosion, on the temperature of incubating clutches. I monitored changes in beach structure as a result of erosion at natural nest sites during the time the nest was laid, as well as in subsequent weeks. To investigate slope as a cue for nest site selection, I measured the slope of the beach where turtles ascended from the sea to nest, as well as the slopes at other random locations on the beach for comparison. I examined temperature differences between natural and relocated nest sites with thermocouples placed in the sand at depths typical of leatherback nests. Nests were distributed non-randomly in a clumped distribution along the length of the beach and laid at locations that were not undergoing erosion. The slope at nest sites was significantly different than at randomly chosen locations on the beach. The sand temperature at nest depths was significantly warmer at natural nest sites than at locations of relocated nests. The findings of this study suggest leatherbacks actively select nest sites that are not undergoing erosive processes, with slope potentially being used as a cue for site selection. The relocation of nests appears to be inadvertently cooling the nest environment. Due to the fact that leatherback clutches undergo temperature-dependent sex determination, the relocation of nests may be producing an unnatural male biasing of hatchlings. The results of this study suggest that the necessity of relocation practices, largely in place to protect nests from erosion, should be reevaluated to ensure the proper conservation of this critically endangered species.
Persistent Leatherback Turtle Migrations Present Opportunities for Conservation
Shillinger, George L; Palacios, Daniel M; Bailey, Helen; Bograd, Steven J; Swithenbank, Alan M; Gaspar, Philippe; Wallace, Bryan P; Spotila, James R; Paladino, Frank V; Piedra, Rotney; Eckert, Scott A; Block, Barbara A
2008-01-01
Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea) in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004–2005, 2005–2006, and 2007) satellite tracking dataset (12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre. PMID:18630987
Dalleau, Mayeul; Ciccione, Stéphane; Mortimer, Jeanne A; Garnier, Julie; Benhamou, Simon; Bourjea, Jérôme
2012-01-01
Changes in phenology, the timing of seasonal activities, are among the most frequently observed responses to environmental disturbances and in marine species are known to occur in response to climate changes that directly affects ocean temperature, biogeochemical composition and sea level. We examined nesting seasonality data from long-term studies at 8 green turtle (Chelonia mydas) rookeries that include 21 specific nesting sites in the South-West Indian Ocean (SWIO). We demonstrated that temperature drives patterns of nesting seasonality at the regional scale. We found a significant correlation between mean annual Sea Surface Temperature (SST) and dates of peak nesting with rookeries exposed to higher SST having a delayed nesting peak. This supports the hypothesis that temperature is the main factor determining peak nesting dates. We also demonstrated a spatial synchrony in nesting activity amongst multiple rookeries in the northern part of the SWIO (Aldabra, Glorieuses, Mohéli, Mayotte) but not with the eastern and southern rookeries (Europa, Tromelin), differences which could be attributed to females with sharply different adult foraging conditions. However, we did not detect a temporal trend in the nesting peak date over the study period or an inter-annual relation between nesting peak date and SST. The findings of our study provide a better understanding of the processes that drive marine species phenology. The findings will also help to predict their ability to cope with climate change and other environmental perturbations. Despite demonstrating this spatial shift in nesting phenology, no trend in the alteration of nesting dates over more than 20 years was found.
Dalleau, Mayeul; Ciccione, Stéphane; Mortimer, Jeanne A.; Garnier, Julie; Benhamou, Simon; Bourjea, Jérôme
2012-01-01
Changes in phenology, the timing of seasonal activities, are among the most frequently observed responses to environmental disturbances and in marine species are known to occur in response to climate changes that directly affects ocean temperature, biogeochemical composition and sea level. We examined nesting seasonality data from long-term studies at 8 green turtle (Chelonia mydas) rookeries that include 21 specific nesting sites in the South-West Indian Ocean (SWIO). We demonstrated that temperature drives patterns of nesting seasonality at the regional scale. We found a significant correlation between mean annual Sea Surface Temperature (SST) and dates of peak nesting with rookeries exposed to higher SST having a delayed nesting peak. This supports the hypothesis that temperature is the main factor determining peak nesting dates. We also demonstrated a spatial synchrony in nesting activity amongst multiple rookeries in the northern part of the SWIO (Aldabra, Glorieuses, Mohéli, Mayotte) but not with the eastern and southern rookeries (Europa, Tromelin), differences which could be attributed to females with sharply different adult foraging conditions. However, we did not detect a temporal trend in the nesting peak date over the study period or an inter-annual relation between nesting peak date and SST. The findings of our study provide a better understanding of the processes that drive marine species phenology. The findings will also help to predict their ability to cope with climate change and other environmental perturbations. Despite demonstrating this spatial shift in nesting phenology, no trend in the alteration of nesting dates over more than 20 years was found. PMID:23056527
NASA Kennedy Space Center: Contributions to Sea Turtle Science and Conservation
NASA Technical Reports Server (NTRS)
Provancha, Jane A.; Phillips, Lynne V.; Mako, Cheryle L.
2018-01-01
The National Aeronautics and Space Administration (NASA) is a United States (US) federal agency that oversees US space exploration and aeronautical research. NASA's primary launch site, Kennedy Space Center (KSC) is located along the east coast of Florida, on Cape Canaveral and the western Atlantic Ocean. The natural environment within KSC's large land boundaries, not only functions as an extensive safety buffer-area, it performs simultaneously as a wildlife refuge and a national seashore. In the early 1960s, NASA was developing KSC for rocket launches and the US was establishing an awareness of, and commitment to protecting the environment. The US began creating regulations that required the consideration of the environment when taking action on federal land or with federal funds. The timing of the US Endangered Species Act (1973), the US National Environmental Policy Act (1972), coincided with the planning and implementation of the US Space Shuttle Program. This resulted in the first efforts to evaluate the impacts of space launch operation operations on waterways, air quality, habitats, and wildlife. The first KSC fauna and flora baseline studies were predominantly performed by University of Central Florida (then Florida Technological University). Numerous species of relative importance were observed and sea turtles were receiving regulatory review and protection as surveys by Dr. L Ehrhart (UCF) from 1973-1978 described turtles nesting along the KSC beaches and foraging in the KSC lagoon systems. These data were used in the first NASA Environmental Impact Statement for the Space Transportation System (shuttle program) in 1980. In 1982, NASA began a long term ecological monitoring program with contracted scientists on site. This included efforts to track sea turtle status and trends at KSC and maintain protective measures for these species. Many studies and collaborations have occurred on KSC over these last 45 years with agencies (USFWS, NOAA, NAVY), students, and universities (UCF, University of Toronto, Texas A&M, UF). This presentation will review the various studies and collaborations on sea turtles at KSC that include: nest distributions and success, stranding network development, aerial survey testing for nest counts, predator control assessments, the earliest baseline blood chemistry health determinations on nesting females, stress hormones in nesting females, multi-year study of hatchling sex ratios, genetics, species composition, abundance and distribution of in-water juveniles, turtle cold stun response, exterior lighting impacts and control, and satellite tag tracking of post-nesting turtles in the vicinity of near shore shoals and sand mining sites. Through these studies, monitoring, and recommendations, KSC has provided excellent stewardship and protection of the local environment. While conducting its space program mission, KSC has also made significant contributions of information for agencies charged with the conservation and management of these species
Perrault, Justin R; Stacy, Nicole I; Lehner, Andreas F; Poor, Savannah K; Buchweitz, John P; Walsh, Catherine J
2017-12-01
Toxic elements (arsenic, cadmium, lead, mercury, selenium, thallium) are a group of contaminants that are known to elicit developmental, reproductive, general health, and immune system effects in reptiles, even at low concentrations. Reptiles, including marine turtles, are susceptible to accumulation of toxic elements due to their long life span, low metabolic rate, and highly efficient conversion of prey into biomass. The objectives of this study were to (1) document concentrations of arsenic, cadmium, lead, mercury, selenium, and thallium in whole blood and keratin from nesting loggerhead sea turtles (Caretta caretta) from Casey Key, Florida and document correlations thereof and (2) correlate whole blood toxic element concentrations to various hematological and plasma biochemistry analytes. Baselines for various hematological and plasma analytes and toxic elements in whole blood and keratin (i.e., scute) in nesting loggerheads are documented. Various correlations between the toxic elements and hematological and plasma biochemistry analytes were identified; however, the most intriguing were negative correlations between arsenic, cadmium, lead, and selenium with and α- and γ-globulins. Although various extrinsic and intrinsic variables such as dietary and feeding changes in nesting loggerheads need to be considered, this finding may suggest a link to altered humoral immunity. This study documents a suite of health variables of nesting loggerheads in correlation to contaminants and identifies the potential of toxic elements to impact the overall health of nesting turtles, thus presenting important implications for the conservation and management of this species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Santidrián Tomillo, Pilar; Genovart, Meritxell; Paladino, Frank V; Spotila, James R; Oro, Daniel
2015-08-01
Temperature-dependent sex determination (TSD) is the predominant form of environmental sex determination (ESD) in reptiles, but the adaptive significance of TSD in this group remains unclear. Additionally, the viability of species with TSD may be compromised as climate gets warmer. We simulated population responses in a turtle with TSD to increasing nest temperatures and compared the results to those of a virtual population with genotypic sex determination (GSD) and fixed sex ratios. Then, we assessed the effectiveness of TSD as a mechanism to maintain populations under climate change scenarios. TSD populations were more resilient to increased nest temperatures and mitigated the negative effects of high temperatures by increasing production of female offspring and therefore, future fecundity. That buffered the negative effect of temperature on the population growth. TSD provides an evolutionary advantage to sea turtles. However, this mechanism was only effective over a range of temperatures and will become inefficient as temperatures rise to levels projected by current climate change models. Projected global warming threatens survival of sea turtles, and the IPCC high gas concentration scenario may result in extirpation of the studied population in 50 years. © 2015 John Wiley & Sons Ltd.
Forecasting the viability of sea turtle eggs in a warming world.
Pike, David A
2014-01-01
Animals living in tropical regions may be at increased risk from climate change because current temperatures at these locations already approach critical physiological thresholds. Relatively small temperature increases could cause animals to exceed these thresholds more often, resulting in substantial fitness costs or even death. Oviparous species could be especially vulnerable because the maximum thermal tolerances of incubating embryos is often lower than adult counterparts, and in many species mothers abandon the eggs after oviposition, rendering them immobile and thus unable to avoid extreme temperatures. As a consequence, the effects of climate change might become evident earlier and be more devastating for hatchling production in the tropics. Loggerhead sea turtles (Caretta caretta) have the widest nesting range of any living reptile, spanning temperate to tropical latitudes in both hemispheres. Currently, loggerhead sea turtle populations in the tropics produce nearly 30% fewer hatchlings per nest than temperate populations. Strong correlations between empirical hatching success and habitat quality allowed global predictions of the spatiotemporal impacts of climate change on this fitness trait. Under climate change, many sea turtle populations nesting in tropical environments are predicted to experience severe reductions in hatchling production, whereas hatching success in many temperate populations could remain unchanged or even increase with rising temperatures. Some populations could show very complex responses to climate change, with higher relative hatchling production as temperatures begin to increase, followed by declines as critical physiological thresholds are exceeded more frequently. Predicting when, where, and how climate change could impact the reproductive output of local populations is crucial for anticipating how a warming world will influence population size, growth, and stability.
Effects of rising temperature on the viability of an important sea turtle rookery
NASA Astrophysics Data System (ADS)
Laloë, Jacques-Olivier; Cozens, Jacquie; Renom, Berta; Taxonera, Albert; Hays, Graeme C.
2014-06-01
A warming world poses challenges for species with temperature-dependent sex determination, including sea turtles, for which warmer incubation temperatures produce female hatchlings. We combined in situ sand temperature measurements with air temperature records since 1850 and predicted warming scenarios from the Intergovernmental Panel on Climate Change to derive 250-year time series of incubation temperatures, hatchling sex ratios, and operational sex ratios for one of the largest sea turtles rookeries globally (Cape Verde Islands, Atlantic). We estimate that light-coloured beaches currently produce 70.10% females whereas dark-coloured beaches produce 93.46% females. Despite increasingly female skewed sex ratios, entire feminization of this population is not imminent. Rising temperatures increase the number of breeding females and hence the natural rate of population growth. Predicting climate warming impacts across hatchlings, male-female breeding ratios and nesting numbers provides a holistic approach to assessing the conservation concerns for sea turtles in a warming world.
Aguilar-González, Myrna E; Luna-González, Antonio; Aguirre, Alonso; Zavala-Norzagaray, Alan A; Mundo-Ocampo, Manuel; González-Ocampo, Héctor A
2014-01-01
In this study, 10% of all registered fishermen in the coastal towns of Navachiste in Sinaloa, in northwestern Mexico, answered a survey designed to collect data on their perceptions of the following topics: the impact of turtle meat consumption; human health; bycatch; illegal turtle fishing; the illegal sea turtle market; the local economy; pollution; environmental education; the success of protective legislation; and sea turtle-based ecotourism. Perceptions were analyzed using the fuzzy logic method through classification into 5 fuzzy membership sets: VL, very low; L, low; M, moderate; H, high; VH, very high. The 9 topics generated decision areas upon applying fuzzy inference that revealed the membership level of the answers in each fuzzy set. The economic potential of sea turtle-based ecotourism and the economic profitability of the illegal turtle meat market were perceived as VL. Conservation legislation was perceived as H, although inefficiently applied due to corruption. Ecotourism and impacts on sea turtles were perceived as VL, because they were deemed unprofitable activities at the individual and community levels. Environmental education was perceived as L, because it centers on nesting, hatching and releasing turtles and is directed at elementary and middle-school students. While fishers perceive a serious negative impact of fishing activities on sea turtles in the San Ignacio-Navachiste-Macapule area, they do not see themselves individually as part of the problem. Achieving sea turtle conservation in this region requires: suitable ecotourism infrastructure, government investments in promotion, and studies to estimate the minimum number of tourists needed to assure profitability. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
Perrault, Justin R; Bauman, Katherine D; Greenan, Taylor M; Blum, Patricia C; Henry, Michael S; Walsh, Catherine J
2016-11-01
Blooms of Karenia brevis (also called red tides) occur almost annually in the Gulf of Mexico. The health effects of the neurotoxins (i.e., brevetoxins) produced by this toxic dinoflagellate on marine turtles are poorly understood. Florida's Gulf Coast represents an important foraging and nesting area for a number of marine turtle species. Most studies investigating brevetoxin exposure in marine turtles thus far focus on dead and/or stranded individuals and rarely examine the effects in apparently "healthy" free-ranging individuals. From May-July 2014, one year after the last red tide bloom, we collected blood from nesting loggerhead sea turtles (Caretta caretta) on Casey Key, Florida USA. These organisms show both strong nesting and foraging site fidelity. The plasma was analyzed for brevetoxin concentrations in addition to a number of health and immune-related parameters in an effort to establish sublethal effects of this toxin. Lastly, from July-September 2014, we collected unhatched eggs and liver and yolk sacs from dead-in-nest hatchlings from nests laid by the sampled females and tested these samples for brevetoxin concentrations to determine maternal transfer and effects on reproductive success. Using a competitive enzyme-linked immunosorbent assay (ELISA), all plasma samples from nesting females tested positive for brevetoxin (reported as ng brevetoxin-3[PbTx-3] equivalents [eq]/mL) exposure (2.1-26.7ng PbTx-3eq/mL). Additionally, 100% of livers (1.4-13.3ng PbTx-3eq/mL) and yolk sacs (1.7-6.6ng PbTx-3eq/mL) from dead-in-nest hatchlings and 70% of eggs (<1.0-24.4ng PbTx-3eq/mL) tested positive for brevetoxin exposure with the ELISA. We found that plasma brevetoxin concentrations determined by an ELISA in nesting females positively correlated with gamma-globulins, indicating a potential for immunomodulation as a result of brevetoxin exposure. While the sample sizes were small, we also found that plasma brevetoxin concentrations determined by an ELISA in nesting females significantly correlated with liver brevetoxin concentrations of dead-in-nest hatchlings and that brevetoxins could be related to a decreased reproductive success in this species. This study suggests that brevetoxins can still elicit negative effects on marine life long after a bloom has dissipated. These results improve our understanding of maternal transfer and sublethal effects of brevetoxin exposure in marine turtles. Copyright © 2016 Elsevier B.V. All rights reserved.
Jribi, Imed; Bradai, Mohamed Nejmeddine
2014-01-01
Hatchling sex ratios in the loggerhead turtle Caretta caretta were estimated by placing electronic temperature recorders in seven nests at Kuriat islands (Tunisia) during the 2013 nesting season. Based on the mean temperatures during the middle third of the incubation period, and on incubation duration, the sex ratio of hatchlings at Kuriat islands was highly male-biased. Presently, the majority of hatchling sex ratio studies are focused on major nesting areas, whereby the sex ratios are universally believed to be heavily female-biased. Here we present findings from a minor nesting site in the Mediterranean, where the hatchling sex ratio was found to be male-biased, suggesting a potential difference between major and minor nesting sites.
Using expert opinion surveys to rank threats to endangered species: a case study with sea turtles.
Donlan, C Josh; Wingfield, Dana K; Crowder, Larry B; Wilcox, Chris
2010-12-01
Little is known about how specific anthropogenic hazards affect the biology of organisms. Quantifying the effect of regional hazards is particularly challenging for species such as sea turtles because they are migratory, difficult to study, long lived, and face multiple anthropogenic threats. Expert elicitation, a technique used to synthesize opinions of experts while assessing uncertainty around those views, has been in use for several decades in the social science and risk assessment sectors. We conducted an internet-based survey to quantify expert opinion on the relative magnitude of anthropogenic hazards to sea turtle populations at the regional level. Fisheries bycatch and coastal development were most often ranked as the top hazards to sea turtle species in a geographic region. Nest predation and direct take followed as the second and third greatest threats, respectively. Survey results suggest most experts believe sea turtles are threatened by multiple factors, including substantial at-sea threats such as fisheries bycatch. Resources invested by the sea turtle community, however, appear biased toward terrestrial-based impacts. Results from the survey are useful for conservation planning because they provide estimates of relative impacts of hazards on sea turtles and a measure of consensus on the magnitude of those impacts among researchers and practitioners. Our survey results also revealed patterns of expert bias, which we controlled for in our analysis. Respondents with no experience with respect to a sea turtle species tended to rank hazards affecting that sea turtle species higher than respondents with experience. A more-striking pattern was with hazard-based expertise: the more experience a respondent had with a specific hazard, the higher the respondent scored the impact of that hazard on sea turtle populations. Bias-controlled expert opinion surveys focused on threatened species and their hazards can help guide and expedite species recovery plans. © 2010 Society for Conservation Biology.
Whiting, Scott; Tucker, Tony; Guinea, Michael; Raith, Andrew; Douglas, Ryan
2018-01-01
Drones are being increasingly used in innovative ways to enhance environmental research and conservation. Despite their widespread use for wildlife studies, there are few scientifically justified guidelines that provide minimum distances at which wildlife can be approached to minimize visual and auditory disturbance. These distances are essential to ensure that behavioral and survey data have no observer bias and form the basis of requirements for animal ethics and scientific permit approvals. In the present study, we documented the behaviors of three species of sea turtle (green turtles, Chelonia mydas, flatback turtles, Natator depressus, hawksbill turtles, Eretmochelys imbricata), saltwater crocodiles (Crocodylus porosus), and crested terns (Thalasseus bergii) in response to a small commercially available (1.4 kg) multirotor drone flown in Northern Territory and Western Australia. Sea turtles in nearshore waters off nesting beaches or in foraging habitats exhibited no evasive behaviors (e.g. rapid diving) in response to the drone at or above 20–30 m altitude, and at or above 10 m altitude for juvenile green and hawksbill turtles foraging on shallow, algae-covered reefs. Adult female flatback sea turtles were not deterred by drones flying forward or stationary at 10 m altitude when crawling up the beach to nest or digging a body pit or egg chamber. In contrast, flyovers elicited a range of behaviors from crocodiles, including minor, lateral head movements, fleeing, or complete submergence when a drone was present below 50 m altitude. Similarly, a colony of crested terns resting on a sand-bank displayed disturbance behaviors (e.g. flight response) when a drone was flown below 60 m altitude. The current study demonstrates a variety of behavioral disturbance thresholds for diverse species and should be considered when establishing operating conditions for drones in behavioral and conservation studies. PMID:29561901
Climate change increases the production of female hatchlings at a northern sea turtle rookery.
Reneker, J L; Kamel, S J
2016-12-01
The most recent climate change projections show a global increase in temperatures, along with major adjustments to precipitation, throughout the 21st century. Species exhibiting temperature-dependent sex determination are highly susceptible to such changes since the incubation environment influences critical offspring characteristics such as survival and sex ratio. Here we show that the mean incubation duration of loggerhead sea turtle (Caretta caretta) nests from a high-density nesting beach on Bald Head Island, North Carolina, USA has decreased significantly over the past 25 yr. This decrease in incubation duration is significantly positively correlated with mean air temperature and negatively correlated with mean precipitation during the nesting season. Additionally, although no change in hatching success was detected during this same period, a potentially detrimental consequence of shorter incubation durations is that they lead to the production of primarily female offspring. Given that global temperatures are predicted to increase by as much as 4°C over the next century, the mass feminization of sea turtle hatchlings is a high-priority concern. While presently limited in number, studies using long-term data sets to examine the temporal correlation between offspring characteristics and climatic trends are essential for understanding the scope and direction of climate change effects on species persistence. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Prihadi, D. J.; Shofiyullah, A.; Dhahiyat, Y.
2018-04-01
The research was conducted in Sukamade Beach, Meru Betiri National Park, East Java. The purpose of this research was to identify marine tourism activity and to determine the differences in the characteristics of turtle-nesting beaches towards the number and species of turtles that came to the beach. Data collection conducted in August-September 2014. The method used in this research was a survey method at 7 reseach stations to collect primary data (biophysical characteristics) and secondary data. The Primary data was collected by monitoring turtles, width and slope of the beach, temperature, pH, moisture, sand texture, and beach vegetation conditions at each station. The results of the research shows that marine tourisms always involve tourists who attend to see turtle nesting, when turtles arrive at the beach, and turtles return to the sea, how large the turtles and how they lay eggs on the beach, and the release of little turtles (tukik). The number of turtles that landed from station 1 to station 7 is as many as 311 individuals of three species. The most dominant species of turtles that arrived at the beach is green turtle (Chelonia mydas), followed by olive ridley turtles (Lepidochelys olivaceae) and leatherbacks turtles (Dermochelys coriacea).
NASA Astrophysics Data System (ADS)
Chambault, Philippine; Giraudou, Lucie; de Thoisy, Benoît; Bonola, Marc; Kelle, Laurent; Reis, Virginie Dos; Blanchard, Fabian; Le Maho, Yvon; Chevallier, Damien
2017-01-01
The identification of the inter-nesting habitat used by gravid sea turtles has become a crucial factor in their protection. Their aggregation in large groups of individuals during the inter-nesting period exposes them to increased threats to their survival - particularly along the French Guiana shield, where intense legal and illegal fisheries occur. Among the three sea turtle species nesting in French Guiana, the olive ridley appears to have the most generalist diet, showing strong behavioural plasticity according to the environment encountered. The large amounts of sediments that are continuously discharged by the Amazon River create a very unusual habitat for olive ridleys, i.e. turbid waters with low salinity. This study assesses the behavioural adjustments of 20 adult female olive ridleys under such riverine conditions. Individuals were tracked by satellite from Remire-Montjoly rookery in French Guiana using tags that recorded the location and diving parameters of individuals, as well as the immediate environment of the turtles including the in situ temperature and salinity. Data concerning potential preys was provided via collection of epifauna by a trawler. Multiple behavioural shifts were observed in both horizontal and vertical dimensions. During the first half of the inter-nesting season, the turtles moved away from the nesting beach (21.9 ± 24.7 km), performing deeper (12.6 ± 7.4 m) and longer (29.7 ± 21.0 min) dives than during the second half of the period (7.4 ± 7.8 km, 10.4 ± 4.9 m and 25.9 ± 19.3 min). Olive ridleys remained in waters that were warm (range: 26-33 °C) and which fluctuated in terms of salinity (range: 19.5-36.4 psu), in a relatively small estuarine habitat covering 423 km2. If olive ridleys were foraging during this period, the potential preys that might be available were mostly crustaceans (43%) and fish (39%), as expected for the diet of this generalist species during this period. This study highlights the numerous behavioural adaptations of this species in response to the unusual riverine conditions of the French Guiana continental shelf.
NASA Astrophysics Data System (ADS)
Suryono; Ario, R.; Wibowo, E.; Handoyo, G.
2018-02-01
Lekang turtle (Lepidhochelys olivacea) is one of the fauna that is protected as an endangered population. This marine reptile was able to migrate in great distance along the Indian Ocean, the Pacific Ocean, and South East Asia. Its existence has long been threatened, either by nature or human activities that endangered the population directly or indirectly. The decreasing number of sea turtle population that nest in Bali area is one indication of the reducing number of Lekang turtle in Indonesia. If left unchecked, it will result in the loss of Lekang turtle. This study aims to determine the successful percentage of conservation techniques and Lekang turtle hatching eggs (olive ridley sea turtle) in TCEC, Bali. The method used in this research is the method of observation or direct observation done in the field. Data collection is done by direct observation in the field. The results showed that the turtle breeding site is located in an area that is less strategic because too far from the sea, so that the temperature and humidity cannot be stable. Water content is most an important factor in the growth of embryo and egg hatching. This will lead to the decrease of hatching percentage of turtle eggs.
Marine turtles use geomagnetic cues during open-sea homing.
Luschi, Paolo; Benhamou, Simon; Girard, Charlotte; Ciccione, Stephane; Roos, David; Sudre, Joël; Benvenuti, Silvano
2007-01-23
Marine turtles are renowned long-distance navigators, able to reach remote targets in the oceanic environment; yet the sensory cues and navigational mechanisms they employ remain unclear [1, 3]. Recent arena experiments indicated an involvement of magnetic cues in juvenile turtles' homing ability after simulated displacements [4, 5], but the actual role of geomagnetic information in guiding turtles navigating in their natural environment has remained beyond the reach of experimental investigations. In the present experiment, twenty satellite-tracked green turtles (Chelonia mydas) were transported to four open-sea release sites 100-120 km from their nesting beach on Mayotte island in the Mozambique Channel; 13 of them had magnets attached to their head either during the outward journey or during the homing trip. All but one turtle safely returned to Mayotte to complete their egg-laying cycle, albeit with indirect routes, and showed a general inability to take into account the deflecting action of ocean currents as estimated through remote-sensing oceanographic measurements [7]. Magnetically treated turtles displayed a significant lengthening of their homing paths with respect to controls, either when treated during transportation or when treated during homing. These findings represent the first field evidence for the involvement of geomagnetic cues in sea-turtle navigation.
NASA Astrophysics Data System (ADS)
Darmawan, A.; Saputra, D. K.; Wiadnya, D. G. R.; Gusmida, A. M.
2018-04-01
Turtles, the most threatened coastal-marine fauna, are protected through both national and global regulations. However, many of their nesting sites have been degraded in the past years. Completing natal homing, adult females emerged at night to lay-down eggs in the upper intertidal and supra-tidal zone of sandy beach from where they hatched. This study explained coastal topology of beaches usually used for nesting sites, covering 117 km coastline at Pacitan Regency, Southern Java Sea. The shift in beach morphology through times was figured out based on Landsat 8 and Sentinel 2a satellite imagery and remote sensing (GIS methods). This was combined with in-situ data on current coastline features, slope, and tide variations. Results showed a typical sandy beach, called Taman Ria Beach, a long time identified as nesting site for Lepidochelys olivacea, locally named as Penyu Lekang. Also, there was approximatelly 3.49 ha of supratidal area predicted in Taman Ria Beach according this study
Chambault, Philippine; Pinaud, David; Vantrepotte, Vincent; Kelle, Laurent; Entraygues, Mathieu; Guinet, Christophe; Berzins, Rachel; Bilo, Karin; Gaspar, Philippe; de Thoisy, Benoît; Le Maho, Yvon; Chevallier, Damien
2015-01-01
In response to seasonality and spatial segregation of resources, sea turtles undertake long journeys between their nesting sites and foraging grounds. While satellite tracking has made it possible to outline their migration routes, we still have little knowledge of how they select their foraging grounds and adapt their migration to dynamic environmental conditions. Here, we analyzed the trajectories and diving behavior of 19 adult green turtles (Chelonia mydas) during their post-nesting migration from French Guiana and Suriname to their foraging grounds off the coast of Brazil. First Passage Time analysis was used to identify foraging areas located off Ceará state of Brazil, where the associated habitat corresponds to favorable conditions for seagrass growth, i.e. clear and shallow waters. The dispersal and diving patterns of the turtles revealed several behavioral adaptations to the strong hydrodynamic processes induced by both the North Brazil current and the Amazon River plume. All green turtles migrated south-eastward after the nesting season, confirming that they coped with the strong counter North Brazil current by using a tight corridor close to the shore. The time spent within the Amazon plume also altered the location of their feeding habitats as the longer individuals stayed within the plume, the sooner they initiated foraging. The green turtles performed deeper and shorter dives while crossing the mouth of the Amazon, a strategy which would help turtles avoid the most turbulent upper surface layers of the plume. These adjustments reveal the remarkable plasticity of this green turtle population when reducing energy costs induced by migration. PMID:26398528
Chambault, Philippine; Pinaud, David; Vantrepotte, Vincent; Kelle, Laurent; Entraygues, Mathieu; Guinet, Christophe; Berzins, Rachel; Bilo, Karin; Gaspar, Philippe; de Thoisy, Benoît; Le Maho, Yvon; Chevallier, Damien
2015-01-01
In response to seasonality and spatial segregation of resources, sea turtles undertake long journeys between their nesting sites and foraging grounds. While satellite tracking has made it possible to outline their migration routes, we still have little knowledge of how they select their foraging grounds and adapt their migration to dynamic environmental conditions. Here, we analyzed the trajectories and diving behavior of 19 adult green turtles (Chelonia mydas) during their post-nesting migration from French Guiana and Suriname to their foraging grounds off the coast of Brazil. First Passage Time analysis was used to identify foraging areas located off Ceará state of Brazil, where the associated habitat corresponds to favorable conditions for seagrass growth, i.e. clear and shallow waters. The dispersal and diving patterns of the turtles revealed several behavioral adaptations to the strong hydrodynamic processes induced by both the North Brazil current and the Amazon River plume. All green turtles migrated south-eastward after the nesting season, confirming that they coped with the strong counter North Brazil current by using a tight corridor close to the shore. The time spent within the Amazon plume also altered the location of their feeding habitats as the longer individuals stayed within the plume, the sooner they initiated foraging. The green turtles performed deeper and shorter dives while crossing the mouth of the Amazon, a strategy which would help turtles avoid the most turbulent upper surface layers of the plume. These adjustments reveal the remarkable plasticity of this green turtle population when reducing energy costs induced by migration.
Esteban, Nicole; Laloë, Jacques-Olivier; Mortimer, Jeanne A.; Guzman, Antenor N.; Hays, Graeme C.
2016-01-01
Sand temperatures at nest depths and implications for hatchling sex ratios of hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) nesting in the Chagos Archipelago, Indian Ocean are reported and compared to similar measurements at rookeries in the Atlantic and Caribbean. During 2012–2014, temperature loggers were buried at depths and in beach zones representative of turtle nesting sites. Data collected for 12,546 days revealed seasonal and spatial patterns of sand temperature. Depth effects were minimal, perhaps modulated by shade from vegetation. Coolest and warmest temperatures were recorded in the sites heavily shaded in vegetation during the austral winter and in sites partially shaded in vegetation during summer respectively. Overall, sand temperatures were relatively cool during the nesting seasons of both species which would likely produce fairly balanced hatchling sex ratios of 53% and 63% male hatchlings, respectively, for hawksbill and green turtles. This result contrasts with the predominantly high female skew reported for offspring at most rookeries around the globe and highlights how local beach characteristics can drive incubation temperatures. Our evidence suggests that sites characterized by heavy shade associated with intact natural vegetation are likely to provide conditions suitable for male hatchling production in a warming world. PMID:26832230
NASA Astrophysics Data System (ADS)
Esteban, Nicole; Laloë, Jacques-Olivier; Mortimer, Jeanne A.; Guzman, Antenor N.; Hays, Graeme C.
2016-02-01
Sand temperatures at nest depths and implications for hatchling sex ratios of hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) nesting in the Chagos Archipelago, Indian Ocean are reported and compared to similar measurements at rookeries in the Atlantic and Caribbean. During 2012-2014, temperature loggers were buried at depths and in beach zones representative of turtle nesting sites. Data collected for 12,546 days revealed seasonal and spatial patterns of sand temperature. Depth effects were minimal, perhaps modulated by shade from vegetation. Coolest and warmest temperatures were recorded in the sites heavily shaded in vegetation during the austral winter and in sites partially shaded in vegetation during summer respectively. Overall, sand temperatures were relatively cool during the nesting seasons of both species which would likely produce fairly balanced hatchling sex ratios of 53% and 63% male hatchlings, respectively, for hawksbill and green turtles. This result contrasts with the predominantly high female skew reported for offspring at most rookeries around the globe and highlights how local beach characteristics can drive incubation temperatures. Our evidence suggests that sites characterized by heavy shade associated with intact natural vegetation are likely to provide conditions suitable for male hatchling production in a warming world.
Esteban, Nicole; Laloë, Jacques-Olivier; Mortimer, Jeanne A; Guzman, Antenor N; Hays, Graeme C
2016-02-02
Sand temperatures at nest depths and implications for hatchling sex ratios of hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) nesting in the Chagos Archipelago, Indian Ocean are reported and compared to similar measurements at rookeries in the Atlantic and Caribbean. During 2012-2014, temperature loggers were buried at depths and in beach zones representative of turtle nesting sites. Data collected for 12,546 days revealed seasonal and spatial patterns of sand temperature. Depth effects were minimal, perhaps modulated by shade from vegetation. Coolest and warmest temperatures were recorded in the sites heavily shaded in vegetation during the austral winter and in sites partially shaded in vegetation during summer respectively. Overall, sand temperatures were relatively cool during the nesting seasons of both species which would likely produce fairly balanced hatchling sex ratios of 53% and 63% male hatchlings, respectively, for hawksbill and green turtles. This result contrasts with the predominantly high female skew reported for offspring at most rookeries around the globe and highlights how local beach characteristics can drive incubation temperatures. Our evidence suggests that sites characterized by heavy shade associated with intact natural vegetation are likely to provide conditions suitable for male hatchling production in a warming world.
Tropical flatback turtle (Natator depressus) embryos are resilient to the heat of climate change.
Howard, Robert; Bell, Ian; Pike, David A
2015-10-01
Climate change is threatening reproduction of many ectotherms by increasing nest temperatures, potentially making it more difficult for females to locate nest sites that provide suitable incubation regimes during embryonic development. Elevated nest temperatures could increase the incidence of embryonic mortality and/or maladaptive phenotypes. We investigated whether elevated nest temperatures reduce hatching success in tropical flatback turtles (Natator depressus) nesting in the Gulf of Carpentaria, Australia. Egg incubation treatments began at 29.5°C and progressively increased in temperature throughout incubation, up to maxima of 31, 32, 33, 34 and 35°C. Elevated nest temperatures did not reduce hatching success or hatchling body size relative to control temperatures (29.5°C), but did speed up embryonic development. A combination of sudden exposure to high temperatures during the first 2 weeks of incubation (>36°C for 48 h) and prolonged warming throughout incubation (from 29.5-35°C) did not reduce hatching success. We also recorded an unusually high pivotal sex-determining temperature in this flatback turtle population relative to other sea turtle populations: an equal ratio of male and female hatchlings is produced at ∼30.4°C. This adaptation may allow some flatback turtle populations to continue producing large numbers of hatchlings of both sexes under the most extreme climate change scenarios. Some tropical populations of nesting flatbacks may possess important adaptations to high-temperature incubation environments, which are not found in more southerly temperate populations. © 2015. Published by The Company of Biologists Ltd.
Lum, Lori Lee
2005-05-01
Grande Riviere Beach in Trinidad and Tobago is an important nesting site in the Caribbean for the Critically Endangered leatherback sea turtle, Dermochelys coriacea. Community members were concerned that beach erosion and seasonal river flooding were destroying many of the nests deposited annually and thought that a hatchery was a possible solution. Over the 2001 turtle nesting season, the Institute of Marine Affairs (IMA) assessed the spatial and temporal distribution of nests using the Global Positioning System recorded to reference points, and beach dynamics using permanent bench mark profile stations, to determine areas of high risk and more stable areas for nesting. A total of 1449 leatherback nests were positioned. It was evident that at the start of the season in March, the majority of leatherback nests were deposited at the eastern section of the beach. After May, there was a continuing westward shift in nest distribution as the season progressed until August and beach erosion in the eastern section became predominant. The backshore remained relatively stable along the entire beach throughout the nesting season, and erosion was predominant in the foreshore at the eastern section of the beach, from the middle to the end of the season. Similar trends in accretion and erosion were observed in 2000. River flooding did not occur during the study period or in the previous year. With both high risk and more stable regions for turtle nesting available at Grande Riviere Beach, there was no compelling evidence to justify the need for a hatchery.
Using expert opinion to prioritize impacts of climate change on sea turtles' nesting grounds.
Fuentes, M M P B; Cinner, J E
2010-12-01
Managers and conservationists often need to prioritize which impacts from climate change to deal with from a long list of threats. However, data which allows comparison of the relative impact from climatic threats for decision-making is often unavailable. This is the case for the management of sea turtles in the face of climate change. The terrestrial life stages of sea turtles can be negatively impacted by various climatic processes, such as sea level rise, altered cyclonic activity, and increased sand temperatures. However, no study has systematically investigated the relative impact of each of these climatic processes, making it challenging for managers to prioritize their decisions and resources. To address this we offer a systematic method for eliciting expert knowledge to estimate the relative impact of climatic processes on sea turtles' terrestrial reproductive phase. For this we used as an example the world's largest population of green sea turtles and asked 22 scientists and managers to answer a paper based survey with a series of pair-wise comparison matrices that compared the anticipated impacts from each climatic process. Both scientists and managers agreed that increased sand temperature will likely cause the most threat to the reproductive output of the nGBR green turtle population followed by sea level rise, then altered cyclonic activity. The methodology used proved useful to determine the relative impact of the selected climatic processes on sea turtles' reproductive output and provided valuable information for decision-making. Thus, the methodological approach can potentially be applied to other species and ecosystems of management concern. Copyright © 2009 Elsevier Ltd. All rights reserved.
Sarmiento-Ramírez, Jullie M; van der Voort, Menno; Raaijmakers, Jos M; Diéguez-Uribeondo, Javier
2014-01-01
Habitat bioaugmentation and introduction of protective microbiota have been proposed as potential conservation strategies to rescue endangered mammals and amphibians from emerging diseases. For both strategies, insight into the microbiomes of the endangered species and their habitats is essential. Here, we sampled nests of the endangered sea turtle species Eretmochelys imbricata that were infected with the fungal pathogen Fusarium falciforme. Metagenomic analysis of the bacterial communities associated with the shells of the sea turtle eggs revealed approximately 16,664 operational taxonomic units, with Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes as the most dominant phyla. Subsequent isolation of Actinobacteria from the eggshells led to the identification of several genera (Streptomyces, Amycolaptosis, Micromomospora Plantactinospora and Solwaraspora) that inhibit hyphal growth of the pathogen F. falciforme. These bacterial genera constitute a first set of microbial indicators to evaluate the potential role of microbiota in conservation of endangered sea turtle species.
Mendilaharsu, Milagros L.; dei Marcovaldi, Maria A. G.; Sacco, Alexander E.; Lopez, Gustave; Pires, Thais; Swimmer, Yonat
2017-01-01
In the South Atlantic Ocean, few data exist regarding the dispersal of young oceanic sea turtles. We characterized the movements of laboratory-reared yearling loggerhead turtles from Brazilian rookeries using novel telemetry techniques, testing for differences in dispersal during different periods of the sea turtle hatching season that correspond to seasonal changes in ocean currents. Oceanographic drifters deployed alongside satellite-tagged turtles allowed us to explore the mechanisms of dispersal (passive drift or active swimming). Early in the hatching season turtles transited south with strong southward currents. Late in the hatching season, when currents flowed in the opposite direction, turtles uniformly moved northwards across the Equator. However, the movement of individuals differed from what was predicted by surface currents alone. Swimming velocity inferred from track data and an ocean circulation model strongly suggest that turtles' swimming plays a role in maintaining their position within frontal zones seaward of the continental shelf. The long nesting season of adults and behaviour of post-hatchlings exposes young turtles to seasonally varying ocean conditions that lead some individuals further into the South Atlantic and others into the Northern Hemisphere. Such migratory route diversity may ultimately buffer the population against environmental changes or anthropologic threats, fostering population resiliency. PMID:29212722
NASA Astrophysics Data System (ADS)
Chambault, Philippine; de Thoisy, Benoît; Heerah, Karine; Conchon, Anna; Barrioz, Sébastien; Dos Reis, Virginie; Berzins, Rachel; Kelle, Laurent; Picard, Baptiste; Roquet, Fabien; Le Maho, Yvon; Chevallier, Damien
2016-03-01
The circulation in the Western Equatorial Atlantic is characterized by a highly dynamic mesoscale activity that shapes the Guiana continental shelf. Olive ridley sea turtles (Lepidochelys olivacea) nesting in French Guiana cross this turbulent environment during their post-nesting migration. We studied how oceanographic and biological conditions drove the foraging behavior of 18 adult females, using satellite telemetry, remote sensing data (sea surface temperature, sea surface height, current velocity and euphotic depth), simulations of micronekton biomass (pelagic organisms) and in situ records (water temperature and salinity). The occurrence of foraging events throughout migration was located using Residence Time analysis, while an innovative proxy of the hunting time within a dive was used to identify and quantify foraging events during dives. Olive ridleys migrated northwestwards using the Guiana current and remained on the continental shelf at the edge of eddies formed by the North Brazil retroflection, an area characterized by low turbulence and high micronekton biomass. They performed mainly pelagic dives, hunting for an average 77% of their time. Hunting time within a dive increased with shallower euphotic depth and with lower water temperatures, and mean hunting depth increased with deeper thermocline. This is the first study to quantify foraging activity within dives in olive ridleys, and reveals the crucial role played by the thermocline on the foraging behavior of this carnivorous species. This study also provides novel and detailed data describing how turtles actively use oceanographic structures during post-nesting migration.
Stewart, Kelly R; Dutton, Peter H
2014-01-01
For vertebrates with temperature-dependent sex determination, primary (or hatchling) sex ratios are often skewed, an issue of particular relevance to concerns over effects of climate change on populations. However, the ratio of breeding males to females, or the operational sex ratio (OSR), is important to understand because it has consequences for population demographics and determines the capacity of a species to persist. The OSR also affects mating behaviors and mate choice, depending on the more abundant sex. For sea turtles, hatchling and juvenile sex ratios are generally female-biased, and with warming nesting beach temperatures, there is concern that populations may become feminized. Our purpose was to evaluate the breeding sex ratio for leatherback turtles at a nesting beach in St. Croix, USVI. In 2010, we sampled nesting females and later sampled their hatchlings as they emerged from nests. Total genomic DNA was extracted and all individuals were genotyped using 6 polymorphic microsatellite markers. We genotyped 662 hatchlings from 58 females, matching 55 females conclusively to their nests. Of the 55, 42 females mated with one male each, 9 mated with 2 males each and 4 mated with at least 3 males each, for a multiple paternity rate of 23.6%. Using GERUD1.0, we reconstructed parental genotypes, identifying 47 different males and 46 females for an estimated breeding sex ratio of 1.02 males for every female. Thus we demonstrate that there are as many actively breeding males as females in this population. Concerns about female-biased adult sex ratios may be premature, and mate choice or competition may play more of a role in sea turtle reproduction than previously thought. We recommend monitoring breeding sex ratios in the future to allow the integration of this demographic parameter in population models.
Luschi, P; Hays, G C; Del Seppia, C; Marsh, R; Papi, F
1998-01-01
Previous tagging studies of the movements of green turtles (Chelonia mydas) nesting at Ascension Island have shown that they shuttle between this remote target in the Atlantic Ocean and their feeding grounds on the Brazilian coast, a distance of 2300 km or more. Since a knowledge of sea turtle migration routes might allow inferences on the still unknown navigational mechanisms of marine animals, we tracked the postnesting migration of six green turtle females from Ascension Island to Brazil. Five of them reached the proximity of the easternmost stretch of the Brazilian coast, covering 1777-2342 km in 33-47 days. Their courses were impressively similar for the first 1000 km, with three turtles tracked over different dates following indistinguishable paths for the first 300 km. Only the sixth turtle made some relatively short trips in different directions around Ascension. The tracks show that turtles (i) are able to maintain straight courses over long distances in the open sea; (ii) may perform exploratory movements in different directions; (iii) appropriately correct their course during the journey according to external information; and (iv) initially keep the same direction as the west-south-westerly flowing current, possibly guided by chemical cues. PMID:9881473
Predicting bycatch hotspots for endangered leatherback turtles on longlines in the Pacific Ocean.
Roe, John H; Morreale, Stephen J; Paladino, Frank V; Shillinger, George L; Benson, Scott R; Eckert, Scott A; Bailey, Helen; Tomillo, Pilar Santidrián; Bograd, Steven J; Eguchi, Tomoharu; Dutton, Peter H; Seminoff, Jeffrey A; Block, Barbara A; Spotila, James R
2014-02-22
Fisheries bycatch is a critical source of mortality for rapidly declining populations of leatherback turtles, Dermochelys coriacea. We integrated use-intensity distributions for 135 satellite-tracked adult turtles with longline fishing effort to estimate predicted bycatch risk over space and time in the Pacific Ocean. Areas of predicted bycatch risk did not overlap for eastern and western Pacific nesting populations, warranting their consideration as distinct management units with respect to fisheries bycatch. For western Pacific nesting populations, we identified several areas of high risk in the north and central Pacific, but greatest risk was adjacent to primary nesting beaches in tropical seas of Indo-Pacific islands, largely confined to several exclusive economic zones under the jurisdiction of national authorities. For eastern Pacific nesting populations, we identified moderate risk associated with migrations to nesting beaches, but the greatest risk was in the South Pacific Gyre, a broad pelagic zone outside national waters where management is currently lacking and may prove difficult to implement. Efforts should focus on these predicted hotspots to develop more targeted management approaches to alleviate leatherback bycatch.
Predicting bycatch hotspots for endangered leatherback turtles on longlines in the Pacific Ocean
Roe, John H.; Morreale, Stephen J.; Paladino, Frank V.; Shillinger, George L.; Benson, Scott R.; Eckert, Scott A.; Bailey, Helen; Tomillo, Pilar Santidrián; Bograd, Steven J.; Eguchi, Tomoharu; Dutton, Peter H.; Seminoff, Jeffrey A.; Block, Barbara A.; Spotila, James R.
2014-01-01
Fisheries bycatch is a critical source of mortality for rapidly declining populations of leatherback turtles, Dermochelys coriacea. We integrated use-intensity distributions for 135 satellite-tracked adult turtles with longline fishing effort to estimate predicted bycatch risk over space and time in the Pacific Ocean. Areas of predicted bycatch risk did not overlap for eastern and western Pacific nesting populations, warranting their consideration as distinct management units with respect to fisheries bycatch. For western Pacific nesting populations, we identified several areas of high risk in the north and central Pacific, but greatest risk was adjacent to primary nesting beaches in tropical seas of Indo-Pacific islands, largely confined to several exclusive economic zones under the jurisdiction of national authorities. For eastern Pacific nesting populations, we identified moderate risk associated with migrations to nesting beaches, but the greatest risk was in the South Pacific Gyre, a broad pelagic zone outside national waters where management is currently lacking and may prove difficult to implement. Efforts should focus on these predicted hotspots to develop more targeted management approaches to alleviate leatherback bycatch. PMID:24403331
Waste characterization study for the Kemp's Ridley sea turtle. Technical memo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malone, R.F.; Guarisco, M.
1988-02-01
The Kemp's Ridley sea turtle, Lepidochelys kempi, is an endangered species. The National Marine Fisheries Service's Head Start program is part of an international operation to save the turtles from extinction. Under the Head Start program, eggs from the Ridley's only known wild nesting beach at Rancho Nuevo in Mexico are transported to Padre Island on the Texas coast to be hatched. The head start enables the turtles to develop a survival advantage. The principal objective was to develop baseline waste-characterization data required to design a waste-water treatment scheme for the Galveston Head Start facility. As a secondary objective, preliminarymore » testing of some filtration components was undertaken to determine which units were most appropriate for inclusion in a wastewater treatment scheme.« less
Synchronous activity lowers the energetic cost of nest escape for sea turtle hatchlings.
Rusli, Mohd Uzair; Booth, David T; Joseph, Juanita
2016-05-15
A potential advantage of group movement in animals is increased locomotion efficiency. This implies a reduced energetic cost for individuals that occur in larger groups such as herds, flocks and schools. When chelonian hatchlings hatch in the underground nest with finite energy for their post-hatching dispersal phase, they face the challenge of minimizing energetic expenditure while escaping the nest. The term 'social facilitation' has been used to describe the combined digging effort of sea turtle hatchlings during nest escape. Given that in a normal clutch, a substantial part of the energy reserve within the residual yolk is used by hatchlings in the digging out process, a decreased cohort size may reduce the energy reserve available to cross the beach and sustain the initial swimming frenzy. This hypothesis was experimentally tested by varying cohort size in hatchling green turtles (Chelonia mydas) and measuring energy expenditure during the nest escape process using open-flow respirometry. The energetic cost of escaping through 40 cm of sand was calculated to vary between 4.4 and 28.3 kJ per individual, the cost decreasing as the number of individuals in the cohort increased. This represents 11-68% of the energy contained in a hatchling's residual yolk at hatching. The reduced energetic cost associated with large cohorts resulted from both a lower metabolic rate per individual and a shortened nest escape time. We conclude that synchronous digging activity of many hatchlings during nest escape evolved not only to facilitate rapid nest emergence but also to reduce the energetic cost to individuals. © 2016. Published by The Company of Biologists Ltd.
Lohmann, Kenneth J; Putman, Nathan F; Lohmann, Catherine M F
2008-12-09
Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure.
Lohmann, Kenneth J.; Putman, Nathan F.; Lohmann, Catherine M. F.
2008-01-01
Several marine animals, including salmon and sea turtles, disperse across vast expanses of ocean before returning as adults to their natal areas to reproduce. How animals accomplish such feats of natal homing has remained an enduring mystery. Salmon are known to use chemical cues to identify their home rivers at the end of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin in open-sea locations hundreds or thousands of kilometers away. Similarly, how sea turtles reach their nesting areas from distant sites is unknown. However, both salmon and sea turtles detect the magnetic field of the Earth and use it as a directional cue. In addition, sea turtles derive positional information from two magnetic elements (inclination angle and intensity) that vary predictably across the globe and endow different geographic areas with unique magnetic signatures. Here we propose that salmon and sea turtles imprint on the magnetic field of their natal areas and later use this information to direct natal homing. This novel hypothesis provides the first plausible explanation for how marine animals can navigate to natal areas from distant oceanic locations. The hypothesis appears to be compatible with present and recent rates of field change (secular variation); one implication, however, is that unusually rapid changes in the Earth's field, as occasionally occur during geomagnetic polarity reversals, may affect ecological processes by disrupting natal homing, resulting in widespread colonization events and changes in population structure. PMID:19060188
Chen, Chiu-Lin; Wang, Chun-Chun; Cheng, I-Jiunn
2010-10-01
Several biotic and abiotic factors can influence nest oxygen content during embryogenesis. Several of these factors were determined during each developmental stage of green sea turtle embryos on Wan-an Island, Penghu Archipelago, Taiwan. We examined oxygen content in 7 nests in 2007 and 11 in 2008. Oxygen in the adjacent sand, total and viable clutch sizes, air, sand and nest temperatures, and sand characters of each nest were also determined. Oxygen content was lower in late stages than in the early and middle stages. It was also lower in the middle layer than in the upper and bottom layers. Nest temperature showed opposite trends, reaching its maximum value in late stages of development. Nest oxygen content was influenced by fraction of viable eggs, total clutch sizes, sand temperatures, maximum nest temperature and maximum change in the nest temperature during incubation. Clutch size during embryogenesis was the most influential factor overall. However, the major influential factors were different for different developmental stages. In the first half of the incubation, the development rate was low, and the change in the nest oxygen content was influenced mainly by the clutch size. During the second half, the rapid embryonic development rate became the dominant factor, and hatchling activities caused even greater oxygen consumption during the last stage of development.
Wallace, Bryan P; Sotherland, Paul R; Spotila, James R; Reina, Richard D; Franks, Bryan F; Paladino, Frank V
2004-01-01
Clutches of leatherback turtles, Dermochelys coriacea, have lower hatching success than those of other sea turtles, but causes of high embryonic mortality are unknown. We measured characteristics of clutches along with spatial and temporal changes in PO(2) and temperature during incubation to determine the extent to which they affected the developmental environment of leatherback embryos. Minimum PO(2) in nests decreased as both the total number and mass of metabolizing embryos increased. Increases in both the number and mass of metabolizing embryos caused an increase in maximum nest temperature. However, neither PO(2) nor temperature was correlated with hatching success. Our measurements of relatively high nest PO(2) (lowest 17.1 kPa or 16.9% O(2)) indicate that hypoxia apparently does not cause the low hatching success of leatherback clutches. Oxygen partial pressure increased and temperature decreased from the center toward the periphery of leatherback nests. We inferred from these measurements that positions of eggs within nests vary in quality and potentially affect overall developmental success of entire clutches. The large metabolic mass of leatherback clutches and limits to gas flux imposed by the sand create a situation in which leatherback embryos collectively affect their own environment.
Long-Term Climate Forcing in Loggerhead Sea Turtle Nesting
Van Houtan, Kyle S.; Halley, John M.
2011-01-01
The long-term variability of marine turtle populations remains poorly understood, limiting science and management. Here we use basin-scale climate indices and regional surface temperatures to estimate loggerhead sea turtle (Caretta caretta) nesting at a variety of spatial and temporal scales. Borrowing from fisheries research, our models investigate how oceanographic processes influence juvenile recruitment and regulate population dynamics. This novel approach finds local populations in the North Pacific and Northwest Atlantic are regionally synchronized and strongly correlated to ocean conditions—such that climate models alone explain up to 88% of the observed changes over the past several decades. In addition to its performance, climate-based modeling also provides mechanistic forecasts of historical and future population changes. Hindcasts in both regions indicate climatic conditions may have been a factor in recent declines, but future forecasts are mixed. Available climatic data suggests the Pacific population will be significantly reduced by 2040, but indicates the Atlantic population may increase substantially. These results do not exonerate anthropogenic impacts, but highlight the significance of bottom-up oceanographic processes to marine organisms. Future studies should consider environmental baselines in assessments of marine turtle population variability and persistence. PMID:21589639
Long-term climate forcing in loggerhead sea turtle nesting.
Van Houtan, Kyle S; Halley, John M
2011-04-27
The long-term variability of marine turtle populations remains poorly understood, limiting science and management. Here we use basin-scale climate indices and regional surface temperatures to estimate loggerhead sea turtle (Caretta caretta) nesting at a variety of spatial and temporal scales. Borrowing from fisheries research, our models investigate how oceanographic processes influence juvenile recruitment and regulate population dynamics. This novel approach finds local populations in the North Pacific and Northwest Atlantic are regionally synchronized and strongly correlated to ocean conditions--such that climate models alone explain up to 88% of the observed changes over the past several decades. In addition to its performance, climate-based modeling also provides mechanistic forecasts of historical and future population changes. Hindcasts in both regions indicate climatic conditions may have been a factor in recent declines, but future forecasts are mixed. Available climatic data suggests the Pacific population will be significantly reduced by 2040, but indicates the Atlantic population may increase substantially. These results do not exonerate anthropogenic impacts, but highlight the significance of bottom-up oceanographic processes to marine organisms. Future studies should consider environmental baselines in assessments of marine turtle population variability and persistence.
Tedeschi, J N; Kennington, W J; Berry, O; Whiting, S; Meekan, M; Mitchell, N J
2015-01-01
The survival and viability of sea turtle embryos is dependent upon favourable nest temperatures throughout the incubation period. Consequently, future generations of sea turtles may be at risk from increasing nest temperatures due to climate change, but little is known about how embryos respond to heat stress. Heat shock genes are likely to be important in this process because they code for proteins that prevent cellular damage in response to environmental stressors. This study provides the first evidence of an expression response in the heat shock genes of embryos of loggerhead sea turtles (Caretta caretta) exposed to realistic and near-lethal temperatures (34°C and 36°C) for 1 or 3 hours. We investigated changes in Heat shock protein 60 (Hsp60), Hsp70, and Hsp90 mRNA in heart (n=24) and brain tissue (n=29) in response to heat stress. Under the most extreme treatment (36°C, 3h), Hsp70 increased mRNA expression by a factor of 38.8 in heart tissue and 15.7 in brain tissue, while Hsp90 mRNA expression increased by a factor of 98.3 in heart tissue and 14.7 in brain tissue. Hence, both Hsp70 and Hsp90 are useful biomarkers for assessing heat stress in the late-stage embryos of sea turtles. The method we developed can be used as a platform for future studies on variation in the thermotolerance response from the clutch to population scale, and can help us anticipate the resilience of reptile embryos to extreme heating events. Copyright © 2014 Elsevier Ltd. All rights reserved.
Magnetite in Black Sea Turtles (Chelonia agassizi)
NASA Astrophysics Data System (ADS)
Fuentes, A.; Urrutia-Fucugauchi, J.; Garduño, V.; Sanchez, J.; Rizzi, A.
2004-12-01
Previous studies have reported experimental evidence for magnetoreception in marine turtles. In order to increase our knowledge about magnetoreception and biogenic mineralization, we have isolated magnetite particles from the brain of specimens of black sea turtles Chelonia agassizi. Our samples come from natural deceased organisms collected the reserve area of Colola Maruata in southern Mexico. The occurrence of magnetite particles in brain tissue of black sea turtles offers the opportunity for further studies to investigate possible function of ferrimagnetic material, its mineralogical composition, grain size, texture and its location and structural arrangement within the host tissue. After sample preparation and microscopic examination, we localized and identified the ultrafine unidimensional particles of magnetite by scanning electron microscope (SEM). Particles present grain sizes between 10.0 to 40.0Mm. Our study provides, for the first time, evidence for biogenic formation of this material in the black sea turtles. The ultrafine particles are apparently superparamagnetic. Preliminary results from rock magnetic measurements are also reported and correlated to the SEM observations. The black turtle story on the Michoacan coast is an example of formerly abundant resource which was utilized as a subsistence level by Nahuatl indigenous group for centuries, but which is collapsing because of intensive illegal commercial exploitation. The most important nesting and breeding grounds for the black sea turtle on any mainland shore are the eastern Pacific coastal areas of Maruata and Colola, in Michoacan. These beaches are characterized by important amounts of magnetic mineral (magnetites and titanomagnetites) mixed in their sediments.
Stewart, Kimberly; Mitchell, Mark A; Norton, Terry; Krecek, Rosina C
2012-12-01
Conservation programs to protect endangered sea turtles are being instituted worldwide. A common practice in these programs is to collect blood to evaluate the health of the turtles. Several different venipuncture sites are used to collect blood from sea turtles for hematologic and biochemistry tests, depending on the species. To date, it is unknown what affect venipuncture site may have on sample results. The purpose of this study was to measure the level of agreement between hematologic and biochemistry values collected from the dorsal cervical sinus and the interdigital vein of leatherback (Dermochelys coriacea) sea turtles. Paired heparinized blood samples were obtained from the dorsal cervical sinus and the interdigital vein of 12 adult female nesting leatherback sea turtles on Keys Beach, St. Kitts, West Indies. Even though the sample population was small, the data for each chemistry were normally distributed, except for creatine kinase (CK). There was no significant difference when comparing biochemistry or hematologic values by venipuncture site, except for CK (P = 0.02). The level of agreement between sampling sites was considered good for albumin, calcium, globulin, glucose, packed cell volume, phosphorus, potassium, sodium, total protein, total solids, uric acid, white blood cell count, and all of the individual white cell types, while the level of agreement for aspartate aminotransferase and CK were considered poor. This information, coupled with the fact that the interdigital vein affords a less-invasive procedure, demonstrates that the interdigital vein is an appropriate location to use when establishing a hematologic and biochemical profile for leatherback sea turtles.
Tedeschi, J N; Kennington, W J; Tomkins, J L; Berry, O; Whiting, S; Meekan, M G; Mitchell, N J
2016-01-13
The capacity of species to respond adaptively to warming temperatures will be key to their survival in the Anthropocene. The embryos of egg-laying species such as sea turtles have limited behavioural means for avoiding high nest temperatures, and responses at the physiological level may be critical to coping with predicted global temperature increases. Using the loggerhead sea turtle (Caretta caretta) as a model, we used quantitative PCR to characterise variation in the expression response of heat-shock genes (hsp60, hsp70 and hsp90; molecular chaperones involved in cellular stress response) to an acute non-lethal heat shock. We show significant variation in gene expression at the clutch and population levels for some, but not all hsp genes. Using pedigree information, we estimated heritabilities of the expression response of hsp genes to heat shock and demonstrated both maternal and additive genetic effects. This is the first evidence that the heat-shock response is heritable in sea turtles and operates at the embryonic stage in any reptile. The presence of heritable variation in the expression of key thermotolerance genes is necessary for sea turtles to adapt at a molecular level to warming incubation environments. © 2016 The Author(s).
Kennington, W. J.; Tomkins, J. L.; Berry, O.; Whiting, S.; Meekan, M. G.; Mitchell, N. J.
2016-01-01
The capacity of species to respond adaptively to warming temperatures will be key to their survival in the Anthropocene. The embryos of egg-laying species such as sea turtles have limited behavioural means for avoiding high nest temperatures, and responses at the physiological level may be critical to coping with predicted global temperature increases. Using the loggerhead sea turtle (Caretta caretta) as a model, we used quantitative PCR to characterise variation in the expression response of heat-shock genes (hsp60, hsp70 and hsp90; molecular chaperones involved in cellular stress response) to an acute non-lethal heat shock. We show significant variation in gene expression at the clutch and population levels for some, but not all hsp genes. Using pedigree information, we estimated heritabilities of the expression response of hsp genes to heat shock and demonstrated both maternal and additive genetic effects. This is the first evidence that the heat-shock response is heritable in sea turtles and operates at the embryonic stage in any reptile. The presence of heritable variation in the expression of key thermotolerance genes is necessary for sea turtles to adapt at a molecular level to warming incubation environments. PMID:26763709
Laloë, Jacques-Olivier; Cozens, Jacquie; Renom, Berta; Taxonera, Albert; Hays, Graeme C
2017-11-01
The study of temperature-dependent sex determination (TSD) in vertebrates has attracted major scientific interest. Recently, concerns for species with TSD in a warming world have increased because imbalanced sex ratios could potentially threaten population viability. In contrast, relatively little attention has been given to the direct effects of increased temperatures on successful embryonic development. Using 6603 days of sand temperature data recorded across 6 years at a globally important loggerhead sea turtle rookery-the Cape Verde Islands-we show the effects of warming incubation temperatures on the survival of hatchlings in nests. Incorporating published data (n = 110 data points for three species across 12 sites globally), we show the generality of relationships between hatchling mortality and incubation temperature and hence the broad applicability of our findings to sea turtles in general. We use a mechanistic approach supplemented by empirical data to consider the linked effects of warming temperatures on hatchling output and on sex ratios for these species that exhibit TSD. Our results show that higher temperatures increase the natural growth rate of the population as more females are produced. As a result, we project that numbers of nests at this globally important site will increase by approximately 30% by the year 2100. However, as incubation temperatures near lethal levels, the natural growth rate of the population decreases and the long-term survival of this turtle population is threatened. Our results highlight concerns for species with TSD in a warming world and underline the need for research to extend from a focus on temperature-dependent sex determination to a focus on temperature-linked hatchling mortalities. © 2017 John Wiley & Sons Ltd.
Vander Zanden, Hannah B.; Tucker, Anton D.; Hart, Kristen M.; Lamont, Margaret M.; Fujisaki, Ikuko; Addison, David S.; Mansfield, Katherine L.; Phillips, Katrina F.; Wunder, Michael B.; Bowen, Gabriel J.; Pajuelo, Mariela; Bolten, Alan B.; Bjorndal, Karen A.
2015-01-01
Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data. Migratory sea turtles regularly move between foraging and reproductive areas. Whereas most nesting populations can be easily accessed and regularly monitored, little is known about the demographic trends in foraging populations. The purpose of the present study was to examine migration patterns of loggerhead nesting aggregations in the Gulf of Mexico (GoM), where sea turtles have been historically understudied. Two methods of geographic assignment using stable isotope values in known-origin samples from satellite telemetry were compared: 1) a nominal approach through discriminant analysis and 2) a novel continuous-surface approach using bivariate carbon and nitrogen isoscapes (isotopic landscapes) developed for this study. Tissue samples for stable isotope analysis were obtained from 60 satellite-tracked individuals at five nesting beaches within the GoM. Both methodological approaches for assignment resulted in high accuracy of foraging area determination, though each has advantages and disadvantages. The nominal approach is more appropriate when defined boundaries are necessary, but up to 42% of the individuals could not be considered in this approach. All individuals can be included in the continuous-surface approach, and individual results can be aggregated to identify geographic hotspots of foraging area use, though the accuracy rate was lower than nominal assignment. The methodological validation provides a foundation for future sea turtle studies in the region to inexpensively determine geographic origin for large numbers of untracked individuals. Regular monitoring of sea turtle nesting aggregations with stable isotope sampling can be used to fill critical data gaps regarding habitat use and migration patterns. Probabilistic assignment to origin with isoscapes has not been previously used in the marine environment, but the methods presented here could also be applied to other migratory marine species.
Zanden, Hannah B Vander; Tucker, Anton D; Hart, Kristen M; Lamont, Margaret M; Fuisaki, Ikuko; Addison, David; Mansfield, Katherine L; Phillips, Katrina F; Wunder, Michael B; Bowen, Gabriel J; Pajuelo, Mariela; Bolten, Alan B; Bjorndal, Karen A
2015-03-01
Stable isotope analysis is a useful tool to track animal movements in both terrestrial and marine environments. These intrinsic markers are assimilated through the diet and may exhibit spatial gradients as a result of biogeochemical processes at the base of the food web. In the marine environment, maps to predict the spatial distribution of stable isotopes are limited, and thus determining geographic origin has been reliant upon integrating satellite telemetry and stable isotope data. Migratory sea turtles regularly move between foraging and reproductive areas. Whereas most nesting populations can be easily accessed and regularly monitored, little is known about the demographic trends in foraging populations. The purpose of the present study was to examine migration patterns of loggerhead nesting aggregations in the Gulf of Mexico (GoM), where sea turtles have been historically understudied. Two methods of geographic assignment using stable isotope values in known-origin samples from satellite telemetry were compared: (1) a nominal approach through discriminant analysis and (2) a novel continuous-surface approach using bivariate carbon and nitrogen isoscapes (isotopic landscapes) developed for this study. Tissue samples for stable isotope analysis were obtained from 60 satellite-tracked individuals at five nesting beaches within the GoM. Both methodological approaches for assignment resulted in high accuracy of foraging area determination, though each has advantages and disadvantages. The nominal approach is more appropriate when defined boundaries are necessary, but up to 42% of the individuals could not be considered in this approach. All individuals can be included in the continuous-surface approach, and individual results can be aggregated to identify geographic hotspots of foraging area use, though the accuracy rate was lower than nominal assignment. The methodological validation provides a foundation for future sea turtle studies in the region to inexpensively determine geographic origin for large numbers of untracked individuals. Regular monitoring of sea turtle nesting aggregations with stable isotope sampling can be used to fill critical data gaps regarding habitat use and migration patterns. Probabilistic assignment to origin with isoscapes has not been previously used in the marine environment, but the methods presented here could also be applied to other migratory marine species.
Dispersal, recruitment and migratory behaviour in a hawksbill sea turtle aggregation.
Velez-Zuazo, Ximena; Ramos, Willy D; van Dam, Robert P; Diez, Carlos E; Abreu-Grobois, Alberto; McMillan, W Owen
2008-02-01
We investigated the dispersal, recruitment and migratory behaviour of the hawksbill sea turtle (Eretmochelys imbricata), among different life-history stages and demographic segments of the large hawksbill turtle aggregation at Mona Island, Puerto Rico. There were significant differences in both mitochondrial DNA (mtDNA) haplotype diversity and haplotype frequencies among the adult males, females and juveniles examined, but little evidence for temporal heterogeneity within these same groups sampled across years. Consistent with previous studies and the hypothesis of strong natal homing, there were striking mtDNA haplotype differences between nesting females on Mona Island and nesting females in other major Caribbean rookeries. Breeding males also showed strong, albeit weaker, genetic evidence of natal homing. Overall, Bayesian mixed-stock analysis suggests that Mona Island was the natal rookery for 79% (65-94%) of males in the aggregation. In contrast, the Mona Island rookery accounted for only a small subset of the new juvenile recruits to the foraging grounds or in the population of older juvenile hawksbills turtles on Mona. Instead, both new recruits and the older juvenile hawksbill turtles on Mona more likely recruited from other Caribbean rookeries, suggesting that a mechanism besides natal homing must be influencing recruitment to feeding habitats. The difference in the apparent degree of natal homing behaviour among the different life-history stages of hawksbill turtles at Mona Island underscores the complexity of the species' life-history dynamics and highlights the need for both local and regional conservation efforts.
Hernández-Fernández, Javier
2017-12-01
The hawksbill sea turtle, Eretmochelys imbricata, is an endangered species of the Caribbean Colombian coast due to anthropic and natural factors that have decreased their population levels. Little is known about the genes that are involved in their immune system, sex determination, aging and others important functions. The data generated represents RNA sequencing and the first de-novo assembly of transcripts expressed in the blood of the hawksbill sea turtle. The raw FASTQ files were deposited in the NCBI SRA database with accession number SRX2653641. A total of 5.7 Gb raw sequence data were obtained, corresponding to 47,555,108 raw reads. Trinity was used to perform a first de-novo assembly, and we were able to identify 47,586 transcripts of the female hawksbill turtle transcriptome with an N50 of 1100 bp. The obtained transcriptome data will be useful for further studies of the physiology, biochemistry and evolution in this species.
The effect of thermal variance on the phenotype of marine turtle offspring.
Horne, C R; Fuller, W J; Godley, B J; Rhodes, K A; Snape, R; Stokes, K L; Broderick, A C
2014-01-01
Temperature can have a profound effect on the phenotype of reptilian offspring, yet the bulk of current research considers the effects of constant incubation temperatures on offspring morphology, with few studies examining the natural thermal variance that occurs in the wild. Over two consecutive nesting seasons, we placed temperature data loggers in 57 naturally incubating clutches of loggerhead sea turtles Caretta caretta and found that greater diel thermal variance during incubation significantly reduced offspring mass, potentially reducing survival of hatchlings during their journey from the nest to offshore waters and beyond. With predicted scenarios of climate change, behavioral plasticity in nest site selection may be key for the survival of ectothermic species, particularly those with temperature-dependent sex determination.
Avise, J C; Nelson, W S; Bowen, B W; Walker, D
2000-11-01
Sooty tern (Sterna fuscata) rookeries are scattered throughout the tropical oceans. When not nesting, individuals wander great distances across open seas, but, like many other seabirds, they tend to be site-faithful to nesting locales in successive years. Here we examine the matrilineal history of sooty terns on a global scale. Assayed colonies within an ocean are poorly differentiated in mitochondrial DNA sequence, a result indicating tight historical ties. However, a shallow genealogical partition distinguishes Atlantic from Indo-Pacific rookeries. Phylogeographic patterns in the sooty tern are compared to those in other colonially nesting seabirds, as well as in the green turtle (Chelonia mydas), an analogue of tropical seabirds in some salient aspects of natural history. Phylogeographic structure within an ocean is normally weak in seabirds, unlike the pronounced matrilineal structure in green turtles. However, the phylogeographic partition between Atlantic and Indo-Pacific rookeries in sooty terns mirrors, albeit in shallower evolutionary time, the major matrilineal subdivision in green turtles. Thus, global geology has apparently influenced historical gene movements in these two circumtropical species.
The Maternal Legacy: Female Identity Predicts Offspring Sex Ratio in the Loggerhead Sea Turtle.
Reneker, Jaymie L; Kamel, Stephanie J
2016-07-01
In organisms with temperature-dependent sex determination, the incubation environment plays a key role in determining offspring sex ratios. Given that global temperatures have warmed approximately 0.6 °C in the last century, it is necessary to consider how organisms will adjust to climate change. To better understand the degree to which mothers influence the sex ratios of their offspring, we use 24 years of nesting data for individual female loggerhead sea turtles (Caretta caretta) observed on Bald Head Island, North Carolina. We find that maternal identity is the best predictor of nest sex ratio in univariate and multivariate predictive models. We find significant variability in estimated nest sex ratios among mothers, but a high degree of consistency within mothers, despite substantial spatial and temporal thermal variation. Our results suggest that individual differences in nesting preferences are the main driver behind divergences in nest sex ratios. As such, a female's ability to plastically adjust her nest sex ratios in response to environmental conditions is constrained, potentially limiting how individuals behaviorally mitigate the effects of environmental change. Given that many loggerhead populations already show female-biased offspring sex ratios, understanding maternal behavioral responses is critical for predicting the future of long-lived species vulnerable to extinction.
The Maternal Legacy: Female Identity Predicts Offspring Sex Ratio in the Loggerhead Sea Turtle
Reneker, Jaymie L.; Kamel, Stephanie J.
2016-01-01
In organisms with temperature-dependent sex determination, the incubation environment plays a key role in determining offspring sex ratios. Given that global temperatures have warmed approximately 0.6 °C in the last century, it is necessary to consider how organisms will adjust to climate change. To better understand the degree to which mothers influence the sex ratios of their offspring, we use 24 years of nesting data for individual female loggerhead sea turtles (Caretta caretta) observed on Bald Head Island, North Carolina. We find that maternal identity is the best predictor of nest sex ratio in univariate and multivariate predictive models. We find significant variability in estimated nest sex ratios among mothers, but a high degree of consistency within mothers, despite substantial spatial and temporal thermal variation. Our results suggest that individual differences in nesting preferences are the main driver behind divergences in nest sex ratios. As such, a female’s ability to plastically adjust her nest sex ratios in response to environmental conditions is constrained, potentially limiting how individuals behaviorally mitigate the effects of environmental change. Given that many loggerhead populations already show female-biased offspring sex ratios, understanding maternal behavioral responses is critical for predicting the future of long-lived species vulnerable to extinction. PMID:27363786
Carreras, Carlos; Pascual, Marta; Tomás, Jesús; Marco, Adolfo; Hochscheid, Sandra; Castillo, Juan José; Gozalbes, Patricia; Parga, Mariluz; Piovano, Susanna; Cardona, Luis
2018-01-23
The colonisation of new suitable habitats is crucial for species survival at evolutionary scale under changing environmental conditions. However, colonisation potential may be limited by philopatry that facilitates exploiting successful habitats across generations. We examine the mechanisms of long distance dispersal of the philopatric loggerhead sea turtle (Caretta caretta) by analysing 40 sporadic nesting events in the western Mediterranean. The analysis of a fragment of the mitochondrial DNA and 7 microsatellites of 121 samples from 18 of these nesting events revealed that these nests were colonising events associated with juveniles from distant populations feeding in nearby foraging grounds. Considering the temperature-dependent sex determination of the species, we simulated the effect of the incubation temperature and propagule pressure on a potential colonisation scenario. Our results indicated that colonisation will succeed if warm temperature conditions, already existing in some of the beaches in the area, extend to the whole western Mediterranean. We hypothesize that the sporadic nesting events in developmental foraging grounds may be a mechanism to overcome philopatry limitations thus increasing the dispersal capabilities of the species and the adaptability to changing environments. Sporadic nesting in the western Mediterranean can be viewed as potential new populations in a scenario of rising temperatures.
Sartain-Iverson, Autumn R.; Hart, Kristen M.; Fujisaki, Ikuko; Cherkiss, Michael S.; Pollock, Clayton; Lundgren, Ian; Hillis-Starr, Zandy
2016-01-01
Hawksbill sea turtles (Eretmochelys imbricata) are circumtropically distributed and listed as Critically Endangered by the IUCN (Meylan & Donnelly 1999; NMFS & USFWS 1993). To aid in population recovery and protection, the Hawksbill Recovery Plan identified the need to determine demographic information for hawksbills, such as distribution, abundance, seasonal movements, foraging areas (sections 121 and 2211), growth rates, and survivorship (section 2213, NMFS & USFWS 1993). Mark-recapture analyses are helpful in estimating demographic parameters and have been used for hawksbills throughout the Caribbean (e.g., Richardson et al. 1999; Velez-Zuazo et al. 2008); integral to these studies are recaptures at the nesting site as well as remigration interval estimates (Hays 2000). Estimates of remigration intervals (the duration between nesting seasons) are critical to marine turtle population estimates and measures of nesting success (Hays 2000; Richardson et al. 1999). Although hawksbills in the Caribbean generally show natal philopatry and nesting-site fidelity (Bass et al. 1996; Bowen et al. 2007), exceptions to this have been observed for hawksbills and other marine turtles (Bowen & Karl 2007; Diamond 1976; Esteban et al. 2015; Hart et al. 2013). This flexibility in choosing a nesting beach could therefore affect the apparent remigration interval and subsequently, region-wide population counts.
Factors affecting hatch success of hawksbill sea turtles on Long Island, Antigua, West Indies.
Ditmer, Mark Allan; Stapleton, Seth Patrick
2012-01-01
Current understanding of the factors influencing hawksbill sea turtle (Eretmochelys imbricata) hatch success is disparate and based on relatively short-term studies or limited sample sizes. Because global populations of hawksbills are heavily depleted, evaluating the parameters that impact hatch success is important to their conservation and recovery. Here, we use data collected by the Jumby Bay Hawksbill Project (JBHP) to investigate hatch success. The JBHP implements saturation tagging protocols to study a hawksbill rookery in Antigua, West Indies. Habitat data, which reflect the varied nesting beaches, are collected at egg deposition, and nest contents are exhumed and categorized post-emergence. We analyzed hatch success using mixed-model analyses with explanatory and predictive datasets. We incorporated a random effect for turtle identity and evaluated environmental, temporal and individual-based reproductive variables. Hatch success averaged 78.6% (SD: 21.2%) during the study period. Highly supported models included multiple covariates, including distance to vegetation, deposition date, individual intra-seasonal nest number, clutch size, organic content, and sand grain size. Nests located in open sand were predicted to produce 10.4 more viable hatchlings per clutch than nests located >1.5 m into vegetation. For an individual first nesting in early July, the fourth nest of the season yielded 13.2 more viable hatchlings than the initial clutch. Generalized beach section and inter-annual variation were also supported in our explanatory dataset, suggesting that gaps remain in our understanding of hatch success. Our findings illustrate that evaluating hatch success is a complex process, involving multiple environmental and individual variables. Although distance to vegetation and hatch success were inversely related, vegetation is an important component of hawksbill nesting habitat, and a more complete assessment of the impacts of specific vegetation types on hatch success and hatchling sex ratios is needed. Future research should explore the roles of sand structure, nest moisture, and local weather conditions.
Factors Affecting Hatch Success of Hawksbill Sea Turtles on Long Island, Antigua, West Indies
Ditmer, Mark Allan; Stapleton, Seth Patrick
2012-01-01
Current understanding of the factors influencing hawksbill sea turtle (Eretmochelys imbricata) hatch success is disparate and based on relatively short-term studies or limited sample sizes. Because global populations of hawksbills are heavily depleted, evaluating the parameters that impact hatch success is important to their conservation and recovery. Here, we use data collected by the Jumby Bay Hawksbill Project (JBHP) to investigate hatch success. The JBHP implements saturation tagging protocols to study a hawksbill rookery in Antigua, West Indies. Habitat data, which reflect the varied nesting beaches, are collected at egg deposition, and nest contents are exhumed and categorized post-emergence. We analyzed hatch success using mixed-model analyses with explanatory and predictive datasets. We incorporated a random effect for turtle identity and evaluated environmental, temporal and individual-based reproductive variables. Hatch success averaged 78.6% (SD: 21.2%) during the study period. Highly supported models included multiple covariates, including distance to vegetation, deposition date, individual intra-seasonal nest number, clutch size, organic content, and sand grain size. Nests located in open sand were predicted to produce 10.4 more viable hatchlings per clutch than nests located >1.5 m into vegetation. For an individual first nesting in early July, the fourth nest of the season yielded 13.2 more viable hatchlings than the initial clutch. Generalized beach section and inter-annual variation were also supported in our explanatory dataset, suggesting that gaps remain in our understanding of hatch success. Our findings illustrate that evaluating hatch success is a complex process, involving multiple environmental and individual variables. Although distance to vegetation and hatch success were inversely related, vegetation is an important component of hawksbill nesting habitat, and a more complete assessment of the impacts of specific vegetation types on hatch success and hatchling sex ratios is needed. Future research should explore the roles of sand structure, nest moisture, and local weather conditions. PMID:22802928
Ehsanpour, Maryam; Afkhami, Majid; Khoshnood, Reza; Reich, Kimberly J
2014-06-01
This study was conducted to determine trace metal concentrations (Cd, Cu, Zn, Pb and Hg) in blood and three egg fractions from Eretmochelys imbricata nesting on Qeshm Island in Iran. The results showed detectable levels of all analytes in all fractions. Pb and Hg were detectable in the blood and eggs, reflecting a maternal transfer. With the exception of Cu and Pb, analyzed elements in eggs were concentrated in yolk. Only Zn in blood had a significant correlation with the body size and weight (p < 0.01). It appears that Hawksbill sea turtles can regulate Zn concentrations through homeostatic processes to balance metabolic requirements. The relatively low concentrations of metals in blood support the knowledge that E. imbricata feed mainly on the low trophic levels. All essential and non-essential elements were detectable in blood and in eggs of the hawksbill, reflecting a maternal transfer. Consequently, movement patterns, home ranges of foraging grounds, and availability of food could explain variations in trace element concentrations among female turtles.
Orientation behaviour of leatherback sea turtles within the North Atlantic subtropical gyre
Dodge, Kara L.; Galuardi, Benjamin; Lutcavage, Molly E.
2015-01-01
Leatherback sea turtles (Dermochelys coriacea) travel thousands of kilometres between temperate feeding and tropical breeding/over-wintering grounds, with adult turtles able to pinpoint specific nesting beaches after multi-year absences. Their extensive migrations often occur in oceanic habitat where limited known sensory information is available to aid in orientation. Here, we examined the migratory orientation of adult male, adult female and subadult leatherbacks during their open-ocean movements within the North Atlantic subtropical gyre by analysing satellite-derived tracks from fifteen individuals over a 2-year period. To determine the turtles' true headings, we corrected the reconstructed tracks for current drift and found negligible differences between current-corrected and observed tracks within the gyre. Individual leatherback headings were remarkably consistent throughout the subtropical gyre, with turtles significantly oriented to the south-southeast. Adult leatherbacks of both sexes maintained similar mean headings and showed greater orientation precision overall. The consistent headings maintained by adult and subadult leatherbacks within the gyre suggest use of a common compass sense. PMID:25761714
Gaspar, Philippe; Lalire, Maxime
2017-01-01
Oceanic currents are known to broadly shape the dispersal of juvenile sea turtles during their pelagic stage. Accordingly, simple passive drift models are widely used to investigate the distribution at sea of various juvenile sea turtle populations. However, evidence is growing that juveniles do not drift purely passively but also display some swimming activity likely directed towards favorable habitats. We therefore present here a novel Sea Turtle Active Movement Model (STAMM) in which juvenile sea turtles actively disperse under the combined effects of oceanic currents and habitat-driven movements. This model applies to all sea turtle species but is calibrated here for leatherback turtles (Dermochelys coriacea). It is first tested in a simulation of the active dispersal of juveniles originating from Jamursba-Medi, a main nesting beach of the western Pacific leatherback population. Dispersal into the North Pacific Ocean is specifically investigated. Simulation results demonstrate that, while oceanic currents broadly shape the dispersal area, modeled habitat-driven movements strongly structure the spatial and temporal distribution of juveniles within this area. In particular, these movements lead juveniles to gather in the North Pacific Transition Zone (NPTZ) and to undertake seasonal north-south migrations. More surprisingly, juveniles in the NPTZ are simulated to swim mostly towards west which considerably slows down their progression towards the American west coast. This increases their residence time, and hence the risk of interactions with fisheries, in the central and eastern part of the North Pacific basin. Simulated habitat-driven movements also strongly reduce the risk of cold-induced mortality. This risk appears to be larger among the juveniles that rapidly circulate into the Kuroshio than among those that first drift into the North Equatorial Counter Current (NECC). This mechanism might induce marked interannual variability in juvenile survival as the strength and position of the NECC are directly linked to El Niño activity.
Lalire, Maxime
2017-01-01
Oceanic currents are known to broadly shape the dispersal of juvenile sea turtles during their pelagic stage. Accordingly, simple passive drift models are widely used to investigate the distribution at sea of various juvenile sea turtle populations. However, evidence is growing that juveniles do not drift purely passively but also display some swimming activity likely directed towards favorable habitats. We therefore present here a novel Sea Turtle Active Movement Model (STAMM) in which juvenile sea turtles actively disperse under the combined effects of oceanic currents and habitat-driven movements. This model applies to all sea turtle species but is calibrated here for leatherback turtles (Dermochelys coriacea). It is first tested in a simulation of the active dispersal of juveniles originating from Jamursba-Medi, a main nesting beach of the western Pacific leatherback population. Dispersal into the North Pacific Ocean is specifically investigated. Simulation results demonstrate that, while oceanic currents broadly shape the dispersal area, modeled habitat-driven movements strongly structure the spatial and temporal distribution of juveniles within this area. In particular, these movements lead juveniles to gather in the North Pacific Transition Zone (NPTZ) and to undertake seasonal north-south migrations. More surprisingly, juveniles in the NPTZ are simulated to swim mostly towards west which considerably slows down their progression towards the American west coast. This increases their residence time, and hence the risk of interactions with fisheries, in the central and eastern part of the North Pacific basin. Simulated habitat-driven movements also strongly reduce the risk of cold-induced mortality. This risk appears to be larger among the juveniles that rapidly circulate into the Kuroshio than among those that first drift into the North Equatorial Counter Current (NECC). This mechanism might induce marked interannual variability in juvenile survival as the strength and position of the NECC are directly linked to El Niño activity. PMID:28746389
Stewart, Kelly R.; Dutton, Peter H.
2014-01-01
For vertebrates with temperature-dependent sex determination, primary (or hatchling) sex ratios are often skewed, an issue of particular relevance to concerns over effects of climate change on populations. However, the ratio of breeding males to females, or the operational sex ratio (OSR), is important to understand because it has consequences for population demographics and determines the capacity of a species to persist. The OSR also affects mating behaviors and mate choice, depending on the more abundant sex. For sea turtles, hatchling and juvenile sex ratios are generally female-biased, and with warming nesting beach temperatures, there is concern that populations may become feminized. Our purpose was to evaluate the breeding sex ratio for leatherback turtles at a nesting beach in St. Croix, USVI. In 2010, we sampled nesting females and later sampled their hatchlings as they emerged from nests. Total genomic DNA was extracted and all individuals were genotyped using 6 polymorphic microsatellite markers. We genotyped 662 hatchlings from 58 females, matching 55 females conclusively to their nests. Of the 55, 42 females mated with one male each, 9 mated with 2 males each and 4 mated with at least 3 males each, for a multiple paternity rate of 23.6%. Using GERUD1.0, we reconstructed parental genotypes, identifying 47 different males and 46 females for an estimated breeding sex ratio of 1.02 males for every female. Thus we demonstrate that there are as many actively breeding males as females in this population. Concerns about female-biased adult sex ratios may be premature, and mate choice or competition may play more of a role in sea turtle reproduction than previously thought. We recommend monitoring breeding sex ratios in the future to allow the integration of this demographic parameter in population models. PMID:24505403
Body temperature stability achieved by the large body mass of sea turtles.
Sato, Katsufumi
2014-10-15
To investigate the thermal characteristics of large reptiles living in water, temperature data were continuously recorded from 16 free-ranging loggerhead turtles, Caretta caretta, during internesting periods using data loggers. Core body temperatures were 0.7-1.7°C higher than ambient water temperatures and were kept relatively constant. Unsteady numerical simulations using a spherical thermodynamic model provided mechanistic explanations for these phenomena, and the body temperature responses to fluctuating water temperature can be simply explained by a large body mass with a constant thermal diffusivity and a heat production rate rather than physiological thermoregulation. By contrast, body temperatures increased 2.6-5.1°C in 107-152 min during their emergences to nest on land. The estimated heat production rates on land were 7.4-10.5 times the calculated values in the sea. The theoretical prediction that temperature difference between body and water temperatures would increase according to the body size was confirmed by empirical data recorded from several species of sea turtles. Comparing previously reported data, the internesting intervals of leatherback, green and loggerhead turtles were shorter when the body temperatures were higher. Sea turtles seem to benefit from a passive thermoregulatory strategy, which depends primarily on the physical attributes of their large body masses. © 2014. Published by The Company of Biologists Ltd.
Three millennia of human and sea turtle interactions in Remote Oceania
NASA Astrophysics Data System (ADS)
Allen, M. S.
2007-12-01
Sea turtles are one of the largest vertebrates in the shallow water ecosystems of Remote Oceania, occurring in both sea grass pastures and on coral reefs. Their functional roles, however, over ecological and evolutionary times scales are not well known, in part because their numbers have been so drastically reduced. Ethnographic and archaeological data is analysed to assess long-term patterns of human sea turtle interactions (mainly green and hawksbill) prior to western contact and the magnitude of turtle losses in this region. From the ethnographic data two large-scale patterns emerge, societies where turtle capture and consumption was controlled by chiefs and priests versus those where control over turtle was more flexible and consumption more egalitarian. Broadly the distinction is between societies on high (volcanic and raised coral) islands versus atolls, but the critical variables are the ratio of land to shallow marine environments, combined with the availability of refugia. Archaeological evidence further highlights differences in the rate and magnitude of turtle losses across these two island types, with high islands suffering both large and rapid declines while those on atolls are less marked. These long-term historical patterns help explain the ethnographic endpoints, with areas that experienced greater losses apparently developing more restrictive social controls over time. Finally, if current turtle migration patterns held in the past, with annual movements between western foraging grounds and eastern nesting beaches, then intensive harvesting from 2,800 Before Present in West Polynesia probably affected turtle abundance and coral reef ecology in East Polynesia well before the actual arrival of human settlers, the latter a process that most likely began 1,400 years later.
An odyssey of the green sea turtle: Ascension Island revisited
Bowen, Brian W.; Meylan, Anne B.; Avise, John C.
1989-01-01
Green turtles (Chelonia mydas) that nest on Ascension Island, in the south-central Atlantic, utilize feeding grounds along the coast of Brazil, more than 2000 km away. To account for the origins of this remarkable migratory behavior, Carr and Coleman [Carr, A. & Coleman, P. J. (1974) Nature (London) 249, 128-130] proposed a vicariant biogeographic scenario involving plate tectonics and natal homing. Under the Carr-Coleman hypothesis, the ancestors of Ascension Island green turtles nested on islands adjacent to South America in the late Cretaceous, soon after the opening of the equatorial Atlantic Ocean. Over the last 70 million years, these volcanic islands have been displaced from South America by sea-floor spreading, at a rate of about 2 cm/year. A population-specific instinct to migrate to Ascension Island is thus proposed to have evolved gradually over tens of millions of years of genetic isolation. Here we critically test the Carr-Coleman hypothesis by assaying genetic divergence among several widely separated green turtle rookeries. We have found fixed or nearly fixed mitochondrial DNA (mtDNA) restriction site differences between some Atlantic rookeries, suggesting a severe restriction on contemporary gene flow. Data are consistent with a natal homing hypothesis. However, an extremely close similarity in overall mtDNA sequences of surveyed Atlantic green turtles from three rookeries is incompatible with the Carr-Coleman scenario. The colonization of Ascension Island, or at least extensive gene flow into the population, has been evolutionarily recent. Images PMID:16594013
Conceptual Model Development for Sea Turtle Nesting Habitat: Support for USACE Navigation Projects
2015-08-01
regional values. • Beach Width: The width of the beach (m) defines the region from the shoreline to the dune toe . Loggerhead turtles tend to prefer...primary drivers of the model parameters. • Beach Elevation: Beach elevation (m) is measured from the shoreline to the dune toe . Elevation influences...mapping, and morphological features in combination with imagery-derived environmental parameters (i.e., dune vegetation) have not been attempted
Stable isotopic comparison between loggerhead sea turtle tissues.
Vander Zanden, Hannah B; Tucker, Anton D; Bolten, Alan B; Reich, Kimberly J; Bjorndal, Karen A
2014-10-15
Stable isotope analysis has been used extensively to provide ecological information about diet and foraging location of many species. The difference in isotopic composition between animal tissue and its diet, or the diet-tissue discrimination factor, varies with tissue type. Therefore, direct comparisons between isotopic values of tissues are inaccurate without an appropriate conversion factor. We focus on the loggerhead sea turtle (Caretta caretta), for which a variety of tissues have been used to examine diet, habitat use, and migratory origin through stable isotope analysis. We calculated tissue-to-tissue conversions between two commonly sampled tissues. Epidermis and scute (the keratin covering on the carapace) were sampled from 33 adult loggerheads nesting at two beaches in Florida (Casey Key and Canaveral National Seashore). Carbon and nitrogen stable isotope ratios were measured in the epidermis and the youngest portion of the scute tissue, which reflect the isotopic composition of the diet and habitat over similar time periods of the order of several months. Significant linear relationships were observed between the δ(13)C and δ(15)N values of these two tissues, indicating they can be converted reliably. Whereas both epidermis and scute samples are commonly sampled from nesting sea turtles to study trophic ecology and habitat use, the data from these studies have not been comparable without reliable tissue-to-tissue conversions. The equations provided here allow isotopic datasets using the two tissues to be combined in previously published and subsequent studies of sea turtle foraging ecology and migratory movement. In addition, we recommend that future isotopic comparisons between tissues of any organism utilize linear regressions to calculate tissue-to-tissue conversions. Copyright © 2014 John Wiley & Sons, Ltd.
Bjorndal, Karen A.; Schroeder, Barbara A.; Foley, Allen M.; Witherington, Blair E.; Bresette, Michael; Clark, David; Herren, Richard M.; Arendt, Michael D.; Schmid, Jeffrey R.; Meylan, Anne B.; Meylan, Peter A.; Provancha, Jane A.; Hart, Kristen M.; Lamont, Margaret M.; Carthy, Raymond R.; Bolten, Alan B.
2013-01-01
In response to a call from the US National Research Council for research programs to combine their data to improve sea turtle population assessments, we analyzed somatic growth data for Northwest Atlantic (NWA) loggerhead sea turtles (Caretta caretta) from 10 research programs. We assessed growth dynamics over wide ranges of geography (9–33°N latitude), time (1978–2012), and body size (35.4–103.3 cm carapace length). Generalized additive models revealed significant spatial and temporal variation in growth rates and a significant decline in growth rates with increasing body size. Growth was more rapid in waters south of the USA (<24°N) than in USA waters. Growth dynamics in southern waters in the NWA need more study because sample size was small. Within USA waters, the significant spatial effect in growth rates of immature loggerheads did not exhibit a consistent latitudinal trend. Growth rates declined significantly from 1997 through 2007 and then leveled off or increased. During this same interval, annual nest counts in Florida declined by 43 % (Witherington et al. in Ecol Appl 19:30–54, 2009) before rebounding. Whether these simultaneous declines reflect responses in productivity to a common environmental change should be explored to determine whether somatic growth rates can help interpret population trends based on annual counts of nests or nesting females. Because of the significant spatial and temporal variation in growth rates, population models of NWA loggerheads should avoid employing growth data from restricted spatial or temporal coverage to calculate demographic metrics such as age at sexual maturity.
The anti-predator role of within-nest emergence synchrony in sea turtle hatchlings.
Santos, Robson G; Pinheiro, Hudson Tercio; Martins, Agnaldo Silva; Riul, Pablo; Bruno, Soraya Christina; Janzen, Fredric J; Ioannou, Christos C
2016-07-13
Group formation is a common behaviour among prey species. In egg-laying animals, despite the various factors that promote intra-clutch variation leading to asynchronous hatching and emergence from nests, synchronous hatching and emergence occurs in many taxa. This synchrony may be adaptive by reducing predation risk, but few data are available in any natural system, even for iconic examples of the anti-predator function of group formation. Here, we show for the first time that increased group size (number of hatchlings emerging together from a nest) reduces green turtle (Chelonia mydas) hatchling predation. This effect was only observed earlier in the night when predation pressure was greatest, indicated by the greatest predator abundance and a small proportion of predators preoccupied with consuming captured prey. Further analysis revealed that the effect of time of day was due to the number of hatchlings already killed in an evening; this, along with the apparent lack of other anti-predatory mechanisms for grouping, suggests that synchronous emergence from a nest appears to swamp predators, resulting in an attack abatement effect. Using a system with relatively pristine conditions for turtle hatchlings and their predators provides a more realistic environmental context within which intra-nest synchronous emergence has evolved. © 2016 The Author(s).
Sarmiento-Ramírez, Jullie M; Abella, Elena; Martín, María P; Tellería, María T; López-Jurado, Luis F; Marco, Adolfo; Diéguez-Uribeondo, Javier
2010-11-01
The fungus Fusarium solani (Mart.) Saccardo (1881) was found to be the cause of infections in the eggs of the sea turtle species Caretta caretta in Boavista Island, Cape Verde. Egg shells with early and severe symptoms of infection, as well as diseased embryos were sampled from infected nests. Twenty-five isolates with similar morphological characteristics were obtained. Their ITS rRNA gene sequences were similar to the GenBank sequences corresponding to F. solani and their maximum identity ranged from 95% to 100%. Phylogenetic parsimony and Bayesian analyses of these isolates showed that they belong to a single F. solani clade and that they are distributed in two subclades named A and C (the latter containing 23 out of 25). A representative isolate of subclade C was used in challenge inoculation experiments to test Koch postulates. Mortality rates were c. 83.3% in challenged eggs and 8.3% in the control. Inoculated challenged eggs exhibited the same symptoms as infected eggs found in the field. Thus, this work demonstrates that a group of strains of F. solani are responsible for the symptoms observed on turtle-nesting beaches, and that they represent a risk for the survival of this endangered species. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Schärer, Michelle T
2003-06-01
Epibiotic organisms inhabiting non-nesting hawksbill sea turtles, Eretmochelys imbricata (Linnaeus, 1766), are described from Mona and Monito Islands, Puerto Rico. Epibiont samples from 105 turtles of shallow (< 40 m) water foraging habitats were collected and identified to the lowest possible taxon. This epibiotic assemblage consisting of at least 4 algal functional groups and 12 animal phyla represents the greatest phylogenetic diversity for marine turtle epibiota. Six groups are considered new reports for marine turtles. Most epibiont colonization was found on posterior marginal scutes and under overlapping scutes. Ecological attributes of epibiota and their symbiosis with E. imbricata provide a tool to understand basi and epibiont populations.
Biochemical indices and life traits of loggerhead turtles (Caretta caretta) from Cape Verde Islands.
Vieira, Sara; Martins, Samir; Hawkes, Lucy A; Marco, Adolfo; Teodósio, M Alexandra
2014-01-01
The loggerhead turtle (Caretta caretta) is an endangered marine reptile for whom assessing population health requires knowledge of demographic parameters such as individual growth rate. In Cape Verde, as within several populations, adult female loggerhead sea turtles show a size-related behavioral and trophic dichotomy. While smaller females are associated with oceanic habitats, larger females tend to feed in neritic habitats, which is reflected in their physiological condition and in their offspring. The ratio of RNA/DNA provides a measure of cellular protein synthesis capacity, which varies depending on changes in environmental conditions such as temperature and food availability. The purpose of this study was to evaluate the combined use of morphometric data and biochemical indices as predictors of the physiological condition of the females of distinct sizes and hatchlings during their nesting season and how temperature may influence the physiological condition on the offspring. Here we employed biochemical indices based on nucleic acid derived indices (standardized RNA/DNA ratio-sRD, RNA concentration and DNA concentration) in skin tissue as a potential predictor of recent growth rate in nesting females and hatchling loggerhead turtles. Our major findings were that the physiological condition of all nesting females (sRD) decreased during the nesting season, but that females associated with neritic habitats had a higher physiological condition than females associated with oceanic habitats. In addition, the amount of time required for a hatchling to right itself was negatively correlated with its physiological condition (sRD) and shaded nests produced hatchlings with lower sRD. Overall, our results showed that nucleic acid concentrations and ratios of RNA to DNA are an important tool as potential biomarkers of recent growth in marine turtles. Hence, as biochemical indices of instantaneous growth are likely temperature-, size- and age-dependent, the utility and validation of these indices on marine turtles stocks deserves further study.
Biochemical Indices and Life Traits of Loggerhead Turtles (Caretta caretta) from Cape Verde Islands
Vieira, Sara; Martins, Samir; Hawkes, Lucy A.; Marco, Adolfo; Teodósio, M. Alexandra
2014-01-01
The loggerhead turtle (Caretta caretta) is an endangered marine reptile for whom assessing population health requires knowledge of demographic parameters such as individual growth rate. In Cape Verde, as within several populations, adult female loggerhead sea turtles show a size-related behavioral and trophic dichotomy. While smaller females are associated with oceanic habitats, larger females tend to feed in neritic habitats, which is reflected in their physiological condition and in their offspring. The ratio of RNA/DNA provides a measure of cellular protein synthesis capacity, which varies depending on changes in environmental conditions such as temperature and food availability. The purpose of this study was to evaluate the combined use of morphometric data and biochemical indices as predictors of the physiological condition of the females of distinct sizes and hatchlings during their nesting season and how temperature may influence the physiological condition on the offspring. Here we employed biochemical indices based on nucleic acid derived indices (standardized RNA/DNA ratio-sRD, RNA concentration and DNA concentration) in skin tissue as a potential predictor of recent growth rate in nesting females and hatchling loggerhead turtles. Our major findings were that the physiological condition of all nesting females (sRD) decreased during the nesting season, but that females associated with neritic habitats had a higher physiological condition than females associated with oceanic habitats. In addition, the amount of time required for a hatchling to right itself was negatively correlated with its physiological condition (sRD) and shaded nests produced hatchlings with lower sRD. Overall, our results showed that nucleic acid concentrations and ratios of RNA to DNA are an important tool as potential biomarkers of recent growth in marine turtles. Hence, as biochemical indices of instantaneous growth are likely temperature-, size- and age-dependent, the utility and validation of these indices on marine turtles stocks deserves further study. PMID:25390348
Chapter 2. Vulnerability of marine turtles to climate change.
Poloczanska, Elvira S; Limpus, Colin J; Hays, Graeme C
2009-01-01
Marine turtles are generally viewed as vulnerable to climate change because of the role that temperature plays in the sex determination of embryos, their long life history, long age-to-maturity and their highly migratory nature. Extant species of marine turtles probably arose during the mid-late Jurassic period (180-150 Mya) so have survived past shifts in climate, including glacial periods and warm events and therefore have some capacity for adaptation. The present-day rates of increase of atmospheric greenhouse gas concentrations, and associated temperature changes, are very rapid; the capacity of marine turtles to adapt to this rapid change may be compromised by their relatively long generation times. We consider the evidence and likely consequences of present-day trends of climate change on marine turtles. Impacts are likely to be complex and may be positive as well as negative. For example, rising sea levels and increased storm intensity will negatively impact turtle nesting beaches; however, extreme storms can also lead to coastal accretion. Alteration of wind patterns and ocean currents will have implications for juveniles and adults in the open ocean. Warming temperatures are likely to impact directly all turtle life stages, such as the sex determination of embryos in the nest and growth rates. Warming of 2 degrees C could potentially result in a large shift in sex ratios towards females at many rookeries, although some populations may be resilient to warming if female biases remain within levels where population success is not impaired. Indirectly, climate change is likely to impact turtles through changes in food availability. The highly migratory nature of turtles and their ability to move considerable distances in short periods of time should increase their resilience to climate change. However, any such resilience of marine turtles to climate change is likely to be severely compromised by other anthropogenic influences. Development of coastlines may threaten nesting beaches and reproductive success, and pollution and eutrophication is threatening important coastal foraging habitats for turtles worldwide. Exploitation and bycatch in other fisheries has seriously reduced marine turtle populations. The synergistic effects of other human-induced stressors may seriously reduce the capacity of some turtle populations to adapt to the current rates of climate change. Conservation recommendations to increase the capacity of marine turtle populations to adapt to climate change include increasing population resilience, for example by the use of turtle exclusion devices in fisheries, protection of nesting beaches from the viewpoints of both conservation and coastal management, and increased international conservation efforts to protect turtles in regions where there is high unregulated or illegal fisheries (including turtle harvesting). Increasing research efforts on the critical knowledge gaps of processes influencing population numbers, such as identifying ocean foraging hotspots or the processes that underlie the initiation of nesting migrations and selection of breeding areas, will inform adaptive management in a changing climate.
Hart, Kristen M.; Lamont, Margaret M.; Fujisaki, Ikuko; Tucker, Anton D.; Carthy, Raymond R.
2012-01-01
Designing conservation strategies that protect wide-ranging marine species is a significant challenge, but integrating regional telemetry datasets and synthesizing modeled movements and behavior offer promise for uncovering distinct at-sea areas that are important habitats for imperiled marine species. Movement paths of 10 satellite-tracked female loggerheads (Caretta caretta) from three separate subpopulations in the Gulf of Mexico, USA, revealed migration to discrete foraging sites in two common areas at-sea in 2008, 2009, and 2010. Foraging sites were 102–904 km away from nesting and tagging sites, and located off southwest Florida and the northern Yucatan Peninsula, Mexico. Within 3–35 days, turtles migrated to foraging sites where they all displayed high site fidelity over time. Core-use foraging areas were 13.0–335.2 km2 in size, in water <50 m deep, within a mean distance to nearest coastline of 58.5 km, and in areas of relatively high net primary productivity. The existence of shared regional foraging sites highlights an opportunity for marine conservation strategies to protect important at-sea habitats for these imperiled marine turtles, in both USA and international waters. Until now, knowledge of important at-sea foraging areas for adult loggerheads in the Gulf of Mexico has been limited. To better understand the spatial distribution of marine turtles that have complex life-histories, we propose further integration of disparate tracking data-sets at the oceanic scale along with modeling of movements to identify critical at-sea foraging habitats where individuals may be resident during non-nesting periods.
Putman, Nathan F.; Naro-Maciel, Eugenia
2013-01-01
Organismal movement is an essential component of ecological processes and connectivity among ecosystems. However, estimating connectivity and identifying corridors of movement are challenging in oceanic organisms such as young turtles that disperse into the open sea and remain largely unobserved during a period known as ‘the lost years’. Using predictions of transport within an ocean circulation model and data from published genetic analysis, we present to our knowledge, the first basin-scale hypothesis of distribution and connectivity among major rookeries and foraging grounds (FGs) of green turtles (Chelonia mydas) during their ‘lost years’. Simulations indicate that transatlantic dispersal is likely to be common and that recurrent connectivity between the southwestern Indian Ocean and the South Atlantic is possible. The predicted distribution of pelagic juvenile turtles suggests that many ‘lost years hotspots’ are presently unstudied and located outside protected areas. These models, therefore, provide new information on possible dispersal pathways that link nesting beaches with FGs. These pathways may be of exceptional conservation concern owing to their importance for sea turtles during a critical developmental period. PMID:23945687
Orientation behaviour of leatherback sea turtles within the North Atlantic subtropical gyre.
Dodge, Kara L; Galuardi, Benjamin; Lutcavage, Molly E
2015-04-07
Leatherback sea turtles (Dermochelys coriacea) travel thousands of kilometres between temperate feeding and tropical breeding/over-wintering grounds, with adult turtles able to pinpoint specific nesting beaches after multi-year absences. Their extensive migrations often occur in oceanic habitat where limited known sensory information is available to aid in orientation. Here, we examined the migratory orientation of adult male, adult female and subadult leatherbacks during their open-ocean movements within the North Atlantic subtropical gyre by analysing satellite-derived tracks from fifteen individuals over a 2-year period. To determine the turtles' true headings, we corrected the reconstructed tracks for current drift and found negligible differences between current-corrected and observed tracks within the gyre. Individual leatherback headings were remarkably consistent throughout the subtropical gyre, with turtles significantly oriented to the south-southeast. Adult leatherbacks of both sexes maintained similar mean headings and showed greater orientation precision overall. The consistent headings maintained by adult and subadult leatherbacks within the gyre suggest use of a common compass sense. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Yipel, Mustafa; Tekeli, İbrahim Ozan; İşler, Cafer Tayer; Altuğ, Muhammed Enes
2017-12-15
The aim of the present study was to determine the concentrations of the most investigated environmentally relevant heavy metals in two highly endangered sea turtle species (Caretta caretta and Chelonia mydas) from the important nesting area on the Northeast Mediterranean Sea. The highest mean concentration was of Fe, while Hg and Pb were lowest. All tissue concentrations of Al, As, Fe and Mn were significantly different between the species. In particular, As, Cd, Cu, Mn, Ni, Se, Zn concentrations were lower in Caretta caretta and Cd, Hg, Mn, Zn concentrations were lower in Chelonia mydas than those reported in other parts of the world. Compared to studies conductud in other parts of the Mediterranean, Cd was lower. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fidelity and over-wintering of sea turtles.
Broderick, Annette C; Coyne, Michael S; Fuller, Wayne J; Glen, Fiona; Godley, Brendan J
2007-06-22
While fidelity to breeding sites is well demonstrated in marine turtles, emerging knowledge of migratory routes and key foraging sites is of limited conservation value unless levels of fidelity can be established. We tracked green (Chelonia mydas, n=10) and loggerhead (Caretta caretta, n=10) turtles during their post-nesting migration from the island of Cyprus to their foraging grounds. After intervals of 2-5 years, five of these females were recaptured at the nesting beach and tracked for a second migration. All five used highly similar migratory routes to return to the same foraging and over-wintering areas. None of the females visited other foraging habitats over the study period (units lasted on average 305 days; maximum, 1356 days), moving only to deeper waters during the winter months where they demonstrated extremely long resting dives of up to 10.2h (the longest breath-holding dive recorded for a marine vertebrate). High levels of fidelity and the relatively discrete nature of the home ranges demonstrate that protection of key migratory pathways, foraging and over-wintering sites can serve as an important tool for the future conservation of marine turtles.
Rees, Alan F.; Avens, Larisa; Ballorain, Katia; Bevan, Elizabeth; Broderick, Annette C.; Carthy, Raymond R.; Christianen, Marjolijn J. A.; Duclos, Gwénaël; Heithaus, Michael R.; Johnston, David W.; Mangel, Jeffrey C.; Paladino, Frank V.; Pendoley, Kellie; Reina, Richard D.; Robinson, Nathan J.; Ryan, Robert; Sykora-Bodie, Seth T.; Tilley, Dominic; Varela, Miguel R.; Whitman, Elizabeth R.; Whittock, Paul A.; Wibbels, Thane; Godley, Brendan J.
2018-01-01
The use of satellite systems and manned aircraft surveys for remote data collection has been shown to be transformative for sea turtle conservation and research by enabling the collection of data on turtles and their habitats over larger areas than can be achieved by surveys on foot or by boat. Unmanned aerial vehicles (UAVs) or drones are increasingly being adopted to gather data, at previously unprecedented spatial and temporal resolutions in diverse geographic locations. This easily accessible, low-cost tool is improving existing research methods and enabling novel approaches in marine turtle ecology and conservation. Here we review the diverse ways in which incorporating inexpensive UAVs may reduce costs and field time while improving safety and data quality and quantity over existing methods for studies on turtle nesting, at-sea distribution and behaviour surveys, as well as expanding into new avenues such as surveillance against illegal take. Furthermore, we highlight the impact that high-quality aerial imagery captured by UAVs can have for public outreach and engagement. This technology does not come without challenges. We discuss the potential constraints of these systems within the ethical and legal frameworks which researchers must operate and the difficulties that can result with regard to storage and analysis of large amounts of imagery. We then suggest areas where technological development could further expand the utility of UAVs as data-gathering tools; for example, functioning as downloading nodes for data collected by sensors placed on turtles. Development of methods for the use of UAVs in sea turtle research will serve as case studies for use with other marine and terrestrial taxa.
Shading and watering as a tool to mitigate the impacts of climate change in sea turtle nests.
Hill, Jacob E; Paladino, Frank V; Spotila, James R; Tomillo, Pilar Santidrián
2015-01-01
Increasing sand temperatures resulting from climate change may negatively impact sea turtle nests by altering sex ratios and decreasing reproductive output. We analyzed the effect of nest shading and watering on sand temperatures as climate mitigation strategies in a beach hatchery at Playa Grande, Costa Rica. We set up plots and placed thermocouples at depths of 45 cm and 75 cm. Half of the plots were shaded and half were exposed to the sun. Within these exposure treatments, we applied three watering treatments over one month, replicating local climatic conditions experienced in this area. We also examined gravimetric water content of sand by collecting sand samples the day before watering began, the day after watering was complete, and one month after completion. Shading had the largest impact on sand temperature, followed by watering and depth. All watering treatments lowered sand temperature, but the effect varied with depth. Temperatures in plots that received water returned to control levels within 10 days after watering stopped. Water content increased at both depths in the two highest water treatments, and 30 days after the end of water application remained higher than plots with low water. While the impacts of watering on sand temperature dissipate rapidly after the end of application, the impacts on water content are much more lasting. Although less effective at lowering sand temperatures than shading, watering may benefit sea turtle clutches by offsetting negative impacts of low levels of rain in particularly dry areas. Prior to implementing such strategies, the natural conditions at the location of interest (e.g. clutch depth, environmental conditions, and beach characteristics) and natural hatchling sex ratios should be taken into consideration. These results provide insight into the effectiveness of nest shading and watering as climate mitigation techniques and illustrate important points of consideration in the crafting of such strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargo, S.; Lutz, P.; Odell, D.
1986-09-15
The objective of the study was to determine the effects of oil on marine turtles. An experimental program was carried out on 3-20 month old loggerhead and 3-16 month old green turtles to determine behavioral and physiological effects of oil using South Louisiana Crude Oil (SLCO) preweathered for 48 hrs. The behavioral experiments indicated that both species of marine turtles had a limited ability to avoid oil slicks, but experiments to determine avoidance/attraction to floating tar balls were inconclusive. The physiological experiments showed that the respiration, skin, some aspects of blood chemistry and composition, and salt gland function of 15-18more » month old loggerhead sea turtles were significantly affected. Spills in the vicinity of nesting beaches are of special concern.« less
An assessment of initial body size in loggerhead sea turtle (Caretta caretta) hatchlings in Turkey.
Ozdemir, Adem; Ilgaz, Cetin; Kumlutaş, Yusuf; Durmuş, Salih Hakan; Kaska, Yakup; Türkozan, Oğuz
2007-04-01
Eggs, hatchlings, and adult loggerhead turtles, and incubation durations of clutches, were measured on three Turkish beaches (Dalyan, Fethiye and Göksu Delta), and some physical features of nests were compared. These features were not statistically different among the beaches, except for nest depth and distance to the high water mark. There was a positive relationship between hatchling mass and egg size. The carapace length of hatchlings was correlated with both egg diameter and incubation duration. The duration of asynchronous emergence of hatchlings on Fethiye beach was slightly longer than on the other two beaches, and the size of hatchlings decreased as asynchronous emergence proceeded. Of the hatchlings that emerged first, those that died were significantly smaller in SCL and mass than those that lived. These results suggest that smaller hatchlings may not be vigorous enough to emerge earlier from nests, and that they may be less fit.
Bowen, B W; Grant, W S; Hillis-Starr, Z; Shaver, D J; Bjorndal, K A; Bolten, A B; Bass, A L
2007-01-01
Hawksbill turtles (Eretmochelys imbricata) migrate between nesting beaches and feeding habitats that are often associated with tropical reefs, but it is uncertain which nesting colonies supply which feeding habitats. To address this gap in hawksbill biology, we compile previously published and new mitochondrial DNA (mtDNA) haplotype data for 10 nesting colonies (N = 347) in the western Atlantic and compare these profiles to four feeding populations and four previously published feeding samples (N = 626). Nesting colonies differ significantly in mtDNA haplotype frequencies (Phi(ST) = 0.588, P < 0.001), corroborating earlier conclusions of nesting site fidelity and setting the stage for mixed-stock analysis. Feeding aggregations show lower but significant structure (Phi(ST) = 0.089, P < 0.001), indicating that foraging populations are not homogenous across the Caribbean Sea. Bayesian mixed-stock estimates of the origins of juveniles in foraging areas show a highly significant, but shallow, correlation with nesting population size (r = 0.378, P = 0.004), supporting the premise that larger rookeries contribute more juveniles to feeding areas. A significant correlation between the estimated contribution and geographical distance from nesting areas (r = -0.394, P = 0.003) demonstrates the influence of proximity on recruitment to feeding areas. The influence of oceanic currents is illustrated by pelagic stage juveniles stranded in Texas, which are assigned primarily (93%) to the upstream rookery in Yucatan. One juvenile had a haplotype previously identified only in the eastern Atlantic, invoking rare trans-oceanic migrations. The mixed-stock analysis demonstrates that harvests in feeding habitats will impact nesting colonies throughout the region, with the greatest detriment to nearby nesting populations.
Perrault, Justin R.; Wyneken, Jeanette; Page-Karjian, Annie; Merrill, Anita; Miller, Debra L.
2014-01-01
Serum protein concentrations provide insight into the nutritional and immune status of organisms. It has been suggested that some marine turtles are capital breeders that fast during the nesting season. In this study, we documented serum proteins in neophyte and remigrant nesting leatherback sea turtles (Dermochelys coriacea). This allowed us to establish trends across the nesting season to determine whether these physiological parameters indicate if leatherbacks forage or fast while on nesting grounds. Using the biuret method and agarose gel electrophoresis, total serum protein (median = 5.0 g/dl) and protein fractions were quantified and include pre-albumin (median = 0.0 g/dl), albumin (median = 1.81 g/dl), α1-globulin (median = 0.90 g/dl), α2-globulin (median = 0.74 g/dl), total α-globulin (median = 1.64 g/dl), β-globulin (median = 0.56 g/dl), γ-globulin (median = 0.81 g/dl) and total globulin (median = 3.12 g/dl). The albumin:globulin ratio (median = 0.59) was also calculated. Confidence intervals (90%) were used to establish reference intervals. Total protein, albumin and total globulin concentrations declined in successive nesting events. Protein fractions declined at less significant rates or remained relatively constant during the nesting season. Here, we show that leatherbacks are most likely fasting during the nesting season. A minimal threshold of total serum protein concentrations of around 3.5–4.5 g/dl may physiologically signal the end of the season's nesting for individual leatherbacks. The results presented here lend further insight into the interaction between reproduction, fasting and energy reserves and will potentially improve the conservation and management of this imperiled species. PMID:27293623
Pike, David A
2013-10-01
Some species are adapting to changing environments by expanding their geographic ranges. Understanding whether range shifts will be accompanied by increased exposure to other threats is crucial to predicting when and where new populations could successfully establish. If species overlap to a greater extent with human development under climate change, this could form ecological traps which are attractive to dispersing individuals, but the use of which substantially reduces fitness. Until recently, the core nesting range for the Critically Endangered Kemp's ridley sea turtle (Lepidochelys kempii) was ca. 1000 km of sparsely populated coastline in Tamaulipas, Mexico. Over the past twenty-five years, this species has expanded its range into populated areas of coastal Florida (>1500 km outside the historical range), where nesting now occurs annually. Suitable Kemp's ridley nesting habitat has persisted for at least 140 000 years in the western Gulf of Mexico, and climate change models predict further nesting range expansion into the eastern Gulf of Mexico and northern Atlantic Ocean. Range expansion is 6-12% more likely to occur along uninhabited stretches of coastline than are current nesting beaches, suggesting that novel nesting areas will not be associated with high levels of anthropogenic disturbance. Although the high breeding-site fidelity of some migratory species could limit adaptation to climate change, rapid population recovery following effective conservation measures may enhance opportunities for range expansion. Anticipating the interactive effects of past or contemporary conservation measures, climate change, and future human activities will help focus long-term conservation strategies. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Fuentes, A. L.; Camarena, V.; Ochoa, G.; Urrutia, J.; Gutierrez, G.
2007-05-01
Turtle hatchlings orient display sea-ward oriented movements as soon as they emerge from the nest. Although most studies have emphasized the role of the visual information in this process, less attention has been paid to other sensory modalities. Here, we evaluated the nature of sensory cues used by turtle hatchlings of Chelonia agassizi to orient their movements towards the ocean. We recorded the time they took to crawl from the nest to the beach front (120m long) in control conditions and in visually, olfactory and magnetically deprived circumstances. Visually-deprived hatchlings displayed a high degree of disorientation. Olfactory deprivation and magnetic field distortion impaired, but not abolished, sea-ward oriented movements. With regard to the neuronal mapping experiments, visual deprivation reduced dramatically c-fos expression in the whole brain. Hatchlings with their nares blocked revealed neurons with c-fos expression above control levels principally in the c and d areas, while those subjected to magnetic field distortion had a wide spread activation of neurons throughout the brain predominantly in the dorsal ventricular ridge The present results support that Chelonia agassizi hatchlings use predominantly visual cues to orient their movements towards the sea. Olfactory and magnetic cues may also be use but their influence on hatchlings oriented motor behavior is not as clear as it is for vision. This conclusion is supported by the fact that in the absence of olfactory and magnetic cues, the brain turns on the expression of c- fos in neuronal groups that, in the intact hatchling, are not normally involved in accomplishing the task.
Nesting ecology of Chelonia mydas (Testudines: Cheloniidae) on the Guanahacabibes Peninsula, Cuba.
Azanza Ricardo, Julia; Ibarra Martín, Maria E; González Sansón, Gaspar; Abreu Grobois, F Alberto; Eckert, Karen L; Espinosa López, Georgina; Oyama, Ken
2013-12-01
The nesting colony of green sea turtles (Chelonia mydas) at Guanahacabibes Peninsula Biosphere Reserve and National Park is one of the largest in the Cuban archipelago; however, little information about its nesting ecology is available. Temporal and spatial variation in nesting and reproductive success as well as morphometric characteristics of gravid females were used to ecologically characterize this colony. Nine beaches of the Southernmost coast of Guanahacabibes Peninsula were monitored for 14 years (1998-2012) to determine green turtle nesting activity, from May to September (peak nesting season in this area). Beach dimensions were measured to determine nest density using the length and the area. Afterward the beaches were divided in two categories, index and secondary. Females were measured and tagged to compare new tagged females (823) with returning tagged females (140). Remigration interval was also determined. Temporal variation was identified as the annual number of nesting emergences and oviposits per female, with apparent peaks in reproductive activity on a biennial cycle in the first six years followed by periods of annual increase in nest number (2003-2008) and periods of decreasing number of nests (2010-2012). We also found intra-seasonal variation with the highest nesting activity in July, particularly in the second half of the month. The peak emergence time was 22:00-02:00 hr. In terms of spatial variation, smaller beaches had the highest nest density and nesting was more frequent 6-9m from the high tide line, where hatchling production was maximized although hatchling success was high on average, above 80%. Morphometric analysis of females was made and newly tagged turtles were smaller on average than remigrants. Our results are only a first attempt at characterizing Guanahacabibes' populations but have great value for establishing conservation priorities within the context of national management plans, and for efficient monitoring and protection of nesting beaches.
The Influences of Soil Characteristics on Nest-Site Selection in Painted Turtles (Chrysemys picta)
NASA Astrophysics Data System (ADS)
Page, R.
2017-12-01
A variety of animals dig nests and lay their eggs in soil, leaving them to incubate and hatch without assistance from the parents. Nesting habitat is important for these organisms many of which exhibit temperature dependent sex determination (TSD) whereby the incubation temperature determines the sex of each hatchling. However, suitable nesting habitat may be limited due to anthropogenic activities and global temperature increases. Soil thermal properties are critical to these organisms and are positively correlated with water retention and soil carbon; carbon-rich soils result in higher incubation temperatures. We investigated nest-site selection in painted turtles (Chrysemys picta) inhabiting an anthropogenic pond in south central Pennsylvania. We surveyed for turtle nests and documented location, depth, width, temperature, canopy coverage, clutch size, and hatch success for a total of 31 turtle nests. To address the influence of soil carbon and particle size on nest selection, we analyzed samples collected from: 1) actual nests that were depredated, 2) false nests, incomplete nests aborted during digging prior to nest completion, and 3) randomized locations. Soil samples were separated into coarse, medium, and fine grain size fractions through a stack of sieves. Samples were combusted in a total carbon analyzer to measure weight percent organic carbon. We found that anthropogenic activity at this site has created homogenous, sandy, compacted soils at the uppermost layer that may limit females' access to appropriate nesting habitat. Turtle nesting activity was limited to a linear region north of the pond and was constrained by an impassable rail line. Relative to other studies, turtle nests were notably shallow (5.8±0.9 cm) and placed close to the pond. Compared to false nests and random locations, turtle-selected sites averaged greater coarse grains (35% compared to 20.24 and 20.57%) and less fine grains (47% compared to 59 and 59, respectively). Despite remarkably high soil carbon along the rail line (47.08%) turtles nested here with slightly higher hatch success. We suggest that the turtles are limited to sandy, compact soils with low heat capacities and may compensate for this by also nesting adjacent to the rail line where high soil carbon could increase incubation temperatures.
Cortés-Gómez, Adriana A; Fuentes-Mascorro, Gisela; Romero, Diego
2014-12-15
Concentrations of eight metals and metalloids (Pb, Cd, Cu, Zn, Mn, Se, Ni and As) were evaluated from 41 nesting females (blood) and 13 dead (tissues) Olive Ridley turtles (Lepidochelys olivacea), a species classified as vulnerable and also listed in Appendix I of the Convention of International Trade in Endangered Species (CITES). The mean blood, liver and kidney lead concentration were 0.02 ± 0.01, 0.11 ± 0.08 and 0.06 ± 0.03 μ gg(-1) ww respectively, values lower than other turtle species and locations, which it could be due to the gradual disuse of leaded gasoline in Mexico and Central America since the 1990s. Mean concentration of cadmium was 0.17 ± 0.08 (blood), 82.88 ± 36.65 (liver) and 150.88 ± 110.9 9μg g(-1) (kidney). To our knowledge, the mean renal cadmium levels found is the highest ever reported worldwide for any sea turtle species, while other six elements showed a concentration similar to other studies in sea turtles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Patiño-Martinez, Juan; Marco, Adolfo; Quiñones, Liliana; Calabuig, Cecilia P
2010-09-01
Hatchling emergence to the beach surface from deep sand nests occurs without parental care. Social behaviour among siblings is crucial to overcome this first challenge in sea turtles life. This study, carried out at the Caribbean coast of Colombia, describes the emergence social behaviour of hatchlings from eight nests, and assess the nests translocation effects on temporal patterns of emergence. For the first time, we propose that space released by dehydration of shelled albumen globes (SAGs) at the top of the clutch, might be a reproductive advantage, while facilitating neonates to group together in a very limited space, and favouring the synchrony of emergence. The mean time of groups emergence was of 3.3 days, varying between 1 and 6 days. We found that relocation of the nests did not significantly affect the temporal pattern of emergence, which was mainly nocturnal (77.7% of natural nests and 81.7% of translocated ones). The maximum number of emergences to the surface occurred at the lowest air temperatures (22:00h-06:00h). The selective advantage of this pattern is probably related to the greater rate of predation and mortality by hyperthermia observed during the day.
Santoro, Mario; Greiner, Ellis C; Morales, Juan Alberto; Rodríguez-Ortíz, Beatriz
2006-12-01
The digenetic community of 40 green sea turtles (Chelonia mydas) was investigated at Tortuguero National Park, Costa Rica. In total, 24,270 trematodes belonging to 29 species and 6 families including Clinostomidae 1, Microscaphidiidae 5, Paramphistomidae 2, Pronocephalidae 15, Rhytidodidae 2, and Spirorchiidae 4 were recorded from chelonians examined. Turtles harbored a mean of 7.63 +/- 3.5 SD species. Only 3 species, i.e., Learedius learedi, Microscaphidium reticulare, and Pyelosomum cochlear, infected more than 50% of the hosts sampled. Learedius learedi was the most prevalent (97.5%) and the second most abundant species with a mean of 25.6 +/- 21.6 SD. Only 1 core species, M. reticulare, was recovered from the gastrointestinal tract; it was the most abundant parasite, with a mean intensity of 477 +/- 1,180 SD, and the second most prevalent (77.5%). Diversity values ranged from 0.10 to 2.10, with a mean of 1.00 +/- 0.43 SD for the total component community and from 0.10 to 1.84, with a mean of 0.79 +/- 0.41 SD, for the gastrointestinal component community. Species richness was the highest recorded from a sea turtle species. All digenetic species were recorded from Costa Rica for the first time. This represents the first report on the helminth community of the green turtle.
van de Merwe, Jason P; Hodge, Mary; Olszowy, Henry A; Whittier, Joan M; Ibrahim, Kamarruddin; Lee, Shing Y
2009-09-01
Persistent organic pollutants (POPs)-such as organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs)-and heavy metals have been reported in sea turtles at various stages of their life cycle. These chemicals can disrupt development and function of wildlife. Furthermore, in areas such as Peninsular Malaysia, where the human consumption of sea turtle eggs is prevalent, egg contamination may also have public health implications. In the present study we investigated conservation and human health risks associated with the chemical contamination of green turtle (Chelonia mydas) eggs in Peninsular Malaysia. Fifty-five C. mydas eggs were collected from markets in Peninsular Malaysia and analyzed for POPs and heavy metals. We conducted screening risk assessments (SRAs) and calculated the percent of acceptable daily intake (ADI) for POPs and metals to assess conservation and human health risks associated with egg contamination. C. mydas eggs were available in 9 of the 33 markets visited. These eggs came from seven nesting areas from as far away as Borneo Malaysia. SRAs indicated a significant risk to embryonic development associated with the observed arsenic concentrations. Furthermore, the concentrations of coplanar PCBs represented 3 300 times the ADI values set by the World Health Organization. The concentrations of POPs and heavy metals reported in C. mydas eggs from markets in Peninsular Malaysia pose considerable risks to sea turtle conservation and human health.
DOT National Transportation Integrated Search
2016-10-01
The Northern Map Turtle, is a state Endangered Species, found only in the : lower Susquehanna River in Maryland. The only area where nests of this : species are not heavily impacted by predators is in the town of Port Deposit. : However, turtles nest...
Deepwater Horizon oil spill impacts on sea turtles could span the Atlantic.
Putman, Nathan F; Abreu-Grobois, F Alberto; Iturbe-Darkistade, Iñaky; Putman, Emily M; Richards, Paul M; Verley, Philippe
2015-12-01
We investigated the extent that the 2010 Deepwater Horizon oil spill potentially affected oceanic-stage sea turtles from populations across the Atlantic. Within an ocean-circulation model, particles were backtracked from the Gulf of Mexico spill site to determine the probability of young turtles arriving in this area from major nesting beaches. The abundance of turtles in the vicinity of the oil spill was derived by forward-tracking particles from focal beaches and integrating population size, oceanic-stage duration and stage-specific survival rates. Simulations indicated that 321 401 (66 199-397 864) green (Chelonia mydas), loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) turtles were likely within the spill site. These predictions compared favourably with estimates from in-water observations recently made available to the public (though our initial predictions for Kemp's ridley were substantially lower than in-water estimates, better agreement was obtained with modifications to mimic behaviour of young Kemp's ridley turtles in the northern Gulf). Simulations predicted 75.2% (71.9-76.3%) of turtles came from Mexico, 14.8% (11-18%) from Costa Rica, 5.9% (4.8-7.9%) from countries in northern South America, 3.4% (2.4-3.5%) from the United States and 1.6% (0.6-2.0%) from West African countries. Thus, the spill's impacts may extend far beyond the current focus on the northern Gulf of Mexico. © 2015 The Authors.
Monitoring ecosystem restoration at various scales in LAEs can be challenging, frustrating and rewarding. Some of the major ecosystem restoration monitoring occurring in LAEs include: seagrass expansion/contraction; dead zone sizes; oyster reefs; sea turtle nesting; toxic and nu...
Tabib, M; Zolgharnein, H; Mohammadi, M; Salari-Aliabadi, M A; Qasemi, A; Roshani, S; Rajabi-Maham, H; Frootan, F
2011-01-01
Genetic diversity of sea turtles (hawksbill turtle) was studied using sequencing of mitochondrial DNA (mtDNA, D-loop region). Thirty dead embryos were collected from the Kish and Qeshm Islands in the Persian Gulf. Analysis of sequence variation over 890 bp of the mtDNA control region revealed five haplotypes among 30 individuals. This is the first time that Iranian haplotypes have been recorded. Nucleotide and haplotype diversity was 0.77 and 0.001 for Qeshm Island and 0.64 and 0.002 for Kish Island, respectively. Total haplotype diversity was calculated as 0.69, which demonstrates low genetic diversity in this area. The data also indicated very high rates of migration between the populations of these two islands. A comparison of our data with data from previous studies downloaded from a gene bank showed that turtles of the Persian Gulf migrated from the Pacific and the Sea of Oman into this area. On the other hand, evidence of migration from populations to the West was not found.
Rostal, D C; Grumbles, J S; Palmer, K S; Lance, V A; Spotila, J R; Paladino, F V
2001-05-01
The reproductive endocrinology of nesting leatherback turtles (Dermochelys coriacea) was studied during the 1996-1997 and 1997-1998 nesting seasons at Los Baulas National Park, Playa Grande, Costa Rica. Blood samples were collected from nesting females throughout the season. Females were observed to nest up to 10 times during the nesting season. Plasma steroids were measured by radioimmunoassay and total plasma calcium was measured by flame atomic absorption spectrophotometry. Plasma testosterone and plasma estradiol levels declined throughout the nesting cycle of the female. Testosterone declined from a mean of 10.18 +/- 0.77 ng/ml at the beginning of the nesting cycle to 1.73 +/- 0.34 ng/ml at the end of the nesting cycle. Estradiol declined in a similar manner, ranging from a mean of 190.95 +/- 16.80 pg/ml at the beginning of the nesting cycle to 76.52 +/- 12.66 pg/ml at the end of the nesting cycle. Plasma progesterone and total calcium levels were relatively constant throughout the nesting cycle. Lack of fluctuation of total calcium levels, ranging from a mean high of 97.46 +/- 11.37 microg/ml to a mean low of 64.85 +/- 11.20 microg/ml, further suggests that vitellogenesis is complete prior to the arrival of the female at the nesting beach. Clutch size (both yolked and yolkless eggs) did not vary over the course of the nesting cycle. Copyright 2001 Academic Press.
Nest-site characteristics of Glyptemys muhlenbergii (Bog Turtle) in New Jersey and Pennsylvania
Zappalorti, Robert T.; Lovich, Jeffrey E.; Farrell, Ray F.; Torocco, Michael E.
2015-01-01
Nest-site selection can affect both the survival and fitness of female turtles and their offspring. In many turtle species, the nest environment determines the thermal regime during incubation, length of incubation period, sex ratio of the hatchlings, and exposure to predators and other forms of mortality for both mothers and their offspring. Between 1974 and 2012, we collected detailed data on habitat variables at 66 Glyptemys muhlenbergii (Bog Turtle) nests in 9 different bogs, fens, and wetland complexes in New Jersey and Pennsylvania. The nests had a mean elevation above the substrate of 8.2 cm, and many were shallow and located in raised tussocks of grass or sedges. Females covered most nests, but we also observed partially or completely uncovered eggs. Some females deposited eggs in communal nests; we found 4 nests with 2 separate clutches, and 2 nests with 3 clutches. Principal component analysis confirmed the importance of cover and vegetation to nest-site selection in this species. Availability of open, shade-free, wet nesting areas is an important habitat requirement for Bog Turtles.
Fidelity and over-wintering of sea turtles
Broderick, Annette C; Coyne, Michael S; Fuller, Wayne J; Glen, Fiona; Godley, Brendan J
2007-01-01
While fidelity to breeding sites is well demonstrated in marine turtles, emerging knowledge of migratory routes and key foraging sites is of limited conservation value unless levels of fidelity can be established. We tracked green (Chelonia mydas, n=10) and loggerhead (Caretta caretta, n=10) turtles during their post-nesting migration from the island of Cyprus to their foraging grounds. After intervals of 2–5 years, five of these females were recaptured at the nesting beach and tracked for a second migration. All five used highly similar migratory routes to return to the same foraging and over-wintering areas. None of the females visited other foraging habitats over the study period (units lasted on average 305 days; maximum, 1356 days), moving only to deeper waters during the winter months where they demonstrated extremely long resting dives of up to 10.2 h (the longest breath-holding dive recorded for a marine vertebrate). High levels of fidelity and the relatively discrete nature of the home ranges demonstrate that protection of key migratory pathways, foraging and over-wintering sites can serve as an important tool for the future conservation of marine turtles. PMID:17456456
Sensor network architecture for monitoring turtles on seashore
NASA Astrophysics Data System (ADS)
Carvajal-Gámez, Blanca E.; Cruz, Victor; Díaz-Casco, Manuel A.; Franco, Andrea; Escobar, Carolina; Colin, Abilene; Carreto-Arellano, Chadwick
2017-04-01
In the last decade, advances in information and communication technologies have made it possible to diversify the use of sensor networks in different areas of knowledge (medicine, education, militia, urbanization, protection of the environment, etc.). At present, this type of tools is used to develop applications that allow the identification and monitoring of endangered animals in their natural habitat; however, there are still limitations because some of the devices used alter the behavior of the animals, as in the case of sea turtles. Research and monitoring of sea turtles is of vital importance in identifying possible threats and ensuring their preservation, the behavior of this species (migration, reproduction, and nesting) is highly related to environmental conditions. Because of this, behavioral changes information of this species can be used to monitor global climatic conditions. This work presents the design, development and implementation of an architecture for the monitoring and identification of the sea turtle using sensor networks. This will allow to obtain information for the different investigations with a greater accuracy than the conventional techniques, through non-invasive means for the species and its habitat. The proposed architecture contemplates the use of new technology devices, selfconfigurable, with low energy consumption, interconnection with various communication protocols and sustainable energy supply (solar, wind, etc.).
Allan, Hannah L; van de Merwe, Jason P; Finlayson, Kimberly A; O'Brien, Jake W; Mueller, Jochen F; Leusch, Frederic D L
2017-10-01
Agricultural processes are associated with many different herbicides that can contaminate surrounding environments. In Queensland, Australia, herbicides applied to agricultural crops may pose a threat to valuable coastal habitats including nesting beaches for threatened loggerhead turtles (Caretta caretta). This study 1) measured concentrations of herbicides in the beach sand of Mon Repos, an important marine turtle nesting beach in Australia that is adjacent to significant sugarcane crops, and 2) investigated the toxicity of these herbicides to marine turtles using a cell-based assay. Samples of sand from turtle nest depth and water from surrounding agricultural drains and wetlands were collected during the wet season when herbicide runoff was expected to be the greatest and turtles were nesting. Samples were extracted using solid phase extraction and extracts were analysed using chemical analysis targeting herbicides, as well as bioanalytical techniques (IPAM-assay and loggerhead turtle skin cell cytotoxicity assay). Twenty herbicides were detected in areas between sugarcane crops and the nesting beach, seven of which were also detected in the sand extracts. Herbicides present in the nearby wetland were also detected in the beach sand, indicating potential contamination of the nesting beach via the river outlet as well as ground water. Although herbicides were detected in nesting sand, bioassays using loggerhead turtle skin cells indicated a low risk of acute toxicity at measured environmental concentrations. Further research should investigate potentially more subtle effects, such as endocrine disruption and mixture effects, to better assess the threat that herbicides pose to this population of marine turtles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessing Nesting Status of Green Turtles, Chelonia Mydas in Perak, Malaysia
Salleh, Sarahaizad Mohd; Sah, Shahrul Anuar Mohd; Chowdhury, Ahmed Jalal Khan
2018-01-01
The nesting of green turtle (Chelonia mydas) was monitored from 1998 untill 2013 along the beaches of Pasir Panjang, Segari, Perak. The objective of the study is to assess the nesting status of green turtles in Perak, Peninsular Malaysia in terms of total nests, eggs, survival hatchings, and density of visitors. A total number of green turtle nests found for 16 years were 1,019 nests and varied from 10 to 220 nests per year. Meanwhile, the sum of eggs collected for 16 years were 107,820 eggs, and varied from 553 to 20,881 eggs per year. The temporal pattern of nesting indicates year-round nesting in Perak in most years within the 16 years period. The peak season of nesting was estimated to occur between May and June. Survival hatchlings varied from 23.33% (2,071 hatchlings) to 55.03% (5,018 hatchlings) from 1998 to 2013. The density of visitors was not uniformly distributed among the years, and shows a sign of decline especially from 2006 onwards. This publication provides basic knowledge of green turtle nesting population in Perak, and would be helpful in upgrading the conservation program in Malaysia. In future, we hope 1) for an increase in manpower to obtain accurate nesting records along the nesting beaches during nocturnal survey and, 2) to include the breeding biology data such as nest placement, emergence hour, and morphological characteristics of green turtle. PMID:29644022
Development of a Kemp’s ridley sea turtle stock assessment model
Gallaway, Benny J.; Gazey, William; Caillouet, Charles W.; Plotkin, Pamela T.; Abreu Grobois, F. Alberto; Amos, Anthony F.; Burchfield, Patrick M.; Carthy, Raymond R.; Castro Martinez, Marco A.; Cole, John G.; Coleman, Andrew T.; Cook, Melissa; DiMarco, Steven F.; Epperly, Sheryan P.; Fujiwara, Masami; Gamez, Daniel Gomez; Graham, Gary L.; Griffin, Wade L.; Illescas Martinez, Francisco; Lamont, Margaret M.; Lewison, Rebecca L.; Lohmann, Kenneth J.; Nance, James M.; Pitchford, Jonathan; Putman, Nathan F.; Raborn, Scott W.; Rester, Jeffrey K.; Rudloe, Jack J.; Sarti Martinez, Laura; Schexnayder, Mark; Schmid, Jeffrey R.; Shaver, Donna J.; Slay, Christopher; Tucker, Anton D.; Tumlin, Mandy; Wibbels, Thane; Zapata Najera, Blanca M.
2016-01-01
We developed a Kemp’s ridley (Lepidochelys kempii) stock assessment model to evaluate the relative contributions of conservation efforts and other factors toward this critically endangered species’ recovery. The Kemp’s ridley demographic model developed by the Turtle Expert Working Group (TEWG) in 1998 and 2000 and updated for the binational recovery plan in 2011 was modified for use as our base model. The TEWG model uses indices of the annual reproductive population (number of nests) and hatchling recruitment to predict future annual numbers of nests on the basis of a series of assumptions regarding age and maturity, remigration interval, sex ratios, nests per female, juvenile mortality, and a putative ‘‘turtle excluder device effect’’ multiplier starting in 1990. This multiplier was necessary to fit the number of nests observed in 1990 and later. We added the effects of shrimping effort directly, modified by habitat weightings, as a proxy for all sources of anthropogenic mortality. Additional data included in our model were incremental growth of Kemp’s ridleys marked and recaptured in the Gulf of Mexico, and the length frequency of stranded Kemp’s ridleys. We also added a 2010 mortality factor that was necessary to fit the number of nests for 2010 and later (2011 and 2012). Last, we used an empirical basis for estimating natural mortality, on the basis of a Lorenzen mortality curve and growth estimates. Although our model generated reasonable estimates of annual total turtle deaths attributable to shrimp trawling, as well as additional deaths due to undetermined anthropogenic causes in 2010, we were unable to provide a clear explanation for the observed increase in the number of stranded Kemp’s ridleys in recent years, and subsequent disruption of the species’ exponential growth since the 2009 nesting season. Our consensus is that expanded data collection at the nesting beaches is needed and of high priority, and that 2015 be targeted for the next stock assessment to evaluate the 2010 event using more recent nesting and in-water data.
Mahmoud, I Y; Alkindi, A Y; Khan, T; Al-Bahry, S N
2011-03-01
In previous studies on nesting green turtles under natural conditions from different geographical regions, 17-β-estradiol (E(2) ) was either undetectable or detected at very low levels. RIA and other related techniques were not sensitive enough to measure low E(2) values in the green turtles. In this study, a sensitive method was used in detecting low hormone concentrations: high performance liquid chromatography with tandem quadruple mass spectrometry (HPLC-MS/MS). Using this technique, estradiol for the first time was detected in nesting green turtles during the peak season (June-October) at Ras Al-Hadd Reserve, Oman. The E(2) values recorded from this study were the highest ever recorded from nesting green turtles in any geographical region, but the levels did not vary significantly throughout different phases of nesting. The presence of E(2) during nesting presumably plays a role in the physiology and behavior of this species. Ras Al-Hadd hosts one of the largest nesting populations of green turtles in the world, and an understanding of their nesting patterns may be of value in conservation and management programs for this endangered species. Copyright © 2011 Wiley-Liss, Inc., A Wiley Company.
Hart, Kristen M.; Iverson, Autumn; Benscoter, Allison M.; Fujisaki, Ikuko; Cherkiss, Michael S.; Pollock, Clayton; Lundgren, Ian; Hillis-Starr, Zandy
2017-01-01
Satellite tracking in marine turtle studies can reveal much about their spatial use of breeding areas, migration zones, and foraging sites. We assessed spatial habitat-use patterns of 10 adult female green turtles (Chelonia mydas) nesting at Buck Island Reef National Monument, U.S. Virgin Islands (BIRNM) from 2011 – 2014. Turtles ranged in size from 89.0 – 115.9 cm CCL (mean + SD = 106.8 + 7.7 cm). The inter-nesting period across all turtles ranged from 31 July to 4 November, and sizes of the 50% core-use areas during inter-nesting ranged from 4.2 – 19.0 km2. Inter-nesting core-use areas were located up to1.4 km from shore and had bathymetry values ranging from -17.0 to -13.0 m. Seven of the ten turtles remained locally resident after the nesting season. Five turtles (50%) foraged around Buck Island, two foraged around the island of St. Croix, and the other three (30%) made longer-distance migrations to Antigua, St. Kitts & Nevis, and Venezuela. Further, five turtles had foraging centroids within protected areas. Delineating spatial areas and identifying temporal periods of nearshore habitat-use can be useful for natural resource managers with responsibility for overseeing vulnerable habitats and protected marine turtle populations.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-11
... Post at Punta Flamenco; (7) developing hiking trails; (8) completing boundary verification; and (9... of sea turtles and their nests/eggs. To benefit resident and migratory birds, annual surveys would be... management strategies to benefit target species of birds and cooperate with Puerto Rico DNER to conduct...
Leon, Javier X.; Gilby, Ben L.; Olds, Andrew D.; Schlacher, Thomas A.
2017-01-01
Background Nest selection is widely regarded as a key process determining the fitness of individuals and viability of animal populations. For marine turtles that nest on beaches, this is particularly pivotal as the nesting environment can significantly control reproductive success.The aim of this study was to identify the environmental attributes of beaches (i.e., morphology, vegetation, urbanisation) that may be associated with successful oviposition in green and loggerhead turtle nests. Methods We quantified the proximity of turtle nests (and surrounding beach locations) to urban areas, measured their exposure to artificial light, and used ultra-high resolution (cm-scale) digital surface models derived from Structure-from-Motion (SfM) algorithms, to characterise geomorphic and vegetation features of beaches on the Sunshine Coast, eastern Australia. Results At small spatial scales (i.e., <100 m), we found no evidence that turtles selected nest sites based on a particular suite of environmental attributes (i.e., the attributes of nest sites were not consistently different from those of surrounding beach locations). Nest sites were, however, typically characterised by occurring close to vegetation, on parts of the shore where the beach- and dune-face was concave and not highly rugged, and in areas with moderate exposure to artificial light. Conclusion This study used a novel empirical approach to identify the attributes of turtle nest sites from a broader ‘envelope’ of environmental nest traits, and is the first step towards optimizing conservation actions to mitigate, at the local scale, present and emerging human impacts on turtle nesting beaches. PMID:28070454
Climate change impacts on leatherback turtle pelagic habitat in the Southeast Pacific
NASA Astrophysics Data System (ADS)
Willis-Norton, Ellen; Hazen, Elliott L.; Fossette, Sabrina; Shillinger, George; Rykaczewski, Ryan R.; Foley, David G.; Dunne, John P.; Bograd, Steven J.
2015-03-01
Eastern Pacific populations of the leatherback turtle (Dermochelys coriacea) have declined by over 90% during the past three decades. The decline is primarily attributed to human pressures, including unsustainable egg harvest, development on nesting beaches, and by-catch mortality. In particular, the effects of climate change may impose additional stresses upon already threatened leatherback populations. This study analyzes how the pelagic habitat of Eastern Pacific leatherbacks may be affected by climate change over the next century. This population adheres to a persistent migration pattern; following nesting at Playa Grande, Costa Rica, individuals move rapidly through equatorial currents and into foraging habitat within the oligotrophic South Pacific Gyre. Forty-six nesting females were fitted with satellite tags. Based on the turtle positions, ten environmental variables were sampled along the tracks. Presence/absence habitat models were created to determine the oceanographic characteristics of the preferred turtle habitat. Core pelagic habitat was characterized by relatively low sea surface temperatures and chlorophyll-a. Based on these habitat models, we predicted habitat change using output from the Geophysical Fluid Dynamics Laboratory prototype Earth System Model under the Special Report on Emissions Scenario A2 (business-as-usual). Although the model predicted both habitat losses and gains throughout the region, we estimated that overall the core pelagic habitat of the Eastern Pacific leatherback population will decline by approximately 15% within the next century. This habitat modification might increase pressure on a critically endangered population, possibly forcing distributional shifts, behavioral changes, or even extinction.
van de Merwe, Jason P.; Hodge, Mary; Olszowy, Henry A.; Whittier, Joan M.; Ibrahim, Kamarruddin; Lee, Shing Y.
2009-01-01
Background Persistent organic pollutants (POPs)—such as organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs)—and heavy metals have been reported in sea turtles at various stages of their life cycle. These chemicals can disrupt development and function of wildlife. Furthermore, in areas such as Peninsular Malaysia, where the human consumption of sea turtle eggs is prevalent, egg contamination may also have public health implications. Objective In the present study we investigated conservation and human health risks associated with the chemical contamination of green turtle (Chelonia mydas) eggs in Peninsular Malaysia. Methods Fifty-five C. mydas eggs were collected from markets in Peninsular Malaysia and analyzed for POPs and heavy metals. We conducted screening risk assessments (SRAs) and calculated the percent of acceptable daily intake (ADI) for POPs and metals to assess conservation and human health risks associated with egg contamination. Results C. mydas eggs were available in 9 of the 33 markets visited. These eggs came from seven nesting areas from as far away as Borneo Malaysia. SRAs indicated a significant risk to embryonic development associated with the observed arsenic concentrations. Furthermore, the concentrations of coplanar PCBs represented 3 300 times the ADI values set by the World Health Organization. Conclusions The concentrations of POPs and heavy metals reported in C. mydas eggs from markets in Peninsular Malaysia pose considerable risks to sea turtle conservation and human health. PMID:19750104
Deepwater Horizon oil spill impacts on sea turtles could span the Atlantic
Putman, Nathan F.; Abreu-Grobois, F. Alberto; Iturbe-Darkistade, Iñaky; Putman, Emily M.; Richards, Paul M.; Verley, Philippe
2015-01-01
We investigated the extent that the 2010 Deepwater Horizon oil spill potentially affected oceanic-stage sea turtles from populations across the Atlantic. Within an ocean-circulation model, particles were backtracked from the Gulf of Mexico spill site to determine the probability of young turtles arriving in this area from major nesting beaches. The abundance of turtles in the vicinity of the oil spill was derived by forward-tracking particles from focal beaches and integrating population size, oceanic-stage duration and stage-specific survival rates. Simulations indicated that 321 401 (66 199–397 864) green (Chelonia mydas), loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) turtles were likely within the spill site. These predictions compared favourably with estimates from in-water observations recently made available to the public (though our initial predictions for Kemp's ridley were substantially lower than in-water estimates, better agreement was obtained with modifications to mimic behaviour of young Kemp's ridley turtles in the northern Gulf). Simulations predicted 75.2% (71.9–76.3%) of turtles came from Mexico, 14.8% (11–18%) from Costa Rica, 5.9% (4.8–7.9%) from countries in northern South America, 3.4% (2.4–3.5%) from the United States and 1.6% (0.6–2.0%) from West African countries. Thus, the spill's impacts may extend far beyond the current focus on the northern Gulf of Mexico. PMID:26701754
Brothers, J Roger; Lohmann, Kenneth J
2018-04-23
The canonical drivers of population genetic structure, or spatial genetic variation, are isolation by distance and isolation by environment. Isolation by distance predicts that neighboring populations will be genetically similar and geographically distant populations will be genetically distinct [1]. Numerous examples also exist of isolation by environment, a phenomenon in which populations that inhabit similar environments (e.g., same elevation, temperature, or vegetation) are genetically similar even if they are distant, whereas populations that inhabit different environments are genetically distinct even when geographically close [2-4]. These dual models provide a widely accepted conceptual framework for understanding population structure [5-8]. Here, we present evidence for an additional, novel process that we call isolation by navigation, in which the navigational mechanism used by a long-distance migrant influences population structure independently of isolation by either distance or environment. Specifically, we investigated the population structure of loggerhead sea turtles (Caretta caretta) [9], which return to nest on their natal beaches by seeking out unique magnetic signatures along the coast-a behavior known as geomagnetic imprinting [10-12]. Results reveal that spatial variation in Earth's magnetic field strongly predicts genetic differentiation between nesting beaches, even when environmental similarities and geographic proximity are taken into account. The findings provide genetic corroboration of geomagnetic imprinting [10, 13]. Moreover, they provide strong evidence that geomagnetic imprinting and magnetic navigation help shape the population structure of sea turtles and perhaps numerous other long-distance migrants that return to their natal areas to reproduce [13-17]. Copyright © 2018 Elsevier Ltd. All rights reserved.
Witt, Matthew J.; Augowet Bonguno, Eric; Broderick, Annette C.; Coyne, Michael S.; Formia, Angela; Gibudi, Alain; Mounguengui Mounguengui, Gil Avery; Moussounda, Carine; NSafou, Monique; Nougessono, Solange; Parnell, Richard J.; Sounguet, Guy-Philippe; Verhage, Sebastian; Godley, Brendan J.
2011-01-01
Despite extensive work carried out on leatherback turtles (Dermochelys coriacea) in the North Atlantic and Indo-Pacific, very little is known of the at-sea distribution of this species in the South Atlantic, where the world's largest population nests in Gabon (central Africa). This paucity of data is of marked concern given the pace of industrialization in fisheries with demonstrable marine turtle bycatch in African/Latin American waters. We tracked the movements of 25 adult female leatherback turtles obtaining a range of fundamental and applied insights, including indications for methodological advancement. Individuals could be assigned to one of three dispersal strategies, moving to (i) habitats of the equatorial Atlantic, (ii) temperate habitats off South America or (iii) temperate habitats off southern Africa. While occupying regions with high surface chlorophyll concentrations, these strategies exposed turtles to some of the world's highest levels of longline fishing effort, in addition to areas with coastal gillnet fisheries. Satellite tracking highlighted that at least 11 nations should be involved in the conservation of this species in addition to those with distant fishing fleets. The majority of tracking days were, however, spent in the high seas, where effective implementation of conservation efforts is complex to achieve. PMID:21208949
Temporal changes in artificial light exposure of marine turtle nesting areas.
Kamrowski, Ruth L; Limpus, Col; Jones, Rhondda; Anderson, Sharolyn; Hamann, Mark
2014-08-01
Artificial light at night poses a significant threat to multiple taxa across the globe. In coastal regions, artificial lighting close to marine turtle nesting beaches is disruptive to their breeding success. Prioritizing effective management of light pollution requires an understanding of how the light exposure of nesting areas changes over time in response to changing temporal and spatial distributions of coastal development. We analyzed multitemporal, satellite night-light data, in combination with linear mixed model analysis, to determine broadscale changes in artificial light exposure at Australian marine turtle nesting areas between 1993 and 2010. We found seven marine turtle management units (MU), from five species, have experienced significant increases in light exposure over time, with flatback turtles nesting in east Australia experiencing the fastest increases. The remaining 12 MUs showed no significant change in light exposure. Unchanging MUs included those previously identified as having high exposure to light pollution (located in western Australia and southern Queensland), indicating that turtles in these areas have been potentially exposed to high light levels since at least the early nineties. At a finer geographic scale (within-MU), nine MUs contained nesting areas with significant increases in light exposure. These nesting areas predominantly occurred close to heavily industrialized coastal areas, thus emphasizing the importance of rigorous light management in industry. Within all MUs, nesting areas existed where light levels were extremely low and/or had not significantly increased since 1993. With continued coastal development, nesting females may shift to these darker/unchanging 'buffer' areas in the future. This is valuable information that informs our understanding of the capacity and resilience of marine turtles faced with coastal development: an understanding that is essential for effective marine turtle conservation. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Perez-Cruz, L.; Urrutia-Fucugauchi, J.; Vazquez-Gutierrez, F.; Carranza-Edwards, A.
2007-12-01
Marine turtles are well known for their navigation ability in the open ocean and fidelity to nesting beaches. Green turtle adult females migrate from foraging areas to island nesting beaches, traveling hundreds or thousands of kilometers each way. The marine turtle breeding in the Galapagos Islands is the Green Sea Turtle (Chelonia mydas agassisi); fairly common throughout the islands but with nesting sites located at Las Bachas (Santa Cruz), Barahona and Quinta Playa (Isabela), Salinas (Baltra), Gardner Bay (Española) and Bartolomé Islet. In order to characterize and to identify the geochemical signature of nesting marine turtle beaches in Galapagos Islands, sedimentological, geochemical and rock magnetic parameters are used. A total of one hundred and twenty sand samples were collected in four beaches to relate compositional characteristics between equivalent areas, these are: Las Bachas, Salinas, Barahona and Quinta Playa. Grain size is evaluated using laser particle analysis (Model Coulter LS 230). Bulk ICP-MS geochemical analysis is performed, following trace elements are analyzed: Al, V, Cr, Co, Ni, Cu, Zn, Cd, Ba, Pb, Fe, Mn, K, Na, Mg, Sr, Ca and Hg; and low-field magnetic susceptibility is measured in all samples at low and high frequencies. Granulometric analysis showed that Barahona and Quinta Playa are characterized for fine grained sands. In contrast, Salinas and Las Bachas exhibit medium to coarse sands. Trace metals concentrations and magnetic susceptibility show different distribution patterns in the beach sands. Calcium is the most abundant element in the samples. In particular, Co, K, and Na show similar concentrations in the four beaches. Las Bachas beach shows highest concentrations of Pb and Hg (maximum values 101.1 and 118.5 mg/kg, respectively), we suggest that the enrichment corresponds to an anthropogenic signal. Salinas beach samples show high concentrations of Fe, V, Cr, Zn, Mn and the highest values of magnetic susceptibility (maximum 932 10-6 SI), we propose, a human activity influence less evident than in Bachas beach that could overlap the contribution of continent source. Quinta Playa sands show the maximum concentration of calcium and also high concentration of Fe and Mg, and relatively high values of magnetic susceptibility. Ca results from marine biogenic carbonates (mainly coral reefs). Barahona also show high concentrations in calcium that could be correlated with the presence of biogenous source around the beach.
Population trends and survival of nesting green sea turtles Chelonia mydas on Aves Island, Venezuela
Garcia-Cruz, Marco A.; Lampo, Margarita; Peñaloza, Claudia L.; Kendall, William L.; Solé, Genaro; Rodriguez-Clark, Kathryn M.
2015-01-01
Long-term demographic data are valuable for assessing the effect of anthropogenic impacts on endangered species and evaluating recovery programs. Using a 2-state open robust design model, we analyzed mark-recapture data from green turtles Chelonia mydas sighted between 1979 and 2009 on Aves Island, Venezuela, a rookery heavily impacted by human activities before it was declared a wildlife refuge in 1972. Based on the encounter histories of 7689 nesting females, we estimated the abundance, annual survival, and remigration intervals for this population. Female survival varied from 0.14-0.91, with a mean of 0.79, which is low compared to survival of other populations from the Caribbean (mean = 0.84) and Australia (mean = 0.95), even though we partially corrected for tag loss, which is known to negatively bias survival estimates. This supports prior suggestions that Caribbean populations in general, and the Aves Island population in particular, may be more strongly impacted than populations elsewhere. It is likely that nesters from this rookery are extracted while foraging in remote feeding grounds where hunting still occurs. Despite its relatively low survival, the nesting population at Aves Island increased during the past 30 years from approx. 500 to >1000 nesting females in 2009. Thus, this population, like others in the Caribbean and the Atlantic, seems to be slowly recovering following protective management. Although these findings support the importance of long-term conservation programs aimed at protecting nesting grounds, they also highlight the need to extend management actions to foraging grounds where human activities may still impact green turtle populations.
Gjertsen, Heidi; Squires, Dale; Dutton, Peter H; Eguchi, Tomoharu
2014-02-01
Although holistic conservation addressing all sources of mortality for endangered species or stocks is the preferred conservation strategy, limited budgets require a criterion to prioritize conservation investments. We compared the cost-effectiveness of nesting site and at-sea conservation strategies for Pacific leatherback turtles (Dermochelys coriacea). We sought to determine which conservation strategy or mix of strategies would produce the largest increase in population growth rate per dollar. Alternative strategies included protection of nesters and their eggs at nesting beaches in Indonesia, gear changes, effort restrictions, and caps on turtle takes in the Hawaiian (U.S.A.) longline swordfish fishery, and temporal and area closures in the California (U.S.A.) drift gill net fishery. We used a population model with a biological metric to measure the effects of conservation alternatives. We normalized all effects by cost to prioritize those strategies with the greatest biological effect relative to its economic cost. We used Monte Carlo simulation to address uncertainty in the main variables and to calculate probability distributions for cost-effectiveness measures. Nesting beach protection was the most cost-effective means of achieving increases in leatherback populations. This result creates the possibility of noncompensatory bycatch mitigation, where high-bycatch fisheries invest in protecting nesting beaches. An example of this practice is U.S. processors of longline tuna and California drift gill net fishers that tax themselves to finance low-cost nesting site protection. Under certain conditions, fisheries interventions, such as technologies that reduce leatherback bycatch without substantially decreasing target species catch, can be cost-effective. Reducing bycatch in coastal areas where bycatch is high, particularly adjacent to nesting beaches, may be cost-effective, particularly, if fisheries in the area are small and of little commercial value. © 2014 Society for Conservation Biology.
Hart, Catherine E; Blanco, Gabriela S; Coyne, Michael S; Delgado-Trejo, Carlos; Godley, Brendan J; Jones, T Todd; Resendiz, Antonio; Seminoff, Jeffrey A; Witt, Matthew J; Nichols, Wallace J
2015-01-01
To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii) and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006). Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacán (1337-2928 km). In addition, three post-nesting females were satellite tracked from Colola beach, Michoacán to their foraging grounds in southern Mexico and Central America (941.3-3020 km). A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum) from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific) clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key areas may have positive consequences on a regional scale.
Hart, Catherine E.; Blanco, Gabriela S.; Coyne, Michael S.; Delgado-Trejo, Carlos; Godley, Brendan J.; Jones, T. Todd; Resendiz, Antonio; Seminoff, Jeffrey A.; Witt, Matthew J.; Nichols, Wallace J.
2015-01-01
To further describe movement patterns and distribution of East Pacific green turtles (Chelonia mydas agassizii) and to determine threat levels for this species within the Eastern Pacific. In order to do this we combined published data from existing flipper tagging and early satellite tracking studies with data from an additional 12 satellite tracked green turtles (1996-2006). Three of these were tracked from their foraging grounds in the Gulf of California along the east coast of the Baja California peninsula to their breeding grounds in Michoacán (1337-2928 km). In addition, three post-nesting females were satellite tracked from Colola beach, Michoacán to their foraging grounds in southern Mexico and Central America (941.3-3020 km). A further six turtles were tracked in the Gulf of California within their foraging grounds giving insights into the scale of ranging behaviour. Turtles undertaking long-distance migrations showed a tendency to follow the coastline. Turtles tracked within foraging grounds showed that foraging individuals typically ranged up to 691.6 km (maximum) from release site location. Additionally, we carried out threat analysis (using the cumulative global human impact in the Eastern Pacific) clustering pre-existing satellite tracking studies from Galapagos, Costa Rica, and data obtained from this study; this indicated that turtles foraging and nesting in Central American waters are subject to the highest anthropogenic impact. Considering that turtles from all three rookeries were found to migrate towards Central America, it is highly important to implement conservation plans in Central American coastal areas to ensure the survival of the remaining green turtles in the Eastern Pacific. Finally, by combining satellite tracking data from this and previous studies, and data of tag returns we created the best available distributional patterns for this particular sea turtle species, which emphasized that conservation measures in key areas may have positive consequences on a regional scale. PMID:25646803
Fuxjager, Matthew J; Davidoff, Kyla R; Mangiamele, Lisa A; Lohmann, Kenneth J
2014-09-22
Loggerhead sea turtle hatchlings (Caretta caretta) use regional magnetic fields as open-ocean navigational markers during trans-oceanic migrations. Little is known, however, about the ontogeny of this behaviour. As a first step towards investigating whether the magnetic environment in which hatchlings develop affects subsequent magnetic orientation behaviour, eggs deposited by nesting female loggerheads were permitted to develop in situ either in the natural ambient magnetic field or in a magnetic field distorted by magnets placed around the nest. In orientation experiments, hatchlings that developed in the normal ambient field oriented approximately south when exposed to a field that exists near the northern coast of Portugal, a direction consistent with their migratory route in the northeastern Atlantic. By contrast, hatchlings that developed in a distorted magnetic field had orientation indistinguishable from random when tested in the same north Portugal field. No differences existed between the two groups in orientation assays involving responses to orbital movements of waves or sea-finding, neither of which involves magnetic field perception. These findings, to our knowledge, demonstrate for the first time that the magnetic environment present during early development can influence the magnetic orientation behaviour of a neonatal migratory animal. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Specifications for Sea Turtle Mitigation Gear and Sea Turtle Handling and Release Requirements F Appendix F to Part 622 Wildlife and Fisheries...—Specifications for Sea Turtle Mitigation Gear and Sea Turtle Handling and Release Requirements A. Sea turtle...
Daza-Criado, L; Hernández-Fernández, J
2014-02-21
Hawksbill sea turtles Eretmochelys imbricata are found extensively around the world, including the Atlantic, Pacific, and Indian Oceans; the Persian Gulf, and the Red and Mediterranean Seas. Populations of this species are affected by international trafficking of their shields, meat, and eggs, making it a critically endangered animal. We determined the haplotypes of 17 hawksbill foraging turtles of Islas del Rosario (Bolivar) and of the nesting beach Don Diego (Magdalena) in the Colombian Caribbean based on amplification and sequencing of the mitochondrial gene cytochrome oxidase c subunit I (COI). We identified 5 haplotypes, including EI-A1 previously reported in Puerto Rico, which was similar to 10 of the study samples. To our knowledge, the remaining 4 haplotypes have not been described. Samples EICOI11 and EICOI3 showed 0.2% divergence from EI-A1, by a single nucleotide change, and were classified as the EI-A2 haplotype. EICOI6, EICOI14, and EICOI12 samples showed 0.2% divergence from EI-A1 and 0.3% divergence from EI-A2 and were classified as EI-A3 haplotype. Samples EICOI16 and EICOI15 presented 5 nucleotide changes each and were classified as 2 different haplotypes, EI-A4 and EI-A5, respectively. The last 2 haplotypes had higher nucleotide diversity (K2P=1.7%) than that by the first 3 haplotypes. EI-A1 and EI-A2 occurred in nesting individuals, and EI-A2, EI-A3, EI-A4, and EI-A5 occurred in foraging individuals. The description of the haplotypes may be associated with reproductive migrations or foraging and could support the hypothesis of natal homing. Furthermore, they can be used in phylogeographic studies.
The rate of predation by fishes on hatchlings of the green turtle ( Chelonia mydas)
NASA Astrophysics Data System (ADS)
Gyuris, E.
1994-07-01
This study addresses the need for empirical data on the survival of sea turtle hatchlings after entry into the sea by (1) developing a method for measuring marine predation; (2) estimating predation rates while crossing the reef; and (3) investigating the effect of environmental variables on predation rates. Predation rates were quantified by following individual hatchlings, tethered by a 10m monofilament nylon line, as they swam from the water's edge towards the reef crest. Predation rates under particular combinations of environmental variables (tide, time of day, and moon phase) were measured in separate trials. Predation rates varied among trials from 0 to 85% with a mean of 31% (SE=2.5%). The simplest logistic regression model that explained variation in predation contained tide and moon phase as predictor variables. The results suggest that noctural emergence from the nest is a behavioral adaptation to minimize exposure to the heat of the day rather than a predator-escape mechanism. For the green turtle populations breeding in eastern Australia, most first year mortality is caused by predation while crossing the reef within the first hour of entering the sea.
THELMA: a mobile app for crowdsourcing environmental data
NASA Astrophysics Data System (ADS)
Hintz, Kenneth J.; Hintz, Christopher J.; Almomen, Faris; Adounvo, Christian; D'Amato, Michael
2014-06-01
The collection of environmental light pollution data related to sea turtle nesting sites is a laborious and time consuming effort entailing the use of several pieces of measurement equipment, their transportation and calibration, the manual logging of results in the field, and subsequent transfer of the data to a computer for post-collection analysis. Serendipitously, the current generation of mobile smart phones (e.g., iPhone® 5) contains the requisite measurement capability, namely location data in aided GPS coordinates, magnetic compass heading, and elevation at the time an image is taken, image parameter data, and the image itself. The Turtle Habitat Environmental Light Measurement App (THELMA) is a mobile phone app whose graphical user interface (GUI) guides an untrained user through the image acquisition process in order to capture 360° of images with pointing guidance. It subsequently uploads the user-tagged images, all of the associated image parameters, and position, azimuth, elevation metadata to a central internet repository. Provision is also made for the capture of calibration images and the review of images before upload. THELMA allows for inexpensive, highly-efficient, worldwide crowdsourcing of calibratable beachfront lighting/light pollution data collected by untrained volunteers. This data can be later processed, analyzed, and used by scientists conducting sea turtle conservation in order to identify beach locations with hazardous levels of light pollution that may alter sea turtle behavior and necessitate human intervention after hatchling emergence.
Hart, Kristen; Zawada, David G.; Fujisaki, Ikuko; Lidz, Barbara H.
2013-01-01
Use of existing marine protected areas (MPAs) by far-ranging marine turtles can be determined using satellite telemetry. Because of a lack of information on MPA use by marine turtles in the Gulf of Mexico, we used satellite transmitters in 2010 and 2011 to track movements of 11 adult female breeding green turtles (Chelonia mydas) tagged in Dry Tortugas National Park (DRTO), in the Gulf of Mexico, south Florida, USA. Throughout the study period, turtles emerged every 9–18 days to nest. During the intervals between nesting episodes (i.e., inter-nesting periods), the turtles consistently used a common core-area within the DRTO boundary, determined using individual 50% kernel-density estimates (KDEs). We mapped the area in DRTO where individual turtle 50% KDEs overlapped using the USGS Along-Track Reef-Imaging System, and determined the diversity and distribution of various benthic-cover types within the mapped area. We also tracked turtles post-nesting as they transited to foraging sites 5–282 km away from tagging beaches; these sites were located both within DRTO and in the surrounding area of the Florida Keys and Florida Keys National Marine Sanctuary (FKNMS), a regional MPA. Year-round residency of 9 out of 11 individuals (82%) both within DRTO and in the FKNMS represents novel non-migratory behavior, which offers an opportunity for conservation of this imperiled species at both local and regional scales. These data comprise the first satellite-tracking results on adult nesting green turtles at this remote study site. Additional tracking could reveal whether the distinct inter-nesting and foraging sites delineated here will be repeatedly used in the future by these and other breeding green turtles.
Nesting frequency and success: implications for the demography of painted turtles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinkle, D.W.; Congdon, J.D.; Rosen, P.C.
1981-12-01
Nesting ecology and reproduction of painted turtles (Chrysemys picta) in southeast Michigan were intensively studied from 1975 to 1978. The average clutch size of Michigan painted turtles was 7.55, with body size accounting for only 9-13% of the variance. Data on nesting frequency indicate that from 30 to 50% of the females possibly do not reproduce every year and that approx. =6% reproduce twice in a given year. Predation within 48 h of egg-laying is responsible for the failure of 20% of the nests. An additional 12% nest failure is due to various other causes. These data substantially alter themore » life table previously reported in this population of painted turtles.« less
Nesting frequency and success: implications for the demography of painted turtles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinkle, D.W.; Congdon, J.D.; Rosen, P.C.
1981-12-01
Nesting ecology and reproduction of painted turtles (Chrysemys picta) in southeast Michigan were intensively studied from 1975 to 1978. The average clutch size of Michigan painted turtles was 7.55, with body size accounting for only 9-13% of the variance. Data on nesting frequency indicate that from 30 to 50% of the females possibly do not reproduce every year and that approx.6% reproduce twice in a given year. Predation within 48 h of egg-laying is responsible for the failure of 20% of the nests. An additional 12% nest failure is due to various other causes. These data substantially alter the lifemore » table previously reported for this population of painted turtles.« less
The ecology of overwintering among turtles: where turtles overwinter and its consequences.
Ultsch, Gordon R
2006-08-01
Turtles are a small taxon that has nevertheless attracted much attention from biologists for centuries. However, a major portion of their life cycle has received relatively little attention until recently - namely what turtles are doing, and how they are doing it, during the winter. In the northern parts of their ranges in North America, turtles may spend more than half of their lives in an overwintering state. In this review, I emphasise the ecological aspects of overwintering among turtles, and consider how overwintering stresses affect the physiology, behaviour, distributions, and life histories of various species. Sea turtles are the only group of turtles that migrate extensively, and can therefore avoid northern winters. Nevertheless, each year a number of turtles, largely juveniles, are killed when trapped by cold fronts before they move to safer waters. Evidently this risk is an acceptable trade-off for the benefits to a population of inhabiting northern developmental habitats during the summer. Terrestrial turtles pass the winter underground, either in burrows that they excavate or that are preformed. These refugia must provide protection against desiccation and lethal freezing levels. Some burrows are extensive (tortoise genus Gopherus), while others are shallow, or the turtles may simply dig into the ground to a safe depth (turtle genus Terrapene). In the latter genus, freeze tolerance may play an adaptive role. Most non-marine aquatic turtles overwinter underwater, although Clemmys (Actinemys) marmorata routinely overwinters on land when it occurs in riverine habitats, Kinosternon subrubrum often overwinters on land, and several others may overwinter terrestrially on occasion, especially in more southern climates. For northern species that overwinter underwater, there are two physiological groupings, those that are anoxia-tolerant and those that are relatively anoxia-intolerant. All species fare well physiologically in water with a high partial pressure of oxygen (PO2). A lack of anoxia tolerance limits the types of habitats that a freshwater turtle may live in, since unlike sea turtles, they cannot travel long distances to hibernate. Hatchlings of some species of turtles spend their first winter in or below the nest cavity, while hatchlings of other species in the same area, including northern areas, emerge in the autumn and presumably hibernate underwater. All hatchlings are relatively anoxia-intolerant, and there are no studies to date of where hatchling turtles that do not overwinter in or below the nest cavity spend their first winter. Equally little is known of the ontogeny of anoxia tolerance, other than that adults of all species are more anoxia-tolerant than their hatchlings, probably because of their better ossified shells, which provide adults with more buffer reserves and a larger site in which to sequester lactate. The northern limits of turtles are most likely determined by reproductive limitations (time for egg-laying, incubation, and hatching) than by the rigors of hibernation. Mortality is typically lower in turtle populations during hibernation than it is during their active periods. However, episodic mortality events do occur during hibernation, due to freezing, prolonged anoxia, or predation.
Costanzo, Jon P; Baker, Patrick J; Dinkelacker, Stephen A; Lee, Richard E
2003-02-01
Hatchlings of the painted turtle (Chrysemys picta) commonly hibernate in their shallow, natal nests. Survival at temperatures below the limit of freeze tolerance (approximately -4 degrees C) apparently depends on their ability to remain supercooled, and, whereas previous studies have reported that supercooling capacity improves markedly with cold acclimation, the mechanistic basis for this change is incompletely understood. We report that the crystallization temperature (T(c)) of recently hatched (summer) turtles acclimated to 22 degrees C and reared on a substratum of vermiculite or nesting soil was approximately 5 degrees C higher than the T(c) determined for turtles acclimated to 4 degrees C and tested in winter. This increase in supercooling capacity coincided with elimination of substratum (and, in fewer cases, eggshell) that the hatchlings had ingested; however, this association was not necessarily causal because turtles reared on a paper-covered substratum did not ingest exogenous matter but nevertheless showed a similar increase in supercooling capacity. Our results for turtles reared on paper revealed that seasonal development of supercooling capacity fundamentally requires elimination of ice-nucleating agents (INA) of endogenous origin: summer turtles, but not winter turtles, produced feces (perhaps derived from residual yolk) that expressed ice-nucleating activity. Ingestion of vermiculite or eggshell, which had modest ice-nucleating activity, had no effect on the T(c), whereas ingestion of nesting soil, which contained two classes of potent INA, markedly reduced the supercooling capacity of summer turtles. This effect persisted long after the turtles had purged their guts of soil particles, because the T(c) of winter turtles reared on nesting soil (mean +/- S.E.M.=-11.6+/-1.4 degrees C) was approximately 6 degrees C higher than the T(c) of winter turtles reared on vermiculite or paper. Experiments in which winter turtles were fed INA commonly found in nesting soil showed that water-soluble, organic agents can remain fully active for at least one month. Such INA may account for the limited supercooling capacity (T(c) approximately -7.5 degrees C) we found in turtles overwintering in natural nests and may therefore pose a formidable challenge to the winter survival of hatchling C. picta.
Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas.
Christianen, Marjolijn J A; Herman, Peter M J; Bouma, Tjeerd J; Lamers, Leon P M; van Katwijk, Marieke M; van der Heide, Tjisse; Mumby, Peter J; Silliman, Brian R; Engelhard, Sarah L; van de Kerk, Madelon; Kiswara, Wawan; van de Koppel, Johan
2014-02-22
Marine protected areas (MPAs) are key tools for combatting the global overexploitation of endangered species. The prevailing paradigm is that MPAs are beneficial in helping to restore ecosystems to more 'natural' conditions. However, MPAs may have unintended negative effects when increasing densities of protected species exert destructive effects on their habitat. Here, we report on severe seagrass degradation in a decade-old MPA where hyper-abundant green turtles adopted a previously undescribed below-ground foraging strategy. By digging for and consuming rhizomes and roots, turtles create abundant bare gaps, thereby enhancing erosion and reducing seagrass regrowth. A fully parametrized model reveals that the ecosystem is approaching a tipping point, where consumption overwhelms regrowth, which could potentially lead to complete collapse of the seagrass habitat. Seagrass recovery will not ensue unless turtle density is reduced to nearly zero, eliminating the MPA's value as a turtle reserve. Our results reveal an unrecognized, yet imminent threat to MPAs, as sea turtle densities are increasing at major nesting sites and the decline of seagrass habitat forces turtles to concentrate on the remaining meadows inside reserves. This emphasizes the need for policy and management approaches that consider the interactions of protected species with their habitat.
Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas
Christianen, Marjolijn J. A.; Herman, Peter M. J.; Bouma, Tjeerd J.; Lamers, Leon P. M.; van Katwijk, Marieke M.; van der Heide, Tjisse; Mumby, Peter J.; Silliman, Brian R.; Engelhard, Sarah L.; van de Kerk, Madelon; Kiswara, Wawan; van de Koppel, Johan
2014-01-01
Marine protected areas (MPAs) are key tools for combatting the global overexploitation of endangered species. The prevailing paradigm is that MPAs are beneficial in helping to restore ecosystems to more ‘natural’ conditions. However, MPAs may have unintended negative effects when increasing densities of protected species exert destructive effects on their habitat. Here, we report on severe seagrass degradation in a decade-old MPA where hyper-abundant green turtles adopted a previously undescribed below-ground foraging strategy. By digging for and consuming rhizomes and roots, turtles create abundant bare gaps, thereby enhancing erosion and reducing seagrass regrowth. A fully parametrized model reveals that the ecosystem is approaching a tipping point, where consumption overwhelms regrowth, which could potentially lead to complete collapse of the seagrass habitat. Seagrass recovery will not ensue unless turtle density is reduced to nearly zero, eliminating the MPA's value as a turtle reserve. Our results reveal an unrecognized, yet imminent threat to MPAs, as sea turtle densities are increasing at major nesting sites and the decline of seagrass habitat forces turtles to concentrate on the remaining meadows inside reserves. This emphasizes the need for policy and management approaches that consider the interactions of protected species with their habitat. PMID:24403341
Engaging Students in Science: Turtle Nestwatch
ERIC Educational Resources Information Center
Lewis, Elaine; Baudains, Catherine; Mansfield, Caroline
2009-01-01
Involving students in authentic science work is one way to enhance their interest in science. This paper reports a project in which Year 4-7 students actively participated in a study that involved the provision of a suitable nesting site for local turtles. The students collected data on turtle nests at the site and evidence of turtle hatchlings at…
Blood gases, biochemistry and haematology of Galápagos hawksbill turtles (Eretmochelys imbricata)
Muñoz-Pérez, Juan Pablo; Hirschfeld, Maximilian; Alarcón-Ruales, Daniela; Denkinger, Judith; Castañeda, Jason Guillermo; García, Juan; Lohmann, Kenneth J.
2017-01-01
Abstract The hawksbill turtle, Eretmochelys imbricata, is a marine chelonian with a circum-global distribution, but the species is critically endangered and has nearly vanished from the eastern Pacific. Although reference blood parameter intervals have been published for many chelonian species and populations, including nesting Atlantic hawksbills, no such baseline biochemical and blood gas values have been reported for wild Pacific hawksbill turtles. Blood samples were drawn from eight hawksbill turtles captured in near shore foraging locations within the Galápagos archipelago over a period of four sequential years; three of these turtles were recaptured and sampled on multiple occasions. Of the eight sea turtles sampled, five were immature and of unknown sex, and the other three were females. A portable blood analyzer was used to obtain near immediate field results for a suite of blood gas and chemistry parameters. Values affected by temperature were corrected in two ways: (i) with standard formulas and (ii) with auto-corrections made by the portable analyzer. A bench top blood chemistry analyzer was used to measure a series of biochemistry parameters from plasma. Standard laboratory haematology techniques were employed for red and white blood cell counts and to determine haematocrit manually, which was compared to the haematocrit values generated by the portable analyzer. The values reported in this study provide reference data that may be useful in comparisons among populations and in detecting changes in health status among Galápagos sea turtles. The findings might also be helpful in future efforts to demonstrate associations between specific biochemical parameters and disease or environmental disasters. PMID:28496982
Blood gases, biochemistry and haematology of Galápagos hawksbill turtles (Eretmochelys imbricata).
Muñoz-Pérez, Juan Pablo; Lewbart, Gregory A; Hirschfeld, Maximilian; Alarcón-Ruales, Daniela; Denkinger, Judith; Castañeda, Jason Guillermo; García, Juan; Lohmann, Kenneth J
2017-01-01
The hawksbill turtle, Eretmochelys imbricata , is a marine chelonian with a circum-global distribution, but the species is critically endangered and has nearly vanished from the eastern Pacific. Although reference blood parameter intervals have been published for many chelonian species and populations, including nesting Atlantic hawksbills, no such baseline biochemical and blood gas values have been reported for wild Pacific hawksbill turtles. Blood samples were drawn from eight hawksbill turtles captured in near shore foraging locations within the Galápagos archipelago over a period of four sequential years; three of these turtles were recaptured and sampled on multiple occasions. Of the eight sea turtles sampled, five were immature and of unknown sex, and the other three were females. A portable blood analyzer was used to obtain near immediate field results for a suite of blood gas and chemistry parameters. Values affected by temperature were corrected in two ways: (i) with standard formulas and (ii) with auto-corrections made by the portable analyzer. A bench top blood chemistry analyzer was used to measure a series of biochemistry parameters from plasma. Standard laboratory haematology techniques were employed for red and white blood cell counts and to determine haematocrit manually, which was compared to the haematocrit values generated by the portable analyzer. The values reported in this study provide reference data that may be useful in comparisons among populations and in detecting changes in health status among Galápagos sea turtles. The findings might also be helpful in future efforts to demonstrate associations between specific biochemical parameters and disease or environmental disasters.
Foraging area fidelity for Kemp's ridleys in the Gulf of Mexico.
Shaver, Donna J; Hart, Kristen M; Fujisaki, Ikuko; Rubio, Cynthia; Sartain, Autumn R; Peña, Jaime; Burchfield, Patrick M; Gamez, Daniel Gomez; Ortiz, Jaime
2013-07-01
For many marine species, locations of key foraging areas are not well defined. We used satellite telemetry and switching state-space modeling (SSM) to identify distinct foraging areas used by Kemp's ridley turtles (Lepidochelys kempii) tagged after nesting during 1998-2011 at Padre Island National Seashore, Texas, USA (PAIS; N = 22), and Rancho Nuevo, Tamaulipas, Mexico (RN; N = 9). Overall, turtles traveled a mean distance of 793.1 km (±347.8 SD) to foraging sites, where 24 of 31 turtles showed foraging area fidelity (FAF) over time (N = 22 in USA, N = 2 in Mexico). Multiple turtles foraged along their migratory route, prior to arrival at their "final" foraging sites. We identified new foraging "hotspots" where adult female Kemp's ridley turtles spent 44% of their time during tracking (i.e., 2641/6009 tracking days in foraging mode). Nearshore Gulf of Mexico waters served as foraging habitat for all turtles tracked in this study; final foraging sites were located in water <68 m deep and a mean distance of 33.2 km (±25.3 SD) from the nearest mainland coast. Distance to release site, distance to mainland shore, annual mean sea surface temperature, bathymetry, and net primary production were significant predictors of sites where turtles spent large numbers of days in foraging mode. Spatial similarity of particular foraging sites selected by different turtles over the 13-year tracking period indicates that these areas represent critical foraging habitat, particularly in waters off Louisiana. Furthermore, the wide distribution of foraging sites indicates that a foraging corridor exists for Kemp's ridleys in the Gulf. Our results highlight the need for further study of environmental and bathymetric components of foraging sites and prey resources contained therein, as well as international cooperation to protect essential at-sea foraging habitats for this imperiled species.
Foraging area fidelity for Kemp's ridleys in the Gulf of Mexico
Shaver, Donna J.; Hart, Kristen M.; Fujisaki, Ikuko; Rubio, Cynthia; Sartain-Iverson, Autumn R.; Peña, Jaime; Burchfield, Patrick M.; Gamez, Daniel Gomez; Ortiz, Jaime
2013-01-01
For many marine species, locations of key foraging areas are not well defined. We used satellite telemetry and switching state-space modeling (SSM) to identify distinct foraging areas used by Kemp's ridley turtles (Lepidochelys kempii) tagged after nesting during 1998–2011 at Padre Island National Seashore, Texas, USA (PAIS; N = 22), and Rancho Nuevo, Tamaulipas, Mexico (RN; N = 9). Overall, turtles traveled a mean distance of 793.1 km (±347.8 SD) to foraging sites, where 24 of 31 turtles showed foraging area fidelity (FAF) over time (N = 22 in USA, N = 2 in Mexico). Multiple turtles foraged along their migratory route, prior to arrival at their "final" foraging sites. We identified new foraging "hotspots" where adult female Kemp's ridley turtles spent 44% of their time during tracking (i.e., 2641/6009 tracking days in foraging mode). Nearshore Gulf of Mexico waters served as foraging habitat for all turtles tracked in this study; final foraging sites were located in water <68 m deep and a mean distance of 33.2 km (±25.3 SD) from the nearest mainland coast. Distance to release site, distance to mainland shore, annual mean sea surface temperature, bathymetry, and net primary production were significant predictors of sites where turtles spent large numbers of days in foraging mode. Spatial similarity of particular foraging sites selected by different turtles over the 13-year tracking period indicates that these areas represent critical foraging habitat, particularly in waters off Louisiana. Furthermore, the wide distribution of foraging sites indicates that a foraging corridor exists for Kemp's ridleys in the Gulf. Our results highlight the need for further study of environmental and bathymetric components of foraging sites and prey resources contained therein, as well as international cooperation to protect essential at-sea foraging habitats for this imperiled species.
Goshe, Lisa R.; Coggins, Lewis; Shaver, Donna J.; Higgins, Ben; Landry, Andre M.; Bailey, Rhonda
2017-01-01
Effective management of protected sea turtle populations requires knowledge not only of mean values for demographic and life-history parameters, but also temporal and spatial trends, variability, and underlying causes. For endangered Kemp’s ridley sea turtles (Lepidochelys kempii), the need for baseline information of this type has been emphasized during attempts to understand causes underlying the recent truncation in the recovery trajectory for nesting females. To provide insight into variability in age and size at sexual maturation (ASM and SSM) and long-term growth patterns likely to influence population trends, we conducted skeletochronological analysis of humerus bones from 333 Kemp’s ridleys stranded throughout the Gulf of Mexico (GOM) from 1993 to 2010. Ranges of possible ASMs (6.8 to 21.8 yr) and SSMs (53.3 to 68.3 cm straightline carapace length (SCL)) estimated using the “rapprochement” skeletal growth mark associated with maturation were broad, supporting incorporation of a maturation schedule in Kemp’s ridley population models. Mean ASMs estimated from rapprochement and by fitting logistic, generalized additive mixed, and von Bertalanffy growth models to age and growth data ranged from 11 to 13 yr; confidence intervals for the logistic model predicted maturation of 95% of the population between 11.9 and 14.8 yr. Early juvenile somatic growth rates in the GOM were greater than those previously reported for the Atlantic, indicating potential for differences in maturation trajectories between regions. Finally, long-term, significant decreases in somatic growth response were found for both juveniles and adults, which could influence recruitment to the reproductive population and observed nesting population trends. PMID:28333937
Avens, Larisa; Goshe, Lisa R; Coggins, Lewis; Shaver, Donna J; Higgins, Ben; Landry, Andre M; Bailey, Rhonda
2017-01-01
Effective management of protected sea turtle populations requires knowledge not only of mean values for demographic and life-history parameters, but also temporal and spatial trends, variability, and underlying causes. For endangered Kemp's ridley sea turtles (Lepidochelys kempii), the need for baseline information of this type has been emphasized during attempts to understand causes underlying the recent truncation in the recovery trajectory for nesting females. To provide insight into variability in age and size at sexual maturation (ASM and SSM) and long-term growth patterns likely to influence population trends, we conducted skeletochronological analysis of humerus bones from 333 Kemp's ridleys stranded throughout the Gulf of Mexico (GOM) from 1993 to 2010. Ranges of possible ASMs (6.8 to 21.8 yr) and SSMs (53.3 to 68.3 cm straightline carapace length (SCL)) estimated using the "rapprochement" skeletal growth mark associated with maturation were broad, supporting incorporation of a maturation schedule in Kemp's ridley population models. Mean ASMs estimated from rapprochement and by fitting logistic, generalized additive mixed, and von Bertalanffy growth models to age and growth data ranged from 11 to 13 yr; confidence intervals for the logistic model predicted maturation of 95% of the population between 11.9 and 14.8 yr. Early juvenile somatic growth rates in the GOM were greater than those previously reported for the Atlantic, indicating potential for differences in maturation trajectories between regions. Finally, long-term, significant decreases in somatic growth response were found for both juveniles and adults, which could influence recruitment to the reproductive population and observed nesting population trends.
Baena, Martha L.; Escobar, Federico; Halffter, Gonzalo; García–Chávez, Juan H.
2015-01-01
Omorgus suberosus (Fabricius, 1775) has been identified as a potential predator of the eggs of the turtle Lepidochelys olivacea (Eschscholtz, 1829) on one of the main turtle nesting beaches in the world, La Escobilla in Oaxaca, Mexico. This study presents an analysis of the spatio–temporal distribution of the beetle on this beach (in areas of high and low density of L. olivacea nests over two arrival seasons) and an evaluation, under laboratory conditions, of the probability of damage to the turtle eggs by this beetle. O. suberosus adults and larvae exhibited an aggregated pattern at both turtle nest densities; however, aggregation was greater in areas of low nest density, where we found the highest proportion of damaged eggs. Also, there were fluctuations in the temporal distribution of the adult beetles following the arrival of the turtles on the beach. Under laboratory conditions, the beetles quickly damaged both dead eggs and a mixture of live and dead eggs, but were found to consume live eggs more slowly. This suggests that O. suberosus may be recycling organic material; however, its consumption of live eggs may be sufficient in some cases to interrupt the incubation period of the turtle. We intend to apply these results when making decisions regarding the L. olivacea nests on La Escobilla Beach, one of the most important sites for the conservation of this species. PMID:26422148
Asynchronous emergence by loggerhead turtle (Caretta caretta) hatchlings
NASA Astrophysics Data System (ADS)
Houghton, J. D. R.; Hays, G. C.
2001-03-01
For many decades it has been accepted that marine turtle hatchlings from the same nest generally emerge from the sand together. However, for loggerhead turtles (Caretta caretta) nesting on the Greek Island of Kefalonia, a more asynchronous pattern of emergence has been documented. By placing temperature loggers at the top and bottom of nests laid on Kefalonia during 1998, we examined whether this asynchronous emergence was related to the thermal conditions within nests. Pronounced thermal variation existed not only between, but also within, individual nests. These within-nest temperature differences were related to the patterns of hatchling emergence, with hatchlings from nests displaying large thermal ranges emerging over a longer time-scale than those characterised by more uniform temperatures.
Western Pond Turtle Head-starting and Reintroduction; 2002-2003 Progress Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Leuven, Susan; Allen, Harriet; Slavin, Kate
2004-02-01
This report covers the results of the western pond turtle head-starting and reintroduction project for the period of June 2002-September 2003. Wild hatchling western pond turtles from the Columbia River Gorge were reared at the Woodland Park and Oregon Zoos in 2002 and 2003 as part of the recovery effort for this Washington State endangered species. The objective of the program is to reduce losses to introduced predators like bullfrogs and largemouth bass by raising the hatchlings to a size where they are too large to be eaten by most of these predators. In 2002, 27 females from the twomore » Columbia Gorge populations were equipped with transmitters and monitored until they nested. Four more females carrying old transmitters were also monitored; only one of these transmitters lasted through the nesting season. In 2003, 30 females were monitored. Twenty-three of the females monitored in 2002 nested and produced 84 hatchlings. The hatchlings were collected in fall 2002 and reared in captivity at the Woodland Park and Oregon zoos in the head-start program. Twenty-seven of the turtles monitored in 2003 nested. Six of the turtles nested twice, producing a total of 33 nests. The nests will be checked in September and October 2003 for hatchlings. Of 121 head-started juvenile western pond turtles collected in the Columbia Gorge during the 2001 nesting season, 119 were released at three sites in the Columbia Gorge in 2002, and 2 held over for additional growth. Of 86 turtles reared in the head-start program at the Woodland Park and Oregon Zoos fall 2002 through summer 2003, 67 were released at sites in the Columbia Gorge in summer of 2003, and 15 held over for more growth. Fifty-nine juveniles were released at Pierce National Wildlife Refuge in July 2002, and 51 released there in July 2003. Sixteen of those released in 2002 and 16 released in 2003 were instrumented with radio transmitters and monitored for varying amounts of time for survival and habitat use between the time of release and August 2003, together with juveniles from the 2001 release which were monitored from June 2001 through August 2003, and juveniles from the 2000 release which were monitored from August 2000 through August 2003. The number of functioning transmitters varied due to transmitter failures and detachments, and availability of replacement transmitters, as well as opportunities to recapture turtles. By August 15, 2003, a total of 39 turtles were being monitored: 6 from the 2000 release, 8 from the 2001 release, 10 from the 2002 release, and 15 from the 2003 release. During the 2002 field season trapping effort, 280 turtles were captured in the Columbia Gorge, including 236 previously head-started turtles. During the 2003 trapping season, 349 turtles were captured in the Columbia Gorge; 304 of these had been head-started. These recaptures, together with confirmed nesting by head-start females and visual re-sightings, indicate the program is succeeding in boosting juvenile recruitment to increase the populations. Records were also collected on 160 individual painted turtles captured in 2002 and 189 painted turtles captured in 2003 during trapping efforts at Pierce NWR, to gather baseline information on this native population. Eight female painted turtles were monitored by telemetry during the 2002 nesting season; 4 nests were recorded for these animals, plus 35 nests located incidentally. Preferred habitat for nesting was identified based on the telemetry results, to be considered in anticipating future turtle habitat needs and in management planning at Pierce NWR. Bonneville Power Administration (BPA) funding supported activities in the Columbia River Gorge from June 2002 through September 2003.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
March, N.B.; Bishop, G.
1994-12-31
Georgia school teachers served eight to ten day internships as research colleagues on St. Catherine`s island, Georgia. Interns monitored daily nesting activity, evaluated possible nests, validated egg chambers, screened the nests, and monitored each nest daily and assessed hatching success by excavation upon emergence of hatchlings. The real-world, hands-on holistic field experience immersed school teachers in the problems of executing a natural history conservation project integrating scientific content and methodology, mathematical analysis, and computer documentation. Outcomes included increased scientific inquiry, reduced science anxiety, heightened self-confidence, and enhanced credibility with students and colleagues. This educational model is applicable to many areasmore » and problems.« less
Decreasing annual nest counts in a globally important loggerhead sea turtle population.
Witherington, Blair; Kubilis, Paul; Brost, Beth; Meylan, Anne
2009-01-01
The loggerhead sea turtle (Caretta caretta) nests on sand beaches, has both oceanic and neritic life stages, and migrates internationally. We analyzed an 18-year time series of Index Nesting Beach Survey (Index) nest-count data to describe spatial and temporal trends in loggerhead nesting on Florida (USA) beaches. The Index data were highly resolved: 368 fixed zones (mean length 0.88 km) were surveyed daily during annual 109-day survey seasons. Spatial and seasonal coverage averaged 69% of estimated total nesting by loggerheads in the state. We carried out trend analyses on both annual survey-region nest-count totals (N = 18) and annual zone-level nest densities (N = 18 x 368 = 6624). In both analyses, negative binomial regression models were used to fit restricted cubic spline curves to aggregated nest counts. Between 1989 and 2006, loggerhead nest counts on Florida Index beaches increased and then declined, with a net decrease over the 18-year period. This pattern was evident in both a trend model of annual survey-region nest-count totals and a mixed-effect, "single-region" trend model of annual zone-level nest densities that took into account both spatial and temporal correlation between counts. We also saw this pattern in a zone-level model that allowed trend line shapes to vary between six coastal subregions. Annual mean zone-level nest density declined significantly (-28%; 95% CI: -34% to -21%) between 1989 and 2006 and declined steeply (-43%; 95% CI: -48% to -39%) during 1998-2006. Rates of change in annual mean nest density varied more between coastal subregions during the "mostly increasing" period prior to 1998 than during the "steeply declining" period after 1998. The excellent fits (observed vs. expected count R2 > 0.91) of the mixed-effect zone-level models confirmed the presence of strong, positive, within-zone autocorrelation (R > 0.93) between annual counts, indicating a remarkable year-to-year consistency in the longshore spatial distribution of nests over the survey region. We argue that the decline in annual loggerhead nest counts in peninsular Florida can best be explained by a decline in the number of adult female loggerheads in the population. Causes of this decline are explored.
Nearshore Berm Discussion Environmental Impacts
2013-02-13
Northeast • Hardbottom • Manatees • Right Whales • Sea Turtles • Shorebirds East central • Hardbottom • Manatees • Sea Turtles • Shorebirds...Southeast • Corals • Hardbottom • Manatees • Sea Turtles • Shorebirds Southwest •Hardbottom • Manatees • Sea Turtles • Shorebirds West...central • Hardbottom • Manatees • Sea Turtles • Shorebirds Northwest • Hardbottom • Manatees • Sea Turtles • Shorebirds BUILDING STRONG
Pfaller, Joseph B; Bjorndal, Karen A; Chaloupka, Milani; Williams, Kristina L; Frick, Michael G; Bolten, Alan B
2013-01-01
Assessments of population trends based on time-series counts of individuals are complicated by imperfect detection, which can lead to serious misinterpretations of data. Population trends of threatened marine turtles worldwide are usually based on counts of nests or nesting females. We analyze 39 years of nest-count, female-count, and capture-mark-recapture (CMR) data for nesting loggerhead turtles (Caretta caretta) on Wassaw Island, Georgia, USA. Annual counts of nests and females, not corrected for imperfect detection, yield significant, positive trends in abundance. However, multistate open robust design modeling of CMR data that accounts for changes in imperfect detection reveals that the annual abundance of nesting females has remained essentially constant over the 39-year period. The dichotomy could result from improvements in surveys or increased within-season nest-site fidelity in females, either of which would increase detection probability. For the first time in a marine turtle population, we compare results of population trend analyses that do and do not account for imperfect detection and demonstrate the potential for erroneous conclusions. Past assessments of marine turtle population trends based exclusively on count data should be interpreted with caution and re-evaluated when possible. These concerns apply equally to population assessments of all species with imperfect detection.
Estimates of the non-market value of sea turtles in Tobago using stated preference techniques.
Cazabon-Mannette, Michelle; Schuhmann, Peter W; Hailey, Adrian; Horrocks, Julia
2017-05-01
Economic benefits are derived from sea turtle tourism all over the world. Sea turtles also add value to underwater recreation and convey non-use values. This study examines the non-market value of sea turtles in Tobago. We use a choice experiment to estimate the value of sea turtle encounters to recreational SCUBA divers and the contingent valuation method to estimate the value of sea turtles to international tourists. Results indicate that turtle encounters were the most important dive attribute among those examined. Divers are willing to pay over US$62 per two tank dive for the first turtle encounter. The mean WTP for turtle conservation among international visitors to Tobago was US$31.13 which reflects a significant non-use value associated with actions targeted at keeping sea turtles from going extinct. These results illustrate significant non-use and non-consumptive use value of sea turtles, and highlight the importance of sea turtle conservation efforts in Tobago and throughout the Caribbean region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hart, Kristen M.; Zawada, David G.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko
2016-01-01
We used satellite telemetry to identify in-water habitat used by individuals in the smallest North-west Atlantic subpopulation of adult nesting loggerhead turtles Caretta caretta during the breeding season. During 2010, 2011 and 2012 breeding periods, a total of 20 adult females used habitats proximal to nesting beaches with various levels of protection within Dry Tortugas National Park. We then used a rapid, high-resolution, digital imaging system to map habitat adjacent to nesting beaches, revealing the diversity and distribution of available benthic cover. Turtle behaviour showing measurable site-fidelity to these diverse habitats has implications for managing protected areas and human activities within them. Protecting diverse benthic areas adjacent to loggerhead turtle nesting beaches here and elsewhere could provide benefits for overall biodiversity conservation.
Clusella Trullas, Susana; Spotila, James R; Paladino, Frank V
2006-01-01
Studies of metabolism are central to the understanding of the ecology, behavior, and evolution of reptiles. This study focuses on one phase of the sea turtle life cycle, hatchling dispersal, and gives insight into energetic constraints that dispersal imposes on hatchlings. Hatchling dispersal is an energetically expensive phase in the life cycle of the olive ridley turtle Lepidochelys olivacea. Field metabolic rates (FMRs), determined using the doubly labeled water (DLW) method, for L. olivacea hatchlings digging out of their nest chamber, crawling at the sand surface, and swimming were five, four, and seven times, respectively, the resting metabolic rate (RMR). The cost of swimming was 1.5 and 1.8 times the cost of the digging and crawling phases, respectively, and we estimated that if L. olivacea hatchlings swim at frenzy levels, they can rely on yolk reserves to supply energy for only 3-6 d once they reach the ocean. We compared our RMR and FMR values by establishing an interspecific RMR mass-scaling relationship for a wide range of species in the order Testudines and found a scaling exponent of 1.06. This study demonstrates the feasibility of using the DLW method to estimate energetic costs of free-living sea turtle hatchlings and emphasizes the need for metabolic studies in various life-history stages.
Reich, Kimberly J.; López-Castro, Melania C.; Shaver, Donna J.; Iseton, Claire; Hart, Kristen M.; Hooper, Michael J.; Schmitt, Christopher J.
2017-01-01
The Deepwater Horizon explosion in April 2010 and subsequent oil spill released 3.19 × 106 barrels (5.07 × 108 L) of MC252 crude oil into important foraging areas of the endangered Kemp’s ridley sea turtle Lepidochelys kempii (Lk) in the northern Gulf of Mexico (GoM). We measured δ13C and δ15N in scute biopsy samples from 33 Lk nesting in Texas during 2010–-12. Of these, 27 were equipped with satellite transmitters and were tracked to traditional foraging areas in the northern GoM after the spill. Differences in δ13C between the oldest and newest scute layers from 2010 nesters were not significantly different, but δ13C in the newest layers from 2011 and 2012 nesters was significantly lower compared to 2010. δ15N differences were not statistically significant. Collectively, the stable isotope and tracking data indicate that the lower δ13C values reflect the incorporation of oil rather than changes in diet or foraging area. Discriminant analysis indicated that 51.5% of the turtles sampled had isotope signatures indicating oil exposure. Growth of the Lk population slowed in the years following the spill. The involvement of oil exposure in recent population trends is unknown, but long-term effects may not be evident for many years. Our results indicate that C isotope signatures in scutes may be useful biomarkers of sea turtle exposure to oil.
Individual-level behavioral responses of immature green turtles to snorkeler disturbance.
Griffin, Lucas P; Brownscombe, Jacob W; Gagné, Tyler O; Wilson, Alexander D M; Cooke, Steven J; Danylchuk, Andy J
2017-03-01
Despite many positive benefits of ecotourism, increased human encounters with wildlife may have detrimental effects on wild animals. As charismatic megafauna, nesting and foraging sea turtles are increasingly the focus of ecotourism activities. The purpose of our study was to quantify the behavioral responses of immature green turtles (Chelonia mydas) to disturbance by snorkelers, and to investigate whether turtles have individual-level responses to snorkeler disturbance. Using a standardized disturbance stimulus in the field, we recorded turtle behaviors pre- and post-disturbance by snorkelers. Ninety percent of turtles disturbed by snorkeler (n = 192) initiated their flights at distances of ≤3 m. Using principal component analysis, we identified two distinct turtle personality types, 'bold' and 'timid', based upon 145 encounters of 19 individually identified turtles and five disturbance response variables. There was significant intra-individual repeatability in behavioral responses to disturbance, but bolder turtles had more behavioral plasticity and less consistent responses than more timid individuals. Bolder individuals with reduced evasion responses might be at a higher risk of shark predation, while more timid turtles might have greater energetic consequences due to non-lethal predator effects and repeated snorkeler disturbance. Over the longer term, a turtle population with a mix of bold and timid individuals may promote more resilient populations. We recommend that snorkelers maintain >3 m distance from immature green turtles when snorkeling, and that ecotourism activities be temporally and spatially stratified. Further, turtle watching guidelines need to be communicated to both tour operators and independent snorkelers to reduce the disturbance of turtles.
Movements and diving behavior of internesting green turtles along Pacific Costa Rica.
Blanco, Gabriela S; Morreale, Stephen J; Seminoff, Jeffrey A; Paladino, Frank V; Piedra, Rotney; Spotila, James R
2013-09-01
Using satellite transmitters, we determined the internesting movements, spatial ecology and diving behavior of East Pacific green turtles (Chelonia mydas) nesting on Nombre de Jesús and Zapotillal beaches along the Pacific coast of northwestern Costa Rica. Kernel density analysis indicated that turtles spent most of their time in a particularly small area in the vicinity of the nesting beaches (50% utilization distribution was an area of 3 km(2) ). Minimum daily distance traveled during a 12 day internesting period was 4.6 ± 3.5 km. Dives were short and primarily occupied the upper 10 m of the water column. Turtles spent most of their time resting at the surface and conducting U-dives (ranging from 60 to 81% of the total tracking time involved in those activities). Turtles showed a strong diel pattern, U-dives mainly took place during the day and turtles spent a large amount of time resting at the surface at night. The lack of long-distance movements demonstrated that this area was heavily utilized by turtles during the nesting season and, therefore, was a crucial location for conservation of this highly endangered green turtle population. The unique behavior of these turtles in resting at the surface at night might make them particularly vulnerable to fishing activities near the nesting beaches. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
Tisdell, Clem; Wilson, Clevo
2005-04-01
By combining economic analysis of markets with ecological parameters, this article considers the role that tourism-based sea turtle hatcheries (of an open-cycle type) can play in conserving populations of sea turtles. Background is provided on the nature and development of such hatcheries in Sri Lanka. The modeling facilitates the assessment of the impacts of turtle hatcheries on the conservation of sea turtles and enables the economic and ecological consequences of tourism, based on such hatcheries, to be better appreciated. The results demonstrate that sea turtle hatcheries serving tourists can make a positive contribution to sea turtle conservation, but that their conservation effectiveness depends on the way they are managed. Possible negative effects are also identified. Economic market models are combined with turtle population survival relationships to predict the conservation impact of turtle hatcheries and their consequence for the total economic value obtained from sea turtle populations.
Ferreira, Paulo Dias Júnior; Castro, Paulo de Tarso Amorim
2005-05-01
The giant Amazon river turtle (Podocnemis expansa) nests on extensive sand bars on the margins and interior of the channel during the dry season. The high concentration of nests in specific points of certain beaches indicates that the selection of nest placement is not random but is related to some geological aspects, such as bar margin inclination and presence of a high, sandy platform. The presence of access channels to high platform points or ramp morphology are decisive factors in the choice of nesting areas. The eroded and escarped margins of the beaches hinder the Amazon river turtle arriving at the most suitable places for nesting. Through the years, changes in beach morphology can alter nest distribution.
DOT National Transportation Integrated Search
2016-10-01
The Northern Map Turtle, Graptemys geographica, is a Maryland state endangered species, found only in the lower Susquehanna River in Maryland. The only area where nests of this species are not heavily impacted by predators occurs in the town of Port ...
Seminoff, Jeffrey A.; Benson, Scott R.; Arthur, Karen E.; Eguchi, Tomoharu; Dutton, Peter H.; Tapilatu, Ricardo F.; Popp, Brian N.
2012-01-01
Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ15N values of bulk skin, with distinct “low δ15N” and “high δ15N” groups. δ15N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ15N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in light of this species’ imminent risk of extinction in the Pacific. PMID:22666354
Seminoff, Jeffrey A; Benson, Scott R; Arthur, Karen E; Eguchi, Tomoharu; Dutton, Peter H; Tapilatu, Ricardo F; Popp, Brian N
2012-01-01
Effective conservation strategies for highly migratory species must incorporate information about long-distance movements and locations of high-use foraging areas. However, the inherent challenges of directly monitoring these factors call for creative research approaches and innovative application of existing tools. Highly migratory marine species, such as marine turtles, regularly travel hundreds or thousands of kilometers between breeding and feeding areas, but identification of migratory routes and habitat use patterns remains elusive. Here we use satellite telemetry in combination with compound-specific isotope analysis of amino acids to confirm that insights from bulk tissue stable isotope analysis can reveal divergent migratory strategies and within-population segregation of foraging groups of critically endangered leatherback sea turtles (Dermochelys coriacea) across the Pacific Ocean. Among the 78 turtles studied, we found a distinct dichotomy in δ(15)N values of bulk skin, with distinct "low δ(15)N" and "high δ(15)N" groups. δ(15)N analysis of amino acids confirmed that this disparity resulted from isotopic differences at the base of the food chain and not from differences in trophic position between the two groups. Satellite tracking of 13 individuals indicated that their bulk skin δ(15)N value was linked to the particular foraging region of each turtle. These findings confirm that prevailing marine isoscapes of foraging areas can be reflected in the isotopic compositions of marine turtle body tissues sampled at nesting beaches. We use a Bayesian mixture model to show that between 82 and 100% of the 78 skin-sampled turtles could be assigned with confidence to either the eastern Pacific or western Pacific, with 33 to 66% of all turtles foraging in the eastern Pacific. Our forensic approach validates the use of stable isotopes to depict leatherback turtle movements over broad spatial ranges and is timely for establishing wise conservation efforts in light of this species' imminent risk of extinction in the Pacific.
Rodríguez-Zárate, Clara J; Sandoval-Castillo, Jonathan; van Sebille, Erik; Keane, Robert G; Rocha-Olivares, Axayácatl; Urteaga, Jose; Beheregaray, Luciano B
2018-05-16
Spatial and temporal scales at which processes modulate genetic diversity over the landscape are usually overlooked, impacting the design of conservation management practices for widely distributed species. We examine processes shaping population divergence in highly mobile species by re-assessing the case of panmixia in the iconic olive ridley turtle from the eastern Pacific. We implemented a biophysical model of connectivity and a seascape genetic analysis based on nuclear DNA variation of 634 samples collected from 27 nesting areas. Two genetically distinct populations largely isolated during reproductive migrations and mating were detected, each composed of multiple nesting sites linked by high connectivity. This pattern was strongly associated with a steep environmental gradient and also influenced by ocean currents. These findings relate to meso-scale features of a dynamic oceanographic interface in the eastern tropical Pacific (ETP) region, a scenario that possibly provides different cost-benefit solutions and selective pressures for sea turtles during both the mating and migration periods. We reject panmixia and propose a new paradigm for olive ridley turtles where reproductive isolation due to assortative mating is linked to its environment. Our study demonstrates the relevance of integrative approaches for assessing the role of environmental gradients and oceanographic currents as drivers of genetic differentiation in widely distributed marine species. This is relevant for the conservation management of species of highly mobile behaviour, and assists the planning and development of large-scale conservation strategies for the threatened olive ridley turtles in the ETP. © 2018 The Author(s).
Vilaça, Sibelle T; Vargas, Sarah M; Lara-Ruiz, Paula; Molfetti, Érica; Reis, Estéfane C; Lôbo-Hajdu, Gisele; Soares, Luciano S; Santos, Fabrício R
2012-09-01
Surprisingly, a high frequency of interspecific sea turtle hybrids has been previously recorded in a nesting site along a short stretch of the Brazilian coast. Mitochondrial DNA data indicated that as much as 43% of the females identified as Eretmochelys imbricata are hybrids in this area (Bahia State of Brazil). It is a remarkable find, because most of the nesting sites surveyed worldwide, including some in northern Brazil, presents no hybrids, and rare Caribbean sites present no more than 2% of hybrids. Thus, a detailed understanding of the hybridization process is needed to evaluate natural or anthropogenic causes of this regional phenomenon in Brazil, which could be an important factor affecting the conservation of this population. We analysed a set of 12 nuclear markers to investigate the pattern of hybridization involving three species of sea turtles: hawksbill (E. imbricata), loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea). Our data indicate that most of the individuals in the crossings L. olivacea × E. imbricata and L. olivacea × C. caretta are F1 hybrids, whereas C. caretta × E. imbricata crossings present F1 and backcrosses with both parental species. In addition, the C. caretta × E. imbricata hybridization seems to be gender and species biased, and we also found one individual with evidence of multispecies hybridization among C. caretta × E. imbricata × Chelonia mydas. The overall results also indicate that hybridization in this area is a recent phenomenon, spanning at least two generations or ~40 years. © 2012 Blackwell Publishing Ltd.
Rodgers, Maria L; Toline, Catherine A; Rice, Charles D
2018-03-01
Serum from Kemp's ridley sea turtles Lepidochelys kempii and loggerhead sea turtles Caretta caretta was collected during summer in 2011, 2012, and 2013. Serum immunoglobulin Y (IgY) recognition of lysate proteins from nine bacterial species and whole bacterium-specific IgY titers to these pathogens were quantified. Serum and purified IgY recognized proteins of all bacteria, with protein recognition for some species being more pronounced than others. Circulating IgY titers against Vibrio vulnificus, V. anguillarum, Erysipelothrix rhusiopathiae, and Brevundimonas vesicularis changed over the years in Kemp's ridley sea turtles, while IgY titers against V. vulnificus, Escherichia coli, V. parahaemolyticus, B. vesicularis, and Mycobacterium marinum were different in loggerhead sea turtles. Serum lysozyme activity was constant for loggerhead sea turtles over the 3 years, while activity in Kemp's ridley sea turtles was lower in 2011 and 2012 than in 2013. Blood packed cell volume, glucose, and serum protein levels were comparable to those of healthy sea turtles in previous studies; therefore, this study provides baseline information on antibody responses in healthy wild sea turtles. © 2017 American Fisheries Society.
Earth Observations taken by the Expedition 13 crew
2006-05-27
ISS013-E-27590 (27 May 2006) --- Aves Island, Caribbean Sea is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. This image is a rare almost cloud free view of the island and the submerged fringing coral reef that surrounds it. Scientists believe the crosshatch-like pattern of roughness on the surrounding sea surface was caused by variable winds at the time of image acquisition. The island itself currently stands a mere 4 meters above the surrounding sea surface, and in high seas it can be completely submerged. While the low elevation of the island makes it a hazard to shipping, it also provides a major nesting site for green sea turtles (Chelonia mydas) in the Caribbean.
DOT National Transportation Integrated Search
2015-05-01
The Northern Map Turtle, Graptemys geographica, is a Maryland state : Endangered Species, found only in the lower Susquehanna River in Maryland. : The only area where nests of this species are not heavily impacted by predators : occurs in the town of...
Use of artificial nests to investigate predation on freshwater turtle nests
Michael N. Marchand; John A. Litvaitis; Thomas J. Maier; Richard M. DeGraaf
2002-01-01
Habitat fragmentation has raised concerns that populations of generalist predators have increased and are affecting a diverse group of prey. Previous research has included the use of artificial nests to investigate the role of predation on birds that nest on or near the ground. Because predation also is a major factor limiting populations of freshwater turtles, we...
DOT National Transportation Integrated Search
2015-05-01
The Northern Map Turtle, Graptemys geographica, is a Maryland state Endangered Species, found only in the : lower Susquehanna River in Maryland. The only area where nests of this species are not heavily impacted by : predators occurs in the town of P...
The case for long range chemoreceptive piloting in Chelonia
NASA Technical Reports Server (NTRS)
Carr, A. F., Jr.
1972-01-01
The reproductive ecology and migration habits of Chelonia are investigated. Efforts were made to determine if the turtle navigates by chemoreception and if sensory responses of the migrating animals could be electronically tracked through telemetry. Efforts were also made to: (1) explain why certain small islands or restricted areas of mainland shore are chosen by Chelonia as nesting grounds, even when located a thousand miles or more from the year round feeding grounds of the population; (2) identify guidance mechanisms used by migrants in their periodic open ocean travels; and (3) account for the so called lost year - the virtually complete disappearance of young sea turtles during their first year of life. It was suggested that turtle migration is aided by an olfactory mechanism, sun compass, and ocean currents. The tracking experiment was unsuccessful; the equipment was lost or damaged and stopped functioning after about two hours.
Reproduction in shark-attacked sea turtles is supported by stress-reduction mechanisms.
Jessop, Tim; Sumner, Joanna; Lance, Val; Limpus, Col
2004-01-01
Vertebrates exhibit varied behavioural and physiological tactics to promote reproductive success. We examined mechanisms that could enable female loggerhead turtles to undertake nesting activities and maintain seasonal reproduction despite recent shark injuries of varying severity. We proposed that endocrinal mechanisms that regulate both a turtle's stress response and reproductive ability are modified to promote successful and continued reproduction. Irrespective of the degree of injury, females did not exhibit increased levels of the stress hormone corticosterone, nor decreased levels of the reproductive steroid testosterone; hormone responses consistent with stress. When exposed to a capture stressor, females with shark injury did not exhibit any greater corticosterone response than controls. In addition, breeding females showed a reduced corticosterone stress response compared to non-breeding females. Reduced endocrinal responses following shark injury, and during breeding in general may, in part, enable females to maintain behavioural and physiological commitment to reproduction. PMID:15101429
Atlantic Leatherback Migratory Paths and Temporary Residence Areas
López-Mendilaharsu, Milagros; Miller, Philip; Domingo, Andrés; Evans, Daniel; Kelle, Laurent; Plot, Virginie; Prosdocimi, Laura; Verhage, Sebastian; Gaspar, Philippe; Georges, Jean-Yves
2010-01-01
Background Sea turtles are long-distance migrants with considerable behavioural plasticity in terms of migratory patterns, habitat use and foraging sites within and among populations. However, for the most widely migrating turtle, the leatherback turtle Dermochelys coriacea, studies combining data from individuals of different populations are uncommon. Such studies are however critical to better understand intra- and inter-population variability and take it into account in the implementation of conservation strategies of this critically endangered species. Here, we investigated the movements and diving behaviour of 16 Atlantic leatherback turtles from three different nesting sites and one foraging site during their post-breeding migration to assess the potential determinants of intra- and inter-population variability in migratory patterns. Methodology/Principal Findings Using satellite-derived behavioural and oceanographic data, we show that turtles used Temporary Residence Areas (TRAs) distributed all around the Atlantic Ocean: 9 in the neritic domain and 13 in the oceanic domain. These TRAs did not share a common oceanographic determinant but on the contrary were associated with mesoscale surface oceanographic features of different types (i.e., altimetric features and/or surface chlorophyll a concentration). Conversely, turtles exhibited relatively similar horizontal and vertical behaviours when in TRAs (i.e., slow swimming velocity/sinuous path/shallow dives) suggesting foraging activity in these productive regions. Migratory paths and TRAs distribution showed interesting similarities with the trajectories of passive satellite-tracked drifters, suggesting that the general dispersion pattern of adults from the nesting sites may reflect the extent of passive dispersion initially experienced by hatchlings. Conclusions/Significance Intra- and inter-population behavioural variability may therefore be linked with initial hatchling drift scenarios and be highly influenced by environmental conditions. This high degree of behavioural plasticity in Atlantic leatherback turtles makes species-targeted conservation strategies challenging and stresses the need for a larger dataset (>100 individuals) for providing general recommendations in terms of conservation. PMID:21085472
Conservation hotspots for marine turtle nesting in the United States based on coastal development.
Fuentes, Mariana M P B; Gredzens, Christian; Bateman, Brooke L; Boettcher, Ruth; Ceriani, Simona A; Godfrey, Matthew H; Helmers, David; Ingram, Dianne K; Kamrowski, Ruth L; Pate, Michelle; Pressey, Robert L; Radeloff, Volker C
2016-12-01
Coastal areas provide nesting habitat for marine turtles that is critical for the persistence of their populations. However, many coastal areas are highly affected by coastal development, which affects the reproductive success of marine turtles. Knowing the extent to which nesting areas are exposed to these threats is essential to guide management initiatives. This information is particularly important for coastal areas with both high nesting density and dense human development, a combination that is common in the United States. We assessed the extent to which nesting areas of the loggerhead (Caretta caretta), the green (Chelonia mydas), the Kemp's ridley (Lepidochelys kempii), and leatherback turtles (Dermochelys coriacea) in the continental United States are exposed to coastal development and identified conservation hotspots that currently have high reproductive importance and either face high exposure to coastal development (needing intervention), or have low exposure to coastal development, and are good candidates for continued and future protection. Night-time light, housing, and population density were used as proxies for coastal development and human disturbance. About 81.6% of nesting areas were exposed to housing and human population, and 97.8% were exposed to light pollution. Further, most (>65%) of the very high- and high-density nesting areas for each species/subpopulation, except for the Kemp's ridley, were exposed to coastal development. Forty-nine nesting sites were selected as conservation hotspots; of those high-density nesting sites, 49% were sites with no/low exposure to coastal development and the other 51% were exposed to high-density coastal development. Conservation strategies need to account for ~66.8% of all marine turtle nesting areas being on private land and for nesting sites being exposed to large numbers of seasonal residents. © 2016 by the Ecological Society of America.
Stewart, Kelly R; James, Michael C; Roden, Suzanne; Dutton, Peter H
2013-07-01
Investigating migratory connectivity between breeding and foraging areas is critical to effective management and conservation of highly mobile marine taxa, particularly threatened, endangered, or economically important species that cross through regional, national and international boundaries. The leatherback turtle (Dermochelys coriacea, Vandelli 1761) is one such transboundary species that spends time at breeding areas at low latitudes in the northwest Atlantic during spring and summer. From there, they migrate widely throughout the North Atlantic, but many show fidelity to one region off eastern Canada, where critical foraging habitat has been proposed. Our goal was to identify nesting beach origins for turtles foraging here. Using genetics, we identified natal beaches for 288 turtles that were live-captured off the coast of Nova Scotia, Canada. Turtles were sampled (skin or blood) and genotyped using 17 polymorphic microsatellite markers. Results from three assignment testing programs (ONCOR, GeneClass2 and Structure) were compared. Our nesting population reference data set included 1417 individuals from nine Atlantic nesting assemblages. A supplementary data set for 83 foraging turtles traced to nesting beaches using flipper tags and/or PIT tags (n = 72), or inferred from satellite telemetry (n = 11), enabled ground-truthing of the assignments. We first assigned turtles using only genetic information and then used the supplementary recapture information to verify assignments. ONCOR performed best, assigning 64 of the 83 recaptured turtles to natal beaches (77·1%). Turtles assigned to Trinidad (164), French Guiana (72), Costa Rica (44), St. Croix (7), and Florida (1) reflect the relative size of those nesting populations, although none of the turtles were assigned to four other potential source nesting assemblages. Our results demonstrate the utility of genetic approaches for determining source populations of foraging marine animals and include the first identification of natal rookeries of male leatherbacks, identified through satellite telemetry and verified with genetics. This work highlights the importance of long-term monitoring and tagging programmes in nesting and high-use foraging areas. Moreover, it provides a scientific basis for evaluating stock-specific effects of fisheries on migratory marine species, thus identifying where coordinated international recovery efforts may be most effective. © 2013 NOAA ‐ National Marine Fisheries Service. Journal of Animal Ecology © 2013 British Ecological Society.
Zappalorti, Robert T.; Tutterow, Annalee M.; Pittman, Shannon E.; Lovich, Jeffrey E.
2017-01-01
Nest-site selection by most turtles affects the survival of females and their offspring. Although bog turtles (Glyptemys muhlenbergii) do not typically leave their wetlands for nesting, nest-site selection can impact hatching success and hatchling survival. Between 1974 and 2012, we monitored the fates of 258 bog turtle eggs incubated in the field and 91 eggs incubated under laboratory conditions from 11 different bogs, fens, or wetland complexes in New Jersey and Pennsylvania. Laboratory-incubated eggs exhibited the greatest hatching success (81%), but we did not detect a significant difference in hatching success between nests protected with predator excluder cages (43%) and unprotected nests (33%). However, we found significantly lower predation rates in protected nests, suggesting that while predator excluder cages successfully reduced predation, other environmental factors persisted to reduce egg survival in the field. Natural hatching success was potentially reduced by poor weather conditions, which may have resulted in embryo developmental problems, dehydration, or embryos drowning in the egg. Our results suggest that egg depredation, coupled with embryo developmental problems and infertility, are limiting factors to hatching success in our study populations. Using predator excluder cages to protect bog turtle eggs in the field, or incubating eggs in the laboratory and releasing hatchlings at original nesting areas, may be an effective conservation tool for recovering populations of this federally threatened species.
50 CFR 648.129 - Protection of threatened and endangered sea turtles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... sea turtles. 648.129 Section 648.129 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. This section supplements existing regulations issued to regulate incidental take of sea... measures required under those parts, NMFS will investigate the extent of sea turtle takes in flynet gear...
50 CFR 648.129 - Protection of threatened and endangered sea turtles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... sea turtles. 648.129 Section 648.129 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. This section supplements existing regulations issued to regulate incidental take of sea... measures required under those parts, NMFS will investigate the extent of sea turtle takes in flynet gear...
50 CFR 648.129 - Protection of threatened and endangered sea turtles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... sea turtles. 648.129 Section 648.129 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. This section supplements existing regulations issued to regulate incidental take of sea... measures required under those parts, NMFS will investigate the extent of sea turtle takes in flynet gear...
50 CFR 648.129 - Protection of threatened and endangered sea turtles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... sea turtles. 648.129 Section 648.129 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. This section supplements existing regulations issued to regulate incidental take of sea... measures required under those parts, NMFS will investigate the extent of sea turtle takes in flynet gear...
Hamann, M.; Godfrey, M.H.; Seminoff, J.A.; Barata, P.C.R.; Bjorndal, K.A.; Bolten, A.B.; Broderick, A.C.; Campbell, L.M.; Carreras, C.; Casale, P.; Chaloupka, M.; Chan, S.-K.; Coyne, M.; Crowder, L.B.; Diez, C.E.; Dutton, P.H.; Epperly, S.P.; FitzSimmons, N.N.; Formia, A.; Girondot, M.; Hays, G.C.; Cheng, I.J.; Kaska, Y.; Lewison, R.; Mortimer, J.A.; Nichols, W.J.; Reina, R.D.; Shanker, K.; Spotila, J.R.; Tomás, J.; Wallace, B.P.; Work, Thierry M.; Zbinden, N.; Godley, B.J.
2010-01-01
Over the past 3 decades, the status of sea turtles and the need for their protection to aid population recovery have increasingly captured the interest of government agencies, non-governmental organisations (NGOs) and the general public worldwide. This interest has been matched by increased research attention, focusing on a wide variety of topics relating to sea turtle biology and ecology, together with the interrelations of sea turtles with the physical and natural environments. Although sea turtles have been better studied than most other marine fauna, management actions and their evaluation are often hindered by the lack of data on turtle biology, human–turtle interactions, turtle population status and threats. In an effort to inform effective sea turtle conservation a list of priority research questions was assembled based on the opinions of 35 sea turtle researchers from 13 nations working in fields related to turtle biology and/or conservation. The combined experience of the contributing researchers spanned the globe as well as many relevant disciplines involved in conservation research. An initial list of more than 200 questions gathered from respondents was condensed into 20 metaquestions and classified under 5 categories: reproductive biology, biogeography, population ecology, threats and conservation strategies.
Marine turtles used to assist Austronesian sailors reaching new islands.
Wilmé, Lucienne; Waeber, Patrick O; Ganzhorn, Joerg U
2016-02-01
Austronesians colonized the islands of Rapa Nui, Hawaii, the Marquesas and Madagascar. All of these islands have been found to harbor Austronesian artifacts and also, all of them are known nesting sites for marine turtles. Turtles are well known for their transoceanic migrations, sometimes totalling thousands of miles, between feeding and nesting grounds. All marine turtles require land for nesting. Ancient Austronesians are known to have had outstanding navigation skills, which they used to adjust course directions. But these skills will have been insufficient to locate tiny, remote islands in the vast Indo-Pacific oceans. We postulate that the Austronesians must have had an understanding of the marine turtles' migration patterns and used this knowledge to locate remote and unknown islands. The depth and speed at which marine turtles migrate makes following them by outrigger canoes feasible. Humans have long capitalized on knowledge of animal behavior. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Underwater, low-frequency noise in a coastal sea turtle habitat.
Samuel, Y; Morreale, S J; Clark, C W; Greene, C H; Richmond, M E
2005-03-01
Underwater sound was recorded in one of the major coastal foraging areas for juvenile sea turtles in the Peconic Bay Estuary system in Long Island, New York. The recording season of the underwater environment coincided with the sea turtle activity season in an inshore area where there is considerable boating and recreational activity, especially during the summer between Independence Day and Labor Day. Within the range of sea turtle hearing, average noise pressure reached 110 dB during periods of high human activity and diminished proportionally, down to 80 dB, with decreasing human presence. Therefore, during much of the season when sea turtles are actively foraging in New York waters, their coastal habitats are flooded with underwater noise. During the period of highest human activity, average noise pressures within the range of frequencies heard by sea turtles were greater by over two orders of magnitude (26 dB) than during the lowest period of human activity. Sea turtles undoubtedly are exposed to high levels of noise, most of which is anthropogenic. Results suggest that continued exposure to existing high levels of pervasive anthropogenic noise in vital sea turtle habitats and any increase in noise could affect sea turtle behavior and ecology.
Báez, José C; Macías, David; García-Barcelona, Salvador; Real, Raimundo
2014-01-01
Recent studies showed that regional abundance of loggerhead and leatherback turtles could oscillate interannually according to oceanographic and climatic conditions. The Western Mediterranean is an important fishing area for the Spanish drifting longline fleet, which mainly targets swordfish, bluefin tuna, and albacore. Due to the spatial overlapping in fishing activity and turtle distribution, there is an increasing sea turtle conservation concern. The main goal of this study is to analyse the interannual bycatch of loggerhead and leatherback turtles by the Spanish Mediterranean longline fishery and to test the relationship between the total turtle by-catch of this fishery and the North Atlantic Oscillation (NAO). During the 14 years covered in this study, the number of sea turtle bycatches was 3,940 loggerhead turtles and 8 leatherback turtles, 0.499 loggerhead turtles/1000 hooks and 0.001014 leatherback turtles/1000 hooks. In the case of the loggerhead turtle the positive phase of the NAO favours an increase of loggerhead turtles in the Western Mediterranean Sea. However, in the case of leatherback turtle the negative phase of the NAO favours the presence of leatherback turtle. This contraposition could be related to the different ecophysiological response of both species during their migration cycle.
Interannual Differences for Sea Turtles Bycatch in Spanish Longliners from Western Mediterranean Sea
Báez, José C.; García-Barcelona, Salvador
2014-01-01
Recent studies showed that regional abundance of loggerhead and leatherback turtles could oscillate interannually according to oceanographic and climatic conditions. The Western Mediterranean is an important fishing area for the Spanish drifting longline fleet, which mainly targets swordfish, bluefin tuna, and albacore. Due to the spatial overlapping in fishing activity and turtle distribution, there is an increasing sea turtle conservation concern. The main goal of this study is to analyse the interannual bycatch of loggerhead and leatherback turtles by the Spanish Mediterranean longline fishery and to test the relationship between the total turtle by-catch of this fishery and the North Atlantic Oscillation (NAO). During the 14 years covered in this study, the number of sea turtle bycatches was 3,940 loggerhead turtles and 8 leatherback turtles, 0.499 loggerhead turtles/1000 hooks and 0.001014 leatherback turtles/1000 hooks. In the case of the loggerhead turtle the positive phase of the NAO favours an increase of loggerhead turtles in the Western Mediterranean Sea. However, in the case of leatherback turtle the negative phase of the NAO favours the presence of leatherback turtle. This contraposition could be related to the different ecophysiological response of both species during their migration cycle. PMID:24764769
50 CFR 648.109 - Sea turtle conservation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Sea turtle conservation. 648.109 Section 648.109 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.109 Sea turtle conservation. Sea turtle regulations are found at 50 CFR...
78 FR 9024 - Sea Turtle Conservation; Shrimp Trawling Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
...-BC10 Sea Turtle Conservation; Shrimp Trawling Requirements AGENCY: National Marine Fisheries Service... Environmental Impact Statement (DEIS) to Reduce Incidental Bycatch and Mortality of Sea Turtles in the... DEIS and proposed rule in response to elevated sea turtle strandings in the Northern Gulf of Mexico...
78 FR 77428 - 2014 Annual Determination for Sea Turtle Observer Requirement
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-23
... Determination for Sea Turtle Observer Requirement AGENCY: National Marine Fisheries Service (NMFS), National... observing identified fisheries is to learn more about sea turtle interactions in a given fishery, evaluate existing measures to prevent or reduce prohibited sea turtle takes, and to determine whether additional...
50 CFR 648.109 - Sea turtle conservation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Sea turtle conservation. 648.109 Section 648.109 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.109 Sea turtle conservation. Sea turtle regulations are found at 50 CFR...
77 FR 75999 - 2013 Annual Determination for Sea Turtle Observer Requirement
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... Determination for Sea Turtle Observer Requirement AGENCY: National Marine Fisheries Service (NMFS), National... observing identified fisheries is to learn more about sea turtle interactions in a given fishery, evaluate existing measures to prevent or reduce prohibited sea turtle takes, and to determine whether additional...
50 CFR 648.106 - Sea Turtle conservation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Sea Turtle conservation. 648.106 Section 648.106 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.106 Sea Turtle conservation. Sea turtle regulations are found at 50 CFR...
50 CFR 648.109 - Sea turtle conservation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Sea turtle conservation. 648.109 Section 648.109 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.109 Sea turtle conservation. Sea turtle regulations are found at 50 CFR...
50 CFR 648.109 - Sea turtle conservation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Sea turtle conservation. 648.109 Section 648.109 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Summer Flounder Fisheries § 648.109 Sea turtle conservation. Sea turtle regulations are found at 50 CFR...
Reproductive synchrony in a recovering bottlenecked sea turtle population.
Plot, Virginie; de Thoisy, Benoît; Blanc, Stéphane; Kelle, Laurent; Lavergne, Anne; Roger-Bérubet, Hélène; Tremblay, Yann; Fossette, Sabrina; Georges, Jean-Yves
2012-03-01
1. The assessment of species extinction risk has been well established for some time now. Assessing the potential for recovery in endangered species is however much more challenging, because complementary approaches are required to detect reliable signals of positive trends. 2. This study combines genetics, demography and behavioural data at three different time-scales to assess historical and recent population changes and evidence of reproductive synchrony in a small population of olive ridley sea turtle Lepidochelys olivacea. Lepidochelys is considered as the most extraordinary example of reproductive synchrony in reptiles, yet to date, it has only been reported in large populations. 3. Using Bayesian coalescent-based models on microsatellite nuclear DNA variability, we demonstrate that effective population size in olive ridleys nesting in French Guiana has dramatically declined by 99% over the last 20 centuries. This low current population size is further illustrated by the absence of genetic mitochondrial DNA diversity in the present nesting population. Yet, monitoring of nesting sites in French Guiana suggests a possible recovery of the population over the last decade. 4. Satellite telemetry shows that over the first 14 days of their 28-days inter-nesting interval, i.e. when eggs maturation is likely to occur, gravid females disperse over the continental shelf. They then gather together with a striking spatiotemporal consistency close to the nesting site, where they later emerge for their second nesting event. 5. Our results therefore suggest that reproductive synchrony also occurs in small populations. Olive ridleys may ensure this synchrony by adjusting the duration of the second half of their inter-nesting interval prior to landing, possibly through social mediation. 6. Such reproductive synchrony may be related to the maintenance of some species-specific strategy despite former collapse and may contribute to the present population recovery. The gregarious behaviour of reproductive individuals close to shore where human-induced perturbations occur is however a cause for conservation concern for this still poorly known species. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
A Subterranean Camera Trigger for Identifying Predators Excavating Turtle Nests
Thomas J. Maier; Michael N. Marchand; Richard M. DeGraaf; John A. Litvaitis
2002-01-01
Predation is the predominant source of nest mortality for most North American turtle species, including populations that are in decline (Brooks et al. 1992; Congdon et al. 2000). The identification of nest predators---crucial to understanding predator-prey relationships---has been previously accomplished largely by use of techniques that rely on the availability of...
Embryonic death is linked to maternal identity in the leatherback turtle (Dermochelys coriacea).
Rafferty, Anthony R; Santidrián Tomillo, Pilar; Spotila, James R; Paladino, Frank V; Reina, Richard D
2011-01-01
Leatherback turtles have an average global hatching success rate of ~50%, lower than other marine turtle species. Embryonic death has been linked to environmental factors such as precipitation and temperature, although, there is still a lot of variability that remains to be explained. We examined how nesting season, the time of nesting each season, the relative position of each clutch laid by each female each season, maternal identity and associated factors such as reproductive experience of the female (new nester versus remigrant) and period of egg retention between clutches (interclutch interval) affected hatching success and stage of embryonic death in failed eggs of leatherback turtles nesting at Playa Grande, Costa Rica. Data were collected during five nesting seasons from 2004/05 to 2008/09. Mean hatching success was 50.4%. Nesting season significantly influenced hatching success in addition to early and late stage embryonic death. Neither clutch position nor nesting time during the season had a significant affect on hatching success or the stage of embryonic death. Some leatherback females consistently produced nests with higher hatching success rates than others. Remigrant females arrived earlier to nest, produced more clutches and had higher rates of hatching success than new nesters. Reproductive experience did not affect stage of death or the duration of the interclutch interval. The length of interclutch interval had a significant affect on the proportion of eggs that failed in each clutch and the developmental stage they died at. Intrinsic factors such as maternal identity are playing a role in affecting embryonic death in the leatherback turtle.
50 CFR 665.812 - Sea turtle take mitigation measures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Sea turtle take mitigation measures. 665... Pacific Pelagic Fisheries § 665.812 Sea turtle take mitigation measures. (a) Possession and use of... sea turtle handling requirements set forth in paragraph (b) of this section. (1) Hawaii longline...
50 CFR 665.812 - Sea turtle take mitigation measures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Sea turtle take mitigation measures. 665... Pacific Pelagic Fisheries § 665.812 Sea turtle take mitigation measures. (a) Possession and use of... sea turtle handling requirements set forth in paragraph (b) of this section. (1) Hawaii longline...
50 CFR 648.126 - Protection of threatened and endangered sea turtles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... sea turtles. 648.126 Section 648.126 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. Link to an amendment published at 76 FR 60635, Sept. 29, 2011. This section supplements existing regulations issued to regulate incidental take of sea turtles under authority of the Endangered...
50 CFR 665.812 - Sea turtle take mitigation measures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Sea turtle take mitigation measures. 665... Pacific Pelagic Fisheries § 665.812 Sea turtle take mitigation measures. (a) Possession and use of... sea turtle handling requirements set forth in paragraph (b) of this section. (1) Hawaii longline...
77 FR 27411 - Sea Turtle Conservation; Shrimp Trawling Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-10
.... 120328230-1019-01] RIN 0648-BC10 Sea Turtle Conservation; Shrimp Trawling Requirements AGENCY: National... proposed rule is to reduce incidental bycatch and mortality of sea turtles in the southeastern U.S. shrimp fisheries, and to aid in the protection and recovery of listed sea turtle populations. DATES: Written...
77 FR 474 - 2012 Annual Determination for Sea Turtle Observer Requirement
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-05
... Determination for Sea Turtle Observer Requirement AGENCY: National Marine Fisheries Service (NMFS), National... identified fisheries is to learn more about sea turtle interactions in a given fishery, evaluate existing measures to prevent or reduce prohibited sea turtle takes, and to determine whether additional measures to...
50 CFR 665.812 - Sea turtle take mitigation measures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Sea turtle take mitigation measures. 665... Pacific Pelagic Fisheries § 665.812 Sea turtle take mitigation measures. (a) Possession and use of... sea turtle handling requirements set forth in paragraph (b) of this section. (1) Hawaii longline...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... Collection; Comment Request; Reporting of Sea Turtle Entanglement in Fishing Gear or Marine Debris AGENCY... sea turtles becoming accidentally entangled in active or discarded fixed fishing gear or marine debris. These entanglements may prevent the recovery of endangered and threatened sea turtle populations. The...
Core and body surface temperatures of nesting leatherback turtles (Dermochelys coriacea).
Burns, Thomas J; McCafferty, Dominic J; Kennedy, Malcolm W
2015-07-01
Leatherback turtles (Dermochelys coriacea) are the largest species of marine turtle and the fourth most massive extant reptile. In temperate waters they maintain body temperatures higher than surrounding seawater through a combination of insulation, physiological, and behavioural adaptations. Nesting involves physical activity in addition to contact with warm sand and air, potentially presenting thermal challenges in the absence of the cooling effect of water, and data are lacking with which to understand their nesting thermal biology. Using non-contact methods (thermal imaging and infrared thermometry) to avoid any stress-related effects, we investigated core and surface temperature during nesting. The mean±SE core temperature was 31.4±0.05°C (newly emerged eggs) and was not correlated with environmental conditions on the nesting beach. Core temperature of leatherbacks was greater than that of hawksbill turtles (Eretmochelys imbricata) nesting at a nearby colony, 30.0±0.13°C. Body surface temperatures of leatherbacks showed regional variation, the lateral and dorsal regions of the head were warmest while the carapace was the coolest surface. Surface temperature increased during the early nesting phases, then levelled off or decreased during later phases with the rates of change varying between body regions. Body region, behavioural phase of nesting and air temperature were found to be the best predictors of surface temperature. Regional variation in surface temperature were likely due to alterations in blood supply, and temporal changes in local muscular activity of flippers during the different phases of nesting. Heat exchange from the upper surface of the turtle was dominated by radiative heat loss from all body regions and small convective heat gains to the carapace and front flippers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inter-nesting movements and habitat-use of adult female Kemp’s ridley turtles in the Gulf of Mexico
Shaver, Donna J.; Hart, Kristen M.; Fujisaki, Ikuko; Bucklin, David N.; Iverson, Autumn; Rubio, Cynthia; Backof, Thomas F.; Burchfield, Patrick M.; Gonzales Diaz Miron, Raul de Jesus; Dutton, Peter H.; Frey, Amy; Peña, Jaime; Gamez, Daniel Gomez; Martinez, Hector J.; Ortiz, Jaime
2017-01-01
Species vulnerability is increased when individuals congregate in restricted areas for breeding; yet, breeding habitats are not well defined for many marine species. Identification and quantification of these breeding habitats are essential to effective conservation. Satellite telemetry and switching state-space modeling (SSM) were used to define inter-nesting habitat of endangered Kemp’s ridley turtles (Lepidochelys kempii) in the Gulf of Mexico. Turtles were outfitted with satellite transmitters after nesting at Padre Island National Seashore, Texas, USA, from 1998 through 2013 (n = 60); Rancho Nuevo, Tamaulipas, Mexico, during 2010 and 2011 (n = 11); and Tecolutla, Veracruz, Mexico, during 2012 and 2013 (n = 11). These sites span the range of nearly all nesting by this species. Inter-nesting habitat lies in a narrow band of nearshore western Gulf of Mexico waters in the USA and Mexico, with mean water depth of 14 to 19 m within a mean distance to shore of 6 to 11 km as estimated by 50% kernel density estimate, α-Hull, and minimum convex polygon methodologies. Turtles tracked during the inter-nesting period moved, on average, 17.5 km/day and a mean total distance of 398 km. Mean home ranges occupied were 725 to 2948 km2. Our results indicate that these nearshore western Gulf waters represent critical inter-nesting habitat for this species, where threats such as shrimp trawling and oil and gas platforms also occur. Up to half of all adult female Kemp’s ridleys occupy this habitat for weeks to months during each nesting season. Because inter-nesting habitat for this species is concentrated in nearshore waters of the western Gulf of Mexico in both Mexico and the USA, international collaboration is needed to protect this essential habitat and the turtles occurring within it.
Inter-nesting movements and habitat-use of adult female Kemp's ridley turtles in the Gulf of Mexico.
Shaver, Donna J; Hart, Kristen M; Fujisaki, Ikuko; Bucklin, David; Iverson, Autumn R; Rubio, Cynthia; Backof, Thomas F; Burchfield, Patrick M; de Jesus Gonzales Diaz Miron, Raul; Dutton, Peter H; Frey, Amy; Peña, Jaime; Gomez Gamez, Daniel; Martinez, Hector J; Ortiz, Jaime
2017-01-01
Species vulnerability is increased when individuals congregate in restricted areas for breeding; yet, breeding habitats are not well defined for many marine species. Identification and quantification of these breeding habitats are essential to effective conservation. Satellite telemetry and switching state-space modeling (SSM) were used to define inter-nesting habitat of endangered Kemp's ridley turtles (Lepidochelys kempii) in the Gulf of Mexico. Turtles were outfitted with satellite transmitters after nesting at Padre Island National Seashore, Texas, USA, from 1998 through 2013 (n = 60); Rancho Nuevo, Tamaulipas, Mexico, during 2010 and 2011 (n = 11); and Tecolutla, Veracruz, Mexico, during 2012 and 2013 (n = 11). These sites span the range of nearly all nesting by this species. Inter-nesting habitat lies in a narrow band of nearshore western Gulf of Mexico waters in the USA and Mexico, with mean water depth of 14 to 19 m within a mean distance to shore of 6 to 11 km as estimated by 50% kernel density estimate, α-Hull, and minimum convex polygon methodologies. Turtles tracked during the inter-nesting period moved, on average, 17.5 km/day and a mean total distance of 398 km. Mean home ranges occupied were 725 to 2948 km2. Our results indicate that these nearshore western Gulf waters represent critical inter-nesting habitat for this species, where threats such as shrimp trawling and oil and gas platforms also occur. Up to half of all adult female Kemp's ridleys occupy this habitat for weeks to months during each nesting season. Because inter-nesting habitat for this species is concentrated in nearshore waters of the western Gulf of Mexico in both Mexico and the USA, international collaboration is needed to protect this essential habitat and the turtles occurring within it.
A mechanism that maintains alternative life histories in a loggerhead sea turtle population.
Hatase, Hideo; Omuta, Kazuyoshi; Tsukamoto, Katsumi
2013-11-01
Intrapopulation variation in habitat use is commonly seen among mobile animals, yet the mechanisms maintaining it have rarely been researched among untrackable species. To investigate how alternative life histories are maintained in a population of the loggerhead sea turtle (Caretta caretta), cumulative reproductive output was evaluated and compared between small planktivores inhabiting oceanic areas (with water depths > 200 m) and large benthivores inhabiting neritic areas (depths < 200 m) that sympatrically nested at Yakushima Island, Japan, from 1986 to 2011. In total, 362 nesting females sampled in three different years were classified into the two foraging groups based on stable isotope ratios in egg yolks. There were significant differences between the two foraging groups in most recorded life history parameters (clutch size, clutch frequency, breeding frequency, and remigration intervals), with the exception of emergence success. We did not find evidence of life history trade-offs, nor age-related changes in fecundity. Over the 26-year study period, we calculated a 2.4-fold greater reproductive output for neritic foragers than for oceanic ones, accounting for breeding and clutch frequency. Temporal consistencies in stable isotope ratios and remigration intervals within females suggested that female Japanese loggerheads show fidelity to respective foraging habitats throughout the adult stage. The large difference in productivity between the two groups was unlikely to be offset by the difference in survival during the period from aboveground emergence to first reproduction, suggesting that oceanic foragers have a lower level of fitness than neritic ones. Together with an absence of genetic structure between foraging groups, we infer that alternative life histories in a loggerhead turtle population are maintained by a conditional strategy.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except as...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except as...
50 CFR 648.106 - Sea Turtle conservation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Sea Turtle conservation. 648.106 Section... Summer Flounder Fisheries § 648.106 Sea Turtle conservation. Link to an amendment published at 76 FR 60629, Sept. 29, 2011. Sea turtle regulations are found at 50 CFR parts 222 and 223. [64 FR 57595, Oct...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except as...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except as...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Sea turtles. 223.205 Section 223.205... Threatened Marine and Anadromous Species § 223.205 Sea turtles. (a) The prohibitions of section 9 of the Act (16 U.S.C. 1538) relating to endangered species apply to threatened species of sea turtle, except as...
Sea Turtles: An Auditorium Program, Grades 6-9.
ERIC Educational Resources Information Center
National Aquarium in Baltimore, MD. Dept. of Education.
The National Aquarium in Baltimore's sea turtle auditorium program introduces students in grades 6-9 to the seven (or eight, depending on which expert is consulted) species of sea turtles alive today. The program, which includes slides, films, artifacts, and discussion, focuses on sea turtle biology and conservation. This booklet covers most of…
Isotope analysis reveals foraging area dichotomy for atlantic leatherback turtles.
Caut, Stéphane; Fossette, Sabrina; Guirlet, Elodie; Angulo, Elena; Das, Krishna; Girondot, Marc; Georges, Jean-Yves
2008-03-26
The leatherback turtle (Dermochelys coriacea) has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI). Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal) and foraging latitude (North Atlantic vs. West African coasts, respectively). Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by commercial fisheries. Our results also emphasize the use of eggs, a less-invasive sampling material than blood, to assess isotopic data and feeding habits for adult female leatherbacks.
Isotope Analysis Reveals Foraging Area Dichotomy for Atlantic Leatherback Turtles
Angulo, Elena; Das, Krishna; Girondot, Marc
2008-01-01
Background The leatherback turtle (Dermochelys coriacea) has undergone a dramatic decline over the last 25 years, and this is believed to be primarily the result of mortality associated with fisheries bycatch followed by egg and nesting female harvest. Atlantic leatherback turtles undertake long migrations across ocean basins from subtropical and tropical nesting beaches to productive frontal areas. Migration between two nesting seasons can last 2 or 3 years, a time period termed the remigration interval (RI). Recent satellite transmitter data revealed that Atlantic leatherbacks follow two major dispersion patterns after nesting season, through the North Gulf Stream area or more eastward across the North Equatorial Current. However, information on the whole RI is lacking, precluding the accurate identification of feeding areas where conservation measures may need to be applied. Methodology/Principal Findings Using stable isotopes as dietary tracers we determined the characteristics of feeding grounds of leatherback females nesting in French Guiana. During migration, 3-year RI females differed from 2-year RI females in their isotope values, implying differences in their choice of feeding habitats (offshore vs. more coastal) and foraging latitude (North Atlantic vs. West African coasts, respectively). Egg-yolk and blood isotope values are correlated in nesting females, indicating that egg analysis is a useful tool for assessing isotope values in these turtles, including adults when not available. Conclusions/Significance Our results complement previous data on turtle movements during the first year following the nesting season, integrating the diet consumed during the year before nesting. We suggest that the French Guiana leatherback population segregates into two distinct isotopic groupings, and highlight the urgent need to determine the feeding habitats of the turtle in the Atlantic in order to protect this species from incidental take by commercial fisheries. Our results also emphasize the use of eggs, a less-invasive sampling material than blood, to assess isotopic data and feeding habits for adult female leatherbacks. PMID:18365003
Bovery, Caitlin M; Wyneken, Jeanette
2015-01-01
Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles' highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida's east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern for sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. This assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.
First satellite tracks of neonate sea turtles redefine the ‘lost years’ oceanic niche
Mansfield, Katherine L.; Wyneken, Jeanette; Porter, Warren P.; Luo, Jiangang
2014-01-01
Few at-sea behavioural data exist for oceanic-stage neonate sea turtles, a life-stage commonly referred to as the sea turtle ‘lost years’. Historically, the long-term tracking of small, fast-growing organisms in the open ocean was logistically or technologically impossible. Here, we provide the first long-term satellite tracks of neonate sea turtles. Loggerheads (Caretta caretta) were remotely tracked in the Atlantic Ocean using small solar-powered satellite transmitters. We show that oceanic-stage turtles (i) rarely travel in Continental Shelf waters, (ii) frequently depart the currents associated with the North Atlantic Subtropical Gyre, (iii) travel quickly when in Gyre currents, and (iv) select sea surface habitats that are likely to provide a thermal benefit or refuge to young sea turtles, supporting growth, foraging and survival. Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use, allowing us to re-examine sea turtle ‘lost years’ paradigms. PMID:24598420
Microplastic at nesting grounds used by the northern Gulf of Mexico loggerhead recovery unit.
Beckwith, Valencia K; Fuentes, Mariana M P B
2018-06-01
Microplastics can impact key habitats used by endangered species, such as marine turtles. They impact the environment by transporting toxicants and altering sediment properties affecting temperature and sediment permeability. Our study determined the exposure of the ten most important nesting sites for the Northern Gulf of Mexico Loggerhead Recovery Unit to microplastic. Sand samples were obtained at each nesting site during the 2017 nesting season and analyzed for abundance and characteristics of microplastic. Microplastic was found at all sites, with an average abundance of 61.08 ± 34.61 pieces/m 2 , and 59.9% located at the dunes, where turtles primarily nest. A gradual decrease in microplastics abundance was observed from the most western nesting ground to the east. The results from this study indicate that microplastic accumulation on nesting sites for the Northern Gulf of Mexico may be of great concern, and could negatively affect the incubating environment for marine turtles. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stream and riparian management for freshwater turtles.
Bodie, J R
2001-08-01
The regulation and management of stream ecosystems worldwide have led to irreversible loss of wildlife species. Due to recent scrutiny of water policy and dam feasibility, there is an urgent need for fundamental research on the biotic integrity of streams and riparian zones. Although riverine turtles rely on stream and riparian zones to complete their life cycle, are vital producers and consumers, and are declining worldwide, they have received relatively little attention. I review the literature on the impacts of contemporary stream management on freshwater turtles. Specifically, I summarize and discuss 10 distinct practices that produce five potential biological repercussions. I then focus on the often-overlooked use of riparian zones by freshwater turtles, calculate a biologically determined riparian width, and offer recommendations for ecosystem management. Migration data were summarized on 10 species from eight US states and four countries. A riparian zone encompassing the majority of freshwater turtle migrations would need to span 150 m from the stream edge. Freshwater turtles primarily chose high, open sandy habitats to nest. Nests in North America contained eggs and hatchlings during April through September and often through the winter. In addition, freshwater turtles utilized diverse riparian habitats for feeding, nesting, and overwintering. Additional documentation of stream and riparian habitat use by turtles is needed.
50 CFR 224.104 - Special requirements for fishing activities to protect endangered sea turtles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... activities to protect endangered sea turtles. 224.104 Section 224.104 Wildlife and Fisheries NATIONAL MARINE... endangered sea turtles. (a) Shrimp fishermen in the southeastern United States and the Gulf of Mexico who comply with rules for threatened sea turtles specified in § 223.206 of this chapter will not be subject...
50 CFR 224.104 - Special requirements for fishing activities to protect endangered sea turtles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... activities to protect endangered sea turtles. 224.104 Section 224.104 Wildlife and Fisheries NATIONAL MARINE... endangered sea turtles. (a) Shrimp fishermen in the southeastern United States and the Gulf of Mexico who comply with rules for threatened sea turtles specified in § 223.206 of this chapter will not be subject...
Bailey, Helen; Benson, Scott R; Shillinger, George L; Bograd, Steven J; Dutton, Peter H; Eckert, Scott A; Morreale, Stephen J; Paladino, Frank V; Eguchi, Tomoharu; Foley, David G; Block, Barbara A; Piedra, Rotney; Hitipeuw, Creusa; Tapilatu, Ricardo F; Spotila, James R
2012-04-01
Interactions with fisheries are believed to be a major cause of mortality for adult leatherback turtles (Dermochelys coriacea), which is of particular concern in the Pacific Ocean, where they have been rapidly declining. In order to identify where these interactions are occurring and how they may be reduced, it is essential first to understand the movements and behavior of leatherback turtles. There are two regional nesting populations in the East Pacific (EP) and West Pacific (WP), comprising multiple nesting sites. We synthesized tracking data from the two populations and compared their movement patterns. A switching state-space model was applied to 135 Argos satellite tracks to account for observation error, and to distinguish between migratory and area-restricted search behaviors. The tracking data, from the largest leatherback data set ever assembled, indicated that there was a high degree of spatial segregation between EP and WP leatherbacks. Area-restricted search behavior mainly occurred in the southeast Pacific for the EP leatherbacks, whereas the WP leatherbacks had several different search areas in the California Current, central North Pacific, South China Sea, off eastern Indonesia, and off southeastern Australia. We also extracted remotely sensed oceanographic data and applied a generalized linear mixed model to determine if leatherbacks exhibited different behavior in relation to environmental variables. For the WP population, the probability of area-restricted search behavior was positively correlated with chlorophyll-a concentration. This response was less strong in the EP population, but these turtles had a higher probability of search behavior where there was greater Ekman upwelling, which may increase the transport of nutrients and consequently prey availability. These divergent responses to oceanographic conditions have implications for leatherback vulnerability to fisheries interactions and to the effects of climate change. The occurrence of leatherback turtles within both coastal and pelagic areas means they have a high risk of exposure to many different fisheries, which may be very distant from their nesting sites. The EP leatherbacks have more limited foraging grounds than the WP leatherbacks, which could make them more susceptible to any temperature or prey changes that occur in response to climate change.
Past primary sex-ratio estimates of 4 populations of Loggerhead sea turtle based on TSP durations.
NASA Astrophysics Data System (ADS)
Monsinjon, Jonathan; Kaska, Yakup; Tucker, Tony; LeBlanc, Anne Marie; Williams, Kristina; Rostal, David; Girondot, Marc
2016-04-01
Ectothermic species are supposed to be strongly affected by climate change and particularly those that exhibit temperature-dependent sex-determination (TSD). Actually, predicting the embryonic response of such organism to incubation-temperature variations in natural conditions remains challenging. In order to assess the vulnerability of sea turtles, primary sex-ratio estimates should be produced at pertinent ecological time and spatial scales. Although information on this important demographic parameter is one of the priorities for conservation purpose, accurate methodology to produce such an estimate is still lacking. The most commonly used method invocates incubation duration as a proxy for sex-ratio. This method is inappropriate because temperature influences incubation duration during all development whereas sex is influenced by temperature during only part of development. The thermosensitive period of development for sex determination (TSP) lies in the middle third of development. A model of embryonic growth must be used to define precisely the position of the TSP at non-constant incubation temperatures. The thermal reaction norm for embryonic growth rate have been estimated for 4 distinct populations of the globally distributed and threatened marine turtle Caretta caretta. A thermal reaction norm describes the pattern of phenotypic expression of a single genotype across a range of temperatures. Moreover, incubation temperatures have been reconstructed for the last 35 years using a multi-correlative model with climate temperature. After development of embryos have been modelled, we estimated the primary sex-ratio based on the duration of the TSP. Our results suggests that Loggerhead sea turtles nesting phenology is linked with the period within which both sexes can be produced in variable proportions. Several hypotheses will be discussed to explain why Caretta caretta could be more resilient to climate change than generally thought for sex determination.
Juvenile recruitment in loggerhead sea turtles linked to decadal changes in ocean circulation.
Ascani, François; Van Houtan, Kyle S; Di Lorenzo, Emanuele; Polovina, Jeffrey J; Jones, T Todd
2016-11-01
Given the threats of climate change, understanding the relationship of climate with long-term population dynamics is critical for wildlife conservation. Previous studies have linked decadal climate oscillations to indices of juvenile recruitment in loggerhead sea turtles (Caretta caretta), but without a clear understanding of mechanisms. Here, we explore the underlying processes that may explain these relationships. Using the eddy-resolving Ocean General Circulation Model for the Earth Simulator, we generate hatch-year trajectories for loggerhead turtles emanating from Japan over six decades (1950-2010). We find that the proximity of the high-velocity Kuroshio Current to the primary nesting areas in southern Japan is remarkably stable and that hatchling dispersal to oceanic habitats itself does not vary on decadal timescales. However, we observe a shift in latitudes of trajectories, consistent with the Pacific Decadal Oscillation (PDO). In a negative PDO phase, the Kuroshio Extension Current (KEC) is strong and acts as a physical barrier to the northward transport of neonates. As a result, hatch-year trajectories remain mostly below 35°N in the warm, unproductive region south of the Transition Zone Chlorophyll Front (TZCF). During a positive PDO phase, however, the KEC weakens facilitating the neonates to swim north of the TZCF into cooler and more productive waters. As a result, annual cohorts from negative PDO years may face a lack of resources, whereas cohorts from positive PDO years may find sufficient resources during their pivotal first year. These model outputs indicate that the ocean circulation dynamics, combined with navigational swimming behavior, may be a key factor in the observed decadal variability of sea turtle populations. © 2016 John Wiley & Sons Ltd.
Pankaew, Karen; Milton, Sarah L
2018-01-04
Following emergence from the nest, sea turtle hatchling dispersal can be disrupted by artificial lights or skyglow from urban areas. Misorientation or disorientation may increase exposure to predation, thermal stress and dehydration, and consume valuable energy, thus decreasing the likelihood of survival. In this study hatchlings were run on a treadmill for 200 or 500 m to investigate the physiological impacts of disorientation crawling in loggerhead ( Caretta caretta ) and green ( Chelonia mydas ) sea turtle hatchlings. Oxygen consumption, lactate production and blood glucose levels were determined, and swim performance was measured over 2 h following crawls. Crawl distances were also determined for hatchlings that disoriented on the Boca Raton beach in Florida, with plasma lactate and blood glucose sampled for both properly oriented and disoriented hatchlings. Green and loggerhead hatchlings rested for 8-12% and 22-25% of crawl time, respectively, both in the laboratory and when disoriented on the beach, which was significantly longer than the time spent resting in non-disoriented turtles. As a result of these rest periods, the extended crawl distances had little effect on oxygen consumption, blood glucose or plasma lactate levels. Swim performance over 2 h following the crawls also changed little compared with controls. Plasma lactate concentrations were significantly higher in hatchlings sampled in the field, but did not correlate with crawl distance. The greatest immediate impact of extended crawling as a result of disorientation events is likely to be the significantly greater period of time spent on the beach and thus exposure to predation. © 2018. Published by The Company of Biologists Ltd.
Tomillo, Pilar Santidrián; Saba, Vincent S; Piedra, Rotney; Paladino, Frank V; Spotila, James R
2008-10-01
Within 19 years the nesting population of leatherback turtles (Dermochelys coriacea) at Parque Nacional Marino Las Baulas declined from 1500 turtles nesting per year to about 100. We analyzed the effects of fishery bycatch and illegal harvesting (poaching) of eggs on this population. We modeled the population response to different levels of egg harvest (90, 75, 50, and 25%) and the effect of eradicating poaching at different times during the population decline. We compared effects of 90% poaching with those of 20% adult mortality because both of these processes were present in the population at Las Baulas. There was a stepwise decline in number of nesting turtles at all levels of egg harvest. Extirpation times for different levels of poaching ranged from 45 to 282 years. The nesting population declined more slowly and survived longer with 20% adult mortality (146 years) than it did with 90% poaching (45 years). Time that elapsed until poaching stopped determined the average population size at which the population stabilized, ranging from 90 to 420 nesting turtles. Our model predicted that saving clutches lost naturally would restore the population when adult mortality rates were low and would contribute more to population recovery when there were short remigration intervals between nesting seasons and a large proportion of natural loss of clutches. Because the model indicated that poaching was the most important cause of the leatherback decline at Las Baulas, protecting nests on the beach and protecting the beach from development are critical for survival of this population. Nevertheless, the model predicted that current high mortality rates of adults will prevent population recovery. Therefore, protection of the beach habitat and nests must be continued and fishery bycatch must be reduced to save this population.
Epibiotic Diatoms Are Universally Present on All Sea Turtle Species
Majewska, Roksana; Lazo-Wasem, Eric A.; Nel, Ronel; Paladino, Frank V.; Rojas, Lourdes; Zardus, John D.; Pinou, Theodora
2016-01-01
The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals. PMID:27257972
Richardson, Kristine L; Gold-Bouchot, Gerardo; Schlenk, Daniel
2009-08-01
Glutathione s-transferases (GST) play a critical role in the detoxification of exogenous and endogenous electrophiles, as well as the products of oxidative stress. As compared to mammals, GST activity has not been extensively characterized in reptiles. Throughout the globe, most sea turtle populations face the risk of extinction. Of the natural and anthropogenic threats to sea turtles, the effects of environmental chemicals and related biochemical mechanisms, such as GST catalyzed detoxification, are probably the least understood. In the present study, GST activity was characterized in four species of sea turtles with varied life histories and feeding strategies: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata). Although similar GST kinetics was observed between species, rates of catalytic activities using class-specific substrates show inter- and intra-species variation. GST from the spongivorous hawksbill sea turtle shows 3-4.5 fold higher activity with the substrate 4-nitrobenzylchloride than the other 3 species. GST from the herbivorous green sea turtle shows 3 fold higher activity with the substrate ethacrynic acid than the carnivorous olive ridley sea turtle. The results of this study may provide insight into differences in biotransformation potential in the four species of sea turtles and the possible health impacts of contaminant biotransformation by sea turtles.
Critical Beach Habitat for Hawaiian Green Sea Turtle Endangered Before Mid-Century
NASA Astrophysics Data System (ADS)
Burstein, J. T.; Fletcher, C. H., III; Dominique Tavares, K.
2017-12-01
Many Hawaiian beaches provide critical habitat for the Hawaiian Green Sea Turtle (Chelonia Mydas). However, sea level rise drives beaches and dunes to migrate landward where they may encounter roads and other types of developed lands. Where developed lands are threatened by coastal erosion, defined as a distance of 20 ft (6.1 m) by state rules, property owners are eligible to apply for an emergency permit. These have historically led to coastal armoring. Seawalls and revetments on chronically receding shorelines cause permanent beach loss by restricting sand supply to the beach in front of the sea wall, as well as to beaches adjacent to the restrictive structure (flanking). This study focuses on four primary beach habitats along the North Shore of Oahu, Hawai'i: Waimea, Haleiwa, Kawailoa, and Mokuleia. We utilize GIS techniques to apply spatial analysis of nesting and basking locations collected from the National Oceanic Atmospheric Administration (NOAA). We then estimate the number of homes and the length of shoreline threatened by coastal armoring for 0 m, 0.17 m, 0.32 m, 0.60 m, and 0.98 m of sea-level rise. We demonstrate that 0.17 m of sea level rise impacts 31% of all beach front homes, and 4.6 km of shoreline, or 21% of the total shoreline. An increase to 0.32 m of sea level rise impacts 42% of all beach front homes, and 5.8 km of shoreline, or 31% of the total shoreline. The upper bound of the most recent sea level rise projection by the International Panel on Climate Change (IPCC RCP 8.5) affirms that 0.17 m of sea level rise may be reached by 2030, and 0.32 m by 2050. This sea level projection is a "worst-case" under IPCC-AR5, however, Sweet et al. (2017) depicts this as an "Intermediate" scenario on the basis of faster than expected mass loss by Greenland and Antarctica ice sheets, and rapid heat uptake and thermal expansion by the world's oceans. We conclude that the impacts of sea level rise and reactive coastal armoring currently endanger critical habitat for the Hawaiian Green Sea turtle (Chelonia Mydas). The results of this study suggest that decision-makers need to act without delay in developing habitat management plans to protect and preserve Hawai'i's shorelines, and conserve critical habitats for the Hawaiian Green Sea turtle and other indigenous species.
Code of Federal Regulations, 2010 CFR
2010-10-01
... stranded endangered sea turtles, and to salvage, collect data from, and dispose of, dead carcasses of... member of any endangered species of sea turtle is found stranded or dead in the marine environment, any... taking is necessary to aid a stranded sea turtle, or dispose of or salvage a dead sea turtle, or collect...
Code of Federal Regulations, 2011 CFR
2011-10-01
... stranded endangered sea turtles, and to salvage, collect data from, and dispose of, dead carcasses of... member of any endangered species of sea turtle is found stranded or dead in the marine environment, any... taking is necessary to aid a stranded sea turtle, or dispose of or salvage a dead sea turtle, or collect...
Global analysis of the effect of local climate on the hatchling output of leatherback turtles.
Santidrián Tomillo, Pilar; Saba, Vincent S; Lombard, Claudia D; Valiulis, Jennifer M; Robinson, Nathan J; Paladino, Frank V; Spotila, James R; Fernández, Carlos; Rivas, Marga L; Tucek, Jenny; Nel, Ronel; Oro, Daniel
2015-11-17
The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21(st) century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100.
Global analysis of the effect of local climate on the hatchling output of leatherback turtles
Santidrián Tomillo, Pilar; Saba, Vincent S.; Lombard, Claudia D.; Valiulis, Jennifer M.; Robinson, Nathan J.; Paladino, Frank V.; Spotila, James R.; Fernández, Carlos; Rivas, Marga L.; Tucek, Jenny; Nel, Ronel; Oro, Daniel
2015-01-01
The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21st century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100. PMID:26572897
Global analysis of the effect of local climate on the hatchling output of leatherback turtles
NASA Astrophysics Data System (ADS)
Santidrián Tomillo, Pilar; Saba, Vincent S.; Lombard, Claudia D.; Valiulis, Jennifer M.; Robinson, Nathan J.; Paladino, Frank V.; Spotila, James R.; Fernández, Carlos; Rivas, Marga L.; Tucek, Jenny; Nel, Ronel; Oro, Daniel
2015-11-01
The most recent climate change projections show a global increase in temperatures along with precipitation changes throughout the 21st century. However, regional projections do not always match global projections and species with global distributions may exhibit varying regional susceptibility to climate change. Here we show the effect of local climatic conditions on the hatchling output of leatherback turtles (Dermochelys coriacea) at four nesting sites encompassing the Pacific, Atlantic and Indian Oceans. We found a heterogeneous effect of climate. Hatchling output increased with long-term precipitation in areas with dry climatic conditions (Playa Grande, Pacific Ocean and Sandy Point, Caribbean Sea), but the effect varied in areas where precipitation was high (Pacuare, Caribbean Sea) and was not detected at the temperate site (Maputaland, Indian Ocean). High air temperature reduced hatchling output only at the area experiencing seasonal droughts (Playa Grande). Climatic projections showed a drastic increase in air temperature and a mild decrease in precipitation at all sites by 2100. The most unfavorable conditions were projected for Sandy Point where hatching success has already declined over time along with precipitation levels. The heterogeneous effect of climate may lead to local extinctions of leatherback turtles in some areas but survival in others by 2100.
Whittier, J M; Corrie, F; Limpus, C
1997-04-01
Plasma levels of four hormones-progesterone (P), testosterone (T), estradiol 17-beta (E2), and corticosterone (B)-were measured in samples taken from nesting female loggerhead turtles (Caretta caretta) by using specific radioimmunoassays. Samples were taken in an early, middle, or late period during the summer nesting season from females at first, second, third, or > fourth nesting episodes, defined as successive within-season nesting events, at Mon Repos Beach, Queensland, Australia. Data on individual patterns of nesting, collected over the past 20 years by the Queensland Turtle Research Project, and the seasonal nesting data, were analyzed with respect to influences on hormonal profiles. Circulating levels of E2 were mostly undetectable, suggesting either that this estrogen is not produced at this time of nesting, or that, perhaps, another estrogen may be present that is not detected by the specific radioimmunoassay. P, T, and B profiles in the nesting females were associated with the individual turtles' progression through successive nesting episodes, with a marked decline in all three hormones by the last (> 4) nesting episode of the season. Nesting episode accounted for significant changes that were related to season, in that nesting episode and season were significantly correlated. These patterns were observed in the population, when singly sampled at each time period or nesting episode, and in individual females sampled repeatedly over time. Moreover, T and B were highly and significantly correlated in females at all nesting episodes and time periods, and in the singly and repeatedly sampled females. The magnitude of change in T and B over time was also highly and significantly correlated in repeatedly sampled females. Together these results suggest the hypothesis that T and B interact over the period of successive nesting and may be involved in reproductive functions such as the mobilization of reserves for egg production in C. caretta.
First fossil gravid turtle provides insight into the evolution of reproductive traits in turtles.
Zelenitsky, Darla K; Therrien, Franc Ois; Joyce, Walter G; Brinkman, Donald B
2008-12-23
Here we report on the first discovery of shelled eggs inside the body cavity of a fossil turtle and on an isolated egg clutch, both referable to the Cretaceous turtle Adocus. These discoveries provide a unique opportunity to gain insight into the reproductive traits of an extinct turtle and to understand the evolution of such traits among living turtles. The gravid adult and egg clutch indicate that Adocus laid large clutches of rigid-shelled spherical eggs and established their nests near rivers, traits that are shared by its closest living relatives, the soft-shelled turtles. Adocus eggshell, however, was probably more rigid than that of living turtles, based on its great thickness and structure, features that may represent unique adaptations to intense predation or to arid nest environments. In light of the reproductive traits observed in Adocus, the distribution of reproductive traits among turtles reveals that large clutches of rigid-shelled eggs are primitive for hidden-necked turtles (cryptodirans) and that spherical eggs may have evolved independently within this group.
Telemeco, Rory S; Warner, Daniel A; Reida, Molly K; Janzen, Fredric J
2013-06-01
Increases in extreme environmental events are predicted to be major results of ongoing global climate change and may impact the persistence of species. We examined the effects of heat and cold waves during embryonic development of painted turtles (Chrysemys picta) in natural nests on the occurrence of abnormal shell morphologies in hatchlings. We found that nests exposed to extreme hot temperatures for >60 h produced more hatchlings with abnormalities than nests exposed to extreme hot temperatures for shorter periods, regardless of whether or not nesting females displayed abnormal morphologies. We observed no effect of extreme cold nest temperatures on the occurrence of hatchlings with abnormalities. Moreover, the frequency of nesting females with abnormal shell morphologies was approximately 2-fold lower than that of their offspring, suggesting that such abnormalities are negatively correlated with survival and fitness. Female turtles could potentially buffer their offspring from extreme heat by altering aspects of nesting behavior, such as choosing shadier nesting sites. We addressed this hypothesis by examining the effects of shade cover on extreme nest temperatures and the occurrence of hatchling abnormalities. While shade cover was negatively correlated with the occurrence of extreme hot nest temperatures, it was not significantly correlated with abnormalities. Therefore, female choice of shade cover does not appear to be a viable target for selection to reduce hatchling abnormalities. Our results suggest that increases in the frequency and intensity of heat waves associated with climate change might perturb developmental programs and thereby reduce the fitness of entire cohorts of turtles. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.
Winter severity and phenology of spring emergence from the nest in freshwater turtles.
Baker, Patrick Joseph; Iverson, John B; Lee, Richard E; Costanzo, Jon P
2010-07-01
Although many species of freshwater turtles emigrate to water soon after hatching, the offspring of some species overwinter on land and move to aquatic habitats in the following spring. Timing of emigration can affect the hatchlings' fitness, but the factors underlying phenology of nest emergence are incompletely understood. We tested the supposition that cold stress imposed during hibernation can influence the timing of nest emergence in three species of turtles in the central USA. In each year of the 6-year study, Chrysemys picta emerged in late March and early April and, on average, these hatchlings left their nests 2 weeks earlier than those of Graptemys geographica and 4 weeks earlier than those of Trachemys scripta. Emergence of conspecific hatchlings from different nests usually occurred over 3-7 weeks, but in some years lasted several additional weeks. Relatively few nests had siblings that emerged on the same day (i.e., synchronously); complete emergence of the typical sibling group required 1 to 2 weeks. In winter, subzero cold occurred with regularity in the nests of all species, though C. picta experienced the lowest temperatures owing to their shallower nests. However, for no species did emergence date or length of the emergence period correlate with winter minimum temperature and, at the level of the individual nest, neither did emergence synchrony or duration. Despite encountering lower temperatures, hatchlings of C. picta emigrated from their nests before those of sympatric species, suggesting that the fitness benefits of early emergence may lead to the improvement of cold-hardiness adaptations in northern populations of turtles.
Winter severity and phenology of spring emergence from the nest in freshwater turtles
NASA Astrophysics Data System (ADS)
Baker, Patrick Joseph; Iverson, John B.; Lee, Richard E.; Costanzo, Jon P.
2010-07-01
Although many species of freshwater turtles emigrate to water soon after hatching, the offspring of some species overwinter on land and move to aquatic habitats in the following spring. Timing of emigration can affect the hatchlings’ fitness, but the factors underlying phenology of nest emergence are incompletely understood. We tested the supposition that cold stress imposed during hibernation can influence the timing of nest emergence in three species of turtles in the central USA. In each year of the 6-year study, Chrysemys picta emerged in late March and early April and, on average, these hatchlings left their nests 2 weeks earlier than those of Graptemys geographica and 4 weeks earlier than those of Trachemys scripta. Emergence of conspecific hatchlings from different nests usually occurred over 3-7 weeks, but in some years lasted several additional weeks. Relatively few nests had siblings that emerged on the same day (i.e., synchronously); complete emergence of the typical sibling group required 1 to 2 weeks. In winter, subzero cold occurred with regularity in the nests of all species, though C. picta experienced the lowest temperatures owing to their shallower nests. However, for no species did emergence date or length of the emergence period correlate with winter minimum temperature and, at the level of the individual nest, neither did emergence synchrony or duration. Despite encountering lower temperatures, hatchlings of C. picta emigrated from their nests before those of sympatric species, suggesting that the fitness benefits of early emergence may lead to the improvement of cold-hardiness adaptations in northern populations of turtles.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., to aid stranded endangered sea turtles, and to salvage, collect data from, and dispose of, dead.... (b) If any member of any endangered species of sea turtle is found stranded or dead in the marine... such taking is necessary to aid a stranded sea turtle, or dispose of or salvage a dead sea turtle, or...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., to aid stranded endangered sea turtles, and to salvage, collect data from, and dispose of, dead.... (b) If any member of any endangered species of sea turtle is found stranded or dead in the marine... such taking is necessary to aid a stranded sea turtle, or dispose of or salvage a dead sea turtle, or...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., to aid stranded endangered sea turtles, and to salvage, collect data from, and dispose of, dead.... (b) If any member of any endangered species of sea turtle is found stranded or dead in the marine... such taking is necessary to aid a stranded sea turtle, or dispose of or salvage a dead sea turtle, or...
Lamont, Margaret M.; Putman, Nathan F.; Fujisaki, Ikuko; Hart, Kristen M.
2015-01-01
Many marine species have complex life histories that involve disparate developmental, foraging and reproductive habitats and a holistic assessment of the spatial requirements for different life stages is a challenge that greatly complicates their management. Here, we combined data from oceanographic modeling, nesting surveys, and satellite tracking to examine the spatial requirements of different life stages of Loggerhead Turtles (Caretta caretta) from a distinct population segment in the northern Gulf of Mexico. Our findings indicate that after emerging from nesting beaches in Alabama and Northwest Florida, hatchlings disperse widely and the proportion of turtles following a given route varies substantially through time, with the majority (mean of 74.4%) projected to leave the Gulf of Mexico. Adult females use neritic habitat throughout the northern and eastern Gulf of Mexico both during the inter-nesting phase and as post-nesting foraging areas. Movements and habitat use of juveniles and adult males represent a large gap in our knowledge, but given the hatchling dispersal predictions and tracks of post-nesting females it is likely that some Loggerhead Turtles remain in the Gulf of Mexico throughout their life. More than two-thirds of the Gulf provides potential habitat for at least one life-stage of Loggerhead Turtles. These results demonstrate the importance of the Gulf of Mexico to this Distinct Population Segment of Loggerhead Turtles. It also highlights the benefits of undertaking comprehensive studies of multiple life stages simultaneously: loss of individual habitats have the potential to affect several life stages thereby having long-term consequences to population recovery.
Senko, Jesse; Nichols, Wallace J; Ross, James Perran; Willcox, Adam S
2009-12-01
Sea turtles have historically been an important food resource for many coastal inhabitants of Mexico. Today, the consumption of sea turtle meat and eggs continues in northwestern Mexico despite well-documented legal protection and market conditions providing easier access to other more reliable protein sources. Although there is growing evidence that consuming sea turtles may be harmful to human health due to biotoxins, environmental contaminants, viruses, parasites, and bacteria, many at-risk individuals, trusted information sources, and risk communicators may be unaware of this information. Therefore, we interviewed 134 residents and 37 physicians in a region with high rates of sea turtle consumption to: (1) examine their knowledge and perceptions concerning these risks, as a function of sex, age, occupation, education and location; (2) document the occurrence of illness resulting from consumption; and (3) identify information needs for effective risk communication. We found that 32% of physicians reported having treated patients who were sickened from sea turtle consumption. Although physicians believed sea turtles were an unhealthy food source, they were largely unaware of specific health hazards found in regional sea turtles, regardless of location. By contrast, residents believed that sea turtles were a healthy food source, regardless of sex, age, occupation, and education, and they were largely unaware of specific health hazards found in regional sea turtles, regardless of age, occupation, and education. Although most residents indicated that they would cease consumption if their physician told them it was unhealthy, women were significantly more likely to do so than men. These results suggest that residents may lack the necessary knowledge to make informed dietary decisions and physicians do not have enough accurate information to effectively communicate risks with their patients.
Fine-scale thermal adaptation in a green turtle nesting population
Weber, Sam B.; Broderick, Annette C.; Groothuis, Ton G. G.; Ellick, Jacqui; Godley, Brendan J.; Blount, Jonathan D.
2012-01-01
The effect of climate warming on the reproductive success of ectothermic animals is currently a subject of major conservation concern. However, for many threatened species, we still know surprisingly little about the extent of naturally occurring adaptive variation in heat-tolerance. Here, we show that the thermal tolerances of green turtle (Chelonia mydas) embryos in a single, island-breeding population have diverged in response to the contrasting incubation temperatures of nesting beaches just a few kilometres apart. In natural nests and in a common-garden rearing experiment, the offspring of females nesting on a naturally hot (black sand) beach survived better and grew larger at hot incubation temperatures compared with the offspring of females nesting on a cooler (pale sand) beach nearby. These differences were owing to shallower thermal reaction norms in the hot beach population, rather than shifts in thermal optima, and could not be explained by egg-mediated maternal effects. Our results suggest that marine turtle nesting behaviour can drive adaptive differentiation at remarkably fine spatial scales, and have important implications for how we define conservation units for protection. In particular, previous studies may have underestimated the extent of adaptive structuring in marine turtle populations that may significantly affect their capacity to respond to environmental change. PMID:21937495
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovery, Caitlin M.; Wyneken, Jeanette
Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern formore » sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. As a result, this assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.« less
Bovery, Caitlin M.; Wyneken, Jeanette
2015-12-30
Assessment and management of sea turtle populations is often limited by a lack of available data pertaining to at-sea distributions at appropriate spatial and temporal resolutions. Assessing the spatial and temporal distributions of marine turtles in an open system poses both observational and analytical challenges due to the turtles’ highly migratory nature. Surface counts of marine turtles in waters along the southern part of Florida’s east coast were made in and adjacent to the southeast portion of the Florida Current using standard aerial surveys during 2011 and 2012 to assess their seasonal presence. This area is of particular concern formore » sea turtles as interest increases in offshore energy developments, specifically harnessing the power of the Florida Current. While it is understood that marine turtles use these waters, here we evaluate seasonal variation in sea turtle abundance and density over two years. Density of sea turtles observed within the study area ranged from 0.003 turtles km-2 in the winter of 2011 to 0.064 turtles km-2 in the spring of 2012. As a result, this assessment of marine turtles in the waters off southeast Florida quantifies their in-water abundance across seasons in this area to establish baselines and inform future management strategies of these protected species.« less
Decline of the Sea Turtles: Causes and Prevention.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Commission on Life Sciences.
A report submitted by the Committee on Sea Turtle Conservation, addresses threats to the world's sea turtle populations to fulfill a mandate of the Endangered Species Act Amendments of 1988. It presents information on the populations, biology, ecology, and behavior of five endangered or threatened turtle species: the Kemp's ridley, loggerhead,…
"Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands
ERIC Educational Resources Information Center
Kan, Da
2004-01-01
This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are…
ERIC Educational Resources Information Center
Lener, Christine; Pinou, Theodora
2007-01-01
Kids tracking sea turtles? No, it's not a description for a new nature show on TV, it's a lesson, and it could be happening in your classroom! Sea turtle biologists worldwide are currently working together to track turtles to learn about sea turtle behavior and migration in an effort to conserve these endangered animals. A unit was developed using…
Pleated turtle escapes the box--shape changes in Dermochelys coriacea.
Davenport, John; Plot, Virginie; Georges, Jean-Yves; Doyle, Thomas K; James, Michael C
2011-10-15
Typical chelonians have a rigid carapace and plastron that form a box-like structure that constrains several aspects of their physiology and ecology. The leatherback sea turtle, Dermochelys coriacea, has a flexible bony carapace strengthened by seven longitudinal ridges, whereas the plastron is reduced to an elliptical outer bony structure, so that the ventrum has no bony support. Measurements of the shell were made on adult female leatherbacks studied on the feeding grounds of waters off Nova Scotia (NS) and on breeding beaches of French Guiana (FG) to examine whether foraging and/or breeding turtles alter carapace size and/or shape. NS turtles exhibited greater mass and girth for a given curved carapace length (CCL) than FG turtles. Girth:CCL ratios rose during the feeding season, indicating increased girth. Measurements were made of the direct (straight) and surface (curved) distances between the medial longitudinal ridge and first right-hand longitudinal ridge (at 50% CCL). In NS turtles, the ratio of straight to curved inter-ridge distances was significantly higher than in FG turtles, indicating distension of the upper surfaces of the NS turtles between the ridges. FG females laid 11 clutches in the breeding season; although CCL and curved carapace width remained stable, girth declined between each nesting episode, indicating loss of mass. Straight to curved inter-ridge distance ratios did not change significantly during the breeding season, indicating loss of dorsal blubber before the onset of breeding. The results demonstrate substantial alterations in size and shape of female D. coriacea over periods of weeks to months in response to alterations in nutritional and reproductive status.
Inter-nesting movements and habitat-use of adult female Kemp’s ridley turtles in the Gulf of Mexico
Hart, Kristen M.; Fujisaki, Ikuko; Bucklin, David; Iverson, Autumn R.; Rubio, Cynthia; Backof, Thomas F.; Burchfield, Patrick M.; de Jesus Gonzales Diaz Miron, Raul; Dutton, Peter H.; Frey, Amy; Peña, Jaime; Gomez Gamez, Daniel; Martinez, Hector J.; Ortiz, Jaime
2017-01-01
Species vulnerability is increased when individuals congregate in restricted areas for breeding; yet, breeding habitats are not well defined for many marine species. Identification and quantification of these breeding habitats are essential to effective conservation. Satellite telemetry and switching state-space modeling (SSM) were used to define inter-nesting habitat of endangered Kemp’s ridley turtles (Lepidochelys kempii) in the Gulf of Mexico. Turtles were outfitted with satellite transmitters after nesting at Padre Island National Seashore, Texas, USA, from 1998 through 2013 (n = 60); Rancho Nuevo, Tamaulipas, Mexico, during 2010 and 2011 (n = 11); and Tecolutla, Veracruz, Mexico, during 2012 and 2013 (n = 11). These sites span the range of nearly all nesting by this species. Inter-nesting habitat lies in a narrow band of nearshore western Gulf of Mexico waters in the USA and Mexico, with mean water depth of 14 to 19 m within a mean distance to shore of 6 to 11 km as estimated by 50% kernel density estimate, α-Hull, and minimum convex polygon methodologies. Turtles tracked during the inter-nesting period moved, on average, 17.5 km/day and a mean total distance of 398 km. Mean home ranges occupied were 725 to 2948 km2. Our results indicate that these nearshore western Gulf waters represent critical inter-nesting habitat for this species, where threats such as shrimp trawling and oil and gas platforms also occur. Up to half of all adult female Kemp’s ridleys occupy this habitat for weeks to months during each nesting season. Because inter-nesting habitat for this species is concentrated in nearshore waters of the western Gulf of Mexico in both Mexico and the USA, international collaboration is needed to protect this essential habitat and the turtles occurring within it. PMID:28319178
Gardner, B.; Sullivan, P.J.; Morreale, S.J.; Epperly, S.P.
2008-01-01
Loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) sea turtle distributions and movements in offshore waters of the western North Atlantic are not well understood despite continued efforts to monitor, survey, and observe them. Loggerhead and leatherback sea turtles are listed as endangered by the World Conservation Union, and thus anthropogenic mortality of these species, including fishing, is of elevated interest. This study quantifies spatial and temporal patterns of sea turtle bycatch distributions to identify potential processes influencing their locations. A Ripley's K function analysis was employed on the NOAA Fisheries Atlantic Pelagic Longline Observer Program data to determine spatial, temporal, and spatio-temporal patterns of sea turtle bycatch distributions within the pattern of the pelagic fishery distribution. Results indicate that loggerhead and leatherback sea turtle catch distributions change seasonally, with patterns of spatial clustering appearing from July through October. The results from the space-time analysis indicate that sea turtle catch distributions are related on a relatively fine scale (30-200 km and 1-5 days). The use of spatial and temporal point pattern analysis, particularly K function analysis, is a novel way to examine bycatch data and can be used to inform fishing practices such that fishing could still occur while minimizing sea turtle bycatch. ?? 2008 NRC.
Development of a Summarized Health Index (SHI) for use in predicting survival in sea turtles.
Li, Tsung-Hsien; Chang, Chao-Chin; Cheng, I-Jiunn; Lin, Suen-Chuain
2015-01-01
Veterinary care plays an influential role in sea turtle rehabilitation, especially in endangered species. Physiological characteristics, hematological and plasma biochemistry profiles, are useful references for clinical management in animals, especially when animals are during the convalescence period. In this study, these factors associated with sea turtle surviving were analyzed. The blood samples were collected when sea turtles remained alive, and then animals were followed up for surviving status. The results indicated that significantly negative correlation was found between buoyancy disorders (BD) and sea turtle surviving (p < 0.05). Furthermore, non-surviving sea turtles had significantly higher levels of aspartate aminotranspherase (AST), creatinine kinase (CK), creatinine and uric acid (UA) than surviving sea turtles (all p < 0.05). After further analysis by multiple logistic regression model, only factors of BD, creatinine and UA were included in the equation for calculating summarized health index (SHI) for each individual. Through evaluation by receiver operating characteristic (ROC) curve, the result indicated that the area under curve was 0.920 ± 0.037, and a cut-off SHI value of 2.5244 showed 80.0% sensitivity and 86.7% specificity in predicting survival. Therefore, the developed SHI could be a useful index to evaluate health status of sea turtles and to improve veterinary care at rehabilitation facilities.
Development of a Summarized Health Index (SHI) for Use in Predicting Survival in Sea Turtles
Li, Tsung-Hsien; Chang, Chao-Chin; Cheng, I-Jiunn; Lin, Suen-Chuain
2015-01-01
Veterinary care plays an influential role in sea turtle rehabilitation, especially in endangered species. Physiological characteristics, hematological and plasma biochemistry profiles, are useful references for clinical management in animals, especially when animals are during the convalescence period. In this study, these factors associated with sea turtle surviving were analyzed. The blood samples were collected when sea turtles remained alive, and then animals were followed up for surviving status. The results indicated that significantly negative correlation was found between buoyancy disorders (BD) and sea turtle surviving (p < 0.05). Furthermore, non-surviving sea turtles had significantly higher levels of aspartate aminotranspherase (AST), creatinine kinase (CK), creatinine and uric acid (UA) than surviving sea turtles (all p < 0.05). After further analysis by multiple logistic regression model, only factors of BD, creatinine and UA were included in the equation for calculating summarized health index (SHI) for each individual. Through evaluation by receiver operating characteristic (ROC) curve, the result indicated that the area under curve was 0.920 ± 0.037, and a cut-off SHI value of 2.5244 showed 80.0% sensitivity and 86.7% specificity in predicting survival. Therefore, the developed SHI could be a useful index to evaluate health status of sea turtles and to improve veterinary care at rehabilitation facilities. PMID:25803431
Hierarchical modeling of bycatch rates of sea turtles in the western North Atlantic
Gardner, B.; Sullivan, P.J.; Epperly, S.; Morreale, S.J.
2008-01-01
Previous studies indicate that the locations of the endangered loggerhead Caretta caretta and critically endangered leatherback Dermochelys coriacea sea turtles are influenced by water temperatures, and that incidental catch rates in the pelagic longline fishery vary by region. We present a Bayesian hierarchical model to examine the effects of environmental variables, including water temperature, on the number of sea turtles captured in the US pelagic longline fishery in the western North Atlantic. The modeling structure is highly flexible, utilizes a Bayesian model selection technique, and is fully implemented in the software program WinBUGS. The number of sea turtles captured is modeled as a zero-inflated Poisson distribution and the model incorporates fixed effects to examine region-specific differences in the parameter estimates. Results indicate that water temperature, region, bottom depth, and target species are all significant predictors of the number of loggerhead sea turtles captured. For leatherback sea turtles, the model with only target species had the most posterior model weight, though a re-parameterization of the model indicates that temperature influences the zero-inflation parameter. The relationship between the number of sea turtles captured and the variables of interest all varied by region. This suggests that management decisions aimed at reducing sea turtle bycatch may be more effective if they are spatially explicit. ?? Inter-Research 2008.
McDougall, A J; Espinoza, T; Hollier, C; Limpus, D J; Limpus, C J
2015-03-01
A risk assessment process was used to trial the impact of potential new operating rules on the frequency of nest inundation for the White-throated snapping turtle, Elseya albagula, in the impounded waters of the Burnett River, Queensland, Australia. The proposed operating rules would increase the barrage storage level during the turtle nesting season (May-July) and then would be allowed to reduce to a lower level for incubation for the rest of the year. These proposed operating rules reduce rates of nest inundation by altering water levels in the Ben Anderson Barrage impoundment of the Burnett River. The rules operate throughout the turtle reproductive period and concomitantly improve stability of littoral habitat and fishway operation. Additionally, the proposed rules are expected to have positive socio-economic benefits within the region. While regulated water resources will inherently have a number of negative environmental implications, these potential new operating rules have the capacity to benefit the environment while managing resources in a more sustainable manner. The operating rules have now been enacted in subordinate legislation and require the operator to maintain water levels to minimize turtle nest inundation.
NASA Astrophysics Data System (ADS)
McDougall, A. J.; Espinoza, T.; Hollier, C.; Limpus, D. J.; Limpus, C. J.
2015-03-01
A risk assessment process was used to trial the impact of potential new operating rules on the frequency of nest inundation for the White-throated snapping turtle, Elseya albagula, in the impounded waters of the Burnett River, Queensland, Australia. The proposed operating rules would increase the barrage storage level during the turtle nesting season (May-July) and then would be allowed to reduce to a lower level for incubation for the rest of the year. These proposed operating rules reduce rates of nest inundation by altering water levels in the Ben Anderson Barrage impoundment of the Burnett River. The rules operate throughout the turtle reproductive period and concomitantly improve stability of littoral habitat and fishway operation. Additionally, the proposed rules are expected to have positive socio-economic benefits within the region. While regulated water resources will inherently have a number of negative environmental implications, these potential new operating rules have the capacity to benefit the environment while managing resources in a more sustainable manner. The operating rules have now been enacted in subordinate legislation and require the operator to maintain water levels to minimize turtle nest inundation.
Mycobacterium haemophilum infection in a juvenile leatherback sea turtle (Dermochelys coriacea).
Donnelly, Kyle; Waltzek, Thomas B; Wellehan, James F X; Stacy, Nicole I; Chadam, Maria; Stacy, Brian A
2016-11-01
Mycobacteriosis is infrequently reported in free-ranging sea turtles. Nontuberculous Mycobacterium haemophilum was identified as the causative agent of disseminated mycobacteriosis in a juvenile leatherback turtle (Dermochelys coriacea) that was found stranded on the Atlantic coast of Florida. Disseminated granulomatous inflammation was identified histologically, most notably affecting the nervous system. Identification of mycobacterial infection was based on cytologic, molecular, histologic, and microbiologic methods. Among stranded sea turtles received for diagnostic evaluation from the Atlantic and Gulf of Mexico coasts of the United States between 2004 and 2015, the diagnosis of mycobacteriosis was overrepresented in stranded oceanic-phase juveniles compared with larger size classes, which suggests potential differences in susceptibility or exposure among different life phases in this region. We describe M. haemophilum in a sea turtle, which contributes to the knowledge of diseases of small juvenile sea turtles, an especially cryptic life phase of the leatherback turtle. © 2016 The Author(s).
Subcellular distribution of trace elements in the liver of sea turtles.
Anan, Yasumi; Kunito, Takashi; Sakai, Haruya; Tanabe, Shinsuke
2002-01-01
Subcellular distribution of Cu, Zn, Se, Rb, Mo, Ag, Cd and Pb was determined in the liver of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Yaeyama Islands, Japan. Also, hepatic cytosol from sea turtles was applied on a Sephadex G-75 column and elution profiles of trace elements were examined. Copper, Zn, Se, Rb, Ag and Cd were largely present in cytosol in the liver of both species, indicating that cytosol was the significant site for the accumulation of these elements in sea turtles. In contrast, Mo and Pb were accumulated specifically in nuclear and mitochondrial fraction and microsomal fraction, respectively. Gel filtration analysis showed that Cu, Zn, Ag and Cd were bound to metallothionein (MT) in the cytosol of sea turtles. To our knowledge, this is the first report on the association of trace elements with MT in sea turtles.
Fukuda, Tomokazu; Kurita, Jun; Saito, Tomomi; Yuasa, Kei; Kurita, Masanobu; Donai, Kenichiro; Nitto, Hiroshi; Soichi, Makoto; Nishimori, Katsuhiko; Uchida, Takafumi; Isogai, Emiko; Onuma, Manabu; Sone, Hideko; Oseko, Norihisa; Inoue-Murayama, Miho
2012-12-01
The hawksbill sea turtle (Eretmochelys imbricata) is a critically endangered species at a risk of extinction. Preservation of the genomic and cellular information of endangered animals is important for future genetic and biological studies. Here, we report the efficient establishment of primary fibroblast cultures from skin tissue of the hawksbill sea turtle. We succeeded in establishing 19 primary cultures from 20 hawksbill sea turtle individuals (a success rate of 95%). These cells exhibited a fibroblast-like morphology and grew optimally at a temperature of 26°C, but experienced a loss of viability when cultured at 37°C. Chromosomal analysis using the primary cells derived here revealed that hawksbill sea turtles have a 2n = 56 karyotype. Furthermore, we showed that our primary cell cultures are free of several fish-related viruses, and this finding is important for preservation purposes. To our knowledge, this report is the first to describe primary cell cultures established from normal tissues of the hawksbill sea turtle. The results will contribute to the preservation of biodiversity, especially for the sea turtles that are critically endangered owing to human activities.
Risk analysis reveals global hotspots for marine debris ingestion by sea turtles.
Schuyler, Qamar A; Wilcox, Chris; Townsend, Kathy A; Wedemeyer-Strombel, Kathryn R; Balazs, George; van Sebille, Erik; Hardesty, Britta Denise
2016-02-01
Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study and turtle species. There is no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris. © 2015 John Wiley & Sons Ltd.
Risk Analysis Reveals Global Hotspots for Marine Debris Ingestion by Sea Turtles
NASA Astrophysics Data System (ADS)
Schuyler, Q. A.; Wilcox, C.; Townsend, K.; Wedemeyer-Strombel, K.; Balazs, G.; van Sebille, E.; Hardesty, B. D.
2016-02-01
Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle, and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study, and turtle species. There was no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia, and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris.
50 CFR 223.206 - Exceptions to prohibitions relating to sea turtles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... sea turtles. 223.206 Section 223.206 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... Exceptions to prohibitions relating to sea turtles. (a) Permits—(1) Scientific research, education... purposes, for zoological exhibition, or to enhance the propagation or survival of threatened species of sea...
50 CFR 223.206 - Exceptions to prohibitions relating to sea turtles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... sea turtles. 223.206 Section 223.206 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... Exceptions to prohibitions relating to sea turtles. (a) Permits—(1) Scientific research, education... purposes, for zoological exhibition, or to enhance the propagation or survival of threatened species of sea...
50 CFR 223.206 - Exceptions to prohibitions relating to sea turtles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... sea turtles. 223.206 Section 223.206 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE... Exceptions to prohibitions relating to sea turtles. (a) Permits—(1) Scientific research, education... purposes, for zoological exhibition, or to enhance the propagation or survival of threatened species of sea...
Arroyo-Arce, Stephanny; Salom-Pérez, Roberto
2015-09-01
Little is known about the effects of jaguars on the population of marine turtles nesting in Tortuguero National Park, Costa Rica. This study assessed jaguar predation impact on three species of marine turtles (Chelonia mydas, Dermochelys coriacea and Eretmochelys imbricata) that nest in Tortuguero beach. Jaguar predation data was obtained by using two methodologies, literature review (historical records prior the year 2005) and weekly surveys along the 29 km stretch of beach during the period 2005-2013. Our results indicated that jaguar predation has increased from one marine turtle in 1981 to 198 in 2013. Jaguars consumed annually an average of 120 (SD = 45) and 2 (SD = 3) green turtles and leatherbacks in Tortuguero beach, respectively. Based on our results we concluded that jaguars do not represent a threat to the population of green turtles that nest in Tortuguero beach, and it is not the main cause for population decline for leatherbacks and hawksbills. Future research should focus on continuing to monitor this predator-prey relationship as well as the factors that influence it so the proper management decisions can be taken.
Health implications associated with exposure to farmed and wild sea turtles.
Warwick, Clifford; Arena, Phillip C; Steedman, Catrina
2013-01-01
Exposure to sea turtles may be increasing with expanding tourism, although reports of problems arising from interaction with free-living animals appear of negligible human health and safety concern. Exposure both to wild-caught and captive-housed sea turtles, including consumption of turtle products, raises several health concerns for the public, including: microbiological (bacteria, viruses, parasites and fungi), macrobiological (macroparasites), and organic and inorganic toxic contaminants (biotoxins, organochlorines and heavy metals). We conducted a review of sea turtle associated human disease and its causative agents as well as a case study of the commercial sea turtle facility known as the Cayman Turtle Farm (which receives approximately 240,000 visitors annually) including the use of water sampling and laboratory microbial analysis which identified Pseudomonas aeruginosa, Aeromonas spp., Vibrio spp. and Salmonella spp. Our assessment is that pathogens and toxic contaminants may be loosely categorized to represent the following levels of potential risk: viruses and fungi = very low; protozoan parasites = very low to low; metazoan parasites, bacteria and environmental toxic contaminants = low or moderate to high; and biotoxin contaminant = moderate to very high. Farmed turtles and their consumable products may constitute a significant reservoir of potential human pathogen and toxin contamination. Greater awareness among health-care professionals regarding both potential pathogens and toxic contaminants from sea turtles, as well as key signs and symptoms of sea turtle-related human disease, is important for the prevention and control of salient disease.
50 CFR 224.104 - Special requirements for fishing activities to protect endangered sea turtles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... gear. (b) Summer flounder fishermen in the Summer flounder fishery-sea turtle protection area who... to civil penalties under the Act for incidental captures of endangered sea turtles by summer flounder...
50 CFR 224.104 - Special requirements for fishing activities to protect endangered sea turtles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... gear. (b) Summer flounder fishermen in the Summer flounder fishery-sea turtle protection area who... to civil penalties under the Act for incidental captures of endangered sea turtles by summer flounder...
Clukey, Katharine; Lepczyk, Christopher A.; Balazs, George H.; Work, Thierry M.; Li, Qing X.; Bachman, Melanie J.; Lynch, Jennifer M.
2017-01-01
In addition to eating contaminated prey, sea turtles may be exposed to persistent organic pollutants (POPs) from ingesting plastic debris that has absorbed these chemicals. Given the limited knowledge about POPs in pelagic sea turtles and how plastic ingestion influences POP exposure, our objectives were to: 1) provide baseline contaminant levels of three species of pelagic Pacific sea turtles; and 2) assess trends of contaminant levels in relation to species, sex, length, body condition and capture location. In addition, we hypothesized that if ingesting plastic is a significant source of POP exposure, then the amount of ingested plastic may be correlated to POP concentrations accumulated in fat. To address our objectives we compared POP concentrations in fat samples to previously described amounts of ingested plastic from the same turtles. Fat samples from 25 Pacific pelagic sea turtles [2 loggerhead (Caretta caretta), 6 green (Chelonia mydas) and 17 olive ridley (Lepidochelys olivacea) turtles] were analyzed for 81 polychlorinated biphenyls (PCBs), 20 organochlorine pesticides, and 35 brominated flame-retardants. The olive ridley and loggerhead turtles had higher ΣDDTs (dichlorodiphenyltrichloroethane and metabolites) than ΣPCBs, at a ratio similar to biota measured in the South China Sea and southern California. Green turtles had a ratio close to 1:1. These pelagic turtles had lower POP levels than previously reported in nearshore turtles. POP concentrations were unrelated to the amounts of ingested plastic in olive ridleys, suggesting that their exposure to POPs is mainly through prey. In green turtles, concentrations of ΣPCBs were positively correlated with the number of plastic pieces ingested, but these findings were confounded by covariance with body condition index (BCI). Green turtles with a higher BCI had eaten more plastic and also had higher POPs. Taken together, our findings suggest that sea turtles accumulate most POPs through their prey rather than marine debris.
75 FR 81201 - 2011 Annual Determination for Sea Turtle Observer Requirement
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
...-XA016 2011 Annual Determination for Sea Turtle Observer Requirement AGENCY: National Marine Fisheries... observers upon NMFS' request. The purpose of observing identified fisheries is to learn more about sea turtle interactions in a given fishery, evaluate existing measures to prevent or reduce prohibited sea...
50 CFR 648.126 - Protection of threatened and endangered sea turtles.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Protection of threatened and endangered sea turtles. 648.126 Section 648.126 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... sea turtles. This section supplements existing regulations issued to regulate incidental take of sea...
50 CFR 223.206 - Exceptions to prohibitions relating to sea turtles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Exceptions to prohibitions relating to sea... to prohibitions relating to sea turtles. (a) Permits—(1) Scientific research, education, zoological... zoological exhibition, or to enhance the propagation or survival of threatened species of sea turtles, in...
Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Sandra S., E-mail: sandra.wise@maine.edu; Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103; Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103
Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations ofmore » 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health.« less
NASA Astrophysics Data System (ADS)
Hanane, Saâd; Yassin, Mohamed
2017-01-01
Studies of niche partitioning among Columbid species have mainly addressed food habits and foraging activities, while partitioning in relation to nest-niche differentiation has been little studied. Here we investigate whether two sympatric columbid species-Woodpigeon (Columba palumbus) and Turtle dove (Streptopelia turtur)-occupy similar niches. A total of 74 nests were monitored: 37 nests for each species. The study, conducted in June 2016, attempted to determine the factors that may play a role in nest-niche differentiation among the two sympatric columbid species in a Moroccan Thuya (Tetraclinis articulata) forest. We used Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) to test the relevance of nest placement, proximity of food resources, forest edge and human presence variables in the nest distribution of the two species. The results show substantial niche segregation in the T. articulata nest-trees selected by Woodpigeons and Turtle doves, with selection depending primarily on the tree size and nest height. Observed nest-niche partitioning may diminish the potential for competition between these species and enhance opportunities for their coexistence. Management policies and practices aimed at ensuring the presence of mixed-sized class of Thuya trees must be prioritized. We recommend additional studies designed to: (1) reproduce the same experimental approach on other Mediterranean Thuya forests to improve our understanding of the effects of different levels of anthropogenic disturbance on the breeding behaviour of these two game species; (2) better understand the spatio-temporal dynamics of Woodpigeon and Turtle dove coexistence in the region; and (3) better identify the spatio-temporal extent of the effect of forest management on Woodpigeon and Turtle dove site occupancy.
Breeding sex ratio and population size of loggerhead turtles from Southwestern Florida.
Lasala, Jacob A; Hughes, Colin R; Wyneken, Jeanette
2018-01-01
Species that display temperature-dependent sex determination are at risk as a result of increasing global temperatures. For marine turtles, high incubation temperatures can skew sex ratios towards females. There are concerns that temperature increases may result in highly female-biased offspring sex ratios, which would drive a future sex ratio skew. Studying the sex ratios of adults in the ocean is logistically very difficult because individuals are widely distributed and males are inaccessible because they remain in the ocean. Breeding sex ratios (BSR) are sought as a functional alternative to study adult sex ratios. One way to examine BSR is to determine the number of males that contribute to nests. Our goal was to evaluate the BSR for loggerhead turtles (Caretta caretta) nesting along the eastern Gulf of Mexico in Florida, from 2013-2015, encompassing three nesting seasons. We genotyped 64 nesting females (approximately 28% of all turtles nesting at that time) and up to 20 hatchlings from their nests (n = 989) using 7 polymorphic microsatellite markers. We identified multiple paternal contributions in 70% of the nests analyzed and 126 individual males. The breeding sex ratio was approximately 1 female for every 2.5 males. We did not find repeat males in any of our nests. The sex ratio and lack of repeating males was surprising because of female-biased primary sex ratios. We hypothesize that females mate offshore of their nesting beaches as well as en route. We recommend further comparisons of subsequent nesting events and of other beaches as it is imperative to establish baseline breeding sex ratios to understand how growing populations behave before extreme environmental effects are evident.
Breeding sex ratio and population size of loggerhead turtles from Southwestern Florida
Hughes, Colin R.; Wyneken, Jeanette
2018-01-01
Species that display temperature-dependent sex determination are at risk as a result of increasing global temperatures. For marine turtles, high incubation temperatures can skew sex ratios towards females. There are concerns that temperature increases may result in highly female-biased offspring sex ratios, which would drive a future sex ratio skew. Studying the sex ratios of adults in the ocean is logistically very difficult because individuals are widely distributed and males are inaccessible because they remain in the ocean. Breeding sex ratios (BSR) are sought as a functional alternative to study adult sex ratios. One way to examine BSR is to determine the number of males that contribute to nests. Our goal was to evaluate the BSR for loggerhead turtles (Caretta caretta) nesting along the eastern Gulf of Mexico in Florida, from 2013–2015, encompassing three nesting seasons. We genotyped 64 nesting females (approximately 28% of all turtles nesting at that time) and up to 20 hatchlings from their nests (n = 989) using 7 polymorphic microsatellite markers. We identified multiple paternal contributions in 70% of the nests analyzed and 126 individual males. The breeding sex ratio was approximately 1 female for every 2.5 males. We did not find repeat males in any of our nests. The sex ratio and lack of repeating males was surprising because of female-biased primary sex ratios. We hypothesize that females mate offshore of their nesting beaches as well as en route. We recommend further comparisons of subsequent nesting events and of other beaches as it is imperative to establish baseline breeding sex ratios to understand how growing populations behave before extreme environmental effects are evident. PMID:29370223
50 CFR 224.104 - Special requirements for fishing activities to protect endangered sea turtles.
Code of Federal Regulations, 2010 CFR
2010-10-01
... endangered sea turtles. (a) Shrimp fishermen in the southeastern United States and the Gulf of Mexico who... to civil penalties under the Act for incidental captures of endangered sea turtles by shrimp trawl...
Spencer, Ricky-John; Janzen, Fredric J
2011-07-01
Incubation temperature plays a prominent role in shaping the phenotypes and fitness of embryos, including affecting developmental rates. In many taxa, including turtles, eggs are deposited in layers such that thermal gradients alter developmental rates within a nest. Despite this thermal effect, a nascent body of experimental work on environmentally cued hatching in turtles has revealed unexpected synchronicity in hatching behavior. This review discusses environmental cues for hatching, physiological mechanisms behind synchronous hatching, proximate and ultimate causes for this behavior, and future directions for research. Four freshwater turtle species have been investigated experimentally, with hatching in each species elicited by different environmental cues and responding via various physiological mechanisms. Hatching of groups of eggs in turtles apparently involves some level of embryo-embryo communication and thus is not a purely passive activity. Although turtles are not icons of complex social behavior, life-history theory predicts that the group environment of the nest can drive the evolution of environmentally cued hatching.
Richardson, Kristine L; Schlenk, Daniel
2011-05-16
The rates of oxidative metabolism of two tetrachlorobiphenyl congeners were determined in hepatic microsomes from four species of sea turtles, green (Chelonia mydas), olive ridley (Lepidochelys olivacea), loggerhead (Caretta caretta), and hawksbill (Eretmochelys imbricata). Hydroxylation of 3,3',4,4'-tetrachlorobiphenyl (PCB 77), an ortho-meta unsubstituted rodent cytochrome P450 (P450) 1A substrate PCB, was not observed in sea turtle microsomes. Sea turtle microsomes hydroxylated 2,2',5,5'-tetrachlorobiphenyl (PCB 52), a meta-para unsubstituted rodent P450 family 2 substrate PCB, at rates ranging from less than 0.5 to 53 pmol/min/mg protein. The P450 inhibitor ketoconazole inhibited hydroxylation of PCB 52, supporting the role of P450 catalysis. Sea turtle PCB 52 hydroxlyation rates strongly correlated with immunodetected P450 family 2-like and less so with P450 family 3-like hepatic proteins. Testosterone 6β-, 16α-, 16β-hydroxylase activities were also significantly correlated with the expression of these enzymes, indicating that P450 family 2 or P450 family 3 proteins are responsible for PCB hydroxylation in sea turtles. This study indicated species-specific PCB biotransformation in sea turtles and preferential elimination of meta-para unsubstituted PCB congeners over ortho-meta unsubstituted PCB congeners consistent with PCB accumulation patterns observed in tissues of sea turtles.
Shamblin, Brian M.; Bagley, Dean A.; Ehrhart, Llewellyn M.; Desjardin, Nicole A.; Martin, R. Erik; Hart, Kristen M.; Naro-Maciel, Eugenia; Rusenko, Kirt; Stiner, John C.; Sobel, Debra; Johnson, Chris; Wilmers, Thomas; Wright, Laura J.; Nairn, Campbell J.
2014-01-01
Green turtle (Chelonia mydas) nesting has increased dramatically in Florida over the past two decades, ranking the Florida nesting aggregation among the largest in the Greater Caribbean region. Individual beaches that comprise several hundred kilometers of Florida’s east coast and Keys support tens to thousands of nests annually. These beaches encompass natural to highly developed habitats, and the degree of demographic partitioning among rookeries was previously unresolved. We characterized the genetic structure of ten Florida rookeries from Cape Canaveral to the Dry Tortugas through analysis of 817 base pair mitochondrial DNA (mtDNA) control region sequences from 485 nesting turtles. Two common haplotypes, CM-A1.1 and CM-A3.1, accounted for 87 % of samples, and the haplotype frequencies were strongly partitioned by latitude along Florida’s Atlantic coast. Most genetic structure occurred between rookeries on either side of an apparent genetic break in the vicinity of the St. Lucie Inlet that separates Hutchinson Island and Jupiter Island, representing the finest scale at which mtDNA structure has been documented in marine turtle rookeries. Florida and Caribbean scale analyses of population structure support recognition of at least two management units: central eastern Florida and southern Florida. More thorough sampling and deeper sequencing are necessary to better characterize connectivity among Florida green turtle rookeries as well as between the Florida nesting aggregation and others in the Greater Caribbean region.
Costanzo, J P; Litzgus, J D; Iverson, J B; Lee, R E
1998-11-01
Hatchling painted turtles (Chrysemys picta) hibernate in their shallow natal nests where temperatures occasionally fall below -10 C during cold winters. Because the thermal limit of freeze tolerance in this species is approximately -4 C, hatchlings rely on supercooling to survive exposure to extreme cold. We investigated the influence of environmental ice nuclei on susceptibility to inoculative freezing in hatchling C. picta indigenous to the Sandhills of west-central Nebraska. In the absence of external ice nuclei, hatchlings cooled to -14.6 1.9 C (mean s.e.m.; N=5) before spontaneously freezing. Supercooling capacity varied markedly among turtles cooled in physical contact with sandy soil collected from nesting locales or samples of the native soil to which water-binding agents (clay or peat) had been added, despite the fact that all substrata contained the same amount of moisture (7.5 % moisture, w/w). The temperature of crystallization (Tc) of turtles exposed to frozen native soil was -1.6 0.4 C (N=5), whereas turtles exposed to frozen soil/clay and soil/peat mixtures supercooled extensively (mean Tc values approximately -13 C). Hatchlings cooled in contact with drier (less than or equal to 4 % moisture) native soil also supercooled extensively. Thus, inoculative freezing is promoted by exposure to sandy soils containing abundant moisture and little clay or organic matter. Soil collected at turtle nesting locales in mid and late winter contained variable amounts of moisture (4-15 % w/w) and organic matter (1-3 % w/w). In addition to ice, the soil at turtle nesting locales may harbor inorganic and organic ice nuclei that may also seed the freezing of hatchlings. Bulk samples of native soil, which were autoclaved to destroy any organic nuclei, nucleated aqueous solutions at approximately -7 C (Tc range -6.1 to -8.2 C). Non-autoclaved samples contained water-extractable, presumably organic, ice nuclei (Tc range -4.4 to -5.3 C). Ice nuclei of both classes varied in potency among turtle nesting locales. Interaction with ice nuclei in the winter microenvironment determines whether hatchling C. picta remain supercooled or freeze and may ultimately account for differential mortality in nests at a given locale and for variation in winter survival rates among populations.
Flexible foraging movements of leatherback turtles across the North Atlantic Ocean.
Hays, Graeme C; Hobson, Victoria J; Metcalfe, Julian D; Righton, David; Sims, David W
2006-10-01
Some marine species have been shown to target foraging at particular hotspots of high prey abundance. However, we show here that in the year after a nesting season, female leatherback turtles (Dermochelys coriacea) in the Atlantic generally spend relatively little time in fixed hotspots, especially those with a surface signature revealed in satellite imagery, but rather tend to have a pattern of near continuous traveling. Associated with this traveling, distinct changes in dive behavior indicate that turtles constantly fine tune their foraging behavior and diel activity patterns in association with local conditions. Switches between nocturnal vs. diurnal activity are rare in the animal kingdom but may be essential for survival on a diet of gelatinous zooplankton where patches of high prey availability are rare. These results indicate that in their first year after nesting, leatherback turtles do not fit the general model of migration where responses to resources are suppressed during transit. However, their behavior may be different in their sabbatical years away from nesting beaches. Our results highlight the importance of whole-ocean fishing gear regulations to minimize turtle bycatch.
NASA Astrophysics Data System (ADS)
Shinsuke, T.; Yasumi, A.; Takashi, K.
2003-05-01
To investigate whether trace metals bind to metallothioneins (MTs) in the hepatocytosol of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata), MT fraction was obtained by ultracentrifugation and gel filtration methods. MTs separated from hepatocytosol were further purified and characterized by high performance liquid chromatography/inductively coupled plasma-mass spectrometry. In addition, the involvement of MTs in the accumulation of trace metals in the liver of sea turtle was examine. Gel filtration analysis showed that significant amounts of Cu, Zn, Ag and Cd were bound to MT in the cytosol of sea turtles, suggesting that such trace metals were primarily detoxified by interaction with MTs in the liver. Elution profiles of these trace metals by anion-exchange chromatography were different between green turtles and hawksbill turtles. These results suggest the presence of multiple isoforms of MT in the liver of both sea turtles; however, constituents of isoforms were different between green and hawksbill turtles. In both species, we observed the elevation of the height of a specific peak in elution profile with an increase in Cu concentration in hepatocytosol. This result suggests the presence of a novel MT isoform related to copper accumulation in the liver of sea turtles.
Schmitt, Todd L; Munns, Suzanne; Adams, Lance; Hicks, James
2013-09-01
This study utilized computed spirometry to compare the pulmonary function of two stranded olive ridley sea turtles (Lepidochelys olivacea) presenting with a positive buoyancy disorder with two healthy captive olive ridley sea turtles held in a large public aquarium. Pulmonary function test (PFT) measurements demonstrated that the metabolic cost of breathing was much greater for animals admitted with positive buoyancy than for the normal sea turtles. Positively buoyant turtles had higher tidal volumes and significantly lower breathing-frequency patterns with significantly higher expiration rates, typical of gasp-type breathing. The resulting higher energetic cost of breathing in the diseased turtles may have a significant impact on their long-term survival. The findings represent a method for clinical respiratory function analysis for an individual animal to assist with diagnosis, therapy, and prognosis. This is the first study, to our knowledge, to evaluate objectively sea turtles presenting with positive buoyancy and respiratory disease using pulmonary function tests.
Keller, Martha; Mustin, Walter
2017-03-01
The Cayman Turtle Farm raises thousands of green sea turtles ( Chelonia mydas ) annually under aquaculture conditions. Historically, the turtles have been raised in tanks without routine access to a shade structure. The purpose of this study was to determine the effects of adding a shade structure on curved carapace length (CCL) and weight gain of green sea turtles. In addition, water and cloacal temperatures were compared across treatment groups and shade cover preferences observed. Ninety turtles were split equally into three treatment groups for this 8-wk study. In the first group turtles were kept in tanks in full sun, the second group in half-shaded tanks, and the third group in tanks completely covered with shade cloth. Time-lapse cameras mounted above half-shaded tanks were used to determine turtle shade structure preferences throughout the day. There were no differences in CCL among treatment groups. Significant increases in weights were noted in turtles kept in full sun and half-shaded tanks versus the fully shaded tanks. Significantly higher water and cloacal turtle temperatures were noted in the full-sun tank compared with the half-shaded or completely shaded tanks. A significantly lower number of turtles was observed in the sun in the half-shaded tanks, indicating a possible preference by turtles for a shade structure. Results suggest that providing shade structures for sea turtles results in a significant decrease in both overall water temperature as well as a reduction in maximum high daily temperatures. Results also suggest that turtles exhibit a preference for shade structures when it is provided as an option. From these results, we recommend that a shade structure be provided when housing green sea turtles in outdoor enclosures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vazquez, G.F.; Reyes, M.C.; Fenandez, G.
Concern for the decreasing population sizes of marine turtles around the world is growing. Potential contamination within habitats of marine turtles, and human activities, such as poaching, modification of nesting sites, and capture of adult turtles, may be responsible for their decreasing populations. Little is known about the baseline levels and physiological effects of environmental contaminants on marine turtle populations. Responding to this concern, the Mexican government has designated areas along the Mexican coastline to preserve marine turtle nesting habitats. {open_quotes}Playon de Mexiquillo{close_quotes}, Michocan, Mexico is one of the coastal preservation areas located near the mouth of Rio la Manzanillamore » which flows between Sierra Madre del Sur and the Pacific Ocean. Samples of seawater, sand, and marine turtle egg (Dermochelys Coriaca) shells were collected monthly from October, 1992-March, 1993. Contaminants investigated were oil and grease, and metals (cadmium, copper, zinc, nickel, and lead). Seawater samples were collected where the turtles lay eggs in the preservation area and sand samples were taken from the area surrounding the eggs. 12 refs., 1 fig., 4 tabs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-09
... interactions with endangered and threatened sea turtles, found both live and dead, in their pound net operations. When a live or dead sea turtle is discovered during a pound net trip, the Virginia pound net...
More on Sea Turtles and Seaweed
ERIC Educational Resources Information Center
Xin, Tian
2005-01-01
"Sea turtle" and "seaweed"--otherwise known as "returnee from abroad" and "unemployed from abroad," respectively-- are a pair of popular new terms that are innately connected. In this article, the author discusses the common plight faced by "sea turtles" and "seaweeds" who returned from…
An interview-based approach to assess sea turtle bycatch in Italian waters.
Lucchetti, Alessandro; Vasapollo, Claudio; Virgili, Massimo
2017-01-01
The loggerhead sea turtle ( Caretta caretta , Linnaeus, 1758) is the most abundant sea turtle species in the Mediterranean Sea, where commercial fishing appears to be the main driver of mortality. So far, information on sea turtle bycatch in Italy is limited both in space and time due to logistical problems in data collected through onboard observations and on a limited number of vessels involved. In the present study, sea turtle bycatch in Italian waters was examined by collecting fishermen's information on turtle bycatch through an interview-based approach. Their replies enabled the identification of bycatch hotspots in relation to area, season and to the main gear types. The most harmful fishing gears resulted to be trawl nets, showing the highest probabilities of turtle bycatch with a hotspot in the Adriatic Sea, followed by longlines in the Ionian Sea and in the Sicily Channel. Estimates obtained by the present results showed that more than 52,000 capture events and 10,000 deaths occurred in Italian waters in 2014, highlighting a more alarming scenario than earlier studies. The work shows that in case of poor data from other sources, direct questioning of fishermen and stakeholders could represent a useful and cost-effective approach capable of providing sufficient data to estimate annual bycatch rates and identify high-risk gear/location/season combinations.
Marine turtle mitogenome phylogenetics and evolution.
Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Alonzo; Dutton, Peter H; Thomas P Gilbert, M; Morin, Phillip A
2012-10-01
The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae. Analyses of partial mitochondrial sequences and some nuclear markers have revealed phylogenetic inconsistencies within Cheloniidae, especially regarding the placement of the flatback. Population genetic studies based on D-Loop sequences have shown considerable structuring in species with broad geographic distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all sea turtles, and reveal phylogeographic patterns within globally-distributed species. Although there was clear concordance between phylogenies and geographic origin of samples in most taxa, we found evidence of more recent dispersal events in the loggerhead and olive ridley turtles, suggesting more recent migrations (<1 Myr) in these species. Overall, our results demonstrate the complexity of sea-turtle diversity, and indicate the need for further research in phylogeography and molecular evolution. Published by Elsevier Inc.
Harris, Heather S; Benson, Scott R; Gilardi, Kirsten V; Poppenga, Robert H; Work, Thierry M; Dutton, Peter H; Mazet, Jonna A K
2011-04-01
Leatherback turtles (Dermochelys coriacea) are critically endangered, primarily threatened by the overharvesting of eggs, fisheries entanglement, and coastal development. The Pacific leatherback population has experienced a catastrophic decline over the past two decades. Leatherbacks foraging off the coast of California are part of a distinct Western Pacific breeding stock that nests on beaches in Indonesia, Papua New Guinea, and the Solomon Islands. Although it has been proposed that the rapid decline of Pacific leatherback turtles is due to increased adult mortality, little is known about the health of this population. Health assessments in leatherbacks have examined females on nesting beaches, which provides valuable biological information, but might have limited applicability to the population as a whole. During September 2005 and 2007, we conducted physical examinations on 19 foraging Pacific leatherback turtles and measured normal physiologic parameters, baseline hematologic and plasma biochemistry values, and exposure to heavy metals (cadmium, lead, and mercury), organochlorine contaminants, and domoic acid. We compared hematologic values of foraging Pacific leatherbacks with their nesting counterparts in Papua New Guinea (n=11) and with other nesting populations in the Eastern Pacific in Costa Rica (n=8) and in the Atlantic in St. Croix (n=12). This study provides the most comprehensive assessment to date of the health status of leatherbacks in the Pacific. We found significant differences in blood values between foraging and nesting leatherbacks, which suggests that health assessment studies conducted only on nesting females might not accurately represent the whole population. The establishment of baseline physiologic data and blood values for healthy foraging leatherback turtles, including males, provides valuable data for long-term health monitoring and comparative studies of this endangered population.
Harris, Heather S.; Benson, Scott R.; Gilardi, Kirsten V.; Poppenga, Robert H.; Work, Thierry M.; Dutton, Peter H.; Mazet, Jonna A.K.
2011-01-01
Leatherback turtles (Dermochelys coriacea) are critically endangered, primarily threatened by the overharvesting of eggs, fisheries entanglement, and coastal development. The Pacific leatherback population has experienced a catastrophic decline over the past two decades. Leatherbacks foraging off the coast of California are part of a distinct Western Pacific breeding stock that nests on beaches in Indonesia, Papua New Guinea, and the Solomon Islands. Although it has been proposed that the rapid decline of Pacific leatherback turtles is due to increased adult mortality, little is known about the health of this population. Health assessments in leatherbacks have examined females on nesting beaches, which provides valuable biological information, but might have limited applicability to the population as a whole. During September 2005 and 2007, we conducted physical examinations on 19 foraging Pacific leatherback turtles and measured normal physiologic parameters, baseline hematologic and plasma biochemistry values, and exposure to heavy metals (cadmium, lead, and mercury), organochlorine contaminants, and domoic acid. We compared hematologic values of foraging Pacific leatherbacks with their nesting counterparts in Papua New Guinea (n=11) and with other nesting populations in the Eastern Pacific in Costa Rica (n=8) and in the Atlantic in St. Croix (n=12). This study provides the most comprehensive assessment to date of the health status of leatherbacks in the Pacific. We found significant differences in blood values between foraging and nesting leatherbacks, which suggests that health assessment studies conducted only on nesting females might not accurately represent the whole population. The establishment of baseline physiologic data and blood values for healthy foraging leatherback turtles, including males, provides valuable data for long-term health monitoring and comparative studies of this endangered population.
Metabolic heating and the prediction of sex ratios for green turtles (Chelonia mydas).
Broderick, A C; Godley, B J; Hays, G C
2001-01-01
We compared incubation temperatures in nests (n=32) of the green turtle (Chelonia mydas) on Ascension Island in relation to sand temperatures of control sites at nest depth. Intrabeach thermal variation was low, whereas interbeach thermal variation was high in both control and nest sites. A marked rise in temperature was recorded in nests from 30% to 40% of the way through the incubation period and attributed to metabolic heating. Over the entire incubation period, metabolic heating accounted for a mean rise in temperature of between 0.07 degrees and 2.86 degrees C within nests. During the middle third of incubation, when sex is thought to be determined, this rise in temperature ranged between 0.07 degrees and 2.61 degrees C. Metabolic heating was related to both the number of eggs laid and the total number of hatchlings/embryos produced in a clutch. For 32 clutches in which temperature was recorded, we estimate that metabolic heating accounted for a rise of up to 30% in the proportion of females produced within different clutches. Previous studies have dismissed any effect of metabolic heating on the sex ratio of marine turtle hatchlings. Our results imply that metabolic heating needs to be considered when estimating green turtle hatchling sex ratios.
A primitive protostegid from Australia and early sea turtle evolution
Kear, Benjamin P; Lee, Michael S.Y
2005-01-01
Sea turtles (Chelonioidea) are a prominent group of modern marine reptiles whose early history is poorly understood. Analysis of exceptionally well preserved fossils of Bouliachelys suteri gen. et sp. nov., a large-bodied basal protostegid (primitive chelonioid) from the Early Cretaceous (Albian) of Australia, indicates that early sea turtles were both larger and more diverse than previously thought. The analysis implies at least five distinct sea turtle lineages existed around 100 million years ago. Currently, the postcranially primitive Ctenochelys and Toxochelys are interpreted as crown-group sea turtles closely related to living cheloniids (e.g. Chelonia); in contrast, the new phylogeny suggests that they are transitional (intermediate stem-taxa) between continental testudines and derived, pelagic chelonioids. PMID:17148342
50 CFR 660.720 - Interim protection for sea turtles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Interim protection for sea turtles. 660... Migratory Fisheries § 660.720 Interim protection for sea turtles. (a) Until the effective date of §§ 660.707... harvest of swordfish (Xiphias gladius) using longline gear deployed on the high seas of the Pacific Ocean...
50 CFR 660.720 - Interim protection for sea turtles.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Interim protection for sea turtles. 660... Migratory Fisheries § 660.720 Interim protection for sea turtles. (a) Until the effective date of §§ 660.707... harvest of swordfish (Xiphias gladius) using longline gear deployed on the high seas of the Pacific Ocean...
50 CFR 660.720 - Interim protection for sea turtles.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Interim protection for sea turtles. 660... Migratory Fisheries § 660.720 Interim protection for sea turtles. (a) Until the effective date of §§ 660.707... harvest of swordfish (Xiphias gladius) using longline gear deployed on the high seas of the Pacific Ocean...
50 CFR 660.720 - Interim protection for sea turtles.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Interim protection for sea turtles. 660... Migratory Fisheries § 660.720 Interim protection for sea turtles. (a) Until the effective date of §§ 660.707... harvest of swordfish (Xiphias gladius) using longline gear deployed on the high seas of the Pacific Ocean...
76 FR 23305 - Endangered Species; File No. 15672
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
... applied in due form for a permit to take leatherback sea turtles (Dermochelys coriacea) for purposes of... would characterize the distribution, movements and dive behavior of leatherback sea turtles in the... 30 leatherback sea turtles annually. Researchers would use animals that have been disentangled from...
Kelez, Shaleyla; Velez-Zuazo, Ximena; Pacheco, Aldo S
2016-01-01
Hybridization among sea turtle species has been widely reported in the Atlantic Ocean, but their detection in the Pacific Ocean is limited to just two individual hybrid turtles, in the northern hemisphere. Herein, we report, for the first time in the southeast Pacific, the presence of a sea turtle hybrid between the green turtle Chelonia mydas and the hawksbill turtle Eretmochelys imbricata. This juvenile sea turtle was captured in northern Peru (4°13'S; 81°10'W) on the 5(th) of January, 2014. The individual exhibited morphological characteristics of C. mydas such as dark green coloration, single pair of pre-frontal scales, four post-orbital scales, and mandibular median ridge, while the presence of two claws in each frontal flipper, and elongated snout resembled the features of E. imbricata. In addition to morphological evidence, we confirmed the hybrid status of this animal using genetic analysis of the mitochondrial gene cytochrome oxidase I, which revealed that the hybrid individual resulted from the cross between a female E. imbricata and a male C. mydas. Our report extends the geographical range of occurrence of hybrid sea turtles in the Pacific Ocean, and is a significant observation of interspecific breeding between one of the world's most critically endangered populations of sea turtles, the east Pacific E. imbricata, and a relatively healthy population, the east Pacific C. mydas.
Malarvannan, Govindan; Takahashi, Shin; Isobe, Tomohiko; Kunisue, Tatsuya; Sudaryanto, Agus; Miyagi, Toshihiko; Nakamura, Masaru; Yasumura, Shigeki; Tanabe, Shinsuke
2011-01-01
Three species of sea turtles (green, hawksbill and loggerhead turtles) stranded along the coasts or caught (by-catch) around Ishigaki Island and Kochi, Japan were collected between 1998 and 2006 and analyzed for six organohalogen compounds viz., PBDEs, PCBs, DDTs, CHLs, HCHs and HCB. The present study is the first and foremost to report the occurrence of organohalogen compounds in the sea turtles from Japan. Among the compounds analyzed, concentrations of PCBs, DDTs and CHLs were the highest in all the turtle samples. PBDEs were ubiquitously present in all the turtle species. Comparing with the other two species, concentrations of organohalogens in green turtle were relatively low and decreasing trend in the concentrations were noted with increasing carapace length. Concentrations of OCs in sea turtles from the coasts of Ishigaki Island and Kochi were relatively low as compared to those from other locations in the world. Copyright © 2011 Elsevier Ltd. All rights reserved.
Jabado, Rima W.; Rohner, Christoph A.; Pierce, Simon J.; Hyland, Kevin P.; Baverstock, Warren R.
2017-01-01
We collected movement data for eight rehabilitated and satellite-tagged green sea turtles Chelonia mydas released off the United Arab Emirates between 2005 and 2013. Rehabilitation periods ranged from 96 to 1353 days (mean = 437 ± 399 days). Seven of the eight tagged turtles survived after release; one turtle was killed by what is thought to be a post-release spear gun wound. The majority of turtles (63%) used shallow-water core habitats and established home ranges between Dubai and Abu Dhabi, the same area in which they had originally washed ashore prior to rescue. Four turtles made movements across international boundaries, highlighting that regional cooperation is necessary for the management of the species. One turtle swam from Fujairah to the Andaman Sea, a total distance of 8283 km, which is the longest published track of a green turtle. This study demonstrates that sea turtles can be successfully reintroduced into the wild after sustaining serious injury and undergoing prolonged periods of intense rehabilitation. PMID:28873453
Robinson, David P; Jabado, Rima W; Rohner, Christoph A; Pierce, Simon J; Hyland, Kevin P; Baverstock, Warren R
2017-01-01
We collected movement data for eight rehabilitated and satellite-tagged green sea turtles Chelonia mydas released off the United Arab Emirates between 2005 and 2013. Rehabilitation periods ranged from 96 to 1353 days (mean = 437 ± 399 days). Seven of the eight tagged turtles survived after release; one turtle was killed by what is thought to be a post-release spear gun wound. The majority of turtles (63%) used shallow-water core habitats and established home ranges between Dubai and Abu Dhabi, the same area in which they had originally washed ashore prior to rescue. Four turtles made movements across international boundaries, highlighting that regional cooperation is necessary for the management of the species. One turtle swam from Fujairah to the Andaman Sea, a total distance of 8283 km, which is the longest published track of a green turtle. This study demonstrates that sea turtles can be successfully reintroduced into the wild after sustaining serious injury and undergoing prolonged periods of intense rehabilitation.
Majewska, Roksana; de Vijver, Bart Van; Nasrolahi, Ali; Ehsanpour, Maryam; Afkhami, Majid; Bolaños, Federico; Iamunno, Franco; Santoro, Mario; De Stefano, Mario
2017-11-01
The first reports of diatoms growing on marine mammals date back to the early 1900s. However, only recently has direct evidence been provided for similar associations between diatoms and sea turtles. We present a comparison of diatom communities inhabiting carapaces of green turtles Chelonia mydas sampled at two remote sites located within the Indian (Iran) and Atlantic (Costa Rica) Ocean basins. Diatom observations and counts were carried out using scanning electron microscopy. Techniques involving critical point drying enabled observations of diatoms and other microepibionts still attached to sea turtle carapace and revealed specific aspects of the epizoic community structure. Species-poor, well-developed diatom communities were found on all examined sea turtles. Significant differences between the two host sea turtle populations were observed in terms of diatom abundance and their community structure (including growth form structure). A total of 12 and 22 diatom taxa were found from sea turtles in Iran and Costa Rica, respectively, and eight of these species belonging to Amphora, Chelonicola, Cocconeis, Navicula, Nitzschia and Poulinea genera were observed in samples from both locations. Potential mechanisms of diatom dispersal and the influence of the external environment, sea turtle behaviour, its life stage, and foraging and breeding habitats, as well as epibiotic bacterial flora on epizoic communities, are discussed.
77 FR 27719 - Marine Mammals; File Nos. 16109 and 15575
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... (Megaptera novaeangliae), North Atlantic right whale (Eubalaena glacialis), sei whale (B. borealis), sperm..., sei whale, sperm whale, green sea turtle, hawksbill sea turtle, loggerhead sea turtle, Kemp's ridley... in the EA, NMFS determined that issuance of the permits would not significantly impact the quality of...
Tupinambis merianae as nest predators of crocodilians and turtles in Florida, USA
Mazzotti, Frank J.; McEachern, Michelle A.; Rochford, Michael; Reed, Robert; Ketterlin Eckles, Jennifer; Vinci, Joy; Edwards, Jake; Wasilewki, Joseph
2015-01-01
Tupinambis merianae, is a large, omnivorous tegu lizard native to South America. Two populations of tegus are established in the state of Florida, USA, but impacts to native species are poorly documented. During summer 2013, we placed automated cameras overlooking one American alligator (Alligator mississippiensis) nest, which also contained a clutch of Florida red-bellied cooter (Pseudemys nelsoni) eggs, and one American crocodile (Crocodylus acutus) nest at a site in southeastern Florida where tegus are established. We documented tegu activity and predation on alligator and turtle eggs at the alligator nest, and tegu activity at the crocodile nest. Our finding that one of the first two crocodilian nests to be monitored was depredated by tegus suggests that tegus should be further evaluated as a threat to nesting reptiles in Florida.
Oh, Young Nam; Kim, Sung Han
2017-01-01
ABSTRACT On June 14, 2008 (the first experiment) and July 24, 2008 (the second experiment), the shores of the Boseong River and the sandy beaches, Seokgok-myun, Moksadong-myun, Gokseong-gun in Jeollanam Province were investigated and a total of 29 soft-shelled turtle (Tryonyx sinensis) eggs in the natural spawning nest eggs were collected (13 eggs were collected in the first experiment and 16 eggs in the second experiment). The temperatures in the natural spawning nests were 25.9-36.9±0.5℃, the depth of the eggs was 5.2-7.5±0.5 cm as the distance of the average 6.4±0.5 cm. 29 eggs were scattered at least 0.2 cm interval. Artificial incubation of 29 eggs was conducted in artificial nest boxes in thermo-plastic composition of the incubator, and then incubated at 26.5-35.5±0.5℃, and an average constant temperature was 31.2-32.1±1.0℃. The incubation days ranged from 53 to 55. In case of most turtles, incubation at 31℃ (higher temperatures) generally produces all or mostly females, while incubation at 25℃(cooler temperatures) produces all or mostly males. Exceptionally, in case of genus Trionyx, the sex ratio of female : male of T. sinensis of a freshwater soft-shelled turtle was approximately 1:1, which differs from other genera of turtles and makes T. sinensis Strauch only turtles presently known to lack temperature-dependent sex determination. PMID:28484749
Green Turtle (Chelonia mydas) :: NOAA Fisheries
Education Grants Scholarships and Fellowships Teacher at Sea Climate Stewards Get Involved Dolphin Smart » Sign up for FishNews GO OPR Home Species Marine Mammals Sea Turtles Marine & Anadromous Fish Marine Marine Mammal Database National Tissue Bank Prescott Grants Sea Turtles Unusual Mortality Events Permits
50 CFR 622.10 - Conservation measures for protected resources.
Code of Federal Regulations, 2011 CFR
2011-10-01
... pelagic longline must post inside the wheelhouse the sea turtle handling and release guidelines provided by NMFS. Such owner or operator must also comply with the sea turtle bycatch mitigation measures, including gear requirements and sea turtle handling requirements, as specified in § 635.21(c)(5)(i) and (ii...
50 CFR 622.10 - Conservation measures for protected resources.
Code of Federal Regulations, 2012 CFR
2012-10-01
... pelagic longline must post inside the wheelhouse the sea turtle handling and release guidelines provided by NMFS. Such owner or operator must also comply with the sea turtle bycatch mitigation measures, including gear requirements and sea turtle handling requirements, as specified in § 635.21(c)(5)(i) and (ii...
75 FR 33578 - Endangered Species; File Nos. 14508 and 14655
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
... (Lepidochelys kempii) sea turtles for purposes of scientific research. ADDRESSES: The permit and related... abundance, genetic origin and feeding ecology of sea turtles using Lake Worth Lagoon in Palm Beach County, Florida. Up to 50 green, 5 loggerhead, 2 hawksbill, and 1 Kemp's ridley sea turtles may be captured...
76 FR 71515 - Endangered Species; File No. 16174
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
... issued a permit to take green sea turtles (Chelonia mydas) for the purposes of scientific research... request for a scientific research permit to take green sea turtles had been submitted by the above-named.... Salmon to take juvenile green sea turtles to characterize abundance and distribution in nearshore...
50 CFR 622.10 - Conservation measures for protected resources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... pelagic longline must post inside the wheelhouse the sea turtle handling and release guidelines provided by NMFS. Such owner or operator must also comply with the sea turtle bycatch mitigation measures, including gear requirements and sea turtle handling requirements, as specified in § 635.21(c)(5)(i) and (ii...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-07
... Modifications To Reduce Turtle Interactions AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... Pacific green sea turtles. DATES: Comments on the proposed rule must be received by July 22, 2011... sea turtles, seabirds, and marine mammals. Fishermen must use specific equipment and techniques for...
Ferreira Júnior, P D; Castro, P T A
2010-02-01
Nest site has influence on incubation duration and hatching success of two Neotropical turtles, the giant Amazon River turtle (Podocnemis expansa) and yellow-spotted side-neck turtle (Podocnemis unifilis--'Tracajá'). The 2000 and 2001 nesting seasons have been monitored at the Javaés River in Bananal Island, Brazil. Although they nest on the same beaches, there is a separation of the nesting areas of P unifilis and P. expansa nests on the upper parts of the beach. The incubation duration for P. expansa is influenced by the nesting period, the height of the nest from the river, the clutch size, and the grain size in the site of the nest. Nests of Podocnemis expansa placed in coarse sediments have shorter incubation duration than those placed in finer sediments. The hatching success in P. expansa is influenced by grain size, incubation duration, and nesting period. The grain size is negatively correlated with hatching success, indicating that the nests situated in finer-grained sand have better chances of successful egg hatching than those in coarser-grained sand. Nests of the end of the reproductive season have lower hatching success and incubation duration than those at the start of the season. For P. unifilis, the nesting period and nest depth influence the incubation duration; moreover, the river dynamics significantly affect the hatching success. The oscillation of the river level and the moment of initial increase, the height of the nest from the river level, and the nesting period are all decisive components for hatching success. The results of this research show the importance of protecting areas with great geological diversity, wherein the features of the environment can affect the microenvironment of nests, with consequences on incubation duration and hatching success.
Phillips, Ayanna Carla N.; Couteau, Johanna; Rajh, Stacy; Stewart, Neville; Watson, Antonio; Jehu, Adam; Asmath, Hamish; Unakal, Chandrashekhar; Dziva, Francis; Holder, Ridley; Carthy, Raymond R.
2017-01-01
Grande Riviere beach, on the island of Trinidad, supports the largest nesting population of leatherback turtles in the Caribbean region. Throughout the nesting season, nests are naturally disturbed by newly nesting females, resulting in egg breakage and loss of some nest viability. This environment is ideal for the growth and proliferation of microorganisms. The range of bacterial flora present in beach sand and egg shells was examined, with emphasis on bacteria that may pose a threat to public and animal health. The extent to which the bacterial load and genera on the beach changed throughout the season was also assessed. Twenty-five genera were identified, with Pseudomonas spp. found to be the most predominant environmental bacteria. Four genera identified possess zoonotic potential, while five additional genera are known to be of public and animal health significance. Distinct shifts in the density and distribution of bacteria were observed along the beach from early to peak nesting season. Shifts were seen across heavily traversed zones, thus highlighting the potential exposure threats posed to beach visitors and animals alike. Further studies aimed at speciating this population of bacteria, as well as isolating potential fungal pathogens may mitigate this threat. Identification of bacterial agents that are specifically pathogenic to leatherback turtles, turtle eggs, hatchlings and those who may interact with these animals will serve to enhance and guide efforts to better conserve this species and protect the health of all who visit this ecologically significant site.
Hays, Graeme C; Fossette, Sabrina; Katselidis, Kostas A; Schofield, Gail; Gravenor, Mike B
2010-12-01
Species that have temperature-dependent sex determination (TSD) often produce highly skewed offspring sex ratios contrary to long-standing theoretical predictions. This ecological enigma has provoked concern that climate change may induce the production of single-sex generations and hence lead to population extirpation. All species of sea turtles exhibit TSD, many are already endangered, and most already produce sex ratios skewed to the sex produced at warmer temperatures (females). We tracked male loggerhead turtles (Caretta caretta) from Zakynthos, Greece, throughout the entire interval between successive breeding seasons and identified individuals on their breeding grounds, using photoidentification, to determine breeding periodicity and operational sex ratios. Males returned to breed at least twice as frequently as females. We estimated that the hatchling sex ratio of 70:30 female to male for this rookery will translate into an overall operational sex ratio (OSR) (i.e., ratio of total number of males vs females breeding each year) of close to 50:50 female to male. We followed three male turtles for between 10 and 12 months during which time they all traveled back to the breeding grounds. Flipper tagging revealed the proportion of females returning to nest after intervals of 1, 2, 3, and 4 years were 0.21, 0.38, 0.29, and 0.12, respectively (mean interval 2.3 years). A further nine male turtles were tracked for short periods to determine their departure date from the breeding grounds. These departure dates were combined with a photoidentification data set of 165 individuals identified on in-water transect surveys at the start of the breeding season to develop a statistical model of the population dynamics. This model produced a maximum likelihood estimate that males visit the breeding site 2.6 times more often than females (95%CI 2.1, 3.1), which was consistent with the data from satellite tracking and flipper tagging. Increased frequency of male breeding will help ameliorate female-biased hatchling sex ratios. Combined with the ability of males to fertilize the eggs of many females and for females to store sperm to fertilize many clutches, our results imply that effects of climate change on the viability of sea turtle populations are likely to be less acute than previously suspected. © 2010 Society for Conservation Biology.
An interview-based approach to assess sea turtle bycatch in Italian waters
Vasapollo, Claudio; Virgili, Massimo
2017-01-01
The loggerhead sea turtle (Caretta caretta, Linnaeus, 1758) is the most abundant sea turtle species in the Mediterranean Sea, where commercial fishing appears to be the main driver of mortality. So far, information on sea turtle bycatch in Italy is limited both in space and time due to logistical problems in data collected through onboard observations and on a limited number of vessels involved. In the present study, sea turtle bycatch in Italian waters was examined by collecting fishermen’s information on turtle bycatch through an interview-based approach. Their replies enabled the identification of bycatch hotspots in relation to area, season and to the main gear types. The most harmful fishing gears resulted to be trawl nets, showing the highest probabilities of turtle bycatch with a hotspot in the Adriatic Sea, followed by longlines in the Ionian Sea and in the Sicily Channel. Estimates obtained by the present results showed that more than 52,000 capture events and 10,000 deaths occurred in Italian waters in 2014, highlighting a more alarming scenario than earlier studies. The work shows that in case of poor data from other sources, direct questioning of fishermen and stakeholders could represent a useful and cost-effective approach capable of providing sufficient data to estimate annual bycatch rates and identify high-risk gear/location/season combinations. PMID:28462017
Page-Karjian, Annie; Norton, Terry M; Krimer, Paula; Groner, Maya; Nelson, Steven E; Gottdenker, Nicole L
2014-09-01
Marine turtle fibropapillomatosis (FP) is a debilitating, infectious neoplastic disease that has reached epizootic proportions in several tropical and subtropical populations of green turtles (Chelonia mydas). FP represents an important health concern in sea turtle rehabilitation facilities. The objectives of this study were to describe the observed epidemiology, biology, and survival rates of turtles affected by FP (FP+ turtles) in a rehabilitation environment; to evaluate clinical parameters as predictors of survival in affected rehabilitating turtles; and to provide information about case progression scenarios and potential outcomes for FP+ sea turtle patients. A retrospective case series analysis was performed using the medical records of the Georgia Sea Turtle Center (GSTC), Jekyll Island, Georgia, USA, during 2009-2013. Information evaluated included signalment, morphometrics, presenting complaint, time to FP onset, tumor score (0-3), co-morbid conditions, diagnostic test results, therapeutic interventions, and case outcomes. Overall, FP was present in 27/362 (7.5%) of all sea turtles admitted to the GSTC for rehabilitation, either upon admittance or during their rehabilitation. Of these, 25 were green and 2 were Kemp's ridley turtles. Of 10 turtles that had only plaque-like FP lesions, 60% had natural tumor regression, all were released, and they were significantly more likely to survive than those with classic FP (P = 0.02 [0.27-0.75, 95% CI]). Turtles without ocular FP were eight times more likely to survive than those with ocular FP (odds ratio = 8.75, P = 0.032 [1.21-63.43, 95% CI]). Laser-mediated tumor removal surgery is the treatment of choice for FP+ patients at the GSTC; number of surgeries was not significantly related to case outcome.
77 FR 39220 - Endangered Species; File No. 17183
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
... the research are to (1) obtain information on sea turtle ecology and health status; (2) determine the genetic origin of sea turtle populations in the region; (3) monitor turtle foraging habits; and (4...
Developmental cardiovascular physiology of the olive ridley sea turtle (Lepidochelys olivacea).
Crossley, Dane Alan; Crossley, Janna Lee; Smith, Camilla; Harfush, Martha; Sánchez-Sánchez, Hermilo; Garduño-Paz, Mónica Vanessa; Méndez-Sánchez, José Fernando
2017-09-01
Our understanding of reptilian cardiovascular development and regulation has increased substantially for two species the American alligator (Alligator mississippiensis) and the common snapping turtle (Chelydra serpentina) during the past two decades. However, what we know about cardiovascular maturation in many other species remains poorly understood or unknown. Embryonic sea turtles have been studied to understand the maturation of metabolic function, but these studies have not addressed the cardiovascular system. Although prior studies have been pivotal in characterizing development, and factors that influence it, the development of cardiovascular function, which supplies metabolic function, is unknown in sea turtles. During our investigation we focused on quantifying how cardiovascular morphological and functional parameters change, to provide basic knowledge of development in the olive ridley sea turtle (Lepidochelys olivacea). Embryonic mass, as well as mass of the heart, lungs, liver, kidney, and brain increased during turtle embryo development. Although heart rate was constant during this developmental period, arterial pressure approximately doubled. Further, while embryonic olive ridley sea turtles lacked cholinergic tone on heart rate, there was a pronounced beta adrenergic tone on heart rate that decreased in strength at 90% of incubation. This beta adrenergic tone may be partially originating from the sympathetic nervous system at 90% of incubation, with the majority originating from circulating catecholamines. Data indicates that olive ridley sea turtles share traits of embryonic functional cardiovascular maturation with the American alligator (Alligator mississippiensis) but not the common snapping turtle (Chelydra serpentina). Copyright © 2017 Elsevier Inc. All rights reserved.
Hunt, Kathleen E; Innis, Charles J; Kennedy, Adam E; McNally, Kerry L; Davis, Deborah G; Burgess, Elizabeth A; Merigo, Constance
2016-01-01
Sea turtle rehabilitation centres frequently transport sea turtles for long distances to move animals between centres or to release them at beaches, yet there is little information on the possible effects of transportation-related stress ('transport stress') on sea turtles. To assess whether transport stress is a clinically relevant concern for endangered Kemp's ridley sea turtles (Lepidochelys kempii), we obtained pre-transport and post-transport plasma samples from 26 juvenile Kemp's ridley sea turtles that were transported for 13 h (n = 15 turtles) or 26 h (n = 11 turtles) by truck for release at beaches. To control for effects of handling, food restriction and time of day, the same turtles were also studied on 'control days' 2 weeks prior to transport, i.e. with two samples taken to mimic pre-transport and post-transport timing, but without transportation. Blood samples were analysed for nine clinical health measures (pH, pCO2, pO2, HCO3, sodium, potassium, ionized calcium, lactate and haematocrit) and four 'stress-associated' parameters (corticosterone, glucose, white blood cell count and heterophil-to-lymphocyte ratio). Vital signs (heart rate, respiratory rate and cloacal temperature) were also monitored. Corticosterone and glucose showed pronounced elevations due specifically to transportation; for corticosterone, this elevation was significant only for the longer transport duration, whereas glucose increased significantly after both transport durations. However, clinical health measures and vital signs showed minimal or no changes in response to any sampling event (with or without transport), and all turtles appeared to be in good clinical health after both transport durations. Thus, transportation elicits a mild, but detectable, adrenal stress response that is more pronounced during longer durations of transport; nonetheless, Kemp's ridley sea turtles can tolerate ground transportation of up to 26 h in good health. These results are likely to depend on specific transportation and handling protocols.
Hunt, Kathleen E.; Innis, Charles J.; Kennedy, Adam E.; McNally, Kerry L.; Davis, Deborah G.; Burgess, Elizabeth A.; Merigo, Constance
2016-01-01
Sea turtle rehabilitation centres frequently transport sea turtles for long distances to move animals between centres or to release them at beaches, yet there is little information on the possible effects of transportation-related stress (‘transport stress’) on sea turtles. To assess whether transport stress is a clinically relevant concern for endangered Kemp’s ridley sea turtles (Lepidochelys kempii), we obtained pre-transport and post-transport plasma samples from 26 juvenile Kemp’s ridley sea turtles that were transported for 13 h (n = 15 turtles) or 26 h (n = 11 turtles) by truck for release at beaches. To control for effects of handling, food restriction and time of day, the same turtles were also studied on ‘control days’ 2 weeks prior to transport, i.e. with two samples taken to mimic pre-transport and post-transport timing, but without transportation. Blood samples were analysed for nine clinical health measures (pH, pCO2, pO2, HCO3, sodium, potassium, ionized calcium, lactate and haematocrit) and four ‘stress-associated’ parameters (corticosterone, glucose, white blood cell count and heterophil-to-lymphocyte ratio). Vital signs (heart rate, respiratory rate and cloacal temperature) were also monitored. Corticosterone and glucose showed pronounced elevations due specifically to transportation; for corticosterone, this elevation was significant only for the longer transport duration, whereas glucose increased significantly after both transport durations. However, clinical health measures and vital signs showed minimal or no changes in response to any sampling event (with or without transport), and all turtles appeared to be in good clinical health after both transport durations. Thus, transportation elicits a mild, but detectable, adrenal stress response that is more pronounced during longer durations of transport; nonetheless, Kemp’s ridley sea turtles can tolerate ground transportation of up to 26 h in good health. These results are likely to depend on specific transportation and handling protocols. PMID:27293750
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-18
... Habitat for the Northwest Atlantic Ocean Distinct Population Segment of the Loggerhead Sea Turtle (Caretta... Northwest Atlantic Ocean Distinct Population Segment (DPS) of the Loggerhead Sea Turtle (Caretta caretta... Ocean DPS of the loggerhead sea turtle, its habitat, or previous Federal actions, refer to the proposed...
Pacific Islands Regional Office  National Marine Fisheries Service -
Regulation Summaries Annual Catch Limits Sea Turtle Interactions Seabird Interactions Seabird Guide Whales and Dolphins Sea Turtles Species of Concern Corals Laws/Policies/Guidelines Endangered Species Act ? Report Marine Animals State-Wide Hotline 888-256-9840 Report sea turtle, monk seal, dolphin and whales
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
... Collection; Comment Request; Survey of Charter Boat and Headboat Angler Interactions With Sea Turtles AGENCY... prohibitions against the taking of endangered species as the sea turtle. This collection will seek to better understand the nature and overall level of sea turtle interactions with recreational anglers on charter boat...
50 CFR 300.223 - Purse seine fishing restrictions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... thereof be kept on board and delivered to NMFS for research purposes. (vii) Sea turtle release. After... retention of a dead sea turtle for research. In releasing a sea turtle the vessel owner or operator must: (A) Place the vessel engine in neutral gear so that the propeller is disengaged and the vessel is stopped...
Work, Thierry M.; Balazs, George H.
2010-01-01
We examined the gross and microscopic pathology and distribution of sea turtles that were landed as bycatch from the Hawaii, USA–based pelagic longline fishery and known to be forced submerged. Olive ridley turtles (Lepidochelys olivacea) composed the majority of animals examined, and hook-induced perforation of the esophagus was the most common gross lesion followed by perforation of oral structures (tongue, canthus) and of flippers. Gross pathology in the lungs suggestive of drowning was seen in 23 of 71 turtles. Considering only the external gross findings, the pathologist and the observer on board the longline vessel agreed on hook-induced lesions only 60% of the time thereby illustrating the limitations of depending on external examination alone to implicate hooking interactions or drowning as potential cause of sea turtle mortality. When comparing histology of drowned turtles to a control group of nondrowned turtles, the former had significantly more pulmonary edema, hemorrhage, and sloughed columnar epithelium. These microscopic changes may prove useful to diagnose suspected drowning in sea turtles where history of hooking or netting interactions is unknown.
Perception of airborne odors by loggerhead sea turtles.
Endres, C S; Putman, N F; Lohmann, K J
2009-12-01
Sea turtles are known to detect chemical cues, but in contrast to most marine animals, turtles surface to breathe and thus potentially have access to olfactory cues both in air and in water. To determine whether sea turtles can detect airborne chemical cues, captive loggerhead turtles (Caretta caretta) were placed into a circular, water-filled arena in which odorants could be introduced to the air above the water surface. Air that had passed across the surface of a cup containing food elicited increased activity, diving and other behavior normally associated with feeding. By contrast, air that had passed across the surface of an identical cup containing distilled water elicited no response. Increases in activity during food odor trials occurred only after turtles surfaced to breathe and peaked in the first post-breath minute, implying that the chemical cues eliciting the responses were unlikely to have been detected while the turtles were under water. These results provide the first direct evidence that sea turtles can detect airborne odors. Under natural conditions, this sensory ability might function in foraging, navigation or both.
Gaube, Peter; Barceló, Caren; McGillicuddy, Dennis J; Domingo, Andrés; Miller, Philip; Giffoni, Bruno; Marcovaldi, Neca; Swimmer, Yonat
2017-01-01
Marine animals, such as turtles, seabirds and pelagic fishes, are observed to travel and congregate around eddies in the open ocean. Mesoscale eddies, large swirling ocean vortices with radius scales of approximately 50-100 km, provide environmental variability that can structure these populations. In this study, we investigate the use of mesoscale eddies by 24 individual juvenile loggerhead sea turtles (Caretta caretta) in the Brazil-Malvinas Confluence region. The influence of eddies on turtles is assessed by collocating the turtle trajectories to the tracks of mesoscale eddies identified in maps of sea level anomaly. Juvenile loggerhead sea turtles are significantly more likely to be located in the interiors of anticyclones in this region. The distribution of surface drifters in eddy interiors reveals no significant association with the interiors of cyclones or anticyclones, suggesting higher prevalence of turtles in anticyclones is a result of their behavior. In the southern portion of the Brazil-Malvinas Confluence region, turtle swimming speed is significantly slower in the interiors of anticyclones, when compared to the periphery, suggesting that these turtles are possibly feeding on prey items associated with anomalously low near-surface chlorophyll concentrations observed in those features.
Barceló, Caren; McGillicuddy, Dennis J.; Domingo, Andrés; Miller, Philip; Giffoni, Bruno; Marcovaldi, Neca; Swimmer, Yonat
2017-01-01
Marine animals, such as turtles, seabirds and pelagic fishes, are observed to travel and congregate around eddies in the open ocean. Mesoscale eddies, large swirling ocean vortices with radius scales of approximately 50–100 km, provide environmental variability that can structure these populations. In this study, we investigate the use of mesoscale eddies by 24 individual juvenile loggerhead sea turtles (Caretta caretta) in the Brazil-Malvinas Confluence region. The influence of eddies on turtles is assessed by collocating the turtle trajectories to the tracks of mesoscale eddies identified in maps of sea level anomaly. Juvenile loggerhead sea turtles are significantly more likely to be located in the interiors of anticyclones in this region. The distribution of surface drifters in eddy interiors reveals no significant association with the interiors of cyclones or anticyclones, suggesting higher prevalence of turtles in anticyclones is a result of their behavior. In the southern portion of the Brazil-Malvinas Confluence region, turtle swimming speed is significantly slower in the interiors of anticyclones, when compared to the periphery, suggesting that these turtles are possibly feeding on prey items associated with anomalously low near-surface chlorophyll concentrations observed in those features. PMID:28249020
Two cases of pseudohermaphroditism in loggerhead sea turtles Caretta caretta.
Crespo, Jose Luis; García-Párraga, Daniel; Giménez, Ignacio; Rubio-Guerri, Consuelo; Melero, Mar; Sánchez-Vizcaíno, José Manuel; Marco, Adolfo; Cuesta, Jose A; Muñoz, María Jesús
2013-09-03
Two juvenile (curved carapace lengths: 28 and 30 cm) loggerhead sea turtles Caretta caretta with precocious male external characteristics were admitted to the ARCA del Mar rescue area at the Oceanogràfic Aquarium in Valencia, Spain, in 2009 and 2010. Routine internal laparoscopic examination and subsequent histopathology confirmed the presence of apparently healthy internal female gonads in both animals. Extensive tissue biopsy and hormone induction assays were consistent with female sex. To the best of our knowledge, this is the first report of pseudohermaphroditism in loggerhead sea turtles based on sexual external characteristics and internal laparoscopic examination. Our findings suggest that the practice of using external phenotypical characteristics as the basis for gender identification in sea turtles should be reevaluated. Future research should focus on detecting more animals with sexual defects and their possible effects on the sea turtle population.
What makes them pay? Values of volunteer tourists working for sea turtle conservation.
Campbell, Lisa M; Smith, Christy
2006-07-01
As charismatic mega-fauna, sea turtles attract many volunteers to conservation programs. This article examines the ways in which volunteers value sea turtles, in the specific context of volunteers working with the Caribbean Conservation Corporation, at Tortuguero, Costa Rica. The complexity of volunteer values is explored using a qualitative approach. In-depth interviews with 31 volunteers were conducted in July of 1999 and 2000. Interviews probed, among other things, interest in sea turtles and their conservation, motives for participating, and the most gratifying parts of their volunteer experience. Results show that volunteers hold multiple and complex values for sea turtles, but particular values dominate. Results have implications for understanding human-environment relations and the emerging study of volunteer tourism. There are also management implications for volunteer programs hoping to attract participants.
Dietary shift of an invasive predator: rats, seabirds and sea turtles
Caut, Stéphane; Angulo, Elena; Courchamp, Franck
2008-01-01
Rats have reached about 80% of the world's islands and are among the most successful invasive mammals. Rats are opportunistic predators that are notorious for their impact on a variety of animal and plant species. However, little documented evidence on the complexities of these interactions is available.In our study, we assessed the impact of black rats Rattus rattus introduced on a small uninhabited island with a relatively simple ecosystem, Surprise Island, New Caledonia. We also compared the diet of R. rattus in the presence and absence of breeding seabirds, assessing the dietary compensation for this potentially important food source. From 2002 to 2005, we used live trapping studies combined with stable isotope analysis and conventional diet analyses (direct observations, gut and faecal contents) to characterize the diet of rats.Our results suggest a heavy predatory impact on seabirds, which could constitute as much as 24% of the rat diet. Moreover, in the absence of birds, rats compensated marginally by preying more heavily on other components of their diet but mostly acquired a new resource. They shifted their diet by preying heavily upon another endangered species, the hatchlings of sea turtles Chelonia mydas, which could constitute the main resource in the diet of R. rattus in those periods. Abundance, body condition and distribution of the rats were consistent with heavy predation upon this additional resource.Synthesis and applications. In island ecosystems invasive rats prey mainly upon seabird eggs and chicks, thereby threatening their populations. Although rats are certainly capable of surviving on terrestrial foods outside the seabird nesting season, their ability to prey upon ephemeral but abundant resources, such as hatchling sea turtles, may contribute to maintaining their populations. This may explain their success on Surprise Island, an ecosystem of extreme conditions, and suggests that biologists and managers working with threatened species should be aware of the possibility of temporary diet shifts by introduced rodents that may cause unexpected heavy predation on these species. This dietary shift from one endangered taxa to another has major implications for the conservation of seabirds and sea turtles world-wide and more generally for the biodiversity of invaded insular communities. PMID:18784794
Effects of brevetoxin exposure on the immune system of loggerhead sea turtles.
Walsh, Catherine J; Leggett, Stephanie R; Carter, Barbara J; Colle, Clarence
2010-05-10
Blooms of the toxic dinoflagellate, Karenia brevis, occur almost annually off the Florida coast. These blooms, commonly called "red tides", produce a group of neurotoxins collectively termed brevetoxins. Many species of sealife, including sea turtles, are severely impacted by brevetoxin exposure. Effects of brevetoxins on immune cells were investigated in rescued loggerhead sea turtles, Caretta caretta, as well as through in vitro experiments using peripheral blood leukocytes (PBL) collected from captive sea turtles. In rescued animals, plasma brevetoxin concentrations were measured using a competitive ELISA. Plasma lysozyme activity was measured using a turbidity assay. Lysozyme activity correlated positively with plasma brevetoxin concentrations. Differential expression of genes affected by brevetoxin exposure was determined using two separate suppression subtractive hybridization experiments. In one experiment, genes from PBL collected from sea turtles rescued from red tide toxin exposure were compared to genes from PBL collected from healthy captive loggerhead sea turtles. In the second experiment, PBL from healthy captive loggerhead sea turtles were exposed to brevetoxin (500 ng PbTx-2/ml) in vitro for 18 h and compared to unexposed PBL. Results from the subtraction hybridization experiment conducted with red tide rescued sea turtle PBL indicated that genes involved in oxidative stress or xenobiotic metabolism were up-regulated. Using quantitative real-time PCR, a greater than 2-fold increase in superoxide dismutase and thioredoxin and greater than 10-fold increase in expression of thiopurine S-methyltransferase were observed. Results from the in vitro subtraction hybridization experiment indicated that genes coding for cytochrome c oxidases were the major up-regulated genes. Using quantitative real-time PCR, a greater than 8-fold increase in expression of beta-tubulin and greater than 3-fold increase in expression of ubiquinol were observed. Brevetoxin exposure may have significant implications for immune function in loggerhead sea turtles. 2009 Elsevier B.V. All rights reserved.
Li, Tsung-Hsien; Hsu, Wei-Li; Lan, Yu-Ching; Balazs, George H.; Work, Thierry M.; Tseng, Cheng-Tsung; Chang, Chao-Chin
2017-01-01
Fibropapillomatosis (FP), a debilitating tumor disease of sea turtles, was first identified in green turtles [Chelonia mydas (Linnaeus, 1758)] in Florida in 1938. In recent decades, FP has been observed globally and is an emerging panzootic disease in sea turtles. However, few reports of FP in Asia exist. Here, we provide the first evidence of Chelonid herpesvirus 5 (ChHV5) DNA associated with FP in endangered green turtles from Taiwan, through molecular characterization, phylogenetic analysis, and histopathological examination. In our study, ChHV5 was successfully detected by PCR in the FP tumor lesions of green turtles. The sequences were found to be consistent with those of tumor-inducing viruses shown to affect sea turtles in the other parts of the world. ChHV5 RNA from the FP tissues was further detected by RT-PCR, indicating active replication of the viruses inside FP tumors. In addition to the molecular evidence of ChHV5 in FP, epidermal intranuclear inclusions were identified in tumor lesions upon histopathological examination. This further suggests that ChHV5 should be in a transcriptionally active (i.e., non-latent) state in FP tumors of affected green turtles. The phylogenetic tree revealed that ChHV5 from the green turtles in Taiwan were closest to the ChHV5 from Hawaii, Puerto Rico, and Sao Tome. For conservation of endangered sea turtles, ChHV5 should be considered an emerging virus, which threatens sea turtles in marine waters in Asia.
Allen, Camryn D; Robbins, Michelle N; Eguchi, Tomoharu; Owens, David W; Meylan, Anne B; Meylan, Peter A; Kellar, Nicholas M; Schwenter, Jeffrey A; Nollens, Hendrik H; LeRoux, Robin A; Dutton, Peter H; Seminoff, Jeffrey A
2015-01-01
Determining sex ratios of endangered populations is important for wildlife management, particularly species subject to sex-specific threats or that exhibit temperature-dependent sex determination. Sea turtle sex is determined by incubation temperature and individuals lack external sex-based traits until sexual maturity. Previous research utilized serum/plasma testosterone radioimmunoassays (RIA) to determine sex in immature/juvenile sea turtles. However, there has been a growing application of enzyme-linked immunosorbent assay (ELISA) for wildlife endocrinology studies, but no study on sea turtles has compared the results of ELISA and RIA. This study provides the first sex ratio for a threatened East Pacific green sea turtle (Chelonia mydas) foraging aggregation, a critical step for future management of this species. Here, we validate a testosterone ELISA and compare results between RIA and ELISA of duplicate samples. The ELISA demonstrated excellent correspondence with the RIA for providing testosterone concentrations for sex determination. Neither assay proved reliable for predicting the sex of reproductively active females with increased testosterone production. We then applied ELISA to examine the sex ratio of 69 green turtles foraging in San Diego Bay, California. Of 45 immature turtles sampled, sex could not be determined for three turtles because testosterone concentrations fell between the ranges for either sex (females: 4.1-113.1 pg/mL, males: 198.4-2,613.0 pg/mL) and these turtles were not subsequently recaptured to enable sex determination; using a Bayesian model to predict probabilities of turtle sex we predicted all three 'unknowns' were female (> 0.86). Additionally, the model assigned all turtles with their correct sex (if determined at recapture) with 100% accuracy. Results indicated a female bias (2.83F:1M) among all turtles in the aggregation; when focusing only on putative immature turtles the sex ratio was 3.5F:1M. With appropriate validation, ELISA sexing could be applied to other sea turtle species, and serve as a crucial conservation tool.
Allen, Camryn D.; Robbins, Michelle N.; Eguchi, Tomoharu; Owens, David W.; Meylan, Anne B.; Meylan, Peter A.; Kellar, Nicholas M.; Schwenter, Jeffrey A.; Nollens, Hendrik H.; LeRoux, Robin A.; Dutton, Peter H.; Seminoff, Jeffrey A.
2015-01-01
Determining sex ratios of endangered populations is important for wildlife management, particularly species subject to sex-specific threats or that exhibit temperature-dependent sex determination. Sea turtle sex is determined by incubation temperature and individuals lack external sex-based traits until sexual maturity. Previous research utilized serum/plasma testosterone radioimmunoassays (RIA) to determine sex in immature/juvenile sea turtles. However, there has been a growing application of enzyme-linked immunosorbent assay (ELISA) for wildlife endocrinology studies, but no study on sea turtles has compared the results of ELISA and RIA. This study provides the first sex ratio for a threatened East Pacific green sea turtle (Chelonia mydas) foraging aggregation, a critical step for future management of this species. Here, we validate a testosterone ELISA and compare results between RIA and ELISA of duplicate samples. The ELISA demonstrated excellent correspondence with the RIA for providing testosterone concentrations for sex determination. Neither assay proved reliable for predicting the sex of reproductively active females with increased testosterone production. We then applied ELISA to examine the sex ratio of 69 green turtles foraging in San Diego Bay, California. Of 45 immature turtles sampled, sex could not be determined for three turtles because testosterone concentrations fell between the ranges for either sex (females: 4.1–113.1 pg/mL, males: 198.4–2,613.0 pg/mL) and these turtles were not subsequently recaptured to enable sex determination; using a Bayesian model to predict probabilities of turtle sex we predicted all three ‘unknowns’ were female (> 0.86). Additionally, the model assigned all turtles with their correct sex (if determined at recapture) with 100% accuracy. Results indicated a female bias (2.83F:1M) among all turtles in the aggregation; when focusing only on putative immature turtles the sex ratio was 3.5F:1M. With appropriate validation, ELISA sexing could be applied to other sea turtle species, and serve as a crucial conservation tool. PMID:26465620
Do roads reduce painted turtle (Chrysemys picta) populations?
Dorland, Alexandra; Rytwinski, Trina; Fahrig, Lenore
2014-01-01
Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta) in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites) and 10 as far as possible from any major roads (No Road sites). There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles.
Do Roads Reduce Painted Turtle (Chrysemys picta) Populations?
Dorland, Alexandra; Rytwinski, Trina; Fahrig, Lenore
2014-01-01
Road mortality is thought to be a leading cause of turtle population decline. However, empirical evidence of the direct negative effects of road mortality on turtle population abundance is lacking. The purpose of this study was to provide a strong test of the prediction that roads reduce turtle population abundance. While controlling for potentially confounding variables, we compared relative abundance of painted turtles (Chrysemys picta) in 20 ponds in Eastern Ontario, 10 as close as possible to high traffic roads (Road sites) and 10 as far as possible from any major roads (No Road sites). There was no significant effect of roads on painted turtle relative abundance. Furthermore, our data do not support other predictions of the road mortality hypothesis; we observed neither a higher relative frequency of males to females at Road sites than at No Road sites, nor a lower average body size of turtles at Road than at No Road sites. We speculate that, although roads can cause substantial adult mortality in turtles, other factors, such as release from predation on adults and/or nests close to roads counter the negative effect of road mortality in some populations. We suggest that road mitigation for painted turtles can be limited to locations where turtles are forced to migrate across high traffic roads due, for example, to destruction of local nesting habitat or seasonal drying of ponds. This conclusion should not be extrapolated to other species of turtles, where road mortality could have a larger population-level effect than on painted turtles. PMID:24858065
Vasselon, Valentin; Ballorain, Katia; Carpentier, Alice; Wetzel, Carlos E.; Ector, Luc; Bouchez, Agnès; Rimet, Frédéric
2018-01-01
Sea turtles are distributed in tropical and subtropical seas worldwide. They play several ecological roles and are considered important indicators of the health of marine ecosystems. Studying epibiotic diatoms living on turtle shells suggestively has great potential in the study of turtle behavior because diatoms are always there. However, diatom identification at the species level is time consuming, requires well-trained specialists, and there is a high probability of finding new taxa growing on turtle shells, which makes identification tricky. An alternative approach based on DNA barcoding and high throughput sequencing (HTS), metabarcoding, has been developed in recent years to identify species at the community level by using a DNA reference library. The suitabilities of morphological and molecular approaches were compared. Diatom assemblages were sampled from seven juvenile green turtles (Chelonia mydas) from Mayotte Island, France. The structures of the epibiotic diatom assemblages differed between both approaches. This resulted in different clustering of the turtles based on their diatom communities. Metabarcoding allowed better discrimination between turtles based on their epibiotic diatom assemblages and put into evidence the presence of a cryptic diatom diversity. Microscopy, for its part, provided more ecological information of sea turtles based on historical bibliographical data and the abundances of ecological guilds of the diatom species present in the samples. This study shows the complementary nature of these two methods for studying turtle behavior. PMID:29659610
Rivera, Sinziana F; Vasselon, Valentin; Ballorain, Katia; Carpentier, Alice; Wetzel, Carlos E; Ector, Luc; Bouchez, Agnès; Rimet, Frédéric
2018-01-01
Sea turtles are distributed in tropical and subtropical seas worldwide. They play several ecological roles and are considered important indicators of the health of marine ecosystems. Studying epibiotic diatoms living on turtle shells suggestively has great potential in the study of turtle behavior because diatoms are always there. However, diatom identification at the species level is time consuming, requires well-trained specialists, and there is a high probability of finding new taxa growing on turtle shells, which makes identification tricky. An alternative approach based on DNA barcoding and high throughput sequencing (HTS), metabarcoding, has been developed in recent years to identify species at the community level by using a DNA reference library. The suitabilities of morphological and molecular approaches were compared. Diatom assemblages were sampled from seven juvenile green turtles (Chelonia mydas) from Mayotte Island, France. The structures of the epibiotic diatom assemblages differed between both approaches. This resulted in different clustering of the turtles based on their diatom communities. Metabarcoding allowed better discrimination between turtles based on their epibiotic diatom assemblages and put into evidence the presence of a cryptic diatom diversity. Microscopy, for its part, provided more ecological information of sea turtles based on historical bibliographical data and the abundances of ecological guilds of the diatom species present in the samples. This study shows the complementary nature of these two methods for studying turtle behavior.
Active dispersal in loggerhead sea turtles (Caretta caretta) during the ‘lost years’
Briscoe, D. K.; Parker, D. M.; Balazs, G. H.; Kurita, M.; Saito, T.; Okamoto, H.; Rice, M.; Polovina, J. J.; Crowder, L. B.
2016-01-01
Highly migratory marine species can travel long distances and across entire ocean basins to reach foraging and breeding grounds, yet gaps persist in our knowledge of oceanic dispersal and habitat use. This is especially true for sea turtles, whose complex life history and lengthy pelagic stage present unique conservation challenges. Few studies have explored how these young at-sea turtles navigate their environment, but advancements in satellite technology and numerical models have shown that active and passive movements are used in relation to open ocean features. Here, we provide the first study, to the best of our knowledge, to simultaneously combine a high-resolution physical forcing ocean circulation model with long-term multi-year tracking data of young, trans-oceanic North Pacific loggerhead sea turtles during their ‘lost years’ at sea. From 2010 to 2014, we compare simulated trajectories of passive transport with empirical data of 1–3 year old turtles released off Japan (29.7–37.5 straight carapace length cm). After several years, the at-sea distribution of simulated current-driven trajectories significantly differed from that of the observed turtle tracks. These results underscore current theories on active dispersal by young oceanic-stage sea turtles and give further weight to hypotheses of juvenile foraging strategies for this species. Such information can also provide critical geographical information for spatially explicit conservation approaches to this endangered population. PMID:27252021
Active dispersal in loggerhead sea turtles (Caretta caretta) during the 'lost years'.
Briscoe, D K; Parker, D M; Balazs, G H; Kurita, M; Saito, T; Okamoto, H; Rice, M; Polovina, J J; Crowder, L B
2016-06-15
Highly migratory marine species can travel long distances and across entire ocean basins to reach foraging and breeding grounds, yet gaps persist in our knowledge of oceanic dispersal and habitat use. This is especially true for sea turtles, whose complex life history and lengthy pelagic stage present unique conservation challenges. Few studies have explored how these young at-sea turtles navigate their environment, but advancements in satellite technology and numerical models have shown that active and passive movements are used in relation to open ocean features. Here, we provide the first study, to the best of our knowledge, to simultaneously combine a high-resolution physical forcing ocean circulation model with long-term multi-year tracking data of young, trans-oceanic North Pacific loggerhead sea turtles during their 'lost years' at sea. From 2010 to 2014, we compare simulated trajectories of passive transport with empirical data of 1-3 year old turtles released off Japan (29.7-37.5 straight carapace length cm). After several years, the at-sea distribution of simulated current-driven trajectories significantly differed from that of the observed turtle tracks. These results underscore current theories on active dispersal by young oceanic-stage sea turtles and give further weight to hypotheses of juvenile foraging strategies for this species. Such information can also provide critical geographical information for spatially explicit conservation approaches to this endangered population. © 2016 The Author(s).
de Carvalho, Robson Henrique; Lacerda, Pedro Dutra; da Silva Mendes, Sarah; Barbosa, Bruno Corrêa; Paschoalini, Mariana; Prezoto, Fabio; de Sousa, Bernadete Maria
2015-12-30
Assessment of marine debris ingestion by sea turtles is important, especially to ensure their survival. From January to December 2011, 23 specimens of five species of sea turtles were found dead or dying after being rehabilitated, along the coast of the municipality of Rio de Janeiro, Brazil. To detect the presence of marine debris in the digestive tract of these turtles, we conducted a postmortem examination from the esophagus until the distal portion of the large intestine for each specimen. Of the total number of turtles, 39% had ingested marine debris such as soft plastic, hard plastic, metal, polyethylene terephthalate (PET) bottle caps, human hair, tampons, and latex condoms. Five of the seven sea turtles species are found along the Brazilian coast, where they feed and breed. A large number of animals are exposed to various kinds of threats, including debris ingestion. Copyright © 2015 Elsevier Ltd. All rights reserved.
50 CFR 222.309 - Permits for listed species of sea turtles involving the Fish and Wildlife Service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Permits for listed species of sea turtles involving the Fish and Wildlife Service. 222.309 Section 222.309 Wildlife and Fisheries NATIONAL MARINE... species of sea turtles involving the Fish and Wildlife Service. (a) This section establishes specific...
50 CFR 222.309 - Permits for listed species of sea turtles involving the Fish and Wildlife Service.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Permits for listed species of sea turtles involving the Fish and Wildlife Service. 222.309 Section 222.309 Wildlife and Fisheries NATIONAL MARINE... species of sea turtles involving the Fish and Wildlife Service. (a) This section establishes specific...
50 CFR 222.309 - Permits for listed species of sea turtles involving the Fish and Wildlife Service.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Permits for listed species of sea turtles involving the Fish and Wildlife Service. 222.309 Section 222.309 Wildlife and Fisheries NATIONAL MARINE... species of sea turtles involving the Fish and Wildlife Service. (a) This section establishes specific...
50 CFR 222.309 - Permits for listed species of sea turtles involving the Fish and Wildlife Service.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Permits for listed species of sea turtles involving the Fish and Wildlife Service. 222.309 Section 222.309 Wildlife and Fisheries NATIONAL MARINE... species of sea turtles involving the Fish and Wildlife Service. (a) This section establishes specific...
50 CFR 222.309 - Permits for listed species of sea turtles involving the Fish and Wildlife Service.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Permits for listed species of sea turtles involving the Fish and Wildlife Service. 222.309 Section 222.309 Wildlife and Fisheries NATIONAL MARINE... species of sea turtles involving the Fish and Wildlife Service. (a) This section establishes specific...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, C.A.; Lean, D.R.S.; Carey, J.H.
1995-03-01
To assess intra-clutch variation in contaminant concentrations in eggs, and to investigate the dynamics of chlorinated hydrocarbon accumulation in embryos of the common snapping turtle (Chelydra serpentina), concentrations of p,p{prime}-DDE, hexachlorobenzene, trans-nonachlor, cis-chlordane, and six PCB congeners were measured in eggs, embryos, and hatchlings. Samples were collected from Cootes Paradise, a wetland at the western end of Lake Ontario, Ontario, Canada. The intra-clutch variation in chlorinated hydrocarbon concentrations within four snapping turtle clutches was determined by analyzing the first, last, and middle five eggs oviposited in the nest. The first five eggs had the highest mean concentrations of all chlorinatedmore » hydrocarbons, wet weight, and egg diameter. On a lipid weight basis, the first five eggs contained the highest concentration of all compounds except total PCBs and cis-chlordane. The concentration of cis-chlordane was the only parameter measured that was significantly different among the three sets of eggs. At hatching, snapping turtles without yolk sacs contained from 55.2 to 90.5% of the absolute amount of organochlorine compounds measured in the egg at oviposition. Eighteen days after hatching, the body burden of PCBs and pesticides decreased to 45.3 to 62.2% of that in the fresh egg. The accumulation of organochlorine chemicals in embryonic turtles peaked at or just before hatching and then declined thereafter, which is consistent with trends reported in developing sea turtles, fish, and birds.« less
Hayashi, Ryota
2013-01-01
Specimens of the turtle barnacle Cylindrolepas sinica Ren, 1980 were collected from sea turtles in Japanese waters. The specimens were hexagonal in shape and were found burrowing into the sea turtle plastron. Specimens were dissected and the hard and soft parts were compared with the original description.
Comparison of sea turtle thrombocyte aggregation to human platelet aggregation in whole blood.
Soslau, Gerald; Prest, Phillip J; Class, Reiner; George, Robert; Paladino, Frank; Violetta, Gary
2005-11-01
The endangered sea turtles are living "fossils" that afford us an opportunity to study the hemostatic process as it likely existed millions of years ago. There are essentially no data about turtle thrombocyte aggregation prior to our studies. Thrombocytes are nucleated cells that serve the same hemostatic functions as the anucleated mammalian platelet. Sea turtle thrombocytes aggregate in response to collagen and beta-thrombin. Ristocetin induces an agglutination/aggregation response indicating the presence of a von Willebrand-like receptor, GPIb, found in all mammalian platelets. Samples treated with alpha-thrombin plus gamma-thrombin followed by ristocetin results in a rapid, stronger response than ristocetin alone. These responses are inhibited by the RGDS peptide that blocks fibrinogen cross-linking of mammalian platelets via the fibrinogen receptor, GPIIb/IIIa. Three platelet-like proteins, GPIb, GPIIb/IIIa and P-selection are detected in sea turtle thrombocytes by fluorescence activated cell sorting. Turtle thrombocytes do not respond to ADP, epinephrine, serotonin, thromboxane A2 mimetic, U46619, trypsin, or alpha-thrombin and gamma-thrombin added alone. Comparison of hemostasis in sea turtles to other vertebrates could provide a framework for understanding the structure/function and evolution of these pathways and their individual components.
Metabolic and respiratory status of cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii).
Innis, Charles J; Tlusty, Michael; Merigo, Constance; Weber, E Scott
2007-08-01
"Cold-stunning" of sea turtles has been reported as a naturally occurring stressor for many years; however, the physiologic status of cold-stunned turtles has only been partially described. This study investigated initial and convalescent venous blood gas, acid-base, and critical plasma biochemical data for 26 naturally cold-stunned Kemp's ridley sea turtles (Lepidochelys kempii) from Cape Cod, MA, USA. Samples were analyzed for pH, pCO(2), pO(2), bicarbonate, plasma osmolality, sodium, potassium, chloride, ionized calcium, ionized magnesium, glucose, lactate, and blood urea nitrogen using a clinical point-of-care analyzer. Data were corrected for the patient's body temperature using both species-specific and more general correction methods. In general, venous blood gas, acid-base, and plasma biochemical data obtained for surviving cold-stunned Kemp's ridley sea turtles were consistent with previously documented data for sea turtles exposed to a wide range of temperatures and physiologic stressors. Data indicated that turtles were initially affected by metabolic and respiratory acidosis. Initial pH-corrected ionized calcium concentrations were lower than convalescent concentrations, and initial pH-corrected ionized magnesium concentrations were higher than convalescent concentrations.
Behavioral Response of Reef Fish and Green Sea Turtles to Midfrequency Sonar.
Watwood, Stephanie L; Iafrate, Joseph D; Reyier, Eric A; Redfoot, William E
2016-01-01
There is growing concern over the potential effects of high-intensity sonar on wild fish populations and commercial fisheries. Acoustic telemetry was employed to measure the movements of free-ranging reef fish and sea turtles in Port Canaveral, FL, in response to routine submarine sonar testing. Twenty-five sheepshead (Archosargus probatocephalus), 28 gray snapper (Lutjanus griseus), and 29 green sea turtles (Chelonia mydas) were tagged, with movements monitored for a period of up to 4 months using an array of passive acoustic receivers. Baseline residency was examined for fish and sea turtles before, during, and after the test event. No mortality of tagged fish or sea turtles was evident from the sonar test event. There was a significant increase in the daily residency index for both sheepshead and gray snapper at the testing wharf subsequent to the event. No broad-scale movement from the study site was observed during or immediately after the test.
Review of potential impacts to sea turtles from underwater explosive removal of offshore structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viada, Stephen T.; Hammer, Richard M.; Racca, Roberto
2008-05-15
The purpose of this study was to collect and synthesize existing information relevant to the explosive removal of offshore structures (EROS) in aquatic environments. Data sources were organized and summarized by topic - explosive removal methods, physics of underwater explosions, sea turtle resources, documented impacts to sea turtles, and mitigation of effects. Information was gathered via electronic database searches and literature source review. Bulk explosive charges are the most commonly used technique in EROS. While the physical principles of underwater detonations and the propagation of pressure and acoustic waves are well understood, there are significant gaps in the application ofmore » this knowledge. Impacts to sea turtles from explosive removal operations may range from non-injurious effects (e.g. acoustic annoyance; mild tactile detection or physical discomfort) to varying levels of injury (i.e. non-lethal and lethal injuries). Very little information exists regarding the impacts of underwater explosions on sea turtles. Effects of explosions on turtles often must be inferred from documented effects to other vertebrates with lungs or other gas-containing organs, such as mammals and most fishes. However, a cautious approach should be used when determining impacts to sea turtles based on extrapolations from other vertebrates. The discovery of beached sea turtles and bottlenose dolphins following an explosive platform removal event in 1986 prompted the initiation of formal consultation between the U.S. Department of the Interior, Minerals Management Service (MMS) and the National Marine Fisheries Service (NMFS), authorized through the Endangered Species Act Section 7, to determine a mechanism to minimize potential impacts to listed species. The initial consultation resulted in a requirement for oil and gas companies to obtain a permit (through separate consultations on a case-by-case basis) prior to using explosives in Federal waters. Because many offshore structure removal operations are similar, a 'generic' Incidental Take Statement was established by the NMFS that describes requirements to protect sea turtles when an operator's individual charge weights did not exceed 50 lb (23 kg). Requirements associated with the Incidental Take Permit were revised in 2003 and 2006 to accommodate advances in explosive charge technologies, removals of structures in deeper waters, and adequate protection of deep water marine mammal species in Gulf of Mexico waters. Generally, these requirements include pre- and post-detonation visual monitoring using standard surface and aerial survey methods for sea turtles and marine mammals, and, in some scenarios, passive acoustic survey methods for marine mammals within a specified radius from an offshore structure. The survey program has been successful in mitigating impacts to sea turtles associated with EROS. However, even with these protective measures in place, there have been observations of sea turtles affected by explosive platform removals.« less
Wallace, Bryan P.; DiMatteo, Andrew D.; Hurley, Brendan J.; Finkbeiner, Elena M.; Bolten, Alan B.; Chaloupka, Milani Y.; Hutchinson, Brian J.; Abreu-Grobois, F. Alberto; Amorocho, Diego; Bjorndal, Karen A.; Bourjea, Jerome; Bowen, Brian W.; Dueñas, Raquel Briseño; Casale, Paolo; Choudhury, B. C.; Costa, Alice; Dutton, Peter H.; Fallabrino, Alejandro; Girard, Alexandre; Girondot, Marc; Godfrey, Matthew H.; Hamann, Mark; López-Mendilaharsu, Milagros; Marcovaldi, Maria Angela; Mortimer, Jeanne A.; Musick, John A.; Nel, Ronel; Pilcher, Nicolas J.; Seminoff, Jeffrey A.; Troëng, Sebastian; Witherington, Blair; Mast, Roderic B.
2010-01-01
Background Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques — including site-based monitoring, genetic analyses, mark-recapture studies and telemetry — can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges. Methodology/Principal Findings To address these issues for marine turtles, we collated all available studies on marine turtle biogeography, including nesting sites, population abundances and trends, population genetics, and satellite telemetry. We georeferenced this information to generate separate layers for nesting sites, genetic stocks, and core distributions of population segments of all marine turtle species. We then spatially integrated this information from fine- to coarse-spatial scales to develop nested envelope models, or Regional Management Units (RMUs), for marine turtles globally. Conclusions/Significance The RMU framework is a solution to the challenge of how to organize marine turtles into units of protection above the level of nesting populations, but below the level of species, within regional entities that might be on independent evolutionary trajectories. Among many potential applications, RMUs provide a framework for identifying data gaps, assessing high diversity areas for multiple species and genetic stocks, and evaluating conservation status of marine turtles. Furthermore, RMUs allow for identification of geographic barriers to gene flow, and can provide valuable guidance to marine spatial planning initiatives that integrate spatial distributions of protected species and human activities. In addition, the RMU framework — including maps and supporting metadata — will be an iterative, user-driven tool made publicly available in an online application for comments, improvements, download and analysis. PMID:21253007
Hamilton, Richard J.; Bird, Tomas; Gereniu, Collin; Pita, John; Ramohia, Peter C.; Walter, Richard; Goerlich, Clara; Limpus, Colin
2015-01-01
The largest rookery for hawksbill turtles in the oceanic South Pacific is the Arnavon Islands, which are located in the Manning Strait between Isabel and Choiseul Province, Solomon Islands. The history of this rookery is one of overexploitation, conflict and violence. Throughout the 1800s Roviana headhunters from New Georgia repeatedly raided the Manning Strait to collect hawksbill shell which they traded with European whalers. By the 1970s the Arnavons hawksbill population was in severe decline and the national government intervened, declaring the Arnavons a sanctuary in 1976. But this government led initiative was short lived, with traditional owners burning down the government infrastructure and resuming intensive harvesting in 1982. In 1991 routine beach monitoring and turtle tagging commenced at the Arnavons along with extensive community consultations regarding the islands’ future, and in 1995 the Arnavon Community Marine Conservation Area (ACMCA) was established. Around the same time national legislation banning the sale of all turtle products was passed. This paper represents the first analysis of data from 4536 beach surveys and 845 individual turtle tagging histories obtained from the Arnavons between 1991-2012. Our results and the results of others, reveal that many of the hawksbill turtles that nest at the ACMCA forage in distant Australian waters, and that nesting on the Arnavons occurs throughout the year with peak nesting activity coinciding with the austral winter. Our results also provide the first known evidence of recovery for a western pacific hawksbill rookery, with the number of nests laid at the ACMCA and the remigration rates of turtles doubling since the establishment of the ACMCA in 1995. The Arnavons case study provides an example of how changes in policy, inclusive community-based management and long term commitment can turn the tide for one of the most charismatic and endangered species on our planet. PMID:25853880
Hamilton, Richard J; Bird, Tomas; Gereniu, Collin; Pita, John; Ramohia, Peter C; Walter, Richard; Goerlich, Clara; Limpus, Colin
2015-01-01
The largest rookery for hawksbill turtles in the oceanic South Pacific is the Arnavon Islands, which are located in the Manning Strait between Isabel and Choiseul Province, Solomon Islands. The history of this rookery is one of overexploitation, conflict and violence. Throughout the 1800s Roviana headhunters from New Georgia repeatedly raided the Manning Strait to collect hawksbill shell which they traded with European whalers. By the 1970s the Arnavons hawksbill population was in severe decline and the national government intervened, declaring the Arnavons a sanctuary in 1976. But this government led initiative was short lived, with traditional owners burning down the government infrastructure and resuming intensive harvesting in 1982. In 1991 routine beach monitoring and turtle tagging commenced at the Arnavons along with extensive community consultations regarding the islands' future, and in 1995 the Arnavon Community Marine Conservation Area (ACMCA) was established. Around the same time national legislation banning the sale of all turtle products was passed. This paper represents the first analysis of data from 4536 beach surveys and 845 individual turtle tagging histories obtained from the Arnavons between 1991-2012. Our results and the results of others, reveal that many of the hawksbill turtles that nest at the ACMCA forage in distant Australian waters, and that nesting on the Arnavons occurs throughout the year with peak nesting activity coinciding with the austral winter. Our results also provide the first known evidence of recovery for a western pacific hawksbill rookery, with the number of nests laid at the ACMCA and the remigration rates of turtles doubling since the establishment of the ACMCA in 1995. The Arnavons case study provides an example of how changes in policy, inclusive community-based management and long term commitment can turn the tide for one of the most charismatic and endangered species on our planet.
2004-02-05
KENNEDY SPACE CENTER, FLA. - Karen Holloway-Adkins, KSC wildlife specialist, holds a sample of the sea grass she collected from the floor of the Banana River. She is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.
2004-02-05
KENNEDY SPACE CENTER, FLA. - Karen Holloway-Adkins, KSC wildlife specialist, shows a sample of the sea grass she collected from the floor of the Banana River. She is studying the life history of sea turtles, especially what they eat, where they lay their eggs and what factors might harm their survival. On the boat trip she is also monitoring the growth of sea grasses and algae and the water quality of estuaries and lagoons used by sea turtles and other aquatic wildlife.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickerson, D.D.; Nelson, D.A.
1990-12-01
Five species of sea turtles occur along the United States coastlines and are listed as threatened or endangered. The loggerhead sea turtle (Caretta caretta) is listed as threatened, while the Kemp`s ridley (Lepidochelys kenipi), the hawksbill (Eretmochelys imbricata), and the leatherback (Dermochelys coriacea) are all less abundant and listed as endangered. Florida breeding populations of the green sea turtle (Chelonia mydas) are listed as endangered, but green turtles in other US waters are considered threatened. The National Marine Fisheries Service (NMFS) has determined, based on the best available information, that because of their life cycle and behavioral patterns only themore » loggerhead, the green, and the Kemp`s ridley are put at risk by hopper dredging activities (Studt 1987).« less
75 FR 11863 - Endangered Species; File No. 15135
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
... take threatened and endangered sea turtles for purposes of scientific research. DATES: Written... turtle bycatch. The research would involve testing modified large mesh (> 5 inches) commercial gillnets... promise for reducing sea turtle bycatch in another location. Two contracted commercial gillnet vessels...
Measuring Energy Expenditure in Sub-Adult and Hatchling Sea Turtles via Accelerometry
Halsey, Lewis G.; Jones, T. Todd; Jones, David R.; Liebsch, Nikolai; Booth, David T.
2011-01-01
Measuring the metabolic of sea turtles is fundamental to understanding their ecology yet the presently available methods are limited. Accelerometry is a relatively new technique for estimating metabolic rate that has shown promise with a number of species but its utility with air-breathing divers is not yet established. The present study undertakes laboratory experiments to investigate whether rate of oxygen uptake ( o 2) at the surface in active sub-adult green turtles Chelonia mydas and hatchling loggerhead turtles Caretta caretta correlates with overall dynamic body acceleration (ODBA), a derivative of acceleration used as a proxy for metabolic rate. Six green turtles (25–44 kg) and two loggerhead turtles (20 g) were instrumented with tri-axial acceleration logging devices and placed singly into a respirometry chamber. The green turtles were able to submerge freely within a 1.5 m deep tank and the loggerhead turtles were tethered in water 16 cm deep so that they swam at the surface. A significant prediction equation for mean o 2 over an hour in a green turtle from measures of ODBA and mean flipper length (R2 = 0.56) returned a mean estimate error across turtles of 8.0%. The range of temperatures used in the green turtle experiments (22–30°C) had only a small effect on o 2. A o 2-ODBA equation for the loggerhead hatchling data was also significant (R2 = 0.67). Together these data indicate the potential of the accelerometry technique for estimating energy expenditure in sea turtles, which may have important applications in sea turtle diving ecology, and also in conservation such as assessing turtle survival times when trapped underwater in fishing nets. PMID:21829613
Crespo-Picazo, J L; García-Parraga, D; Domènech, F; Tomás, J; Aznar, F J; Ortega, J; Corpa, J M
2017-06-02
Diseases associated to external parasitosis are scarcely reported in sea turtles. During the last decades several organism have been documented as a part of normal epibiont community connected to sea turtles. The copepod Balaenophilus manatorum has been cited as a part of epibiont fauna with some concern about its parasitic capacity. This study serves three purposes, i.e. (i) it sheds light on the type of life style that B. manatorum has developed with its hosts, particularly turtles; (ii) it makes a cautionary note of the potential health risks associated with B. manatorum in sea turtles under captivity conditions and in the wild, and (iii) it provides data on effective treatments against B. manatorum. We report for the first time a massive infestation of the copepod B. manatorum and subsequent acute mortality in a group of loggerhead sea turtle hatchlings. Four-month-old turtles from a head-starting program started exhibiting excitatory and fin rubbing behavior preceding an acute onset of lethargy, skin ulceration and death in some animals. All the individuals (n = 57) were affected by severe copepod load and presented different degrees of external macroscopic skin lesions. The ventral area of front flippers, axillar and pericloacal skin were mostly affected, and were the main parasite distribution regions. Copepods were also detected on plastron and carapace sutures. The gut contents of B. manatorum reacted positively for cytokeratin, indicating consumption of turtle skin. Severe ulcerative necrotic dermatitis and large amount of bacteria presence were the major histopathological findings. Individual fresh water immersion for 10 min and lufenuron administration (0.1 ppm) to the water system every 2 weeks proved effective for removing turtle parasites and to control re-infestation, respectively. The results from our study clearly indicated that B. manatorum individuals consume turtle skin. The pathological effects of this agent and the potential implications in sea turtle conservation and management are discussed.
50 CFR 222.402 - Annual determination of fisheries to be observed; notice and comment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... operates in the same waters and at the same time as sea turtles are present; (2) The fishery operates at the same time or prior to elevated sea turtle strandings; or (3) The fishery uses a gear or technique that is known or likely to result in incidental take of sea turtles based on documented or reported...