Science.gov

Sample records for sea-surface polarized microwave

  1. A statistical method to sense sea surface temperature from the Nimbus-7 scanning multichannel microwave radiometer

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Wang, I.

    1983-01-01

    Among the five channels in the Scanning Multichannel Microwave Radiometer (SMMR), the brightness temperature measured at 6.6 GHz vertical polarization is least affected by the atmospheric water vapor and liquid water in clouds or rain. Furthermore, as the undisturbed sea surface emissivity at 6.6 GHz is nearly constant over the temperature range 275 to 300 K, this channel has the best sensitivity to sea surface temperature (SST). The 6.6 GHz channel on SMMR is specifically chosen for these reasons to measure SST.

  2. A Computer Model for Bistatic Sea Surface Microwave Reflectivity

    DTIC Science & Technology

    2014-08-14

    surface for transmit and receive grazing angles less than 10 degrees and any relative geometry through 360 degrees. In the forward scatter region...microwave reflectivity of the sea surface. This report will only address low grazing angles, as encountered with shipboard radar systems, but include...both in-plane and out-of-plane geometries. Higher grazing angles as well as airborne or space- based radars will need additional models. In the

  3. Feasibility of microwave holography for imaging the sea surface

    NASA Technical Reports Server (NTRS)

    Wells, W.

    1972-01-01

    The possibility of imaging the sea surface in three dimensions by means of microwave holography from a low-flying aircraft is considered. Data cover a brief feasibility study and a review of some computer experiments in which it was demonstrated that it is possible to compute three-dimensional images of objects from raw holographic data recorded on magnetic tape. These experiments used synthetic data.

  4. Polarized reflectance and transmittance properties of windblown sea surfaces.

    PubMed

    Mobley, Curtis D

    2015-05-20

    Generation of random sea surfaces using wave variance spectra and Fourier transforms is formulated in a way that guarantees conservation of wave energy and fully resolves wave height and slope variances. Monte Carlo polarized ray tracing, which accounts for multiple scattering between light rays and wave facets, is used to compute effective Mueller matrices for reflection and transmission of air- or water-incident polarized radiance. Irradiance reflectances computed using a Rayleigh sky radiance distribution, sea surfaces generated with Cox-Munk statistics, and unpolarized ray tracing differ by 10%-18% compared with values computed using elevation- and slope-resolving surfaces and polarized ray tracing. Radiance reflectance factors, as used to estimate water-leaving radiance from measured upwelling and sky radiances, are shown to depend on sky polarization, and improved values are given.

  5. Microwave Imager Measures Sea Surface Temperature Through Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image was acquired over Tropical Atlantic and U.S. East Coast regions on Aug. 22 - Sept. 23, 1998. Cloud data were collected by the Geostationary Operational Environmental Satellite (GOES). Sea Surface Temperature (SST) data were collected aboard the NASA/NASDA Tropical Rainfall Measuring Mission (TRMM) satellite by The TRMM Microwave Imager (TMI). TMI is the first satellite microwave sensor capable of accurately measuring sea surface temperature through clouds, as shown in this scene. For years scientists have known there is a strong correlation between sea surface temperature and the intensity of hurricanes. But one of the major stumbling blocks for forecasters has been the precise measurement of those temperatures when a storm begins to form. In this scene, clouds have been made translucent to allow an unobstructed view of the surface. Notice Hurricane Bonnie approaching the Carolina Coast (upper left) and Hurricane Danielle following roughly in its path (lower right). The ocean surface has been falsely colored to show a map of water temperature--dark blues are around 75oF, light blues are about 80oF, greens are about 85oF, and yellows are roughly 90oF. A hurricane gathers energy from warm waters found at tropical latitudes. In this image we see Hurricane Bonnie cross the Atlantic, leaving a cooler trail of water in its wake. As Hurricane Danielle followed in Bonnie's path, the wind speed of the second storm dropped markedly, as available energy to fuel the storm dropped off. But when Danielle left Bonnie's wake, wind speeds increased due to temperature increases in surface water around the storm. As a hurricane churns up the ocean, it's central vortex draws surface heat and water into the storm. That suction at the surface causes an upwelling of deep water. At depth, tropical ocean waters are significantly colder than water found near the surface. As they're pulled up to meet the storm, those colder waters essentially leave a footprint in the storm's wake

  6. Dependence of sea-surface microwave emissivity on friction velocity as derived from SMMR/SASS

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.; Christensen, E. J.; Richardson, K. A.

    1981-01-01

    The sea-surface microwave emissivity is derived using SMMR brightness temperatures and SASS inferred friction velocities for three North Pacific Seasat passes. The results show the emissivity increasing linearly with friction velocity with no obvious break between the foam-free and foam regimes up to a friction velocity of about 70 cm/sec (15 m/sec wind speed). For horizontal polarization the sensitivity of emissivity to friction velocity greatly increases with frequency, while for vertical polarization the sensitivity is much less and is independent of frequency. This behavior is consistent with two-scale scattering theory. A limited amount of high friction velocity data above 70 cm/sec suggests an additional increase in emissivity due to whitecapping.

  7. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  8. Global measurements of sea surface temperature, wind speed and atmospheric water content from satellite microwave radiometry

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.; Swanson, L.

    1983-01-01

    The Scanning Multichannel Microwave Radiometer (SMMR) was launched on the Seasat and Nimbus 7 satellites in 1978. The SMMR has the ability to measure sea surface temperature and wind speed with the aid of microwaves. In addition, the instrument was designed to measure water vapor and cloud liquid water with better spatial resolution than previous microwave radiometers, and to make sea-ice measurements with higher precision. A description is presented of the results of global analyses of sea surface temperature, wind speed, water vapor, and cloud liquid water, taking into account data provided by the SMMR on the Seasat satellite. It is found that the SMMR data show good self-consistency, and can usefully measure global distributions of sea surface temperatures, surface winds, water vapor, and cloud liquid water.

  9. Ultra Stable Microwave Radiometers for Future Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Tanner, Alan B.; Pellerano, Fernando A.; Horgan, Kevin A.

    2005-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius will measure global sea surface salinity with 100-km spatial resolution every 8 days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than 0.1 K over 8 days. This three-year research program on ultra stable radiometers has addressed the radiometer requirements and configuration necessary to achieve this objective for Aquarius and future ocean salinity missions. The system configuration and component performance have been evaluated with radiometer testbeds at both JPL and GSFC. The research has addressed several areas including component characterization as a function of temperature, a procedure for the measurement and correction for radiometer system non-linearity, noise diode calibration versus temperature, low noise amplifier performance over voltage, and temperature control requirements to achieve the required stability. A breadboard radiometer, utilizing microstrip-based technologies, has been built to demonstrate this long-term stability. This report also presents the results of the radiometer test program, a detailed radiometer noise model, and details of the operational switching sequence optimization that can be used to achieve the low noise and stability requirements. Many of the results of this research have been incorporated into the Aquarius radiometer design and will allow this instrument to achieve its goals.

  10. Simulation of a polarized laser beam reflected at the sea surface: modeling and validation

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric

    2015-05-01

    A 3-D simulation of the polarization-dependent reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation considers polarized or unpolarized laser sources and calculates the polarization states upon reflection at the sea surface. It is suitable for the radiance calculation of the scene in different spectral wavebands (e.g. near-infrared, SWIR, etc.) not including the camera degradations. The simulation also considers a bistatic configuration of laser source and receiver as well as different atmospheric conditions. In the SWIR, the detected total power of reflected laser light is compared with data collected in a field trial. Our computer simulation combines the 3-D simulation of a maritime scene (open sea/clear sky) with the simulation of polarized or unpolarized laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. To predict the input of a camera equipped with a linear polarizer, the polarized sea surface radiance must be calculated for the specific waveband. The s- and p-polarization states are calculated for the emitted sea surface radiance and the specularly reflected sky radiance to determine the total polarized sea surface radiance of each component. The states of polarization and the radiance of laser light specularly reflected at the wind-roughened sea surface are calculated by considering the s- and p- components of the electric field of laser light with respect to the specular plane of incidence. This is done by using the formalism of their coherence matrices according to E. Wolf [1]. Additionally, an analytical statistical sea surface BRDF (bidirectional reflectance distribution function) is considered for the reflection of laser light radiances. Validation of the simulation results is required to ensure model credibility and applicability to maritime laser applications. For validation purposes, field measurement data (images and

  11. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    NASA Technical Reports Server (NTRS)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  12. Microwave radiometer and scatterometer design for the aquarius sea surface Salinity Mission

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Yueh, Simon H.; Pellerano, Fernando

    2004-01-01

    The measurement of sea surface salinity with L-band microwave radiometers is a very challenging task. Since the L-band brightness temperature variations associated with salinity changes are small, it is necessary to have a very sensitive and stable radiometer. In addition, the corrections for the ocean surface roughness require real time scatterometer measurements. The designs of the Aquarius radiometer and scatterometer are described in this paper.

  13. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  14. The Effect of Sea-Surface Sun Glitter on Microwave Radiometer Measurements

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.

    1981-01-01

    A relatively simple model for the microwave brightness temperature of sea surface Sun glitter is presented. The model is an accurate closeform approximation for the fourfold Sun glitter integral. The model computations indicate that Sun glitter contamination of on orbit radiometer measurements is appreciable over a large swath area. For winds near 20 m/s, Sun glitter affects the retrieval of environmental parameters for Sun angles as large as 20 to 25 deg. The model predicted biases in retrieved wind speed and sea surface temperature due to neglecting Sun glitter are consistent with those experimentally observed in SEASAT SMMR retrievals. A least squares retrieval algorithm that uses a combined sea and Sun model function shows the potential of retrieving accurate environmental parameters in the presence of Sun glitter so long as the Sun angles and wind speed are above 5 deg and 2 m/s, respectively.

  15. Effects of light polarization and waves slope statistics on the reflectance factor of the sea surface.

    PubMed

    D'Alimonte, Davide; Kajiyama, Tamito

    2016-04-18

    Above-water radiometry depends on estimates of the reflectance factor ρ of the sea surface to compute the in situ water-leaving radiance. The Monte Carlo code for ocean color simulations MOX is used in this study to analyze the effect of different environmental components on ρ values. A first aspect is examining the reflectance factor without and by accounting for the sky-radiance polarization. The influence of the sea-surface statistics at discrete grid points is then considered by presenting a new scheme to define the variance of the waves slope. Results at different sun elevations and sensor orientations indicate that the light polarization effect on ρ simulations reduces from ∼17 to ∼10% when the wind speed increases from 0 to 14m s-1. An opposite tendency characterizes the modeling of the sea-surface slope variance, with ρ differences up to ∼12% at a wind speed of 10m s-1. The joint effect of polarization and the the sea-surface statistics displays a less systematic dependence on the wind speed, with differences in the range ∼13 to ∼18%. The ρ changes due to the light polarization and the variance of the waves slope become more relevant at sky-viewing geometries respectively lower and higher than 40° with respect to the zenith. An overall compensation of positive and negative offsets due to light polarization is finally documented when considering different sun elevations. These results address additional investigations which, by combining the modeling and experimental components of marine optics, better evaluate specific measurement protocols for collecting above-water radiometric data in the field.

  16. Microwave Frequency Polarizers

    NASA Technical Reports Server (NTRS)

    Ha, Vien The; Mirel, Paul; Kogut, Alan J.

    2013-01-01

    This article describes the fabrication and analysis of microwave frequency polarizing grids. The grids are designed to measure polarization from the cosmic microwave background. It is effective in the range of 500 to 1500 micron wavelength. It is cryogenic compatible and highly robust to high load impacts. Each grid is fabricated using an array of different assembly processes which vary in the types of tension mechanisms to the shape and size of the grids. We provide a comprehensive study on the analysis of the grids' wire heights, diameters, and spacing.

  17. Infrared and Passive Microwave Radiometric Sea Surface Temperatures and Their Relationships to Atmospheric Forcing

    NASA Technical Reports Server (NTRS)

    Castro, Sandra L.

    2004-01-01

    The current generation of infrared (IR) and passive microwave (MW) satellite sensors provides highly complementary information for monitoring sea surface temperature (SST). On the one hand, infrared sensors provide high resolution and high accuracy but are obscured by clouds. Microwave sensors on the other hand, provide coverage through non-precipitating clouds but have coarser resolution and generally poorer accuracy. Assuming that the satellite SST measurements do not have spatially variable biases, they can be blended combining the merits of both SST products. These factors have motivated recent work in blending the MW and IR data in an attempt to produce high-accuracy SST products with improved coverage in regions with persistent clouds. The primary sources of retrieval uncertainty are, however, different for the two sensors. The main uncertainty in the MW retrievals lies in the effects of wind-induced surface roughness and foam on emissivity, whereas the IR retrievals are more sensitive to the atmospheric water vapor and aerosol content. Average nighttime differences between the products for the month periods of January 1999 and June 2000 are shown. These maps show complex spatial and temporal differences as indicated by the strong spatially coherent features in the product differences and the changes between seasons. Clearly such differences need to be understood and accounted for if the products are to be combined. The overall goals of this project are threefold: (1) To understand the sources of uncertainty in the IR and MW SST retrievals and to characterize the errors affecting the two types of retrieval as a fiction of atmospheric forcing; (2) To demonstrate how representative the temperature difference between the two satellite products is of Delta T; (3) To apply bias adjustments and to device a comprehensive treatment of the behavior of the temperature difference across the oceanic skin layer to determine the best method for blending thermal infrared

  18. Detection and Characterization of Deep Water Wave Breaking Using Moderate Incidence Angle Microwave Backscatter from the Sea Surface

    DTIC Science & Technology

    1990-06-01

    with the detected events. (A discussion of the distribution of Fmax follows in the next section.) These plots confirm that very few non-breaking waves ...8217 and 0 Oceanographic Engineering 1930 DOCTORAL DISSERTATION Detection and Characterization of Deep Water Wave Breaking Using Moderate Incidence...Characterization of Deep Water Wave Breaking Using Moderate Incidence Angle Microwave Backscatter from the Sea Surface by -- Andrew Thomas Jessup ,. D, Woods

  19. Polarization Imaging over Sea Surface - A Method for Measurements of Stokes Components Angular Distribution

    NASA Astrophysics Data System (ADS)

    Freda, W.; Piskozub, J.; Toczek, H.

    2015-12-01

    This article describes a method for determining the angular distribution of light polarization over a roughened surface of the sea. Our method relies on measurements of the Stokes vector elements using a polarization imaging camera that operates using the Division of Focal Plane (DoFP) method. It uses special monochrome CCD array in which the neighbouring cells, instead of recording different colours (red green and blue), are equipped with micropolarizers of four directions (0, 45, 90 and 135 degrees). We combined the camera with a fish-eye lens of Field of View (FoV) > 180 deg. Such a large FoV allowed us to crop out the fragment of the frame along the circular horizon, showing a view covering all directions of the hemisphere. Because of complicated optical design of the fish-eye lens (light refraction on surfaces of parts of the lens) connected to the sensor we checked the accuracy of the measurement system. A method to determine the accuracy of measured polarization is based on comparison of the experimentally obtained rotation matrix with its theoretical form. Such a comparison showed that the maximum error of Stokes vector elements depended on zenith angle and reached as much as 24% for light coming from just above the horizon, but decreased rapidly with decreasing zenith angle to the value of 12% for the angles 10° off the edge of FoV. Moreover we present the preliminary results prepared over rough sea surface. These results include total intensity of light, Degree of Linear Polarization (DoLP) and their standard deviations. The results have been averaged over one thousand frames of a movie. These results indicate that the maximum polarization is observed near the reflection of the sun, and the signal coming from below the surface may be observed at zenith angles far from the vertical direction.

  20. Sea Surface Salinity and Wind Retrieval Algorithm Using Combined Passive-Active L-Band Microwave Data

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2011-01-01

    Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.

  1. AQUARIUS: A Passive/Active Microwave Sensor to Monitor Sea Surface Salinity Globally from Space

    NASA Technical Reports Server (NTRS)

    LeVine, David; Lagerloef, Gary S. E.; Colomb, F. Raul; Chao, Yi

    2004-01-01

    Salinity is important for understanding ocean dynamics, energy exchange with the atmosphere and the global water cycle. Existing data is limited and much of the ocean has never even been sampled. Sea surface salinity can be measured remotely by satellite and a three year mission for this purpose called AquariudSAC-D has recently been selected by NASA's Earth System Science Pathfinder (ESSP) program. The objective is to map the salinity field globally with a spatial resolution of 100 km and a monthly average accuracy of 0.2 psu. The mission, scheduled for launch in 2008, is a partnership of the United States National Aeronautics and Space Agency (NASA) and the Argentine Comision National de Actividades Epaciales (CONAE).

  2. Microwave emission from polar firn

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Choudhury, B. J.

    1978-01-01

    The microwave emission from a half-space medium, characterized by coordinate dependent scattering and absorbing centers, was calculated by numerically solving the radiative transfer equation by the method of invariant imbedding. Rayleigh scattering phase functions and scattering induced polarization of the radiation were included in the calculation. Using the scattering and extinction data of polar firn the brightness temperature was calculated for the 1.55 cm wavelength. This study was the first quantitative comparison of the results of numerical calculation using the actual measured information of crystal size with the observed data.

  3. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  4. The effect of monomolecular surface films on the microwave brightness temperature of the sea surface

    NASA Technical Reports Server (NTRS)

    Alpers, W.; Blume, H.-J. C.; Garrett, W. D.; Huehnerfuss, H.

    1982-01-01

    It is pointed out that monomolecular surface films of biological origin are often encountered on the ocean surface, especially in coastal regions. The thicknesses of the monomolecular films are of the order of 3 x 10 to the -9th m. Huehnerfuss et al. (1978, 1981) have shown that monomolecular surface films damp surface waves quite strongly in the centimeter to decimeter wavelength regime. Other effects caused by films are related to the reduction of the gas exchange at the air-sea interface and the decrease of the wind stress. The present investigation is concerned with experiments which reveal an unexpectedly large response of the microwave brightness temperature to a monomolecular oleyl alcohol slick at 1.43 GHz. Brightness temperature is a function of the complex dielectric constant of thy upper layer of the ocean. During six overflights over an ocean area covered with an artificial monomolecular alcohol film, a large decrease of the brightness temperature at the L-band was measured, while at the S-band almost no decrease was observed.

  5. Deriving Sea Surface Salinity and Density Variations from Satellite and Aircraft Microwave Radiometer Measurements: Application to Coastal Plumes Using STARRS

    DTIC Science & Technology

    2007-11-01

    radiation, both atmospheric and extraterrestrial (galactic, Scanner (STARRS), sea surface salinity (SSS), Soil Moisture and cosmic background, and solar), as... signals , at a represen- Remote Scanner (STARRS) of the Naval Research Laboratory tative incidence angle of 22*, that were chosen to coincide with (NRL...1000 kg -m - 3, e.g., 10 at corresponds to 1010 kg. m 3 ) is signals , the brightness temperatures for a given Ts and S are computed as a function of

  6. Deriving Sea Surface Salinity and Density Variations From Satellite and Aircraft Microwave Radiometer Measurements: Application to Coastal Plumes Using STARRS

    DTIC Science & Technology

    2008-03-01

    both atmospheric and extraterrestrial (galactic, Scanner (STARRS), sea surface salinity (SSS), Soil Moisture and cosmic background, and solar), as... signals , at a represen- Remote Scanner (STARRS) of the Naval Research Laboratory tative incidence angle of 220, that were chosen to coincide with (NRL) (see...kg . m- 3, e.g., 10 at corresponds to 1010 kg m I3) is signals , the brightness temperatures for a given Ts and S are computed as a function of

  7. Statistical characteristics of polar lows over the Nordic Seas based on satellite passive microwave data

    NASA Astrophysics Data System (ADS)

    Smirnova, J. E.; Zabolotskikh, E. V.; Bobylev, L. P.; Chapron, B.

    2016-12-01

    In this study polar lows over the Nordic Seas for the period of 1995-2008 have been detected and studied using the Special Sensor Microwave Imager (SSM/I) data. A new methodology for polar low detection and monitoring based on the analysis of the total atmospheric water vapor content (WVC) fields retrieved from SSM/I was used. Lifetimes, diameters, translation speeds, distances traveled, and intensities were estimated for the detected polar lows using SSM/I WVC, sea surface wind speed fields and infrared imagery. Over the Norwegian and Barents Seas, the polar low activity was found to be almost equal. A positive tendency in the total number of polar lows for the time period of 1995-2008 was detected.

  8. Cosmic Microwave Background Polarization and Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2011-01-01

    Measurements of the cosmic microwave background (CMB) offer a means to explore the universe at a very early epoch. Specifically, if the universe went through a brief period of exponential expansion called inflation as current data suggest, gravitational waves from this period would polarize the CMB in a specific pattern. At GSFC, we are currently working towards two experiments that work in concert to measure this polarization pattern in search of evidence for inflation. The Cosmology Large Angular Scale Surveyor (CLASS) will measure the polarization at frequencies between 40 and 150 GHz from the Atacama Desert in Chile. The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne experiment that will make similar measurements at frequencies between 200 and 600 GHz.

  9. The Sun as a Source of Error for Sea Surface Salinity Retrieval by Means of Passive Microwave Remote Sensing at L-band

    NASA Astrophysics Data System (ADS)

    Dinnat, E. P.; de Matthaeis, P.; Le Vine, D. M.

    2006-12-01

    The Aquarius/SAC-D mission is dedicated to the remote sensing of Sea Surface Salinity(SSS) and is to be launched in 2009 by NASA. A three-beam L-band (1.41 GHz) radiometer is the core instrument for retrieving SSS. The required accuracy on the radiometric measurements for retrieving SSS within 0.2 psu is 0.1 Kelvin (K), with an ocean brightness temperature being of the order of 100 K. One potential source of noise is the Sun, because of its very large brightness temperature at this frequency, on the order of 150,000 K. Its radiation affects the measurements directly through the antenna sidelobes, and after reflection at the ocean surface. The latter influence is being minimized by adopting an orbit with 6 AM/PM equator passing times and by orienting the three antenna beams across the satellite track towards the dark side of the Earth surface. However, as the 98 degrees polar orbit is not always aligned with the day/night terminator, the satellite ground track will be on the illuminated side of the Earth for half of the time. Since the satellite altitude is relatively low (~660 km), beams pointing at the angles selected for Aquarius, between 26 and 40 degrees, will not always be in the dark side due to their limited distance from the satellite ground track. In fact, because the sea surface roughness causes scattering even from non-specular directions, radiation from the Sun will enter the antenna beams approximately one fourth of the time. The different contributions of the Sun to the antenna temperature and their potential influence on the SSS retrieval as a function of time of the year and latitude are investigated. Aquarius orbit simulations are used to calculate the Sun position with respect to the antenna during one year. In addition, the Sun specular image position is identified on the Earth surface, and the bistatic angles of the illuminated part of the antenna field of view are computed. A two-scale and a Kirchhoff electromagnetic model for the scattering

  10. The Cosmic Microwave Background and its Polarization

    NASA Astrophysics Data System (ADS)

    Wollack, Edward

    2017-01-01

    The subtle spatial variations in the cosmic microwave background (CMB) radiation provide a unique astrophysical probe of the early Universe. Characterization of this relic radiation and its polarization have the power to reveal and constrain the properties of light astroparticle species, long wave gravitational radiation, and intervening mass concentrations. Recent advances in theory, observation, and instrumentation have set the stage to experimentally confront the inflationary paradigm via precision polarimetric surveys of the CMB. Current and proposed future observational efforts from the ground, balloon, and spaceborne platforms will be briefly surveyed in this presentation. Recent community activities by the Inflation Probe Science Interest Group (IPSIG) will also be presented.

  11. Cosmological spatial curvature probed by microwave polarization

    SciTech Connect

    Matzner, R.A.; Tolman, B.W.

    1982-11-15

    If there is a large-scale anisotropy in the expansion of the universe, the microwave background radiation is expected to be linearly polarized. This communication shows that spatial curvature is capable of rotating the polarization of the microwaves relative to its direction at last scattering, which is directly correlated with the expansion anisotropy (and so also the observed intensity anisotropy). In Friedmann-Robertson-Walker models of the universe with additional small expansion anisotropy, the observed rotation relative to the intensity anisotropy would be appreciable and constant over the celestial sphere in the closed (type IX) model, but in the flat and open models, it must either vanish (types I and V) or vary ina complicated way over the celestial sphere (type VII/sub h/). These facts suggest a clear observational test of the closure of the universe. Also, an ambiguity inherent in the homogeneity of the universe does not allow prediction of the direction of rotation; thus homogeneous universes possess a property which might be called ''handedness.''

  12. Characterization of sun and sky glint from wind ruffled sea surfaces for improved estimation of polarized remote sensing reflectance

    NASA Astrophysics Data System (ADS)

    Foster, Robert; Ibrahim, Amir; Gilerson, Alex; El-Habashi, Ahmed; Carrizo, Carlos; Ahmed, Sam

    2015-09-01

    During two cruises in 2014, the polarized radiance of the ocean and the sky were continuously acquired using a HyperSAS-POL system. The system consists of seven hyperspectral radiometric sensors, three of which (one unpolarized and two polarized) look at the water and similarly three at the sky. The system autonomously tracks the Sun position and the heading of the research vessel to which it is attached in order to maintain a fixed relative azimuth angle with respect to the Sun (i.e. 90°) and therefore avoid the specular reflection of the sunlight. For the duration of both cruises, (NASA Ship Aircraft Bio-Optical Research (SABOR), and NOAA VIIRS Validation/Calibration), in situ inherent optical properties (IOPs) were continuously acquired using a set of instrument packages modified for underway measurement, and hyperspectral radiometric measurements were taken manually at all stations. During SABOR, an underwater polarimeter was deployed when conditions permitted. All measurements were combined in an effort to first develop a glint (sky + Sun) correction scheme for the upwelling polarized signal from a wind driven ocean surface and compare with one assuming that the ocean surface is flat.

  13. Impact of sea surface temperature on satellite retrieval of sea surface salinity

    NASA Astrophysics Data System (ADS)

    Jin, Xuchen; Zhu, Qiankun; He, Xianqiang; Chen, Peng; Wang, Difeng; Hao, Zengzhou; Huang, Haiqing

    2016-10-01

    Currently, global sea surface salinity (SSS) can be retrieved by the satellite microwave radiometer onboard the satellite, such as the Soil Moisture and Ocean Salinity(SMOS) and the Aqurius. SMOS is an Earth Explorer Opportunity Mission from the European Space Agency(ESA). It was launched at a sun-synchronous orbit in 2009 and one of the payloads is called MIRAS(Microwave Imaging Radiometer using Aperture Synthesis), which is the first interferometric microwave radiometer designed for observing SSS at L-band(1.41 GHz).The foundation of the salinity retrieval by microwave radiometer is that the sea surface radiance at L-band has the most suitable sensitivity with the variation of the salinity. It is well known that the sensitivity of brightness temperatures(TB) to SSS depends on the sea surface temperature (SST), but the quantitative impact of the SST on the satellite retrieval of the SSS is still poorly known. In this study, we investigate the impact of the SST on the accuracy of salinity retrieval from the SMOS. First of all, The dielectric constant model proposed by Klein and Swift has been used to estimate the vertically and horizontally polarized brightness temperatures(TV and TH) of a smooth sea water surface at L-band and derive the derivatives of TV and TH as a function of SSS to show the relative sensitivity at 45° incident angle. Then, we use the GAM(generalized additive model) method to evaluate the association between the satellite-measured brightness temperature and in-situ SSS at different SST. Moreover, the satellite-derived SSS from the SMOS is validated using the ARGO data to assess the RMSE(root mean squared error). We compare the SMOS SSS and ARGO SSS over two regions of Pacific ocean far from land and ice under different SST. The RMSE of retrieved SSS at different SST have been estimated. Our results showed that SST is one of the most significant factors affecting the accuracy of SSS retrieval. The satellite-measured brightness temperature has a

  14. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene.

    PubMed

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D'Orazio, Antonella; Bruno, Giovanni

    2015-11-25

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices.

  15. Optically Transparent Microwave Polarizer Based On Quasi-Metallic Graphene

    PubMed Central

    Grande, Marco; Bianco, Giuseppe Valerio; Vincenti, Maria Antonietta; de Ceglia, Domenico; Capezzuto, Pio; Scalora, Michael; D’Orazio, Antonella; Bruno, Giovanni

    2015-01-01

    In this paper, we report on the engineering and the realization of optically transparent graphene-based microwave devices using Chemical Vapour Deposition (CVD) graphene whose sheet resistance may be tailored down to values below 30 Ω/sq. In particular, we show that the process was successfully used to realize and characterize a simple, optically transparent graphene-based wire-grid polarizer at microwave frequencies (X band). The availability of graphene operating in a quasi-metallic region may allow the integration of graphene layers in several microwave components, thus leading to the realization of fully transparent (and flexible) microwave devices. PMID:26603112

  16. Microwave frequency modulation for improving polarization transfer in DNP experiments

    NASA Astrophysics Data System (ADS)

    Guy, Mallory; Ramanathan, Chandrasekhar

    Dynamic nuclear polarization (DNP) is a driven process that transfers the inherently high electron polarization to surrounding nuclear spins via microwave irradiation at or near the electron Larmor frequency. In a typical DNP experiment, the amplitude and frequency of the applied microwaves are constant. However, by adding time dependence in the form of frequency modulation, the electron excitation bandwidth is increased, thereby increasing the number of electron spins active in the polarization transfer process and improving overall efficiency. Both triangular and sinusoidal modulation show a 3 fold improvement over monochromatic irradiation. In the present study, we compare the nuclear spin polarization after DNP experiments with no modulation of the applied microwaves, triangular and sinusoidal modulation, and modulation schemes derived from the sample's ESR spectrum. We characterize the polarization as a function of the modulation amplitude and frequency and compare the optimal results from each modulation scheme. Working at a field of 3.34 T and at a temperature of 4 K, we show that by using a modulation scheme tailored to the electronic environment of the sample, polarization transfer is improved over other modulation schemes. Small-scale simulations of the spin system are developed to gain further insight into the dynamics of this driven open system. This understanding could enable the design of modulation schemes to achieve even higher polarization transfer efficiencies. With support from NSF (CHE-1410504) and by NIH (U19-A1091173).

  17. Polarized cosmic microwave background map recovery with sparse component separation

    NASA Astrophysics Data System (ADS)

    Bobin, J.; Sureau, F.; Starck, J.-L.

    2015-11-01

    The polarization modes of the cosmological microwave background are an invaluable source of information for cosmology and a unique window to probe the energy scale of inflation. Extracting this information from microwave surveys requires distinguishing between foreground emissions and the cosmological signal, which means solving a component separation problem. Component separation techniques have been widely studied for the recovery of cosmic microwave background (CMB) temperature anisotropies, but very rarely for the polarization modes. In this case, most component separation techniques make use of second-order statistics to distinguish between the various components. More recent methods, which instead emphasize the sparsity of the components in the wavelet domain, have been shown to provide low-foreground, full-sky estimates of the CMB temperature anisotropies. Building on sparsity, we here introduce a new component separation technique dubbed the polarized generalized morphological component analysis (PolGMCA), which refines previous work to specifically work on the estimation of the polarized CMB maps: i) it benefits from a recently introduced sparsity-based mechanism to cope with partially correlated components; ii) it builds upon estimator aggregation techniques to further yield a better noise contamination/non-Gaussian foreground residual trade-off. The PolGMCA algorithm is evaluated on simulations of full-sky polarized microwave sky simulations using the Planck Sky Model (PSM). The simulations show that the proposed method achieves a precise recovery of the CMB map in polarization with low-noise and foreground contamination residuals. It provides improvements over standard methods, especially on the Galactic center, where estimating the CMB is challenging.

  18. Dipole modulation of cosmic microwave background temperature and polarization

    SciTech Connect

    Ghosh, Shamik; Kothari, Rahul; Jain, Pankaj; Rath, Pranati K. E-mail: rahulko@iitk.ac.in E-mail: pranati@iopb.res.in

    2016-01-01

    We propose a dipole modulation model for the Cosmic Microwave Background Radiation (CMBR) polarization field. We show that the model leads to correlations between l and l+1 multipoles, exactly as in the case of temperature. We obtain results for the case of TE, EE and BB correlations. An anisotropic or inhomogeneous model of primordial power spectrum which leads to such correlations in temperature field also predicts similar correlations in CMBR polarization. We analyze the CMBR temperature and polarization data in order to extract the signal of these correlation between l and l+1 multipoles. Our results for the case of temperature using the latest PLANCK data agree with those obtained by an earlier analysis. A detailed study of the correlation in the polarization data is not possible at present. Hence we restrict ourselves to a preliminary investigation in this case.

  19. Cosmic microwave background polarization signals from tangled magnetic fields.

    PubMed

    Seshadri, T R; Subramanian, K

    2001-09-03

    Tangled, primordial cosmic magnetic fields create small rotational velocity perturbations on the last scattering surface of the cosmic microwave background radiation. For fields which redshift to a present value of B0 = 3 x 10(-9) G, these vector modes are shown to generate polarization anisotropies of order 0.1-4 microK on small angular scales (500polarization, which could help in their detection.

  20. Airborne antenna polarization study for the microwave landing system

    NASA Technical Reports Server (NTRS)

    Gilreath, M. C.

    1976-01-01

    The feasibility of the microwave landing system (MLS) airborne antenna pattern coverage requirements are investigated for a large commercial aircraft using a single omnidirectional antenna. Omnidirectional antennas having vertical and horizontal polarizations were evaluated at several different station locations on a one-eleventh scale model Boeing 737 aircraft. The results obtained during this experimental program are presented which include principal plane antenna patterns and complete volumetric coverage plots.

  1. Effects of polarization-charge shielding in microwave heating

    SciTech Connect

    Lin, M. S.; Lin, S. M.; Chiang, W. Y.; Barnett, L. R.; Chu, K. R.

    2015-08-15

    Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread.

  2. Doppler shifts of radar return from the sea surface

    NASA Astrophysics Data System (ADS)

    Ermakov, S. A.; Kapustin, I. A.; Molkov, A. A.; Sergievskaya, I. A.; Shomina, O. V.

    2016-10-01

    Investigation of the Doppler shift of radar return from the sea surface is very important for better understanding of capabilities of exploitation of microwave radar for measuring velocities of marine currents. Here new field experiments carried out from a Platform on the Black Sea with a coherent X-band scatterometer, and a Doppler multifrequency (X- /C-/S-band) dual-polarized radar recently designed at IAP RAS are discussed. It is shown that the radar return contains both Bragg (polarized) and non polarized scattering components, presumably giving different contributions to radar Doppler shifts. Radar Doppler shifts were estimated using two different definitions as a) a frequency of the "centre of gravity" of an instantaneous radar return spectrum (ASIS) averaged over periods of dominant wind waves and b) the "centre of gravity" of the averaged over dominant wave periods spectrum (SAS). The ASIS and SAS values for both VV and HH-polarizations are shown to be different due to effects of radar backscatter modulation by dominant (long) wind waves. The radar Modulation Transfer Function (MTF) has been analyzed from experimental data and difference between SAS- and ASIS-values has been satisfactory explained using the measured MTF-values. It is obtained that experimental values of ASIS can be satisfactory described by the Bragg model despite the significant contribution of NP component to the radar backscatter. A physical explanation of the effect is given.

  3. Forward Monte Carlo Computations of Polarized Microwave Radiation

    NASA Technical Reports Server (NTRS)

    Battaglia, A.; Kummerow, C.

    2000-01-01

    Microwave radiative transfer computations continue to acquire greater importance as the emphasis in remote sensing shifts towards the understanding of microphysical properties of clouds and with these to better understand the non linear relation between rainfall rates and satellite-observed radiance. A first step toward realistic radiative simulations has been the introduction of techniques capable of treating 3-dimensional geometry being generated by ever more sophisticated cloud resolving models. To date, a series of numerical codes have been developed to treat spherical and randomly oriented axisymmetric particles. Backward and backward-forward Monte Carlo methods are, indeed, efficient in this field. These methods, however, cannot deal properly with oriented particles, which seem to play an important role in polarization signatures over stratiform precipitation. Moreover, beyond the polarization channel, the next generation of fully polarimetric radiometers challenges us to better understand the behavior of the last two Stokes parameters as well. In order to solve the vector radiative transfer equation, one-dimensional numerical models have been developed, These codes, unfortunately, consider the atmosphere as horizontally homogeneous with horizontally infinite plane parallel layers. The next development step for microwave radiative transfer codes must be fully polarized 3-D methods. Recently a 3-D polarized radiative transfer model based on the discrete ordinate method was presented. A forward MC code was developed that treats oriented nonspherical hydrometeors, but only for plane-parallel situations.

  4. The Cosmic Microwave Background Radiation and its Polarization

    NASA Astrophysics Data System (ADS)

    Wollack, Edward

    2016-03-01

    The cosmic microwave background (CMB) radiation and its faint polarization have provided a unique means to constrain the physical state of the early Universe. Continued advances in instrumentation, observation, and analysis have revealed polarized radiation signatures associated with gravitational lensing and have heightened the prospects for using precision polarimetry to experimentally confront the inflationary paradigm. Characterization of this relic radiation field has the power to constrain or reveal the detailed properties of astroparticle species and long wave gravitational radiation. On going and planned CMB polarization efforts from the ground, balloon, and space borne platforms will be briefly surveyed. Recent community activities by the Inflation Probe Science Interest Group (IPSIG) will also be summarized. NASA PCOS mini-symposium (invited IPSIG talk).

  5. Microwave-mediated magneto-optical trap for polar molecules

    NASA Astrophysics Data System (ADS)

    Dizhou, Xie; Wenhao, Bu; Bo, Yan

    2016-05-01

    Realizing a molecular magneto-optical trap has been a dream for cold molecular physicists for a long time. However, due to the complex energy levels and the small effective Lande g-factor of the excited states, the traditional magneto-optical trap (MOT) scheme does not work very well for polar molecules. One way to overcome this problem is the switching MOT, which requires very fast switching of both the magnetic field and the laser polarizations. Switching laser polarizations is relatively easy, but fast switching of the magnetic field is experimentally challenging. Here we propose an alternative approach, the microwave-mediated MOT, which requires a slight change of the current experimental setup to solve the problem. We calculate the MOT force and compare it with the traditional MOT and the switching MOT scheme. The results show that we can operate a good MOT with this simple setup. Project supported by the Fundamental Research Funds for the Central Universities of China.

  6. Large-scale polarization of the microwave background and foreground

    NASA Astrophysics Data System (ADS)

    de Oliveira-Costa, Angélica; Tegmark, Max; O'dell, Christopher; Keating, Brian; Timbie, Peter; Efstathiou, George; Smoot, George

    2003-10-01

    The DASI discovery of cosmic microwave background (CMB) polarization has opened a new chapter in cosmology. Most of the useful information about inflationary gravitational waves and reionization is on large angular scales where galactic foreground contamination is the worst, so a key challenge is to model, quantify, and remove polarized foregrounds. We use the POLAR experiment, COBE/DMR and radio surveys to provide the strongest limits to date on the TE cross-power spectrum of the CMB on large angular scales and to quantify the polarized synchrotron radiation, which is likely to be the most challenging polarized contaminant for the WMAP satellite. We find that the synchrotron E and B contributions are equal to within 10% from 408 820 MHz with a hint of E domination at higher frequencies. We quantify Faraday rotation and depolarization effects in the two-dimensional (l,ν) plane and show that they cause the synchrotron polarization percentage to drop both towards lower frequencies and towards lower multipoles.

  7. Large-scale polarization of the microwave background andforeground

    SciTech Connect

    de Oliveira-Costa, A.; Tegmark, M.; O'Dell, C.; Keating,B.; Timbie, P.; Efstathiou, G.; Smoot, G.

    2002-12-22

    The DASI discovery of cosmic microwave background (CMB) polarization has opened a new chapter in cosmology. Most of the useful information about inflationary gravitational waves and reionization is on large angular scales where galactic foreground contamination is the worst, so a key challenge is to model, quantify, and remove polarized foregrounds. We use the POLAR experiment, COBE/DMR and radio surveys to provide the strongest limits to date on the TE cross-power spectrum of the CMB on large angular scales and to quantify the polarized synchrotron radiation, which is likely to be the most challenging polarized contaminant for the WMAP satellite. We find that the synchrotron E and B contributions are equal to within 10 percent from 408-820 MHz with a hint of E domination at higher frequencies. We quantify Faraday rotation and depolarization effects in the two-dimensional ([script l],nu) plane and show that they cause the synchrotron polarization percentage to drop both towards lower frequencies and towards lower multipoles.

  8. Searching for Faraday rotation in cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Ruiz-Granados, B.; Battaner, E.; Florido, E.

    2016-08-01

    We use the Wilkinson Microwave Anisotropy Probe (WMAP) 9th-year foreground reduced data at 33, 41 and 61 GHz to derive a Faraday rotation at map and at angular power spectrum levels taking into account their observational errors. A processing mask provided by WMAP is used to avoid contamination from the disc of our Galaxy and local spurs. We have found a Faraday rotation component at both, map and power spectrum levels. The lack of correlation of the Faraday rotation with Galactic Faraday rotation, synchrotron and dust polarization from our Galaxy or with cosmic microwave background anisotropies or lensing suggests that it could be originated at reionization (ℓ ≲ 12). Even if the detected Faraday rotation signal is weak, the present study could contribute to establish magnetic fields strengths of B0 ˜ 10-8 G at reionization.

  9. Impact of polarization on the intrinsic cosmic microwave background bispectrum

    NASA Astrophysics Data System (ADS)

    Pettinari, Guido W.; Fidler, Christian; Crittenden, Robert; Koyama, Kazuya; Lewis, Antony; Wands, David

    2014-11-01

    We compute the cosmic microwave background (CMB) bispectrum induced by the evolution of the primordial density perturbations, including for the first time both temperature and polarization using a second-order Boltzmann code. We show that including polarization can increase the signal-to-noise by a factor 4 with respect to temperature alone. We find the expected signal-to-noise for this intrinsic bispectrum of S /N =3.8 ,2.9 ,1.6 and 0.5 for an ideal experiment with an angular resolution of ℓmax=3000 , the proposed CMB surveys PRISM and COrE, and Planck's polarized data, respectively; the bulk of this signal comes from E -mode polarization and from squeezed configurations. We discuss how CMB lensing is expected to reduce these estimates as it suppresses the bispectrum for squeezed configurations and contributes to the noise in the estimator. We find that the presence of the intrinsic bispectrum will bias a measurement of primordial non-Gaussianity of local type by fNLintr=0.66 for an ideal experiment with ℓmax=3000 . Finally, we verify the robustness of our results by recovering the analytic approximation for the squeezed-limit bispectrum in the general polarized case.

  10. Detection of polarization in the cosmic microwave background using DASI

    NASA Astrophysics Data System (ADS)

    Kovac, John M.

    2004-06-01

    The past several years have seen the emergence of a new standard cosmological model in which small temperature differences in the cosmic microwave background (CMB) on degree angular scales are understood to arise from acoustic oscillations in the hot plasma of the early universe sourced by primordial adiabatic density fluctuations. In the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the universe. Given knowledge of the temperature angular power spectrum, this theoretical framework yields a prediction for the level of the CMB polarization with essentially no free parameters. A determination of the CMB polarization would therefore provide a critical test of the underlying theoretical framework of this standard model. In this thesis, we report the detection of polarized anisotropy in the Cosmic Microwave Background radiation with the Degree Angular Scale Interferometer (DASI), located at the Amundsen-Scott South Pole research station. Observations in all four Stokes parameters were obtained within two 3°4 FWHM fields separated by one hour in Right Ascension. The fields were selected from the subset of fields observed with DASI in 2000 in which no point sources were detected and are located in regions of low Galactic synchrotron and dust emission. The temperature angular power spectrum is consistent with previous measurements and its measured frequency spectral index is -0.01 (-0.16 to 0.14 at 68% confidence), where zero corresponds to a 2.73 K Planck spectrum. The power spectrum of the detected polarization is consistent with theoretical predictions based on the interpretation of CMB anisotropy as arising from primordial scalar adiabatic fluctuations. Specifically, E-mode polarization is detected at high confidence (4.9σ). Assuming a shape for the power spectrum consistent with previous temperature measurements, the level found for the E- mode polarization

  11. Passive measurement and interpretation of polarized microwave brightness temperatures

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Kunkee, D. B.; Piepmeier, J. R.

    1995-01-01

    The goal of this project is to develop satellite-based observational techniques for measuring both oceanic and atmospheric variables using passive polarimetric radiometry. Polarimetric radiometry offers a potential alternative to radar scatterometry in observing global ocean surface wind direction from satellites. Polarimetric radiometry might also provide a means of detecting cell-top ice in convective storms by virtue of the polarizing properties of oriented ice particles, and thus facilitate estimation of the phase of the storm. The project focuses on the development of polarimetric microwave radiometers using digital cross-correlators for obtaining precise measurements of all four Stokes' parameters. As part of the project a unique four-band polarimetric imaging radiometer, the Polar Scanning Radiometer (PSR), is being designed for use on the NASA DC-8 aircraft. In addition to providing an aircraft-based demonstration of digital correlation technology the PSR will significantly enhance the microwave imaging capability of the existing suite of DC-8 instruments. During the first grant year excellent progress has been made in the following areas: (1) demonstrating digital correlation radiometry, (2) fabricating aircraft-qualified correlators for use in the PSR, and (3) modeling observed SSM/I brightness signatures of ocean wind direction.

  12. Microwave Kinetic Inductance Detector with Selective Polarization Coupling

    NASA Technical Reports Server (NTRS)

    Wollack, Edward; U-yen, Kongpop; Stevenson, Thomas; Brown, Ari; Moseley, Samuel; Hsieh, Wen-Ting

    2013-01-01

    A conventional low-noise detector requires a technique to both absorb incident power and convert it to an electrical signal at cryogenic temperatures. This innovation combines low-noise detector and readout functionality into one device while maintaining high absorption, controlled polarization sensitivity, and broadband detection capability. The resulting far-infrared detectors can be read out with a simple approach, which is compact and minimizes thermal loading. The proposed microwave kinetic inductance detector (MKID) consists of three basic elements. The first is the absorptive section in which the incident power is coupled to a superconducting resonator at far-infrared frequency above its superconducting critical frequency (where superconductor becomes normal conductor). This absorber's shape effectively absorbs signals in the desired polarization state and is resonant at the radio frequency (RF) used for readout of the device. Control over the metal film used in the absorber allows realization of structures with either a 50% broadband or 100% resonance absorptance over a 30% fractional bandwidth. The second element is a microwave resonator - which is realized from the thin metal films used to make the absorber as transmission lines - whose resonance frequency changes due to a variation in its kinetic inductance. The resonator's kinetic inductance is a function of the power absorbed by the device. A low-loss dielectric (mono-crystalline silicon) is used in a parallel-plate transmission line structure to realize the desired superconducting resonators. There is negligible coupling among the adjacent elements used to define the polarization sensitivity of each detector. The final component of the device is a microwave transmission line, which is coupled to the resonator, and allows detection of changes in resonance frequency for each detector in the focal plane array. The spiral shape of the detector's absorber allows incident power with two polarizations to

  13. Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer.

    PubMed

    Pan, Shilong; Zhang, Yamei

    2012-11-01

    A novel microwave photonic phase shifter based on a single-sideband (SSB) polarization modulator (PolM) and a polarizer is proposed and demonstrated. In the SSB-PolM, two SSB intensity-modulated signals with a phase difference of π along two orthogonal polarization directions are generated. With the polarizer to combine the two signals, the phase of the optical microwave signal can be tuned from -180 to 180 deg by simply adjusting the polarization direction of the polarizer, whereas the amplitude keeps unchanged. An experiment is carried out. A full-range tunable phase shift in the frequency range of 11-43 GHz is achieved. The flat power response, power independent operation, and high stability of the proposed microwave photonic phase shifter is also confirmed.

  14. Cosmic microwave background: Polarization and temperature anisotropies from symmetric structures

    NASA Astrophysics Data System (ADS)

    Baccigalupi, Carlo

    1999-06-01

    Perturbations in the cosmic microwave background (CMB) are generated by primordial inhomogeneities. I consider the case of CMB anisotropies from one single ordered perturbation source, or seed, existing well before decoupling between matter and radiation. Such structures could have been left by high energy symmetries breaking in the early universe. I focus on the cases of spherical and cylindrical symmetry of the seed. I give general analytic expressions for the polarization and temperature linear perturbations, factoring out of the Fourier integral the dependence on the photon propagation direction and on the geometric coordinates describing the seed. I show how the CMB perturbations manifestly reflect the symmetries of their seeds. In particular, polarization is uniquely linked to the shape of the source because of its tensorial nature. CMB anisotropies are obtained with a line of sight integration. They are a function of the position and orientation of the seed along the photons path. This treatment highlights the undulatory properties of the CMB. I show with numerical examples how the polarization and temperature perturbations propagate beyond the size of their seeds, reaching the CMB sound horizon at the time considered. Just like the waves from a pebble thrown in a pond, CMB anisotropy from a seed intersecting the last scattering surface appears as a series of temperature and polarization waves surrounding the seed, extending on the scale of the CMB sound horizon at decoupling, roughly 1 deg in the sky. Each wave is characterized by its own value of the CMB perturbation, with the same mean amplitude of the signal coming from the seed interior; as expected for a linear structure with size L<=H-1 and density contrast δ at decoupling, the temperature anisotropy is δT/T~=δ(L/H-1)2, roughly ten times stronger than the polarization. These waves could allow one to distinguish relics from high energy processes of the early universe from pointlike astrophysical

  15. Microwave Radiometric Measurement of Sea Surface Salinity.

    DTIC Science & Technology

    1984-04-01

    potential problems of polution and urban water sup- plies. Although salinity can be measured from a surface vessel, economic consider- ations advocate...Washington, DC 20350 Commander Naval Sea System Commandaa ComAinder ATTN: Mr. C. Smith, NAVSEA 63R* Nval Air Development Center "’-’. "Washington, DC...20362 ATTN: Mr. R. Bollard, Code 2062% .’* Warminster, PA 18974 • .’.Commander CNaval Sea System CommandCoimCander Headquarters Naval Air Systems

  16. Spectral distortions in the cosmic microwave background polarization

    SciTech Connect

    Renaux-Petel, Sébastien; Fidler, Christian; Pitrou, Cyril; Pettinari, Guido W. E-mail: christian.fidler@port.ac.uk E-mail: g.pettinari@sussex.ac.uk

    2014-03-01

    We compute the spectral distortions of the Cosmic Microwave Background (CMB) polarization induced by non-linear effects in the Compton interactions between CMB photons and the flow of intergalactic electrons. This signal is of the y-type and is dominated by contributions arising from the reionized era. We stress that it is not shadowed by the thermal SZ effect which has no equivalent for polarization. We decompose its angular dependence into E- and B-modes, and we calculate the corresponding power spectra, both exactly and using a suitable Limber approximation that allows a simpler numerical evaluation. We find that B-modes are of the same order of magnitude as E-modes. Both spectra are relatively flat, peaking around ℓ = 280, and their overall amplitude is directly related to the optical depth to reionization. Moreover, we find this effect to be one order of magnitude larger than the non-linear kinetic Sunyaev-Zel'dovich effect in galaxy clusters. Finally, we discuss how to improve the detectability of our signal by cross-correlating it with other quantities sourced by the flow of intergalactic electrons.

  17. Microwave remote sensing and radar polarization signatures of natural fields

    NASA Technical Reports Server (NTRS)

    Mo, Tsan

    1989-01-01

    Theoretical models developed for simulation of microwave remote sensing of the Earth surface from airborne/spaceborne sensors are described. Theoretical model calculations were performed and the results were compared with data of field measurements. Data studied included polarimetric images at the frequencies of P band, L band, and C band, acquired with airborne polarimeters over a agricultural field test site. Radar polarization signatures from bare soil surfaces and from tree covered fields were obtained from the data. The models developed in this report include: (1) Small perturbation model of wave scatterings from randomly rough surfaces, (2) Physical optics model, (3) Geometrical optics model, and (4) Electromagnetic wave scattering from dielectric cylinders of finite lengths, which replace the trees and branches in the modeling of tree covered field. Additionally, a three-layer emissivity model for passive sensing of a vegetation covered soil surface is also developed. The effects of surface roughness, soil moisture contents, and tree parameters on the polarization signatures were investigated.

  18. Sea Surface Height 1993 - 2011

    NASA Video Gallery

    This animation depicts year-to-year variability in sea surface height, and chronicles two decades of El Niño and La Niña events. It was created using NASA ocean altimetry data from 1993 to 2011, ...

  19. New constraints on cosmic polarization rotation from B-mode polarization in the cosmic microwave background

    SciTech Connect

    Alighieri, Sperello di Serego; Ni, Wei-Tou; Pan, Wei-Ping E-mail: weitou@gmail.com

    2014-09-01

    SPTpol, POLARBEAR, and BICEP2 have recently measured the cosmic microwave background (CMB) B-mode polarization in various sky regions of several tens of square degrees and obtained BB power spectra in the multipole range 20-3000, detecting the components due to gravitational lensing and to inflationary gravitational waves. We analyze jointly the results of these three experiments and propose modifications to their analyses of the spectra to include in the model, in addition to the gravitational lensing and the inflationary gravitational wave components, and also the effects induced by the cosmic polarization rotation (CPR), if it exists within current upper limits. Although in principle our analysis would also lead to new constraints on CPR, in practice these can only be given on its fluctuations (δα{sup 2}), since constraints on its mean angle are inhibited by the derotation which is applied by current CMB polarization experiments, in order to cope with the insufficient calibration of the polarization angle. The combined data fits from all three experiments (with 29% CPR-SPTpol correlation, depending on the theoretical model) gives the constraint (δα{sup 2}){sup 1/2} < 27.3 mrad (1.°56), with r = 0.194 ± 0.033. These results show that the present data are consistent with no CPR detection and the constraint on CPR fluctuation is about 1.°5. This method of constraining the CPR is new, is complementary to previous tests, which use the radio and optical/UV polarization of radio galaxies and the CMB E-mode polarization, and adds a new constraint for the sky areas observed by SPTpol, POLARBEAR, and BICEP2.

  20. Circularly Polarized Microwave Antenna Element with Very Low Off-Axis Cross-Polarization

    NASA Technical Reports Server (NTRS)

    Greem. David; DuToit, Cornelis

    2013-01-01

    The goal of this work was to improve off-axis cross-polarization performance and ease of assembly of a circularly polarized microwave antenna element. To ease assembly, the initial design requirement of Hexweb support for the internal circuit part, as well as the radiating disks, was eliminated. There is a need for different plating techniques to improve soldering. It was also desirable to change the design to eliminate soldering as well as the need to use the Hexweb support. Thus, a technique was developed to build the feed without using solder, solving the lathing and soldering issue. Internal parts were strengthened by adding curvature to eliminate Hexweb support, and in the process, the new geometries of the internal parts opened the way for improving the off-axis cross-polarization performance as well. The radiating disks curvatures were increased for increased strength, but it was found that this also improved crosspolarization. Optimization of the curvatures leads to very low off-axis cross-polarization. The feed circuit was curved into a cylinder for improved strength, eliminating Hexweb support. An aperture coupling feed mechanism eliminated the need for feed pins to the disks, which would have required soldering. The aperture coupling technique also improves cross-polarization performance by effectively exciting the radiating disks very close to the antenna s central axis of symmetry. Because of the shape of the parts, it allowed for an all-aluminum design bolted together and assembled with no solder needed. The advantage of a solderless design is that the reliability is higher, with no single-point failure (solder), and no need for special plating techniques in order to solder the unit together. The shapes (curved or round) make for a more robust build without extra support materials, as well as improved offaxis cross-polarization.

  1. Wilkinson Microwave Anisotropy Probe (WMAP) First Year Observations: TE Polarization

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Spergel, D. N.; Barnes, C.; Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Limon, M.; Meyer, S. S.; Page, L.; Oegerle, William (Technical Monitor)

    2001-01-01

    The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies 23, 33, 41, 61, and 94 GHz. We detect correlations between the temperature and polarization maps significant at more than 10 standard deviations. The correlations are inconsistent with instrument noise and are significantly larger than the upper limits established for potential systematic errors. The correlations are present in all WAMP frequency bands with similar amplitude from 23 to 94 GHz, and are consistent with a superposition of a CMB signal with a weak foreground. The fitted CMB component is robust against different data combinations and fitting techniques. On small angular scales (theta less than 5 deg), the WMAP data show the temperature-polarization correlation expected from adiabatic perturbations in the temperature power spectrum. The data for l greater than 20 agree well with the signal predicted solely from the temperature power spectra, with no additional free parameters. We detect excess power on large angular scales (theta greater than 10 deg) compared to predictions based on the temperature power spectra alone. The excess power is well described by reionization at redshift 11 is less than z(sub r) is less than 30 at 95% confidence, depending on the ionization history. A model-independent fit to reionization optical depth yields results consistent with the best-fit ACDM model, with best fit value t = 0.17 +/- 0.04 at 68% confidence, including systematic and foreground uncertainties. This value is larger than expected given the detection of a Gunn-Peterson trough in the absorption spectra of distant quasars, and implies that the universe has a complex ionization history: WMAP has detected the signal from an early epoch of reionization.

  2. Sea surface wind and Sea ice in the Barents Sea using microwave sensing data from Meteor-M N1 and GCOM-W1 satellites in January-March 2013

    NASA Astrophysics Data System (ADS)

    Mitnik, L. M.; Mitnik, M. L.; Chernyavsky, G. M.; Cherny, I. V.; Vykochko, A. V.; Pichugin, M. K.; Zabolotskikh, E. V.

    2016-12-01

    Application of satellite passive microwave sensing for the retrieval of key climatic parameters in the Barents Sea is considered. Fields of surface wind, atmosphere water vapor content and cloud liquid water content were found from MTVZA-GY radiometer onboard the Meteor-M N1 satellite and AMSR2 onboard the GCOM-W1 satellite with the use of original algorithms. The fields are in a good agreement with the ancillary remote and in situ measurements, which follows from the analysis of the evolution of the extra tropical and polar cyclones and cold air outbreaks with storm winds leading to intense air-sea interaction, and the formation and drift of sea ice.

  3. Satellite microwave radiometry of sea ice of polar regions: a review

    NASA Astrophysics Data System (ADS)

    Tikhonov, V. V.; Raev, M. D.; Sharkov, E. A.; Boyarskii, D. A.; Repina, I. A.; Komarova, N. Yu.

    2016-12-01

    This is a review of methods of passive microwave satellite monitoring of the sea-ice cover in polar regions. We briefly describe the microwave radiometers launched into the Earth's orbit and provide data used in studies of Arctic and Antarctic sea ice. We give a detailed description of currently used algorithms for determining the sea-ice concentration and cover in polar regions according to satellite microwave radiometry. The methods for constructing these algorithms and their related drawbacks are considered. The final section of this paper briefly analyzes the studies that compare current algorithms with each other, with radar data, infrared data, and data of visual ship observations.

  4. SPOrt: an experiment aimed at measuring the large scale cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Carretti, Ettore; Cortiglioni, Stefano; Bernardi, Gianni; Cecchini, Stefano; Macculi, Claudio; Sbarra, Carla; Monari, Jader; Orfei, Alessandro; Poloni, Marco; Poppi, Sergio; Boella, Giuliano; Bonometto, Silvio; Gervasi, Massimo; Sironi, Giorgio; Zannoni, Mario; Tucci, Marco; Baralis, Massino; Peverini, Oscar A.; Tascone, Riccardo; Virone, Giuseppe; Fabbri, Roberto; Nicastro, Luciano; Ng, Kin-Wang; Razin, V. A.; Vinyajkin, Evgenij N.; Sazhin, Mikhail V.; Strukov, Igor A.

    2003-02-01

    SPOrt (Sky Polarization Observatory) is a space experiment to be flown on the International Space Station during Early Utilization Phase aimed at measuring the microwave polarized emission with FWHM = 7 deg, in the frequency range 22-90 GHz. The Galactic polarized emission can be observed at the lower frequencies and the polarization of Cosmic Microwave Background (CMB) at 90 GHz, where contaminants are expected to be less important. The extremely low level of the CMB Polarization signal calls for intrinsically stable radiometers. The SPOrt instrument is expressly devoted to CMB polarization measurements and the whole design has been optimized for minimizing instrumental polarization effects. In this contribution we present the receiver architecture based on correlation techniques, the analysis showing its intrinsic stability and the custom hardware development carried out to detect such a low signal.

  5. A tunable and wideband microwave photonic phase shifter based on dual-polarization modulator

    NASA Astrophysics Data System (ADS)

    Peng, Zhengxue; Wen, Aijun; Gao, Yongsheng; Tu, Zhaoyang

    2017-01-01

    A microwave photonic phase shifter based on dual-polarization Mach-Zehnder modulator (DPol-MZM) is proposed and experimentally demonstrated in this paper. A polarization multiplexed double sideband (DSB) signal is produced by a DPol-MZM. An optical bandpass filter (OBPF) follows after the DPol-MZM to filter out the optical carrier and one sideband. The polarization multiplexed signal is converted into a linear polarization light by a polarizer (Pol), and then beat at a photodiode (PD) to obtain the phase shifted signal. Experiments are carried out, and a continuous phase shift from -180° to 180° over a wide microwave frequency range of 10-33 GHz can be achieved by changing the polarization state using a polarization controller (PC). We also studied the spurious free dynamic range (SFDR) in the experiments. The features of this proposed phase shifter are large operation bandwidth, full-range 360° phase shift, and simple structure.

  6. Observation of linear-polarization-sensitivity in the microwave-radiation-induced magnetoresistance oscillations

    SciTech Connect

    Mani, R. G.; Ramanayaka, A. N.; Wegscheider, W.

    2013-12-04

    We examine the linear polarization sensitivity of the radiation- induced magneto-resistance oscillations by investigating the effect of rotating in-situ the electric field of linearly polarized microwaves relative to the current, in the GaAs/AlGaAs system. We find that the frequency and the phase of the photo-excited magneto-resistance oscillations are insensitive to the polarization. On the other hand, the amplitude of the resistance oscillations are strongly sensitive to the relative orientation between the microwave antenna and the current-axis in the specimen.

  7. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    PubMed Central

    Ye, Tianyu; Liu, Han-Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-01-01

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. For circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ. PMID:26450679

  8. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    SciTech Connect

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; Wegscheider, W.; Mani, Ramesh G.

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response is hardly sensitive to θ.

  9. MODIS Global Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Every day the Moderate-resolution Imaging Spectroradiometer (MODIS) measures sea surface temperature over the entire globe with high accuracy. This false-color image shows a one-month composite for May 2001. Red and yellow indicates warmer temperatures, green is an intermediate value, while blues and then purples are progressively colder values. The new MODIS sea surface temperature product will be particularly useful in studies of temperature anomalies, such as El Nino, as well as research into how air-sea interactions drive changes in weather and climate patterns. In the high resolution image, notice the amazing detail in some of the regional current patterns. For instance, notice the cold water currents that move from Antarctica northward along South America's west coast. These cold, deep waters upwell along an equatorial swath around and to the west of the Galapagos Islands. Note the warm, wide currents of the Gulf Stream moving up the United States' east coast, carrying Caribbean warmth toward Newfoundland and across the Atlantic toward Western Europe. Note the warm tongue of water extending from Africa's east coast to well south of the Cape of Good Hope. MODIS was launched in December 1999 aboard NASA's Terra satellite. For more details on this and other MODIS data products, please see NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Ocean Group, NASA GSFC, and the University of Miami

  10. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.

    PubMed

    Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B

    2015-11-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions.

  11. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization

    PubMed Central

    Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.

    2015-01-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131

  12. Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter.

    PubMed

    Zhang, Yamei; Pan, Shilong

    2013-03-01

    A scheme for the generation of phase-coded microwave signals using an electrically tunable photonic microwave phase shifter is proposed and demonstrated. The photonic phase shifter is based on a single-sideband polarization modulator (PolM), and the tuning of the phase shifter is implemented by a second PolM. By introducing an RF signal to the first PolM and an electrical coding signal to the second PolM, a phase-coded microwave signal with binary phase codes or polyphase codes is achieved. An experiment is performed. The simple and flexible operation, high coding rate, large frequency range, excellent transmission performance, and high stability of the system is confirmed.

  13. Satellite-Derived Sea Surface Temperature: Workshop 1

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.

    1983-01-01

    Satellite measurements of sea surface temperature are now possible using a variety of sensors. The present accuracies of these methods are in the range of 0.5 to 2.0 C. This makes them potentially useful for synoptic studies of ocean currents and for global monitoring of climatological anomalies. To improve confidence in the satellite data, objective evaluations of sensor accuracies are necessary, and the conditions under which these accuracies degrade need to be understood. The Scanning Multichannel Microwave Radiometer (SMMR) on the Nimbus-7 satellite was studied. Sea surface temperatures, derived from November 1979 SMMR data, were compared globally against ship measurements and climatology, using facilities of the JPL Pilot Ocean Data System. Methods for improved data analysis and plans for additional workshops to incorporate data from other sensors were discussed.

  14. Satellite-Derived Sea Surface Temperature: Workshop-2

    NASA Technical Reports Server (NTRS)

    Njoku, E. G.

    1984-01-01

    Global accuracies and error characteristics of presently orbiting satellite sensors are examined. The workshops are intended to lead to a better understanding of present capabilities for sea surface temperature measurement and to improve measurement concepts for the future. Data from the Advanced Very High Resolution Radiometer AVHRR and Scanning Multichannel Microwave Radiometer is emphasized. Some data from the High Resolution Infrared Sounder HIRS and AVHRR are also examined. Comparisons of satellite data with ship and eXpendable BathyThermograph XBT measurement show standard deviations in the range 0.5 to 1.3 C with biases of less than 0.4 C, depending on the sensor, ocean region, and spatial/temporal averaging. The Sea Surface Temperature SST anomaly maps show good agreement in some cases, but a number of sensor related problems are identified.

  15. Propagation of Polarized Cosmic Microwave Background Radiation in an Anisotropic Magnetized Plasma

    SciTech Connect

    Moskaliuk, S. S.

    2010-01-01

    The polarization plane of the cosmic microwave background radiation (CMBR) can be rotated either in a space-time with metric of anisotropic type and in a magnetized plasma or in the presence of a quintessential background with pseudoscalar coupling to electromagnetism. A unified treatment of these three phenomena is presented for cold anisotropic plasma at the pre-recombination epoch. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the cosmic microwave background polarization.

  16. COMPASS: An Upper Limit on Cosmic Microwave Background Polarization at an Angular Scale of 20'

    NASA Astrophysics Data System (ADS)

    Farese, Philip C.; Dall'Oglio, Giorgio; Gundersen, Joshua O.; Keating, Brian G.; Klawikowski, Slade; Knox, Lloyd; Levy, Alan; Lubin, Philip M.; O'Dell, Chris W.; Peel, Alan; Piccirillo, Lucio; Ruhl, John; Timbie, Peter T.

    2004-08-01

    COMPASS is an on-axis 2.6 m telescope coupled to a correlation polarimeter operating at a wavelength of 1 cm. The entire instrument was built specifically for cosmic microwave background (CMB) polarization studies. We report here on observations of 2001 February-April using this system. We set an upper limit on E-mode polarized anisotropies of 1036 μK2 (95% confidence limit) in the l range 93-555.

  17. Influence of Polarity and Activation Energy in Microwave-Assisted Organic Synthesis (MAOS).

    PubMed

    Rodríguez, Antonio M; Prieto, Pilar; de la Hoz, Antonio; Díaz-Ortiz, Ángel; Martín, D Raúl; García, José I

    2015-06-01

    The aim of this work was to determine the parameters that have decisive roles in microwave-assisted reactions and to develop a model, using computational chemistry, to predict a priori the type of reactions that can be improved under microwaves. For this purpose, a computational study was carried out on a variety of reactions, which have been reported to be improved under microwave irradiation. This comprises six types of reactions. The outcomes obtained in this study indicate that the most influential parameters are activation energy, enthalpy, and the polarity of all the species that participate. In addition to this, in most cases, slower reacting systems observe a much greater improvement under microwave irradiation. Furthermore, for these reactions, the presence of a polar component in the reaction (solvent, reagent, susceptor, etc.) is necessary for strong coupling with the electromagnetic radiation. We also quantified that an activation energy of 20-30 kcal mol(-1) and a polarity (μ) between 7-20 D of the species involved in the process is required to obtain significant improvements under microwave irradiation.

  18. Fast polarization changes in mm microwave emission of weak multistructured solar bursts

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Strauss, F. M.; Costa, J. E. R.; Dennis, B. R.

    1982-01-01

    Circular polarization of weak multistructured solar bursts was measured at mm microwaves with unprecedented sensitivity (0.03 sfu rms) and high time resolution (1ms). It was shown that sudden changes occur in the degree of polarization with time scales of 0.04 to 0.3 s. In most cases the degree of polarization attained maximum values before the maximum flux in both mm microwaves and hard X-rays with time scales of 0.04 to 1.0 s. The timing accuracy in determining the degree of polarization was 40 ms. Physical phenomena are discussed invoking one or a combination of various possible causes for the observed effects. The bursts at mm microwaves were weak compared to the contribution of the preexisting active regions, and therefore the changes in magnetoionic propagation conditions for emerging radiation plays an important role in the observed effects. Composite effects due to more than one polarizing mechanism or more than one polarized spots within the antenna beam are discussed.

  19. Photonic generation of versatile frequency-doubled microwave waveforms via a dual-polarization modulator

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Qu, Kun; Lin, Tao

    2017-02-01

    We report a photonic approach to generate frequency-doubled microwave waveforms using an integrated electro-optic dual-polarization modulator driven by a sinusoidal radio frequency (RF) signal. With active bias control, two MZMs of the dual-polarization modulator operate at minimum transmission points, a triangular waveform can be generated by a parameter setting of modulation index. After introducing a broadband 90° microwave phase shifter, a square waveform can be obtained by readjusting the power relationship of harmonics. The proposal is first theoretically analyzed and then validated by simulation. Simulation results show that a 10 GHz triangular and square waveform sequences are successfully generated from a 5 GHz sinusoidal RF drive signal, and the performance of the microwave waveforms are not influenced by the finite extinction ratio of modulator.

  20. Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe three year polarization data: A wavelet analysis

    SciTech Connect

    Cabella, Paolo; Silk, Joseph; Natoli, Paolo

    2007-12-15

    We perform a wavelet analysis of the temperature and polarization maps of the cosmic microwave background (CMB) delivered by the Wilkinson Microwave Anisotropy Probe experiment in search for a parity-violating signal. Such a signal could be seeded by new physics beyond the standard model, for which the Lorentz and CPT symmetries may not hold. Under these circumstances, the linear polarization direction of a CMB photon may get rotated during its cosmological journey, a phenomenon also called cosmological birefringence. Recently, Feng et al. have analyzed a subset of the Wilkinson Microwave Anisotropy Probe and BOOMERanG 2003 angular power spectra of the CMB, deriving a constraint that mildly favors a nonzero rotation. By using wavelet transforms we set a tighter limit on the CMB photon rotation angle {delta}{alpha}=-2.5{+-}3.0 ({delta}{alpha}=-2.5{+-}6.0) at the one (two) {sigma} level, consistent with a null detection.

  1. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber.

    PubMed

    Chiang, W Y; Wu, M H; Wu, K L; Lin, M H; Teng, H H; Tsai, Y F; Ko, C C; Yang, E C; Jiang, J A; Barnett, L R; Chu, K R

    2014-08-01

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  2. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber

    NASA Astrophysics Data System (ADS)

    Chiang, W. Y.; Wu, M. H.; Wu, K. L.; Lin, M. H.; Teng, H. H.; Tsai, Y. F.; Ko, C. C.; Yang, E. C.; Jiang, J. A.; Barnett, L. R.; Chu, K. R.

    2014-08-01

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  3. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber

    SciTech Connect

    Chiang, W. Y.; Wu, M. H.; Wu, K. L.; Lin, M. H.; Teng, H. H.; Barnett, L. R.; Chu, K. R.; Tsai, Y. F.; Ko, C. C.; Yang, E. C.; Jiang, J. A.

    2014-08-15

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  4. Spectral sea surface reflectance of skylight.

    PubMed

    Zhang, Xiaodong; He, Shuangyan; Shabani, Afshin; Zhai, Peng-Wang; Du, Keping

    2017-02-20

    In examining the dependence of the sea surface reflectance of skylight ρs on sky conditions, wind speed, solar zenith angle, and viewing geometry, Mobley [Appl. Opt.38, 7442 (1999).10.1364/AO.38.007442] assumed ρs is independent of wavelength. Lee et al. [Opt. Express18, 26313 (2010).10.1364/OE.18.026313] showed experimentally that ρs does vary spectrally due to the spectral difference of sky radiance coming from different directions, which was ignored in Mobley's study. We simulated ρs from 350 nm to 1000 nm by explicitly accounting for spectral variations of skylight distribution and Fresnel reflectance. Furthermore, we separated sun glint from sky glint because of significant differences in magnitude, spectrum and polarization state between direct sun light and skylight light. The results confirm that spectral variation of ρs(λ) mainly arises from the spectral distribution of skylight and would vary from slightly blueish due to normal dispersion of the refractive index of water, to neutral and then to reddish with increasing wind speeds and decreasing solar zenith angles. Polarization moderately increases sky glint by 8 - 20% at 400 nm but only by 0 - 10% at 1000 nm. Sun glint is inherently reddish and becomes significant (>10% of sky glint) when the sun is at the zenith with moderate winds or when the sea is roughened (wind speeds > 10 m s-1) with solar zenith angles < 20°. We recommend a two-step procedure by first correcting the glint due to direct sun light, which is unpolarized, followed by removing the glint due to diffused and polarized skylight. The simulated ρs(λ) as a function of wind speeds, sun angles and aerosol concentrations for currently recommended sensor-sun geometry, i.e., zenith angle = 40° and azimuthal angle relative to the sun = 45°, is available upon request.

  5. PRISM3 Pliocene Sea surface Temperature Reconstruction

    NASA Astrophysics Data System (ADS)

    Dowsett, H.; Robinson, M.; Foley, K.; Caballero, R.

    2008-12-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project provides a conceptual model and synoptic view of the earth during a considerably warmer than modern (2-3°C warmer global mean annual temperature) interval (mid-Piacenzian Age, Pliocene Epoch; ~3.3 to 3.0 Ma) through reconstruction of sea-surface temperature (SST) and other paleoenvironmental parameters. The PRISM3 SST fields include new equatorial Pacific and subpolar - polar North Atlantic components based upon multiproxy (faunal, alkenone and Mg/Ca) temperature analyses from new sites. These data are presented in 12 interpolated global fields with 2° spatial resolution representing monthly SST estimates. Results show a reduced longitudinal temperature gradient across the equatorial Pacific and extension of warm North Atlantic surface conditions into the eastern regions of the Arctic Ocean near Spitzbergen. These data are part of the PRISM3 paleoenvironmental reconstruction designed in part to provide climate modeling groups with new SST and alternative land cover reconstructions, 3-dimensional deep ocean temperature, topography and sea level. The PRISM3 reconstruction is the primary data source for the new Pliocene Climate Model Intercomparison Project (PlioMIP).

  6. Stratospheric Impact of Varying Sea Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Nielsen, Jon E.; Waugh, Darryn; Pawson, Steven

    2004-01-01

    The Finite-Volume General Circulation Model (FVGCM) has been run in 50 year simulations with the: 1) 1949-1999 Hadley Centre sea surface temperatures (SST), and 2) a fixed annual cycle of SSTs. In this presentation we first show that the 1949-1999 FVGCM simulation produces a very credible stratosphere in comparison to an NCEP/NCAR reanalysis climatology. In particular, the northern hemisphere has numerous major and minor stratospheric warming, while the southern hemisphere has only a few over the 50-year simulation. During the northern hemisphere winter, temperatures are both warmer in the lower stratosphere and the polar vortex is weaker than is found in the mid-winter southern hemisphere. Mean temperature differences in the lower stratosphere are shown to be small (less than 2 K), and planetary wave forcing is found to be very consistent with the climatology. We then will show the differences between our varying SST simulation and the fixed SST simulation in both the dynamics and in two parameterized trace gases (ozone and methane). In general, differences are found to be small, with subtle changes in planetary wave forcing that lead to reduced temperatures in the SH and increased temperatures in the NH.

  7. A Large, Free-Standing Wire Grid for Microwave Variable-delay Polarization Modulation

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    2008-01-01

    One technique for mapping the polarization signature of the cosmic microwave background uses large, polarizing grids in reflection. We present the system requirements, the fabrication, assembly, and alignment procedures, and the test results for the polarizing grid component of a 50 cm clear aperture, Variable-delay Polarization Modulator (VPM). This grid is being built and tested at the Goddard Space Flight Center as part of the Polarimeter for Observing Inflationary Cosmology at the Reionization Epoch (POINCARE). VPMs modulate the polarized component of a radiation source by splitting the incoming beam into two orthogonal polarization components using a free-standing wire grid. The path length difference between these components is varied with a translating mirror, and then they are recombined. This precision instrumentation technique can be used to encode and demodulate the cosmic microwave background's polarization signature. For the demonstration instrument, 64 micrometer diameter tungsten wires are being assembled into a 200 pm pitch, free-standing wire grid with a 50 cm clear aperture, and an expected overall flatness better than 30 micrometers. A rectangular, aluminum stretching frame holds the wires with sufficient tension to achieve a minimum resonant frequency of 185 Hz, allowing VPM mirror translation frequencies of several Hz. A lightly loaded, flattening ring with a 50 cm inside diameter rests against the wires and brings them into accurate planarity.

  8. An atlas of monthly mean distributions of GEOSAT sea surface height, SSMI surface wind speed, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1988

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Zlotnicki, V.; Newman, J.; Brown, O.; Wentz, F.

    1991-01-01

    Monthly mean global distributions for 1988 are presented with a common color scale and geographical map. Distributions are included for sea surface height variation estimated from GEOSAT; surface wind speed estimated from the Special Sensor Microwave Imager on the Defense Meteorological Satellite Program spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer on NOAA spacecrafts; and the Cartesian components of the 10m height wind vector computed by the European Center for Medium Range Weather Forecasting. Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  9. PolarCube: A High Resolution Passive Microwave Satellite for Sounding and Imaging at 118 GHz

    NASA Astrophysics Data System (ADS)

    Weaver, R. L.; Gallaher, D. W.; Gasiewski, A. J.; Sanders, B.; Periasamy, L.; Hwang, K.; Alvarenga, G.; Hickey, A. M.

    2013-12-01

    PolarCube is a 3U CubeSat hosting an eight-channel passive microwave spectrometer operating at the 118.7503 GHz oxygen resonance that is currently in development. The project has an anticipated launch date in early 2015. It is currently being designed to operate for approximately12 months on orbit to provide the first global 118-GHz spectral imagery of the Earth over full seasonal cycle and to sound Arctic vertical temperature structure. The principles used by PolarCube for temperature sounding are well established in number of peer-reviewed papers going back more than two decades, although the potential for sounding from a CubeSat has never before been demonstrated in space. The PolarCube channels are selected to probe atmospheric emission over a range of vertical levels from the surface to lower stratosphere. This capability has been available operationally for over three decades, but at lower frequencies and higher altitudes that do not provide the spatial resolution that will be achieved by PolarCube. While the NASA JPSS ATMS satellite sensor provides global coverage at ~32 km resolution, the PolarCube will improve on this resolution by a factor of two, thus facilitating the primary science goal of determining sea ice concentration and extent while at the same time collecting profile data on atmospheric temperature. Additionally, we seek to correlate freeze-thaw line data from SMAP with our near simultaneously collected atmospheric temperature data. In addition to polar science, PolarCube will provide a first demonstration of a very low cost passive microwave sounder that if operated in a fleet configuration would have the potential to fulfill the goals of the Precipitation Atmospheric Temperature and Humidity (PATH) mission, as defined in the NRC Decadal Survey. PolarCube 118-GHz passive microwave spectrometer in deployed configuration

  10. Comparative merits of multispectral optical polarization to microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Egan, Walter G.; Duggin, Michael J.

    2002-01-01

    A brief history of RADAR development is followed by an indication of the relevance of LIDAR to ranging and detection of targets. Initially, radiated laser power is discussed. Peak power of 100 kilowatts with a diode pumped solid-state laser appears feasible. Frequency control appears possible with atomic standards controlling the high power laser. Optical characterization of the polarization properties of lasers on targets is being pursued as well as the options. Coherence length of LASER radiation still poses a problem over ranges beyond one hundred meters. Target identification is enhanced using polarization with the aid of higher-resolution focal plane arrays. Coherence applications appear feasible in the near future.

  11. A new model of the microwave polarized sky for CMB experiments

    NASA Astrophysics Data System (ADS)

    Hervías-Caimapo, Carlos; Bonaldi, Anna; Brown, Michael L.

    2016-10-01

    We present a new model of the microwave sky in polarization that can be used to simulate data from cosmic microwave background polarization experiments. We exploit the most recent results from the Planck satellite to provide an accurate description of the diffuse polarized foreground synchrotron and thermal dust emission. Our model can include the two mentioned foregrounds, and also a constructed template of Anomalous Microwave Emission. Several options for the frequency dependence of the foregrounds can be easily selected, to reflect our uncertainties and to test the impact of different assumptions. Small angular scale features can be added to the foreground templates to simulate high-resolution observations. We present tests of the model outputs to show the excellent agreement with Planck and Wilkinson Microwave Anisotropy Probe (WMAP) data. We determine the range within which the foreground spectral indices can be varied to be consistent with the current data. We also show forecasts for a high-sensitivity, high-resolution full-sky experiment such as the Cosmic ORigin Explorer. Our model is released as a PYTHON script that is quick and easy to use, available at http://www.jb.man.ac.uk/chervias.

  12. Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Liu, Yajun; Xia, Song; Shi, Hongyu; Zhang, Anxue; Xu, Zhuo

    2016-06-01

    We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5-20.0 GHz) and Ka (28.8-34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.

  13. Analytical Derivation of the Vegetation Optical Depth from the Microwave Polarization Difference Index

    NASA Technical Reports Server (NTRS)

    Meesters, Antoon G. C. A.; DeJeu, Richard A. M.; Owe, Manfred

    2006-01-01

    A numerical solution for the canopy optical depth in an existing microwave-based land surface parameter retrieval model is presented. The optical depth is derived from the microwave polarization difference index and the dielectric constant of the soil. The original procedure used an approximation in the form of a logarithmic decay function to define this relationship, and was derived through a series of lengthy polynomials. These polynomials had to be recalculated when the scattering albedo or antenna incidence angle changes. The new procedure is computationally more efficient and accurate.

  14. Making cosmic microwave background temperature and polarization maps with MADAM

    NASA Astrophysics Data System (ADS)

    Keihänen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.; Sirviö, A.-S.

    2010-02-01

    MADAM is a CMB map-making code, designed to make temperature and polarization maps of time-ordered data of total power experiments like Planck. The algorithm is based on the destriping technique, but it also makes use of known noise properties in the form of a noise prior. The method in its early form was presented in an earlier work by Keihänen et al. (2005, MNRAS, 360, 390). In this paper we present an update of the method, extended to non-averaged data, and include polarization. In this method the baseline length is a freely adjustable parameter, and destriping can be performed at a different map resolution than that of the final maps. We show results obtained with simulated data. This study is related to Planck LFI activities.

  15. Modeling of Wind Direction Signals in Polarimetric Sea Surface Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.

    1995-01-01

    Sea surface brightness temperatures are the radiometric power measure of blackbody radiation from sea water. This radiation is the electromagnetic waves excited by the random thermal motion of charged particles in the sea water. The energy transmitted through the air- water interface produces a scattering of electromagnetic waves into the atmosphere. Polarimetric microwave emissions are investigated.

  16. Aquarius Observations of Sea Surface Salinity

    NASA Video Gallery

    This visualization shows changes in global sea surface salinity, as measured by NASA’s Aquarius instrument aboard the Aquarius/SAC-D spacecraft, from December 2011 through December 2012. Red repr...

  17. Comparative study of microwave radiation-induced magnetoresistive oscillations induced by circularly- and linearly- polarized photo-excitation

    DOE PAGES

    Ye, Tianyu; Liu, Han -Chun; Wang, Zhuo; ...

    2015-10-09

    A comparative study of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs heterostructure two dimensional electron system (2DES) under linearly- and circularly- polarized microwave excitation indicates a profound difference in the response observed upon rotating the microwave launcher for the two cases, although circularly polarized microwave radiation induced magnetoresistance oscillations observed at low magnetic fields are similar to the oscillations observed with linearly polarized radiation. For the linearly polarized radiation, the magnetoresistive response is a strong sinusoidal function of the launcher rotation (or linear polarization) angle, θ. As a result, for circularly polarized radiation, the oscillatory magnetoresistive response ismore » hardly sensitive to θ.« less

  18. Sea Surface Salinity : Research Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Halpern, David; Lagerloef, Gary; Font, Jordi

    2012-01-01

    Sea surface salinity (SSS) can be important in regulating sea surface temperature (SST). Two technological breakthrough satellite SSS missions, Aquarius and Soil Moisture and Ocean Salinity (SMOS), are currently producing high-quality SSS data. This paper provides an overview of the importance of SSS for weather and climate applications and describes the Aquarius and SMOS missions. The newness of adequately sampled SSS data prompted a first-time at-sea field campaign devoted to improved understanding of SSS variations.

  19. Angular phase shift in polarization-angle dependence of microwave-induced magnetoresistance oscillations

    NASA Astrophysics Data System (ADS)

    Liu, Han-Chun; Samaraweera, Rasanga L.; Mani, R. G.; Reichl, C.; Wegscheider, W.

    2016-12-01

    We examine the microwave frequency (f ) variation of the angular phase shift, θ0, observed in the polarization-angle dependence of microwave-induced magnetoresistance oscillations in a high-mobility GaAs/AlGaAs two-dimensional electron system. By fitting the diagonal resistance Rx x versus θ plots to an empirical cosine square law, we extract θ0 and trace its quasicontinuous variation with f . The results suggest that the overall average of θ0 extracted from Hall bar device sections with length-to-width ratios of L /W =1 and 2 is the same. We compare the observations with expectations arising from the "ponderomotive force" theory for microwave radiation-induced transport phenomena.

  20. The Application of Aperture Synthesis to the Remote Sensing of Sea Surface Salinity From Space

    NASA Technical Reports Server (NTRS)

    LeVine, David M.

    1998-01-01

    Sea surface salinity is measured optimally at the long wavelength end of the microwave spectrum in order to maximize radiometric sensitivity to changes in salinity. Long wavelengths (e.g. L-band) mean large antennas in space, and because of the technological challenge associated with putting large scanning antennas in orbit, no system currently exists to measure salinity. Aperture synthesis is an interferometric technique to make deployment of large antenna apertures in space feasible. It uses pairs of small antennas and signal processing to achieve the resolution of a single large aperture. Aperture synthesis has been demonstrated successfully for remote sensing by the aircraft prototype radiometer, ESTAR. ESTAR is an L-band instrument which employs aperture synthesis in the cross track dimension. Recent measurements with ESTAR of the fresh water outflow from the Delaware River are in good agreement (about 1 psu) with shipboard thermosalinograph measurements. Synthetic aperture radiometers are currently being developed for remote sensing from space. HYDROSTAR is an instrument for remote sensing from space based on the design of ESTAR. It employs aperture synthesis in one dimension and is being proposed as a pathfinder instrument to make global maps of soil moisture and sea surface salinity and to demonstrate the feasibility of aperture synthesis for remote sensing from space. Instruments which use remote sensing in two dimensions are currently being developed by the European Space Agency. These instruments include additional channels (frequencies and polarizations) and may be able to achieve radiometric sensitivity and spatial resolution to meet the diverse needs of the coastal zone and open ocean oceanographic communities.

  1. Polarization conversion from a thin cavity array in the microwave regime

    PubMed Central

    Tremain, B.; Rance, H. J.; Hibbins, A. P.; Sambles, J. R.

    2015-01-01

    Linearly polarized microwave radiation is shown to have its plane of polarization converted to the orthogonal state upon reflection from an ultrathin (λ/25) cavity array. The structure benefits from an uncomplicated design consisting of a metallic grating closely separated from a ground plane by a dielectric spacer. A single set of periodically spaced slits (monograting) exhibits polarization conversion when the normally incident electric field is aligned at 45° to the slits. Two orthogonal sets of slits (bigrating) allows this narrow-band effect to be broadened when the two orthogonal resonances are separated in frequency. We optimise the design and experimentally demonstrate near loss-less polarization conversion (95% of the incident intensity) across a 3.1 GHz frequency band. Finally, we study the dependence of the structure's performance on incident angle and slit width. PMID:25797210

  2. Q/U Imaging Experiment (QUIET): a ground-based probe of cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Buder, Immanuel

    2010-07-01

    QUIET is an experimental program to measure the polarization of the Cosmic Microwave Background (CMB) radiation from the ground. Previous CMB polarization data have been used to constrain the cosmological parameters that model the history of our universe. The exciting target for current and future experiments is detecting and measuring the faint polarization signals caused by gravity waves from the inflationary epoch which occurred < 10-30 s after the Big Bang. QUIET has finished an observing season at 44 GHz (Q-Band); observing at 95 GHz (W-Band) is ongoing. The instrument incorporates several technologies and approaches novel to CMB experiments. We describe the observing strategy, optics design, detector technology, and data acquisition. These systems combine to produce a polarization sensitivity of 64 (57) μK for a 1 s exposure of the Phase I Q (W) Band array. We describe the QUIET Phase I instrument and explain how systematic errors are reduced and quantified.

  3. A search for the large angular scale polarization of the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Keating, Brian Gregory

    The Cosmic Microwave Background (CMB) is one of the three observational pillars of modern cosmology, along with the Hubble Expansion Law and the measured abundances of the light elements. Being the fossil radiation from the Big Bang, it probes the conditions of the early universe. Three properties are necessary to fully characterize the CMB: its spectrum, spatial isotropy, and polarization. The first two properties have been measured, whereas the polarization state of the CMB remains undetected. Detection of, or an improved upper limit on, the polarization of the CMB at large scales holds great promise for the determination of several fundamental properties of the standard cosmological model, such as the ionization history of the Universe and the contribution of gravitational waves to the spectrum of primordial perturbations. Most models predict that the magnitude of the polarization of the CMB at large angular scales is less than 1muK. This is at least an order of magnitude below both the large scale anisotropy level of the CMB, as well as the best existing upper limits on its polarization. In this thesis I calculate the magnitude of the CMB polarization in various cosmological scenarios, and outline the fundamental challenges to measuring these signals. Following, I describe the design of the POLAR Polarization Observations of Large Angular Regions) experiment, which is the first dedicated polarimeter to study the CMB in more than a decade. POLAR is a ground-based, centimeter-wavelength correlation polarimeter designed to detect the polarization of the CMB at 28, 31, & 33 GHz. POLAR is the first correlation polarimeter ever used for CMB work and has the widest bandwidth of any correlation radiometer ever used for investigations of the CMB. POLAR has been constructed and is currently acquiring data at the University of Wisconsin-Madison.

  4. Search for accelerated electron anisotropy signatures based on observed polarization of the flaring loop microwave emission

    NASA Astrophysics Data System (ADS)

    Morgachev, A. S.; Melnikov, V. F.; Kuznetsov, S. A.

    2016-12-01

    The distribution maps of the circular polarization degree and radio brightness have been analyzed for more than 40 flares based on the Nobeyama Radioheliograph data. It has been shown that the observed microwave emission is polarized in the ordinary mode in some flaring loop parts in six events. Based on a joint analysis of the photospheric magnetic field maps obtained from the HMI/SDO and MDI/SOHO magnetograph's and the radio emission dynamics in different source parts, it has been concluded that the ordinary mode predominance in all six selected events can be connected with implementation of the longitudinal pitch-angle anisotropy of emitting electrons.

  5. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes

    PubMed Central

    Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo

    2016-01-01

    We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6–20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions. PMID:27698443

  6. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes

    NASA Astrophysics Data System (ADS)

    Li, Yongfeng; Zhang, Jieqiu; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Dayi; Xu, Zhuo; Qu, Shaobo

    2016-10-01

    We propose the design of wideband birefringent metamaterials based on spoof surface plasmon polaritons (SSPPs). Spatial k-dispersion design of SSPP modes in metamaterials is adopted to achieve high-efficiency transmission of electromagnetic waves through the metamaterial layer. By anisotropic design, the transmission phase accumulation in metamaterials can be independently modulated for x- and y-polarized components of incident waves. Since the dispersion curve of SSPPs is nonlinear, frequency-dependent phase differences can be obtained between the two orthogonal components of transmitted waves. As an example, we demonstrate a microwave birefringent metamaterials composed of fishbone structures. The full-polarization-state conversions on the zero-longitude line of Poincaré sphere can be fulfilled twice in 6-20 GHz for both linearly polarized (LP) and circularly polarized (CP) waves incidence. Besides, at a given frequency, the full-polarization-state conversion can be achieved by changing the polarization angle of the incident LP waves. Both the simulation and experiment results verify the high-efficiency polarization conversion functions of the birefringent metamaterial, including circular-to-circular, circular-to-linear(linear-to-circular), linear-to-linear polarization conversions.

  7. Microwave Polarized Signatures Generated within Cloud Systems: SSM/I Observations Interpreted with Radiative Transfer Simulations

    NASA Technical Reports Server (NTRS)

    Prigent, Catherine; Pardo, Juan R.; Mishchenko, Michael I.; Rossow, Willaim B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Special Sensor Microwave /Imager (SSM/I) observations in cloud systems are studied over the tropics. Over optically thick cloud systems, presence of polarized signatures at 37 and 85 GHz is evidenced and analyzed with the help of cloud top temperature and optical thickness extracted from visible and IR satellite observations. Scattering signatures at 85 GHz (TbV(85) less than or = 250 K) are associated with polarization differences greater than or = 6 K, approx. 50%, of the time over ocean and approx. 40% over land. In addition. over thick clouds the polarization difference at 37 GHz is rarely negligible. The polarization differences at 37 and 85 GHz do not stem from the surface but are generated in regions of relatively homogeneous clouds having high liquid water content. To interpret the observations, a radiative transfer model that includes the scattering by non-spherical particles is developed. based on the T-matrix approach and using the doubling and adding method. In addition to handling randomly and perfectly oriented particles, this model can also simulate the effect of partial orientation of the hydrometeors. Microwave brightness temperatures are simulated at SSM/I frequencies and are compared with the observations. Polarization differences of approx. 2 K can be simulated at 37 GHz over a rain layer, even using spherical drops. The polarization difference is larger for oriented non-spherical particles. The 85 GHz simulations are very sensitive to the ice phase of the cloud. Simulations with spherical particles or with randomly oriented non-spherical ice particles cannot replicate the observed polarization differences. However, with partially oriented non-spherical particles, the observed polarized signatures at 85 GHz are explained, and the sensitivity of the scattering characteristics to the particle size, asphericity, and orientation is analyzed. Implications on rain and ice retrievals are discussed.

  8. A microwave satellite water vapour column retrieval for polar winter conditions

    NASA Astrophysics Data System (ADS)

    Perro, Christopher; Lesins, Glen; Duck, Thomas J.; Cadeddu, Maria

    2016-05-01

    A new microwave satellite water vapour retrieval for the polar winter atmosphere is presented. The retrieval builds on the work of Miao et al. (2001) and Melsheimer and Heygster (2008), employing auxiliary information for atmospheric conditions and numerical optimization. It was tested using simulated and actual measurements from the Microwave Humidity Sounder (MHS) satellite instruments. Ground truth was provided by the G-band vapour radiometer (GVR) at Barrow, Alaska. For water vapour columns less than 6 kg m-2, comparisons between the retrieval and GVR result in a root mean square (RMS) deviation of 0.39 kg m-2 and a systematic bias of 0.08 kg m-2. These results are compared with RMS deviations and biases at Barrow for the retrieval of Melsheimer and Heygster (2008), the AIRS and MIRS satellite data products, and the ERA-Interim, NCEP, JRA-55, and ASR reanalyses. When applied to MHS measurements, the new retrieval produces a smaller RMS deviation and bias than for the earlier retrieval and satellite data products. The RMS deviations for the new retrieval were comparable to those for the ERA-Interim, JRA-55, and ASR reanalyses; however, the MHS retrievals have much finer horizontal resolution (15 km at nadir) and reveal more structure. The new retrieval can be used to obtain pan-Arctic maps of water vapour columns of unprecedented quality. It may also be applied to measurements from the Special Sensor Microwave/Temperature 2 (SSM/T2), Advanced Microwave Sounding Unit B (AMSU-B), Special Sensor Microwave Imager/Sounder (SSMIS), Advanced Technology Microwave Sounder (ATMS), and Chinese MicroWave Humidity Sounder (MWHS) instruments.

  9. AIRS Sea Surface Temperature and Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Chen, L. L.

    2015-12-01

    Atmospheric Infrared Sounder (AIRS) has been providing necessary measurements for long term atmospheric and surface processes aboard NASA' s Aqua polar orbiter since May 2002. Here, we use time series of AIRS sea surface temperature (SST) anomalies to show the time evolution of Pacific Decadal Oscillation (PDO) in the Gulf of Alaska (lon:-144.5, lat:54.5) from 2003 to 2014. PDO is connected to the first mode of North Pacific SST variability and is tele-connected to ENSO in the tropics. Further analysis of AIRS data can provide clarification of Pacific climate variability.

  10. Production of global sea surface temperature fields for the Jet Propulsion Laboratory workshop comparisons

    NASA Technical Reports Server (NTRS)

    Hilland, J. E.; Njoku, E. G.; Chelton, D. B.

    1985-01-01

    Sea surface temperature (SST) is measured from space by the advanced very high resolution radiometer (AVHRR), scanning multichannel microwave radiometer (SMMR), high resolution infrared sounder (HIRS) and VISSR atmospheric sounder (VAS). Typical accuracies have been reported from 0.5 C regionally to 2.0 C on a global basis. To evaluate the accuracy of the satellite-derived sea surface temperatures, a series of three workshops was organized to provide uniform data reduction and analysis. The analytical techniques used to intercompare satellite and in situ measurements are described in detail. Selected results showed the overall average rms errors were in the range 0.5-1.0 C.

  11. A wideband 360° photonic-assisted microwave phase shifter using a polarization modulator and a polarization-maintaining fiber Bragg grating.

    PubMed

    Li, Wangzhe; Zhang, Weifeng; Yao, Jianping

    2012-12-31

    A novel approach to implementing a wideband microwave photonic phase shifter by a joint use of a polarization modulator (PolM) and a polarization-maintaining fiber Bragg grating (PM-FBG) is proposed and experimentally demonstrated. A microwave signal to be phase shifted is applied to the PolM. Two phase-modulated signals along the two principal axes of the PolM are generated and sent to the PM-FBG. The phase-modulated signals have a static but complementary phase shift introduced by the dc bias applied to the PolM. Due to the birefringence of the polarization-maintaining (PM) fiber, the PM-FBG has two spectrally separated and orthogonally polarized reflection bands. By employing the PM-FBG to reflect one first-order sideband along one polarization direction and one optical carrier along the other polarization direction, and send them back to the PolM, a second-time phase modulation is imposed to the sideband and the optical carrier. By sending the two signals to a polarizer and beating them at a photodetector, a phase shifted microwave signal is obtained. Since the PolM is used twice, a low dc bias voltage would lead to a large phase shift. A full 360° microwave photonic phase shifter over a frequency range of 30-40 GHz is experimentally demonstrated. The spurious free dynamic range (SFDR) of the phase shifter is also studied.

  12. Photonic generation of frequency-sextupled microwave signal based on dual-polarization modulation without an optical filter

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Qu, Kun; Lin, Tao

    2017-01-01

    Frequency-sextupled microwave signal generation based on dual-polarization modulation using an electro-optic dual-parallel polarization modulator (DPPolM) without an optical filter is proposed. From a theoretical analysis, the frequency-sextupled microwave signal can be obtained by properly adjusting the polarization directions of the modulated optical signals, the powers and the phases of the microwave drive signals applied to the DPPolM. Simulation results show that a 24 GHz microwave signal with an optical sideband suppression ratio (OSSR) exceeding 31 dB and a radio frequency spurious suppression ratio (RFSSR) higher than 25 dB is generated from a 4 GHz microwave drive signal, which match well with the theoretical analysis. Furthermore, it is also proved to be valid that even if the microwave drive voltage, the phase difference, and the polarization direction of light wave deviate from the ideal values to a certain degree, the performance of the generated frequency-sextupled microwave signal is still acceptable.

  13. Characteristics of 13.9 GHz radar scattering from oil films on the sea surface

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Croswell, W. F.

    1982-01-01

    Aircraft microwave scatterometer measurements are presented, which were made in 1979 as part of a project to study the response of a number of active and passive microwave and optical remote sensors to an oil-covered sea surface conducted by NASA Langley Research Center. A 13.9-GHz Doppler scatterometer with a fan beam antenna and coherent detection was used to measure radar backscatter as a function of incidence angle. The radar scattering signature of the clear surface and signatures of the surface covered with various crude oil films are compared. Reductions in Ku band microwave backscatter up to 14 dB are observed for both treated and untreated LaRosa and Murban crude oil films deposited on the sea surface. Maximum Ku band sensitivity to the effects of the oil in terms of differential scatter is observed in the 25-35 deg incidence angle region.

  14. Systematic Effects in Polarizing Fourier Transform Spectrometers for Cosmic Microwave Background Observations

    NASA Astrophysics Data System (ADS)

    Nagler, Peter C.; Fixsen, Dale J.; Kogut, Alan; Tucker, Gregory S.

    2015-11-01

    The detection of the primordial B-mode polarization signal of the cosmic microwave background (CMB) would provide evidence for inflation. Yet as has become increasingly clear, the detection of a such a faint signal requires an instrument with both wide frequency coverage to reject foregrounds and excellent control over instrumental systematic effects. Using a polarizing Fourier transform spectrometer (FTS) for CMB observations meets both of these requirements. In this work, we present an analysis of instrumental systematic effects in polarizing FTSs, using the Primordial Inflation Explorer (PIXIE) as a worked example. We analytically solve for the most important systematic effects inherent to the FTS—emissive optical components, misaligned optical components, sampling and phase errors, and spin synchronous effects—and demonstrate that residual systematic error terms after corrections will all be at the sub-nK level, well below the predicted 100 nK B-mode signal.

  15. SYSTEMATIC EFFECTS IN POLARIZING FOURIER TRANSFORM SPECTROMETERS FOR COSMIC MICROWAVE BACKGROUND OBSERVATIONS

    SciTech Connect

    Nagler, Peter C.; Tucker, Gregory S.; Fixsen, Dale J.; Kogut, Alan

    2015-11-15

    The detection of the primordial B-mode polarization signal of the cosmic microwave background (CMB) would provide evidence for inflation. Yet as has become increasingly clear, the detection of a such a faint signal requires an instrument with both wide frequency coverage to reject foregrounds and excellent control over instrumental systematic effects. Using a polarizing Fourier transform spectrometer (FTS) for CMB observations meets both of these requirements. In this work, we present an analysis of instrumental systematic effects in polarizing FTSs, using the Primordial Inflation Explorer (PIXIE) as a worked example. We analytically solve for the most important systematic effects inherent to the FTS—emissive optical components, misaligned optical components, sampling and phase errors, and spin synchronous effects—and demonstrate that residual systematic error terms after corrections will all be at the sub-nK level, well below the predicted 100 nK B-mode signal.

  16. Boomerang 2003: Measuring the polarization of the Cosmic Microwave Background Radiation

    NASA Astrophysics Data System (ADS)

    Kisner, Theodore Schuyler

    In early 2003, the Boomerang telescope flew for fifteen days over the Antarctic continent suspended from a balloon at an approximate altitude of 100,000 feet. Using a cryogenically cooled, bolometric receiver, it made measurements of the intensity and polarization of the Cosmic Microwave Background (CMB) Radiation in two overlapping sky patches of 100 and 800 square degrees. A spatial analysis of this data provides confirmation of previous measurements of the multipole angular power spectrum of the temperature anisotropies of the CMB. This data also provides power spectra of the polarization and temperature- polarization correlations that are competitive with previous experiments. Cosmological parameters estimated from these angular power spectra are consistent with a "standard" Lambda-CDM universe where inflation was adiabatic.

  17. Polarimetric Doppler spectrum of backscattered echoes from nonlinear sea surface damped by natural slicks

    NASA Astrophysics Data System (ADS)

    Yang, Pengju; Guo, Lixin

    2016-11-01

    Based on the Lombardini et al. model that can predict the hydrodynamic damping of rough sea surfaces in the presence of monomolecular slicks and the "choppy wave" model (CWM) that can describe the nonlinear interactions between ocean waves, the modeling of time-varying nonlinear sea surfaces damped by natural or organic sea slicks is presented in this paper. The polarimetric scattering model of second-order small-slope approximation (SSA-II) with tapered wave incidence is utilized for evaluating co- and cross-polarized backscattered echoes from clean and contaminated CWM nonlinear sea surfaces. The influence of natural sea slicks on Doppler shift and spectral bandwidth of radar sea echoes is investigated in detail by comparing the polarimetric Doppler spectra of contaminated sea surfaces with those of clean sea surfaces. A narrowing of Doppler spectra in the presence of oil slicks is observed for both co- and cross-polarization, which is qualitatively consistent with wave-tank measurements. Simulation results also show that the Doppler shifts in slicks can increase or decrease, depending on incidence angles and polarizations.

  18. Degree Angular Scale Interferometer 3 Year Cosmic Microwave Background Polarization Results

    NASA Astrophysics Data System (ADS)

    Leitch, E. M.; Kovac, J. M.; Halverson, N. W.; Carlstrom, J. E.; Pryke, C.; Smith, M. W. E.

    2005-05-01

    We present the analysis of the complete 3 yr data set obtained with the Degree Angular Scale Interferometer (DASI) polarization experiment, operating from the Amundsen-Scott South Pole research station. New data obtained at the end of the 2002 austral winter and throughout the 2003 season were added to the data from which the first detection of polarization of the cosmic microwave background (CMB) radiation was reported. The analysis of the combined data supports, with increased statistical power, all of the conclusions drawn from the initial data set. In particular, the detection of E-mode polarization is increased to the 6.3 σ confidence level, TE cross-polarization is detected at 2.9 σ, and B-mode polarization is consistent with zero, with an upper limit well below the level of the detected E-mode polarization. The results are in excellent agreement with the predictions of the cosmological model that has emerged from CMB temperature measurements. The analysis also demonstrates that contamination of the data by known sources of foreground emission is insignificant.

  19. Circularly polarized microwaves for magnetic resonance study in the GHz range: Application to nitrogen-vacancy in diamonds

    SciTech Connect

    Mrózek, M. Rudnicki, D. S.; Gawlik, W.; Mlynarczyk, J.

    2015-07-06

    The ability to create time-dependent magnetic fields of controlled polarization is essential for many experiments with magnetic resonance. We describe a microstrip circuit that allows us to generate strong magnetic field at microwave frequencies with arbitrary adjusted polarization. The circuit performance is demonstrated by applying it to an optically detected magnetic resonance and Rabi nutation experiments in nitrogen-vacancy color centers in diamond. Thanks to high efficiency of the proposed microstrip circuit and degree of circular polarization of 85%; it is possible to address the specific spin states of a diamond sample using a low power microwave generator. The circuit may be applied to a wide range of magnetic resonance experiments with a well-controlled polarization of microwaves.

  20. Sea surface and remotely sensed temperatures off Cape Mendocino, California

    NASA Technical Reports Server (NTRS)

    Breaker, L. C.; Arvesen, J. C.; Frydenlund, D.; Myers, J. S.; Short, K.

    1985-01-01

    During September 3 to 5, 1979, a multisensor oceanographic experiment was conducted off Cape Mendocino, California. The purpose of this experiment was to validate the use of remote sensing techniques over an area along the U.S. west coast where coasted upwelling is known to be intense. Remotely sensed mutlispectral data, including thermal infrared imagery, were collected above an upwelling feature off Cape Mendocino. Data were acquired from the TIRNOS-N and NOAA-6 polar orbiting satellites, the NASA Ames Research Center's high altitude U-2 aircraft, and a U.S. Coast Guard C-130 aircraft. Supporting surface truth data over the same feature were collected aboard the National Oceanic and Atmospheric Administration (NOAA) ship, OCEANOGRAPHER. Atmospheric soundings were also taken aboard the ship. The results indicate that shipboard measurements of sea surface temperatures can be reproduction within 1 C or better through remote observation of absolute infrared radiance values (whether measured aboard the NOAA polar orbiting satellite, the U-2 aircraft, or the Coast Guard aircraft) by using appropriate atmospheric corrections. Also, the patterns of sea surface temperature which were derived independently from the various remote platforms provide a consistent interpretation of the surface temperature field.

  1. Fast cosmological parameter estimation from microwave background temperature and polarization power spectra

    NASA Astrophysics Data System (ADS)

    Jimenez, Raul; Verde, Licia; Peiris, Hiranya; Kosowsky, Arthur

    2004-07-01

    We improve the algorithm of Kosowsky, Milosavljevic, and Jimenez for computing power spectra of the cosmic microwave background. The present algorithm computes not only the temperature power spectrum but also the E- and B-mode polarization and the temperature-polarization cross power spectra, providing the accuracy required for current cosmological parameter estimation. Both unlensed and lensed (with non-linear evolution) power spectra are provided up to l=3000 for temperature and polarization signals. We refine the optimum set of cosmological parameters for computing the power spectra as perturbations around a fiducial model, leading to an accuracy better than 0.5% for the temperature power spectrum throughout the region of parameter space within the Wilkinson Microwave Anisotropic Probe’s first-year 3σ confidence region. This accuracy is comparable to the difference between the widely used CMBFAST code of Seljak and Zaldarriaga and Boltzmann codes. Our algorithm (CMBWARP) makes possible a full exploration of the likelihood region for eight cosmological parameters in about one hour on a laptop computer. We provide the code to compute power spectra as well as the Markov chain Monte Carlo algorithm for cosmological parameters estimation at http://www.physics.upenn.edu/˜raulj/CMBwarp.

  2. WISE 2000 campaign: sea surface salinity and wind retrievals from L-band radiometry

    NASA Astrophysics Data System (ADS)

    Camps, Adriano; Corbella, Ignasi; Font, Jordi; Etchetto, Jacqueline; Duffo, Nuria; Vall-llossera, Merce; Bara, Javier; Torres, Francisco; Wursteisen, Patrick; Martin-Neira, Manuel

    2000-12-01

    Sea surface salinity (SSS) has been recognized as a key parameter in climatological studies. SSS can be measured by passive microwave remote sensing at L band, where the sensitivity of the brightness temperatures shows a maximum and the atmosphere is almost transparent. To provide global coverage of this basic parameter with a 3-day revisit time, the SMOS mission was recently selected by ESA within the frame of the Earth Explorer Opportunity Missions. The SMOS mission will carry the MIRAS instrument, the first 2D L-band aperture synthesis interferometric radiometer. To address new challenges that this mission presents, such as incidence angle variation with pixel, polarization mixing, effect of wind and foam and others, a measurement campaign has been sponsored by ESA under the name of WISE 2000 and it is scheduled for October-November 2000. Two L-band radiometers, a video, a IR and a stereo-camera and four oceanographic and meteorological buoys will be installed in the oil platform 'Casablanca' located at 40 Km off the coast of Tarragona, where the sea conditions are representative of the Mediterranean open sea with periodic influence of the Ebro river fresh water plume.

  3. Sea-surface temperature chart enhancement in frontal zones

    NASA Astrophysics Data System (ADS)

    Aleksanin, A. I.; Kim, V.

    2016-12-01

    Infrared and microwave satellite images used for sea-surface temperature (SST) retrieval often have distortions such as noise and blurring of thermal front lines that decrease the quality of SST charts. In order to solve this problem, it is proposed to use an approach based on the Mumford-Shah model that approximates an image with a piecewise smooth function. In order to combine the advantages of the proposed approach and conventional methods for noise filtering and image restoration it is proposed to divide images into flat and frontal zones and process them separately. The SST quality is enhanced by the use of edge-preserving noise filtering and restoration algorithms. The latter use the features of radiometers and different stages of the SST construction procedure to improve their accuracy. The images obtained using the MTSAT/VISSR, METEOR-M/MSU-MR, and AQUA/AMSR-E radiometers are used for testing the developed approach.

  4. An intensity modulation and coherent balanced detection intersatellite microwave photonic link using polarization direction control

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Zhu, Zihang; Zhao, Shanghong; Li, Yongjun; Han, Lei; Zhao, Jing

    2014-03-01

    A simple approach for high loss intersatellite microwave photonic link with intensity modulation and coherent balanced detection is proposed. In the transmitter, the double sideband-suppressed carrier (DSB-SC) modulated optical signal and optical carrier (OC) are combined by employing a polarization combiner to chose and control the signals polarization directions, while in the receiver, they are selected respectively by using a polarization splitter for they have orthogonal polarization directions. The separated DSB-SC signal and OC put into balanced detectors and the coherent detection is realized without a local oscillator (LO). At the output, the fundamental signal is augmented and the third-order distortion is suppressed for the DSB-SC modulation, the second-order distortion is removed for the balanced detection and the noise is reduced for the polarization direction control. The signal to noise and distortion ratio (SNDR) can be optimized by adjusting the power of OC and modulation index. The simulation results show that, a SNDR higher than 30 dB can be obtained for the proposed method, which is in agreement with the theoretical analysis.

  5. Quantum Suppression of Alignment in Ultrasmall Grains: Microwave Emission from Spinning Dust will be Negligibly Polarized

    NASA Astrophysics Data System (ADS)

    Draine, B. T.; Hensley, Brandon S.

    2016-11-01

    The quantization of energy levels in small, cold, free-flying nanoparticles suppresses dissipative processes that convert grain rotational kinetic energy into heat. For interstellar grains small enough to have ˜GHz rotation rates, the suppression of dissipation can be extreme. As a result, alignment of such grains is suppressed. This applies both to alignment of the grain body with its angular momentum {\\boldsymbol{J}}, and to alignment of {\\boldsymbol{J}} with the local magnetic field {\\boldsymbol{B}} 0. If the anomalous microwave emission is rotational emission from spinning grains, then it will be negligibly polarized at GHz frequencies, with P ≲ 10-6 at ν > 10 GHz.

  6. Evolution of the linear-polarization-angle-dependence of the radiation-induced magnetoresistance-oscillations with microwave power

    SciTech Connect

    Ye, Tianyu; Mani, R. G.; Wegscheider, W.

    2014-11-10

    We examine the role of the microwave power in the linear polarization angle dependence of the microwave radiation induced magnetoresistance oscillations observed in the high mobility GaAs/AlGaAs two dimensional electron system. The diagonal resistance R{sub xx} was measured at the fixed magnetic fields of the photo-excited oscillatory extrema of R{sub xx} as a function of both the microwave power, P, and the linear polarization angle, θ. Color contour plots of such measurements demonstrate the evolution of the lineshape of R{sub xx} versus θ with increasing microwave power. We report that the non-linear power dependence of the amplitude of the radiation-induced magnetoresistance oscillations distorts the cosine-square relation between R{sub xx} and θ at high power.

  7. Wind-Driven Angular Dependence of Sea-Surface Reflectance Measured with an Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.; Cutten, Dean R.

    1998-01-01

    The effects of wind-stress on the optical properties of the ocean surface have been studied for several decades. In particular, the classic study by Cox and Munk (1954) linking sea-surface wind field to wave slope statistics provides a phenomenology by which the sea-surface wind velocity can be estimated from direct measurement of the wave-modulated surface reflectance. A limited number of studies along these lines have been conducted using airborne or spaceborne lidar systems. In these instances, truthing was provided by in situ ship reports or satellite microwave remote sensing instruments (e.g., ERS scatterometer, SSM/I). During the second deployment of the MACAWS Doppler wind lidar in the summer of 1996 measurements of sea-surface reflectance as a function of azimuth- and nadir-viewing angles were acquired off the California coast. MACAWS data products include directly measured winds, as well as calibrated backscatter/reflectance profiles, thus enabling comparison of the winds inferred from sea-surface reflectance measurements with those deriving from the Doppler-processed direct line-of-sight (LOS) estimates. Additional validation data was extracted from the ERS and SSM/I satellite microwave sensor archives maintained by the JPL Physical Oceanography Distributed Active Archive Center (PO- DAAC).

  8. On the relationship between water vapor over the oceans and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.

    1990-01-01

    Monthly mean precipitable water data obtained from passive microwave radiometry were correlated with the National Meteorological Center (NMC) blended sea surface temperature data. It is shown that the monthly mean water vapor content of the atmosphere above the oceans can generally be prescribed from the sea surface temperature with a standard deviation of 0.36 g/sq cm. The form of the relationship between precipitable water and sea surface temperature in the range T (sub s) greater than 18 C also resembles that predicted from simple arguments based on the Clausius-Clapeyron relationship. The annual cycle of the globally integrated mass of Scanning Multichannel Microwave Radiometer (SMMR) water vapor is shown to differ from analyses of other water vapor data in both phase and amplitude and these differences point to a significant influence of the continents on water vapor. Regional scale analyses of water vapor demonstrate that monthly averaged water vapor data, when contrasted with the bulk sea surface temperature relationship developed in this study, reflect various known characteristics of the time mean large-scale circulation over the oceans. A water vapor parameter is introduced to highlight the effects of large-scale motion on atmospheric water vapor. Based on the magnitude of this parameter, it is shown that the effects of large-scale flow on precipitable water vapor are regionally dependent, but for the most part, the influence of circulation is generally less than about + or - 20 percent of the seasonal mean.

  9. On the relationship between water vapor over the oceans and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.

    1989-01-01

    Monthly mean precipitable water data obtained from passive microwave radiometry were correlated with the National Meteorological Center (NMC) blended sea surface temperature data. It is shown that the monthly mean water vapor content of the atmosphere above the oceans can generally be prescribed from the sea surface temperature with a standard deviation of 0.36 g/sq cm. The form of the relationship between precipitable water and sea surface temperature in the range T(sub s) greater than 18 C also resembles that predicted from simple arguments based on the Clausius-Clapeyron relationship. The annual cycle of the globally integrated mass of Scanning Multichannel Microwave Radiometer (SMMR) water vapor is shown to differ from analyses of other water vapor data in both phase and amplitude and these differences point to a significant influence of the continents on water vapor. Regional scale analyses of water vapor demonstrate that monthly averaged water vapor data, when contrasted with the bulk sea surface temperature relationship developed in this study, reflect various known characteristics of the time mean large-scale circulation over the oceans. A water vapor parameter is introduced to highlight the effects of large-scale motion on atmospheric water vapor. Based on the magnitude of this parameter, it is shown that the effects of large-scale flow on precipitable water vapor are regionally dependent, but for the most part, the influence of circulation is generally less than about + or - 20 percent of the seasonal mean.

  10. Extended Malus Law with metallic linear polarizers in terahertz and microwave domains

    NASA Astrophysics Data System (ADS)

    Romain, Xavier; Baida, Fadi; Boyer, Philippe

    2016-04-01

    An extended Malus' Law for the well-known Polarizer-Analyzer Mounting (PAM) is analytically obtained and investigated. The PAM is composed of two perfectly parallel Metallic Linear Polarizers (MLP), with subwavelength periodic pattern composed of rectangular holes. Our analytical theory especially highlights the influence of multiple reflections between the two MLPs which leads to an extended and tunable Malus Law. We demonstrate that the classical Malus Law (obtained for dichroic polarizers) is modulated by a factor which also depends on the angular difference between both MLP axes. In our analysis, the Malus' law is studied at the resonance wavelengths. Due to the interactions between the two MLP, the modulation factor is tuned by the optical distance between them which makes substantial variations of the Malus Law. We mention that, for each reflections, the light is re-polarized according to the orientation of the MLP. This tunable Malus' Law provides an original tool for ultrasensitive detection in the terahertz or microwave regime. For example, one can use an ultra-narrow angle Malus' Law as a hyper-sensitive device to analyze with a high accuracy the electro-optical response of a material sandwiched between polarizer and analyzer. We theoretically propose one PAM designed to detect a refractive index variation as small as 10-5. Finally, we extend the theory, which takes the form of an extended Jones formalism, to a large number of stacked MLP. It is applied to achieve many polarization manipulation processes as total polarization conversion with tunable spectral bandwidth, for instance.

  11. On the influence of resonant scattering on cosmic microwave background polarization anisotropies

    NASA Astrophysics Data System (ADS)

    Hernández-Monteagudo, C.; Rubiño-Martín, J. A.; Sunyaev, R. A.

    2007-10-01

    We implement the theory of resonant scattering in the context of cosmic microwave background (CMB) polarization anisotropies. We compute the changes in the E-mode polarization (EE) and temperature E-mode (TE) CMB power spectra introduced by the scattering on a resonant transition with a given optical depth τX and polarization coefficient E1. The latter parameter, accounting for how anisotropic the scattering is, depends on the exchange of angular momentum in the transition, enabling observational discrimination between different resonances. We use this formalism in two different scenarios: cosmological recombination and cosmological re-ionization. In the context of cosmological recombination, we compute predictions in frequency and multipole space for the change in the TE and EE power spectra introduced by scattering on the Hα and Pα lines of hydrogen. This constitutes a fundamental test of the standard model of recombination, and the sensitivity it requires is comparable to that needed in measuring the primordial CMB B-mode polarization component. In the context of re-ionization, we study the scattering off metals and ions produced by the first stars, and find that polarization anisotropies, apart from providing a consistency test for intensity measurements, give some insight on how re-ionization evolved. Since polarization anisotropies have memory of how anisotropic the line scattering is, they should be able to discern the OI 63.2-μm transition from other possible transitions associated to OIII, NII, NIII, etc. The amplitude of these signals are, however, between 10 and 100 times below the (already challenging) level of CMB B-mode polarization anisotropies.

  12. Microwave brightness of polar firn as measured by Nimbus 5 and 6 ESMR

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Choudhury, B. J.; Gloersen, P.

    1978-01-01

    The microwave emission from a half-space medium characterized by coordinate dependent scattering and absorbing centers was calculated by numerically solving the radiative transfer equation by the method of invariant imbedding. A Mie scattering phase function and surface polarization was included in the calculation. Also included are the physical temperature profile and the temperature variation of the index of refraction for ice. Using published values of grain size and temperature profile data of polar firn, the brightness temperature was calculated for the 1.55 cm and 0.8 cm wavelengths. For selected regions in Greenland and Antarctica, the results are in reasonable agreement with the observed Nimbus-5 and Nimbus-6 ESMR data.

  13. Microwave maps of the polar ice of the earth. [from Nimbus-5 satellite

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Wilheit, T. T.; Chang, T. C.; Nordberg, W.; Campbell, W. J.

    1973-01-01

    Synoptic views of the entire polar regions of earth were obtained free of the usual persistent cloud cover using a scanning microwave radiometer operating at a wavelength of 1.55 cm on board the Nimbus-5 satellite. Three different views at each pole are presented utilizing data obtained at approximately one-month intervals during the winter of 1972-1973. The major discoveries resulting from an analysis of these data are as follows: (1) Large discrepancies exist between the climatic norm ice cover depicted in various atlases and the actual extent of the canopies. (2) The distribution of multiyear ice in the north polar region is markedly different from that predicted by existing ice dynamics models. (3) Irregularities in the edge of the Antarctic sea ice pack occur that have neither been observed previously nor anticipated. (4) The brightness temperatures of the Greenland and Antarctica glaciers show interesting contours probably related to the ice and snow morphologic structure.

  14. Synthesis of passive microwave and radar altimeter data for estimating accumulation rates of polar snow

    NASA Technical Reports Server (NTRS)

    Davis, Curt H.

    1993-01-01

    In this paper, we compare dry-snow extinction coefficients derived from radar altimeter data with brightness temperature data from passive microwave measurements over a portion of the East Antarctic plateau. The comparison between the extinction coefficients and the brightness temperatures shows a strong negative correlation, where the correlation coefficients ranged from -0.87 to -0.95. The extinction coefficient of the dry polar snow decreases with increasing surface elevation, while the average brightness temperature increases with surface elevation. Our analysis shows that the observed trends are related to geographic variations in scattering coefficient of snow, which in turn are controlled by variations in surface temperature and snow accumulation rate. By combining information present in the extinction coefficient and brightness temperature data sets, we develop a model that can be used to obtain quantitative estimates of the accumulation rate of dry polar snow.

  15. Extraction of Water from Polar Lunar Permafrost with Microwaves - Dielectric Property Measurements

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Kaukler, William

    2009-01-01

    Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 10 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. The dielectric properties of lunar soil will determine the hardware requirements for extraction processes. Microwave frequency dielectric property measurements of lunar soil simulant have been measured.

  16. Degree of polarization technique used in PMD compensation of optical microwave transmission systems

    NASA Astrophysics Data System (ADS)

    Liu, Hankui; Zhang, Xianmin; Chen, Kangsheng

    2004-06-01

    Polarization-mode dispersion (PMD) can severely degrade the performance of optical microwave transmission systems by inducing a periodic power fading of the received RF signal that depends on the subcarrier frequency and accumulated differential group delay (DGD) along fiber. We derive a compact analytical expression of the degree of polarization (DOP) of optical signal using Jones and Stokes representations based on first-order assumption. Using this expression, we quantify the signal DOP fading induced by PMD by means of numerical simulations for BPSK and ASK modulations. The dependences of signal DOP on subcarrier frequency, accumulated DGD, and modulation formats have been demonstrated. It is found that signal DOP has similar periodic fading with the power of received RF signal, which is caused by DGD. Moreover, if the DOP technique is used in the PMD compensation of the optical microwave transmission systems, the DOP degradation is more sensitive to the DGD in the system modulated by BPSK than by ASK. The performance of this technique is immune to residual chromatic dispersion of the fiber.

  17. Monte Carlo Calculations of Polarized Microwave Radiation Emerging from Cloud Structures

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Roberti, Laura

    1998-01-01

    The last decade has seen tremendous growth in cloud dynamical and microphysical models that are able to simulate storms and storm systems with very high spatial resolution, typically of the order of a few kilometers. The fairly realistic distributions of cloud and hydrometeor properties that these models generate has in turn led to a renewed interest in the three-dimensional microwave radiative transfer modeling needed to understand the effect of cloud and rainfall inhomogeneities upon microwave observations. Monte Carlo methods, and particularly backwards Monte Carlo methods have shown themselves to be very desirable due to the quick convergence of the solutions. Unfortunately, backwards Monte Carlo methods are not well suited to treat polarized radiation. This study reviews the existing Monte Carlo methods and presents a new polarized Monte Carlo radiative transfer code. The code is based on a forward scheme but uses aliasing techniques to keep the computational requirements equivalent to the backwards solution. Radiative transfer computations have been performed using a microphysical-dynamical cloud model and the results are presented together with the algorithm description.

  18. A high-power microwave circular polarizer and its application on phase shifter.

    PubMed

    Shao, Hao; Hu, Yongmei; Chang, Chao; Guo, Letian

    2016-04-01

    A high-power waveguide dual circular polarizer was theoretically designed and proof-of-principle was experimentally tested. It consists of two incident rectangular waveguides with a perpendicular H-plane junction, one circular waveguide with a pair of trapezoidal grooves coupled in E-plane at the top, a spherical crown located at the bottom, and an iris at the perpendicular junction of two rectangular waveguides. When wave incidents at one of the two separated rectangular waveguides, it, respectively, generates a left-hand circular polarized wave or a right-hand circular polarized wave in the circular waveguide. By adding a dumbbell-like metal plug driven with a high speed servomotor, a movable short circuit is formed along the circular waveguide to adjust the output RF phase of the rectangular port, realizing a high-speed high-power phase shifter. The C-band high power microwave (HPM) experiments were carried out, and the power capacity of the HPM polarizer and phase shifter was demonstrated to reach gigawatt level.

  19. Measurement of the cosmic microwave background polarization lensing power spectrum with the POLARBEAR experiment.

    PubMed

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Linder, E; Leitch, E M; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Schanning, I; Schenck, D E; Sherwin, B; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-07-11

    Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial cosmic microwave background (CMB) and thereby induces new, small-scale B-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity E- and B-mode polarization mapped over ∼30 square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing B modes is found at 4.2σ (stat+sys) significance. The amplitude of matter fluctuations is measured with a precision of 27%, and is found to be consistent with the Lambda cold dark matter cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing B-mode signal in searches for primordial gravitational waves.

  20. Rotation of the cosmic microwave background polarization from weak gravitational lensing.

    PubMed

    Dai, Liang

    2014-01-31

    When a cosmic microwave background (CMB) photon travels from the surface of last scatter through spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely cancel those induced by the curl component of deflection.

  1. Detection of polarization in the cosmic microwave background using DASI. Degree Angular Scale Interferometer.

    PubMed

    Kovac, J M; Leitch, E M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L

    The past several years have seen the emergence of a standard cosmological model, in which small temperature differences in the cosmic microwave background (CMB) radiation on angular scales of the order of a degree are understood to arise from acoustic oscillations in the hot plasma of the early Universe, arising from primordial density fluctuations. Within the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the Universe. Using the measured temperature fluctuations, the theoretical framework predicts the level of polarization of the CMB with essentially no free parameters. Therefore, a measurement of the polarization is a critical test of the theory and thus of the validity of the cosmological parameters derived from the CMB measurements. Here we report the detection of polarization of the CMB with the Degree Angular Scale Interferometer (DASI). The polarization is deteced with high confidence, and its level and spatial distribution are in excellent agreement with the predictions of the standard theory.

  2. Evaluation of the potential of one to three SEASAT-SMMR channels in retrieving sea surface temperature

    NASA Technical Reports Server (NTRS)

    Pandey, P. C.; Kniffen, S.

    1982-01-01

    The scanning multichannel microwave radiometer (SMMR) aboard the SEASAT satellite measured emitted radiation in both horizontal and vertical polarizations at microwave frequencies of 6.6, 10.69, 18.0, 21.0 and 37.0 GHz. Retrieval algorithms, for sea surface temperature (SST) determination, from subsets of one to three SMMR channels are obtained by a two step statistical technique. The technique first selects the best subsets of a given size defined by an R2 criterion (coefficient of determination), of a given size by the application of an efficient 'leaps and bounds' technique on a statistical data base. It then performs a regression analysis on the selected subsets. The statistical data base employed a large (600) set of seasonally and geographically diverse atmospheric and surface parameters for radiative transfer calculations. The results of the study of one to three channel subset retrieval algorithms indicate the possibility of using 6.6V, 6.6H and 18V channels for SST determination from SEASAT-SMMR data.

  3. Cross-polarization microwave radar return at severe wind conditions: laboratory model and geophysical model function.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Abramov, Victor; Ermoshkin, Alexey; Zuikova, Emma; Kazakov, Vassily; Sergeev, Daniil; Kandaurov, Alexandr

    2014-05-01

    Satellite remote sensing is one of the main techniques of monitoring severe weather conditions over the ocean. The principal difficulty of the existing algorithms of retrieving wind based on dependence of microwave backscattering cross-section on wind speed (Geophysical Model Function, GMF) is due to its saturation at winds exceeding 25 - 30 m/s. Recently analysis of dual- and quad-polarization C-band radar return measured from satellite Radarsat-2 suggested that the cross-polarized radar return has much higher sensitivity to the wind speed than co-polarized back scattering [1] and conserved sensitivity to wind speed at hurricane conditions [2]. Since complete collocation of these data was not possible and time difference in flight legs and SAR images acquisition was up to 3 hours, these two sets of data were compared in [2] only statistically. The main purpose of this paper is investigation of the functional dependence of cross-polarized radar cross-section on the wind speed in laboratory experiment. Since cross-polarized radar return is formed due to scattering at small-scale structures of the air-sea interface (short-crested waves, foam, sprays, etc), which are well reproduced in laboratory conditions, then the approach based on laboratory experiment on radar scattering of microwaves at the water surface under hurricane wind looks feasible. The experiments were performed in the Wind-wave flume located on top of the Large Thermostratified Tank of the Institute of Applied Physics, where the airflow was produced in the flume with the straight working part of 10 m and operating cross section 0.40?0.40 sq. m, the axis velocity can be varied from 5 to 25 m/s. Microwave measurements were carried out by a coherent Doppler X-band (3.2 cm) scatterometer with the consequent receive of linear polarizations. Experiments confirmed higher sensitivity to the wind speed of the cross-polarized radar return. Simultaneously parameters of the air flow in the turbulent boundary layer

  4. Biogeochemical patchiness at the sea surface

    NASA Astrophysics Data System (ADS)

    Mahadevan, A.; Campbell, J. W.

    2002-10-01

    The surface distributions of many tracers in the ocean are highly correlated in time and space on meso (~100 km) and smaller scales (Figure 1). However, their characteristic scales of variability differ. Some variables like sea surface chlorophyll (Chl) are very fine-scaled or patchy, while others like sea surface temperature (SST) are not. We characterize the patchiness of a distribution quantitatively by the dependence of the variance V on the length scale L as V ~ Lp; smaller p corresponds to greater patchiness. Using scaling and a numerical model we show that patchiness, p, varies with the characteristic response time τ of the tracer to processes that alter its concentration in the upper ocean as p ~ log τ. This suggests that sea surface Chl is more patchy (has smaller p) than SST at mesoscales because the characteristic time scale of phytoplankton growth in response to the availability of nutrients is less than that for the equilibration of temperature in response to heat fluxes. Similarly, sea surface dissolved oxygen (O2) exhibits more fine-scaled variability than total dissolved inorganic carbon (TCO2) because O2 equilibrates with the atmosphere much more rapidly than TCO2. Tracers that are more patchy require higher resolution to model and sample; the sampling or model grid spacing required scales as exp(-1/log τ). The quantitative relationship between p and τ can be used to relate various biogeochemical distributions, particularly to those that are remotely sensed, and to deduce biogeochemical response times of various tracers or plankton species from the characteristics of their distributions in space or time.

  5. Sea-surface salinity: the missing measurement

    NASA Astrophysics Data System (ADS)

    Stocker, Erich F.; Koblinsky, Chester

    2003-04-01

    Even the youngest child knows that the sea is salty. Yet, routine, global information about the degree of saltiness and the distribution of the salinity is not available. Indeed, the sea surface salinity measurement is a key missing measurement in global change research. Salinity influences circulation and links the ocean to global change and the water-cycle. Space-based remote sensing of important global change ocean parameters such as sea-surface temperature and water-cycle parameters such as precipitation have been available to the research community but a space-based global sensing of salinity has been missing. In July 2002, the National Aeronautical and Space Administration (NASA) announced that the Aquarius mission, focused on the global measurement of sea surface salinity, is one of the missions approved under its ESSP-3 program. Aquarius will begin a risk-reduction phase during 2003. Aquarius will carry a multi-beam 1.4 GHz (L-band) radiometer used for retrieving salinity. It also will carry a 1.2 GHz (L-band) scatterometer used for measuring surface roughness. Aquarius is tentatively scheduled for a 2006 launch into an 8-day Sun-synchronous orbit. Aquarius key science data product will be a monthly, global surface salinity map at 100 km resolution with an accuracy of 0.2 practical salinity units. Aquarius will have a 3 year operational period. Among other things, global salinity data will permit estimates of sea surface density, or buoyancy, that drives the ocean's three-dimensional circulation.

  6. Precise orbit computation and sea surface modeling

    NASA Technical Reports Server (NTRS)

    Wakker, Karel F.; Ambrosius, B. A. C.; Rummel, R.; Vermaat, E.; Deruijter, W. P. M.; Vandermade, J. W.; Zimmerman, J. T. F.

    1991-01-01

    The research project described below is part of a long-term program at Delft University of Technology aiming at the application of European Remote Sensing satellite (ERS-1) and TOPEX/POSEIDON altimeter measurements for geophysical purposes. This program started in 1980 with the processing of Seasat laser range and altimeter height measurements and concentrates today on the analysis of Geosat altimeter data. The objectives of the TOPEX/POSEIDON research project are the tracking of the satellite by the Dutch mobile laser tracking system MTLRS-2, the computation of precise TOPEX/POSEIDON orbits, the analysis of the spatial and temporal distribution of the orbit errors, the improvement of ERS-1 orbits through the information obtained from the altimeter crossover difference residuals for crossing ERS-1 and TOPEX/POSEIDON tracks, the combination of ERS-1 and TOPEX/POSEIDON altimeter data into a single high-precision data set, and the application of this data set to model the sea surface. The latter application will focus on the determination of detailed regional mean sea surfaces, sea surface variability, ocean topography, and ocean currents in the North Atlantic, the North Sea, the seas around Indonesia, the West Pacific, and the oceans around South Africa.

  7. Investigation on the GPS single scattering from a 2-D largescale sea surface

    NASA Astrophysics Data System (ADS)

    Wei, Yiwen; Guo, Lixin

    2014-05-01

    Global positioning system (GPS) signals reflected from the ocean surface can be used for various remote sensing purposes. In this paper, we develop a facet model to simulate the received GPS single from a 2-D largescale sea surface. In this model, the sea surface is envisaged as a two-scale profile on which the long waves are locally approximated by planar facets. The microscopic profile within a facet is assumed to be represented by a set of sinusoidal ripple patches. The complex reflective function of each modified facet is evaluated by a modified formula of the original Bass and Fuks' two-scale model, in which the phase factor of each facet is with the capillary wave modification. The scattering field and the bistatic scattering coefficient of facet model is derived in detail. With received GPS single, we give a detail analysis of the polarization property, the scattering property of GPS scattering signal over the sea surface.

  8. Degree-scale cosmic microwave background polarization measurements from three years of BICEP1 data

    SciTech Connect

    Barkats, D.; Aikin, R.; Bock, J. J.; Filippini, J.; Hristov, V. V.; Bischoff, C.; Buder, I.; Kovac, J. M.; Kaufman, J. P.; Keating, B. G.; Bierman, E. M.; Su, M.; Ade, P. A. R.; Battle, J. O.; Dowell, C. D.; Chiang, H. C.; Duband, L.; Hivon, E. F.; Holzapfel, W. L.; Jones, W. C.; and others

    2014-03-10

    BICEP1 is a millimeter-wavelength telescope designed specifically to measure the inflationary B-mode polarization of the cosmic microwave background at degree angular scales. We present results from an analysis of the data acquired during three seasons of observations at the South Pole (2006-2008). This work extends the two-year result published in Chiang et al., with additional data from the third season and relaxed detector-selection criteria. This analysis also introduces a more comprehensive estimation of band power window functions, improved likelihood estimation methods, and a new technique for deprojecting monopole temperature-to-polarization leakage that reduces this class of systematic uncertainty to a negligible level. We present maps of temperature, E- and B-mode polarization, and their associated angular power spectra. The improvement in the map noise level and polarization spectra error bars are consistent with the 52% increase in integration time relative to Chiang et al. We confirm both self-consistency of the polarization data and consistency with the two-year results. We measure the angular power spectra at 21 ≤ ℓ ≤ 335 and find that the EE spectrum is consistent with Lambda cold dark matter cosmology, with the first acoustic peak of the EE spectrum now detected at 15σ. The BB spectrum remains consistent with zero. From B-modes only, we constrain the tensor-to-scalar ratio to r=0.03{sub −0.23}{sup +0.27}, or r < 0.70 at 95% confidence level.

  9. L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    NASA Technical Reports Server (NTRS)

    Joseph, A. T.; va der Velde, R.; O'Neill, P. E.; Kim, E.; Lang, R. H.; Gish, T.

    2012-01-01

    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (T(sub B))'s measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These T(sub B)'s measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly T(sub B)'s could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly T(sub B). Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, h(sub r), on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on T(sub B) simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent h(sub r) parameterization was responsible for the largest error reduction of T(sub B) simulations in the early growth cycle.

  10. Deciphering inflation with gravitational waves: Cosmic microwave background polarization vs direct detection with laser interferometers

    SciTech Connect

    Smith, Tristan L.; Peiris, Hiranya V.; Cooray, Asantha

    2006-06-15

    A detection of the primordial gravitational wave background is considered to be the 'smoking-gun' evidence for inflation. While superhorizon waves are probed with cosmic microwave background (CMB) polarization, the relic background will be studied with laser interferometers. The long lever arm spanned by the two techniques improves constraints on the inflationary potential and validation of consistency relations expected under inflation. If gravitational waves with a tensor-to-scalar amplitude ratio greater than 0.01 are detected by the CMB, then a direct-detection experiment with a sensitivity consistent with current concept studies should be pursued vigorously. If no primordial tensors are detected by the CMB, a direct-detection experiment to understand the simplest form of inflation must have a sensitivity improved by two to 3 orders of magnitude over current plans.

  11. EOS Microwave Limb Sounder Observations of the Antarctic Polar Vortex Breakup in 2004

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Santee, M. L.; Livesey, N. J.; Froidevaux, L.; Read, W. G.; Pumphrey, H. C.; Waters, J. W.; Pawson, S.

    2005-01-01

    Observations from the Microwave Limb Sounder (MLS) on NASA's new Aura satellite give an unprecedentedly detailed picture of the spring Antarctic polar vortex breakup throughout the stratosphere. HCl is a particularly valuable tracer in the lower stratosphere after chlorine deactivation. MLS HCl, N2O, H2O broke up in the upper stratosphere by early October, in the midstratosphere by early November, and in the lower stratosphere by late December. The subvortex broke up just a few days later than the lower stratospheric vortex. Vortex remnants persisted in the midstratosphere through December, but only through early January 2005 in the lower stratosphere. MLS N2O observations show diabatic descent continuing throughout November, with evidence of weak ascent after late October in the lower stratospheric vortex core.

  12. Microwave dielectric relaxation studies of hydrogen bonded polar binary mixtures of isobutanol and aniline

    NASA Astrophysics Data System (ADS)

    Vishwam, T.; Murthy, V. R. K.

    2013-03-01

    The molecular interaction between the polar systems of isobutanol and aniline for various mole fractions at different temperatures were studied by determining the frequency dependent complex dielectric permittivity by using the open-ended coaxial probe technique method in the microwave frequency range from 20 MHz to 20 GHz. The geometries are optimized at HF and B3LYP with 6-31G and 6-31G+ basis sets. Dipole moments of the binary mixtures are calculated from the dielectric data using Higasi's method and compared with the theoretical results. Conformational analysis of the formation of hydrogen bond between the isobutanol and aniline is supported by the FT-IR and molecular polarizability calculations. The average relaxation times are calculated from their respective Cole-Cole plots. The activation entropy, activation enthalpy and Kirkwood correlation 'g' factor, excess permittivities (ɛE), Bruggeman parameters (fB) have also been determined for isobutanol and aniline and the results were correlated.

  13. EBEX: A Balloon-Borne Telescope for Measuring Cosmic Microwave Background Polarization

    NASA Astrophysics Data System (ADS)

    Chapman, Daniel

    2015-05-01

    EBEX is a long-duration balloon-borne (LDB) telescope designed to probe polarization signals in the cosmic microwave background (CMB). It is designed to measure or place an upper limit on the inflationary B-mode signal, a signal predicted by inflationary theories to be imprinted on the CMB by gravitational waves, to detect the effects of gravitational lensing on the polarization of the CMB, and to characterize polarized Galactic foreground emission. The payload consists of a pointed gondola that houses the optics, polarimetry, detectors and detector readout systems, as well as the pointing sensors, control motors, telemetry sytems, and data acquisition and flight control computers. Polarimetry is achieved with a rotating half-wave plate and wire grid polarizer. The detectors are sensitive to frequency bands centered on 150, 250, and 410 GHz. EBEX was flown in 2009 from New Mexico as a full system test, and then flown again in December 2012 / January 2013 over Antarctica in a long-duration flight to collect scientific data. In the instrumentation part of this thesis we discuss the pointing sensors and attitude determination algorithms. We also describe the real-time map making software, "QuickLook", that was custom-designed for EBEX. We devote special attention to the design and construction of the primary pointing sensors, the star cameras, and their custom-designed flight software package, "STARS" (the Star Tracking Attitude Reconstruction Software). In the analysis part of this thesis we describe the current status of the post-flight analysis procedure. We discuss the data structures used in analysis and the pipeline stages related to attitude determination and map making. We also discuss a custom-designed software framework called "LEAP" (the LDB EBEX Analysis Pipeline) that supports most of the analysis pipeline stages.

  14. A global monthly sea surface temperature climatology

    NASA Technical Reports Server (NTRS)

    Shea, Dennis J.; Trenberth, Kevin E.; Reynolds, Richard W.

    1992-01-01

    The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio and the Gulf Stream. A comparison of the STR climatology with the Alexander and Mobley SST climatology showed that the STR climatology is warmer in the Northern Hemisphere, and colder poleward of 45 deg S.

  15. Sea Surface Temperature and Vegetation Index

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a composite MODIS image showing the 'green wave' of spring in North America and sea surface temperature in the ocean, collected over an 8-day period during the first week in April 2000. On land, the darker green pixels show where the most green foliage is being produced due to photosynthetic activity. Yellows on land show where there is little or no productivity and red is a boundary zone. In the ocean, orange and yellows show warmer waters and blues show colder values.

  16. Polarization- and frequency-tunable microwave circuit for selective excitation of nitrogen-vacancy spins in diamond

    NASA Astrophysics Data System (ADS)

    Herrmann, Johannes; Appleton, Marc A.; Sasaki, Kento; Monnai, Yasuaki; Teraji, Tokuyuki; Itoh, Kohei M.; Abe, Eisuke

    2016-10-01

    We report on a planar microwave resonator providing arbitrarily polarized oscillating magnetic fields that enable selective excitation of the electronic spins of nitrogen-vacancy centers in diamond. The polarization plane is parallel to the surface of diamond, which makes the resonator fully compatible with (111)-oriented diamond. The field distribution is spatially uniform in a circular area with a diameter of 4 mm, and a near-perfect circular polarization is achieved. We also demonstrate that the original resonance frequency of 2.8 GHz can be varied in the range of 2-3.2 GHz by introducing varactor diodes that serve as variable capacitors.

  17. Passive L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    NASA Astrophysics Data System (ADS)

    Joseph, A. T.; van der Velde, R.; O'Neill, P. E.; Kim, E. J.; Lang, R. H.; Gish, T. J.

    2012-12-01

    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (TB's) measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These TB measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly TB's could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly TB. Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, hr, on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on TB simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent hr parameterization was responsible for the largest error reduction of TB simulations in the early growth cycle. A.T. Joseph, R. Van der Velde, P.E. O'Neill, R.H. Lang, and T. Gish, "Soil moisture retrieval during a corn growth cycle using L-band (1.6 GHz) radar observations", IEEE Transactions on Geoscience and Remote Sensing, vol. 46, DOI:10.1109/TGRS.2008.917214, Aug. 2008. M.C. Dobson, F.T. Ulaby, M

  18. The POLARBEAR Cosmic Microwave Background Polarization Experiment and Anti-Reflection Coatings for Millimeter Wave Observations

    NASA Astrophysics Data System (ADS)

    Quealy, Erin Elizabeth

    New technology has rapidly advanced the field of observational cosmology over the last 30 years. This trend will continue with the development of technologies to measure the Cosmic Microwave Background (CMB) polarization. The B-mode component of the polarization map will place limits on the energy scale of inflation and the sum of the neutrino masses. This thesis describes the pb instrument which will measure the CMB polarization anisotropy to unprecedented sensitivity. POLARBEAR-I is currently observing, and an upgraded version, POLARBEAR-II, is planned for the future. The first version of the experiment, POLARBEAR-I, is fielding several new technologies for the first time. POLARBEAR-I has high sensitivity due to its detector count. It employs a 1274 detector Transition-Edge Sensor (TES) bolometer array. The bolometers are coupled to a planar array of polarization sensitive antennas. These antennas are lithographed on the same substrate as the TES detectors, allowing on-chip band defining filters between the antenna and detector. The focal plane is composed of seven hexagonal detector modules. This modular scheme can be extended to create larger focal plane arrays in the future. POLARBEAR-I is observing at a single band near 150 GHz, the peak in the CMB blackbody curve. The lenslet antenna coupled detector technology, fielding for the first time in POLARBEAR-I, is naturally scalable to larger arrays with multi-chroic pixels. This broadband technology will have higher sensitivity and better capability for astronomical foreground contaminant removal. The antenna geometry can be changed to receive a wider frequency bandwidth. This bandwidth can be broken into multiple frequency bands with the on-chip band defining filters. Each band will be read out by one TES detector. A dual band instrument, pbtwo, is in development with bands at 90 and 150 GHz. One challenge for all CMB polarization measurements is minimization of systematic errors. One source of error is

  19. Isotropy-violation diagnostics for B-mode polarization foregrounds to the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Rotti, Aditya; Huffenberger, Kevin

    2016-09-01

    Isotropy-violation statistics can highlight polarized galactic foregrounds that contaminate primordial B-modes in the Cosmic Microwave Background (CMB). We propose a particular isotropy-violation test and apply it to polarized Planck 353 GHz data, constructing a map that indicates B-mode foreground dust power over the sky. We build our main isotropy test in harmonic space via the bipolar spherical harmonic basis, and our method helps us to identify the least-contaminated directions. By this measure, there are regions of low foreground in and around the BICEP field, near the South Galactic Pole, and in the Northern Galactic Hemisphere. There is also a possible foreground feature in the BICEP field. We compare our results to those based on the local power spectrum, which is computed on discs using a version of the method of Planck Int. XXX (2016). The discs method is closely related to our isotropy-violation diagnostic. We pay special care to the treatment of noise, including chance correlations with the foregrounds. Currently we use our isotropy tool to assess the cleanest portions of the sky, but in the future such methods will allow isotropy-based null tests for foreground contamination in maps purported to measure primordial B-modes, particularly in cases of limited frequency coverage.

  20. Probing 'Parent Universe' in Loop Quantum Cosmology with B-mode Polarization in Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Lucky Chang, Wen-Hsuan; Proty Wu, Jiun-Huei

    2016-06-01

    We aim to use the observations of B-mode polarization in the Cosmic Microwave Background (CMB) to probe the ‘parent universe’ under the context of Loop Quantum Cosmology (LQC). In particular, we investigate the possibility for the gravitational waves (GW) such as those from the stellar binary systems in the parent universe to survive the big bounce and thus to be still observable today. Our study is based on the background dynamics with the zeroth-order holonomy correction using the Arnowitt-Deser-Misner (ADM) formalism. We propose a new framework in which transfer functions are invoked to bring the GWs in the parent universe through the big bounce, inflation, and big bang to reach today. This transparent and intuitive formalism allows us to accurately discuss the influence of the GWs from the parent universe on the B-mode polarization in the CMB today under backgrounds of different LQC parameters. These features can soon be tested by the forth-coming CMB observations and we note that the LQC backgrounds with symmetric bouncing scenarios are ruled out by the latest observational results from Planck and BICEP2/Keck experiments.

  1. Dynamic nuclear polarization at 9 T using a novel 250 GHz gyrotron microwave source

    NASA Astrophysics Data System (ADS)

    Bajaj, V. S.; Farrar, C. T.; Hornstein, M. K.; Mastovsky, I.; Vieregg, J.; Bryant, J.; Eléna, B.; Kreischer, K. E.; Temkin, R. J.; Griffin, R. G.

    2011-12-01

    In this communication, we report enhancements of nuclear spin polarization by dynamic nuclear polarization (DNP) in static and spinning solids at a magnetic field strength of 9 T (250 GHz for g = 2 electrons, 380 MHz for 1H). In these experiments, 1H enhancements of up to 170 ± 50 have been observed in 1- 13C-glycine dispersed in a 60:40 glycerol/water matrix at temperatures of 20 K; in addition, we have observed significant enhancements in 15N spectra of unoriented pf1-bacteriophage. Finally, enhancements of ˜17 have been obtained in two-dimensional 13C- 13C chemical shift correlation spectra of the amino acid U- 13C, 15N-proline during magic angle spinning (MAS), demonstrating the stability of the DNP experiment for sustained acquisition and for quantitative experiments incorporating dipolar recoupling. In all cases, we have exploited the thermal mixing DNP mechanism with the nitroxide radical 4-amino-TEMPO as the paramagnetic dopant. These are the highest frequency DNP experiments performed to date and indicate that significant signal enhancements can be realized using the thermal mixing mechanism even at elevated magnetic fields. In large measure, this is due to the high microwave power output of the 250 GHz gyrotron oscillator used in these experiments.

  2. Determination of the Structure of the Coronal Magnetic Field Using Microwave Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Bogod, V. M.; Yasnov, L. V.

    2016-11-01

    An analysis of the oscillatory motions and wave processes in active regions requires knowledge of the structure of the magnetic fields in the chromosphere and corona. We study the magnetic field structure of active regions at coronal heights, as they are determined by means of multiwave observations of polarized radio emission of active regions in the microwave range. Two methods, a stereoscopic method and the analysis of the radio spectrum are used. The method of stereoscopy rotation allows estimating the height of radio sources in a stable active region relative to the photosphere, based on its apparent motion in the image plane recorded over several days of observation. At various times one-dimensional scans at multiple frequencies spanning the 5.98 - 15.95 GHz frequency range from the RATAN-600 instrument are used. The gyroresonance emission mechanism, which is sensitive to the coronal magnetic field strength, is applied to convert the radio source estimated heights at various frequencies, h(f), to information as regards magnetic field vs. height, B(h). Diagrams of longitude - height of some polarized radio sources revealed multiple reversals, suggestive of a spiral magnetic structure. In all cases, the magnetic field strength maintains high values (800 - 1000 G) at the highest altitudes analysed, which reflects a relatively weak divergence in the field of magnetic flux tubes (in the height range 8 - 14 Mm) responsible for the main part of the radio emission of active regions.

  3. Statistical Seasonal Sea Surface based Prediction Model

    NASA Astrophysics Data System (ADS)

    Suarez, Roberto; Rodriguez-Fonseca, Belen; Diouf, Ibrahima

    2014-05-01

    The interannual variability of the sea surface temperature (SST) plays a key role in the strongly seasonal rainfall regime on the West African region. The predictability of the seasonal cycle of rainfall is a field widely discussed by the scientific community, with results that fail to be satisfactory due to the difficulty of dynamical models to reproduce the behavior of the Inter Tropical Convergence Zone (ITCZ). To tackle this problem, a statistical model based on oceanic predictors has been developed at the Universidad Complutense of Madrid (UCM) with the aim to complement and enhance the predictability of the West African Monsoon (WAM) as an alternative to the coupled models. The model, called S4CAST (SST-based Statistical Seasonal Forecast) is based on discriminant analysis techniques, specifically the Maximum Covariance Analysis (MCA) and Canonical Correlation Analysis (CCA). Beyond the application of the model to the prediciton of rainfall in West Africa, its use extends to a range of different oceanic, atmospheric and helth related parameters influenced by the temperature of the sea surface as a defining factor of variability.

  4. Modern average global sea-surface temperature

    USGS Publications Warehouse

    Schweitzer, Peter N.

    1993-01-01

    The data contained in this data set are derived from the NOAA Advanced Very High Resolution Radiometer Multichannel Sea Surface Temperature data (AVHRR MCSST), which are obtainable from the Distributed Active Archive Center at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif. The JPL tapes contain weekly images of SST from October 1981 through December 1990 in nine regions of the world ocean: North Atlantic, Eastern North Atlantic, South Atlantic, Agulhas, Indian, Southeast Pacific, Southwest Pacific, Northeast Pacific, and Northwest Pacific. This data set represents the results of calculations carried out on the NOAA data and also contains the source code of the programs that made the calculations. The objective was to derive the average sea-surface temperature of each month and week throughout the whole 10-year series, meaning, for example, that data from January of each year would be averaged together. The result is 12 monthly and 52 weekly images for each of the oceanic regions. Averaging the images in this way tends to reduce the number of grid cells that lack valid data and to suppress interannual variability.

  5. High-fidelity spatial and polarization addressing of +43Ca qubits using near-field microwave control

    NASA Astrophysics Data System (ADS)

    Aude Craik, D. P. L.; Linke, N. M.; Sepiol, M. A.; Harty, T. P.; Goodwin, J. F.; Ballance, C. J.; Stacey, D. N.; Steane, A. M.; Lucas, D. M.; Allcock, D. T. C.

    2017-02-01

    Individual addressing of qubits is essential for scalable quantum computation. Spatial addressing allows unlimited numbers of qubits to share the same frequency, while enabling arbitrary parallel operations. We demonstrate addressing of long-lived +43Ca "atomic clock" qubits held in separate zones (960 μ m apart) of a microfabricated surface trap with integrated microwave electrodes. Such zones could form part of a "quantum charge-coupled device" architecture for a large-scale quantum information processor. By coherently canceling the microwave field in one zone we measure a ratio of Rabi frequencies between addressed and nonaddressed qubits of up to 1400, from which we calculate a spin-flip probability on the qubit transition of the nonaddressed ion of 1.3 ×10-6 . Off-resonant excitation then becomes the dominant error process, at around 5 ×10-3 . It can be prevented either by working at higher magnetic field, or by polarization control of the microwave field. We implement polarization control with error 2 ×10-5 , which would suffice to suppress off-resonant excitation to the ˜10-9 level if combined with spatial addressing. Such polarization control could also enable fast microwave operations.

  6. The Aquarius Mission: Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    Koblinsky, Chester; Chao, Y.; deCharon, A.; Edelstein, W.; Hildebrand, P.; Lagerloef, G.; LeVine, D.; Pellerano, F.; Rahmat-Samii, Y.; Ruf, C.

    2001-01-01

    Aquarius is a new satellite mission concept to study the impact of the global water cycle on the ocean, including the response of the ocean to buoyancy forcing and the subsequent feedback of the ocean on the climate. The measurement objective of Aquarius is sea surface salinity, which reflects the concentration of freshwater at the ocean surface. Salinity affects the dielectric constant of sea water and, consequently, the radiometric emission of the sea surface to space. Rudimentary space observations with an L-band radiometer were first made from Skylab in the mid-70s and numerous aircraft missions of increasing quality and improved technology have been conducted since then. Technology is now available to carry out a global mission, which includes both an accurate L band (1.413 Ghz) radiometer and radar system in space and a global array of in situ observations for calibration and validation, in order to address key NASA Earth Science Enterprise questions about the global cycling of water and the response of the ocean circulation to climate change. The key scientific objectives of Aquarius examine the cycling of water at the ocean's surface, the response of the ocean circulation to buoyancy forcing, and the impact of buoyancy forcing on the ocean's thermal feedback to the climate. Global surface salinity will also improve our ability to model the surface solubility chemistry needed to estimate the air-sea exchange of CO2. In order to meet these science objectives, the NASA Salinity Sea Ice Working Group over the past three years has concluded that the mission measurement goals should be better than 0.2 practical salinity units (psu) accuracy, 100 km resolution, and weekly to revisits. The Aquarius mission proposes to meet these measurement requirements through a real aperture dual-polarized L band radiometer and radar system. This system can achieve the less than 0.1 K radiometric temperature measurement accuracy that is required. A 3 m antenna at approx. 600km

  7. Satellite Sensed Skin Sea Surface Temperature

    NASA Technical Reports Server (NTRS)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to

  8. Hierarchical Phased Array Antenna Focal Plane for Cosmic Microwave Background Polarization and Sub-mm Observations

    NASA Astrophysics Data System (ADS)

    Lee, Adrian

    -IDS and in space on the LiteBIRD CMB polarization mission. The deliverables for the proposed work include: *Fabrication and test of a sinuous-antenna-based pixel with a 5:1 total bandwidth. Separate pixels will be built that are sensitive down to 30 GHz and others that are sensitive up to 400 GHz to cover the full range required for CMB measurements and to push into the sub-mm wavelength range. The efficiency of these pixels will be maximized by introducing a low loss silicon nitride insulator layer in all of the transmission lines. *Hierarchical phased arrays that use up to five levels of arraying will be fabricated and tested. The hierarchical phased array approaches the optimal mapping speed (sensitivity) at all frequencies by adjusting the beam size of the array with frequency. *We will develop 3 and 5 layer anti-reflection coatings using a new ``thermal spray" technique that we have developed which heats ceramics and plastics to melting temperature an then sprays them on optical surfaces with excellent uniformity and thickness control. The dielectric constant of each layer can be adjusted by choosing mixing ratios of high and low dielectric constant materials. Prioritization committees including the Astro2010 decadal, Quarks to Cosmos, and Weiss Committee have strongly advocated for prioritizing Cosmic Microwave Background polarization measurements and other science goals in the mm and sub-mm wavelength regime. The technology we propose to develop has the potential to greatly increase the cost effectiveness of potential missions in this frequency range. We have assembled an experienced team that includes expertise in antenna design, RF superconducting circuits, microfabrication, and CMB observations. Our team includes detector and/or CMB observation experts Bill Holzapfel, Adrian Lee, Akito Kusaka, and Aritoki Suzuki.

  9. Sea surface wind stress in stratified atmospheric flow

    SciTech Connect

    Myrhaug, D.; Slaattelid, O.H.

    1996-12-31

    The paper presents the wind shear stress on the sea surface as well as the velocity profile in stably stratified atmospheric boundary layer flow over wind waves by using similarity theory. For a given geostrophic velocity, Coriolis parameter, spectral peak period and stratification parameter the sea surface shear stress is determined. Further, the direction of the sea surface shear stress and the velocity profile are given. Parameterizations of the results are also presented. Finally, the engineering relevance of the results is discussed.

  10. Satellite monitoring of sea surface pollution

    NASA Technical Reports Server (NTRS)

    Fielder, G.; Telfer, D. J. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Image processing techniques developed are well adapted to the exploration and isolation of local areas which exhibit small temperature differences between themselves and their surroundings. In the worst case of imagery of small areal extent of sea surface having no coastal boundary in the area, there is yet no method of distinguishing unambiguously an oil spill from fog, cloud, the effect produced by shallow sediments, or the effects of naturally occuring thermal fronts. In the case of uniform slicks of liquid North Sea oil in still air, laboratory simulation experiments show that, for oil thicknesses in excess of 1 or 2 mm, there is, under equilibrium conditions, little dependence of oil surface temperature on the thickness of the oil layer. The surface temperature of oil is consistently higher than that of water, the difference being about 1 K at low values of relative humidity, but tending to increase as the relative humidity increases.

  11. Middle Pliocene sea surface temperature variability

    USGS Publications Warehouse

    Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, G.S.

    2005-01-01

    Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.

  12. Sea surface temperatures from VAS MSI data

    NASA Technical Reports Server (NTRS)

    Bates, J. J.

    1984-01-01

    A procedure is developed for estimating sea surface temperatures from multispectral image data acquired from the VISSR atmospheric sounder on the geostationary GOES satellites. Theoretical regression equations for two and three infrared window channels are empirically tuned using clear field of view satellite radiances matched with reports of SST from NOAA fixed environmental buoys. The empirical regression equations are then used to produce daily regional analyses of SST. Monthly mean SST's for the western North Atlantic and the eastern equatorial Pacific during March and July 1982 were produced for use in the SST Intercomparison Workshop Series. Workshop results showed VAS SST's have a scatter of 0.8-1.0 C and a slight warm bias with respect to the other measurements of SST. The VAS SST's show no discernible bias in the region of El Chichon volcanic aerosol cloud.

  13. Evidence for gravitational lensing of the cosmic microwave background polarization from cross-correlation with the cosmic infrared background.

    PubMed

    Ade, P A R; Akiba, Y; Anthony, A E; Arnold, K; Atlas, M; Barron, D; Boettger, D; Borrill, J; Borys, C; Chapman, S; Chinone, Y; Dobbs, M; Elleflot, T; Errard, J; Fabbian, G; Feng, C; Flanigan, D; Gilbert, A; Grainger, W; Halverson, N W; Hasegawa, M; Hattori, K; Hazumi, M; Holzapfel, W L; Hori, Y; Howard, J; Hyland, P; Inoue, Y; Jaehnig, G C; Jaffe, A; Keating, B; Kermish, Z; Keskitalo, R; Kisner, T; Le Jeune, M; Lee, A T; Leitch, E M; Linder, E; Lungu, M; Matsuda, F; Matsumura, T; Meng, X; Miller, N J; Morii, H; Moyerman, S; Myers, M J; Navaroli, M; Nishino, H; Paar, H; Peloton, J; Poletti, D; Quealy, E; Rebeiz, G; Reichardt, C L; Richards, P L; Ross, C; Rotermund, K; Schanning, I; Schenck, D E; Sherwin, B D; Shimizu, A; Shimmin, C; Shimon, M; Siritanasak, P; Smecher, G; Spieler, H; Stebor, N; Steinbach, B; Stompor, R; Suzuki, A; Takakura, S; Tikhomirov, A; Tomaru, T; Wilson, B; Yadav, A; Zahn, O

    2014-04-04

    We reconstruct the gravitational lensing convergence signal from cosmic microwave background (CMB) polarization data taken by the Polarbear experiment and cross-correlate it with cosmic infrared background maps from the Herschel satellite. From the cross spectra, we obtain evidence for gravitational lensing of the CMB polarization at a statistical significance of 4.0σ and indication of the presence of a lensing B-mode signal at a significance of 2.3σ. We demonstrate that our results are not biased by instrumental and astrophysical systematic errors by performing null tests, checks with simulated and real data, and analytical calculations. This measurement of polarization lensing, made via the robust cross-correlation channel, not only reinforces POLARBEAR auto-correlation measurements, but also represents one of the early steps towards establishing CMB polarization lensing as a powerful new probe of cosmology and astrophysics.

  14. On discrimination between film slicks and "look-alikes" on the sea surface in multifrequency radar images

    NASA Astrophysics Data System (ADS)

    Sergievskaya, Irina; Ermakov, Stanislav A.; Kapustin, Ivan

    2015-10-01

    Slicks on the sea surface are characterized by attenuation of short wind waves and appear in radar imagery at moderate incidence angles as areas of reduced intensity. In the proximity of oil platforms, ship routes, fish farms, etc. marine slicks are often identified as oil spills or biogenic films. However, probability of false alarm when detecting film slicks is very high because of the occurrence of structures in radar images looking similar but not related to surface films ("lookalikes"). One of the most frequent "look-alikes" is wind depression areas (WDAs) where the wind excitation of short surface waves is reduced compared to the ambient background. Results of field observations of films slicks and WDA are described and differences in character of wind wave attenuation in different parts of the wind wave spectrum are revealed. Model calculations of wave damping degree (contrast) in film slick and in WDA are carried out and are shown to be in general agreement with experiment. Capabilities of dual-polarization and multi-band microwave radar for discrimination between film slicks and "look-alikes" are analyzed based on experiment and model results.

  15. Robust likelihoods for inflationary gravitational waves from maps of cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Switzer, Eric R.; Watts, Duncan J.

    2016-09-01

    The B -mode polarization of the cosmic microwave background provides a unique window into tensor perturbations from inflationary gravitational waves. Survey effects complicate the estimation and description of the power spectrum on the largest angular scales. The pixel-space likelihood yields parameter distributions without the power spectrum as an intermediate step, but it does not have the large suite of tests available to power spectral methods. Searches for primordial B -modes must rigorously reject and rule out contamination. Many forms of contamination vary or are uncorrelated across epochs, frequencies, surveys, or other data treatment subsets. The cross power and the power spectrum of the difference of subset maps provide approaches to reject and isolate excess variance. We develop an analogous joint pixel-space likelihood. Contamination not modeled in the likelihood produces parameter-dependent bias and complicates the interpretation of the difference map. We describe a null test that consistently weights the difference map. Excess variance should either be explicitly modeled in the covariance or be removed through reprocessing the data.

  16. Litmus Test for Cosmic Hemispherical Asymmetry in the Cosmic Microwave Background B-Mode Polarization.

    PubMed

    Mukherjee, Suvodip; Souradeep, Tarun

    2016-06-03

    Recent measurements of the temperature field of the cosmic microwave background (CMB) provide tantalizing evidence for violation of statistical isotropy (SI) that constitutes a fundamental tenet of contemporary cosmology. CMB space based missions, WMAP, and Planck have observed a 7% departure in the SI temperature field at large angular scales. However, due to higher cosmic variance at low multipoles, the significance of this measurement is not expected to improve from any future CMB temperature measurements. We demonstrate that weak lensing of the CMB due to scalar perturbations produces a corresponding SI violation in B modes of CMB polarization at smaller angular scales. The measurability of this phenomenon depends upon the scales (l range) over which power asymmetry is present. Power asymmetry, which is restricted only to l<64 in the temperature field, cannot lead to any significant observable effect from this new window. However, this effect can put an independent bound on the spatial range of scales of hemispherical asymmetry present in the scalar sector.

  17. Litmus Test for Cosmic Hemispherical Asymmetry in the Cosmic Microwave Background B -Mode Polarization

    NASA Astrophysics Data System (ADS)

    Mukherjee, Suvodip; Souradeep, Tarun

    2016-06-01

    Recent measurements of the temperature field of the cosmic microwave background (CMB) provide tantalizing evidence for violation of statistical isotropy (SI) that constitutes a fundamental tenet of contemporary cosmology. CMB space based missions, WMAP, and Planck have observed a 7% departure in the SI temperature field at large angular scales. However, due to higher cosmic variance at low multipoles, the significance of this measurement is not expected to improve from any future CMB temperature measurements. We demonstrate that weak lensing of the CMB due to scalar perturbations produces a corresponding SI violation in B modes of CMB polarization at smaller angular scales. The measurability of this phenomenon depends upon the scales (l range) over which power asymmetry is present. Power asymmetry, which is restricted only to l <64 in the temperature field, cannot lead to any significant observable effect from this new window. However, this effect can put an independent bound on the spatial range of scales of hemispherical asymmetry present in the scalar sector.

  18. A triple-band, polarization- and incident angle-independent microwave metamaterial absorber with interference theory

    NASA Astrophysics Data System (ADS)

    Chen, Junfeng; Hu, Zhaoyang; Wang, Shengming; Huang, Xiutao; Liu, Minghai

    2016-01-01

    We present the design, fabrication and characterization of an ultrathin triple-band metamaterial absorber (MMA) in the microwave frequencies. The unit cell of the MMA consists of three different sizes of electric split ring resonators (eSRRs) and continuous metal film separated by only 1 mm dielectric substrate. The single-band MMA of this structure is firstly investigated. Then, by tuning the scale factor of the unit cells, the proposed triple-band MMA achieves absorption peaks at 9.85 GHz, 13.05 GHz and 14.93 GHz, respectively. Electric field distributions at three resonant frequencies are investigated to qualitatively analyze the loss mechanism. The further simulated and experimental results indicate that the proposed MMA is also polarization- and incident angle-independent. Finally, the interference theory is introduced to quantitatively analyze the MMA, which provides good insight into the physics behind the absorbing structure. To calculate the absorption rates accurately, we employ a simulation strategy make the near-field coupling between two metallic layers get back (compensation method). The measured absorption spectra show an excellent agreement with the theoretical calculation and simulation results. Therefore, the explanation to the physical mechanism of the triple-band MMA is presented and verified.

  19. Estimating the Ocean Flow Field From Combined Sea Surface Temperature and Sea Surface Height Data

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef

    2000-01-01

    The primary focus of this project was on the estimation of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. This effort is directly related to an attempt to describe the mechanisms which give rise to observed SST and its variability on seasonal and inter-annual timescales, its relation to ocean-atmosphere interaction, and the dynamical coupling between the ocean mixed layer and the deep interior ocean. This is one of the fundamental climate related questions being pursued currently under the CLIVAR Program. Because of the strong turbulent mixing associated with atmospheric fluxes of momentum, heat and freshwater through the sea surface, the ocean forms a shallow surface boundary layer, the mixed layer which is largely homogeneous in its constituents. The relation between the temperature of the remotely sensed "skin" and the bulk of the mixed layer is largely understood (Reynolds and Smith 1994; Emery et al., 1995). However, because the surface mixed layer is effectively decoupled from the underlying ocean dynamics, an interpretation of satellite SST observations in isolation and in direct use for dynamical studies is very difficult. As a result, the impact of SST data on the understanding of ocean variability.

  20. Ratchet effect study in Si/SiGe heterostructures in the presence of asymmetrical antidots for different polarizations of microwaves.

    PubMed

    Bisotto, Isabelle; Kannan, Ethirajulu S; Portal, Jean-Claude; Brown, Devin; Beck, Thomas J; Krupko, Yuriy; Jalabert, Laurent; Fujita, Hiroyuki; Hoshi, Yusuke; Shiraki, Yasuhiro; Saraya, Takura

    2014-08-01

    In this work, we studied the photovoltage response of an antidot lattice to microwave radiation for different antidot parameters. The study was carried out in a Si/SiGe heterostructure by illuminating the antidot lattice with linearly polarized microwaves and recording the polarity of induced photovoltage for different angles of incidence. Our study revealed that with increased antidot density and etching depth, the polarity of induced photovoltage changed when the angle of incidence was rotated 90 degrees. In samples with large antidot density and/or a deeply etched antidot lattice, scattering was dominated by electron interaction with the asymmetrical potential created by semicircular antidots. The strong electron-electron interaction prevailed in other cases. Our study provides insight into the mechanism of interaction between microwaves and electrons in an antidot lattice, which is the key for developing an innovative ratchet-based device. Moreover, we present an original and fundamental example of antidot lattice etching through the use of a two-dimensional electron gas. This system deals with a hole lattice instead of an electron depletion in the antidot lattice region.

  1. Multisensor monitoring of sea surface state of the coastal zone

    NASA Astrophysics Data System (ADS)

    Lavrova, Olga; Mityagina, Marina; Bocharova, Tatina

    Results of many-year monitoring of the state of coastal zone based on a multisensor approach are presented. The monitoring is aimed at solving the following tasks: operational mapping of parameters characterizing the state and pollution (coastal, ship and biogenic) of water; analysis of meteorological state and its effect on the drift and spread of pollutants; study of coastal circulation patterns and their impact on the drift and spread of pollutants; deriving typical pollution distribution patterns in the coastal zone.Processing and analysis is performed using data in visual, infrared and microwave ranges from ERS-2 SAR, Envisat ASAR/MERIS, Terra and Aqua MODIS and NOAA AVHRR instruments. These are complimented with ground data from meteorological stations on the shore and results of satellite data processing of previous periods. The main regions of interest are the Russian sectors of the Black and Azov Seas, southeastern part of the Baltic Sea, and northern and central regions of the Caspian Sea. Adjacent coasts are extremely populated and have well-developed industry, agriculture and rapidly growing tourist sectors. The necessity of constant monitoring of the sea state there is obvious.The monitoring activities allow us to accumulate extensive material for the study of hydrodynamic processes in the regions, in particular water circulation. Detailing the occurrence, evolution and drift of smalland meso-scale vortex structures is crucial for the knowledge of the mechanisms determining mixing and circulation processes in the coastal zone. These mechanisms play an important role in ecological, hydrodynamic and meteorological status of a coastal zone. Special attention is paid to the sea surface state in the Kerch Strait, where a tanker catastrophe took place on November 11, 2007 causing a spillage of over 1.5 thousand tons of heavy oil. The Kerch Strait is characterized by a complex current system with current directions changing to their opposites depending on

  2. A multispectral method of determining sea surface temperatures

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.

    1972-01-01

    A multispectral method for determining sea surface temperatures is discussed. The specifications of the equipment and the atmospheric conditions required for successful multispectral data acquisition are described. Examples of data obtained in the North Atlantic Ocean are presented. The differences between the actual sea surface temperatures and the equivalent blackbody temperatures as determined by a radiometer are plotted.

  3. Improving the Arctic Mean Sea Surface with CryoSat-2 Data

    NASA Astrophysics Data System (ADS)

    Stenseng, L.; Andersen, O. B.

    2013-12-01

    A fundamental basis for estimating short and long-term changes in the sea surface is a reliable mean sea surface (MSS). Existing MSS models, derived from satellite radar altimetry, generally lack observations above 82 degrees latitude making high Arctic sea surface change estimates unreliable. Most current MSS models use ICESat data, geoid models, ocean circulation models, or a combination of these to extrapolate the MSS above 82 degrees latitude. This approach makes the MSS models unsuited for deriving sea surface anomalies from short-term observations like airborne campaigns (e.g. operation IceBridge). The new state of the art DTU13MSS is a global high-resolution MSS that includes retracked CryoSat-2 data and thereby extends the polar data coverage up to 88 degrees latitude. Furthermore, in the sea-ice covered areas, the SAR and SARin feature of the altimeter on-board CryoSat-2 increases the amount of useable observations dramatically compared to conventional altimeters like ENVISAT and ERS-1/2. Finally the continuous time-series, below 82 degrees latitude, has been extended to cover more than 20 years compared to the 17 years use for the DTU10MSS model. A comparison between DTU13MSS and DTU10MSS show an improvement of more than 20 cm between 82 and 88 degrees latitude. For the first time the three years of retracked CryoSat-2 data will, in combination with DTU13MSS, allow reliable estimation of the trend and annual variations in the high Arctic Ocean sea surface height.

  4. An atlas of monthly mean distributions of SSMI surface wind speed, AVHRR/2 sea surface temperature, AMI surface wind velocity, TOPEX/POSEIDON sea surface height, and ECMWF surface wind velocity during 1993

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.

    1995-01-01

    The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.

  5. Experimental evaluation of theoretical sea surface reflectance factors relevant to above-water radiometry.

    PubMed

    Zibordi, Giuseppe

    2016-03-21

    Determination of the water-leaving radiance LW through above-water radiometry requires knowledge of accurate reflectance factors ρ of the sea surface. Publicly available ρ relevant to above-water radiometry include theoretical data sets generated: i. by assuming a sky radiance distribution accounting for aerosols and multiple scattering, but neglecting polarization, and quantifying sea surface effects through Cox-Munk wave slope statistics; or differently ii. accounting for polarization, but assuming an ideal Rayleigh sky radiance distribution, and quantifying sea surface effects through modeled wave elevation and slope variance spectra. The impact on above-water data products of differences between those factors ρ was quantified through comparison of LW from the Ocean Color component of the Aerosol Robotic Network (AERONET-OC) with collocated LW from in-water radiometry. Results from the analysis of radiance measurements from the sea performed with 40 degrees viewing angle and 90 degrees azimuth offset with respect to the sun plane, indicated a slightly better agreement between above- and in-water LW determined for wind speeds tentatively lower than 4 m s-1 with ρ computed accounting for aerosols, multiple scattering and Cox-Munk surfaces. Nevertheless, analyses performed by partitioning the investigated data set also indicated that actual ρ values would exhibit dependence on sun zenith comprised between those characterizing the two sets of reflectance factors.

  6. The Effect of Ocean Currents on Sea Surface Temperature Anomalies

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef; Leeuwenburgh, Olwijn

    2000-01-01

    We investigate regional and global-scale correlations between observed anomalies in sea surface temperature and height. A strong agreement between the two fields is found over a broad range of latitudes for different ocean basins. Both time-longitude plots and wavenumber-frequency spectra suggest an advective forcing of SST anomalies by a first-mode baroclinic wave field on spatial scales down to 400 km and time scales as short as 1 month. Even though the magnitude of the mean background temperature gradient is determining for the effectiveness of the forcing, there is no obvious seasonality that can be detected in the amplitudes of SST anomalies. Instead, individual wave signatures in the SST can in some cases be followed over periods of two years. The phase relationship between SST and SSH anomalies is dependent upon frequency and wavenumber and displays a clear decrease of the phase lag toward higher latitudes where the two fields come into phase at low frequencies. Estimates of the damping coefficient are larger than generally obtained for a purely atmospheric feedback. From a global frequency spectrum a damping time scale of 2-3 month was found. Regionally results are very variable and range from 1 month near strong currents to 10 month at low latitudes and in the sub-polar North Atlantic. Strong agreement is found between the first global EOF modes of 10 day averaged and spatially smoothed SST and SSH grids. The accompanying time series display low frequency oscillations in both fields.

  7. SECOND SEASON QUIET OBSERVATIONS: MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRUM AT 95 GHz

    SciTech Connect

    Araujo, D.; Dumoulin, R. N.; Newburgh, L. B.; Zwart, J. T. L.; Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A.; Chinone, Y.; Cleary, K.; Reeves, R.; Naess, S. K.; Eriksen, H. K.; Wehus, I. K.; Bronfman, L.; Church, S. E.; Dickinson, C.; Gaier, T.; Collaboration: QUIET Collaboration; and others

    2012-12-01

    The Q/U Imaging ExperimenT (QUIET) has observed the cosmic microwave background (CMB) at 43 and 95 GHz. The 43 GHz results have been published in a previous paper, and here we report the measurement of CMB polarization power spectra using the 95 GHz data. This data set comprises 5337 hr of observations recorded by an array of 84 polarized coherent receivers with a total array sensitivity of 87 {mu}K{radical}s. Four low-foreground fields were observed, covering a total of {approx}1000 deg{sup 2} with an effective angular resolution of 12.'8, allowing for constraints on primordial gravitational waves and high signal-to-noise measurements of the E-modes across three acoustic peaks. The data reduction was performed using two independent analysis pipelines, one based on a pseudo-C {sub l} (PCL) cross-correlation approach, and the other on a maximum-likelihood (ML) approach. All data selection criteria and filters were modified until a predefined set of null tests had been satisfied before inspecting any non-null power spectrum. The results derived by the two pipelines are in good agreement. We characterize the EE, EB, and BB power spectra between l = 25 and 975 and find that the EE spectrum is consistent with {Lambda}CDM, while the BB power spectrum is consistent with zero. Based on these measurements, we constrain the tensor-to-scalar ratio to r = 1.1{sup +0.9} {sub -0.8} (r < 2.8 at 95% C.L.) as derived by the ML pipeline, and r = 1.2{sup +0.9} {sub -0.8} (r < 2.7 at 95% C.L.) as derived by the PCL pipeline. In one of the fields, we find a correlation with the dust component of the Planck Sky Model, though the corresponding excess power is small compared to statistical errors. Finally, we derive limits on all known systematic errors, and demonstrate that these correspond to a tensor-to-scalar ratio smaller than r = 0.01, the lowest level yet reported in the literature.

  8. Detecting chiral gravity with the pure pseudospectrum reconstruction of the cosmic microwave background polarized anisotropies

    NASA Astrophysics Data System (ADS)

    Ferté, A.; Grain, J.

    2014-05-01

    We consider the possible detection of parity violation at the linear level in gravity using polarized anisotropies of the cosmic microwave background. Since such a parity violation would lead to nonzero temperature-B modes (TB) and E modes-B modes (EB) correlations, this makes those odd-parity angular power spectra a potential probe of parity violation in the gravitational sector. These spectra are modeled incorporating the impact of lensing and we explore their possible detection in the context of small-scale (balloon-borne or ground-based) experiments and a future satellite mission dedicated to B-mode detection. We assess the statistical uncertainties on their reconstruction using mode counting and a (more realistic) pure pseudospectrum estimator approach. Those uncertainties are then translated into constraints on the level of parity asymmetry. We found that detecting chiral gravity is impossible for ongoing small-scale experiments. However, for a satellite-like mission, a parity asymmetry of 50% could be detected at 68% of confidence level (C.L.) (at least, depending on the value of the tensor-to-scalar ratio), and a parity asymmetry of 100% is measurable with at least a confidence level of 95%. We also assess the impact of a possible miscalibration of the orientation of the polarized detectors, leading to spurious TB and EB cross correlations. We show that in the context of pseudospectrum estimation of the angular power spectra, self calibration of this angle could significantly reduce the statistical significance of the measured level of parity asymmetry (by e.g. a factor ˜2.4 for a miscalibration angle of 1 degree). For chiral gravity and assuming a satellite mission dedicated to primordial B mode, a nondetection of the TB and EB correlation would translate into an upper bound on parity violation of 39% at 95% confidence level for a tensor-to-scalar ratio of 0.2, excluding values of the (imaginary) Barbero-Immirzi parameter comprised between 0.2 and 4.9 at

  9. The interaction of polarized microwaves with planar arrays of femtosecond laser-produced plasma filaments in air

    SciTech Connect

    Marian, Anca; El Morsli, Mbark; Vidal, Francois; Payeur, Stephane; Kieffer, Jean-Claude; Chateauneuf, Marc; Theberge, Francis; Dubois, Jacques

    2013-02-15

    The interaction of polarized microwaves with subwavelength arrays of parallel plasma filaments, such as those produced by the propagation of high-power femtosecond laser pulses in ambient air, was investigated by calculating the reflection and transmission coefficients as a function of the incidence angles using the finite-difference time-domain (FDTD) method. The time evolution of these coefficients was calculated and compared with experiments. It is found that the plasma filaments array becomes transparent when the polarization of the microwave radiation is perpendicular to the filaments axis, regardless the incidence angle of the microwave with respect to the filaments, except near grazing incidence. Increasing the filaments electron density or diameter, or decreasing the electron collision frequency or filaments spacing, decreases the transmission and increases the reflection. Transmission decreases when increasing the number of filament layers while reflection remains unchanged as the number of filament layers exceeds a given number ({approx}3 in our case). Transmission slightly increases when disorder is introduced in the filament arrays. The detailed calculation results are compared with those obtained from the simple birefringent slab model, which provides a convenient framework to calculate approximately the properties of filament arrays.

  10. Silicon-based antenna-coupled polarization-sensitive millimeter-wave bolometer arrays for cosmic microwave background instruments

    NASA Astrophysics Data System (ADS)

    Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Brown, Ari; Chang, Meng-Ping; Chuss, David T.; Colazo, Felipe A.; Costen, Nick; Denis, Kevin L.; Essinger-Hileman, Tom; Hu, Ron; Marriage, Tobias A.; Moseley, Samuel H.; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Xu, Zhilei

    2016-07-01

    We describe feedhorn-coupled polarization-sensitive detector arrays that utilize monocrystalline silicon as the dielectric substrate material. Monocrystalline silicon has a low-loss tangent and repeatable dielectric constant, characteristics that are critical for realizing efficient and uniform superconducting microwave circuits. An additional advantage of this material is its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES) bolometers are antenna-coupled to in-band radiation via a symmetric planar orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a separate superconducting microstrip transmission line circuit. On-chip filtering is employed to both reject out-of-band radiation from the upper band edge to the gap frequency of the niobium superconductor, and to flexibly define the bandwidth for each TES to meet the requirements of the application. The microwave circuit is compatible with multi-chroic operation. Metalized silicon platelets are used to define the backshort for the waveguide probes. This micro-machined structure is also used to mitigate the coupling of out-of-band radiation to the microwave circuit. At 40 GHz, the detectors have a measured efficiency of ˜90%. In this paper, we describe the development of the 90 GHz detector arrays that will be demonstrated using the Cosmology Large Angular Scale Surveyor (CLASS) ground-based telescope.

  11. Investigation of electromagnetic backscattering from nearshore sea surfaces modulated by shoaling effect

    NASA Astrophysics Data System (ADS)

    Nie, D.; Zhang, M.; Li, J.

    2016-10-01

    The electromagnetic (EM) scattering features of radar scattered echoes from nearshore sea surfaces are investigated using the second-order small-slope approximation (SSA-II). The joint influences of wind fetch and water depth on the normalized radar cross section (NRCS) of and Doppler spectra for echoes from nearshore sea surfaces are mainly studied. The numerical results show that with a further increasing fetch, the excess of NRCS for small depth sea over that for deeper sea increases, and Doppler spectral features are also intensely influenced by nonlinear interactions between waves in the large wind fetch and small water depth marine environment. These both indicate that the effects of the finite depth are more prominent with increasing wind fetch, especially for HH polarization.

  12. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure.

    PubMed

    Zhuang, Leimeng; Beeker, Willem; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-02-11

    We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.

  13. Annual variations in sea surface wind speed around Japan observed by ASCAT

    NASA Astrophysics Data System (ADS)

    Takeyama, Y.; Shimada, S.; Ohsawa, T.; Kozai, K.; Kogaki, T.

    2015-12-01

    Sea surface wind speeds and these statistics can be applied for many marine industrial activities. For example, the averaged wind speed is crucial information for a site selection of an offshore wind farm. It has widely been recognized that a total amount of the offshore wind generation is strongly depended on the annual average wind speeds. A advanced scatterometer (ASCAT), which is a kind of scatterometer aboard METOP-A and B, has observed sea surface wind speeds at the height of 10 m above the sea surface approximately twice a day using active microwaves. The annual average wind speed can be calculated from the observed wind speed. For an actual use of the annual average wind speed, generalities and representativeness of the wind speed must be clarified. To investigate annual variations in sea surface wind speed around Japan (120°E to 165°E, 19°N to 49°N), the annual average wind speeds and these standard deviations are calculated from 5 years of ASCAT observations from 2010 through 2014. It is found that there are some sea areas where standard deviations are relatively higher than their surroundings. Annual average wind speed maps indicate that the high standard deviation is caused by strong winds from Eurasia in the winter of 2011 in part of North Pacific Ocean and Sea of Okhotsk. Additionally standard deviations for only winter are also higher than for summer in those sea areas. Therefore the strong wind speed in the winter of a particular year can easily affect to the annual average wind speed. Meanwhile off the coast of Niigata and Hokkaido, there are also higher standard deviation areas than their surroundings. Differences between monthly maximum wind speeds for the winter and minimum wind speeds for the summer in these areas are larger and the large differences seem to be a cause of the high standard deviations.

  14. A technique for measuring vertically and horizontally polarized microwave brightness temperatures using electronic polarization-basis rotation

    NASA Technical Reports Server (NTRS)

    Gasiewski, Albin J.

    1992-01-01

    This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990).

  15. A Methodology for Surface Soil Moisture and Vegetation Optical Depth Retrieval Using the Microwave Polarization Difference Index

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Richard; Walker, Jeffrey; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.

  16. Modeling of the environmental factors influence on solar irradiance reflectance and transmittance through the wind-ruffled sea surface

    NASA Astrophysics Data System (ADS)

    Wozniak, Slawomir B.

    1997-02-01

    The spectral model of solar irradiance transmittance through the wind - ruffled sea surface was developed. Modified dependencies for both wind - ruffled sea surface slope distribution based on Cox and Munk and foam coverage of the sea surface based on Gordon and Jacobs were used, with incorporation of effects of hydrometeorological factors and basin geometry. Snell and Fresnel laws were applied for light transmission through the surface. Spectral dependencies of light refraction in the range 350-18000 nm were taken into account. Polarization effects were neglected. This approach seems to be much more accurate than presented in known monographs, such as Mullamaa. This model is a part of the model of radiation inflow to the Baltic developed by the team from the Institute of Oceanology PAS Sopot.

  17. Estimating the Ocean Flow Field from Combined Sea Surface Temperature and Sea Surface Height Data

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of air-sea fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they interact with the atmosphere.

  18. Effects of cytoplasm and reactant polarities on acid-catalyzed lipid transesterification in wet microalgal cells subjected to microwave irradiation.

    PubMed

    Huang, Rui; Cheng, Jun; Qiu, Yi; Li, Tao; Zhou, Junhu; Cen, Kefa

    2016-01-01

    The polarities of the cytoplasm and reactants were measured through dielectric spectroscopy, contact angle test, NMR, and FTIR to investigate the mechanisms underlying acid-catalyzed lipid transesterification in wet microalgal cells subjected to microwave irradiation. Organics with apolar functional groups in the cytoplasm decreased the contact angle of methanol against triglyceride by 13.92°, which subsequently increased transesterification efficiency by 2.4 times. The microalgal biomass, given its higher hydrophilicity index of 1.96 than lipids, was more accessible to hydrophilic alcohols, which subsequently promoted transesterification. Water in the cytoplasm promoted the dielectric constant of methanol and increased the contact angle of methanol against triglyceride by 20.51°, which subsequently decreased transesterification efficiency by 72.6%. The inhibitory effect of water on transesterification weakened with the prolonged carbon lengths of the alcohols because of decreased polarity. Microwave decreased the electric constants of alcohols and reduced the polarity difference between alcohols and lipids, thereby improving transesterification efficiency.

  19. Improving the Bulk Formula for Sea-Surface Fluxes

    DTIC Science & Technology

    2011-03-14

    weak SST heterogeneity. J. Geophys. Res, 115, D11103,doi:10.1029/2009JD013161. Vickers D and L. Mahrt 2010: Sea-surface roughness lengths in the midlatitude coastal zone. Quart. J. Roy. Meterol. Soc. 136, 1089 -1093.

  20. Relative sensitivity of Normalized Difference Vegetation Index (NDVI) and Microwave Polarization Difference Index (MPDI) for vegetation and desertification monitoring

    NASA Technical Reports Server (NTRS)

    Becker, Francois; Choudhury, Bhaskar J.

    1988-01-01

    A simple equation relating the Microwave Polarization Difference Index (MPDI) and the Normalized Difference Vegetation Index (NDVI) is proposed which represents well data obtained from Nimbus 7/SMMR at 37 GHz and NOAA/AVHRR Channels 1 and 2. It is found that there is a limit which is characteristic of a particular type of cover for which both indices are equally sensitive to the variation of vegetation, and below which MPDI is more efficient than NDVI. The results provide insight into the relationship between water content and chlorophyll absorption at pixel size scales.

  1. Estimation of Sea Surface Wave Spectra Using Acoustic Tomography.

    DTIC Science & Technology

    1987-09-01

    develops a new technique for estimating quasi- homogeneous and quasi-stationary sea surface wave frequency-direction spectra using acoustic tomog...problems for the homogeneous and quasi- homogeneous frequency-direction spectrum are introduced. The theory is ap- plied tosynthetic data which simulate...thesis introduces a technique that estimates the quasi-stationary and quasi- homogeneous sea surface wave frequency-direction spectrum from the spectra of

  2. The distribution of iodide at the sea surface.

    PubMed

    Chance, Rosie; Baker, Alex R; Carpenter, Lucy; Jickells, Tim D

    2014-08-01

    Recent studies have highlighted the impact of sea surface iodide concentrations on the deposition of ozone to the sea surface and the sea to air flux of reactive iodine. The use of models to predict this flux demands accurate, spatially distributed sea surface iodide concentrations, but to date, the observational data required to support this is sparse and mostly arises from independent studies conducted on small geographical and temporal scales. We have compiled the available measurements of sea surface iodide to produce a data set spanning latitudes from 69°S to 66°N, which reveals a coherent, large scale distribution pattern, with highest concentrations observed in tropical waters. Relationships between iodide concentration and more readily available parameters (chlorophyll, nitrate, sea surface temperature, salinity, mixed layer depth) are evaluated as tools to predict iodide concentration. Of the variables tested, sea surface temperature is the strongest predictor of iodide concentration. Nitrate was also strongly inversely associated with iodide concentration, but chlorophyll-a was not.

  3. Front-End Electronics for the Array Readout of a Microwave Kinetic Inductance Detector Towards Observation of Cosmic Microwave Background Polarization

    NASA Astrophysics Data System (ADS)

    Ishitsuka, H.; Ikeno, M.; Oguri, S.; Tajima, O.; Tomita, N.; Uchida, T.

    2016-07-01

    Precise measurements of polarization patterns in cosmic microwave background (CMB) provide deep knowledge about the begin of the Universe. The GroundBIRD experiment aims to measure the CMB polarization by using microwave kinetic inductance detector (MKID) arrays. The MKID is suited to multiplexing. One of our requirements is a MUX factor (the number of readout channels for a single wire pair) of at least 100. If we make frequency combs of the MKIDs with 2-MHz spacing, a bandwidth of 200 MHz satisfies 100 MUX. The analog electronics must consist of an analog-to-digital converter (ADC), digital-to-analog converter (DAC), and local oscillator. We developed our own analog electronics board " RHEA." Two outputs/inputs of DAC/ADC with a 200-MHz clock provide an effective bandwidth of 200 MHz. The RHEA allows us to measure both the amplitude and phase responses of each MKID simultaneously. These data are continuously sampled at a high rate (e.g., 1 kSPS) and with no dead time. We achieved 12 and 14 bits resolution for ADC and DAC, respectively. This corresponds to achieve that our electronics achieved low noise: 1/1000 compared with the detector noise. We also achieved low power consumption compared with that of other electronics development for other experiments. Another important feature is that the board is completely separated from the digital part. Each user can choose their preferred field-programmable array. With the combination of the Kintex-7 evaluation kit from Xilinx, we demonstrated readout of MKID response.

  4. Polar microwave brightness temperatures from Nimbus-7 SMMR: Time series of daily and monthly maps from 1978 to 1987

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Zwally, H. Jay

    1989-01-01

    A time series of daily brightness temperature gridded maps (October 25, 1978 through August 15, 1987) were generated from all ten channels of the Nimbus-7 Scanning Multichannel Microwave Radiometer orbital data. This unique data set can be utilized in a wide range of applications including heat flux, ocean circulation, ice edge productivity, and climate studies. Two sets of data in polar stereographic format are created for the Arctic region: one with a grid size of about 30 km on a 293 by 293 array similar to that previously utilized for the Nimbus-5 Electrically Scanning Microwave Radiometer, while the other has a grid size of about 25 km on a 448 by 304 array identical to what is now being used for the DMSP Scanning Multichannel Microwave Imager. Data generated for the Antaractic region are mapped using the 293 by 293 grid only. The general technique for mapping, and a quality assessment of the data set are presented. Monthly and yearly averages are also generated from the daily data and sample geophysical ice images and products derived from the data are given. Contour plots of monthly ice concentrations derived from the data for October 1978 through August 1987 are presented to demonstrate spatial and temporal detail which this data set can offer, and to show potential research applications.

  5. Message-passing-interface-based parallel FDTD investigation on the EM scattering from a 1-D rough sea surface using uniaxial perfectly matched layer absorbing boundary.

    PubMed

    Li, J; Guo, L-X; Zeng, H; Han, X-B

    2009-06-01

    A message-passing-interface (MPI)-based parallel finite-difference time-domain (FDTD) algorithm for the electromagnetic scattering from a 1-D randomly rough sea surface is presented. The uniaxial perfectly matched layer (UPML) medium is adopted for truncation of FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different processors is illustrated for one sea surface realization, and the computation time of the parallel FDTD algorithm is dramatically reduced compared to a single-process implementation. Finally, some numerical results are shown, including the backscattering characteristics of sea surface for different polarization and the bistatic scattering from a sea surface with large incident angle and large wind speed.

  6. A Texture-Polarization Method for Estimating Convective/Stratiform Precipitation Area Coverage from Passive Microwave Radiometer Data

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Hong, Ye; Kummerow, Christian D.; Turk, Joseph; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Observational and modeling studies have described the relationships between convective/stratiform rain proportion and the vertical distributions of vertical motion, latent heating, and moistening in mesoscale convective systems. Therefore, remote sensing techniques which can quantify the relative areal proportion of convective and stratiform, rainfall can provide useful information regarding the dynamic and thermodynamic processes in these systems. In the present study, two methods for deducing the convective/stratiform areal extent of precipitation from satellite passive microwave radiometer measurements are combined to yield an improved method. If sufficient microwave scattering by ice-phase precipitating hydrometeors is detected, the method relies mainly on the degree of polarization in oblique-view, 85.5 GHz radiances to estimate the area fraction of convective rain within the radiometer footprint. In situations where ice scattering is minimal, the method draws mostly on texture information in radiometer imagery at lower microwave frequencies to estimate the convective area fraction. Based upon observations of ten convective systems over ocean and nine systems over land, instantaneous 0.5 degree resolution estimates of convective area fraction from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM TMI) are compared to nearly coincident estimates from the TRMM Precipitation Radar (TRMM PR). The TMI convective area fraction estimates are slightly low-biased with respect to the PR, with TMI-PR correlations of 0.78 and 0.84 over ocean and land backgrounds, respectively. TMI monthly-average convective area percentages in the tropics and subtropics from February 1998 exhibit the greatest values along the ITCZ and in continental regions of the summer (southern) hemisphere. Although convective area percentages. from the TMI are systematically lower than those from the PR, monthly rain patterns derived from the TMI and PR rain algorithms are very similar

  7. High-Resolution Radar Scattering Characteristics of a Disturbed Sea Surface and Floating Debris

    DTIC Science & Technology

    1977-07-29

    theoretically and experimentally. Oil drums, logs, and aluminum-covered plastic gallon milk bottles were considered and measured. A comparison of the echoing...covered plastic bottle ,38 N R tEPO R1 8 131 0 DBSM L LJ v ’ da) B 6 GH1 0 DSM -- DBSM ib) 9.2 GHz Ils Fig. 29 - Vertically polarized return from wave...j2 ’ NRL Report 8131 (~High-Resolution Radar Scattering Characteristics of a Disturbed Sea Surface and Floating Debris B. L. LEWIS. J. P. HANSEN. 1

  8. Assessing the impact of satellite-based observations in sea surface temperature trends

    NASA Astrophysics Data System (ADS)

    Huang, Boyin; Liu, Chunying; Banzon, Viva F.; Zhang, Huai-Min; Karl, Thomas R.; Lawrimore, Jay H.; Vose, Russell S.

    2016-04-01

    Global trends of sea surface temperature (SST) are assessed for the existing and new experimental SST analyses that incorporate advanced very high resolution radiometer (AVHRR) observations from NOAA polar-orbiting satellites. These analyses show that globally and annually averaged SST trends over the 21st century (2000-2015) are similar to the trends for the full satellite record period (1982-2015), regardless of whether AVHRR data are included in the analyses. It is shown that appropriate bias correction is an important step to remove discontinuities of AVHRR data for consistent time series and trend analysis.

  9. Influence of polarity on the scalability and reproducibility of solvent-free microwave-assisted reactions.

    PubMed

    Díaz-Ortiz, Angel; de la Hoz, Antonio; Alcázar, Jesús; Carrillo, José R; Herrero, María A; Fontana, Alberto; Muñoz, Juan de M; Prieto, Pilar; de Cózar, Abel

    2011-02-01

    Organic reactions performed in the absence of solvent in domestic ovens without appropriate temperature control are generally considered as not reproducible, particularly when different instruments are used. For this reason, reproducibility has historically been one of the major issues associated with Microwave-Assisted Organic Synthesis (MAOS) especially when domestic ovens are involved. The lack of reproducibility limits the general applicability and the scale up of these reactions. In this work several solvent-free reactions previously carried out in domestic ovens have been translated into a single-mode microwave reactor and then scaled up in a multimode oven. The results show that most of these reactions, although not considered as reproducible, can be easily updated and applied in microwave reactors using temperature-controlled conditions. Furthermore, computational calculations can assist to explain and/or predict whether a reaction will be reproducible or not.

  10. The effects of the variations in sea surface temperature and atmospheric stability in the estimation of average wind speed by SEASAT-SASS

    NASA Technical Reports Server (NTRS)

    Liu, W. T.

    1984-01-01

    The average wind speeds from the scatterometer (SASS) on the ocean observing satellite SEASAT are found to be generally higher than the average wind speeds from ship reports. In this study, two factors, sea surface temperature and atmospheric stability, are identified which affect microwave scatter and, therefore, wave development. The problem of relating satellite observations to a fictitious quantity, such as the neutral wind, that has to be derived from in situ observations with models is examined. The study also demonstrates the dependence of SASS winds on sea surface temperature at low wind speeds, possibly due to temperature-dependent factors, such as water viscosity, which affect wave development.

  11. ENSO signature in the SMOS sea surface salinity maps

    NASA Astrophysics Data System (ADS)

    Ballabrera, J.; Umbert, M.; Hoareau, N.; Turiel, A.; Font, J.

    2012-12-01

    Until recently, the role of salinity observations in the operational simulation and prediction of ENSO was neglected because of the historical lack of observations and because leading intermediate coupled models had significant predictive skill without directly accounting for salinity effects. In Ballabrera-Poy et al., (2002), the potential role of sea surface salinity (SSS) observations on the statistical predictions of ENSO was investigated. It was shown that, although SSS observations would play little role in statistical nowcasts of ENSO, they would provide a significant role in the 6-12 month predictions. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) Earth Explorer opportunity mission was launched on November 2, 2009, becoming the first satellite mission addressing the challenge of measuring SSS from space with the help of MIRAS (Microwave Imaging Radiometer with Aperture Synthesis), a novel two-dimensional interferometer operating at L-band (1.4 GHz). Although the L-band frequency is the optimal for ocean salinity measurements, the retrieval of SSS information requires special care because of the low sensitivity of the brightness temperature to SSS: from 0.2-0.8 K per salinity unit. Maps of 10-day averages of SSS in 1x1 degree boxes are distributed by the SMOS Barcelona Expert Centre on Radiometric Calibration and Ocean Salinity (SMOS-BEC, http://www.smos-bec.icm.csic.es). These maps are derived from the SMOS reprocessing campaign released to the SMOS user community in March 2011, and span the period from January 2010 through December 2011. The current accuracy of these SSS maps ranges from 0.2-0.4, depending on the ocean region being considered (Umbert et al., 2012). During the period of the reprocessing campaign, the equatorial Pacific has been in a quasi-continuous La Niña state. During the cold phases of ENSO, positive anomalies of SSS are expected with a largest anomalous values in the western warm-fresh pool. The anomalies

  12. Changes in Sea Surface Temperature and North Atlantic Hurricane Activities

    NASA Astrophysics Data System (ADS)

    Nazari, R.; Mahani, S.; Khanbilvardi, R.

    2006-05-01

    People of United States from Maine to Texas in the years 1995 to 2005 experienced the highest level of North Atlantic hurricane activity in the reliable collected data and reports in compare with the generally low activity of the previous two decays (1970 to 1994). The greater activity might be a consequence of instantaneous changes in North Atlantic Sea Surface Temperature (SST) and air temperature. This thermal energy of increased Sea Surface Temperature (warm water) is known as tropical cyclone heat potential (TCHP) partly powers a hurricane and has been called hurricane fuel. In primary steps of this research we are trying to examine the association of variation of Sea Surface Temperature (SST), Sea Surface Height (SSH) and air temperature in the past decades with changes in hurricane number, duration and intensity. Preliminary analysis demonstrated that there is correlation between global warming and the occurrence of hurricanes because of the anticipated enhancement of energy available to the storms due to higher sea surface temperatures. The goal is to characterize and specify significant factors on tropical storms to improve the capability of predicting a hurricane and its damages to human lives and the economy. This information can be used to advise strategies for warning and also minimizing the magnitude of hurricane destruction, damages, and life losses.

  13. Leveraging microwave polarization information for calibration of a land data assimilation system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This letter contributes a new approach to calibrating a tau-omega radiative transfer model coupled to a land surface model with low frequency (< 10 GHz) microwave brightness temperature (TB) observations. The problem of calibrating this system is generally poorlyposed because various parameter combi...

  14. Airborne full polarization radiometry using the MSFC Advanced Microwave Precipitation Radiometer (AMPR)

    NASA Technical Reports Server (NTRS)

    Gasiewski, Al J.; Kunkee, D. B.

    1993-01-01

    The applications of vertically and horizontally polarized brightness temperatures in both atmospheric and surface remote sensing have been long recognized by many investigators, particularly those studying SMMR and SSM/I data. Here, the large contrast between the first two Stokes' parameters (T(sub V) and T(sub H)) can be used for detection of sea ice, measurement of ocean surface wind speed, and measurement of cloud and water vapor opacity. High-resolution aircraft data from instruments such as the NASA/MSFC AMPR is crucial for verifying radiative transfer models and developing retrieval algorithms. Currently, the AMPR is outfitted with single-polarization channels at 10, 18, 37 and 85 GHz. To increase its utility, it is proposed that additional orthogonal linearly polarized channels be added to the AMPR. Since the AMPR's feedhorns are already configured for dual orthogonal linearly polarized modes, this would require only a duplication of the currently existing receivers. To circumvent the resulting polarization basis skew caused by the cross-track scanning mechanism, the technique of Electronic Polarization Basis Rotation is proposed to be implemented. Implementation of EPBR requires precise measurement of the third Stokes parameter and will eliminate polarization skew by allowing the feedhorn basis skew angle to be corrected in software. In addition to upgrading AMPR to dual polarization capability (without skew), the modifications will provide an opportunity to demonstrate EPBR on an airborne platform. This is a highly desirable intermediate step prior to satellite implementation.

  15. The annual and interannual variabilities of precipitable water, surface wind speed, and sea surface temperature over the tropical Pacific

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1989-01-01

    The Nimbus-7 Scanning Multichannel Microwave Radiometer (SSMR) provided simultaneous measurements of three geophysical parameters, each of which describing a certain aspect of the evolution of the 1982-1983 ENSO: the sea-surface temperature (T), precipitable water (W), and surface-wind speed (U). In this paper, values derived from the SSMR were compared with in situ measurements from ships, research buoys, and operational island stations in the tropical Pacific between January 1980 and October 1983, demonstrating the temporal and spatial coherence of the SSMR measurements. The results show that the variabilities of the surface convergence, sea surface temperature, and precipitable water are related. It was found that W anomalies were not always colocated with T anomalies, and that W anomalies were often associated with negative U anomalies, interpreted as surface convergence.

  16. Sea Surface Temperature from EUMETSAT Including Sentinel-3 SLSTR

    NASA Astrophysics Data System (ADS)

    O'Carroll, Anne; Bonekamp, Hans; Montagner, Francois; Santacesaria, Vincenzo; Tomazic, Igor

    2015-12-01

    The paper gives an overview of sea surface temperature (SST) activities at EUMETSAT including information on SST planned from the Sea and Land Surface Temperature Radiometer (SLSTR). Operational oceanography activities within the Marine Applications group at EUMETSAT continue with a focus on SST, sea surface winds, sea-ice products, radiative fluxes, significant wave height and sea surface topography. These are achieved through the mandatory, optional and third-party programmes, and for some products with the EUMETSAT Ocean and Sea-Ice Satellite Application Facility (OSI SAF). Progress towards products from sea-ice surface temperature, ocean colour products, turbidity and aerosol optical depth over water continue. Information on oceanography products from EUMETSAT can be found through the product navigator (http://navigator.eumetsat.int). EUMETSAT have been collaborating with ESA for a number of years on the development of SST for SLSTR.

  17. Photonic generation of widely tunable phase-coded microwave signals based on a dual-parallel polarization modulator.

    PubMed

    Liu, Shifeng; Zhu, Dan; Wei, Zhengwu; Pan, Shilong

    2014-07-01

    A photonic approach for the generation of a widely tunable arbitrarily phase-coded microwave signal based on a dual-parallel polarization modulator (DP-PolM) is proposed and demonstrated without using any optical or electrical filter. Two orthogonally polarized ± first-order optical sidebands with suppressed carrier are generated based on the DP-PolM, and their polarization directions are aligned with the two principal axes of the following PolM. Phase coding is implemented at a following PolM driven by an electrical coding signal. The inherent frequency-doubling operation can make the system work at a frequency beyond the operation bandwidth of the DP-PolM and the 90° hybrid. Because no optical or electrical filter is applied, good frequency tunability is realized. An experiment is performed. The generation of phase-coded signals tuning from 10 to 40 GHz with up to 10  Gbit/s coding rates is verified.

  18. Crop moisture estimation over the southern Great Plains with dual polarization 1.66 centimeter passive microwave data from Nimbus 7

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J.; Harder, P. H., II; Wilke, G. D.; Huebner, G. L., Jr.

    1984-01-01

    Moisture content of snow-free, unfrozen soil is inferred using passive microwave brightness temperatures from the scanning multichannel microwave radiometer (SMMR) on Nimbus-7. Investigation is restricted to the two polarizations of the 1.66 cm wavelength sensor. Passive microwave estimates of soil moisture are of two basic categories; those based upon soil emissivity and those based upon the polarization of soil emission. The two methods are compared and contrasted through the investigation of 54 potential functions of polarized brightness temperatures and, in some cases, ground-based temperature measurements. Of these indices, three are selected for the estimated emissivity, the difference between polarized brightness temperatures, and the normalized polarization difference. Each of these indices is about equally effective for monitoring soil moisture. Using an antecedent precipitation index (API) as ground control data, temporal and spatial analyses show that emissivity data consistently give slightly better soil moisture estimates than depolarization data. The difference, however, is not statistically significant. It is concluded that polarization data alone can provide estimates of soil moisture in areas where the emissivity cannot be inferred due to nonavailability of surface temperature data.

  19. Sea surface temperature of the coastal zones of France

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.

    1982-01-01

    Thermal gradients in French coastal zones for the period of one year were mapped in order to enable a coherent study of certain oceanic features detectable by the variations in the sea surface temperature field and their evolution in time. The phenomena examined were mesoscale thermal features in the English Channel, the Bay of Biscay, and the northwestern Mediterranean; thermal gradients generated by French estuary systems; and diurnal heating in the sea surface layer. The investigation was based on Heat Capacity Mapping Mission imagery.

  20. Sea surface Ka-band radar cross-section from field observations in the Black Sea

    NASA Astrophysics Data System (ADS)

    Yurovsky, Yury; Kudryavtsev, Vladimir; Grodsky, Semyon; Chapron, Bertrand

    2016-04-01

    An interest in Ka-band radar backscattering from the ocean surface is growing due to better spatial resolution and more accurate Doppler anomaly estimate. But, available empirical models of Ka-band cross-section are quite scarce and sometime controversial. Here we present multi-year (2009-2015) field measurements of Ka-band co-polarized (VV and HH) sea surface normalized radar cross-section (NRCS) from research platform in the Black sea collected in a wide range of observation and sea state conditions. The data are fitted by polynomial function of incidence angle, azimuth and wind speed with accounting for measured radar antenna pattern. This empirical NRCS is compared with published Ka- and Ku-band data. Our Ka-band NRCS is close to Ku-band, but is 5-7 dB higher than 'pioneer' measurements by Masuko et al. (1986). Following the two-scale Bragg paradigm, the NRCS is split into polarized (Bragg) and non-polarized components and analyzed in terms of polarization ratio (VV/HH) and polarization difference (VV-HH) to estimate wave spectra at the Bragg wave number. Non-polarized component dominates at low incidence angles <30° due to specular reflection from regular surface. At larger incidence angles, the relative non-polarized contribution decreases, but grows again at HH-polarization approaching 0.7-0.8 at 65° for 10 m/s wind speed, suggesting that backscattering from breaking waves dominates HH NRCS at low grazing angles. At high incidence angles (>60°) NRCS azimuth dependency is unimodal (upwind peak) for HH and bimodal (with up- and downwind peaks) for VV polarization. This again can be attributed to different backscattering mechanisms for VV and HH polarizations. With decreasing of incidence angle, up- to downwind ratio tends to 1, and under light wind conditions (4-6 m/s) can be less than 1. The same situation is observed for polarization difference, which reflects Bragg backscattering properties only. This effect can be explained by enhanced roughness on

  1. The clear-sky greenhouse effect sensitivity to a sea surface temperature change

    NASA Technical Reports Server (NTRS)

    Duvel, J. PH.; Breon, F. M.

    1991-01-01

    The clear-sky greenhouse effect response to a sea surface temperature (SST or Ts) change is studied using outgoing clear-sky longwave radiation measurements from the Earth Radiation Budget Experiment. Considering geographical distributions for July 1987, the relation between the SST, the greenhouse effect (defined as the outgoing infrared flux trapped by atmospheric gases), and the precipitable water vapor content (W), estimated by the Special Sensor Microwave Imager, is analyzed first. A fairly linear relation between W and the normalized greenhouse effect g, is found. On the contrary, the SST dependence of both W and g exhibits nonlinearities with, especially, a large increase for SST above 25 C. This enhanced sensitivity of g and W can be interpreted in part by a corresponding large increase of atmospheric water vapor content related to the transition from subtropical dry regions to equatorial moist regions. Using two years of data (1985 and 1986), the normalized greenhouse effect sensitivity to the sea surface temperature is computed from the interannual variation of monthly mean values.

  2. In-depth Analysis of Land Surface Emissivity using Microwave Polarization Difference Index to Improve Satellite QPE

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Kirstetter, P. E.; Hong, Y.; Wen, Y.; Turk, J.; Gourley, J. J.

    2015-12-01

    One of primary uncertainties in satellite overland quantitative precipitation estimates (QPE) from passive sensors such as radiometers is the impact on the brightness temperatures by the surface land emissivity. The complexity of surface land emissivity is linked to its temporal variations (diurnal and seasonal) and spatial variations (subsurface vertical profiles of soil moisture, vegetation structure and surface temperature) translating into sub-pixel heterogeneity within the satellite field of view (FOV). To better extract the useful signal from hydrometeors, surface land emissivity needs to be determined and filtered from the satellite-measured brightness temperatures. Based on the dielectric properties of surface land cover constitutes, Microwave Polarization Differential index (MPDI) is expected to carry the composite effect of surface land properties on land surface emissivity, with a higher MPDI indicating a lower emissivity. This study analyses the dependence of MPDI to soil moisture, vegetation and surface skin temperature over 9 different land surface types. Such analysis is performed using the normalized difference vegetation index (NDVI) from MODIS, the near surface air temperature from the RAP model and ante-precedent precipitation accumulation from the Multi-Radar Multi-Sensor as surrogates for the vegetation, surface skin temperature and shallow layer soil moisture, respectively. This paper provides 1) evaluations of brightness temperature-based MPDI from the TRMM and GPM Microwave Imagers in both raining and non-raining conditions to test the dependence of MPDI to precipitation; 2) comparisons of MPDI categorized into instantly before, during and immediately after selected precipitation events to examine the impact of modest-to-heavy precipitation on the spatial pattern of MPDI; 3) inspections of relationship between MPDI versus rain fraction and rain rate within the satellite sensors FOV to investigate the behaviors of MPDI in varying

  3. DC response of hot carriers under circularly polarized intense microwave fields and intense magnetic fields in quantum wells

    SciTech Connect

    Ishida, Norihisa

    2013-12-04

    Hot carrier dynamics under intense microwave and crossed magnetic fields are investigated theoretically for the case that the dominant scattering process is inelastic collision, especially intersubband and intrasubband transition in Quantum wells. If the applied electric fields are circularly polarized, the equation of motion forms symmetric on the x-y plane. But the carrier motions are complicated to accumulate because of acceleration and emission process. This situation makes possible to create a variation of the carrier motion, typically the carrier bunching is occurred. This state is a sort of population inversion. The DC response of this system attains strongly negative at appropriate field conditions. Through the simulation for the real case described below, it may include a type of induced emission.

  4. Simulation of polar atmospheric microwave and sub-millimetre spectra for characterizing potential new ground-based observations

    NASA Astrophysics Data System (ADS)

    Newnham, David; Turner, Emma; Ford, George; Pumphrey, Hugh; Withington, Stafford

    2016-04-01

    Advanced detector technologies from the fields of astronomy and telecommunications are offering the potential to address key atmospheric science challenges with new instrumental methods. Adoption of these technologies in ground-based passive microwave and sub-millimetre radiometry could allow new measurements of chemical species and winds in the polar middle atmosphere for verifying meteorological data-sets and atmospheric models. A site study to assess the feasibility of new polar observations is performed by simulating the downwelling clear-sky submillimetre spectrum over 10-2000 GHz (30 mm to 150 microns) at two Arctic and two Antarctic locations under different seasonal and diurnal conditions. Vertical profiles for temperature, pressure and 28 atmospheric gases are constructed by combining radiosonde, meteorological reanalysis, and atmospheric chemistry model data. The sensitivity of the simulated spectra to the choice of water vapour continuum model and spectroscopic line database is explored. For the atmospheric trace species hypobromous acid (HOBr), hydrogen bromide (HBr), perhydroxyl radical (HO2) and nitrous oxide (N2O) the emission lines producing the largest change in brightness temperature are identified and minimum integration times and maximum receiver noise temperatures estimated. The optimal lines for all species are shown to vary significantly between location and scenario, strengthening the case for future hyperspectral instruments that measure over a broad frequency range. We also demonstrate the feasibility of measuring horizontal wind profiles above Halley station, Antarctica with time resolution as high as 0.5hr using simulated spectroradiometric observations of Doppler-shifted ozone (O3) and carbon monoxide (CO) lines in the 230-250 GHz region. The techniques presented provide a framework that can be applied to the retrieval of additional atmospheric parameters and be taken forward to simulate and guide the design of future microwave and sub

  5. Air-sea fluxes and surface layer turbulence around a sea surface temperature front

    NASA Technical Reports Server (NTRS)

    Friehe, C. A.; Shaw, W. J.; Davidson, K. L.; Rogers, D. P.; Large, W. G.; Stage, S. A.; Crescenti, G. H.; Khalsa, S. J. S.; Greenhut, G. K.; Li, F.

    1991-01-01

    The observed effects of sharp changes in sea surface temperature (SST) on the air-sea fluxes, surface roughness, and the turbulence structure in the surface layer and the marine atmospheric boundary layer are discussed. In situ flux and turbulence observations were carried out from three aircraft and two ships within the FASINEX framework. Three other aircraft used remote sensors to measure waves, microwave backscatter, and lidar signatures of cloud tops. Descriptions of the techniques, intercomparison of aircraft and ship flux data, and use of different methods for analyzing the fluxes from the aircraft data are described. Changing synoptic weather on three successive days yielded cases of wind direction both approximately parallel and perpendicular to a surface temperature front. For the wind perpendicular to the front, wind over both cold-to-warm and warm-to-cold surface temperatures occurred. Model results consistent with the observations suggest that an internal boundary layer forms at the SST.

  6. Earth System Science at NASA: Teleconnections Between Sea Surface Temperature and Epidemics in Africa

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.

    2000-01-01

    The research carried out in the Earth Sciences in NASA and at NASA's Goddard Space Flight Center will be the focus of the presentations. In addition, one research project that links sea surface temperature to epidemics in Africa will be highlighted. At GSFC research interests span the full breath of disciplines in Earth Science. Branches and research groups focus on areas as diverse as planetary geomagnetics and atmospheric chemistry. These organizations focus on atmospheric sciences (atmospheric chemistry, climate and radiation, regional processes, atmospheric modeling), hydrological sciences (snow, ice, oceans, and seasonal-to-interannual prediction), terrestrial physics (geology, terrestrial biology, land-atmosphere interactions, geophysics), climate modeling (global warming, greenhouse gases, climate change), on sensor development especially using lidar and microwave technologies, and on information technologies, that enable support of scientific and technical research.

  7. Long-term changes in sea surface temperatures

    SciTech Connect

    Parker, D.E.

    1994-12-31

    Historical observations of sea surface temperature since 1856 have been improved by applying corrections to compensate for the predominant use of uninsulated or partly insulated buckets until the Second World War. There are large gaps in coverage in the late nineteenth century and around the two world wars, but a range of statistical techniques suggest that these gaps do not severely prejudice estimates of global and regional climatic change. Nonetheless, to improve the analysis on smaller scales, many unused historical data are to be digitized and incorporated. For recent years, satellite-based sea surface temperatures have improved the coverage, after adjustments for their biases relative to in situ data. An initial version of a nominally globally complete sea ice and interpolated sea surface temperature data set, beginning in 1871, has been created for use in numerical simulations of recent climate. Long time series of corrected regional, hemispheric, and global sea surface temperatures are mostly consistent with corresponding night marine air temperature series, and confirm the regionally specific climatic changes portrayed in the Scientific Assessments of the intergovernmental Panel on Climate Change. The observations also show an El Nino-like oscillation on bidecadal and longer time scales.

  8. Calving seismicity from iceberg-sea surface interactions

    USGS Publications Warehouse

    Bartholomaus, T.C.; Larsen, C.F.; O'Neel, S.; West, M.E.

    2012-01-01

    Iceberg calving is known to release substantial seismic energy, but little is known about the specific mechanisms that produce calving icequakes. At Yahtse Glacier, a tidewater glacier on the Gulf of Alaska, we draw upon a local network of seismometers and focus on 80 hours of concurrent, direct observation of the terminus to show that calving is the dominant source of seismicity. To elucidate seismogenic mechanisms, we synchronized video and seismograms to reveal that the majority of seismic energy is produced during iceberg interactions with the sea surface. Icequake peak amplitudes coincide with the emergence of high velocity jets of water and ice from the fjord after the complete submergence of falling icebergs below sea level. These icequakes have dominant frequencies between 1 and 3 Hz. Detachment of an iceberg from the terminus produces comparatively weak seismic waves at frequencies between 5 and 20 Hz. Our observations allow us to suggest that the most powerful sources of calving icequakes at Yahtse Glacier include iceberg-sea surface impact, deceleration under the influence of drag and buoyancy, and cavitation. Numerical simulations of seismogenesis during iceberg-sea surface interactions support our observational evidence. Our new understanding of iceberg-sea surface interactions allows us to reattribute the sources of calving seismicity identified in earlier studies and offer guidance for the future use of seismology in monitoring iceberg calving.

  9. Sea Surface Salinity: The Next Remote Sensing Challenge

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary S. E.; Swift, Calvin T.; LeVine, David M.

    1995-01-01

    A brief history of salinity remote sensing is presented. The role of sea surface salinity (SSS) in the far north Atlantic and the influence of salinity variations on upper ocean dynamics in the tropics are described. An assessment of the present state of the technology of the SSS satellite remote sensing is given.

  10. Introducing VESPA-22: a ground-based microwave spectrometer for measuring middle atmospheric water vapour at polar latitudes

    NASA Astrophysics Data System (ADS)

    Bertagnolio, P. P.; Muscari, G.; Fiorucci, I.; Mari, M.

    2012-04-01

    We present the latest updates on the project VESPA-22 (water Vapour Emission Spectrometer for Polar Atmospheres at 22 GHz), a ground-based microwave instrument developed for long-term observations of water vapour in the polar stratosphere and mesosphere (SMWV). The short- and long-term change in water vapour concentration from the lower stratosphere to the mesosphere is one of the main areas of interest for atmospheric composition studies in the current decade. In fact, SMWV influences the temperature of the stratosphere by radiative processes, the concentration of several chemical species (also through the production of OH) and the formation of aerosols. Recent studies showed that in the last 30 years mid-latitude SMWV has been changing for mechanisms not yet fully understood. Model studies indicate that these changes could have had a significant impact (25-30%) on the tropospheric radiative forcing and surface temperature trends observed since 1980. Moreover, at polar regions, changes in SMWV strongly affect the formation rate of polar stratospheric clouds, both directly (how much is available for uptake on PSC particles) and indirectly (impact on stratospheric temperature). This is especially critical in the Arctic stratosphere where temperatures are not as cold they are over Antarctica and, for the purpose of denitrification and ozone depletion processes, an increase in SMWV of 1 ppmv is modelled to be equivalent to a 1 K decrease in temperature. In the past decade, satellite-based instruments have provided accurate and global measurements of SMWV, but a similar coverage is not expected in this decade. Conversely, the ground-based microwave spectrometers currently active provide both the long-time series necessary for decadal scale monitoring and the high time resolution (a few hours) needed to understand fast dynamical processes. Today, none of these sustained SMWV measurements are being carried out at polar regions. Our observation technique is based on the

  11. Measurement and simulation of the polarization-dependent Purcell factor in a microwave fishnet metamaterial

    NASA Astrophysics Data System (ADS)

    Rustomji, Kaizad; Abdeddaim, Redha; de Sterke, C. Martijn; Kuhlmey, Boris; Enoch, Stefan

    2017-01-01

    We determine, experimentally and numerically, the electric and magnetic Purcell factors in a fishnet metamaterial in the frequency range 5-15 GHz by measuring the impedance of a dipole antenna. We compare measurements and numerical simulations of the Purcell factor for transverse electric (TEz) and transverse magnetic (TMz) polarizations. For TMz polarization, the dispersion relation of the structure is hyperbolic and enhances the Purcell factor. For TEz polarization, the dispersion relation does not allow any propagating solutions and decreases the Purcell factor below the effective plasma frequency. Eigenmode calculations of the periodic unit cell of the metamaterial are used to obtain the band structure and confirm the presence of hyperbolic isofrequency surfaces. The isofrequency surfaces are used to calculate the density of states (DOS). We also use the impedance method to obtain the DOS by averaging the Purcell factor obtained at different locations over the periodic unit cell and find good agreement with DOS calculated from eigenmode calculations.

  12. Fabrication of Feedhorn-Coupled Transition Edge Sensor Arrays for Measurement of the Cosmic Microwave Background Polarization

    NASA Technical Reports Server (NTRS)

    Denis, Kevin L.; Aamir, A.; Bennett, C. L.; Chang, M. P.; Chuss, D. T.; Colazo, F. A.; Costen, N.; Essinger-Hileman, T.; Hu, R.; Marriage, T.; Rostem, K.; U-Yen, K.; Wollack, E. J.

    2015-01-01

    Characterization of the minute cosmic microwave background polarization signature requires multi-frequency high-throughput precision instrument systems. We have previously described the detector fabrication of a 40 GHz focal plane and now describe the fabrication of the detector modules for measurement of the CMB at 90GHz. The 74-TES based bolometers in each module are coupled to a niobium based planar orthomode transducer with integrated band defining filters implemented in microstrip transmission line. A single crystal silicon dielectric substrate serves as microstrip dielectric and as a thermal link between the membrane isolated MoAu TES operating at 150mK and the heat bath. A short silicon leg between the heat bath and the TES bolometer is designed for ballistic phonon transport and provides improved process control and uniformity of thermal conductance in the presence of phonon scattering on roughened surfaces. Micro-machined structures are used to realize the orthomode transducer backshort, provide out of band signal rejection, and a silicon photonic choke for feedhorn coupling are described. The backshort, choke wafer, and detector wafer are indium bump bonded to create a single 37-element dual-polarization detector module. Fourteen such hexagonally shaped modules each 90 mm in size comprise two focal planes. These, along with the recently delivered 40GHz focal plane, will survey a large fraction of the sky as part of the Johns Hopkins University led ground based CLASS (Cosmology Large Angular Scale Surveyor) telescope.

  13. Fabrication of Feedhorn-Coupled Transition Edge Sensor Arrays for Measurement of the Cosmic Microwave Background Polarization

    NASA Technical Reports Server (NTRS)

    Denis, K. L.; Ali, A.; Appel, J.; Bennett, C. L.; Chang, M. P.; Chuss, D. T.; Colazo, F. A.; Costen, N.; Essinger-Hileman, T.; Hu, R.; Marriage, T.; Rostem, K.; U-Yen, K.; Wollack, E. J.

    2015-01-01

    Characterization of the minute cosmic microwave background (CMB) polarization signature requires multi-frequency high-throughput precision instrument systems. We have previously described the detector fabrication of a 40 gigahertz focal plane and now describe the fabrication of a 37-element dual-polarization detector module for measurement of the CMB at 90 gigahertz. The 72-TES (Transition Edge Sensor)-based bolometers in each module are coupled to a niobium-based planar orthomode transducer with integrated band defining filters implemented in microstrip transmission line. A single crystal silicon dielectric substrate serves as microstrip dielectric and as a thermal link between the membrane isolated MoAu TES operating at 150 millikelvins and the heat bath. A short silicon leg between the heat bath and the TES bolometer is designed for ballistic phonon transport and provides improved process control and uniformity of thermal conductance in the presence of phonon scattering on roughened surfaces. Micro-machined structures are used to realize the orthomode transducer backshort, provide out of band signal rejection, and a silicon photonic choke for feedhorn coupling are described. The backshort, choke wafer, and detector wafer are indium bump-bonded to create a single 37-element dual-polarization detector module. Fourteen such hexagonally shaped modules each 80 millimeters in size comprise two focal planes. These, along with the recently delivered 40 gigahertz focal plane, will survey a large fraction of the sky as part of the Johns Hopkins University-led ground-based CLASS (Cosmology Large Angular Scale Surveyor) telescope.

  14. Sensitivity and foreground modelling for large-scale cosmic microwave background B-mode polarization satellite missions

    NASA Astrophysics Data System (ADS)

    Remazeilles, M.; Dickinson, C.; Eriksen, H. K. K.; Wehus, I. K.

    2016-05-01

    The measurement of the large-scale B-mode polarization in the cosmic microwave background (CMB) is a fundamental goal of future CMB experiments. However, because of unprecedented sensitivity, future CMB experiments will be much more sensitive to any imperfect modelling of the Galactic foreground polarization in the reconstruction of the primordial B-mode signal. We compare the sensitivity to B-modes of different concepts of CMB satellite missions (LiteBIRD, COrE, COrE+, PRISM, EPIC, PIXIE) in the presence of Galactic foregrounds. In particular, we quantify the impact on the tensor-to-scalar parameter of incorrect foreground modelling in the component separation process. Using Bayesian fitting and Gibbs sampling, we perform the separation of the CMB and Galactic foreground B-modes. The recovered CMB B-mode power spectrum is used to compute the likelihood distribution of the tensor-to-scalar ratio. We focus the analysis to the very large angular scales that can be probed only by CMB space missions, i.e. the reionization bump, where primordial B-modes dominate over spurious B-modes induced by gravitational lensing. We find that fitting a single modified blackbody component for thermal dust where the `real' sky consists of two dust components strongly bias the estimation of the tensor-to-scalar ratio by more than 5σ for the most sensitive experiments. Neglecting in the parametric model the curvature of the synchrotron spectral index may bias the estimated tensor-to-scalar ratio by more than 1σ. For sensitive CMB experiments, omitting in the foreground modelling a 1 per cent polarized spinning dust component may induce a non-negligible bias in the estimated tensor-to-scalar ratio.

  15. A Match-based approach to the estimation of polar stratospheric ozone loss using Aura Microwave Limb Sounder observations

    NASA Astrophysics Data System (ADS)

    Livesey, N. J.; Santee, M. L.; Manney, G. L.

    2015-04-01

    The well-established "Match" approach to quantifying chemical destruction of ozone in the polar lower stratosphere is applied to ozone observations from the Microwave Limb Sounder (MLS) on NASA's Aura spacecraft. Quantification of ozone loss requires distinguishing transport- and chemically induced changes in ozone abundance. This is accomplished in the Match approach by examining cases where trajectories indicate that the same airmass has been observed on multiple occasions. The method was pioneered using ozone sonde observations, for which hundreds of matched ozone observations per winter are typically available. The dense coverage of the MLS measurements, particularly at polar latitudes, allows matches to be made to thousands of observations each day. This study is enabled by recently developed MLS Lagrangian Trajectory Diagnostic (LTD) support products. Sensitivity studies indicate that the largest influence on the ozone loss estimates are the value of potential vorticity (PV) used to define the edge of the polar vortex (within which matched observations must lie) and the degree to which the PV of an airmass is allowed to vary between matched observations. Applying Match calculations to MLS observations of nitrous oxide, a long-lived tracer whose expected rate of change on these timescales is negligible, enables quantification of the impact of transport errors on the Match-based ozone loss estimates. Our loss estimates are generally in agreement with previous estimates for selected Arctic winters, though indicating smaller losses than many other studies. Arctic ozone losses are greatest during the 2010/11 winter, as seen in prior studies, with 2.0 ppmv (parts per million by volume) loss estimated at 450 K potential temperature. As expected, Antarctic winter ozone losses are consistently greater than those for the Arctic, with less interannual variability (e.g., ranging between 2.3 and 3.0 ppmv at 450 K). This study exemplifies the insights into atmospheric

  16. Mean Sea Surface and Variability of the Gulf of Mexico Using Geosat Altimetry Data

    DTIC Science & Technology

    1990-03-15

    Geosat Exact Repeat Mission (ERM) altimetric measurements of the sea surface height in the Gulf of Mexico are used to determine the mean sea surface... Gulf of Mexico . Keywords: Altimetry; Mesoscale oceanography; Ocean forecasting; Reprints.

  17. Microwave properties of a quiet sea

    NASA Technical Reports Server (NTRS)

    Stacey, J.

    1985-01-01

    The microwave flux responses of a quiet sea are observed at five microwave frequencies and with both horizontal and vertical polarizations at each frequency--a simultaneous 10 channel receiving system. The measurements are taken from Earth orbit with an articulating antenna. The 10 channel responses are taken simultaneously since they share a common articulating collector with a multifrequency feed. The plotted flux responses show: (1) the effects of the relative, on-axis-gain of the collecting aperture for each frequency; (2) the effects of polarization rotation in the output responses of the receive when the collecting aperture mechanically rotates about a feed that is fixed; (3) the difference between the flux magnitudes for the horizontal and vertical channels, at each of the five frequencies, and for each pointing position, over a 44 degree scan angle; and (4) the RMS value of the clutter--as reckoned over the interval of a full swath for each of the 10 channels. The clutter is derived from the standard error of estimate of the plotted swath response for each channel. The expected value of the background temperature is computed for each of the three quiet seas. The background temperature includes contributions from the cosmic background, the downwelling path, the sea surface, and the upwelling path.

  18. NIRST: a satellite-based IR instrument for fire and sea surface temperature measurement

    NASA Astrophysics Data System (ADS)

    Marraco, Hugo; Phong, Linh Ngo

    2006-05-01

    NIRST is a pushbroom scanning infrared radiometer that makes use of 512×2 arrays of resistive microbolometers. This instrument comprises mainly two cameras, one operating in the spectral band of 3.4-4.2 μm (band 1) and the other in the bands of 10.4-11.3 (band 2) and 11.4-12.3 μm (band 3). It is intended for the retrievals of forest fire and sea surface temperatures in the Aquarius / SAC-D mission. In this mission the satellite will be launched into a Sun Synchronous polar orbit with an ascending node at 6 PM. This orbit suits the need of discriminating forest fires from solar reflections. NIRST is designed to achieve a spatial resolution of 350 m and a swath width of 180 km at nadir. Its field of view can be steered across track up to 500 km on each side to shorten the revisit time. To measure fire intensity temperatures NIRST will perform multispectral scans of ground area in bands 1 and 2 and the acquired data will be analyzed using a double band algorithm. The microbolometer detectors have been designed to exhibit useful dynamic range for this application. It is projected that the detector response in band 1 saturates only when NIRST scans a 350 m ground pixel of average temperature of 700 K. The use of the data acquired in bands 2 and 3 allows for the retrieval of sea surface temperature by means of the split algorithm technique.

  19. Satellite-derived sea surface height and sea surface wind data fusion for spilled oil tracking

    NASA Astrophysics Data System (ADS)

    Kozai, Katsutoshi

    2003-12-01

    An attempt is made to estimate the trajectory of the spilled oil from the sunken tanker Nakhodka occurred on January 2, 1997 in the Japan Sea by fusing two microwave sensor data, namely ERS-2 altimeter and ADEOS/NSCAT scatterometer data. In this study 'fusion' is defined as the method of more reliable prediction for the trajectory of spilled oil than before. Geostrophic current vectors are derived from ERS-2 altimeter and wind-induced drift vectors are derived from ADEOS/NSCAT scatterometer data These two different satellite-derived vectors are 'fused' together in the surface current model to estimate and evaluate the trajectory of spilled oil from the sunken tanker Nakhodka. The distribution of component of spill vector is mostly accounted for by the distribution of geostrophic velocity component during the study period with some discrepancies during March, 1997.

  20. Three-dimensional inhomogeneous rain fields: implications for the distribution of intensity and polarization of the microwave thermal radiation.

    NASA Astrophysics Data System (ADS)

    Ilyushin, Yaroslaw; Kutuza, Boris

    Observations and mapping of the upwelling thermal radiation of the Earth is the very promising remote sensing technique for the global monitoring of the weather and precipitations. For reliable interpretation of the observation data, numerical model of the microwave radiative transfer in the precipitating atmosphere is necessary. In the present work, numerical simulations of thermal microwave radiation in the rain have been performed at three wavelengths (3, 8 and 22 mm). Radiative properties of the rain have been simulated using public accessible T-matrix codes (Mishchenko, Moroz) for non-spherical particles of fixed orientation and realistic raindrop size distributions (Marshall-Palmer) within the range of rain intensity 1-100 mm/h. Thermal radiation of infinite flat slab medium and isolated rain cell of kilometer size has been simulated with finite difference scheme for the vectorial radiative transfer equation (VRTE) in dichroic scattering medium. Principal role of cell structure of the rain field in the formation of angular and spatial distribution of the intensity and polarization of the upwelling thermal radiation has been established. Possible approaches to interpretation of satellite data are also discussed. It is necessary that spatial resolution of microwave radiometers be less than rain cell size. At the present time the resolution is approximately 15 km. It can be considerably improved, for example by two-dimensional synthetic aperture millimeter-wave radiometric interferometer for measuring full-component Stokes vector of emission from hydrometeors. The estimates show that in millimeter band it is possible to develop such equipment with spatial resolution of the order of 1-2 km, which is significantly less than the size of rain cell, with sensitivity 0.3-0.5 K. Under this condition the second Stokes parameter may by successfully measured and may be used for investigation of precipitation regions. Y-shaped phased array antenna is the most promising to

  1. Simulation of Earthquake-Generated Sea-Surface Deformation

    NASA Astrophysics Data System (ADS)

    Vogl, Chris; Leveque, Randy

    2016-11-01

    Earthquake-generated tsunamis can carry with them a powerful, destructive force. One of the most well-known, recent examples is the tsunami generated by the Tohoku earthquake, which was responsible for the nuclear disaster in Fukushima. Tsunami simulation and forecasting, a necessary element of emergency procedure planning and execution, is typically done using the shallow-water equations. A typical initial condition is that using the Okada solution for a homogeneous, elastic half-space. This work focuses on simulating earthquake-generated sea-surface deformations that are more true to the physics of the materials involved. In particular, a water layer is added on top of the half-space that models the seabed. Sea-surface deformations are then simulated using the Clawpack hyperbolic PDE package. Results from considering the water layer both as linearly elastic and as "nearly incompressible" are compared to that of the Okada solution.

  2. Estimation of the sea surface's two-scale backscatter parameters

    NASA Technical Reports Server (NTRS)

    Wentz, F. J.

    1978-01-01

    The relationship between the sea-surface normalized radar cross section and the friction velocity vector is determined using a parametric two-scale scattering model. The model parameters are found from a nonlinear maximum likelihood estimation. The estimation is based on aircraft scatterometer measurements and the sea-surface anemometer measurements collected during the JONSWAP '75 experiment. The estimates of the ten model parameters converge to realistic values that are in good agreement with the available oceanographic data. The rms discrepancy between the model and the cross section measurements is 0.7 db, which is the rms sum of a 0.3 db average measurement error and a 0.6 db modeling error.

  3. ONRL Workshop Proceedings - Role of Surfactant Films on the Interfacial Properties of the Sea Surface Held in London on 9-11 April 1986.

    DTIC Science & Technology

    1986-11-21

    of wind over water. J. Fluid Mech. 10, 189-194. .arg, S. and 0. H. Shemdin , 1983: Measurements of high frequency waves using a wave follower . J...example, negative seasurface return of side-looking microwave radar signals may be due to the following sea truth situations in which capillary waves ...signals may be affected by any of the following events at the sea surface which diminish capillary waves : (a) zones of calm where no surface film is

  4. Japanese Whaling Ships' Sea Surface Temperatures 1946-84.

    NASA Astrophysics Data System (ADS)

    Mierzejewska, Anna W.; Wu, Zhongxiang; Newell, Reginald E.; Miyashita, Tomio

    1997-03-01

    Japanese whaling ship data, a homogeneous dataset mainly covering the southern high-latitude oceans, may be used to fill in gaps in recent sea surface temperature datasets, contributing a fair number of additional observations in this area. The Japanese whaling ship data are treated separately here for the period 1946-84, and they show no significant temperature changes during this period in the main fishing region of 60°-70°S or in the west Pacific warm pool.

  5. Sea surface temperature of the coastal zones of France

    NASA Technical Reports Server (NTRS)

    Deschamps, P. Y.; Crepon, M.; Monget, J. M.; Verger, F. (Principal Investigator); Frouin, R.; Cassanet, J.; Wald, L.

    1980-01-01

    The various thermal gradients in the coastal zones of France were mapped with regard to natural phenomena and man made thermal effluents. The mesoscale thermal features of the English Channel, the Bay of Biscay, and the northwestern Mediterranean Sea were also studied. The evolution of the thermal gradients generated by the main estuaries of the French coastal zones was investigated along with the modeling of diurnal heating of the sea surface and its influence on the oceanic surface layers.

  6. Pre-Launch Characterization of the Advanced Technology Microwave Sounder (ATMS) on the Joint Polar Satellite System-1 Satellite (JPSS-1)

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Leslie, Vince; Lyu, Joseph; Smith, Craig; McCormick, Lisa; Anderson, Kent

    2016-04-01

    The Advanced Technology Microwave Sounder (ATMS) is the newest generation of microwave sounder in the international fleet of polar-orbiting weather satellites, replacing the Advanced Microwave Sounding Unit (AMSU) which first entered service in 1998. The first ATMS was launched aboard the Suomi NPP (S-NPP) satellite in late 2011. The second ATMS is manifested on the Joint Polar Satellite System-1 Satellite (JPSS-1). ATMS provides 22 channels of temperature and humidity sounding observations over a frequency range from 23 to 183 GHz. These microwave soundings provide the highest impact data ingested by operational Numerical Weather Prediction (NWP) models, and are the most critical of the polar-orbiting satellite observations, particularly because microwave sensing can penetrate clouds. This paper will present performance characterizations from pre-launch calibration measurements of the JPSS-1 ATMS just completed in December, 2015. The measurements were conducted in a thermal vacuum chamber with blackbody targets simulating cold space, ambient, and a variable Earth scene. They represent the best opportunity for calibration characterization of the instrument since the environment can be carefully controlled. We will present characterizations of the sensitivity (NEDT), accuracy, nonlinearity, noise spectral characteristics, gain stability, repeatability, and inter-channel correlation. An estimate of expected "striping" will be presented, and a discussion of reflector emissivity effects will also be provided. Comparisons will be made with the S-NPP flight unit. Finally, we will describe planned on-orbit characterizations - such as pitch and roll maneuvers - that will further improve both the measurement quality and the understanding of various error contributions.

  7. GroundBIRD: Observing Cosmic Microwave Polarization at Large Angular Scale with Kinetic Inductance Detectors and High-Speed Rotating Telescope

    NASA Astrophysics Data System (ADS)

    Oguri, S.; Choi, J.; Damayanthi, T.; Hattori, M.; Hazumi, M.; Ishitsuka, H.; Karatsu, K.; Mima, S.; Minowa, M.; Nagasaki, T.; Otani, C.; Sekimoto, Y.; Tajima, O.; Tomita, N.; Yoshida, M.; Won, E.

    2016-08-01

    Cosmic microwave background (CMB) is an important source of information about the origin of our universe. In particular, odd-parity large angular scale patterns in the CMB polarization, the primordial B-modes, are strong evidence for an inflationary universe, related to the accelerating expansion of the metric. We are developing a unique telescope, GroundBIRD, to take CMB polarization measurements. The telescope combines novel techniques: high-speed rotation scanning, cold optics, and microwave kinetic inductance detectors (MKIDs). We evaluated the response of MKIDs on the rotation stage. Method of shielding from the geo-magnetic field is established. We have also developed a receiver cryostat. We are able to maintain a sufficient cold status for observations on the optical configuration. We plan to start commissioning the system by observing CMB in Japan in 2015-2016. We will then deploy GroundBIRD in the Canary Islands for further scientific observations.

  8. Microwave Radiometers from 0.6 to 22 GHz for Juno, a Polar Orbiter around Jupiter

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.

    2008-01-01

    A compact instrument called the MWR (microwave radiometer) is under development at JPL for Juno, the next NASA new frontiers mission, scheduled to launch in 2011. It's purpose is to measure the thermal emission from Jupiter's atmosphere at six selected frequencies from 0.6 to 22 GHz, operating in direct detection mode, in order to quantify the distributions and abundances of water and ammonia in Jupiter's atmosphere. The goal is to understand the previously unobserved dynamics of the sub-cloud atmosphere, and to discriminate among models for planetary formation in our solar system. as part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The receivers and control electronics are protected by a radiation-shielding enclosure on the Juno spacecraft that also provides for a benign and stable operating temperature environment. All antennas and RF transmission lines outside the vault must withstand low temperatures and the harsh radiation environment surrounding Jupiter. This paper describes the concept of the MWR instrument and presents results of one breadboard receiver channel.

  9. Microwave Radiometers from 0.6 to 22 GHz for Juno, A Polar Orbiter Around Jupiter

    NASA Technical Reports Server (NTRS)

    Pingree, P.; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.

    2008-01-01

    A compact instrument called the MWR (MicroWave Radiometer) is under development at JPL for Juno, the next NASA New Frontiers mission, scheduled to launch in 2011. It's purpose is to measure the thermal emission from Jupiter's atmosphere at six selected frequencies from 0.6 to 22 GHz, operating in direct detection mode, in order to quantify the distributions and abundances of water and ammonia in Jupiter's atmosphere. The goal is to understand the previously unobserved dynamics of the sub-cloud atmosphere, and to discriminate among models for planetary formation in our solar system. As part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The receivers and control electronics are protected by a radiation-shielding enclosure on the Juno spacecraft that would provide a benign and stable operating temperature environment. All antennas and RF transmission lines outside the vault must withstand low temperatures and the harsh radiation environment surrounding Jupiter. This paper describes the concept of the MWR instrument and presents results of one breadboard receiver channel.

  10. Medium-assisted non-polar solvent dynamic microwave extraction for determination of organophosphorus pesticides in cereals using gas chromatography-mass spectrometry.

    PubMed

    Wu, Lijie; Song, Ying; Xu, Xu; Li, Na; Shao, Mingyuan; Zhang, Hanqi; Yu, Aimin; Yu, Cui; Ma, Qiang; Lu, Chunmei; Wang, Ziming

    2014-11-01

    A fast and green pretreatment method, medium-assisted non-polar solvent dynamic microwave extraction, was first applied to extract ten of organophosphorus pesticides (OPPs) from five cereal samples. Without adding any polar solvent, graphite powders (GP) were used as microwave absorption medium to transform microwave energy into heat energy. For recycling GP, an extractor was made by sealing GP inside the exterior tube of a glass sleeve. By dynamic microwave extraction using hexane as extraction solvent, ten OPPs could be extracted completely within 200s, and the extract was directly analysed by GC-MS without any clean-up process. The effects of some experimental parameters on extraction efficiency were investigated and optimised. Relative standard deviations of intra- and inter-day ranging from 1.02% to 5.32% were obtained. Five real samples were analysed, and the recoveries obtained were in the range of 73.2-99.8%, and the relative standard deviations were lower than 6.63%.

  11. Microwave bistatic polarization measurements for retrieval of soil moisture using an incidence angle approach

    NASA Astrophysics Data System (ADS)

    Singh, D.; Dubey, V.

    2007-03-01

    In this paper, the specular scattering (σOHH/VV) behaviour of ten types of plots having different percentage of moisture (mg) and roughness (hrms) has been analysed at various incidence angles with horizontal-horizontal (HH-) and vertical-vertical (VV-) polarizations by an indigenously assembled X-band bistatic scatterometer at frequency of 9.5 GHz. Still, it is very uncertain for minimizing the effect of roughness while retrieving soil moisture. For this purpose, the polarization behaviour of a radar wave has been analysed and a known polarimetric ratio (P = σOHH/σOvv) and proposed polarimetric discrimination ratio \\big(PDR = \\frac{{\\sigma _{VV}^o - \\sigma _{HH}^o }}{{\\sigma _{VV}^o + \\sigma _{HH}^o }}\\big) have been tested for minimizing the effect of roughness for the retrieval of soil moisture. It was found that PDR has minimum effect of roughness in comparison to P. To avoid the complexity of a moisture retrieval algorithm, we have proposed the incidence angle-based approach to retrieve the soil moisture. The retrieved moisture with the proposed approach is in quite a good agreement with the observed moisture. PDR gives better results than P for retrieval of soil moisture. This type of study and the development of this algorithm will be very helpful in the near future of the Cartwheel satellite system.

  12. Broadband, polarization-insensitive, and wide-angle microwave absorber based on resistive film

    NASA Astrophysics Data System (ADS)

    Dan-Dan, Bu; Chun-Sheng, Yue; Guang-Qiu, Zhang; Yong-Tao, Hu; Sheng, Dong

    2016-06-01

    A simple design of broadband metamaterial absorber (MA) based on resistive film is numerically presented in this paper. The unit cell of this absorber is composed of crossed rectangular rings-shaped resistive film, dielectric substrate, and continuous metal film. The simulated results indicate that the absorber obtains a 12.82-GHz-wide absorption from about 4.75 GHz to 17.57 GHz with absorptivity over 90% at normal incidence. Distribution of surface power loss density is illustrated to understand the intrinsic absorption mechanism of the structure. The proposed structure can work at wide polarization angles and wide angles of incidence for both transverse electric (TE) and transverse magnetic (TM) waves. Finally, the multi-reflection interference theory is involved to analyze and explain the broadband absorption mechanism at both normal and oblique incidence. Moreover, the polarization-insensitive feature is also investigated by using the interference model. It is seen that the simulated and calculated absorption rates agree fairly well with each other for the absorber.

  13. Optimal design and loss mechanism analysis of microwave absorbing unidirectional SiC fiber composites with broad absorption band and good polarization stability

    NASA Astrophysics Data System (ADS)

    Wan, Guangchao; Jiang, Jianjun; He, Yun; Bie, Shaowei

    2016-04-01

    A microwave-absorbing unidirectional SiC fiber composite with wide absorption and good polarization stability was designed by genetic algorithm. The anisotropic nature of unidirectional fiber composites was considered in the design by characterizing tensor permittivity. This special composite is composed of two kinds of SiC fibers that separately exhibit relatively high conductivity and low conductivity. The electromagnetic loss mechanism of this composite was examined for polarizations that differ in the electric field of the incident wave, applied either in the direction of the fiber or in the transverse direction, perpendicular to the fibers. For both polarizations, the absorption band of our composite can reach 6 GHz and the lowest microwave reflectivity was about -20 dB over a range of 8-18 GHz. When the electric field is polarized parallel to fibers, strong coupling among the high-conductivity fibers can induce a strong current and thus efficiently dissipate the electromagnetic energy. When the electric field is polarized perpendicular to fibers, the electromagnetic loss mechanism in the composite resembles the electric energy loss in capacitors and currents in the transverse direction are obstructed by the fibers resulting in attenuation of the electromagnetic energy in the matrix.

  14. Fabrication of Feedhorn-Coupled Transition Edge Sensor Arrays for Measurement of the Cosmic Microwave Background Polarization

    NASA Astrophysics Data System (ADS)

    Denis, K. L.; Ali, A.; Appel, J.; Bennett, C. L.; Chang, M. P.; Chuss, D. T.; Colazo, F. A.; Costen, N.; Essinger-Hileman, T.; Hu, R.; Marriage, T.; Rostem, K.; U-Yen, K.; Wollack, E. J.

    2016-08-01

    Characterization of the minute cosmic microwave background polarization signature requires multi-frequency, high-throughput precision instrument systems. We have previously described the detector fabrication of a 40 GHz focal plane and now describe the fabrication of detector modules for measurement of the CMB at 90 GHz. The 90 GHz detectors are a scaled version of the 40 GHz architecture where, due to smaller size detectors, we have implemented a modular (wafer level) rather than the chip-level architecture. The new fabrication process utilizes the same design rules with the added challenge of increased wiring density to the 74 TES's as well as a new wafer level hybridization procedure. The hexagonally shaped modules are tile-able, and as such can be used to form the large focal planes required for a space-based CMB polarimeter. The detectors described here will be deployed in two focal planes with seven modules each in the Johns Hopkins University led ground-based Cosmology Large Angular Scale Surveyor (CLASS) telescope.

  15. Temperature-dependent microwave dielectric relaxation studies of hydrogen bonded polar binary mixtures of propan-1-ol and propionaldehyde.

    PubMed

    Vishwam, T; Parvateesam, K; Sreeharisastry, S; Murthy, V R K

    2013-10-01

    The molecular interaction between the polar systems of propan-1-ol and propionaldehyde for various mole fractions at different temperatures were studied by determining the frequency dependent complex dielectric permittivity by using the open-ended coaxial probe technique method in the microwave frequency range from 20 MHz to 20 GHz. The geometries are optimized at HF, B3LYP and MP2 with 6-311G and 6-311G+ basis sets. Dipole moments of the binary mixtures are calculated from the dielectric data using Higasi's method and compared with the theoretical results. Conformational analysis of the formation of hydrogen bond between the propan-1-ol and propionaldehyde is supported by the FT-IR and molecular polarizability calculations. The average relaxation times are calculated from their respective Cole-Cole plots. The activation entropy, activation enthalpy and Kirkwood correlation 'g' factor, excess permittivity (ε(E)), excess inverse relaxation time (1/τ)(E), Bruggeman parameter (f(B)) have also been determined for propan-1-ol and propionaldehyde and the results were correlated.

  16. Temperature-dependent microwave dielectric relaxation studies of hydrogen bonded polar binary mixtures of propan-1-ol and propionaldehyde

    NASA Astrophysics Data System (ADS)

    Vishwam, T.; Parvateesam, K.; SreehariSastry, S.; Murthy, V. R. K.

    2013-10-01

    The molecular interaction between the polar systems of propan-1-ol and propionaldehyde for various mole fractions at different temperatures were studied by determining the frequency dependent complex dielectric permittivity by using the open-ended coaxial probe technique method in the microwave frequency range from 20 MHz to 20 GHz. The geometries are optimized at HF, B3LYP and MP2 with 6-311G and 6-311G+ basis sets. Dipole moments of the binary mixtures are calculated from the dielectric data using Higasi's method and compared with the theoretical results. Conformational analysis of the formation of hydrogen bond between the propan-1-ol and propionaldehyde is supported by the FT-IR and molecular polarizability calculations. The average relaxation times are calculated from their respective Cole-Cole plots. The activation entropy, activation enthalpy and Kirkwood correlation 'g' factor, excess permittivity (ɛE), excess inverse relaxation time (1/τ)E, Bruggeman parameter (fB) have also been determined for propan-1-ol and propionaldehyde and the results were correlated.

  17. Effect of Recent Sea Surface Temperature Trends on the Arctic Stratospheric Vortex

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke; Hurwitz, Margaret

    2015-01-01

    The springtime Arctic polar vortex has cooled significantly over the satellite era, with consequences for ozone concentrations in the springtime transition season. The causes of this cooling trend are deduced by using comprehensive chemistry-climate model experiments. Approximately half of the satellite era early springtime cooling trend in the Arctic lower stratosphere was caused by changing sea surface temperatures (SSTs). An ensemble of experiments forced only by changing SSTs is compared to an ensemble of experiments in which both the observed SSTs and chemically- and radiatively-active trace species are changing. By comparing the two ensembles, it is shown that warming of Indian Ocean, North Pacific, and North Atlantic SSTs, and cooling of the tropical Pacific, have strongly contributed to recent polar stratospheric cooling in late winter and early spring, and to a weak polar stratospheric warming in early winter. When concentrations of ozone-depleting substances and greenhouse gases are fixed, polar ozone concentrations show a small but robust decline due to changing SSTs. Ozone changes are magnified in the presence of changing gas concentrations. The stratospheric changes can be understood by examining the tropospheric height and heat flux anomalies generated by the anomalous SSTs. Finally, recent SST changes have contributed to a decrease in the frequency of late winter stratospheric sudden warmings.

  18. Velocity profiles inside volcanic clouds from three-dimensional scanning microwave dual-polarization Doppler radars

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario

    2016-07-01

    In this work, velocity profiles within a volcanic tephra cloud obtained by dual-polarization Doppler radar acquisitions with three-dimensional (3-D) mechanical scanning capability are analyzed. A method for segmenting the radar volumes into three velocity regimes: vertical updraft, vertical fallout, and horizontal wind advection within a volcanic tephra cloud using dual-polarization Doppler radar moments is proposed. The horizontal and vertical velocity components within the regimes are retrieved using a novel procedure that makes assumptions concerning the characteristics of the winds inside these regimes. The vertical velocities retrieved are combined with 1-D simulations to derive additional parameters including particle fallout, mass flux, and particle sizes. The explosive event occurred on 23 November 2013 at the Mount Etna volcano (Sicily, Italy), is considered a demonstrative case in which to analyze the radar Doppler signal inside the tephra column. The X-band radar (3 cm wavelength) in the Catania, Italy, airport observed the 3-D scenes of the Etna tephra cloud ~32 km from the volcano vent every 10 min. From the radar-derived vertical velocity profiles of updraft, particle fallout, and horizontal transportation, an exit velocity of 150 m/s, mass flux rate of 1.37 • 107 kg/s, particle fallout velocity of 18 m/s, and diameters of precipitating tephra particles equal to 0.8 cm are estimated on average. These numbers are shown to be consistent with theoretical 1-D simulations of plume dynamics and local reports at the ground, respectively. A thickness of 3 ± 0.36 km for the downwind ash cloud is also inferred by differentiating the radar-derived cloud top and the height of transition between the convective and buoyancy regions, the latter being inferred by the estimated vertical updraft velocity profile. The unique nature of the case study as well as the novelty of the segmentation and retrieval methods presented potentially give new insights into the

  19. On the influence of North Pacific sea surface temperature on the Arctic winter climate

    NASA Astrophysics Data System (ADS)

    Hurwitz, M. M.; Newman, P. A.; Garfinkel, C. I.

    2012-10-01

    Differences between two ensembles of Goddard Earth Observing System Chemistry-Climate Model simulations isolate the impact of North Pacific sea surface temperatures (SSTs) on the Arctic winter climate. One ensemble of extended winter season forecasts is forced by unusually high SSTs in the North Pacific, while in the second ensemble SSTs in the North Pacific are unusually low. High - Low differences are consistent with a strengthened Western Pacific atmospheric teleconnection pattern, and in particular, a weakening of the Aleutian low. This relative change in tropospheric circulation inhibits planetary wave propagation into the stratosphere, in turn reducing polar stratospheric temperature in mid- and late winter. The number of winters with sudden stratospheric warmings is approximately tripled in the Low ensemble as compared with the High ensemble. Enhanced North Pacific SSTs, and thus a more stable and persistent Arctic vortex, lead to a relative decrease in lower stratospheric ozone in spring, affecting the April clear-sky UV index at Northern Hemisphere midlatitudes.

  20. A Match-based approach to the estimation of polar stratospheric ozone loss using Aura Microwave Limb Sounder observations

    NASA Astrophysics Data System (ADS)

    Livesey, N. J.; Santee, M. L.; Manney, G. L.

    2015-09-01

    The well-established "Match" approach to quantifying chemical destruction of ozone in the polar lower stratosphere is applied to ozone observations from the Microwave Limb Sounder (MLS) on NASA's Aura spacecraft. Quantification of ozone loss requires distinguishing transport- and chemically induced changes in ozone abundance. This is accomplished in the Match approach by examining cases where trajectories indicate that the same air mass has been observed on multiple occasions. The method was pioneered using ozonesonde observations, for which hundreds of matched ozone observations per winter are typically available. The dense coverage of the MLS measurements, particularly at polar latitudes, allows matches to be made to thousands of observations each day. This study is enabled by recently developed MLS Lagrangian trajectory diagnostic (LTD) support products. Sensitivity studies indicate that the largest influence on the ozone loss estimates are the value of potential vorticity (PV) used to define the edge of the polar vortex (within which matched observations must lie) and the degree to which the PV of an air mass is allowed to vary between matched observations. Applying Match calculations to MLS observations of nitrous oxide, a long-lived tracer whose expected rate of change is negligible on the weekly to monthly timescales considered here, enables quantification of the impact of transport errors on the Match-based ozone loss estimates. Our loss estimates are generally in agreement with previous estimates for selected Arctic winters, though indicating smaller losses than many other studies. Arctic ozone losses are greatest during the 2010/11 winter, as seen in prior studies, with 2.0 ppmv (parts per million by volume) loss estimated at 450 K potential temperature (~ 18 km altitude). As expected, Antarctic winter ozone losses are consistently greater than those for the Arctic, with less interannual variability (e.g., ranging between 2.3 and 3.0 ppmv at 450 K). This

  1. Satellite-derived sea surface height and sea surface wind data fusion for spilled oil tracking

    NASA Astrophysics Data System (ADS)

    Kozai, K.

    Data fusion is defined as a framework with the purpose of obtaining information of 'greater quality'. Within the framework tools are expressed for the alliance of data originating from different sources. The exact definition of 'greater quality' is stated in this context as more reliable prediction for the trajectory of spilled oil from two different microwave sensor data, namely ERS-2 altimeter and ADEOS/NSCAT scatterometer data. An example is presented in the case of trajectory of bow section and associated oil upwelling from the sunken tanker Nakhodka occurred from January to June in 1997 in Japan Sea. Spill distance is defined as a horizontal distance from the oil upwelling point to the location of sunken Nakhodka and a spill direction is defined as an angle made by the geographic north and the line corresponding to the spill distance. Geostrophic current vectors are derived from ERS-2 altimeter and wind-induced current vectors are derived from ADEOS/NSCAT scatterometer data. These two different satellite-derived vectors are 'fused' together in the surface current model to estimate and evaluate the trajectory of bow section and associated oil upwelling from the sunken tanker Nakhodka. Result of comparison between the estimated and the observed trajectory of bow section indicates that the estimated trajectory is agreed well with the observed one in the first half of drift period, while in the latter half of drift period the estimated trajectory is not agreed well with the observed one, which may be attributable to changes of wind directions within 24 hours from the satellite overpasses. Moreover the comparison between spill vector and 'fused' surface current vector shows the good correspondence in terms of direction when in situ wind accelerates the surface current vector, while the comparison between the twos shows the bad correspondence when the temporal changes of wind vector occurs.

  2. Pliocene-Pleistocene evolution of sea surface and intermediate water temperatures from the southwest Pacific

    NASA Astrophysics Data System (ADS)

    McClymont, Erin L.; Elmore, Aurora C.; Kender, Sev; Leng, Melanie J.; Greaves, Mervyn; Elderfield, Henry

    2016-06-01

    Over the last 5 million years, the global climate system has evolved toward a colder mean state, marked by large-amplitude oscillations in continental ice volume. Equatorward expansion of polar waters and strengthening temperature gradients have been detected. However, the response of the mid latitudes and high latitudes of the Southern Hemisphere is not well documented, despite the potential importance for climate feedbacks including sea ice distribution and low-high latitude heat transport. Here we reconstruct the Pliocene-Pleistocene history of both sea surface and Antarctic Intermediate Water (AAIW) temperatures on orbital time scales from Deep Sea Drilling Project Site 593 in the Tasman Sea, southwest Pacific. We confirm overall Pliocene-Pleistocene cooling trends in both the surface ocean and AAIW, although the patterns are complex. The Pliocene is warmer than modern, but our data suggest an equatorward displacement of the subtropical front relative to present and a poleward displacement of the subantarctic front of the Antarctic Circumpolar Current (ACC). Two main intervals of cooling, from ~3 Ma and ~1.5 Ma, are coeval with cooling and ice sheet expansion noted elsewhere and suggest that equatorward expansion of polar water masses also characterized the southwest Pacific through the Pliocene-Pleistocene. However, the observed trends in sea surface temperature and AAIW temperature are not identical despite an underlying link to the ACC, and intervals of unusual surface ocean warmth (~2 Ma) and large-amplitude variability in AAIW temperatures (from ~1 Ma) highlight complex interactions between equatorward displacements of fronts associated with the ACC and/or varying poleward heat transport from the subtropics.

  3. Pliocene-Pleistocene evolution of sea surface and intermediate water temperatures from the southwest Pacific.

    PubMed

    McClymont, Erin L; Elmore, Aurora C; Kender, Sev; Leng, Melanie J; Greaves, Mervyn; Elderfield, Henry

    2016-06-01

    Over the last 5 million years, the global climate system has evolved toward a colder mean state, marked by large-amplitude oscillations in continental ice volume. Equatorward expansion of polar waters and strengthening temperature gradients have been detected. However, the response of the mid latitudes and high latitudes of the Southern Hemisphere is not well documented, despite the potential importance for climate feedbacks including sea ice distribution and low-high latitude heat transport. Here we reconstruct the Pliocene-Pleistocene history of both sea surface and Antarctic Intermediate Water (AAIW) temperatures on orbital time scales from Deep Sea Drilling Project Site 593 in the Tasman Sea, southwest Pacific. We confirm overall Pliocene-Pleistocene cooling trends in both the surface ocean and AAIW, although the patterns are complex. The Pliocene is warmer than modern, but our data suggest an equatorward displacement of the subtropical front relative to present and a poleward displacement of the subantarctic front of the Antarctic Circumpolar Current (ACC). Two main intervals of cooling, from ~3 Ma and ~1.5 Ma, are coeval with cooling and ice sheet expansion noted elsewhere and suggest that equatorward expansion of polar water masses also characterized the southwest Pacific through the Pliocene-Pleistocene. However, the observed trends in sea surface temperature and AAIW temperature are not identical despite an underlying link to the ACC, and intervals of unusual surface ocean warmth (~2 Ma) and large-amplitude variability in AAIW temperatures (from ~1 Ma) highlight complex interactions between equatorward displacements of fronts associated with the ACC and/or varying poleward heat transport from the subtropics.

  4. Microwave Radiometers from 0.6 to 22 GHz for Juno, a Polar Orbiter around Jupiter

    NASA Technical Reports Server (NTRS)

    P. Pingree; Janssen, M.; Oswald, J.; Brown, S.; Chen, J.; Hurst, K.; Kitiyakara, A.; Maiwald, F.; Smith, S.

    2008-01-01

    A compact radiometer instrument is under development at JPL for Juno, the next NASA New Frontiers mission, scheduled to launch in 2011. This instrument is called the MWR (MicroWave Radiometer), and its purpose is to measure the thermal emission from Jupiter's atmosphere at selected frequencies from 0.6 to 22 GHz. The objective is to measure the distributions and abundances of water and ammonia in Jupiter's atmosphere, with the goal of understanding the previously unobserved dynamics of the subcloud atmosphere, and to discriminate among models for planetary formation in our solar system. The MWR instrument is currently being developed to address these science questions for the Juno mission. As part of a deep space mission aboard a solar-powered spacecraft, MWR is designed to be compact, lightweight, and low power. The entire MWR instrument consists of six individual radiometer channels with approximately 4% bandwidth at 0.6, 1.25,2.6,5.2, 10,22 GHz operating in direct detection mode. Each radiometer channel has up to 80 dB of gain with a noise figure of several dB. The highest frequency channel uses a corrugated feedhorn and waveguide transmission lines, whereas all other channels use highly phase stable coaxial cables and either patch array or waveguide slot array antennas. Slot waveguide array antennas were chosen for the low loss at the next three highest frequencies and patch array antennas were implemented due to the mass constraint at the two lowest frequencies. The six radiometer channels receive their voltage supplies and control lines from an electronics unit that also provides the instrument communication interface to the Juno spacecraft. For calibration purposes each receiver has integrated noise diodes, a Dicke switch, and temperature sensors near each component that contributes to the noise figure. In addition, multiple sensors will be placed along the RF transmission lines and the antennas in order to measure temperature gradients. All antennas and RF

  5. Study of the blue-green laser scattering from the rough sea surface with foams by the improved two-scale method

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhen; Qi, Xiao; Han, Xiang'e.

    2015-10-01

    The characteristics of laser scattering from sea surface have a great influence on application performance, from submarine communication, laser detection to laser diffusion communication. Foams will appear when the wind speed exceeds a certain value, so the foam can be seen everywhere in the upper layer of the ocean. Aiming at the volume-surface composite model of rough sea surface with foam layer driven by wind, and the similarities and differences of scattering characteristics between blue-green laser and microwave, an improved two-scale method for blue-green laser to calculate the scattering coefficient is presented in this paper. Based on the improved two-scale rough surface scattering theory, MIE theory and VRT( vector radiative transfer ) theory, the relations between the foam coverage of the sea surface and wind speed and air-sea temperature difference are analyzed. Aiming at the Gauss sea surface in blue-green laser, the dependence of back- and bistatie-scattering coefficient on the incident and azimuth angle, the coverage of foams, as well as the wind speed are discussed in detail. The results of numerical simulations are compared and analyzed in this paper. It can be concluded that the foam layer has a considerable effect on the laser scattering with the increase of wind speed, especially for a large incident angle. Theoretical analysis and numerical simulations show that the improved two-scale method is reasonable and efficient.

  6. Spherical harmonic expansion of the Levitus Sea surface topography

    NASA Technical Reports Server (NTRS)

    Engelis, Theodossios

    1987-01-01

    Prior information for the stationary sea surface topography (SST) may be needed in altimetric solutions that intend to simultaneously improve the gravity field and determine the SST. For this purpose the oceanographically derived SST estimates are represented by a spherical harmonic expansion. The spherical harmonic coefficients are computed from a least squares adjustment of the data covering the majority of the oceanic regions of the world. Several tests are made to determine the optimum maximum degree of solution and the best configuration of the geometry of the data in order to obtain a solution that fits the data and also provides a good spectral representation of the SST.

  7. Ring discretization of the wave spectrum for sea surface simulation.

    PubMed

    Varela, Jose Miguel; Guedes Soares, Carlos

    2014-01-01

    Although interactive computer-generated ocean scenes based on real wave spectra are impressively realistic, they usually don't exhibit the original sea state's statistical properties. This might be unacceptable for applications in which the sea surface height field's correctness is important, such as 3D ship simulators for training professionals. Researchers have developed a discretization of the wave spectrum that obtains a sea state statistically more equivalent to the original. This method can also improve the scene's visual realism and real-time performance.

  8. An Arctic Sea Surface Temperature Climate Data Record

    NASA Astrophysics Data System (ADS)

    Høyer, Jacob L.; Howe, Eva; Tonboe, Rasmus; Dybkjaer, Gorm

    2013-12-01

    Daily fields of gap-free sea surface temperature observations from 1982 to 2010 have been constructed using the DMI_OI processing method, satellite SST observations from the ARC and Pathfinder projects, together with OSI-SAF sea ice reanalysis and ICOADS 2.5 observations. A thorough validation of the data set shows the overall performance with biases within 0.1 oC and standard deviations about 0.6oC. The spatial and temporal validation shows small biases, with no apparent structures, except within the Marginal Ice Zone. Examples on regional SST time series are given, where the decadal warming is evident.

  9. Feasibility Study Of Sea Surface Currents Measurements With Doppler Scatterometers

    NASA Astrophysics Data System (ADS)

    Fabry, P.; Recchia, A.; de Kloe, J.; Stoffelen, A.; Husson, R.; Collard, F.; Chapron, B.; Mouche, A.; Enjolras, V.; Johannessen, J.; Lin, C. C.; Fois, F.

    2013-12-01

    We present the activity carried out in the framework of the ESA GSP study called "Feasibility Investigation of Global Ocean Surface Current Mapping using ERS, MetOp and QuikScat Wind Scatterometer” (DOPSCAT). The study was aimed at assessing the potential of scatterometer instruments for sea surface current vector retrieval under the strong requirements of preserving both the swath and the surface wind vector estimation performances offered by the existing scatterometers. The paper describes the main results obtained during the DOPSCAT study and provides some recommendations for this new instrument concept.

  10. SMOS sea surface salinity maps of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Olmedo, Estrella; Turiel, Antonio; Ballabrera-Poy, Joaquim; Martinez, Justino; Portabella, Marcos

    2016-04-01

    Salinity and temperature gradients drive the thermohaline circulation of the oceans, and play a key role in the ocean-atmosphere coupling. The strong and direct interactions between the ocean and the cryosphere (primarily through sea ice and ice shelves) is also a key ingredient of the thermohaline circulation. The ESA's Soil Moisture and Ocean Salinity (SMOS) mission, launched in 2009, has the objective measuring soil moisture over the continents and sea surface salinity over the oceans. Although the mission was originally conceived for hydrological and oceanographic studies [1], SMOS is also making inroads in the cryospheric monitoring. SMOS carries an innovative L-band (1.4 GHz, or 21-cm wavelength), passive interferometric radiometer (the so-called MIRAS) that measures the electromagnetic radiation emitted by the Earth's surface, at about 50 km spatial resolution wide swath (1200-km), and with a 3-day revisit time at the equator, but a more frequent one at the poles. Although the SMOS radiometer operating frequency offers almost the maximum sensitivity of the brightness temperature (TB) to sea surface salinity (SSS) variations, this is rather low, , i.e.,: 90% of ocean SSS values span a range of brightness temperatures of only 5K at L-band. This sensitivity is particularly low in cold waters. This implies that the SSS retrieval requires high radiometric performance. Since the SMOS launch, SSS Level 3 maps have been distributed by several expert laboratories including the Barcelona Expert Centre (BEC). However, since the TB sensitivity to SSS decreases with decreasing sea surface temperature (SST), large retrieval errors had been reported when retrieving salinity values at latitudes above 50⁰N. Two new processing algorithms, recently developed at BEC, have led to a considerable improvement of the SMOS data, allowing for the first time to derive SSS maps in cold waters. The first one is to empirically characterize and correct the systematic biases with six

  11. The PRISM palaeoclimate reconstruction and Pliocene sea-surface temperature

    USGS Publications Warehouse

    Dowsett, H.J.; ,

    2007-01-01

    In this paper, I present a summary of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) palaeoenvironmental reconstruction, with emphasis on its historical development and range of boundary condition datasets. Sea-surface temperature (SST), sea level, sea ice, land cover (vegetation and ice) and topography are discussed as well as many of the assumptions required to create an integrated global-scale reconstruction. New multiproxy research shows good general agreement on the magnitude of mid-Pliocene SST warming. Future directions, including maximum and minimum SST analyses and deep ocean temperature estimates aimed at a full three-dimensional reconstruction, are presented. ?? The Micropalaeontological Society 2007.

  12. Sea Surface Temperature and Vegetation Index from MODIS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a composite MODIS image showing the 'green wave' of spring in North America and sea surface temperature in the ocean, collected over an 8-day period during the first week in April 2000. On land, the darker green pixels show where the most green foliage is being produced due to photosynthetic activity. Yellows on land show where there is little or no productivity and red is a boundary zone. In the ocean, orange and yellows show warmer waters and blues show colder values. (MODIS Data Type: MODIS-PFM)

  13. Large Antenna Multifrequency Microwave Radiometer (LAMMR) system design

    NASA Astrophysics Data System (ADS)

    King, J. L.

    1980-05-01

    The large Antenna Multifrequency Microwave Radiometer (LAMMR) is a high resolution 4 meter aperture scanning radiometer system designed to determine sea surface temperature and wind speed, atmospheric water vapor and liquid water, precipitation, and various sea ice parameters by interpreting brightness temperature images from low Earth orbiting satellites. The LAMMR with dual linear horizontal and vertical polarization radiometer channels from 1.4 to 91 GHZ can provide multidiscipline data with resolutions from 105 to 7 km. The LAMMR baseline radiometer system uses total power radiometers to achieve delta T's in the 0.5 to 1.7 K range and system calibration accuracies in the 1 to 2 deg range. A cold sky horn/ambient load two point calibration technique is used in this baseline concept and the second detector output uses an integrated and dump circuit to sample the scanning cross-tract resolution cells.

  14. Large Antenna Multifrequency Microwave Radiometer (LAMMR) system design

    NASA Technical Reports Server (NTRS)

    King, J. L.

    1980-01-01

    The large Antenna Multifrequency Microwave Radiometer (LAMMR) is a high resolution 4 meter aperture scanning radiometer system designed to determine sea surface temperature and wind speed, atmospheric water vapor and liquid water, precipitation, and various sea ice parameters by interpreting brightness temperature images from low Earth orbiting satellites. The LAMMR with dual linear horizontal and vertical polarization radiometer channels from 1.4 to 91 GHZ can provide multidiscipline data with resolutions from 105 to 7 km. The LAMMR baseline radiometer system uses total power radiometers to achieve delta T's in the 0.5 to 1.7 K range and system calibration accuracies in the 1 to 2 deg range. A cold sky horn/ambient load two point calibration technique is used in this baseline concept and the second detector output uses an integrated and dump circuit to sample the scanning cross-tract resolution cells.

  15. Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity

    NASA Technical Reports Server (NTRS)

    Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon

    2009-01-01

    This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.

  16. Emerita analoga recruit populations and correlations with sea surface temperature

    NASA Astrophysics Data System (ADS)

    Pettway, J.; Quan, H.; Juarez, F.; Vicencio, M.; Ng, N.; Careers in Science Intern Program

    2010-12-01

    The Careers in Science program at the California Academy of Sciences is a science internship for students from groups traditionally under-represented in the sciences. Starting in 2003, interns have participated in the Farallones Marine Sanctuary Association's LiMPETS Sandy Beach Monitoring program, assessing populations of Emerita analoga, the Pacific mole crab. E. analoga, an inhabitant of intertidal swash zones along the coast from Alaska to Baja California, is an important species in the sandy beach intertidal food web. Weekly, during the months of June, July and August, a group of interns go to stairwell 18 of San Francisco’s Ocean Beach in Golden Gate National Recreational Area to systematically collect live E. analoga samples and data. Along a 50 meter sampling area, five transects with ten samples in the swash zone are taken and recorded. Collected E. analoga are sexed (male, female, female w/eggs, and recruit) and measured for carapace size. Newly settled E. analoga (recruit) populations have declined in recent years. However, beginning in 2009, recruit populations began to increase in number, particularly in 2010. Our group hypothesized that this increase in recruitment is correlated with increased sea surface temperature. It has been reported that some planktonic animals become more abundant in warmer waters after a major temperature shift. After examining the data, we did not find a correlation between sea surface temperature and recruit populations, leading us to further questions on the cause of this increase in E. analoga recruits.

  17. Assessing recent warming using instrumentally homogeneous sea surface temperature records

    PubMed Central

    Hausfather, Zeke; Cowtan, Kevin; Clarke, David C.; Jacobs, Peter; Richardson, Mark; Rohde, Robert

    2017-01-01

    Sea surface temperature (SST) records are subject to potential biases due to changing instrumentation and measurement practices. Significant differences exist between commonly used composite SST reconstructions from the National Oceanic and Atmospheric Administration’s Extended Reconstruction Sea Surface Temperature (ERSST), the Hadley Centre SST data set (HadSST3), and the Japanese Meteorological Agency’s Centennial Observation-Based Estimates of SSTs (COBE-SST) from 2003 to the present. The update from ERSST version 3b to version 4 resulted in an increase in the operational SST trend estimate during the last 19 years from 0.07° to 0.12°C per decade, indicating a higher rate of warming in recent years. We show that ERSST version 4 trends generally agree with largely independent, near-global, and instrumentally homogeneous SST measurements from floating buoys, Argo floats, and radiometer-based satellite measurements that have been developed and deployed during the past two decades. We find a large cooling bias in ERSST version 3b and smaller but significant cooling biases in HadSST3 and COBE-SST from 2003 to the present, with respect to most series examined. These results suggest that reported rates of SST warming in recent years have been underestimated in these three data sets. PMID:28070556

  18. Atmospheric response to variations in sea surface temperature

    NASA Technical Reports Server (NTRS)

    Spar, J.; Atlas, R.

    1974-01-01

    An extended range prediction experiment was performed with the GISS atmospheric model on a global data to test the sensitivity of the model to sea surface temperature (SST) variation over a two-week forecast period. The use of an initial observed SST field in place of the climatological monthly mean sea temperatures for surface flux calculations in the model was found to have a significant effect on the predicted precipitation over the ocean, with enhanced convection computed over areas where moderately large warm SST anomalies are found. However, there was no detectable positive effect of the SST anomaly field on forecast quality. The influence of the SST anomalies on the daily predicted fields of pressure and geopotential is relatively insignificant up to about one week compared with the growth of prediction error, and is no greater over a two-week period than that resulting from random errors in the initial meteorological state. The 14-day average fields of sea level pressure and 500-mb height predicted by the model, appear to be similarly insensitive to anomalies of sea surface temperature.

  19. Joint variability of global runoff and global sea surface temperatures

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    2008-01-01

    Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905-2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Ni??o-Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Aflantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.

  20. Sea surface wind streaks in spaceborne synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan; Li, Xiao-Ming; Sha, Jin

    2016-09-01

    Wind streaks are often observed in Synthetic aperture radar (SAR) images. They are used to determine the sea surface wind direction for sea surface wind field retrievals. It is generally understood that visible wind streaks are caused by roll vortices in the marine atmospheric boundary layer. In this study, 227 X-band spaceborne SAR images of TerraSAR-X and TanDEM-X acquired from the three FiNO platforms in the North Sea and Baltic Sea were thoroughly analyzed for a comprehensive understanding of the manifestation of wind streaks in SAR images. Approximately 48.0% of the 227 SAR images displayed wind streaks, among which 67.3%, 20.0%, and 12.7% occurred under unstable, neutral, and stable atmospheric conditions, respectively. The proportions indicate that wind streaks are more likely to be generated from thermal convection. Further investigations suggest that the inflection point and the wind shear may be essential for the appearance of wind streaks in SAR images under stable atmospheric conditions.

  1. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  2. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2014-01-01

    We report solid state 13C and 1H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, 1H and cross-polarized 13C NMR signals from 15N,13C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations. PMID:24832263

  3. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves

    SciTech Connect

    Thurber, Kent R. Tycko, Robert

    2014-05-14

    We report solid state {sup 13}C and {sup 1}H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, {sup 1}H and cross-polarized {sup 13}C NMR signals from {sup 15}N,{sup 13}C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T{sub 1e} is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  4. Decoupling of Northern North Atlantic Sea Surface Temperature and Deep Circulation during Abrupt Glacial Climate Change

    NASA Astrophysics Data System (ADS)

    Jonkers, L.; Barker, S.; Hall, I. R.

    2014-12-01

    Abrupt climate change is a prominent feature of the ice ages. The prevailing view is that these changes are related to fluctuations in ocean circulation, possibly triggered by changes in freshwater forcing as a result of ice-rafting events in the North Atlantic. Here we investigate this view by presenting results from a sediment core in the Northern North Atlantic (ODP 983 60.4°N, 23.6°W, 1984m depth, ~12-35 kyr), which is ideally positioned to monitor changes in the flow speed of Iceland-Scotland Overflow Waters. The mean size of silt (10-63 μm) has been proposed as a useful flow speed indicator, but can be influenced the presence of ice-rafted detritus (IRD). We present grain size data obtained using a Coulter counter as well as a laser diffraction particle sizer, which we compare to the proportion of Neogloboquadrina pachyderma (proxy for sea surface temperature) and manually counted coarse IRD. Grain size results are comparable for the two techniques and the influence of IRD is clearly visible in the mean size data. We use end-member modelling to derive an IRD-free estimate of flow speed variability and find clear reductions in the flow speed associated with IRD input. Sea surface temperature however, appears to vary independently from IRD input and hence deep circulation. In particular, IRD appears and current speed decreases after the onset of cooling and additional temperature variability is observed that is not associated with IRD events or changes in the deep circulation. These results question the classical view of freshwater forcing as the driver of abrupt climate change. We suggest that North Atlantic temperature variability may be related to shifts in position of the polar front and that, while IRD events may be coeval with changes in the deep circulation, these changes are not required to explain the abrupt temperature variability in the Northern North Atlantic.

  5. Persistence of Rainfall Imprint on SMOS Sea Surface Salinity

    NASA Astrophysics Data System (ADS)

    Boutin, Jacqueline; Reverdin, Gilles; Martin, Nicolas

    2015-04-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission monitors sea surface salinity (SSS) over the global ocean for more than 5 years. In previous studies, Boutin et al. (2014) have shown a clear freshening of SMOS SSS under rain cells of about -0.14pss/mm/hr at moderate wind speed (3-12m/s). This order of magnitude is compatible with in situ drifters observations taken at 45cm depth while SMOS SSS are at about 1cm depth and at a mean spatial resolution of 43km. Using Aquarius satellite SSS, Meissner and Wentz (2014) found a SSS decrease under rain cells of -0.12pss/mm/hr at 7 m/s wind speed, consistent with SMOS estimate considering the lower spatial resolution of Aquarius SSS (about 150km); Santos-Garcia et al. (2014) found an influence of the rain history preceding by a few hours the Aquarius measurement. In most cases, drifters observations also suggest that about half of the freshening observed locally disappears after one hour, likely because of mixing with surrounding waters. In this presentation, we will investigate the temporal and spatial evolution of SMOS SSS after a rain event. Rainfall information will be either derived from SSM/Is measurements (during periods when three SSM/Is satellites provide adequate sampling before and simultaneous to SMOS measurements) or from the NOAA CMORPH products. In order to separate instantaneous from historical effects, we distinguish two cases: 1) rainfall occurs at less than 30mn from SMOS observation but no rain occurred before; 2) rainfall occurred previous to SMOS observation (up to 3 hours before) but has stopped at least 30mn before SMOS acquisition. In addition to looking at the temporal evolution of SMOS SSS under the rain cell, since both vertical mixing and horizontal stirring may occur, we also investigate the size of the fresh SSS region relative to the size of the rain cell. Boutin, J., N. Martin, G. Reverdin, S. Morisset, X. Yin, L. Centurioni, and N. Reul (2014), Sea surface salinity under rain

  6. Diatom and Geochemical Constraints on Pliocene Sea Surface Conditions on the Wilkes Land Margin, East Antarctica

    NASA Astrophysics Data System (ADS)

    Riesselman, C. R.; Taylor-Silva, B.

    2015-12-01

    The mid-Pliocene is the most recent interval in Earth's history to sustain global temperatures within the range of warming predicted for the 21st century, providing an appealing analog with which to examine the changes we might encounter in the coming century. Diatom-based Southern Ocean sea surface and sea ice reconstructions by the USGS Pliocene Research Interpretations and Synoptic Mapping (PRISM) Group suggest an average +2° summer SST anomaly during the 3.3-3.0 Ma interval relative to modern. Here, we present a reconstruction of Pliocene sea surface conditions from a marine sediment core collected at IODP Site U1361, on the continental rise of the Wilkes Land margin. U1361 biogenic silica concentrations document the alternation of diatom-rich and diatom-poor lithologies; we interpret 8 diatom-rich mudstones within this sequence to record interglacial conditions between 3.8 and 2.8 Ma, across the transition from obliquity control to precession control on East Antarctic ice volumes. This progression also preserves 3 packages of interglacial sediments within the 3.3-3.0 PRISM interval, providing an opportunity for direct comparison to proximal PRISM site Eltanin 50-28. Diatom assemblages in both cores are characterized by Fragilariopsis barronii and Rouxia antarctica, extinct species with an inferred ecological preference for waters south of the polar front. However F. weaveri, an extinct diatom with inferred preference for more northerly waters and moderate abundance in E50-28, has not been identified at U1361. This may indicate that the polar frontal zone migrated across E50-28 (62° 54'S) but remained north of U1361 (64° 25'S) during the mid-Pliocene. This interpretation is bolstered by the low abundance of extant polar front species (e.g., Thalassiosira oliverana, T. lentiginosa) at U1361; these diatoms dominate the E50-28 assemblage. In contrast, the U1361 assemblage includes a number of extant sea ice indicators (F. sublinearis, F. curta, Chaetoceros

  7. Mean sea surface and gravity investigations using TOPEX/Poseidon altimeter data

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.

    1991-01-01

    From a broad point of view, we will be concerned with studying global ocean circulation patterns on the basis of ocean surface determinations with geoid undulation information. In addition, we will study local variations of the gravity field implied by the altimeter data. These general goals are reflected in the title of our investigation. To meet our general goal, we have defined a number of specific objectives: (1) sea surface topography representation; (2) mean sea surface determination; (3) development of local geoid models; (4) mean sea surface comparisons; (5) sea surface topographic files; and (6) gravity anomaly determination.

  8. Atmospheric correction for sea surface temperature retrieval from single thermal channel radiometer data onboard Kalpana satellite

    NASA Astrophysics Data System (ADS)

    Shahi, Naveen R.; Agarwal, Neeraj; Mathur, Aloke K.; Sarkar, Abhijit

    2011-06-01

    An atmospheric correction method has been applied on sea surface temperature (SST) retrieval algorithm using Very High Resolution Radiometer (VHRR) single window channel radiance data onboard Kalpana satellite (K-SAT). The technique makes use of concurrent water vapour fields available from Microwave Imager onboard Tropical Rainfall Measuring Mission (TRMM/TMI) satellite. Total water vapour content and satellite zenith angle dependent SST retrieval algorithm has been developed using Radiative Transfer Model [MODTRAN ver3.0] simulations for Kalpana 10.5-12.5 μm thermal window channel. Retrieval of Kalpana SST (K-SST) has been carried out for every half-hourly acquisition of Kalpana data for the year 2008 to cover whole annual cycle of SST over Indian Ocean (IO). Validation of the retrieved corrected SST has been carried out using near-simultaneous observations of ship and buoys datasets covering Arabian Sea, Bay of Bengal and IO regions. A significant improvement in Root Mean Square Deviation (RMSD) of K-SST with respect to buoy (1.50-1.02 K) and to ship datasets (1.41-1.19 K) is seen with the use of near real-time water vapour fields of TMI. Furthermore, comparison of the retrieved SST has also been carried out using near simultaneous observations of TRMM/TMI SST over IO regions. The analysis shows that K-SST has overall cold bias of 1.17 K and an RMSD of 1.09 K after bias correction.

  9. The 2015-2016 Arctic winter: Perspectives on extremes in polar processing and meteorological variability from the 12-year record of Aura Microwave Limb Sounder measurements

    NASA Astrophysics Data System (ADS)

    Santee, Michelle; Manney, Gloria; Lambert, Alyn; Livesey, Nathaniel; Lawrence, Zachary

    2016-04-01

    In the last decade, the Arctic lower stratosphere has seen some of the most dynamically disturbed winters, with stratospheric sudden warmings that curtailed polar processing early in the season and limited chemical ozone loss, as well as several winters marked by exceptionally cold conditions and severe chemical ozone loss. The occurrence in recent winters of different combinations of extreme meteorological conditions, and their impact on polar chemical processes, has underscored the Arctic stratosphere's sensitivity to a spectrum of dynamical variability. Launched as part of NASA's Aura satellite in July 2004, the Microwave Limb Sounder (MLS) provides an extensive suite of measurements enabling quantification of polar processing and chemical ozone loss. Here we use MLS observations in conjunction with meteorological analyses in a comprehensive analysis of the Arctic winter of 2015-2016. An unusually large volume of low temperatures in the early winter led to strong depletion in gas-phase HNO3 and H2O associated with polar stratospheric cloud formation. As a consequence of this early-winter processing and an elongated vortex with significant portions exposed to sunlight, substantial chlorine activation (enhanced abundances of ClO, depressed abundances of HCl) was evident far earlier than is typical in Arctic winter. The degree of polar processing and chemical ozone loss in this winter will be placed in the context of the previous 11 Arctic winters observed by Aura MLS.

  10. THE IMPACT OF THE SPECTRAL RESPONSE OF AN ACHROMATIC HALF-WAVE PLATE ON THE MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION

    SciTech Connect

    Bao, C.; Gold, B.; Hanany, S.; Baccigalupi, C.; Leach, S.; Didier, J.; Johnson, B. R.; Miller, A.; Jaffe, A.; O'Dea, D.; Matsumura, T.

    2012-03-10

    We study the impact of the spectral dependence of the linear polarization rotation induced by an achromatic half-wave plate on measurements of cosmic microwave background polarization in the presence of astrophysical foregrounds. We focus on the systematic effects induced on the measurement of inflationary gravitational waves by uncertainties in the polarization and spectral index of Galactic dust. We find that for the experimental configuration and noise levels of the balloon-borne EBEX experiment, which has three frequency bands centered at 150, 250, and 410 GHz, a crude dust subtraction process mitigates systematic effects to below detectable levels for 10% polarized dust and tensor-to-scalar ratio of as low as r = 0.01. We also study the impact of uncertainties in the spectral response of the instrument. With a top-hat model of the spectral response for each band, characterized by band center and bandwidth, and with the same crude dust subtraction process, we find that these parameters need to be determined to within 1 and 0.8 GHz at 150 GHz; 9 and 2.0 GHz at 250 GHz; and 20 and 14 GHz at 410 GHz, respectively. The approach presented in this paper is applicable to other optical elements that exhibit polarization rotation as a function of frequency.

  11. Remote sensing of the sea surface by millimeterwave SAR

    NASA Astrophysics Data System (ADS)

    Essen, H.; Fuchs, H.-H.; Pagels, A.

    2006-09-01

    On several occasions the sea surface has been measured with the mmW radar MEMPHIS in SAR geometry. This research was mainly aimed to investigate the ability of SAR for imaging of disturbances of the water surface at mm-wave radar bands and to gather data on the statistical properties of sea clutter. It can be suspected, that the probability density functions for the reflectivity of sea clutter is as well dependent on the radar wavelength as on resolution, as different scattering processes may significantly contribute. While most of the available millimeterwave data have been collected with a resolution of 75 cm, improvements of the MEMPHIS radar now allow a resolution of about 20 cm. The paper describes the measurement set-up, the evaluation methods and discusses the influence of resolution and radar frequency on sea clutter characteristics as found during the experiments.

  12. Tropical cyclone rainfall area controlled by relative sea surface temperature

    PubMed Central

    Lin, Yanluan; Zhao, Ming; Zhang, Minghua

    2015-01-01

    Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates. PMID:25761457

  13. Interdecadal variability of the sea surface height around Japan

    NASA Astrophysics Data System (ADS)

    Yasuda, Tamaki; Sakurai, Keizo

    2006-01-01

    The variability of the sea surface height (SSH) around Japan during 1960-2002 was investigated using an ocean general circulation model. The first EOF mode of the simulated SSH change has bidecadal variability and exhibits simultaneous variations around Japan that are in good agreement with the observed sea level changes along the Japanese coast. The variability is caused primarily by the meridional shift of the boundary between the subtropical and subpolar gyres due to shifting of the westerlies over the central North Pacific. The second mode of SSH change indicates a north-south dipole structure around Japan, that results from a change in the strength of the subtropical gyre due to a change in the magnitude of the westerlies. The rising (descending) trend of the sea level observed in the western (eastern) part of Japan in the past 40 years is determined by the increasing trend of the westerlies.

  14. Satellite-Derived Sea Surface Temperature: Workshop 3

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This is the third of a series of three workshops, sponsored by the National Aeronautics and Space Administration, to investigate the state of the art in global sea surface temperature measurements from space. Three workshops were necessary to process and analyze sufficient data from which to draw conclusions on the accuracy and reliability of the satellite measurements. In this workshop, the final two (out of a total of four) months of satellite and in situ data chosen for study were processed and evaluated. Results from the AVHRR, HIRS, SMMR, and VAS sensors, in comparison with in situ data from ships, XBTs, and buoys, confirmed satellite rms accuracies in the 0.5 to 1.0 C range, but with variable biases. These accuracies may degrade under adverse conditions for specific sensors. A variety of color maps, plots, and statistical tables are provided for detailed study of the individual sensor SST measurements.

  15. Sensitivity of tropical cyclone intensity to sea surface temperature

    SciTech Connect

    Evans, J.L. )

    1993-06-01

    Increased occurrence of more intense tropical storms intruding further poleward has been foreshadowed as one of the potential consequences of global warming. This scenario is based almost entirely on the general circulation model predictions of warmer sea surface temperature (SST) with increasing levels of atmospheric CO[sub 2] and some theories of tropical cyclone intensification that support the notion of more intense systems with warmer SST. Whether storms are able to achieve this theoretically determined more intense state depends on whether the temperature of the underlying water is the dominant factor in tropical cyclone intensification. An examination of the historical data record in a number of ocean basins is used to identify the relative importance of SST in the tropical cyclone intensification process. The results reveal that SST alone is an inadequate predictor of tropical cyclone intensity. Other factors known to affect tropical cyclone frequency and intensity are discussed. 16 refs., 6 figs., 3 tabs.

  16. Sea surface microplastics in Slovenian part of the Northern Adriatic.

    PubMed

    Gajšt, Tamara; Bizjak, Tine; Palatinus, Andreja; Liubartseva, Svitlana; Kržan, Andrej

    2016-12-15

    Plastics are the most common material of marine litter and have become a global pollution concern. They are persistent in the environment where they gradually degrade into increasingly smaller particles-microplastics (MP). Our study presents results of sea-surface monitoring for MP in the Slovenian part of the Trieste Bay in the Northern Adriatic Sea. In 17 trawls conducted over a 20-month period we found a high average concentration of 406×10(3)MPparticles/km(2). Over 80% of the particles were identified as polyethylene. The significant variability of MP concentrations obtained on different sampling dates is explained by use of surface current maps and a recently developed Markov chain marine litter distribution model for the Adriatic Sea.

  17. Change point detection of the Persian Gulf sea surface temperature

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2017-01-01

    In this study, the Student's t parametric and Mann-Whitney nonparametric change point models (CPMs) were applied to detect change point in the annual Persian Gulf sea surface temperature anomalies (PGSSTA) time series for the period 1951-2013. The PGSSTA time series, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series. The pre-whitened PGSSTA time series were utilized as the input file of change point models. Both the applied parametric and nonparametric CPMs estimated the change point in the PGSSTA in 1992. The PGSSTA follow the normal distribution up to 1992 and thereafter, but with a different mean value after year 1992. The estimated slope of linear trend in PGSSTA time series for the period 1951-1992 was negative; however, that was positive after the detected change point. Unlike the PGSSTA, the applied CPMs suggested no change point in the Niño3.4SSTA time series.

  18. Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Yu, Yunyue; Wick, Gary A.; Schluessel, Peter; Reynolds, Richard W.

    1994-01-01

    A new satellite sea surface temperature (SST) algorithm is developed that uses nearly coincident measurements from the microwave special sensor microwave imager (SSM/I) to correct for atmospheric moisture attenuation of the infrared signal from the advanced very high resolution radiometer (AVHRR). This new SST algorithm is applied to AVHRR imagery from the South Pacific and Norwegian seas, which are then compared with simultaneous in situ (ship based) measurements of both skin and bulk SST. In addition, an SST algorithm using a quadratic product of the difference between the two AVHRR thermal infrared channels is compared with the in situ measurements. While the quadratic formulation provides a considerable improvement over the older cross product (CPSST) and multichannel (MCSST) algorithms, the SSM/I corrected SST (called the water vapor or WVSST) shows overall smaller errors when compared to both the skin and bulk in situ SST observations. Applied to individual AVHRR images, the WVSST reveals an SST difference pattern (CPSST-WVSST) similar in shape to the water vapor structure while the CPSST-quadratic SST difference appears unrelated in pattern to the nearly coincident water vapor pattern. An application of the WVSST to week-long composites of global area coverage (GAC) AVHRR data demonstrates again the manner in which the WVSST corrects the AVHRR for atmospheric moisture attenuation. By comparison the quadratic SST method underestimates the SST corrections in the lower latitudes and overestimates the SST in th e higher latitudes. Correlations between the AVHRR thermal channel differences and the SSM/I water vapor demonstrate the inability of the channel difference to represent water vapor in the midlatitude and high latitudes during summer. Compared against drifting buoy data the WVSST and the quadratic SST both exhibit the same general behavior with the relatively small differences with the buoy temperatures.

  19. Albatrosses as Ocean Samplers of Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Shaffer, S. A.; Kappes, M.; Tremblay, Y.; Costa, D. P.; Weber, R.; Weimerskirch, H.

    2006-12-01

    Albatrosses are unique ocean voyagers because they range so widely and travel at speeds exceeding 90 km per hour. Because they can integrate vast areas of open-ocean, albatrosses are ideal ocean samplers. Between 2003 and 2005 breeding seasons, 21 Laysan and 15 black-footed albatrosses (body mass 2.5 to 3.5 kg) were equipped with 6 g leg-mounted geolocation archival data loggers at Tern Island, French Frigate Shoals, Northwest Hawaiian Islands. The tags sampled environmental temperatures every 480 or 540 s and provided a single location per day for the duration of deployment. Whenever an albatross landed on the sea surface to feed or rest, the tag sampled sea surface temperature (SST). After nearly one year of deployment, 31 albatrosses were recaptured and 29 tags provided complete records. A total of 377,455 SST readings were obtained over 7,360 bird-days at sea. Given the location errors in the geolocation methodology (200 km) and the lack of temporal resolution (1 location per day), the SST measurements can only be used to characterize broad-scale correlates between albatross distribution and the ocean environment. However, in February 2006, we deployed 45 g GPS data loggers on 10 breeding albatrosses for 2-4 day deployments. The GPS loggers were attached to feathers on the albatrosses backs, they sampled every 10 s, and were accurate to within 10 m. One albatross was also equipped with the same leg-mounted archival tag that sampled SST every 8 s. This albatross collected 6,289 SST measurements with complementary GPS quality locations in 3 days at sea. These results highlight the efficacy of albatrosses as ocean samplers. Given that Laysan and black- footed albatrosses range throughout the North Pacific Ocean, it is conceivable that these seabirds could someday become sentinels of changing oceanic conditions. Moreover, these technologies provide exciting new information about the oceanic habitats of North Pacific albatrosses.

  20. Investigation of Sea Surface Temperature (SST) anomalies over Cyprus area

    NASA Astrophysics Data System (ADS)

    Georgiou, Andreas; Akçit, Nuhcan

    2016-08-01

    The temperature of the sea surface has been identified as an important parameter of the natural environment, governing processes that occur in the upper ocean. This paper focuses on the analysis of the Sea Surface Temperature (SST) anomalies at the greater area of Cyprus. For that, SST data derived from MODerate-resolution Imaging Spectroradiometer (MODIS) instrument on board both Aqua and Terra sun synchronous satellites were used. A four year period was chosen as a first approach to address and describe this phenomenon. Geographical Information Systems (GIS) has been used as an integrated platform of analysis and presentation in addition of the support of MATLAB®. The methodology consists of five steps: (i) Collection of MODIS SST imagery, (ii) Development of the digital geo-database; (iii) Model and run the methodology in GIS as a script; (iv) Calculation of SST anomalies; and (v) Visualization of the results. The SST anomaly values have presented a symmetric distribution over the study area with an increase trend through the years of analysis. The calculated monthly and annual average SST anomalies (ASST) make more obvious this trend, with negative and positive SST changes to be distributed over the study area. In terms of seasons, the same increase trend presented during spring, summer, autumn and winter with 2013 to be the year with maximum ASST observed values. Innovative aspects comprise of straightforward integration and modeling of available tools, providing a versatile platform of analysis and semi-automation of the operation. In addition, the fine resolution maps that extracted from the analysis with a wide spatial coverage, allows the detail representation of SST and ASST respectively in the region.

  1. Seasonal sea surface and sea ice signal in the fjords of Eastern Greenland from CryoSat-2 SARin altimetry

    NASA Astrophysics Data System (ADS)

    Abulaitijiang, Adili; Baltazar Andersen, Ole; Stenseng, Lars

    2014-05-01

    Cryosat-2 offers the first ever possibility to perform coastal altimetric studies using SAR-Interferometry. This enabled qualified measurements of sea surface height (SST) in the fjords in Greenland. Scoresbysund fjord on the east coast of Greenland is the largest fjord in the world which is also covered by CryoSat-2 SAR-In mask making it a good test region. Also, the tide gauge operated by DTU Space is sitting in Scoresbysund bay, which provides solid ground-based sea level variation records throughout the year. We perform an investigation into sea surface height variation since the start of the Cryosat-2 mission using SAR-In L1B data processed with baseline B processing. We have employed a new develop method for projecting all SAR-In observations in the Fjord onto a centerline up the Fjord. Hereby we can make solid estimates of the annual and (semi-) annual signal in sea level/sea ice freeboard within the Fjord. These seasonal height variations enable us to derive sea ice freeboard changes in the fjord from satellite altimetry. Derived sea level and sea-ice freeboard can be validated by comparison with the tide gauge observations for sea level and output from the Microwave Radiometer derived observations of sea ice freeboard developed at the Danish Meteorological Institute.

  2. Estimating sea surface salinity in coastal waters of the Gulf of Mexico using visible channels on SNPP-VIIRS

    NASA Astrophysics Data System (ADS)

    Vandermeulen, Ryan A.; Arnone, Robert; Ladner, Sherwin; Martinolich, Paul

    2014-05-01

    Sea surface salinity is determined using the visible channels from the Visual Infrared Imaging Radiometer Suite (VIIRS) to derive regional algorithms for the Gulf of Mexico by normalizing to seasonal river discharge. The dilution of river discharge with open ocean waters and the surface salinity is estimated by tracking the surface spectral signature. The water leaving radiances derived from atmospherically-corrected and calibrated 750-m resolution visible M-bands (410, 443, 486, 551, 671 nm) are applied to bio-optical algorithms and subsequent multivariate statistical methods to derive regional empirical relationships between satellite radiances and surface salinity measurements. Although radiance to salinity is linked to CDOM dilution, we explored alternative statistical relationships to account for starting conditions. In situ measurements are obtained from several moorings spread across the Mississippi Sound and Mobile Bay, with a salinity range of 0.1 - 33. Data were collected over all seasons in the year 2013 in order to assess inter-annual variability. The seasonal spectral signatures at the river mouth were used to track the fresh water end members and used to develop a seasonal slope and bias between salinity and radiance. Results show an increased spatial resolution for remote detection of coastal sea surface salinity from space, compared to the Aquarius Microwave salinity. Characterizing the coastal surface salinity has a significant impact on the physical circulation which affects the coastal ecosystems. Results identify locations and dissipation of the river plumes and can provide direct data for assimilation into physical circulation models.

  3. Response of sea surface fugacity of CO2 to the SAM shift south of Tasmania: Regional differences

    NASA Astrophysics Data System (ADS)

    Xue, Liang; Gao, Libao; Cai, Wei-Jun; Yu, Weidong; Wei, Meng

    2015-05-01

    Using observational data collected south of Tasmania during 14 austral summer cruises during 1993-2011, we examined the response of sea surface fugacity of carbon dioxide (fCO2) to the Southern Annular Mode (SAM) shift, which occurred around 2000. In the southern part of the Southern Ocean (SO) or the Polar Zone (PZ) and the Polar Frontal Zone (PFZ), fCO2 increased faster at the sea surface than in the atmosphere before the SAM shift, but not after the shift. In the northern part of the SO or the Subantarctic Zone (SAZ), however, surface fCO2 increased faster than atmospheric fCO2 both before and after the shift. The SAM shift had an important influence on the surface fCO2 trend in the PZ and PFZ but not in the SAZ, which we attribute to differences in regional oceanographic processes (upwelling versus nonupwelling). The SAM shift may have reversed the negative trend of SO CO2 uptake.

  4. Global monthly sea surface nitrate fields estimated from remotely sensed sea surface temperature, chlorophyll, and modeled mixed layer depth

    NASA Astrophysics Data System (ADS)

    Arteaga, Lionel; Pahlow, Markus; Oschlies, Andreas

    2015-02-01

    Information about oceanic nitrate is crucial for making inferences about marine biological production and the efficiency of the biological carbon pump. While there are no optical properties that allow direct estimation of inorganic nitrogen, its correlation with other biogeochemical variables may permit its inference from satellite data. Here we report a new method for estimating monthly mean surface nitrate concentrations employing local multiple linear regressions on a global 1° by 1° resolution grid, using satellite-derived sea surface temperature, chlorophyll, and modeled mixed layer depth. Our method is able to reproduce the interannual variability of independent in situ nitrate observations at the Bermuda Atlantic Time Series, the Hawaii Ocean Time series, the California coast, and the southern New Zealand region. Our new method is shown to be more accurate than previous algorithms and thus can provide improved information on temporal and spatial nutrient variations beyond the climatological mean at regional and global scales.

  5. Experimental studies of thermal radiation intensity dependence on near-water wind speed for rough sea surface

    NASA Astrophysics Data System (ADS)

    Sazonov, D. S.; Kuzmin, A. V.; Sadovsky, I. N.

    2016-12-01

    The results of in situ measurements of the characteristics of intrinsic microwave radiation from the sea surface are presented. The studies were carried out on the oceanographic platform of the Experimental Department of Marine Hydrophysical Institute during the summer-fall periods for 3 years, which made it possible to accumulate a significant amount of information on the change in the radiation intensity of under different meteorological conditions. Attention is primarily focused on the construction of wind-radiation dependences and their steepness analysis based on the measurement data obtained by a radiometer-polarimeter with a central frequency of received radiation equal to 37.7 GHz. The results are compared with the previous experimental studies and the model estimates of this effect.

  6. Interpretation of observed microwave signatures from ground dual polarization radar and space multi frequency radiometer for the 2011 Grímsvötn volcanic eruption

    NASA Astrophysics Data System (ADS)

    Montopoli, M.; Vulpiani, G.; Cimini, D.; Picciotti, E.; Marzano, F. S.

    2013-07-01

    The important role played by ground-based microwave weather radars for the monitoring of volcanic ash clouds has been recently demonstrated. The potential of microwaves from satellite passive and ground-based active sensors to estimate near-source volcanic ash cloud parameters has been also proposed, though with little investigation of their synergy and the role of the radar polarimetry. The goal of this work is to show the potentiality and drawbacks of the X-band Dual Polarization radar measurements (DPX) through the data acquired during the latest Grímsvötn volcanic eruptions that took place on May 2011 in Iceland. The analysis is enriched by the comparison between DPX data and the observations from the satellite Special Sensor Microwave Imager/Sounder (SSMIS) and a C-band Single Polarization (SPC) radar. SPC, DPX, and SSMIS instruments cover a large range of the microwaves spectrum, operating respectively at 5.4, 3.2, and 0.16-1.6 cm wavelengths. The multi-source comparison is made in terms of Total Columnar Concentration (TCC). The latter is estimated from radar observables using the "Volcanic Ash Radar Retrieval for dual-Polarization X band systems" (VARR-PX) algorithm and from SSMIS brightness temperature (BT) using a linear BT-TCC relationship. The BT-TCC relationship has been compared with the analogous relation derived from SSMIS and SPC radar data for the same case study. Differences between these two linear regression curves are mainly attributed to an incomplete observation of the vertical extension of the ash cloud, a coarser spatial resolution and a more pronounced non-uniform beam filling effect of SPC measurements (260 km far from the volcanic vent) with respect to the DPX (70 km from the volcanic vent). Results show that high-spatial-resolution DPX radar data identify an evident volcanic plume signature, even though the interpretation of the polarimetric variables and the related retrievals is not always straightforward, likely due to the

  7. Temporal and spatial variability of the sea surface salinity in the Nordic Seas

    NASA Astrophysics Data System (ADS)

    Furevik, Tore; Bentsen, Mats; Drange, Helge; Johannessen, Johnny A.; Korablev, Alexander

    2002-12-01

    In this paper, the temporal and spatial variability of the sea surface salinity (SSS) in the Nordic Seas is investigated. The data include a Russian hydrographical database for the Nordic Seas and daily to weekly observations of salinity at Ocean Weather Station Mike (OWSM) (located at 66°N, 2°E in the Norwegian Sea). In addition, output from a medium-resolution version of the Miami Isopycnic Coordinate Ocean Model (MICOM), forced with daily National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data, is used to complement the analysis of the temporal and spatial fields constructed from the observational data sets. The Nordic Seas show a strong seasonal variability in the vertical density stratification and the mixed layer (ML) depth, with a weak stratification and a several hundred meters deep ML during winter and a well-defined shallow ML confined to the upper few tens of meters during summer. The seasonal variability strongly influences the strength of the high-frequency variability and to what extent subsurface anomalies are isolated from the surface. High-frequency variability has been investigated in terms of standard deviation of daily SSS, calculated for the different months of the year. From observations at OWSM, typical winter values range from 0.03 to 0.04 psu and summer values range from 0.06 to 0.07 psu. Results from the model simulation show that highest variability is found in frontal areas and in areas with strong stratification and lowest variability in the less stratified areas in the central Norwegian Sea and south of Iceland. Investigation of the interannual variability over the last 50 years shows a marked freshening of the Atlantic Water in the Norwegian and Greenland Seas. Moreover, the strength of the southern sector of the Polar front, as defined by the 34.8-35.0 psu isohalines along the western boundary of the inflowing Atlantic Water, undergoes significant interannual variability

  8. Enhancing the Arctic Mean Sea Surface and Mean Dynamic Topography with CryoSat-2 Data

    NASA Astrophysics Data System (ADS)

    Stenseng, Lars; Andersen, Ole B.; Knudsen, Per

    2014-05-01

    A reliable mean sea surface (MSS) is essential to derive a good mean dynamic topography (MDT) and for the estimation of short and long-term changes in the sea surface. The lack of satellite radar altimetry observations above 82 degrees latitude means that existing mean sea surface models have been unreliable in the Arctic Ocean. We here present the latest DTU mean sea surface and mean dynamic topography models that includes CryoSat-2 data to improve the reliability in the Arctic Ocean. In an attempt to extrapolate across the gap above 82 degrees latitude the previously models included ICESat data, gravimetrical geoids, ocean circulation models and various combinations hereof. Unfortunately cloud cover and the short periods of operation has a negative effect on the number of ICESat sea surface observations. DTU13MSS and DTU13MDT are the new generation of state of the art global high-resolution models that includes CryoSat-2 data to extend the satellite radar altimetry coverage up to 88 degrees latitude. Furthermore the SAR and SARin capability of CryoSat-2 dramatically increases the amount of useable sea surface returns in sea-ice covered areas compared to conventional radar altimeters like ENVISAT and ERS-1/2. With the inclusion of CryoSat-2 data the new mean sea surface is improved by more than 20 cm above 82 degrees latitude compared with the previous generation of mean sea surfaces.

  9. Microwave-assisted on-spot derivatization for gas chromatography-mass spectrometry based determination of polar low molecular weight compounds in dried blood spots.

    PubMed

    Sadones, Nele; Van Bever, Elien; Archer, John R H; Wood, David M; Dargan, Paul I; Van Bortel, Luc; Lambert, Willy E; Stove, Christophe P

    2016-09-23

    Dried blood spot (DBS) sampling and analysis is increasingly being applied in bioanalysis. Although the use of DBS has many advantages, it is also associated with some challenges. E.g. given the limited amount of available material, highly sensitive detection techniques are often required to attain sufficient sensitivity. In gas chromatography coupled to mass spectrometry (GC-MS), derivatization can be helpful to achieve adequate sensitivity. Because this additional sample preparation step is considered as time-consuming, we introduce a new derivatization procedure, i.e. "microwave-assisted on-spot derivatization", to minimize sample preparation of DBS. In this approach the derivatization reagents are directly applied onto the DBS and derivatization takes place in a microwave instead of via conventional heating. In this manuscript we evaluated the applicability of this new concept of derivatization for the determination of two polar low molecular weight molecules, gamma-hydroxybutyric acid (GHB) and gabapentin, in DBS using a standard GC-MS configuration. The method was successfully validated for both compounds, with imprecision and bias values within acceptance criteria (<20% at LLOQ, <15% at 3 other QC levels). Calibration lines were linear over the 10-100μg/mL and 1-30μg/mL range for GHB and gabapentin, respectively. Stability studies revealed no significant decrease of gabapentin and GHB in DBS upon storage at room temperature for at least 84 days. Furthermore, DBS-specific parameters, including hematocrit and volume spotted, were evaluated. As demonstrated by the analysis of GHB and gabapentin positive samples, "microwave-assisted on-spot derivatization" proved to be reliable, fast and applicable in routine toxicology. Moreover, other polar low molecular weight compounds of interest in clinical and/or forensic toxicology, including vigabatrin, beta-hydroxybutyric acid, propylene glycol, diethylene glycol, 1,4-butanediol and 1,2-butanediol, can also be

  10. Seasonal sea surface temperature anomaly prediction for coastal ecosystems

    NASA Astrophysics Data System (ADS)

    Stock, Charles A.; Pegion, Kathy; Vecchi, Gabriel A.; Alexander, Michael A.; Tommasi, Desiree; Bond, Nicholas A.; Fratantoni, Paula S.; Gudgel, Richard G.; Kristiansen, Trond; O'Brien, Todd D.; Xue, Yan; Yang, Xiasong

    2015-09-01

    Sea surface temperature (SST) anomalies are often both leading indicators and important drivers of marine resource fluctuations. Assessment of the skill of SST anomaly forecasts within coastal ecosystems accounting for the majority of global fish yields, however, has been minimal. This reflects coarse global forecast system resolution and past emphasis on the predictability of ocean basin-scale SST variations. This paper assesses monthly to inter-annual SST anomaly predictions in coastal "Large Marine Ecosystems" (LMEs). We begin with an analysis of 7 well-observed LMEs adjacent to the United States and then examine how mechanisms responsible for prediction skill in these systems are reflected in predictions for LMEs globally. Historical SST anomaly estimates from the 1/4° daily Optimal Interpolation Sea Surface Temperature reanalysis (OISST.v2) were first found to be highly consistent with in-situ measurements for 6 of the 7 U.S. LMEs. Thirty years of retrospective forecasts from climate forecast systems developed at NOAA's Geophysical Fluid Dynamics Laboratory (CM2.5-FLOR) and the National Center for Environmental Prediction (CFSv2) were then assessed against OISST.v2. Forecast skill varied widely by LME, initialization month, and lead but there were many cases of high skill that also exceeded that of a persistence forecast, some at leads greater than 6 months. Mechanisms underlying skill above persistence included accurate simulation of (a) seasonal transitions between less predictable locally generated and more predictable basin-scale SST variability; (b) seasonal transitions between different basin-scale influences; (c) propagation of SST anomalies across seasons through sea ice; and (d) re-emergence of previous anomalies upon the breakdown of summer stratification. Globally, significant skill above persistence across many tropical systems arises via mechanisms (a) and (b). Combinations of all four mechanisms contribute to less prevalent but nonetheless

  11. Horizontal advection, diffusion and plankton spectra at the sea surface.

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Clayton, S.; Pasquero, C.

    2009-04-01

    Plankton patchiness is ubiquitous in the oceans, and various physical and biological processes have been proposed as its generating mechanisms. However, a coherent statement on the problem is missing, due to both a small number of suitable observations and to an incomplete understanding of the properties of reactive tracers in turbulent media. Abraham (1998) suggested that horizontal advection may be the dominant process behind the observed distributions of phytoplankton and zooplankton, acting to mix tracers with longer reaction times (Rt) down to smaller scales. Conversely, Mahadevan and Campbell (2002) attributed the relative distributions of sea surface temperature and phytoplankton to small scale upwelling, where tracers with longer Rt are able to homogenize more than those with shorter reaction times. Neither of the above mechanisms can explain simultaneously the (relative) spectral slopes of temperature, phytoplankton and zooplankton. Here, with a simple advection model and a large suite of numerical experiments, we concentrate on some of the physical processes influencing the relative distributions of tracers at the ocean surface, and we investigate: 1) the impact of the spatial scale of tracer supply; 2) the role played by coherent eddies on the distribution of tracers with different Rt; 3) the role of diffusion (so far neglected). We show that diffusion determines the distribution of temperature, regardless of the nature of the forcing. We also find that coherent structures together with differential diffusion of tracers with different Rt impact the tracer distributions. This may help in understanding the highly variable nature of observed plankton spectra.

  12. Air-sea interactions in sea surface temperature frontal region

    NASA Astrophysics Data System (ADS)

    Pianezze, Joris; Redelsperger, Jean-Luc; Ardhuin, Fabrice; Reynaud, Thierry; Marié, Louis; Bouin, Marie-Noelle; Garnier, Valerie

    2015-04-01

    Representation of air-sea exchanges in coastal, regional and global models represent a challenge firstly due to the small scale of acting turbulent processes comparatively to the resolved scales of these models. Beyond this subgrid parameterization issue, a comprehensive understanding of air-sea interactions at the turbulent process scales is still lacking. Many successful efforts are dedicated to measure the energy and mass exchanges between atmosphere and ocean, including the effect of surface waves. In comparison less efforts are brought to understand the interactions between the atmospheric boundary layer and the oceanic mixing layer. In this regard, we are developing research mainly based on ideal and realistic numerical simulations which resolve very small scales (horizontal resolutions from 1 to 100 meters) in using grid nesting technics and coupled ocean-wave-atmosphere models. As a first step, the impact of marked gradients in sea surface temperatures (SST) on air-sea exchanges has been explored through realistic numerical simulations at 100m horizontal resolution. Results from simulations of a case observed during the FROMVAR experiment will be shown. The talk will mainly focus on the marked impact of SST front on the atmospheric boundary layer (stability and winds), the air-sea exchanges and surface parameters (rugosity, drag coefficient) Results will be also shown on the strong impact on the simulated atmosphere of small scale variability of SST field.

  13. Reconciling Glacial Snow Lines With Tropical Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Lorenz, S. J.; Lohmann, G.

    Reconstructions of tropical snow lines during the last glacial maximum (LGM) 21,000 years ago are incompatible with the sea surface temperature (SST) reconstructions of the CLIMAP project, when assuming present day atmospheric lapse rates (e.g. Pe- teet and Rind 1985). Since proxy data for the vertical structure of the atmosphere during glacial times do not exist, numerical experiments with an atmospheric gen- eral circulation model for glacial and interglacial climates have been performed. Our model experiments reveal that slightly cooler tropical SSTs relative to the ones by CLIMAP (1981) are sufficient to simulate proper glacial freezing temperature levels. The depression of tropical snow lines in our LGM experiment can be attributed to two effects: Less moisture content provides an increased environmental lapse rate in the free atmosphere. This effect is strongest in the tropical middle troposphere where we observe an additional two degrees cooling. Secondly, the surface temperature near tropical glaciers is further cooled by a longer duration of snow cover. Our model result provides a consistent view of the last glacial maximum climate with much colder tem- peratures than today in the tropical mountains in concordance with moderate lowering of tropical SSTs.

  14. Remote sensing of the Dead Sea surface temperature

    NASA Astrophysics Data System (ADS)

    Nehorai, R.; Lensky, I. M.; Lensky, N. G.; Shiff, S.

    2009-05-01

    The Dead Sea is a unique terminal lake located at the lowest place on Earth's surface. It has the highest surface temperature, salinity, and density among Earth's large water bodies, and its level is currently dropping at a rate of ˜1 m/a. Knowledge of the Dead Sea thermal and saline structure is based on meteorological and hydrological measurements from a single site at a time. In this study, we used satellite and in situ data to characterize the spatial and temporal variations of the Dead Sea sea surface temperature (SST) and to explore the causes for these variations. Sequences of almost continuous individual satellite images were transformed into a time series of parameters representing the spatial distribution of SST. Also used were in situ measured bulk SST, wind speed, solar radiation, and water temperature profiles with depth. Analysis of this data set shows strong diurnal and seasonal variations of the surface and vertical temperature field and the meteorological forcing. The temperature field is heterogeneous after noon, when radiation is high and wind speed is low and thermal layering develops. The temperature field is homogeneous during the nighttime, when solar radiation is absent and the high wind speed vertically mixes the upper layer.

  15. Analysis of variability of tropical Pacific sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Davies, Georgina; Cressie, Noel

    2016-11-01

    Sea surface temperature (SST) in the Pacific Ocean is a key component of many global climate models and the El Niño-Southern Oscillation (ENSO) phenomenon. We shall analyse SST for the period November 1981-December 2014. To study the temporal variability of the ENSO phenomenon, we have selected a subregion of the tropical Pacific Ocean, namely the Niño 3.4 region, as it is thought to be the area where SST anomalies indicate most clearly ENSO's influence on the global atmosphere. SST anomalies, obtained by subtracting the appropriate monthly averages from the data, are the focus of the majority of previous analyses of the Pacific and other oceans' SSTs. Preliminary data analysis showed that not only Niño 3.4 spatial means but also Niño 3.4 spatial variances varied with month of the year. In this article, we conduct an analysis of the raw SST data and introduce diagnostic plots (here, plots of variability vs. central tendency). These plots show strong negative dependence between the spatial standard deviation and the spatial mean. Outliers are present, so we consider robust regression to obtain intercept and slope estimates for the 12 individual months and for all-months-combined. Based on this mean-standard deviation relationship, we define a variance-stabilizing transformation. On the transformed scale, we describe the Niño 3.4 SST time series with a statistical model that is linear, heteroskedastic, and dynamical.

  16. Indian Ocean Sea Surface Temperatures during the mid-Piacenzian

    NASA Astrophysics Data System (ADS)

    Stoll, D. K.; Robinson, M. M.; Dowsett, H. J.

    2010-12-01

    Mid-Pliocene (~3.3 to 3.0 Ma) climate is being reconstructed as part of the U.S. Geological Survey’s Pliocene Research, Interpretation, and Synoptic Mapping (PRISM) Project. The Pliocene sea surface temperature (SST) dataset is an integral piece of PRISM’s climate reconstruction and continually evolves over time as additional data are added and refined. The Indian Ocean has in the past been a region lacking PRISM SST data coverage, while it is also a region marked with interesting climate phenomena (e.g., the Indian Ocean Dipole). Questions over the existence of these modern oceanographic elements during the mid-Piacenzian have led to increased interest in the Indian Ocean. New data analyzed by PRISM provides insight on what Indian Ocean circulation and SST may have been like ~3 million years ago. Using planktic foraminifera sampled and analyzed from Indian Ocean ODP Sites 709, 716, 754, 758, and 763, PRISM is developing new mid-Pliocene SST estimates to better understand this region’s paleoceanography.

  17. Interannual variability in stratiform cloudiness and sea surface temperature

    SciTech Connect

    Norris, J.R.; Leovy, C.B.

    1994-12-01

    Marine stratiform cloudiness (MSC)(stratus, stratocumulus, and fog) is widespread over subtropical oceans west of the continents and over midlatitude oceans during summer, the season when MSC has maximum influence on surface downward radiation and is most influenced by boundary-layer processes. Long-term datasets of cloudiness and sea surface teperature (SST) from surface observations from 1952 to 1981 are used to examine interannual variations in MSC and SST. Linear correlations of anomalies in seasonal MSC amount with seasonal SST anomalies are negative and significant in midlatitude and eastern subtropical oceans, especially during summer. Significant negative correlations between SST and nimbostratus and nonprecipitating midlevel cloudiness are also observed at midlatitudes during summer, suggesting that summer storm tracks shift from year to year following year-to-year meridional shifts in the SST gradient. Over the 30-yr period, there are significant upward trends in MSC amount over the northern midlatitude oceans and a significant downward trend off the coast of California. The highest correlations and trends occur where gradients in MSC and SST are strongest. During summer, correlations between SST and MSC anomalies peak at zero lag in midlatitudes where warm advection prevails, but SST lags MSC in subtropical regions where cold advection predominates. This difference is attributed to a tendency for anomalies in latent heat flux to compensate anomalies in surface downward radiation in warm advection regions but not in cold advection regions.

  18. Reevaluation of mid-Pliocene North Atlantic sea surface temperatures

    USGS Publications Warehouse

    Robinson, Marci M.; Dowsett, Harry J.; Dwyer, Gary S.; Lawrence, Kira T.

    2008-01-01

    Multiproxy temperature estimation requires careful attention to biological, chemical, physical, temporal, and calibration differences of each proxy and paleothermometry method. We evaluated mid-Pliocene sea surface temperature (SST) estimates from multiple proxies at Deep Sea Drilling Project Holes 552A, 609B, 607, and 606, transecting the North Atlantic Drift. SST estimates derived from faunal assemblages, foraminifer Mg/Ca, and alkenone unsaturation indices showed strong agreement at Holes 552A, 607, and 606 once differences in calibration, depth, and seasonality were addressed. Abundant extinct species and/or an unrecognized productivity signal in the faunal assemblage at Hole 609B resulted in exaggerated faunal-based SST estimates but did not affect alkenone-derived or Mg/Ca–derived estimates. Multiproxy mid-Pliocene North Atlantic SST estimates corroborate previous studies documenting high-latitude mid-Pliocene warmth and refine previous faunal-based estimates affected by environmental factors other than temperature. Multiproxy investigations will aid SST estimation in high-latitude areas sensitive to climate change and currently underrepresented in SST reconstructions.

  19. A model of the tropical Pacific sea surface temperature climatology

    NASA Technical Reports Server (NTRS)

    Seager, Richard; Zebiak, Stephen E.; Cane, Mark A.

    1988-01-01

    A model for the climatological mean sea surface temperature (SST) of the tropical Pacific Ocean is developed. The upper ocean response is computed using a time dependent, linear, reduced gravity model, with the addition of a constant depth frictional surface layer. The full three-dimensional temperature equation and a surface heat flux parameterization that requires specification of only wind speed and total cloud cover are used to evaluate the SST. Specification of atmospheric parameters, such as air temperature and humidity, over which the ocean has direct influence, is avoided. The model simulates the major features of the observed tropical Pacific SST. The seasonal evolution of these features is generally captured by the model. Analysis of the results demonstrates the control the ocean has over the surface heat flux from ocean to atmosphere and the crucial role that dynamics play in determining the mean SST in the equatorial Pacific. The sensitivity of the model to perturbations in the surface heat flux, cloud cover specification, diffusivity, and mixed layer depth is discussed.

  20. Land- and sea-surface impacts on local coastal breezes

    NASA Astrophysics Data System (ADS)

    Veron, D. E.; Hughes, C.; Gilchrist, J.; Lodise, J.; Goldman, W.

    2014-12-01

    The state of Delaware has seen significant increases in population along the coastline in the past three decades. With this increase in population have come changes to the land surface, as forest and farmland has been converted to residential and commercial purposes, causing changes in the surface roughness, temperature, and land-atmosphere fluxes. There is also a semi-permanent upwelling center in the spring and summer outside the Delaware Bay mouth that significantly changes the structure of the sea surface temperature both inside and outside the Bay. Through a series of high resolution modeling and observational studies, we have determined that in cases of strong synoptic forcing, the impact of the land-surface on the boundary layer properties can be advected offshore, creating a false coastline and modifying the location and timing of the sea breeze circulation. In cases of weak synoptic forcing, the influence of the upwelling and the tidal circulation of the Delaware Bay waters can greatly change the location, strength, and penetration of the sea breeze. Understanding the importance of local variability in the surface-atmosphere interactions on the sea breeze can lead to improved prediction of sea breeze onset, penetration, and duration which is important for monitoring air quality and developing offshore wind power production.

  1. Anisotropy and polarization of the microwave background radiation as a test of nonequilibrium ionization of the pregalactic plasma

    SciTech Connect

    Nasel'skii, P.D.; Polnarev, A.G.

    1987-11-01

    The formation of small-scale anisotropy and polarization in a model of nonstationary ionization of the pregalactic plasma is considered. It is shown that the ratio of the degree of polarization to the degree of anisotropy is rather insensitive to the actual regime of ionization and is 7-8%. However, the characteristic correlation angle is in the distribution of the anisotropy and polarization of the background radiation on the celestial sphere depends strongly on the parameters of the nonequilibrium.

  2. Mission 119 passive microwave results

    NASA Technical Reports Server (NTRS)

    Hollinger, J. P.; Mennella, R. A.

    1972-01-01

    Passive microwave measurements of the sea surface were made for determining surface wind speeds from the NP3A aircraft (NASA-927). Observations were made at frequencies of 1.4, 10.6, and 31.4 GHz during NASA mission 119, undertaken off Bermuda in the vicinity of Argus Island sea tower during January 1970. Passive microwave observations from Argus Island ocean showed that the surface roughness effect, dependent on wind speed, is also dependent on observational frequency, increasing with increasing frequency. The roughness effect appears to be dominant for wind speeds less than 30 to 40 knots (2).

  3. Active microwaves

    NASA Technical Reports Server (NTRS)

    Evans, D.; Vidal-Madjar, D.

    1994-01-01

    Research on the use of active microwaves in remote sensing, presented during plenary and poster sessions, is summarized. The main highlights are: calibration techniques are well understood; innovative modeling approaches have been developed which increase active microwave applications (segmentation prior to model inversion, use of ERS-1 scatterometer, simulations); polarization angle and frequency diversity improves characterization of ice sheets, vegetation, and determination of soil moisture (X band sensor study); SAR (Synthetic Aperture Radar) interferometry potential is emerging; use of multiple sensors/extended spectral signatures is important (increase emphasis).

  4. Mean sea surface and geoid gradient comparisons with TOPEX altimeter data

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.; Yi, Yuchan; Wang, Yan Ming

    1994-01-01

    Cycles 4 to 54 of TOPEX data have been analyzed through comparisons with the mean sea surface given on the disturbed geophysical data record (GDR). Two inverted barometer correction procedures were considered for the data reduction. One used a constant atmospheric pressure for all data while the one adopted for use, for most computations, introduced a cycle average pressure. The maximum difference between the two estimates was 3.0 cm with a clear annual signal. With the modified correction the TOPEX sea surface was compared to The Ohio State University (OSU) mean sea surface, given on the GDR, to estimate three translations ( delta x = -2.3 cm; delta y = 25.0 cm; delta z = -0.3 cm) and a bias (43.3 cm) between the two surfaces. The only significant translation is delta y which indicates the reference frame of the TOPEX system differs from that used in the OSU mean sea surface system. The bias between the TOPEX mean sea surface and the OSU mean sea surface was used to estimate an equatorial radius of 6,378,136.55 m based on an 18-cm biased estimate of the TOPEX altimeter. Examination of the average difference, by cycle, between the TOPEX sea surface and the OSU mean sea surface suggested a bias change of 3.1 +/- 2.2 mm/yr with a positive sign indicating the average ocean surface is rising or the altimeter measured distance is decreasing. Models were implemented that solved directly for a bias, bias rate annual/semiannual, and tide correction terms. The computations indicated that a simultaneous solution for this bias, bias rate, and annual/semiannual terms gave the most accurate results. Nonsimultaneous solutions led to slightly different bias rate values. The root mean square difference between the TOPEX sea surface and OSU sea surface, after translation and bias correction, was +/- 17 cm for a typical cycle. Some locations were indentified where the difference could reach 2.3 cm and were repeated over several cycles indicating errors in the mean sea surface. Most

  5. A modeling study of processes controlling the Bay of Bengal sea surface salinity interannual variability

    NASA Astrophysics Data System (ADS)

    Akhil, V. P.; Lengaigne, M.; Vialard, J.; Durand, F.; Keerthi, M. G.; Chaitanya, A. V. S.; Papa, F.; Gopalakrishna, V. V.; de Boyer Montégut, Clément

    2016-12-01

    Recent observational studies provided preliminary insights on the interannual variability of Bay of Bengal (BoB) Sea Surface Salinity (SSS), but are limited by the poor data coverage. Here, we describe the BoB interannual SSS variability and its driving processes from a regional eddy-permitting ocean general circulation model forced by interannually varying air-sea fluxes and altimeter-derived discharges of major rivers over the past two decades. Simulated interannual SSS variations compare favorably with both in situ and satellite data and are largest in boreal fall in three regions: the northern BoB, the coastal region off east India, and the Andaman Sea. In the northern BoB, these variations are independent from those in other regions and mostly driven by summer-fall Ganga-Brahmaputra runoff interannual variations. In fall, remote forcing from the Indian Ocean Dipole results in anticlockwise anomalous horizontal currents that drive interannual SSS variations of opposite polarity along the east coast of India and in the Southern Andaman Sea. From winter onward, these anomalies are damped by vertical mixing in the northern BoB and along the east coast of India and by horizontal advection in the Southern Andaman Sea. While river runoff fluctuations locally play a strong role near the Ganga-Brahmaputra river mouth, wind-driven interannual current anomalies are responsible for a large fraction of SSS interannual variability in most of the basin.

  6. Seasonal differences in intraseasonal and interannual variability of Mediterranean Sea surface temperature

    NASA Astrophysics Data System (ADS)

    Zveryaev, Igor I.

    2015-04-01

    Sea surface temperature (SST) data from the NOAA OI SST data set for 1982-2011 are used to investigate intraseasonal and interannual variability of Mediterranean SST during winter and summer seasons. It is shown that during winter the intraseasonal SST fluctuations are larger than the interannual SST variations in the western Mediterranean (e.g., the Tyrrhenian Sea), but smaller in the central and eastern Mediterranean Sea. In summer, the intraseasonal SST fluctuations are larger in almost the entire Mediterranean basin. Also summertime intraseasonal SST fluctuations are larger (up to three times near the Gulf of Lions) than their wintertime counterparts in the entire Mediterranean basin. The interannual SST variations are larger during summer in the western and central Mediterranean Sea and during winter in its eastern part. The leading empirical orthogonal functions (EOFs) of the Mediterranean SST and of the intensities of its intraseasonal fluctuations are characterized by the differing spatial-temporal structures both during winter and summer implying that their interannual variability is driven by different physical mechanisms. During winter, the EOF-1 of SST is associated with the East Atlantic teleconnection, whereas EOF-1 of the intensity of intraseasonal fluctuations is not linked significantly to regional atmospheric dynamics. The second EOFs of these variables are associated, respectively, with the East Atlantic/West Russia and the North Atlantic teleconnections. While during summer the atmospheric influence on Mediterranean SST is generally weaker, it is revealed that the EOF-1 of the intensity of intraseasonal SST fluctuations is linked to the Polar teleconnection.

  7. Global Sea Surface Temperature and Ecosystem Change Across the Mid-Miocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Veenstra, T. J. T.; Bakker, V. B.; Sangiorgi, F.; Peterse, F.; Schouten, S.; Sluijs, A.

    2015-12-01

    The Mid-Miocene Climatic Optimum (MMCO) (ca. 17 to 14 Ma) is generally considered as the warmest episode of the Neogene based on deep marine oxygen isotope records and terrestrial plant fossils. To date, however, reasonable resolution high-quality sea surface temperature (SST) proxy records spanning its onset are scarce at best. For the remainder of the MMCO, reliable SST records are absent from the tropics and very scarce in temperate and polar regions. This leaves the question if the MMCO was truly associated with global warming and if this warming was associated with biotic change. We use organic biomarker paleothermometry (Uk'37 and TEX86) to reconstruct SST across the MMCO at four locations along a pole-to-pole transect in the Atlantic and Pacific Ocean. Additionally, we use marine palynology (mostly dinoflagellate cysts) to assess ecosystem change at these locations. This study includes the first tropical biomarker-based SST records of the MMCO. Together with new and existing SST records from higher latitudes and the corresponding palynological records, they provide new insights in the temporal and spatial development of the MMCO. Our results indicate that Mid-Miocene warming was most prominent in the Norwegian Sea, showed a more complex, perhaps upwelling-related pattern in a tropical location, and was small in the Southern Hemisphere.

  8. OSI-SAF operational NPP/VIIRS sea surface temperature chain

    NASA Astrophysics Data System (ADS)

    Le Borgne, Pierre; Legendre, Gérard; Marsouin, Anne; Péré, Sonia; Roquet, Hervé

    2013-06-01

    Data of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (NPP) have been acquired at Centre de Météorologie Spatiale (CMS) in Lannion (Brittany) in direct readout mode since April 2012. CMS is committed to produce sea surface temperature (SST) products from VIIRS data twice a day over an area covering North-East Atlantic and the Mediterranean Sea in the framework of the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF). A cloud mask has been developed and cloud mask control techniques have been implemented. SST algorithms have been defined, as well as quality level attribution rules. Since mid October 2012 a VIIRS SST chain, similar to that used for processing METOP AVHRR has been run in a preoperational mode. The corresponding bias and standard deviation against drifting buoy measurements (mid October 2012 to mid March 2013) are -0.05 and 0.37 K for nighttime and -0.13 and 0.46 K for daytime, respectively. VIIRS derived SST production is expected operational by mid 2013. The OSI-SAF VIIRS derived SST products are compliant with the Group for High Resolution SST (GHRSST) GDS V2.0 format.

  9. Validation of the Version 1 NOAA/NASA Pathfinder Sea Surface Temperature Data Set

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.

    1998-01-01

    A high-resolution, global satellite-derived sea surface temperature (SST) data set called Pathfinder, from the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA Polar Orbiters, is available from the Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC). Suitable for research as well as education, the Pathfinder SST data set is a result of a collaboration between the National Oceanographic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and investigators at several universities. NOAA and NASA are the sponsors of the Pathfinder Program, which takes advantage of currently archived Earth science data from satellites. Where necessary, satellite sensors have been intercalibrated, algorithms improved and processing procedures revised, in order to produce long time-series, global measurements of ocean, land and atmospheric properties necessary for climate research. Many Pathfinder data sets are available to researchers now, nearly a decade before the first launch of NASA's Earth Observing System (EOS). The lessons learned from the Pathfinder programs will facilitate the processing and management of terabytes of data from EOS. The Oceans component of Pathfinder has undertaken to reprocess all Global Area Coverage (GAC) data acquired by the 5-channel AVHRRs since 1981. The resultant data products are consistent and stably calibrated [Rao, 1993a, Rao, 1993b, Brown et al., 1993], Earth-gridded SST fields at a variety of spatial and temporal resolutions.

  10. On the Influence of North Pacific Sea Surface Temperature on the Arctic Winter Climate

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Newman, P. A.; Garfinkel, C. I.

    2012-01-01

    Differences between two ensembles of Goddard Earth Observing System Chemistry-Climate Model simulations isolate the impact of North Pacific sea surface temperatures (SSTs) on the Arctic winter climate. One ensemble of extended winter season forecasts is forced by unusually high SSTs in the North Pacific, while in the second ensemble SSTs in the North Pacific are unusually low. High Low differences are consistent with a weakened Western Pacific atmospheric teleconnection pattern, and in particular, a weakening of the Aleutian low. This relative change in tropospheric circulation inhibits planetary wave propagation into the stratosphere, in turn reducing polar stratospheric temperature in mid- and late winter. The number of winters with sudden stratospheric warmings is approximately tripled in the Low ensemble as compared with the High ensemble. Enhanced North Pacific SSTs, and thus a more stable and persistent Arctic vortex, lead to a relative decrease in lower stratospheric ozone in late winter, affecting the April clear-sky UV index at Northern Hemisphere mid-latitudes.

  11. Solar wind: A possible factor driving the interannual sea surface temperature tripolar mode over North Atlantic

    NASA Astrophysics Data System (ADS)

    Xiao, Ziniu; Li, Delin

    2016-06-01

    The effect of solar wind (SW) on the North Atlantic sea surface temperature (SST) in boreal winter is examined through an analysis of observational data during 1964-2013. The North Atlantic SSTs show a pronounced meridional tripolar pattern in response to solar wind speed (SWS) variations. This pattern is broadly similar to the leading empirical orthogonal function (EOF) mode of interannual variations in the wintertime SSTs over North Atlantic. The time series of this leading EOF mode of SST shows a significant interannual period, which is the same as that of wintertime SWS. This response also appears as a compact north-south seesaw of sea level pressure and a vertical tripolar structure of zonal wind, which simultaneously resembles the North Atlantic Oscillation (NAO) in the overlying atmosphere. As compared with the typical low SWS winters, during the typical high SWS winters, the stratospheric polar night jet (PNJ) is evidently enhanced and extends from the stratosphere to the troposphere, even down to the North Atlantic Ocean surface. Notably, the North Atlantic Ocean is an exclusive region in which the SW signal spreads downward from the stratosphere to the troposphere. Thus, it seems that the SW is a possible factor for this North Atlantic SST tripolar mode. The dynamical process of stratosphere-troposphere coupling, together with the global atmospheric electric circuit-cloud microphysical process, probably accounts for the particular downward propagation of the SW signal.

  12. Correlations of global sea surface temperatures with the solar wind speed

    NASA Astrophysics Data System (ADS)

    Zhou, Limin; Tinsley, Brian; Chu, Huimin; Xiao, Ziniu

    2016-11-01

    A significant correlation between the solar wind speed (SWS) and sea surface temperature (SST) in the region of the North Atlantic Ocean has been found for the Northern Hemisphere winter from 1963 to 2010, based on 3-month seasonal averages. The correlation is dependent on Bz (the interplanetary magnetic field component parallel to the Earth's magnetic dipole) as well as the SWS, and somewhat stronger in the stratospheric quasi-biennial oscillation (QBO) west phase than in the east phase. The correlations with the SWS are stronger than those with the F10.7 parameter representing solar UV inputs to the stratosphere. SST responds to changes in tropospheric dynamics via wind stress, and to changes in cloud cover affecting the radiative balance. Suggested mechanisms for the solar influence on SST include changes in atmospheric ionization and cloud microphysics affecting cloud cover, storm invigoration, and tropospheric dynamics. Such changes modify upward wave propagation to the stratosphere, affecting the dynamics of the polar vortex. Also, direct solar inputs, including energetic particles and solar UV, produce stratospheric dynamical changes. Downward propagation of stratospheric dynamical changes eventually further perturbs tropospheric dynamics and SST.

  13. Physical Retrievals of Over-Ocean Rain Rate from Multichannel Microwave Imagery. Part 1; Theoretical Characteristics of Normalized Polarization and Scattering Indices

    NASA Technical Reports Server (NTRS)

    Petty, G. W.

    1994-01-01

    Microwave rain rate retrieval algorithms have most often been formulated in terms of the raw brightness temperatures observed by one or more channels of a satellite radiometer. Taken individually, single-channel brightness temperatures generally represent a near-arbitrary combination of positive contributions due to liquid water emission and negative contributions due to scattering by ice and/or visibility of the radiometrically cold ocean surface. Unfortunately, for a given rain rate, emission by liquid water below the freezing level and scattering by ice particles above the freezing level are rather loosely coupled in both a physical and statistical sense. Furthermore, microwave brightness temperatures may vary significantly (approx. 30-70 K) in response to geophysical parameters other than liquid water and precipitation. Because of these complications, physical algorithms which attempt to directly invert observed brightness temperatures have typically relied on the iterative adjustment of detailed micro-physical profiles or cloud models, guided by explicit forward microwave radiative transfer calculations. In support of an effort to develop a significantly simpler and more efficient inversion-type rain rate algorithm, the physical information content of two linear transformations of single-frequency, dual-polarization brightness temperatures is studied: the normalized polarization difference P of Petty and Katsaros (1990, 1992), which is intended as a measure of footprint-averaged rain cloud transmittance for a given frequency; and a scattering index S (similar to the polarization corrected temperature of Spencer et al.,1989) which is sensitive almost exclusively to ice. A reverse Monte Carlo radiative transfer model is used to elucidate the qualitative response of these physically distinct single-frequency indices to idealized 3-dimensional rain clouds and to demonstrate their advantages over raw brightness temperatures both as stand-alone indices of

  14. Satellite observations of a polar low over the Norwegian Sea by Special Sensor Microwave Imager, Geosat, and TIROS-N Operational Vertical Sounder

    NASA Technical Reports Server (NTRS)

    Claud, Chantal; Mognard, Nelly M.; Katsaros, Kristina B.; Chedin, Alain; Scott, Noelle A.

    1993-01-01

    Many polar lows are generated at the boundary between sea ice and the ocean, in regions of large temperature gradients, where in situ observations are rare or nonexistent. Since satellite observations are frequent in high-latitude regions, they can be used to detect polar lows and track their propagation and evolution. The Special Sensor Microwave/Imager (SSM/I) providing estimates of surface wind speed, integrated cloud liquid water content, water vapor content, and precipitation size ice-scattering signal over the ocean; the Geosat radar altimeter measuring surface wind speed and significant wave height; and the TIROS-N Operational Vertical Sounder (TOVS) allowing the determination of temperature and humidity profiles in the atmosphere have been used in synergy for a specific case which occurred in the Norwegian Sea on January, 23-24 1988. All three instruments show sharp atmospheric gradients associated with the propagation of this low across the ocean, which permit the detection of the polar low at a very early stage and tracking it during its development, propagation, and decay. The wind speed gradients are measured with good qualitative agreement between the altimeter and SSM/I. TOVS retrieved fields prior to the formation of the low confirm the presence of an upper level trough, while during the mature phase baroclinicity can be observed in the 1000-500 hPa geopotential thicknesses.

  15. Measurements of E-mode polarization and temperature-E-mode correlation in the cosmic microwave background from 100 square degrees of SPTPOL data

    SciTech Connect

    Crites, A. T.; Henning, J. W.; Ade, P. A. R.; Aird, K. A.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H-M.; Citron, R.; Crawford, T. M.; Haan, T. de; Dobbs, M. A.; Everett, W.; Gallicchio, J.; Gao, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Hanson, D.; Harrington, N.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Liang, C.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Montroy, T. E.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Smecher, G.; Stark, A. A.; Story, K. T.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Zahn, O.

    2015-05-18

    Here, we present measurements of $E$-mode polarization and temperature-$E$-mode correlation in the cosmic microwave background (CMB) using data from the first season of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100~\\sqdeg\\ of sky with arcminute resolution at $150\\,$GHz. We also report the $E$-mode angular auto-power spectrum ($EE$) and the temperature-$E$-mode angular cross-power spectrum ($TE$) over the multipole range $500 < \\ell \\leq5000$. These power spectra improve on previous measurements in the high-$\\ell$ (small-scale) regime. We fit the combination of the SPTpol power spectra, data from \\planck\\, and previous SPT measurements with a six-parameter \\LCDM cosmological model. Furthermore, we find that the best-fit parameters are consistent with previous results. The improvement in high-$\\ell$ sensitivity over previous measurements leads to a significant improvement in the limit on polarized point-source power: after masking sources brighter than 50\\,mJy in unpolarized flux at 150\\,GHz, we find a 95\\% confidence upper limit on unclustered point-source power in the $EE$ spectrum of $D_\\ell = \\ell (\\ell+1) C_\\ell / 2 \\pi < 0.40 \\ \\mu{\\mbox{K}}^2$ at $\\ell=3000$, indicating that future $EE$ measurements will not be limited by power from unclustered point sources in the multipole range $\\ell < 3600$, and possibly much higher in $\\ell.$

  16. MEASUREMENTS OF E-MODE POLARIZATION AND TEMPERATURE-E-MODE CORRELATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA

    SciTech Connect

    Crites, A. T.; Henning, J. W.; Ade, P. A. R.; Aird, K. A.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H-M.; Citron, R.; Crawford, T. M.; Haan, T. de; Dobbs, M. A.; Everett, W.; Gallicchio, J.; Gao, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Hanson, D.; Harrington, N.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Liang, C.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Montroy, T. E.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Smecher, G.; Stark, A. A.; Story, K. T.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Zahn, O.

    2015-05-18

    We present measurements of E-mode polarization and temperature-E-mode correlation in the cosmic microwave background using data from the first season of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100 ${{{\\rm deg} }^{2}}$ of sky with arcminute resolution at 150 GHz. We report the E-mode angular auto-power spectrum (EE) and the temperature-E-mode angular cross-power spectrum (TE) over the multipole range 500 < ℓ ≤ 5000. These power spectra improve on previous measurements in the high-ℓ (small-scale) regime. We fit the combination of the SPTpol power spectra, data from Planck, and previous SPT measurements with a six-parameter ΛCDM cosmological model. We find that the best-fit parameters are consistent with previous results. The improvement in high-ℓ sensitivity over previous measurements leads to a significant improvement in the limit on polarized point-source power: after masking sources brighter than 50 mJy in unpolarized flux at 150 GHz, we find a 95% confidence upper limit on unclustered point-source power in the EE spectrum of ${{D}_{\\ell }}=\\ell (\\ell +1){{C}_{\\ell }}/2\\pi \\lt 0.40\\ \\mu {{{\\rm K}}^{2}}$ at $\\ell =3000$, indicating that future EE measurements will not be limited by power from unclustered point sources in the multipole range $\\ell \\lt 3600$, and possibly much higher in $\\ell .$

  17. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    NASA Astrophysics Data System (ADS)

    Tao, Xie; William, Perrie; Shang-Zhuo, Zhao; He, Fang; Wen-Jin, Yu; Yi-Jun, He

    2016-07-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service Program.

  18. Reconstruction of the sea surface elevation from the analysis of the data collected by a wave radar system

    NASA Astrophysics Data System (ADS)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco; Lugni, Claudio; Fucile, Fabio; Bulian, Gabriele

    2016-04-01

    X-band radar system is able to provide information about direction and intensity of the sea surface currents and dominant waves in a range of few kilometers from the observation point (up to 3 nautical miles). This capability, together with their flexibility and low cost, makes these devices useful tools for the sea monitoring either coastal or off-shore area. The data collected from wave radar system can be analyzed by using the inversion strategy presented in [1,2] to obtain the estimation of the following sea parameters: peak wave direction; peak period; peak wavelength; significant wave height; sea surface current and bathymetry. The estimation of the significant wave height represents a limitation of the wave radar system because of the radar backscatter is not directly related to the sea surface elevation. In fact, in the last period, substantial research has been carried out to estimate significant wave height from radar images either with or without calibration using in-situ measurements. In this work, we will present two alternative approaches for the reconstruction of the sea surface elevation from wave radar images. In particular, the first approach is based on the basis of an approximated version of the modulation transfer function (MTF) tuned from a series of numerical simulation, following the line of[3]. The second approach is based on the inversion of radar images using a direct regularised least square technique. Assuming a linearised model for the tilt modulation, the sea elevation has been reconstructed as a least square fitting of the radar imaging data[4]. References [1]F. Serafino, C. Lugni, and F. Soldovieri, "A novel strategy for the surface current determination from marine X-band radar data," IEEE Geosci.Remote Sens. Lett., vol. 7, no. 2, pp. 231-235, Apr. 2010. [2]Ludeno, G., Brandini, C., Lugni, C., Arturi, D., Natale, A., Soldovieri, F., Serafino, F. (2014). Remocean System for the Detection of the Reflected Waves from the Costa

  19. Daily sea surface salinity variability in the tropical Pacific Ocean derived from satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Ballabrera-Poy, Joaquim; Olmedo, Estrella; Turiel, Antonio; Portabella, Marcos; Martinez, Justino; Hoareau, Nina

    2016-04-01

    In this work, a multifractal data fusion algorithm is used to obtain daily sea surface salinity (SSS) maps from the Soil Moisture and Ocean Salinity (SMOS) Level 2 (L2) data. The L2 SSS retrievals are obtained from the brightness temperature reconstructions at different polarizations and incidence angles along the satellite swath. SMOS L2 data have a spatial resolution of about 43 km and accuracy between 0.6 to 1.7 (in the practical salinity scale). The main goal of the data fusion algorithm is to use the reliable information of the OSTIA sea surface temperature (SST) daily fields to increase the spatial and temporal resolution of the SMOS L2 SSS data. Our SMOS dataset consists of the European Space Agency (ESA) L2 v620 reprocessed data from January 2010 to May 2015, and of the latest L2 operational data (near real-time) version after May 2015. Salinity anomalies are constructed by removing the five-year average of the L2 salinity data as a function of the geographical position, the overpass orientation (ascending or descending), and the across-track distance to the center of the swath. The SMOS-based climatologies evidence the existence of strong systematic artifacts, especially near the coast and, as such, they allow retrieving some of the systematic errors present in the original L2 data. The 0.05-degree, daily SST product from OSTIA is used as a template in our scalar fusion algorithm to generate 0.05 degree, daily SSS maps. The resulting SSS maps are less noisy and better define the main geophysical structures as compared to the standard high-level SSS products. Differences against near-surface Argo salinity measurements are reduced by 40% with respect to the standard products. In order to assess the significance of the extrapolation to the time domain, data from the Global Tropical Moored Buoy Array are used. The results indicate that the small time-scale variability present in the mooring data are not completely reproduced by remote sensing, although data

  20. Understanding and predicting changes in North Atlantic Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Yeager, S. G.

    The mechanisms associated with sea surface temperature variability in the North Atlantic are explored using observation-based reconstructions of the historical surface states of the atmosphere and ocean as well as simulations run with the Community Earth System Model, version 1 (CESM1). The relationship between air-sea heat flux and SST between 1948 and 2009 yields evidence of a positive heat flux feedback at work in the subpolar gyre region on quasi-decadal timescales. Warming of the high latitude Atlantic precedes an atmospheric response which resembles a negative NAO state. The historical flux data set is used to estimate temporal variations in North Atlantic deep water formation which suggest that NAO variations drove strong decadal changes in thermohaline circulation strength in the last half century. Model simulations corroborate the observation-based inferences that substantial changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC) ensued as a result of NAO-driven water mass perturbations, and that changes in the large-scale ocean circulation played a significant role in modulating North Atlantic SST. Surface forcing perturbation experiments show that the simulated low-frequency AMOC variability is mainly driven by turbulent buoyancy forcing over the Labrador Sea region, and that the decadal ocean variability, in uncoupled experiments, derives from low-frequency variability in the overlying atmospheric state. Surface momentum forcing accounts for most of the interannual variability in AMOC at all latitudes, and also most of the decadal AMOC variability south of the Equator. We show that the latter relates to the trend in wind stress forcing of the Southern Ocean, but that Southern Ocean forcing explains very little of the North Atlantic signal. The sea surface height in the Labrador Sea is identified as a strongly buoyancy-forced observable which supports its use as a monitor of AMOC strength. The dynamics which characterize the

  1. An in situ-satellite blended analysis of global sea surface salinity

    NASA Astrophysics Data System (ADS)

    Xie, P.; Boyer, T.; Bayler, E.; Xue, Y.; Byrne, D.; Reagan, J.; Locarnini, R.; Sun, F.; Joyce, R.; Kumar, A.

    2014-09-01

    The blended monthly sea surface salinity (SSS) analysis, called the NOAA "Blended Analysis of Surface Salinity" (BASS), is constructed for the 4 year period from 2010 to 2013. Three data sets are employed as inputs to the blended analysis: in situ SSS measurements aggregated and quality controlled by NOAA/NODC, and passive microwave (PMW) retrievals from both the National Aeronautics and Space Administration's (NASA) Aquarius/SAC-D and the European Space Agency's (ESA) Soil Moisture-Ocean Salinity (SMOS) satellites. The blended analysis comprises two steps. First, the biases in the satellite retrievals are removed through probability distribution function (PDF) matching against temporally spatially colocated in situ measurements. The blended analysis is then achieved through optimal interpolation (OI), where the analysis for the previous time step is used as the first guess while the in situ measurements and bias-corrected satellite retrievals are employed as the observations to update the first guess. Cross validations illustrate improved quality of the blended analysis, with reduction in bias and random errors over most of the global oceans as compared to the individual inputs. Large uncertainty, however, remains in high-latitude oceans and coastal regions where the in situ networks are sparse and current-generation satellite retrievals have limitations. Our blended SSS analysis shows good agreements with the NODC in situ-based analysis over most of the tropical and subtropical oceans, but large differences are observed for high-latitude oceans and along coasts. In the tropical oceans, the BASS is shown to have coherent variability with precipitation and evaporation associated with the evolution of the El Niño-Southern Oscillation (ENSO).

  2. Prediction of daily sea surface temperature using efficient neural networks

    NASA Astrophysics Data System (ADS)

    Patil, Kalpesh; Deo, Makaranad Chintamani

    2017-02-01

    Short-term prediction of sea surface temperature (SST) is commonly achieved through numerical models. Numerical approaches are more suitable for use over a large spatial domain than in a specific site because of the difficulties involved in resolving various physical sub-processes at local levels. Therefore, for a given location, a data-driven approach such as neural networks may provide a better alternative. The application of neural networks, however, needs a large experimentation in their architecture, training methods, and formation of appropriate input-output pairs. A network trained in this manner can provide more attractive results if the advances in network architecture are additionally considered. With this in mind, we propose the use of wavelet neural networks (WNNs) for prediction of daily SST values. The prediction of daily SST values was carried out using WNN over 5 days into the future at six different locations in the Indian Ocean. First, the accuracy of site-specific SST values predicted by a numerical model, ROMS, was assessed against the in situ records. The result pointed out the necessity for alternative approaches. First, traditional networks were tried and after noticing their poor performance, WNN was used. This approach produced attractive forecasts when judged through various error statistics. When all locations were viewed together, the mean absolute error was within 0.18 to 0.32 °C for a 5-day-ahead forecast. The WNN approach was thus found to add value to the numerical method of SST prediction when location-specific information is desired.

  3. Sahel Precipitation Variability and Global Sea Surface Temperature Forcing

    NASA Astrophysics Data System (ADS)

    Bach, D. E.; Kushnir, Y.; Seager, R.; Goddard, L.; Giannini, A.

    2003-12-01

    In the last 50 years or so, the Sahel region in sub-Saharan Africa has experienced two multi-decadal wet and dry periods separated by a relatively sharp transition. The onset of the dry episode in the Sahel is associated with the start of a significant warming trend in Southern Hemisphere sea surface temperatures (SST) that persisted well into the late 1990's. It has been stipulated, based on general circulation model (GCM) experiments, that the SST rise in the southern ocean basins is the predominant driver of rainfall patterns over the Sahel. Here we support this notion by comparing the observed rate of change in Southern Hemisphere SST with that of Sahel summertime rainfall. We examine the variations in each ocean basin separately and find that the drought pattern is most prominently associated with SST changes in the Indian Ocean, which display maximum warming rates simultaneously with the wet to dry shift in the Sahel. We provide further support to the role of the Indian Ocean using results from GCM integrations forced with observed Indian Ocean SST values and climatological values elsewhere, which effectively recreate the dry Sahel rainfall pattern. While the variations in equatorial Pacific SST associated with El Ni¤o have been found to have an effect on Sahel rainfall during the summer months, their influence does not appear to be significantly connected with the prolonged drought episode. The dry period was accentuated by two severe droughts in the early 1970's and 1980s, which generated very different repercussions for the Sahelian people. The first drought resulted in widespread famine and death while the second more severe drought in 1983-84 generated very few casualties. The political and socioeconomic assessment of these episodes suggests that the extensive loss of life was due to inefficient transportation of supplies to the starving populations. International aid organizations initiated famine protection programs following the 1970's drought that

  4. Sea surface temperature associations with the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Terray, P.; Delecluse, P.; Labattu, S.; Terray, L.

    2003-04-01

    This paper uses recent gridded data and Atmospheric General Circulation Model (AGCM) simulations in order to assess the relationships between interannual variability of the Indian Summer Monsoon (ISM) and Sea Surface Temperature (SST) anomaly patterns over the Indian and Pacific oceans. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June-September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the Late Indian Summer Monsoon (LISM). Southern Indian Ocean SST acts as a major boundary forcing for the LISM system. Strong (weak) LISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene high from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene high interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Southeastern Indian Ocean SST anomalies during boreal winter are mainly linked to subtropical Indian Ocean dipole events, studied by Behera and Yamagata (2001), and to the El Niño-Southern Oscillation phenomenon. An El Niño event and the associated warm SST anomalies over the southeastern Indian Ocean during boreal winter may play a key role in the development of a strong ISM by strengthening the local Hadley circulation during the LISM. On the other hand, a developing La Niña event in boreal summer may also enhance the east-west Walker circulation and the monsoon.

  5. Sampling Errors in Satellite-derived Infrared Sea Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Minnett, P. J.

    2014-12-01

    Sea Surface Temperature (SST) measured from satellites has been playing a crucial role in understanding geophysical phenomena. Generating SST Climate Data Records (CDRs) is considered to be the one that imposes the most stringent requirements on data accuracy. For infrared SSTs, sampling uncertainties caused by cloud presence and persistence generate errors. In addition, for sensors with narrow swaths, the swath gap will act as another sampling error source. This study is concerned with quantifying and understanding such sampling errors, which are important for SST CDR generation and for a wide range of satellite SST users. In order to quantify these errors, a reference Level 4 SST field (Multi-scale Ultra-high Resolution SST) is sampled by using realistic swath and cloud masks of Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Along Track Scanning Radiometer (AATSR). Global and regional SST uncertainties are studied by assessing the sampling error at different temporal and spatial resolutions (7 spatial resolutions from 4 kilometers to 5.0° at the equator and 5 temporal resolutions from daily to monthly). Global annual and seasonal mean sampling errors are large in the high latitude regions, especially the Arctic, and have geographical distributions that are most likely related to stratus clouds occurrence and persistence. The region between 30°N and 30°S has smaller errors compared to higher latitudes, except for the Tropical Instability Wave area, where persistent negative errors are found. Important differences in sampling errors are also found between the broad and narrow swath scan patterns and between day and night fields. This is the first time that realistic magnitudes of the sampling errors are quantified. Future improvement in the accuracy of SST products will benefit from this quantification.

  6. Long-Range Correlations of Global Sea Surface Temperature

    PubMed Central

    Jiang, Lei; Zhao, Xia; Wang, Lu

    2016-01-01

    Scaling behaviors of the global monthly sea surface temperature (SST) derived from 1870–2009 average monthly data sets of Hadley Centre Sea Ice and SST (HadISST) are investigated employing detrended fluctuation analysis (DFA). The global SST fluctuations are found to be strong positively long-range correlated at all pertinent time-intervals. The value of scaling exponent is larger in the tropics than those in the intermediate latitudes of the northern and southern hemispheres. DFA leads to the scaling exponent α = 0.87 over the globe (60°S~60°N), northern hemisphere (0°N~60°N), and southern hemisphere (0°S~60°S), α = 0.84 over the intermediate latitude of southern hemisphere (30°S~60°S), α = 0.81 over the intermediate latitude of northern hemisphere (30°N~60°N) and α = 0.90 over the tropics 30°S~30°N [fluctuation F(s) ~ sα], which the fluctuations of monthly SST anomaly display long-term correlated behaviors. Furthermore, the larger the standard deviation is, the smaller long-range correlations (LRCs) of SST in the corresponding regions, especially in three distinct upwelling areas. After the standard deviation is taken into account, an index χ = α * σ is introduced to obtain the spatial distributions of χ. There exists an obvious change of global SST in central east and northern Pacific and the northwest Atlantic. This may be as a clue on predictability of climate and ocean variabilities. PMID:27100397

  7. Data-Model Comparison of Pliocene Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Dowsett, H. J.; Foley, K.; Robinson, M. M.; Bloemers, J. T.

    2013-12-01

    The mid-Piacenzian (late Pliocene) climate represents the most geologically recent interval of long-term average warmth and shares similarities with the climate projected for the end of the 21st century. As such, its fossil and sedimentary record represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. We present the first systematic comparison of Pliocene sea surface temperatures (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) and the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional (mid- to high latitude North Atlantic and tropics) and dynamic (upwelling) situations where there is discord between reconstructed SST and the PlioMIP simulations. These differences can lead to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction. Scatter plot of multi-model-mean anomalies (squares) and PRISM3 data anomalies (large blue circles) by latitude. Vertical bars on data anomalies represent the variability of warm climate phase within the time-slab at each locality. Small colored circles represent individual model anomalies and show the spread of model estimates about the multi-model-mean. While not directly comparable in terms of the development of the means nor the meaning of variability, this plot provides a first order comparison of the anomalies. Encircled areas are a, PRISM low latitude sites outside of upwelling areas; b, North Atlantic coastal sequences and Mediterranean sites; c, large anomaly PRISM sites from the northern hemisphere. Numbers identify Ocean Drilling Program sites.

  8. Long-Range Correlations of Global Sea Surface Temperature.

    PubMed

    Jiang, Lei; Zhao, Xia; Wang, Lu

    2016-01-01

    Scaling behaviors of the global monthly sea surface temperature (SST) derived from 1870-2009 average monthly data sets of Hadley Centre Sea Ice and SST (HadISST) are investigated employing detrended fluctuation analysis (DFA). The global SST fluctuations are found to be strong positively long-range correlated at all pertinent time-intervals. The value of scaling exponent is larger in the tropics than those in the intermediate latitudes of the northern and southern hemispheres. DFA leads to the scaling exponent α = 0.87 over the globe (60°S~60°N), northern hemisphere (0°N~60°N), and southern hemisphere (0°S~60°S), α = 0.84 over the intermediate latitude of southern hemisphere (30°S~60°S), α = 0.81 over the intermediate latitude of northern hemisphere (30°N~60°N) and α = 0.90 over the tropics 30°S~30°N [fluctuation F(s) ~ sα], which the fluctuations of monthly SST anomaly display long-term correlated behaviors. Furthermore, the larger the standard deviation is, the smaller long-range correlations (LRCs) of SST in the corresponding regions, especially in three distinct upwelling areas. After the standard deviation is taken into account, an index χ = α * σ is introduced to obtain the spatial distributions of χ. There exists an obvious change of global SST in central east and northern Pacific and the northwest Atlantic. This may be as a clue on predictability of climate and ocean variabilities.

  9. Eliminating bias in satellite retrievals of sea surface temperature

    NASA Astrophysics Data System (ADS)

    Merchant, Christopher John

    Sea surface temperature (SST) is a critical parameter for climate research, and needs to be measured with an absolute accuracy of ~0.3 K (average over ~100 km scale on a weekly to monthly time scale) and with a long term stability of 0.1 K per decade. These stringent requirements present a formidable challenge to satellite based SST measurement. The most promising satellite radiometer is the ATSR (and successors), but bias and spurious trends have arisen in the ATSR SST retrieval process. Eliminating such retrieval bias is the focus of this thesis. SSTs derived from the ATSR using the prelaunch retrieval scheme are biased by up to -1.5 K by stratospheric aerosol from the eruption of Mount Pinatubo shortly before launch. An "aerosol-robust" retrieval scheme is derived which has no detectable aerosol- related bias. Another bias of up to 0.5 K arising from a deficiency of the radiative transfer model used to develop the prelaunch retrieval scheme is resolved by implementing an updated parameterisation of water vapour continuum absorption. The new SSTs are shown to have an accuracy better than 0.3 K (error in a single retrieval over a -20 km spatial scale) and to be robust to aerosol effects, by a validation exercise against buoys measuring SST in situ. The validation data consist of 620 satellite-buoy coincidences in the tropical Pacific between September 1991 and May 1992, a region and period associated with high loadings of stratospheric aerosol and tropospheric water vapour. This is the first validation exercise to correct for the effects of the difference between bulk SSTs (measured by buoys) and skin SSTs (measured radiometrically). The factor now limiting accuracy is residual cloud contamination. The new retrieval scheme has been adopted for the reprocessing of all archived ATSR data to SST.

  10. Evaluating drivers of Pleistocene eastern tropical Pacific sea surface temperature

    NASA Astrophysics Data System (ADS)

    Dyez, K. A.; Ravelo, A. C.; Mix, A. C.

    2016-08-01

    Sea surface temperature (SST) of the eastern equatorial Pacific is a key component of tropical oceanic and atmospheric circulation with global teleconnections. Forcing factors such as local and high-latitude insolation changes, ice sheet size and albedo feedbacks, and greenhouse gas radiation have been proposed as controls of long-term eastern tropical Pacific SST, though the precise role each mechanism plays is not fully known on glacial-interglacial or longer timescales. Here proposed mechanisms are evaluated by comparing orbital-scale records of eastern Pacific SST with forcing variability over the past 1.5 Ma. The primary SST records are a compilation of new and existing data from Ocean Drilling Program Site 1239 at the northeastern margin of the modern eastern Pacific cold tongue and Site 846 SST within the cold tongue. Using time series analysis, we test previously proposed mechanisms for control of long-term tropical SST change and SST gradients in the eastern Pacific. We find that within statistical uncertainties, in the precession band eastern Pacific SST is consistent with direct forcing by equatorial radiation changes in the tropical cold season (summer-fall) rather than inversely correlated as previously suggested. In the obliquity band high-latitude solar forcing leads or is in phase with eastern equatorial Pacific SST, while in the eccentricity band atmospheric greenhouse gas concentrations are closely associated with cold tongue SST. Pleistocene eastern Pacific SST gradients indicate that the gradient on the northern margin of the cold tongue strengthened through the mid-Pleistocene transition, a result compatible with the cold tongue becoming more focused at ~900-650 ka.

  11. Accuracy of Sea Surface Topography with GPS Scattered Signals

    NASA Astrophysics Data System (ADS)

    Zuffada, C.; Zavorotny, V. U.; Lowe, S.

    2001-12-01

    The concept of using GPS reflected signals for ocean and land remote sensing is based on the use of one airborne (or space-based) GPS receiver working simultaneously with a constellation of several signal-transmitting GPS satellites. This would offer an advantage in terms of spatial coverage compared to a conventional monostatic radar system and possibly allow new scientific applications to be pursued. However, the limited power of GPS transmitters and a relatively low surface cross section would require either large receiving antennas or longer integration times to optimize the signal-to-noise ratio. Analogously to the case of a conventional radar altimeter, the reflected GPS signal acquired by the receiver is the average power versus time (a range measurement) and generally represents the contributions from surfaces which scatter incoherently. This waveform is derived as a function of viewing geometry, system parameters, surface roughness and dielectric properties of underlying covers. This work investigates the spatial-temporal coherence properties and statistics of the measured reflected GPS signal that describes variability from one sample to another. This information is needed to choose an optimal strategy for a successful signal processing. We examine the above-mentioned properties of the modeled received power as a function of surface state and scattering geometry. Its impact on the accuracy of sea surface topography, both from airborne and orbital platforms is addressed. A characterization of error and expected spatial resolution in relation to existing instruments is discussed. Furthermore, in examining the coherence time, we analyze the spectral behavior of the reflected signal versus sea state parameters, such as wind vector. In addition, we compare the predictions with data available from recent airplane measurements taken in the Pacific Ocean off the coast of Southern California obtaining preliminary validations of our models.

  12. Fractal properties of the sea surface manifested in microwave remote sensing signatures

    NASA Technical Reports Server (NTRS)

    Glazman, R. E.

    1988-01-01

    The wave spectrum of a well developed sea is discussed. It includes a broad range of wavenumbers where the spectral density is governed by a power law of the form k sup-p. When p is less than or = 4, the surface exhibits properties, such as an increased surface number density of steep and breaking wavelet events and an increased number of specular points for vertical incidence, due to the cascade (fractal) pattern in its geometry. These properties manifest themselves in error trends in wind speed measurements by scatterometer and altimeter.

  13. Fractal features of sea surface manifested in microwave remote sensing signatures

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1988-01-01

    The wave number spectrum of a well developed sea includes a broad range of wavenumbers (the equilibrium range) where the spectral density is governed by a power law, k exp p. In the approximation of a Gaussian surface, the exponent p is related to the Hausdorff dimension. For p less than 4 the Hausdorff dimension is greater than 2 and the surface is characterized by an increased number of steep and breaking wavelets and by an increased number of specular points at near vertical incidence. The former results in the so-called spike component in the total return at oblique incidence, whereas the latter leads to an increased backscatter at nadir and near-nadir angles. Theory for both cases is reviewed and implications for satellite scatterometer and altimeter measurements of surface winds are discussed.

  14. Extending the Satellite Derived Climate DATA Record of Sea Surface Temperature with VIIRS

    NASA Astrophysics Data System (ADS)

    Kilpatrick, K. A.; Williams, E.; Walsh, S.; Evans, R.; Szczodrak, M.; Izaguirre, M.; Minnett, P. J.

    2014-12-01

    Sea surface temperature (SST) is an essential variable needed to monitor and understand climate change. The global coverage provided by polar orbiting satellites is seen as the basis of SST climate records (CDRs). Such CDRs require accurate and traceable determination of the uncertainty characteristics of the SST retrievals from the long time series of measurements, taken by a sequence of satellite radiometers of evolving design and capabilities. The most recent of these instruments is the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP (National Polar-orbiting Partnership). The results of continuing analyses of the first three years of VIIRS measurements of skin SST are presented. The analyses include assessments of the spatial and temporal characteristics of the uncertainties, and comparisons to other satellite-based infrared sensors. VIIRS that has a swath width >3000km is much wider than either the MODIS or AVHRR, offers potentially gap-free coverage between adjacent swaths. However, current algorithms for retrieving SST from the infrared have increased uncertainty, and typically larger cold biases, at higher viewing angles. Alternative algorithmic approaches were developed at Miami to overcome some of the shortcomings identified in operational algorithms and to provide more accurate retrievals across the entire swath width. Additional terms have been added to a VIIRS atmospheric correction algorithm to account for the effects of the high emission angle and long atmospheric path lengths. We conclude that reprocessed VIIRS SSTs using this enhanced algorithm would be capable of improving upon the accuracies of SSTs from the MODIS's on Terra and Aqua, and AVHRR Pathfinder, and have the potential to contribute to the extension of the satellite-derived Climate Data Records of SST into the future.

  15. Simulation of infrared emissivity and reflectivity of oil films on sea surfaces

    NASA Astrophysics Data System (ADS)

    Pinel, Nicolas; Monnier, Goulven; Sergievskaya, Irina; Bourlier, Christophe

    2015-10-01

    In this paper, an efficient sea surface generation is described for the fast and realistic simulation of the infrared emissivity and reflectivity of clean and contaminated seas. The clean sea surface is modelled by the Elfouhaily et al. spectrum model. For describing the surface damping due to the oil film at the sea surface, the model of local balance (MLB) is used. Thus, these surface models are used as the basis for calculating the emissivity and reflectivity. The numerical efficient computation is tested by comparison with the reference statistical computation for its validation.

  16. Gold Nanoparticle Microwave Synthesis

    SciTech Connect

    Krantz, Kelsie E.; Christian, Jonathan H.; Coopersmith, Kaitlin; Washington, II, Aaron L.; Murph, Simona H.

    2016-07-27

    At the nanometer scale, numerous compounds display different properties than those found in bulk material that can prove useful in areas such as medicinal chemistry. Gold nanoparticles, for example, display promise in newly developed hyperthermia therapies for cancer treatment. Currently, gold nanoparticle synthesis is performed via the hot injection technique which has large variability in final particle size and a longer reaction time. One underdeveloped area by which these particles could be produced is through microwave synthesis. To initiate heating, microwaves agitate polar molecules creating a vibration that gives off the heat energy needed. Previous studies have used microwaves for gold nanoparticle synthesis; however, polar solvents were used that partially absorbed incident microwaves, leading to partial thermal heating of the sample rather than taking full advantage of the microwave to solely heat the gold nanoparticle precursors in a non-polar solution. Through this project, microwaves were utilized as the sole heat source, and non-polar solvents were used to explore the effects of microwave heating only as pertains to the precursor material. Our findings show that the use of non-polar solvents allows for more rapid heating as compared to polar solvents, and a reduction in reaction time from 10 minutes to 1 minute; this maximizes the efficiency of the reaction, and allows for reproducibility in the size/shape of the fabricated nanoparticles.

  17. Satellite Retrievals of Vegetation Optical Depth Using Time-Series of Dual-Polarized and Single Look-Angle Global Microwave Observations

    NASA Astrophysics Data System (ADS)

    Piles, M.; Konings, A. G.; Mccoll, K. A.; Chan, S.; Entekhabi, D.

    2014-12-01

    Our ability to close the Earth's carbon budget and predict feedbacks in a warming climate depends critically on knowing where, when and how carbon dioxide is exchanged. Vegetation biomass is an important carbon sink that varies significantly over annual and inter-annual timescales. At global scales, the only feasible approach for monitoring vegetation biomass is satellite remote sensing. In this regard, existing passive microwave missions have the potential of estimating Vegetation Optical Depth (VOD), an indicator of total aboveground vegetation water content, closely related to vegetation biomass. Present approaches provide VOD as a soil moisture inversion residual at every time step and are therefore highly contaminated by residuals from model error. This work presents a novel technique for retrieving VOD using time-series of dual-polarized microwave observations. Taking advantage of the slow-time dynamics of VOD, a number of consecutive observations are used to estimate a single VOD. The soil dielectric constant of each observation is also retrieved simultaneously and later used as a consistency check. The method has been applied to two years of L-band passive observations from the NASA's Aquarius sensor. Results show global VOD distribution follows general gradients of climate and canopy biomass conditions, with characteristic seasonal variability among the major land cover classes. Satellite retrievals of microwave VOD provide independent but complementary information to other remote sensing vegetation metrics such as fluorescence and optical-infrared indices. The method presented here could be used in satellite missions such as SMOS and SMAP to decouple soil effects from vegetation, for the benefit of soil moisture retrievals. Also, it could be used to generate a new observational record of vegetation water content for a more comprehensive view of land surface phenology and terrestrial ecology.

  18. Ultra-low phase-noise microwave generation using a diode-pumped solid-state laser based frequency comb and a polarization-maintaining pulse interleaver.

    PubMed

    Portuondo-Campa, Erwin; Buchs, Gilles; Kundermann, Stefan; Balet, Laurent; Lecomte, Steve

    2015-12-14

    We report ultra-low phase-noise microwave generation at a 9.6 GHz carrier frequency from optical frequency combs based on diode-pumped solid-state lasers emitting at telecom wavelength and referenced to a common cavity-stabilized continuous-wave laser. Using a novel fibered polarization-maintaining pulse interleaver, a single-oscillator phase-noise floor of -171 dBc/Hz at 10 MHz offset frequency has been measured with commercial PIN InGaAs photodiodes, constituting a record for this type of detector. Also, a direct optical measurement of the stabilized frequency combs' timing jitter was performed using a balanced optical cross correlator, allowing for an identification of the origin of the phase-noise limitations in the system.

  19. LiteBIRD: lite satellite for the study of B-mode polarization and inflation from cosmic microwave background radiation detection

    NASA Astrophysics Data System (ADS)

    Ishino, H.; Akiba, Y.; Arnold, K.; Barron, D.; Borrill, J.; Chendra, R.; Chinone, Y.; Cho, S.; Cukierman, A.; de Haan, T.; Dobbs, M.; Dominjon, A.; Dotani, T.; Elleflot, T.; Errard, J.; Fujino, T.; Fuke, H.; Funaki, T.; Goeckner-Wald, N.; Halverson, N.; Harvey, P.; Hasebe, T.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hazumi, M.; Hidehira, N.; Hill, C.; Hilton, G.; Holzapfel, W.; Hori, Y.; Hubmayr, J.; Ichiki, K.; Imada, H.; Inatani, J.; Inoue, M.; Inoue, Y.; Irie, F.; Irwin, K.; Ishitsuka, H.; Jeong, O.; Kanai, H.; Karatsu, K.; Kashima, S.; Katayama, N.; Kawano, I.; Kawasaki, T.; Keating, B.; Kernasovskiy, S.; Keskitalo, R.; Kibayashi, A.; Kida, Y.; Kimura, N.; Kimura, K.; Kisner, T.; Kohri, K.; Komatsu, E.; Komatsu, K.; Kuo, C.-L.; Kuromiya, S.; Kusaka, A.; Lee, A.; Li, D.; Linder, E.; Maki, M.; Matsuhara, H.; Matsumura, T.; Matsuoka, S.; Matsuura, S.; Mima, S.; Minami, Y.; Mitsuda, K.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Nishibori, T.; Nishijo, K.; Nishino, H.; Noda, A.; Noguchi, T.; Ogawa, H.; Ogburn, W.; Oguri, S.; Ohta, I.; Okada, N.; Okamoto, A.; Okamura, T.; Otani, C.; Pisano, G.; Rebeiz, G.; Richards, P.; Sakai, S.; Sakurai, Y.; Sato, Y.; Sato, N.; Segawa, Y.; Sekiguchi, S.; Sekimoto, Y.; Sekine, M.; Seljak, U.; Sherwin, B.; Shimizu, T.; Shinozaki, K.; Shu, S.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, J.; Suzuki, T.; Suzuki, A.; Tajima, O.; Takada, S.; Takakura, S.; Takano, K.; Takatori, S.; Takei, Y.; Tanabe, D.; Tomaru, T.; Tomita, N.; Turin, P.; Uozumi, S.; Utsunomiya, S.; Uzawa, Y.; Wada, T.; Watanabe, H.; Westbrook, B.; Whitehorn, N.; Yamada, Y.; Yamamoto, R.; Yamasaki, N.; Yamashita, T.; Yoshida, T.; Yoshida, M.; Yotsumoto, K.

    2016-07-01

    LiteBIRD is a next generation satellite aiming for the detection of the Cosmic Microwave Background (CMB) B-mode polarization imprinted by the primordial gravitational waves generated in the era of the inflationary universe. The science goal of LiteBIRD is to measure the tensor-to-scaler ratio r with a precision of δr < 10-3♢, offering us a crucial test of the major large-single-field slow-roll inflation models. LiteBIRD is planned to conduct an all sky survey at the sun-earth second Lagrange point (L2) with an angular resolution of about 0.5 degrees to cover the multipole moment range of 2 <= l <= 200. We use focal plane detector arrays consisting of 2276 superconducting detectors to measure the frequency range from 40 to 400 GHz with the sensitivity of 3.2 μK·arcmin. including the ongoing studies.

  20. New areas of polar lows over the Arctic as a result of the decrease in sea ice extent

    NASA Astrophysics Data System (ADS)

    Zabolotskikh, E. V.; Gurvich, I. A.; Chapron, B.

    2015-12-01

    Three mesocyclones (MCs) over the Russian (Eastern) Arctic are investigated using multispectral satellite remote sensing data, surface analysis maps, and reanalysis data. Advanced retrieval algorithms are used for estimating the geophysical parameter from satellite passive microwave measurements. These methods allow reconstructing in full the geophysical parameter fields characterizing polar lows. Synoptic analysis along with cloud image, atmospheric water vapor content, cloud liquid water content, and sea surface wind speed field analysis show that, while the Arctic sea ice retreats, new areas of open water appear where MCs can arise. A detailed study of several polar low cases reveals the typical conditions of their formation and development. Further studies are in demand due to the danger of MC extreme events for navigation, transport, and fishery operations in these unexplored regions.

  1. Moderate-resolution sea surface temperature data for the Arctic Ocean Ecoregions

    EPA Science Inventory

    Sea surface temperature (SST) is an important environmental characteristic in determining the suitability and sustainability of habitats for marine organisms. Of particular interest is the fate of the Arctic Ocean, which provides critical habitat to commercially important fish (M...

  2. Moderate-Resolution Sea Surface Temperature Data for the Nearshore North Pacific

    EPA Science Inventory

    Coastal sea surface temperature (SST) is an important environmental characteristic defining habitat suitability for nearshore marine and estuarine organisms. The purpose of this publication is to provide access to an easy-to-use coastal SST dataset for ecologists, biogeographers...

  3. A Climatology of Monthly Mean Sea Surface Temperatures for the Gulf of Mexico,

    DTIC Science & Technology

    1978-01-01

    This report presents monthly mean sea surface temperatures for the Gulf of Mexico in one degree quadrangles. It also includes a short discussion of the temperature data and the ocean currents in the Gulf of Mexico .

  4. The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod

    NASA Technical Reports Server (NTRS)

    Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.

    1991-01-01

    The mean sea-surface height and the gravitational geoid are presently estimated via near-surface velocity changes and concurrent sea-level changes along an ascending Geosat subtrack. The velocity measurements were made on three traverses, within ten days, of a Geosat subtrack, by means of an acoustic Doppler current profiler (ADCP). The mean sea-surface height was estimated as the difference between the instantaneous sea-surface height from ADCP and the Geosat residual sea level. In order to minimize mesoscale errors in the estimate, the along-track geoid estimate was computed as the difference between mean sea-level height from the Geosat Exact Repeat Mission and an estimate of the mean sea-surface height.

  5. Improving Streamflow Forecasts Using Predefined Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Kalra, A.; Ahmad, S.

    2011-12-01

    With the increasing evidence of climate variability, water resources managers in the western United States are faced with greater challenges of developing long range streamflow forecast. This is further aggravated by the increases in climate extremes such as floods and drought caused by climate variability. Over the years, climatologists have identified several modes of climatic variability and their relationship with streamflow. These climate modes have the potential of being used as predictor in models for improving the streamflow lead time. With this as the motivation, the current research focuses on increasing the streamflow lead time using predefine climate indices. A data driven model i.e. Support Vector Machine (SVM) based on the statistical learning theory is used to predict annual streamflow volume 3-year in advance. The SVM model is a learning system that uses a hypothesis space of linear functions in a Kernel induced higher dimensional feature space, and is trained with a learning algorithm from the optimization theory. Annual oceanic-atmospheric indices, comprising of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), El Niño-Southern Oscillations (ENSO), and a new Sea Surface Temperature (SST) data set of "Hondo" Region for a period of 1906-2005 are used to generate annual streamflow volumes. The SVM model is applied to three gages i.e. Cisco, Green River, and Lees Ferry in the Upper Colorado River Basin in the western United States. Based on the performance measures the model shows very good forecasts, and the forecast are in good agreement with measured streamflow volumes. Previous research has identified NAO and ENSO as main drivers for extending streamflow forecast lead-time in the UCRB. Inclusion of "Hondo Region" SST information further improve the model's forecasting ability. The overall results of this study revealed that the annual streamflow of the UCRB is significantly influenced by

  6. Sea Surface Temperature Forcing of the Late Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Terray, P.; Delecluse, P.; Labattu, S.; Terray, L.; Cassou, C.

    2002-12-01

    This paper uses recent historical data and Atmospheric General Circulation Model (AGCM) simulations in order to assess the relationships between interannual variability of the Indian Summer Monsoon (ISM) and Sea Surface Temperature (SST) anomaly patterns over the Indian and Pacific oceans. The focus is on the predictability of ISM rainfall and circulation, and its links to local (Indian Ocean) and remote (Pacific Ocean) SST forcing. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June-September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the Late Indian Summer Monsoon (LISM). Anomalous monsoons are linked to well-defined LISM rainfall and large-scale circulation anomalies. The whole three-dimensional monsoon circulation, i.e., the east-west Walker and local Hadley circulations, fluctuates during the LISM of anomalous ISM years. LISM circulation is weakened and shifted eastward during weak ISM years. Therefore, we focus on the predictability of the LISM in this study. It is found that southern Indian Ocean SST acts as a major boundary forcing for the LISM system. Strong (weak) LISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene high from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene high interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Southeastern Indian Ocean SST anomalies during boreal winter are mainly

  7. Fine-Resolution Satellite-Based Daily Sea Surface Temperatures over the Global Ocean

    DTIC Science & Technology

    2007-05-01

    MODAS with latitudinal extent limited to ±80. Note that only the RTG product includes SST in the Caspian Sea and the Sea of Azov . The plot masks SST...Fine-resolution satellite-based daily sea surface temperatures over the global ocean A. B. Kara1 and C. N. Barron1 Received 18 November 2006; revised...13 February 2007; accepted 27 February 2007; published 22 May 2007. [1] The accuracy and relative merits of two sets of daily global sea surface

  8. Black sea surface temperature anomaly on 5th August 1998 and the ozone layer thickness

    NASA Astrophysics Data System (ADS)

    Manev, A.; Palazov, K.; Raykov, St.; Ivanov, V.

    2003-04-01

    BLACK SEA SURFACE TEMPERATURE ANOMALY ON 5th AUGUST 1998 AND THE OZONE LAYER THICKNESS A. Manev , K. Palazov , St. Raykov, V. Ivanov Solar Terrestrial Influences Laboratory, Bulgarian Academy of Sciences amanev@abv.bg This paper focuses on the peculiarities of the Black Sea surface temperature anomaly on 05.08.1998. Researching the daily temperature changes in a number of control fields in the course of 8-10 years, we have found hidden correlations and anomalous deviations in the sea surface temperatures on a global scale. Research proves the statistical reliability of the temperature anomaly on the entire Black Sea surface registered on 04.-05.08.1998. In the course of six days around these dates the temperatures are up to 2°C higher than the maximum temperatures in this period in the other seven years. A more detailed analysis of the dynamics of the anomaly required the investigation of five Black Sea surface characteristic zones of 75x75 km. The analysis covers the period 20 days - 10 days before and 10 days after the anomaly. Investigations aimed at interpreting the reasons for the anomalous heating of the surface waters. We have tried to analyze the correlation between sea surface temperature and the global ozone above the Black Sea by using simultaneously data from the two satellite systems NOAA and TOMS. Methods of processing and comparing the data from the two satellite systems are described. The correlation coefficients values for the five characteristic zones are very high and close, which proves that the character of the correlation ozone - sea surface temperature is the same for the entire Black Sea surface. Despite the high correlation coefficient, we have proved that causality between the two phenomena at the time of the anomaly does not exit.

  9. The mean sea surface height and geoid along the Geosat subtrack from Bermuda to Cape Cod

    NASA Astrophysics Data System (ADS)

    Kelly, Kathryn A.; Joyce, Terrence M.; Schubert, David M.; Caruso, Michael J.

    1991-07-01

    Measurements of near-surface velocity and concurrent sea level along an ascending Geosat subtrack were used to estimate the mean sea surface height and the Earth's gravitational geoid. Velocity measurements were made on three traverses of a Geosat subtrack within 10 days, using an acoustic Doppler current profiler (ADCP). A small bias in the ADCP velocity was removed by considering a mass balance for two pairs of triangles for which expendable bathythermograph measurements were also made. Because of the large curvature of the Gulf Stream, the gradient wind balance was used to estimate the cross-track component of geostrophic velocity from the ADCP vectors; this component was then integrated to obtain the sea surface height profile. The mean sea surface height was estimated as the difference between the instantaneous sea surface height from ADCP and the Geosat residual sea level, with mesoscale errors reduced by low-pass filtering. The error estimates were divided into a bias, tilt, and mesoscale residual; the bias was ignored because profiles were only determined within a constant of integration. The calculated mean sea surface height estimate agreed with an independent estimate of the mean sea surface height from Geosat, obtained by modeling the Gulf Stream as a Gaussian jet, within the expected errors in the estimates: the tilt error was 0.10 m, and the mesoscale error was 0.044 m. To minimize mesoscale errors in the estimate, the alongtrack geoid estimate was computed as the difference between the mean sea level from the Geosat Exact Repeat Mission and an estimate of the mean sea surface height, rather than as the difference between instantaneous profiles of sea level and sea surface height. In the critical region near the Gulf Stream the estimated error reduction using this method was about 0.07 m. Differences between the geoid estimate and a gravimetric geoid were not within the expected errors: the rms mesoscale difference was 0.24 m rms.

  10. Warm Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Jenkyns, H. C.; Schouten-Huibers, L.; Schouten, S.; Sinninghe Damsté, J. S.

    2012-02-01

    Although a division of the Phanerozoic climatic modes of the Earth into "greenhouse" and "icehouse" phases is widely accepted, whether or not polar ice developed during the relatively warm Jurassic and Cretaceous Periods is still under debate. In particular, there is a range of isotopic and biotic evidence that favours the concept of discrete "cold snaps", marked particularly by migration of certain biota towards lower latitudes. Extension of the use of the palaeotemperature proxy TEX86 back to the Middle Jurassic indicates that relatively warm sea-surface conditions (26-30 °C) existed from this interval (∼160 Ma) to the Early Cretaceous (∼115 Ma) in the Southern Ocean, with a general warming trend through the Late Jurassic followed by a general cooling trend through the Early Cretaceous. The lowest sea-surface temperatures are recorded from around the Callovian-Oxfordian boundary, an interval identified in Europe as relatively cool, but do not fall below 25 °C. The early Aptian Oceanic Anoxic Event, identified on the basis of published biostratigraphy, total organic carbon and carbon-isotope stratigraphy, records an interval with the lowest, albeit fluctuating Early Cretaceous palaeotemperatures (∼26 °C), recalling similar phenomena recorded from Europe and the tropical Pacific Ocean. Extant belemnite δ18O data, assuming an isotopic composition of waters inhabited by these fossils of -1‰ SMOW, give palaeotemperatures throughout the Upper Jurassic-Lower Cretaceous interval that are consistently lower by ∼14 °C than does TEX86 and the molluscs likely record conditions below the thermocline. The long-term, warm climatic conditions indicated by the TEX86 data would only be compatible with the existence of continental ice if appreciable areas of high altitude existed on Antarctica, and/or in other polar regions, during the Mesozoic Era.

  11. MICROWAVES IN ORGANIC SYNTHESIS

    EPA Science Inventory

    The effect of microwaves, a non-ionizing radiation, on organic reactions is described both in polar solvents and under solvent-free conditions. The special applications are highlighted in the context of solventless organic synthesis which involve microwave (MW) exposure of neat r...

  12. Nature of the Jurassic Magnetic Quiet Zone revealed by the sea-surface, mid-water, and near-source magnetic sensor data in the western Pacific.

    NASA Astrophysics Data System (ADS)

    Tominaga, M.; Tivey, M.; Sager, W. W.

    2015-12-01

    The nature of the Jurassic Quiet Zone (JQZ) has been a long-standing debate in understanding Earth's geomagnetic field history and behavior. We present a coherent and likely globally significant marine magnetic reversal record for the JQZ by constructing a correlation of new and previously acquired magnetic anomaly profiles in the western Pacific. We obtained a high-resolution marine magnetic anomaly record using sea surface, mid-water (3-km level deep-towed), and near-bottom (Autonomous Underwater Vehicle (AUV)) profiles that targeted a spreading corridor in the Hawaiian lineation in 2011 (TN272 on R/V Thompson) and 2014 (SKQ2014S2 on R/V Sikuliaq). To extract crustal magnetic signals, the sea surface and mid-water magnetic data were corrected for ship-to-sensor offset, the diurnal effect, and the present-day ambient geomagnetic field. Mid-water data were upward continued to a constant 3 km level plane and to the sea surface. Near-bottom data were calibrated to remove the induced magnetic field by AUV Sentry, then corrected for IGRF and diurnal variations. We used these near-source data as an anchor for correlations with the sea surface and mid-water level data because of the AUV's superb inertial navigation and hydrodynamically stable, quiet platform environment. Our sea surface anomaly correlation with the previously established Japanese lineation sequence shows (i) an excellent correlation of anomaly shapes from M29 to M42; (ii) a remarkable similarity in anomaly amplitude envelope, which decreases back in time from M19 to M38, with a minimum at M41, then increases back in time from M42; and (iii) refined locations of pre-M25 lineations in the Hawaiian lineation set. Moreover, short-wavelength anomalies from the mid-water and near-bottom profiles show a strong similarity in the M37/M38 polarity attributes found both in the magnetostratigraphic and marine magnetic records, implying that rapid magnetic reversals were occurring at that time. The average reversal

  13. Trends and variability in the sea surface height, sea surface temperature and wind stress curl in the South Atlantic ocean

    NASA Astrophysics Data System (ADS)

    Porto da Silveira, Isabel; Ponzi Pezzi, Luciano; Buss de Souza, Ronald; Sennéchael, Nathalie; Provost, Christine

    2013-04-01

    Altimetry sea level anomalies (SLA), sea surface temperatures anomalies (SSTA) and wind stress curl (WSC) were analyzed and had their trends calculated and their variability studied for the South Atlantic ocean using the last 19 years of SALTO/DUACS altimeter data, ERSST data and ERA-INTERIM data. All data had their temporal resolution adjusted to the one of altimeter data. The trends were calculated between January, 1st 1993 and December, 31th 2011. The stronger and positive SLA trends occurred in the region of the Zapiola Ridge (14 mm/year) and in some places in the Drake Passage (10 mm/year). Negative trends were observed in the Southern part of Argentinian basin (-4 mm/year), next to the Confluence Brazil Malvinas (-8 mm/year) and to the southwest of the African coast (-6 mm/year). The SST trends were positive North of 40°S, and negative south of 60°S. They were also negative along the Argentinean continental slope along the path of the Malvinas Current. The WSC trend was also negative along the Argentine continental slope. In the Southeast Atlantic, the WSC trend had a zonal distribution with alternate signs. To understand the processes responsible for the trend patterns in the South Atlantic ocean, the high and the low frequencies were obtained applying successively a 25 week band pass filter followed by a 37 week band pass filter. The percentage of explained variance by the high frequency, low frequency and seasonal signals (hf/lf/ss) were compared for SLA, SSTA and WSC. The variance of SLA in the Southwestern Atlantic was explained by the proportion of (80%, 15%,5%), except along the Argentinean continental slope (15%, 50%, 35%), the inner part of the ZR (10%,65%,25%). The central part of the South Atlantic showed dominant low frequency variance (proportions of 15%, 80% and 5% (hf/lf/ss), respectively). The SSTA variance was dominated by the high frequency in the Uruguayan coast, around ZR, in the Drake Passage and in the Agulhas Leakage (60-80%), low

  14. Sea surface temperatures in the North Atlantic Ocean from 30ka to 10ka

    NASA Astrophysics Data System (ADS)

    Barrack, Kerr; Greenop, Rosanna; Burke, Andrea; Barker, Stephen; Chalk, Thomas; Crocker, Anya

    2016-04-01

    Some of the most striking features of the Late Pleistocene interval are the rapid changes in climate between warmer interstadial and cold stadial periods which, when coupled, are termed Dansgaard-Oeschger (D-O) events. This shift between warm and cold climates has been interpreted to result from changes in the thermohaline circulation (Broecker et al., 1985) triggered by, for instance, freshwater input from the collapse of the Laurentide ice sheet (Zahn et al., 1997). However, a recent study suggests that major ice rafting events cannot be the 'trigger' for the centennial to millennial scale cooling events identified over the past 500kyr (Barker at al., 2015). Polar planktic foraminiferal and lithogenic/terrigenous grain counts reveal that the southward migration of the polar front occurs before the deposition of ice rafted debris and therefore the rafting of ice during stadial periods. Based upon this evidence, Barker et al. suggest that the transition to a stadial state is a non-linear response to gradual cooling in the region. In order to test this hypothesis, our study reconstructs sea surface temperature across D-O events and the deglaciation in the North Atlantic between 30ka and 10ka using Mg/ Ca paleothermometry in Globigerina bulloides at ODP Sites 980 and 983 (the same sites as used in Barker et al., 2015) with an average sampling resolution of 300 years. With our new record we evaluate the timing of surface ocean temperature change, frontal shift movement, and ice rafting to investigate variations in the temperature gradient across the polar front over D-O events. References: Barker, S., Chen, J., Gong, X., Jonkers, L., Knorr, G., Thornalley, D., 2015. Icebergs not the trigger for North Atlantic cold events. Nature, 520(7547), pp.333-336. Broecker, W.S., Peteer, D.M., Rind, D., 1985. Does the ocean-atmosphere system have more than one stable mode of operation? Nature, 315 (6014), pp.21-26. Zahn, R., Schönfeld, J., Kudrass, H.-R., Park, M

  15. Effects of the Antenna Aperture on Remote Sensing of Sea Surface Salinity at L-Band

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; LeVine, David M.

    2006-01-01

    Remote sensing of sea surface salinity with sufficient accuracy to meet the needs of global oceanography is a challenging task. The global variability of the salinity signal in the open ocean is only a few Kelvin even at L-band and an accuracy on the order of 0.1K is desired to study the influence of salinity on ocean circulation and energy exchange with the atmosphere. On the other hand, resolution is not an issue for understanding the dynamics of the open ocean where scales of hundreds of km are not uncommon. This permits remote sensing with large antenna footprints and spatial averaging to reduce noise. However, antennas with large footprints introduce other problems. For example, the angle of incidence and hence the brightness temperature varies over the footprint. Similarly, the polarization of brightness temperature relative to the antenna ports changes. Studies have been conducted using antenna patterns representative of the antenna that will be flown on the Aquarius mission to examine these effects. Aquarius is a pushbroom style radiometer with three beams looking across track away from the sun. The beams are at incidences angles (at the spacecraft) of about 26.5, 34 and 40 degrees each with a half-power beam width of about 5.8 degrees. It is shown that the measured brightness temperature is biased relative to the value at boresight because of changes across the field of view. The bias can be as much as 4K and positive or negative depending on polarization. Polarization mixing because of the variations of the local plane of incidence across the footprint also occur and can result in biased polarimetric measurements. A bias in the third Stokes parameter of as much as 0.4K is possible. Such effects may affect algorithms that use the third Stokes parameter to correct for Faraday rotation. Another issue associated with the antenna is sun glint. This is an issue determined by surface roughness and antenna sidelobes. Examples will be given for the random

  16. Investigation of the foam influence on the wind-wave momentum exchange and cross-polarization microwave radar return within laboratory modeling of atmosphere-ocean boundary layer

    NASA Astrophysics Data System (ADS)

    Sergeev, Daniil; Troitskaya, Yuliya; Vdovin, Maxim; Ermoshkin, Alexey

    2016-04-01

    The effect of foam presence on the transfer processes and the parameters of the surface roughness within the laboratory simulation of wind-wave interaction was carried out on the Thermostratified Wind-Wave Tank (TSWiWaT) IAP, using a specially designed foam generator. The parameters of air flow profiles and waves elevation were measured with scanning Pitot gauge and wire wave gauges respectively in the range of equivalent wind speed U10 from 12 to 38 m/s (covering strong winds) on the clean water and with foam. It was shown that the foam reduces the amplitudes and slopes of the waves in comparison with the clean water in the hole range of wind speeds investigated, and the peak frequency and wave numbers remain almost constant. The drag coefficient calculating by profiling method demonstrated similar behavior (almost independent on U10) for case of foam and increased compared with clear water, particularly noticeable for low wind speeds. Simultaneously the investigations of influence of the foam on the peculiarity of the microwave radio back scattering of X-diapason was investigated. These measurements were carried for different sensing angles (30, 40 i 50 degrees from vertical) and for four polarizations: co-polarized HH and VV, and de-polarized HV and VH. It was shown that foam leads to decrease of specific radar cross section of the wavy surface in comparison with clean water. The work was supported by the Russian Foundation for Basic Research (grants No. 15-35-20953, 14-05-00367, 16-55-52022) and project ASIST of FP7. The experiment is supported by Russian Science Foundation (Agreement No. 15-17-20009), radilocation measurments are partially supported by Russian Science Foundation (Agreement No. 14-17-00667).

  17. Measurements of E-mode polarization and temperature-E-mode correlation in the cosmic microwave background from 100 square degrees of SPTPOL data

    DOE PAGES

    Crites, A. T.; Henning, J. W.; Ade, P. A. R.; ...

    2015-05-18

    Here, we present measurements ofmore » $E$-mode polarization and temperature-$E$$-mode correlation in the cosmic microwave background (CMB) using data from the first season of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100~\\sqdeg\\ of sky with arcminute resolution at $$150\\,$GHz. We also report the $E$-mode angular auto-power spectrum ($EE$) and the temperature-$E$-mode angular cross-power spectrum ($TE$) over the multipole range $$500 < \\ell \\leq5000$$. These power spectra improve on previous measurements in the high-$$\\ell$$ (small-scale) regime. We fit the combination of the SPTpol power spectra, data from \\planck\\, and previous SPT measurements with a six-parameter \\LCDM cosmological model. Furthermore, we find that the best-fit parameters are consistent with previous results. The improvement in high-$$\\ell$$ sensitivity over previous measurements leads to a significant improvement in the limit on polarized point-source power: after masking sources brighter than 50\\,mJy in unpolarized flux at 150\\,GHz, we find a 95\\% confidence upper limit on unclustered point-source power in the $EE$ spectrum of $$D_\\ell = \\ell (\\ell+1) C_\\ell / 2 \\pi < 0.40 \\ \\mu{\\mbox{K}}^2$$ at $$\\ell=3000$$, indicating that future $EE$ measurements will not be limited by power from unclustered point sources in the multipole range $$\\ell < 3600$$, and possibly much higher in $$\\ell.$$« less

  18. GREENER SYNTHETIC TRANSFORMATIONS USING MICROWAVES

    EPA Science Inventory

    Microwave irradiation has been used for a variety of organic transformations wherein chemical reactions are expedited because of selective adsorption of microwave (MW) energy by polar molecules, non-polar molecules being inert to the MW dielectric loss. The MW application under s...

  19. Deglacial Sea-Surface Temperatures off New Zealand

    NASA Astrophysics Data System (ADS)

    Sachs, J. P.; Manighetti, B.

    2002-12-01

    Glacial geologic and geochronologic data from New Zealand indicate a re-advance of mountain glaciers synchronous with the Younger Dryas (YD) Chron. Yet pollen studies do not support any appreciable cooling at this time, suggesting that the glacial advances may have resulted from enhanced precipitation rather than decreased temperature. A paucity of detailed marine climate records from the region leave an uncertain picture of deglacial climate change in the vicinity of New Zealand. The question remains open whether abrupt deglacial climate changes so prominent in the North Atlantic region involved the southwest Pacific Ocean. Here we present a detailed record of deglacial and Holocene sea-surface temperatures (SSTs) off the north island of New Zealand using the alkenone paleotemperature technique and show evidence for cooling synchronous with the Younger Dryas Chron. Core MD97-2121 was recovered in 2314 m of water at 40°S, 178°E, southeast of Hawke Bay, New Zealand. The 35-m core contains a continuous record of sedimentation spanning the last 136 kyr. Age control for the deglacial period and the Holocene is provided by 26 radiocarbon dates on planktonic foraminifera and tephra layers. Exceptional rates of sedimentation averaging 36 cm/kyr during the last 25 kyr are maintained by large fluxes of terrigenous detritus from New Zealand resulting from pronounced seismicity, volcanism and continental weathering. Presently the site is under the influence of the southward-flowing East Cape Current, which transports 10-25 Sv of warm, salty, subtropical water. The northward flowing Wairarapa Coastal Current flows just west of the core site and transports 1.6 Sv of cool, low-salinity water derived from Australasian Subantarctic Water via the Southland Current. Although a relatively minor influence today, this cool, fresh current system may have influenced SSTs over the core site at times in the past. Late Holocene alkenone-derived SSTs of 17 deg C are consistent with atlas

  20. Aquarius: An Instrument to Monitor Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S .E.; Colomb, R.; Yueh, S.; Pellerano, F.

    2007-01-01

    Aquarius is a combined passive/active L-band microwave instrument that is being developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, global water cycle, and climate. Aquarius is part of the Aquarius/SAC-D mission, which is a partnership between the U.S. (National Aeronautics and Space Administration) and Argentina (CONAE). The primary science objective of this mission is to monitor the seasonal and interannual variation of the large-scale features of the surface salinity field in the open ocean with a spatial resolution of 150 km and a retrieval accuracy of 0.2 psu globally on a monthly basis.

  1. Optically-Thin Cirrus Cloud Radiance Bias in Satellite Radiometric Sea Surface Temperature Retrieval

    NASA Astrophysics Data System (ADS)

    Marquis, J. W.; Bogdanoff, A.; Campbell, J. R.; Cummings, J. A.; Westphal, D. L.; Smith, N. J.; Zhang, J.

    2015-12-01

    Satellite-based retrievals of sea surface temperature (SST) are highly sensitive to the optical properties of the atmosphere, including clouds. Cloudy pixels, in particular, are screened in order to avoid potential retrieval contamination in their presence. Due to the lack of continuous in-situ observations across the global oceans, though, SSTs calculated from satellite radiances are often the most practical way to obtain a sufficient global estimate. Cloud clearing techniques struggle to flag cloudy retrievals from passive radiometers with cloud optical depths less than 0.3. These optically-thin clouds are almost exclusively cirrus. Corresponding radiance biases associated with unscreened cirrus can be significant due to their inherently cold cloud top temperatures. To investigate frequency of such cloud contamination, 1-km SST observations over tropical oceans (±30° latitude) from the Moderate Resolution Imaging Spectroradiometer aboard NASA's Aqua satellite (AQUA-MODIS) are collocated with cloud profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard NASA's CALIPSO satellite. Potential SST biases based on radiance retrievals for MODIS, AVHRR and VIIRS are solved using a radiative transfer model (RTM) with integrated cirrus cloud properties of varying cloud top height and optical depth. Frequencies of occurrence for each cloud top height and optical depth from the collocated CALIOP/AQUA-MODIS data are superimposed upon the conceptual cloud SST radiance bias models to estimate potential net bias. Using the CALIPSO-MODIS collocations, clouds of all types are found to be present in the best quality AQUA-MODIS Level-2 data at a frequency of 25%, with over 90% of those clouds being cirrus. The RTM simulations suggest that when cirrus are present, the mean SST bias due only to cloud is over 0.6°C over the tropical oceans.

  2. Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003-2014

    NASA Astrophysics Data System (ADS)

    Armitage, Thomas W. K.; Bacon, Sheldon; Ridout, Andy L.; Thomas, Sam F.; Aksenov, Yevgeny; Wingham, Duncan J.

    2016-06-01

    Arctic sea surface height (SSH) is poorly observed by radar altimeters due to the poor coverage of the polar oceans provided by conventional altimeter missions and because large areas are perpetually covered by sea ice, requiring specialized data processing. We utilize SSH estimates from both the ice-covered and ice-free ocean to present monthly estimates of Arctic Dynamic Ocean Topography (DOT) from radar altimetry south of 81.5°N and combine this with GRACE ocean mass to estimate steric height. Our SSH and steric height estimates show good agreement with tide gauge records and geopotential height derived from Ice-Tethered Profilers. The large seasonal cycle of Arctic SSH (amplitude ˜5 cm) is dominated by seasonal steric height variation associated with seasonal freshwater fluxes, and peaks in October-November. Overall, the annual mean steric height increased by 2.2 ± 1.4 cm between 2003 and 2012 before falling to circa 2003 levels between 2012 and 2014 due to large reductions on the Siberian shelf seas. The total secular change in SSH between 2003 and 2014 is then dominated by a 2.1 ± 0.7 cm increase in ocean mass. We estimate that by 2010, the Beaufort Gyre had accumulated 4600 km3 of freshwater relative to the 2003-2006 mean. Doming of Arctic DOT in the Beaufort Sea is revealed by Empirical Orthogonal Function analysis to be concurrent with regional reductions in the Siberian Arctic. We estimate that the Siberian shelf seas lost ˜180 km3 of freshwater between 2003 and 2014, associated with an increase in annual mean salinity of 0.15 psu yr-1. Finally, ocean storage flux estimates from altimetry agree well with high-resolution model results, demonstrating the potential for altimetry to elucidate the Arctic hydrological cycle.

  3. Sea surface temperature variability of the Peru-Chile Current during the previous four interglacials

    NASA Astrophysics Data System (ADS)

    Caniupan, M.; Martinez-Mendez, G.; Lamy, F.; Hebbeln, D.; Mohtadi, M.

    2012-12-01

    There are several periods during the Quaternary that were characterized by warmer than present climate and higher sea level that serve as an analogue for future global warming scenarios. These include the Marine isotope Stage (MIS) 5.5, MIS 9.3, and MIS 11.3. Little is known about past sea surface temperatures (SST) during these intervals in the Southern Hemisphere, particularly in the Southeast Pacific. Here, we present a new alkenone-derived SST record from marine sediment core GeoB15016 located beneath the Peru-Chile Current (PCC). The PCC plays a critical role in the Southern Hemisphere surface circulation as it connects the low and high latitudes by transporting sub-polar water masses and thus, a high-latitude climate signal towards the tropics. Core GeoB15016 was recovered with the sea floor drill rig MARUM-MeBo at 956 m water depth off northern Chile (27°29.48'S; 71°07.58'W). We analyzed the uppermost ca 25 meters composite depth that extend back to ~400,000 years ago. Our record is the first Chilean margin record extending back to MIS 11. The stratigraphy is well constrained by correlating benthic oxygen isotope data to the global Lisiecki-Raymo stack. Glacial-interglacial SST amplitudes are in the order of 6°C. During MIS 5, 7, 9 and 11, the record reaches SST maxima of ca. 3°C warmer than present annual mean SST in this area. Our results suggest a substantial warming of the PCC over past interglacials that may reflect reduced advection of subantarctic surface water from the south and/or enhanced tropical influence and/or decreased upwelling intensity.

  4. Sea surface temperature variability of the Peru-Chile Current during the previous ten interglacials

    NASA Astrophysics Data System (ADS)

    Caniupan, M.; Martinez-Mendez, G.; Lamy, F.; Hebbeln, D.; Mohtadi, M.; Pantoja, S.

    2014-12-01

    There are several interglacial periods during the Quaternary that were characterized by climates warmer than present and higher sea level and thus may serve as analogues for future global warming scenarios. These include Marine Isotope Stages (MIS) 5e, 9c and 11c. Little is known about past sea surface temperatures (SST) during these warm intervals in the Southern Hemisphere, particularly along the Peru-Chile Current (PCC) which plays a critical role in the Southern Hemisphere surface circulation as it connects the low and high latitudes by transporting sub-polar water masses and thus, a high-latitude climate signal towards the tropics. Here, we present new high-resolution alkenone-derived SST records from marine sediment cores located beneath the PCC. Core GeoB15016 was recovered from off northern Chile (27.5°S; 71.1°W) with the seafloor drill rig MARUM-MeBo. We analyzed the ca. 60 meters composite depth complemented by gravity core GeoB3375-1 (27.5°S; 71.3°W) for the upper part to generate a continuous record that extends back to 970 ka BP. Our record is the first continuous SST reconstruction from the Chilean margin extending back to MIS 25. SST varies between ~8°C and ~20°C over the past ~970 ka. Glacial-interglacial SST amplitudes are in the order of 6°C (see Groeneveld's et al. contribution for Mg/Ca-derived Glacial SST estimations). During MIS 5e, 7e, 9c and 11c, the record reaches SST maxima which are ca. 3ºC warmer than present annual mean SST in the area. Our results suggest a substantial warming of the PCC over past interglacials that may reflect reduced advection of subantarctic surface water from the south and/or enhanced tropical influence from the north.

  5. Cosmic Microwave Background Polarization Detector with High Efficiency, Broad Bandwidth, and Highly Symmetric Coupling to Transition Edge Sensor Bolometers

    NASA Technical Reports Server (NTRS)

    Wollack, E.; Cao, N.; Chuss, D.; Denis, K.; Hsieh, W.-T.; Moseley, S. Harvey; Schneider, G.; Stevenson, T.; Travers, D.; U-yen, K.

    2008-01-01

    Four probe antennas transfer signals from waveguide to microstrip lines. The probes not only provide broadband impedance matching, but also thermally isolate waveguide and detector. In addition, we developed a new photonic waveguide choke joint design, with four-fold symmetry, to suppress power leakage at the interface. We have developed facilities to test superconducting circuit elements using a cryogenic microwave probe station, and more complete systems in waveguide. We used the ring resonator shown below to measure a dielectric loss tangent < 7x10(exp -4) over 10 - 45 GHz. We have combined component simulations to predict the overall coupling from waveguide modes to bolometers. The result below shows the planar circuit and waveguide interface can utilize the high beam symmetry of HE11 circular feedhorns with > 99% coupling efficiency over 30% fractional bandwidth.

  6. Enhanced Arctic Mean Sea Surface and Mean Dynamic Topography including retracked CryoSat-2 Data

    NASA Astrophysics Data System (ADS)

    Andersen, O. B.; Jain, M.; Stenseng, L.; Knudsen, P.

    2014-12-01

    A reliable mean sea surface (MSS) is essential to derive a good mean dynamic topography (MDT) and for the estimation of short and long-term changes in the sea surface. The lack of satellite radar altimetry observations above 82 degrees latitude means that existing mean sea surface models have been unreliable in the Arctic Ocean. We here present the latest DTU mean sea surface and mean dynamic topography models combining conventional altimetry with retracked CryoSat-2 data to improve the reliability in the Arctic Ocean. For the derivation of a mean dynamic topography the ESA GOCE derived geoid model have been used to constrain the longer wavelength. We present the retracking of C2 SAR data using various retrackes and how we have been able to combine data from various retrackers under various sea ice conditions. DTU13MSS and DTU13MDT are the newest state of the art global high-resolution models including CryoSat-2 data to extend the satellite radar altimetry coverage up to 88 degrees latitude and through combination with a GOCE geoid model completes coverage all the way to the North Pole. Furthermore the SAR and SARin capability of CryoSat-2 dramatically increases the amount of useable sea surface returns in sea-ice covered areas compared to conventional radar altimeters like ENVISAT and ERS-1/2. With the inclusion of CryoSat-2 data the new mean sea surface is improved by more than 20 cm above 82 degrees latitude compared with the previous generation of mean sea surfaces.

  7. The Sensitivity of African Easterly Waves to Eastern Tropical Atlantic Sea-Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Druyan, Leonard M.; Fulakeza, Matthew

    2011-01-01

    The results of two regional atmospheric model simulations are compared to assess the influence of the eastern tropical Atlantic sea-surface temperature maximum on local precipitation, transient easterly waves and the West African summer monsoon. Both model simulations were initialized with reanalysis 2 data (US National Center for Environmental Prediction and Department of Energy) on 15 May 2006 and extended through 6 October 2006, forced by synchronous reanalysis 2 lateral boundary conditions introduced four times daily. One simulation uses 2006 reanalysis 2 sea-surface temperatures, also updated four times daily, while the second simulation considers ocean forcing absent the sea-surface temperature maximum, achieved here by subtracting 3 K at every ocean grid point between 0 and 15 N during the entire simulation. The simulation with 2006 sea-surface temperature forcing produces a realistic distribution of June-September mean precipitation and realistic westward propagating swaths of maximum rainfall, based on validation against Tropical Rainfall Measuring Mission (TRMM) estimates. The simulation without the sea-surface temperature maximum produces only 57% of the control June-September total precipitation over the eastern tropical Atlantic and about 83% of the Sahel precipitation. The simulation with warmer ocean temperatures generates generally stronger circulation, which in turn enhances precipitation by increasing moisture convergence. Some local precipitation enhancement is also attributed to lower vertical thermal stability above the warm water. The study shows that the eastern tropical Atlantic sea-surface temperature maximum enhances the strength of transient easterly waves and broadens the spatial extent of associated precipitation. However, large-scale circulation and its interaction with the African continent, and not sea-surface temperatures, control the timing and trajectories of the waves.

  8. Global monitoring of Sea Surface Salinity with Aquarius

    NASA Technical Reports Server (NTRS)

    Lagerloef, G. S. E.; LeVine, D. M.; Chao, Yi; Colomb, R.; Nollmann, I.

    2005-01-01

    Aquarius is a microwave remote sensing system designed to obtain global maps of the surface salinity field of the oceans from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for late in 2008. The objective of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This will provide data to address scientific questions associated with ocean circulation and its impact on climate. For example, salinity is needed to understand the large scale thermohaline circulation, driven by buoyancy, which moves large masses of water and heat around the globe. Of the two variables that determine buoyancy (salinity and temperature), temperature is already being monitored. Salinity is the missing variable needed to understand this circulation. Salinity also has an important role in energy exchange between the ocean and atmosphere, for example in the development of fresh water lenses (buoyant water that forms stable layers and insulates water below from the atmosphere) which alter the air-sea coupling. Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument,for measuring salinity is the radiometer which is able to detect salinity because of the modulation salinity produces on the thermal emission from sea water. This change is detectable at the long wavelength end of the microwave spectrum. The scatterometer will provide a correction for surface roughness (waves) which is one of the greatest unknowns in the retrieval. The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6am/6pm. The antenna for these two instruments is a 3 meter offset fed reflector with three feeds arranged in pushbroom fashion looking away from the sun toward the shadow side of the orbit to

  9. Sea surface conditions remotely sensed by upward-looking ADCPs

    SciTech Connect

    Visbeck, M.; Fischer, J.

    1995-02-01

    Surface data obtained from 153-kHz acoustic Doppler current profilers (ADCPs) deployed in the Greenland Sea at about 350-m depth during the winter of 1988/89 were investigated under several aspects. First a method is described to improve the instrument depth measurements using the binned backscattered energy profile near the surface. The accuracy of the depth estimates is found to be significantly better than 0.5 m. Further, improvements of wind speed estimates were found by using the ambient noise in the 150-kHz band in favor of the surface backscattered energy as suggested by Schott. Limitations of the ambient sound method at low wind speeds are presented when thermal noise overwhelms the wind-induced noise. Finally, a method to detect the presence of sea ice above ADCP is presented by cross correlating the surface backscatter strength and the magnitudes of all Doppler velocity components. The resulting time series of ice concentration are in overall good agreement with Special Sensor Microwave/Imager (SSM/I) estimates but allow for higher temporal resolution. Further, in the vicinity of the ice edge, enhanced high-frequency ambient noise in the 150-kHz band was observed.

  10. Impact of Typhoon-induced sea surface cooling on the track of next Typhoon

    NASA Astrophysics Data System (ADS)

    Ando, Y.; Horiguchi, M.; Kodera, K.; Tachibana, Y.; Yamazaki, K.

    2015-12-01

    Typhoons (TCs) MATMO, HALONG, and NAKRI (2014), which caused Japan catastrophic disaster, landed the western part of Japan. The TCs came to Japan one after another during late July to early August 2014. The tracks of these TCs were similar, i.e., the TCs followed the western edge of the subtropical northwestern Pacific high (SNPH). However, the tracks gradually reached to Japan, which were associated with weakening the westward expansion of the SNPH. It was found that the changes in westward expansion of the SNPH were associated with TC-induced sea surface cooling of previous Typhoon. It has previously been reported that TC-induced sea surface cooling is mainly caused by Ekman upwelling and vertical turbulent mixing. The TCs MATMO, HALONG, and NAKRI passed around the Philippines, and induced sea surface cooling of this area. The sea surface temperatures of this area are important for Pacific-Japan pattern, which was associated with the westward expansion of the SNPH. Consequently, previous Typhoon induced sea surface cooling around the Philippines, which weakening the westward expansion of the SNPH. Then, the tracks of next Typhoon were changed, and gradually reached to Japan.

  11. The Transition of High-Resolution NASA MODIS Sea Surface Temperatures into the WRF Environmental Modeling System

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Jedlove, Gary J.; Santos, Pablo; Medlin, Jeffrey M.; Rozumalski, Robert A.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composite at 2-km resolution that has been implemented in version 3 of the National Weather Service (NWS) Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). The WRF EMS is a complete, full physics numerical weather prediction package that incorporates dynamical cores from both the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). The installation, configuration, and execution of either the ARW or NMM models is greatly simplified by the WRF EMS to encourage its use by NWS Weather Forecast Offices (WFOs) and the university community. The WRF EMS is easy to run on most Linux workstations and clusters without the need for compilers. Version 3 of the WRF EMS contains the most recent public release of the WRF-NMM and ARW modeling system (version 3 of the ARW is described in Skamarock et al. 2008), the WRF Pre-processing System (WPS) utilities, and the WRF Post-Processing program. The system is developed and maintained by the NWS National Science Operations Officer Science and Training Resource Coordinator. To initialize the WRF EMS with high-resolution MODIS SSTs, SPoRT developed the composite product consisting of MODIS SSTs over oceans and large lakes with the NCEP Real-Time Global (RTG) filling data over land points. Filling the land points is required due to minor inconsistencies between the WRF land-sea mask and that used to generate the MODIS SST composites. This methodology ensures a continuous field that adequately initializes all appropriate arrays in WRF. MODIS composites covering the Gulf of Mexico, western Atlantic Ocean and the Caribbean are generated daily at 0400, 0700, 1600, and 1900 UTC corresponding to overpass times of the NASA Aqua and Terra polar orbiting satellites. The MODIS SST product is output in gridded binary-1 (GRIB-1) data

  12. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    NASA Technical Reports Server (NTRS)

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad

    2013-01-01

    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  13. Simultaneous even- and third-order distortion suppression in a microwave photonic link based on orthogonal polarization modulation, balanced detection, and optical sideband filtering.

    PubMed

    Han, Xiuyou; Chen, Xiang; Yao, Jianping

    2016-06-27

    A microwave photonic link (MPL) with simultaneous suppression of the even-order and third-order distortions using a polarization modulator (PolM), an optical bandpass filter (OBPF), and a balanced photodetector (BPD) is proposed and experimentally demonstrated. The even-order distortions are suppressed by utilizing orthogonal polarization modulation based on the PolM and balanced differential detection based on the BPD. The third-order distortions (IMD3) are suppressed by optimizing the spectral response of the OBPF with an optimal power ratio between the optical carrier and the sidebands of the phase-modulated signals from the PolM. Since the suppression of the IMD3 is achieved when the MPL is optimized for even-order distortion suppression, the proposed MPL can operate with simultaneous suppression of the even-order and third-order distortions. The proposed MPL is analyzed theoretically and is verified by an experiment. For a two-tone RF signal of f1 = 10 GHz and f2 = 19.95 GHz, the spurious-free dynamic range (SFDR2) is enhanced by 23.4 dB for the second harmonic (2f1), and 29.1 and 27.6 dB for the second intermodulation (f2-f1 and f1 + f2), as compared with a conventional MPL. For a two-tone RF signal of f1 = 9.95 GHz and f2 = 10 GHz, the SFDR3 is increased by 13.1 dB as compared with a conventional MPL.

  14. Aquarius: A Mission to Monitor Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S. E.; Pellerano, F.; Yueh, S.; Colomb, R.

    2006-01-01

    Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument for measuring salinity is the radiometer. The scatterometer will provide a correction for surface roughness (waves) which is one of the largest potential sources of error in the retrieval. Unique features of the sensor are the large reflector (2.5 meter offset fed reflector with three feeds), polarimetric operation, and the tight thermal control. The three feeds produce three beams arranged to image in pushbroom fashion looking to the side of the orbit away from the sun to avoid sunglint. Polarimetric operation is included to assist in correcting for Faraday rotation which can be important at L-band. The tight thermal control is necessary to meet stability requirements (less than 0.12K drift over 7 days) which have been imposed to assist in meeting the science requirements for the retrieval of surface salinity (0.2 psu). The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6ad6pm (ascending at 6 pm). The objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. To accomplish this, the measurement goals are a spatial resolution of 100 km and retrieval accuracy of 0.2 psu globally on a monthly basis. Aquarius is being developed by NASA and is a partnership between JPL and the Goddard Space Flight Center. The SAC-D mission is being developed by CONAE and will include the spacecraft and several additional instruments, including visible and infrared cameras and a microwave radiometer to monitor rain and wind velocity over the oceans, and sea ice.

  15. Lightning in the Mediterranean and its relation with sea-surface temperature

    NASA Astrophysics Data System (ADS)

    Kotroni, V.; Lagouvardos, K.

    2016-03-01

    Here we present the analysis of lightning activity over the Mediterranean, based on a 10 year long dataset (2005-2014) provided by the ZEUS long-range lightning detection system. The major hot-spots of lightning activity are identified, with a clear predominance during the warm period of the year over land in the vicinity of the major topographic features of the area. Special emphasis is also given on the discussion of the seasonal distribution of lightning. In addition, we investigate the relationship of lightning with sea-surface temperature, obtained by high-resolution satellite measurements and we conclude that the number of lightning strokes is positively correlated with the sea-surface temperature during autumn when also the maximum lightning activity over the sea is depicted. We suggest that higher sea surface temperature further destabilises the lower tropospheric layers, enhancing thus convection and therefore lightning.

  16. North Atlantic sea surface temperature, solar activity and the climate of Northern Fennoscandia

    NASA Astrophysics Data System (ADS)

    Ogurtsov, M.; Lindholm, M.; Jalkanen, R.; Veretenenko, S. V.

    2017-02-01

    Seven proxies of summer temperature in Northern Fennoscandia, sea surface temperature in the North Atlantic and solar activity were analyzed over AD 1567-1986. A stable and significant positive correlation between summer temperatures in Northern Fennoscandia and sea surface temperature in the North Atlantic is shown to exist during the entire time interval. In addition, a significant correlation between solar activity and (a) summer temperature in Northern Fennoscandia as well as (b) surface temperature in the North Atlantic was found during AD 1715-1986. Throughout 1567-1715 correlation is less significant and has an opposite sign. Thus we show that the variation of sea surface temperature in the North Atlantic could be a physical agent, which transferred solar influence on Northern Fennoscandian temperature at least during AD 1715-1986.

  17. Analyzing the Effects of Climate Change on Sea Surface Temperature in Monitoring Coral Reef Health in the Florida Keys Using Sea Surface Temperature Data

    NASA Technical Reports Server (NTRS)

    Jones, Jason; Burbank, Renane; Billiot, Amanda; Schultz, Logan

    2011-01-01

    This presentation discusses use of 4 kilometer satellite-based sea surface temperature (SST) data to monitor and assess coral reef areas of the Florida Keys. There are growing concerns about the impacts of climate change on coral reef systems throughout the world. Satellite remote sensing technology is being used for monitoring coral reef areas with the goal of understanding the climatic and oceanic changes that can lead to coral bleaching events. Elevated SST is a well-documented cause of coral bleaching events. Some coral monitoring studies have used 50 km data from the Advanced Very High Resolution Radiometer (AVHRR) to study the relationships of sea surface temperature anomalies to bleaching events. In partnership with NOAA's Office of National Marine Sanctuaries and the University of South Florida's Institute for Marine Remote Sensing, this project utilized higher resolution SST data from the Terra's Moderate Resolution Imaging Spectroradiometer (MODIS) and AVHRR. SST data for 2000-2010 was employed to compute sea surface temperature anomalies within the study area. The 4 km SST anomaly products enabled visualization of SST levels for known coral bleaching events from 2000-2010.

  18. Polarity-enhanced gas-sensing performance of Au-loaded ZnO nanospindles synthesized via precipitation and microwave irradiation

    NASA Astrophysics Data System (ADS)

    Li, Yan; Lv, Tan; Zhao, Fang-Xian; Lian, Xiao-Xue; Zou, Yun-Ling; Wang, Qiong

    2016-05-01

    Loading noble metal and exploring suitable morphology to achieve excellent gas-sensing performance is very crucial for the fabrication of gas sensors. We have successfully synthesized Au-loaded ZnO (Au/ZnO) nanospindles (NSs) through a really facile procedure involving a precipitation and subsequent microwave irradiation. The as-prepared products have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM). The formation and gas-sensing mechanism of Au/ZnO NSs were discussed. The SEM micrographs revealed an interesting morphological evolution of the Au/ZnO NSs with Au-loading content ranging from 0 at. % to 7 at. %. The nanostructures were employed for gas-sensing measurement toward various gases. It indicated that the Au/ZnO NSs based sensor showed a highly enhanced response (226.81) to 400 ppm acetone gas at a relatively low working temperature (270°C), and exhibited a fast response (1 s) and recovery speed (10 s). The highly enhanced acetone gas sensitivity of Au/ZnO NSs based sensor could be attributed to its enhanced polarity owing to the peculiar morphology, Schottcky barriers, as well as catalytic effect of Au NPs. [Figure not available: see fulltext.

  19. Simulation of laser beam reflection at the sea surface modeling and validation

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric; Repasi, Endre

    2013-06-01

    A 3D simulation of the reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation is suitable for the pre-calculation of images for cameras operating in different spectral wavebands (visible, short wave infrared) for a bistatic configuration of laser source and receiver for different atmospheric conditions. In the visible waveband the calculated detected total power of reflected laser light from a 660nm laser source is compared with data collected in a field trial. Our computer simulation comprises the 3D simulation of a maritime scene (open sea/clear sky) and the simulation of laser beam reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. To predict the view of a camera the sea surface radiance must be calculated for the specific waveband. Additionally, the radiances of laser light specularly reflected at the wind-roughened sea surface are modeled considering an analytical statistical sea surface BRDF (bidirectional reflectance distribution function). Validation of simulation results is prerequisite before applying the computer simulation to maritime laser applications. For validation purposes data (images and meteorological data) were selected from field measurements, using a 660nm cw-laser diode to produce laser beam reflection at the water surface and recording images by a TV camera. The validation is done by numerical comparison of measured total laser power extracted from recorded images with the corresponding simulation results. The results of the comparison are presented for different incident (zenith/azimuth) angles of the laser beam.

  20. Analysis of sea level and sea surface temperature changes in the Black Sea

    NASA Astrophysics Data System (ADS)

    Betul Avsar, Nevin; Jin, Shuanggen; Kutoglu, Hakan; Erol, Bihter

    2016-07-01

    The Black Sea is a nearly closed sea with limited interaction with the Mediterranean Sea through the Turkish Straits. Measurement of sea level change will provide constraints on the water mass balance and thermal expansion of seawaters in response to climate change. In this paper, sea level changes in the Black Sea are investigated between January 1993 and December 2014 using multi-mission satellite altimetry data and sea surface temperature (SST) data. Here, the daily Maps of Sea Level Anomaly (MSLA) gridded with a 1/8°x1/8° spatial resolution from AVISO and the NOAA 1/4° daily Optimum Interpolation Sea Surface Temperature (OISST) Anomaly data set are used. The annual cycles of sea level and sea surface temperature changes reach the maximum values in November and January, respectively. The trend is 3.16±0.77 mm/yr for sea level change and -0.06±0.01°C/yr for sea surface temperature during the same 22-year period. The observed sea level rise is highly correlated with sea surface warming for the same time periods. In addition, the geographical distribution of the rates of the Black Sea level and SST changes between January 1993 and December 2014 are further analyzed, showing a good agreement in the eastern Black Sea. The rates of sea level rise and sea surface warming are larger in the eastern part than in the western part except in the northwestern Black Sea. Finally, the temporal correlation between sea level and SST time series are presented based on the Empirical Orthogonal Function (EOF) analysis.

  1. Fine-Resolution Satellite-Based Sea Surface Temperatures over the Global Ocean

    DTIC Science & Technology

    2007-05-22

    sea -ice the Sea of Azov . The plot masks SST in the Great Lakes that coverage. may otherwise included in RTG. [7] These differences between MODAS and...and relative merits of two sets of daily global sea surface temperature (SST) analyses are examined and compared. The 1/81 Modular Ocean Data Analysis...10.1029/2006JC004021, 2007 ore FuN Awtle Fine-resolution satellite-based daily sea surface f!Tr7 1 UTION STATENT-T!T A temperatures over the global

  2. Temporal variability of remotely sensed suspended sediment and sea surface temperature patterns in Mobile Bay, Alabama

    USGS Publications Warehouse

    Rucker, J.B.; Stumpf, R.P.; Schroeder, W.W.

    1990-01-01

    Distribution patterns of suspended sediments and sea surface temperatures in, Mobile Bay were derived from algorithms using digital data from the visible, near infrared, and infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-TIROS-N satellite. Closely spaced AVHRR scenes for January 20, 24, and 29, 1982, were compared with available environmental information taken during the same period. A complex interaction between river discharge, winds, and astronomical tides controlled the distribution patterns of suspended sediments. These same variables, coupled with air temperatures, also governed the distribution patterns of sea surface temperatures. ?? 1990 Estuarine Research Federation.

  3. Cool, cold or colder? Spatial segregation of prions and blue petrels is explained by differences in preferred sea surface temperatures.

    PubMed

    Quillfeldt, Petra; Cherel, Yves; Delord, Karine; Weimerkirch, Henri

    2015-04-01

    The Southern Ocean provides one of the largest environmental gradients on Earth that lacks geographical barriers, and small but highly mobile petrels living there may offer fine models of evolution of diversity along environmental gradients. Using geolocation devices, we investigated the winter distribution of closely related petrel species breeding sympatrically in the southern Indian Ocean, and applied ecological niche models to compare environmental conditions in the habitat used. We show that thin-billed prions (Pachyptila belcheri), Antarctic prions (Pachyptila desolata) and blue petrels (Halobaena caerulea) from the Kerguelen archipelago in the southern Indian Ocean segregate latitudinally, sea surface temperature being the most important variable separating the distribution of the species. Antarctic prions spent the winter north of the Polar Front in temperate waters, whereas blue petrels were found south of the Polar Front in Antarctic waters. Thin-billed prions preferred intermediate latitudes and temperatures. Stable isotope values of feathers reflected this near complete niche separation across an ecological gradient that spans large scales, and suggest evolutionary isolation by environment. In pelagic seabirds that exploit large areas of ocean, spatial niche partitioning may not only facilitate coexistence among ecologically similar species, but may also have driven their evolution in the absence of geographical barriers.

  4. Interaction Between Surface Heat Budgets, Sea Surface Temperature and Deep Convection in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Chou, Ming-Dah; Lin, Po-Hsiung; Starr, David OC. (Technical Monitor)

    2002-01-01

    The surface heat budgets, sea surface temperature (SST), clouds and winds in the tropical western Pacific are analyzed and compared for the periods April-June 1998 and 1999. The spring of 1998 is in the later phase of a strong El Nino, whereas the spring of 1999 is in a period of a La Nina. The surface shortwave (SW) and longwave (LW) radiative fluxes are retrieved from Japanese Geostationary Meteorological Satellite radiance measurements, while the surface turbulent fluxes (latent and sensible heat) are derived from SSM/I-Inferred surface air humidity and winds. The SST and sea-air temperature differences are taken from NCEP/NCAR reanalysis. Deep convection is inferred from the outgoing longwave radiation of NOAA's polar-orbiting satellites. The longitudinal shift in maximum SST, deep convection and winds during El Nino and La Nina have a large impact on the spatial distribution of surface heating. Changes in clouds between these two periods have a large impact on the monthly-mean radiative heating, exceeding 60 W m(exp -2) over large oceanic regions. Similarly, the differences in wind speeds and SST have a large impact on the latent cooling, exceeding 40 W m(exp -2) over large oceanic areas. However, the maximum impacts on radiative and latent heat fluxes occur in different regions. The regions of maximum impact on radiative fluxes coincide with the regions of maximum change in clouds, whereas regions of maximum impact on turbulent heat fluxes coincide with the regions of maximum change in trade winds. The time-evolution of SST in relation to that of surface heat fluxes and winds are investigated and compared between the two El Nino and La Nina periods. In regions where wind speeds (or wind stresses) are large, the change in SST agrees well with the change in the net surface heating, indicating a deep ocean mixed layer associated with strong trade winds. On the other hand, in regions where radiative fluxes are large, the change in SST does not agree well with the

  5. An atlas of monthly mean distributions of SSMI surface wind speed, ARGOS buoy drift, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1991

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.

    1993-01-01

    The following monthly mean global distributions for 1991 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free-drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components of the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  6. An atlas of monthly mean distributions of SSMI surface wind speed, ARGOS buoy drift, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1990

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.

    1993-01-01

    The following monthly mean global distributions for 1990 are proposed with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (US) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components on the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation values are displayed. Annual mean distributions are displayed.

  7. Reconstructing Variations of Global Sea-Surface Temperature during the Last Interglaciation

    NASA Astrophysics Data System (ADS)

    Hoffman, J. S.; Clark, P. U.; He, F.; Parnell, A. C.

    2015-12-01

    The last interglaciation (LIG; ~130-116 ka) was the most recent period in Earth history with higher-than-present global sea level (≥6 m) under similar-to-preindustrial concentrations of atmospheric CO2, suggesting additional feedbacks related to albedo, insolation, and ocean circulation in generating the apparent climatic differences between the LIG and present Holocene. However, our understanding of how much warmer the LIG sea surface was relative to the present interglaciation remains uncertain, with current estimates suggesting from 0°C to 2°C warmer than late-20thcentury average global temperatures. Moreover, the timing, spatial expression, and amplitude of regional and global sea surface temperature variability related to other climate forcing during the LIG are poorly constrained, largely due to uncertainties in age control and proxy temperature reconstructions. An accurate characterization of global and regional temperature change during the LIG can serve as a benchmark for paleoclimate modeling intercomparison projects and help improve understanding of sea-level sensitivity to temperature change. We will present a global compilation (~100 published records) of sea surface temperature (SST) and other climate reconstructions spanning the LIG. Using a Monte Carlo-enabled cross-correlation maximization algorithm to climatostratigraphically align proxy records and then account for both the resulting chronologic and proxy calibration uncertainties with Bayesian statistical inference, our results quantify the spatial timing, amplitude, and uncertainty in estimates of global and regional sea surface temperature change during the LIG and its relation to potential forcings.

  8. Evaporation and Solar Irradiance as Regulators of Sea Surface Temparature in Annual and Interrannual Changes

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1994-01-01

    After numerical studies showed that global climate is sensitive to small changes in sea surface temperature (Ts), considerabel effort has been devoted to examine the role of surface fluxes in changing upper ocean heat balance and Ts, particularly in the tropical Pacific where interannual signals, such as El Nino Southern Oscillation (ENSO), have major economic and ecological impacts.

  9. Remotely-sensed sea surface temperatuares (SST) of Northeaster Pacific Coastal Zones

    EPA Science Inventory

    Sea surface temperature (SST) is an important indicator of long-term trends and geographical temperature patterns; however there have been relatively few long-term records of SST in near-coastal habitats. In situ SST measurements are irregular in both space and time. Therefore, w...

  10. Sea surface retracking and classification of CryoSat-2 altimetry observations in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Stenseng, L.; Piccioni, G.; Andersen, O. B.; Knudsen, P.

    2015-12-01

    In this study we present the retracking and classification methods for CryoSat-2 SAR waveforms, developed for the determination of sea surface heights in the Arctic Ocean. The obtained sea surface heights (SSH) are used to decrease the gap in satellite observations from 82 degrees North to 88 degrees North in the DTU15 mean sea surface (MSS) and mean dynamic topography (MDT).Radar altimetry satellites has observed the sea surface for more than 25 years and thereby obtain data to determine accurate MSSs and estimate sea level trends related to climate changes. In combination with the improvements of global geoids it has furthermore provided an opportunity to improve the MDT related to ocean currents.After the launch of CryoSat-2 in 2010 the coverage was increased dramatically while the introduction of the synthetic aperture radar (SAR) and SAR interferometry (SARin) mode increased the amount of useful echoes in the Arctic Ocean. The new types of radar observation modes have been investigated and methods to retrack and classify the waveforms have been implemented in LARS the advanced retracking system (LARS). Finally the SSH observations obtained from CryoSat-2 with LARS is merged with previous satellite radar altimetry data to derive the DTU15 MSS.

  11. The influence of local sea surface temperatures on Australian east coast cyclones

    NASA Astrophysics Data System (ADS)

    Pepler, Acacia S.; Alexander, Lisa V.; Evans, Jason P.; Sherwood, Steven C.

    2016-11-01

    Cyclones are a major cause of rainfall and extreme weather in the midlatitudes and have a preference for genesis and explosive development in areas where a warm western boundary current borders a continental landmass. While there is a growing body of work on how extratropical cyclones are influenced by the Gulf Stream and Kuroshio Current in the Northern Hemisphere, there is little understanding of similar regions in the Southern Hemisphere including the Australian east coast, where cyclones that develop close to the coast are the main cause of severe weather and coastal flooding. This paper quantifies the impact of east Australian sea surface temperatures (SSTs) on local cyclone activity and behavior, using three different sets of sea surface temperature boundary conditions during the period 2007-2008 in an ensemble of Weather Research and Forecasting Model physics parameterizations. Coastal sea surface temperatures are demonstrated to have a significant impact on the overall frequency of cyclones in this region, with warmer SSTs acting as a trigger for the intensification of weak or moderate cyclones, particularly those of a subtropical nature. However, sea surface temperatures play only a minor role in the most intense cyclones, which are dominated by atmospheric conditions.

  12. Ecoregional analysis of nearshore sea-surface temperature in the North Pacific

    EPA Science Inventory

    Aim Sea surface temperature (SST) has been a parameter widely-identified to be useful to the investigation of marine species distribution, migration, and invasion, especially as SSTs are predicted to be affected by climate change. Here we use a remotely-sensed dataset to focus on...

  13. The impact of sea surface currents in wave power potential modeling

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros

    2015-11-01

    The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.

  14. Statistical Analysis of Spatio-temporal Variations of Sea Surface Height Observed by Topex Altimeter

    NASA Technical Reports Server (NTRS)

    Fabrikant, A.; Glazman, R. E.; Greysukh, A.

    1994-01-01

    Using non-gridded Topex altimeter data, high resolution 2-d power spectra and spatio-temporal autocorrelation functions of sea surface height (SSH) variations are estimated and employed for studying anisotropic SSH fields varying in a broad range of scales.

  15. Determination and analysis of the CSRMSS14 mean sea surface model

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Tapley, B. D.; Ries, J. C.; Urban, T. J.

    2015-12-01

    As a pivotal role of various applications for ocean sciences, the mean sea surface (MSS) has been developed by merging the sea surface heights (SSH) data sets from different missions for decades. Prior to combining various satellite data, a data adjustment process is applied to make those data sets more homogeneous and consistent. This process is required because there are significant differences in the characteristics and qualities of the measurement corrections, orbit accuracy and systematic biases between the multiple satellite data sets. We have developed a more effective and efficient data adjustment procedure that reduces the long-wavelength errors and systematic biases. A new method is used to obtain an improved SSH data set for selected satellite missions by integrating the SSH gradients with constraints imposed by the Jason-1 mean SSH profile. Using this approach, a total of 5 different satellite SSH data sets (2-year Geosat Exact repeat mission, 6-year ERS-2, 10-year Topex/Poseidon, 8-year Envisat and ERS-1 geodetic mission) were adjusted to the 7-year Jason-1 mean SSH profile. As a result, a new mean sea surface (MSS), named CSRMSS14, was determined from these adjusted satellite data sets. The accuracy of the new MSS was evaluated by comparing with the recent DTU10 global mean sea surface model, and a somewhat independent analysis was performed by comparing Jason-2 altimeter SSH data with DTU10 and CSRMSS14. This presentation describes the approach and the results of the model intercomparisons.

  16. Radial orbit error reduction and sea surface topography determination using satellite altimetry

    NASA Technical Reports Server (NTRS)

    Engelis, Theodossios

    1987-01-01

    A method is presented in satellite altimetry that attempts to simultaneously determine the geoid and sea surface topography with minimum wavelengths of about 500 km and to reduce the radial orbit error caused by geopotential errors. The modeling of the radial orbit error is made using the linearized Lagrangian perturbation theory. Secular and second order effects are also included. After a rather extensive validation of the linearized equations, alternative expressions of the radial orbit error are derived. Numerical estimates for the radial orbit error and geoid undulation error are computed using the differences of two geopotential models as potential coefficient errors, for a SEASAT orbit. To provide statistical estimates of the radial distances and the geoid, a covariance propagation is made based on the full geopotential covariance. Accuracy estimates for the SEASAT orbits are given which agree quite well with already published results. Observation equations are develped using sea surface heights and crossover discrepancies as observables. A minimum variance solution with prior information provides estimates of parameters representing the sea surface topography and corrections to the gravity field that is used for the orbit generation. The simulation results show that the method can be used to effectively reduce the radial orbit error and recover the sea surface topography.

  17. Tightly linked zonal and meridional sea surface temperature gradients over the past five million years

    NASA Astrophysics Data System (ADS)

    Fedorov, Alexey V.; Burls, Natalie J.; Lawrence, Kira T.; Peterson, Laura C.

    2015-12-01

    The climate of the tropics and surrounding regions is defined by pronounced zonal (east-west) and meridional (equator to mid-latitudes) gradients in sea surface temperature. These gradients control zonal and meridional atmospheric circulations, and thus the Earth’s climate. Global cooling over the past five million years, since the early Pliocene epoch, was accompanied by the gradual strengthening of these temperature gradients. Here we use records from the Atlantic and Pacific oceans, including a new alkenone palaeotemperature record from the South Pacific, to reconstruct changes in zonal and meridional sea surface temperature gradients since the Pliocene, and assess their connection using a comprehensive climate model. We find that the reconstructed zonal and meridional temperature gradients vary coherently over this time frame, showing a one-to-one relationship between their changes. In our model simulations, we systematically reduce the meridional sea surface temperature gradient by modifying the latitudinal distribution of cloud albedo or atmospheric CO2 concentration. The simulated zonal temperature gradient in the equatorial Pacific adjusts proportionally. These experiments and idealized modelling indicate that the meridional temperature gradient controls upper-ocean stratification in the tropics, which in turn controls the zonal gradient along the equator, as well as heat export from the tropical oceans. We conclude that this tight linkage between the two sea surface temperature gradients posits a fundamental constraint on both past and future climates.

  18. EUMETSAT and OSI-SAF Sea Surface Temperature: Recent results and future developments

    NASA Astrophysics Data System (ADS)

    O'Carroll, Anne; Le Borgne, Pierre

    2014-05-01

    The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) delivers operational weather and climate-related satellite data, images and products throughout all day and year. EUMETSAT also has commitments to operational oceanography and atmospheric composition monitoring. Activities over the next twenty years include the continuation of the Mandatory Programmes (MSG, EPS) and future (MTG, EPS-SG), which all include ocean observations of Sea Surface Temperature. The EUMETSAT Ocean and Sea-ice (OSI) Satellite Application Facility (SAF) is lead by Meteo-France with a consortium of institutes from EUMETSAT member states, and provides reliable and timely operational services related to meteorology, oceanography and the marine environment. The OSI-SAF delivers level-2 Sea Surface Temperature products in GHRSST format from a range of EUMETSAT data including Metop AVHRR, IASI; and SEVIRI. EUMETSAT is participating in Copernicus Sentinel-3 in partnership with ESA, where EUMETSAT will operate the satellite and will serve the marine user community. The operational Sea Surface Temperature product delivered by EUMETSAT for Sentinel-3 SLSTR will be in GHRSST L2P format. On-going work towards access to relevant data from third-parties with the preparation of agreements with ISRO, SOA and JAXA, will give EUMETSAT access to an enhanced ocean products catalogue. The presentation will give an overview of activities relating to Sea Surface Temperature at EUMETSAT and the OSI-SAF, and their support to GHRSST, focusing on recent results and future developments.

  19. Aliased tidal errors in TOPEX/POSEIDON sea surface height data

    NASA Technical Reports Server (NTRS)

    Schlax, Michael G.; Chelton, Dudley B.

    1994-01-01

    Alias periods and wavelengths for the M(sub 2, S(sub 2), N(sub 2), K(sub 1), O(sub 1), and P(sub 1) tidal constituents are calculated for TOPEX/POSEIDON. Alias wavelenghts calculated in previous studies are shown to be in error, and a correct method is presented. With the exception of the K(sub 1) constituent, all of these tidal aliases for TOPEX/POSEIDON have periods shorter than 90 days and are likely to be confounded with long-period sea surface height signals associated with real ocean processes. In particular, the correspondence between the periods and wavelengths of the M(sub 2) alias and annual baroclinic Rossby waves that plagued Geosat sea surface height data is avoided. The potential for aliasing residual tidal errors in smoothed estimates of sea surface height is calculated for the six tidal constituents. The potential for aliasing the lunar tidal constituents M(sub 2), N(sub 2) and O(sub 1) fluctuates with latitude and is different for estimates made at the crossovers of ascending and descending ground tracks than for estimates at points midway between crossovers. The potential for aliasing the solar tidal constituents S(sub 2), K(sub 1) and P(sub 1) varies smoothly with latitude. S(sub 2) is strongly aliased for latitudes within 50 degress of the equator, while K(sub 1) and P(sub 1) are only weakly aliased in that range. A weighted least squares method for estimating and removing residual tidal errors from TOPEX/POSEIDON sea surface height data is presented. A clear understanding of the nature of aliased tidal error in TOPEX/POSEIDON data aids the unambiguous identification of real propagating sea surface height signals. Unequivocal evidence of annual period, westward propagating waves in the North Atlantic is presented.

  20. Enrichment of Fusobacteria in Sea Surface Oil Slicks from the Deepwater Horizon Oil Spill.

    PubMed

    Gutierrez, Tony; Berry, David; Teske, Andreas; Aitken, Michael D

    2016-07-27

    The Deepwater Horizon (DWH) oil spill led to rapid microbial community shifts in the Gulf of Mexico, including the formation of unprecedented quantities of marine oil snow (MOS) and of a massive subsurface oil plume. The major taxa that bloomed in sea surface oil slicks during the spill included Cycloclasticus, and to a lesser extent Halomonas, Alteromonas, and Pseudoalteromonas-organisms that grow and degrade oil hydrocarbons aerobically. Here, we show that sea surface oil slicks at DWH contained obligate and facultative anaerobic taxa, including members of the obligate anaerobic phylum Fusobacteria that are commonly found in marine sediment environments. Pyrosequencing analysis revealed that Fusobacteria were strongly selected for when sea surface oil slicks were allowed to develop anaerobically. These organisms have been found in oil-contaminated sediments in the Gulf of Mexico, in deep marine oil reservoirs, and other oil-contaminated sites, suggesting they have putative hydrocarbon-degrading qualities. The occurrence and strong selection for Fusobacteria in a lab-based incubation of a sea surface oil slick sample collected during the spill suggests that these organisms may have become enriched in anaerobic zones of suspended particulates, such as MOS. Whilst the formation and rapid sinking of MOS is recognised as an important mechanism by which a proportion of the Macondo oil had been transported to the sea floor, its role in potentially transporting microorganisms, including oil-degraders, from the upper reaches of the water column to the seafloor should be considered. The presence of Fusobacteria on the sea surface-a highly oxygenated environment-is intriguing, and may be explained by the vertical upsurge of oil that provided a carrier to transport these organisms from anaerobic/micro-aerophilic zones in the oil plume or seabed to the upper reaches of the water column. We also propose that the formation of rapidly-sinking MOS may have re-transported these

  1. FIRST SEASON QUIET OBSERVATIONS: MEASUREMENTS OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA AT 43 GHz IN THE MULTIPOLE RANGE 25 {<=} l {<=} 475

    SciTech Connect

    Bischoff, C.; Brizius, A.; Buder, I.; Kusaka, A.; Smith, K. M.; Chinone, Y.; Cleary, K.; Reeves, R.; Dumoulin, R. N.; Newburgh, L. B.; Zwart, J. T. L.; Monsalve, R.; Bustos, R.; Naess, S. K.; Eriksen, H. K.; Wehus, I. K.; Zuntz, J. A.; Bronfman, L.; Church, S. E.; Dickinson, C.

    2011-11-10

    The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43 GHz and 94 GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the cosmic microwave background (CMB). QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, over 10,000 hr of data were collected, first with the 19 element 43 GHz array (3458 hr) and then with the 90 element 94 GHz array. Each array observes the same four fields, selected for low foregrounds, together covering Almost-Equal-To 1000 deg{sup 2}. This paper reports initial results from the 43 GHz receiver, which has an array sensitivity to CMB fluctuations of 69 {mu}K{radical}s. The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until the null tests passed. Cross-correlating maps with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB, and EB power spectra in the multipole range l = 25-475. With the exception of the lowest multipole bin for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is detected with 3{sigma} significance, the E-mode spectrum is consistent with the {Lambda}CDM model, confirming the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero, leading to a measurement of the tensor-to-scalar ratio of r = 0.35{sup +1.06}{sub -0.87}. The combination of a new time-stream 'double-demodulation' technique, side-fed Dragonian optics, natural sky rotation, and frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power so far reported, below the level of r

  2. Assimilation of sea surface temperature, sea ice concentration and sea ice drift in a model of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Barth, Alexander; Canter, Martin; Van Schaeybroeck, Bert; Vannitsem, Stéphane; Massonnet, François; Zunz, Violette; Mathiot, Pierre; Alvera-Azcárate, Aida; Beckers, Jean-Marie

    2015-09-01

    Current ocean models have relatively large errors and biases in the Southern Ocean. The aim of this study is to provide a reanalysis from 1985 to 2006 assimilating sea surface temperature, sea ice concentration and sea ice drift. In the following it is also shown how surface winds in the Southern Ocean can be improved using sea ice drift estimated from infrared radiometers. Such satellite observations are available since the late seventies and have the potential to improve the wind forcing before more direct measurements of winds over the ocean are available using scatterometry in the late nineties. The model results are compared to the assimilated data and to independent measurements (the World Ocean Database 2009 and the mean dynamic topography based on observations). The overall improvement of the assimilation is quantified, in particular the impact of the assimilation on the representation of the polar front is discussed. Finally a method to identify model errors in the Antarctic sea ice area is proposed based on Model Output Statistics techniques using a series of potential predictors. This approach provides new directions for model improvements.

  3. Assimilation of sea surface temperature, sea ice concentration and sea ice drift in a model of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Barth, Alexander; Canter, Martin; Van Schaeybroeck, Bert; Vannitsem, Stéphane; Massonnet, François; Zunz, Violette; Mathiot, Pierre; Alvera-Azcárate, Aida; Beckers, Jean-Marie

    2015-04-01

    Current ocean models have relatively large errors and biases in the Southern Ocean. The aim of this study is to provide a reanalysis from 1985 to 2006 assimilating sea surface temperature, sea ice concentration and sea ice drift. In the following it is also shown how surface winds in the Southern Ocean can be improved using sea ice drift estimated from infrared radiometers. Such satellite observations are available since the late seventies and have the potential to improve the wind forcing before more direct measurements of winds over the ocean are available using scatterometry in the late nineties. The model results are compared to the assimilated data and to independent measurements (the World Ocean Database 2009 and the mean dynamic topography based on observations). The overall improvement of the assimilation is quantified, in particular the impact of the assimilation on the representation of the polar front is discussed. Finally a method to identify model errors in the Antarctic sea ice area is proposed based on Model Output Statistics techniques using a series of potential predictors. This approach provides new directions for model improvements.

  4. Remote sensing of precipitable water over the oceans from Nimbus-7 microwave measurements

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Change, H. D.; Chang, A. T. C.

    1981-01-01

    Global maps of precipitable water over derived from scanning multichannel microwave radiometer (SMMR) data reveal salient features associated with ocean currents and the large scale general circulation in the atmosphere. Nimbus-7 SMMR brightness temperature measurements in the 21 and 18 GHz channels are used to sense the precipitable water in the atmospheric over oceans. The difference in the brightness temperature (T sub 21 -T sub 18), both in the horizontal and vertical polarization, is found to be essentially a function of the precipitable water in the atmosphere. An equation, based on the physical consideration of the radiative transfer in the microwave region, is developed to relate the precipitable water to (T sub 21 - T sub 18). It shows that the signal (T sub 21- T sub 18) does not suffer severely from the noise introduced by variations in the sea surface temperature, surface winds, and liquid water content in non rain clouds. The rms deviation between the estimated precipitable water from SMMR data and that given by the closely coincident ship radiosondes is about 0.25 g/ sq cm

  5. Impact of the Sun on Remote Sensing of Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, David M; Abraham, Saji; Wentz, F; Lagerloef, G S

    2005-01-01

    The sun is a sufficiently strong source of radiation at L-band to be an important source of interference for radiometers on future satellite missions such as SMOS, Aquarius, and Hydros designed to monitor soil moisture and sea surface salinity. Radiation from the sun can impact passive remote sensing systems in several ways, including line-of-sight radiation that comes directly from the sun and enters through antenna side lobes and radiation that is reflected from the surface to the radiometer. Examples are presented in the case of Aquarius, a pushbroom radiometer with three beams designed to monitor sea surface salinity. Near solar minimum, solar contamination is not a problem unless the sun enters near the main beam. But near solar maximum, contamination from the sun equivalent to a change of salinity on the order of 0.1 psu can occur even when the signal enters in sidelobes far from the main beam.

  6. Experimental validation of the MODTRAN 5.3 sea surface radiance model using MIRAMER campaign measurements.

    PubMed

    Ross, Vincent; Dion, Denis; St-Germain, Daniel

    2012-05-01

    Radiometric images taken in mid-wave and long-wave infrared bands are used as a basis for validating a sea surface bidirectional reflectance distribution function (BRDF) being implemented into MODTRAN 5 (Berk et al. [Proc. SPIE5806, 662 (2005)]). The images were obtained during the MIRAMER campaign that took place in May 2008 in the Mediterranean Sea near Toulon, France. When atmosphere radiances are matched at the horizon to remove possible calibration offsets, the implementation of the BRDF in MODTRAN produces good sea surface radiance agreement, usually within 2% and at worst 4% from off-glint azimuthally averaged measurements. Simulations also compare quite favorably to glint measurements. The observed sea radiance deviations between model and measurements are not systematic, and are well within expected experimental uncertainties. This is largely attributed to proper radiative coupling between the surface and the atmosphere implemented using the DISORT multiple scattering algorithm.

  7. Multisensor satellite data integration for sea surface wind speed and direction determination

    NASA Technical Reports Server (NTRS)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  8. What controls the sea surface salinity variability in the equatorial Pacific?

    NASA Astrophysics Data System (ADS)

    Qu, T.

    2015-12-01

    Results from a model of the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO) indicate that the long-term averaged surface freshwater flux is well balanced by ocean dynamics, in which subsurface processes account for a major part. Both surface freshwater flux and ocean dynamics are at work in generating the sea surface salinity variability in the equatorial Pacific. Particular attention is paid to the vertical entrainment of high salinity water from below. Water of subtropical origin resurfaces in the equatorial Pacific, directly contributing to the sea surface salinity variability there. Both the volume and barycenter of the resurfacing subtropical water show a strong ENSO signal. Their possible role in ENSO evolution is discussed.

  9. First spaceborne observation of sea surface height using GPS-Reflectometry

    NASA Astrophysics Data System (ADS)

    Clarizia, Maria Paola; Ruf, Christopher; Cipollini, Paolo; Zuffada, Cinzia

    2016-01-01

    An analysis of spaceborne Global Positioning System reflectometry (GPS-R) data from the TechDemoSat-1 (TDS-1) satellite is carried out to image the ocean sea surface height (SSH). An SSH estimation algorithm is applied to GPS-R delay waveforms over two regions in the South Atlantic and the North Pacific. Estimates made from TDS-1 overpasses during a 6 month period are aggregated to produce SSH maps of the two regions. The maps generally agree with the global DTU10 mean sea surface height. The GPS-R instrument is designed to make bistatic measurements of radar cross section for ocean wind observations, and its altimetric performance is not optimized. The differences observed between measured and DTU10 SSH can be attributed to limitations with the GPS-R instrument and the lack of precision orbit determination by the TDS-1 platform. These results represent the first observations of SSH by a spaceborne GPS-R instrument.

  10. Mean Sea Surface (mss) Model Determination for Malaysian Seas Using Multi-Mission Satellite Altimeter

    NASA Astrophysics Data System (ADS)

    Yahaya, N. A. Z.; Musa, T. A.; Omar, K. M.; Din, A. H. M.; Omar, A. H.; Tugi, A.; Yazid, N. M.; Abdullah, N. M.; Wahab, M. I. A.

    2016-09-01

    The advancement of satellite altimeter technology has generated many evolutions to oceanographic and geophysical studies. A multi-mission satellite altimeter consists with TOPEX, Jason-1 and Jason-2, ERS-2, Envisat-1, CryoSat-2 and Saral are extracted in this study and has been processed using Radar Altimeter Database System (RADS) for the period of January 2005 to December 2015 to produce the sea surface height (hereinafter referred to SSH). The monthly climatology data from SSH is generated and averaged to understand the variation of SSH during monsoon season. Then, SSH data are required to determine the localised and new mean sea surface (MSS). The differences between Localised MSS and DTU13 MSS Global Model is plotted with root mean square error value is 2.217 metres. The localised MSS is important towards several applications for instance, as a reference for sea level variation, bathymetry prediction and derivation of mean dynamic topography.

  11. Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices

    USGS Publications Warehouse

    Funk, Christopher C.; Hoell, Andrew; Shukla, Shraddhanand; Blade, Ileana; Liebmann, Brant; Roberts, Jason B.; Robertson, Franklin R.

    2014-01-01

    In southern Ethiopia, Eastern Kenya, and southern Somalia poor boreal spring rains in 1999, 2000, 2004, 2007, 2008, 2009 and 2011 contributed to severe food insecurity and high levels of malnutrition. Predicting rainfall deficits in this region on seasonal and decadal time frames can help decision makers support disaster risk reduction while guiding climate-smart adaptation and agricultural development. Building on recent research that links more frequent droughts to a stronger Walker Circulation, warming in the Indo-Pacific warm pool, and an increased western Pacific sea surface temperature (SST) gradient, we explore the dominant modes of East African rainfall variability, links between these modes and sea surface temperatures, and a simple index-based monitoring-prediction system suitable for drought early warning.

  12. Short pulse radar used to measure sea surface wind speed and SWH. [Significant Wave Height

    NASA Technical Reports Server (NTRS)

    Hammond, D. L.; Mennella, R. A.; Walsh, E. J.

    1977-01-01

    A joint airborne measurement program is being pursued by NRL and NASA Wallops Flight Center to determine the extent to which wind speed and sea surface significant wave height (SWH) can be measured quantitatively and remotely with a short pulse (2 ns), wide-beam (60 deg), nadir-looking 3-cm radar. The concept involves relative power measurements only and does not need a scanning antenna, Doppler filters, or absolute power calibration. The slopes of the leading and trailing edges of the averaged received power for the pulse limited altimeter are used to infer SWH and surface wind speed. The interpretation is based on theoretical models of the effects of SWH on the leading edge shape and rms sea-surface slope on the trailing-edge shape. The models include the radar system parameters of antenna beam width and pulsewidth.

  13. Improving the Altimeter Derived Geostrophic Currents Using High Resolution Sea Surface Temperature Images: A Feasibility Study

    NASA Astrophysics Data System (ADS)

    Rio, M.-H.; Santoleri, R.; Giffa, A.; Piterbarg, L.

    2015-12-01

    Accurate knowledge of spatial and temporal ocean surface currents at high resolution is essential for a variety of applications. The altimeter observing system, by providing global and repetitive measurements of the Sea Surface Height, has been by far the most exploited system to estimate ocean surface currents in the past 20 years. However it does not allow observing currents departing from the geostrophic equilibrium, nor is capable to resolve the shortest spatial scales of the currents. In order to go beyond these limits, we investigate how the high spatial and temporal resolution information from Sea Surface Temperature (SST) images can improve the altimeter currents by adapting a method first proposed by [1]. It consists in inverting the SST evolution equation for the velocity by prescribing the source and sink terms and by using the altimeter currents as background. The method feasibility is tested using simulated data based on the Mercator-Ocean system.

  14. Comparison of SMOS and Aquarius Sea Surface Salinity and Analysis of Possible Causes for the Differences

    NASA Technical Reports Server (NTRS)

    Dinnat, E. P.; Boutin, J.; Yin, X.; Le Vine, D. M.; Waldteufel, P.; Vergely, J. -L.

    2014-01-01

    Two ongoing space missions share the scientific objective of mapping the global Sea Surface Salinity (SSS), yet their observations show significant discrepancies. ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometers to measure emission from the sea surface and retrieve SSS. Significant differences in SSS retrieved by both sensors are observed, with SMOS SSS being generally lower than Aquarius SSS, except for very cold waters where SMOS SSS is the highest overall. Figure 1 is an example of the difference between the SSS retrieved by SMOS and Aquarius averaged over one month and 1 degree in longitude and latitude. Differences are mostly between -1 psu and +1 psu (psu, practical salinity unit), with a significant regional and latitudinal dependence. We investigate the impact of the vicarious calibration and some components of the retrieval algorithm used by both mission on these differences.

  15. Last Glacial Maximum sea surface temperature and sea-ice extent in the Pacific sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Benz, Verena; Esper, Oliver; Gersonde, Rainer; Lamy, Frank; Tiedemann, Ralf

    2016-08-01

    Sea surface temperatures and sea-ice extent are most critical variables to evaluate the Southern Ocean paleoceanographic evolution in relation to the development of the global carbon cycle, atmospheric CO2 and ocean-atmosphere circulation. Here we present diatom transfer function-based summer sea surface temperature (SSST) and winter sea-ice (WSI) estimates from the Pacific sector of the Southern Ocean to bridge a gap in information that has to date hampered a well-established reconstruction of the last glacial Southern Ocean at circum-Antarctic scale. We studied the Last Glacial Maximum (LGM) at the EPILOG time slice (19,000-23,000 calendar years before present) in 17 cores and consolidated our LGM picture of the Pacific sector taking into account published data from its warmer regions. Our data display a distinct east-west differentiation with a rather stable WSI edge north of the Pacific-Antarctic Ridge in the Ross Sea sector and a more variable WSI extent over the Amundsen Abyssal Plain. The zone of maximum cooling (>4 K) during the LGM is in the present Subantarctic Zone and bounded to its south by the 4 °C isotherm. The isotherm is in the SSST range prevailing at the modern Antarctic Polar Front, representing a circum-Antarctic feature, and marks the northern edge of the glacial Antarctic Circumpolar Current (ACC). The northward deflection of colder than modern surface waters along the South American continent led to a significant cooling of the glacial Humboldt Current surface waters (4-8 K), which affected the temperature regimes as far north as tropical latitudes. The glacial reduction of ACC temperatures may also have resulted in significant cooling in the Atlantic and Indian Southern Ocean, thus enhancing thermal differentiation of the Southern Ocean and Antarctic continental cooling. The comparison with numerical temperature and sea-ice simulations yields discrepancies, especially concerning the estimates of the sea-ice fields, but some simulations

  16. Biweekly Sea Surface Temperature over the South China Sea and its association with the Western North Pacific Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Vaid, B. H.

    2017-02-01

    The association of the biweekly intraseasonal (BWI) oscillation in the Sea Surface Temperature (SST) over the South China Sea (SCS) and the Western North Pacific Summer Monsoon is authenticated using version 4 the Tropical Rainfall Measuring Mission Microwave Imager data (SST and rain) and heat fluxes from Ocean Atmosphere Flux project data during 1998-2012. The results suggest that the SCS involves ocean-atmosphere coupling on biweekly timescales. The positive biweekly SST anomalies lead the rain anomalies over the SCS by 3 days, with a significant correlation coefficient ( r = 0.6, at 99 % significance levels) between the SST-rain anomalies. It is evident from lead/lag correlation between biweekly SST and zonal wind shear that warm ocean surface induced by wind shear may contribute to a favorable condition of the convective activity over the SCS. The present study suggests that ocean-to-atmospheric processes induced by the BWI oscillation in the SCS SST results in enhanced sea level pressure and surface shortwave radiation flux during the summer monsoon. Besides, it is observed that the SCS BWI oscillation in the changes of SST causes a feedback in the atmosphere by modifying the atmospheric instability. This suggests that the active/break biweekly cycle of the SST over the SCS is related by sea level pressure, surface heat fluxes and atmospheric instability. The potential findings here indicate that the biweekly SST over the SCS play an important role in the eastward and the southward propagation of the biweekly anomalies in the Western North Pacific.

  17. Enrichment of Fusobacteria in Sea Surface Oil Slicks from the Deepwater Horizon Oil Spill

    PubMed Central

    Gutierrez, Tony; Berry, David; Teske, Andreas; Aitken, Michael D.

    2016-01-01

    The Deepwater Horizon (DWH) oil spill led to rapid microbial community shifts in the Gulf of Mexico, including the formation of unprecedented quantities of marine oil snow (MOS) and of a massive subsurface oil plume. The major taxa that bloomed in sea surface oil slicks during the spill included Cycloclasticus, and to a lesser extent Halomonas, Alteromonas, and Pseudoalteromonas—organisms that grow and degrade oil hydrocarbons aerobically. Here, we show that sea surface oil slicks at DWH contained obligate and facultative anaerobic taxa, including members of the obligate anaerobic phylum Fusobacteria that are commonly found in marine sediment environments. Pyrosequencing analysis revealed that Fusobacteria were strongly selected for when sea surface oil slicks were allowed to develop anaerobically. These organisms have been found in oil-contaminated sediments in the Gulf of Mexico, in deep marine oil reservoirs, and other oil-contaminated sites, suggesting they have putative hydrocarbon-degrading qualities. The occurrence and strong selection for Fusobacteria in a lab-based incubation of a sea surface oil slick sample collected during the spill suggests that these organisms may have become enriched in anaerobic zones of suspended particulates, such as MOS. Whilst the formation and rapid sinking of MOS is recognised as an important mechanism by which a proportion of the Macondo oil had been transported to the sea floor, its role in potentially transporting microorganisms, including oil-degraders, from the upper reaches of the water column to the seafloor should be considered. The presence of Fusobacteria on the sea surface—a highly oxygenated environment—is intriguing, and may be explained by the vertical upsurge of oil that provided a carrier to transport these organisms from anaerobic/micro-aerophilic zones in the oil plume or seabed to the upper reaches of the water column. We also propose that the formation of rapidly-sinking MOS may have re

  18. Linkages Between Multiscale Global Sea Surface Temperature Change and Precipitation Variabilities in the US

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Weng, Heng-Yi

    1999-01-01

    A growing number of evidence indicates that there are coherent patterns of variability in sea surface temperature (SST) anomaly not only at interannual timescales, but also at decadal-to-inter-decadal timescale and beyond. The multi-scale variabilities of SST anomaly have shown great impacts on climate. In this work, we analyze multiple timescales contained in the globally averaged SST anomaly with and their possible relationship with the summer and winter rainfall in the United States over the past four decades.

  19. Comparison of measured and predicted sea surface spectra of short waves

    NASA Technical Reports Server (NTRS)

    Shemdin, O. H.; Hwang, P. A.

    1988-01-01

    Reliable sea surface slope time series, using a laseroptical receiver system deployed on a wave follower, are analyzed to yield slope frequency spectra of the ocean surface up to 300 Hz. The results show significant differences when compared with the Pierson and Stacy (1973) model. An epirical model is proposed in this paper that is consistent with the observed slope spectra. The newly proposed model is compared with other more recently advanced shortwave spectral models.

  20. Interannual Variability of Sea Surface Height over the Black Sea: Relation to Climatic Patterns

    DTIC Science & Technology

    2008-01-01

    eastern and western basins, reflecting variations in the corresponding gyres. A joint examination of SSH and sea surface temperature (SST) indicates...available altimeter data. SSH variability reveals distinct maxima in the eastern and western basins, reflecting variations in the corresponding gyres. A...change resulted from variations in thermocline or mixed layer depth. One important factor is to determine whether sea level varia- tions are mainly

  1. Wind Direction Estimates from Synthetic Aperture Radar Imagery of the Sea Surface

    DTIC Science & Technology

    2016-06-07

    Wind Direction Estimates from Synthetic Aperture Radar Imagery of the Sea Surface George S. Young The Pennsylvania State University 503... directions with respect to the orientation of common microscale and mesoscale quasi-two dimensional phenomena seen in SAR imagery of the sea...and col regions on the wind direction -dependent retrieval of wind speed from SAR via CMOD-4. a. Use the results of this error analysis to

  2. Long-term sea surface temperature and climate change in the Australian-New Zealand region

    NASA Astrophysics Data System (ADS)

    Barrows, Timothy T.; Juggins, Steve; de Deckker, Patrick; Calvo, Eva; Pelejero, Carles

    2007-06-01

    We compile and compare data for the last 150,000 years from four deep-sea cores in the midlatitude zone of the Southern Hemisphere. We recalculate sea surface temperature estimates derived from foraminifera and compare these with estimates derived from alkenones and magnesium/calcium ratios in foraminiferal carbonate and with accompanying sedimentological and pollen records on a common absolute timescale. Using a stack of the highest-resolution records, we find that first-order climate change occurs in concert with changes in insolation in the Northern Hemisphere. Glacier extent and inferred vegetation changes in Australia and New Zealand vary in tandem with sea surface temperatures, signifying close links between oceanic and terrestrial temperature. In the Southern Ocean, rapid temperature change of the order of 6°C occurs within a few centuries and appears to have played an important role in midlatitude climate change. Sea surface temperature changes over longer periods closely match proxy temperature records from Antarctic ice cores. Warm events correlate with Antarctic events A1-A4 and appear to occur just before Dansgaard-Oeschger events 8, 12, 14, and 17 in Greenland.

  3. Sea-surface and deep-magnetic data at Vavilov Seamount, Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Muccini, Filippo; Cocchi, Luca; Locritani, Marina; Carmisciano, Cosmo

    2016-04-01

    Sea surface and deep magnetic data were acquired at Vavilov seamount, in the Tyrrhenian sea. Vavilov seamount is located in the central portion of the homonymous Vavilov basin. The seamount stands about 2800 meters above the seafloor at 3600 meters depth, with the top at about 800 meters below the sea level. Oceanization of the basin occurred during the Late Miocene-Early Pliocene. The magnetic data were collected in 2011 on board the Nave Ammiraglio Magnaghi by using a Marine Magnetics Seaspy magnetometer. The sea surface magnetic survey was realized with two different grids: the first regional one, with 13 parallel lines about 43 Km long, 3 Km spaced (104° N oriented) and 6 tie control lines about 40 Km long, 5 Km spaced (014° N oriented). The second one was realized to better define the volcanic structure of the seamount, and was achieved by acquiring 12 magnetic parallel lines (104° N), 18 Km long and 1 Km spaced. The deep magnetic data were collected by towing a magnetic sensor coupled with a L3 sidescan sonar Klein 3000. A set of 5 parallel lines were acquired in correspondence of the bathymetric top of the seamount with the sensor flying at about constant depth of 700 meters. These data represents the first near-bottom magnetic data collected for Vavilov seamount and it allows comparison between sea-surface and deep magnetic data.

  4. Parabolic equation modeling of high frequency acoustic transmission with an evolving sea surface.

    PubMed

    Senne, J; Song, A; Badiey, M; Smith, K B

    2012-09-01

    The present paper examines the temporal evolution of acoustic fields by modeling forward propagation subject to sea surface dynamics with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Surface waves are generated from surface wave spectra, and stepped in time using a Runge-Kutta integration technique applied to linear evolution equations. This evolving, range-dependent surface information is combined with other environmental parameters and input to the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. This merged acoustic model is validated using concurrently-collected acoustic and environmental information, including surface wave spectra. Data to model comparisons demonstrate that the model is able to approximate the ensemble-averaged acoustic intensity at ranges of about a kilometer for acoustic signals of around 15 kHz. Furthermore, the model is shown to capture variations due to surface fluctuations occurring over time scales of less than a second to tens of seconds.

  5. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models

    USGS Publications Warehouse

    Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling M.; Stoll, Danielle K.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; Bragg, Fran J.; Lunt, Daniel J.; Foley, Kevin M.; Riesselman, Christina R.

    2012-01-01

    In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.3–3.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history. This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.

  6. Simulated wind power off-shore using different parametrizations for the sea surface roughness

    NASA Astrophysics Data System (ADS)

    Frank, Helmut P.; Larsen, Søren E.; Højstrup, Jørgen

    2000-04-01

    The equation for the dependence of the Charnock constant on wave age proposed by Johnson et al. (Journal of Physical Oceanography 1998; 28: 1702 - 1716) is extended to include conditions of very young waves or short fetches. The effect on the simulated average wind speed and average wind power density off a straight east coast in Denmark is investigated by numerical simulations. Calculations are also performed employing the classical Charnock relation and a constant roughness of the sea. The formulations with variable sea surface roughness are combined with the equation for a smooth water surface for low winds. The wind climate is calculated with the Karlsruhe Atmospheric Mesoscale Model (KAMM) in 84 classes of the geostrophic wind. The difference between the fetch-dependent and the fetch-independent formulation is very small. Even a constant sea surface roughness yields good results near the coast. The influence of stratification, i.e. temperature differences between sea and land, is much more important than the fetch dependence of the sea surface roughness.

  7. Assessing Confidence in Pliocene Sea Surface Temperatures to Evaluate Predictive Models

    NASA Technical Reports Server (NTRS)

    Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling. M.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; Bragg, Fran J.; Lunt, Daniel J.; Stoll, Danielle K.; Foley, Kevin M.; Riesselman, Christina

    2012-01-01

    In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.33.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history.This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.

  8. The Transient Circulation Response to Radiative Forcings and Sea Surface Warming

    SciTech Connect

    Staten, Paul; Reichler, Thomas; Lu, Jian

    2014-08-27

    Tropospheric circulation shifts have strong potential to impact surface climate. But the magnitude of these shifts in a changing climate, and the attending regional hydrological changes, are difficult to project. Part of this difficulty arises from our lack of understanding of the physical mechanisms behind the circulation shifts themselves. In order to better delineate circulation shifts and their respective causes, we decompose the circulation response into (1) the "direct" response to radiative forcings themselves, and (2) the "indirect" response to changing sea surface temperatures. Using ensembles of 90-day climate model simulations with immediate switch-on forcings, including perturbed greenhouse gas concentrations, stratospheric ozone concentrations, and sea surface temperatures, we document the direct and indirect transient responses of the zonal mean general circulation, and investigate the roles of previously proposed mechanisms in shifting the midlatitude jet. We find that both the direct and indirect wind responses often begin in the lower stratosphere. Changes in midlatitude eddies are ubiquitous and synchronous with the midlatitude zonal wind response. Shifts in the critical latitude of wave absorption on either flank of the jet are not indicted as primary factors for the poleward shifting jet, although we see some evidence for increasing equatorward wave reflection over the southern hemisphere in response to sea surface warming. Mechanisms for the northern hemisphere jet shift are less clear.

  9. Atmospheric iodine levels influenced by sea surface emissions of inorganic iodine

    NASA Astrophysics Data System (ADS)

    Carpenter, Lucy J.; MacDonald, Samantha M.; Shaw, Marvin D.; Kumar, Ravi; Saunders, Russell W.; Parthipan, Rajendran; Wilson, Julie; Plane, John M. C.

    2013-02-01

    Naturally occurring bromine- and iodine-containing compounds substantially reduce regional, and possibly even global, tropospheric ozone levels. As such, these halogen gases reduce the global warming effects of ozone in the troposphere, and its capacity to initiate the chemical removal of hydrocarbons such as methane. The majority of halogen-related surface ozone destruction is attributable to iodine chemistry. So far, organic iodine compounds have been assumed to serve as the main source of oceanic iodine emissions. However, known organic sources of atmospheric iodine cannot account for gas-phase iodine oxide concentrations in the lower troposphere over the tropical oceans. Here, we quantify gaseous emissions of inorganic iodine following the reaction of iodide with ozone in a series of laboratory experiments. We show that the reaction of iodide with ozone leads to the formation of both molecular iodine and hypoiodous acid. Using a kinetic box model of the sea surface layer and a one-dimensional model of the marine boundary layer, we show that the reaction of ozone with iodide on the sea surface could account for around 75% of observed iodine oxide levels over the tropical Atlantic Ocean. According to the sea surface model, hypoiodous acid--not previously considered as an oceanic source of iodine--is emitted at a rate ten-fold higher than that of molecular iodine under ambient conditions.

  10. Ciguatera fish poisoning and sea surface temperatures in the Caribbean Sea and the West Indies.

    PubMed

    Tester, Patricia A; Feldman, Rebecca L; Nau, Amy W; Kibler, Steven R; Wayne Litaker, R

    2010-10-01

    Ciguatera fish poisoning (CFP) is a circumtropical disease caused by ingestion of a variety of reef fish that bioaccumulate algal toxins. Distribution and abundance of the organisms that produce these toxins, chiefly dinoflagellates of the genus Gambierdiscus, are reported to correlate positively with water temperature. Consequently, there is growing concern that increasing temperatures associated with climate change could increase the incidence of CFP. This concern prompted experiments on the growth rates of six Gambierdiscus species at temperatures between 18 degrees C and 33 degrees C and the examination of sea surface temperatures in the Caribbean and West Indies for areas that could sustain rapid Gambierdiscus growth rates year-round. The thermal optimum for five of six Gambierdiscus species tested was >/=29 degrees C. Long-term SST data from the southern Gulf of Mexico indicate the number of days with sea surface temperatures >/=29 degrees C has nearly doubled (44 to 86) in the last three decades. To determine how the sea surface temperatures and Gambierdiscus growth data correlate with CFP incidences in the Caribbean, a literature review and a uniform, region-wide survey (1996-2006) of CFP cases were conducted. The highest CFP incidence rates were in the eastern Caribbean where water temperatures are warmest and least variable.

  11. Mean sea surface and variability of the Gulf of Mexico using Geosat altimetry data

    NASA Technical Reports Server (NTRS)

    Leben, Robert R.; Born, George H.; Fox, Chad A.; Thompson, Dana J.

    1990-01-01

    Geosat Exact Repeat Mission (ERM) altimetric measurements of the sea surface height in the Gulf of Mexico are used to determine the mean sea surface height with respect to the ellipsoid and mesoscale variability along Geosat ground tracks in the gulf for the time period from November 8, 1986 to November 25, 1988. A mean surface generated using the Geosat ERM along-track mean is calculated and contrasted with a previously derived mean surface determined using GEOS 3 and Seasat crossover differences. This provides a first look at the variability in the mean between the time periods of 1987-1988 and 1975-1978. In addition, the along-track mesoscale variability time series has been produced from the Geosat ERM data set by using a robust orbit-error removal algorithm to determine the variability of the sea-surface height with respect to the along-track mean. Good qualitative and quantitative agreement with previous in situ observations in the region is found. This study demonstrates the potential of satellite altimetry for oceanographic studies of the Gulf of Mexico.

  12. Space-based observation of chlorophyll, sea surface temperature, nitrate, and sea surface height anomaly over the Bay of Bengal and Arabian Sea

    NASA Astrophysics Data System (ADS)

    Sarangi, R. K.; Devi, K. Nanthini

    2017-01-01

    Monthly chlorophyll and sea surface temperature (SST) images were generated using MODIS-Aqua data sets during 2014 and 2015 in the Bay of Bengal and Arabian Sea. The in situ data-based nitrate algorithm was used to generate nitrate images by using the satellite-derived chlorophyll and SST images. To link ocean productivity with the sea surface features and sea level anomaly, the Indo-French altimeter mission SARAL-ALTIKA-derived sea surface height anomaly (SSHa) data sets were processed and maps were generated. The monthly average chlorophyll concentration ranged from 0.001 to 3.0 mg m-3, SST ranged from 24 to 32 °C, nitrate concentration ranged from 0.01 to 6.0 μM, and overall SSH anomaly ranged from -52 to +40 cm. Nitrate concentration was observed to be high (3-5 μM) during December-January, possibly due to convective eddies and winter cooling as well as atmospheric aerosols and dust inducing ocean productivity. The nitrate concentration was observed to be associated more with chlorophyll than SST, as nitrate inherently enhances the ocean chlorophyll and productivity, acting as proxy. The SSH anomaly showed irregular features and depicting few eddies, upwelling, and ocean circulation features. The low SSHa was mostly due to high chlorophyll concentration. It was observed that the low SST (∼24-26 °C) is attributed to high chlorophyll concentration (1.5-3.0 mg m-3) over the study area. The lag phase and enhancement in chlorophyll mean during September was due to the decrease in average SST during August. The SSHa showed seasonal trend over the study area during the monsoon period with observation of negative anomaly. Arabian Sea was found to have more negative SSH anomaly monthly mean values than Bay of Bengal. The impact and interrelationship of SSHa indicated better relationship with chlorophyll than with nitrate and SST, as observed from multiple regression analysis. The analysis of variance (ANOVA) results between the 2-year monthly data showed that the

  13. Microwave Ovens

    MedlinePlus

    ... Emitting Products Radiation-Emitting Products and Procedures Home, Business, and Entertainment Products Microwave ... for Consumers Laws, Regulations & Standards Industry Guidance Other Resources Description Microwave ...

  14. Surfactant-Associated Bacteria in the Sea Surface Microlayer and their Effect on Remote Sensing Technology

    NASA Astrophysics Data System (ADS)

    Kurata, N.; Vella, K.; Tartar, A.; Matt, S.; Shivji, M.; Perrie, W. A.; Soloviev, A.

    2012-12-01

    Synthetic aperture radar remote sensing captures various fine-scale features on the ocean surface such as coastal discharges, oil pollution, vessel traffic, algal blooms and sea slicks. Although numerous factors potentially affect the synthetic aperture radar imaging process, the influence of biogenic and anthropogenic surfactants has been suggested as one of the primary parameters, especially under relatively low wind conditions. Surfactants have a tendency to dampen the short gravity-capillary ocean waves causing the sea surface to smoothen, thus allowing the radar to detect areas of surfactants. Surfactants are found in sea slicks, which are the accumulation of organic material shaped as elongated bands on the ocean's surface. Sea slicks are often observable with the naked eye due to their glassy appearance and can also be seen on synthetic aperture radar images as dark scars. While the sources of surfactants can vary, some are known to be of marine bacteria origin. Countless numbers of marine bacteria are present in the oceanic environment, and their biogeochemical contributions cannot be overlooked. Not only does marine-bacteria produce surfactants, but they also play an important role in the transformation of surfactants. In this study, we profiled the surfactant-associated bacteria composition within the biogenic thin layer of the ocean surface more commonly referred as the sea surface microlayer. Bacterial samples were collected from the sea surface microlayer for comparative analysis from both within and outside of sea slick areas as well as the underlying subsurface water. The bacterial microlayer sampling coincided with synthetic aperture radar satellite, RADARSAT-2, overpasses to demonstrate the simultaneous in-situ measurements during a satellite image capture. The sea surface microlayer sampling method was designed to enable aseptic bacterial sampling. A 47 mm polycarbonate membrane was utilized at each sampling site to obtain a snapshot of the

  15. Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization

    NASA Astrophysics Data System (ADS)

    Kennedy, J. J.; Rayner, N. A.; Smith, R. O.; Parker, D. E.; Saunby, M.

    2011-07-01

    Changes in instrumentation and data availability have caused time-varying biases in estimates of global and regional average sea surface temperature. The size of the biases arising from these changes are estimated and their uncertainties evaluated. The estimated biases and their associated uncertainties are largest during the period immediately following the Second World War, reflecting the rapid and incompletely documented changes in shipping and data availability at the time. Adjustments have been applied to reduce these effects in gridded data sets of sea surface temperature and the results are presented as a set of interchangeable realizations. Uncertainties of estimated trends in global and regional average sea surface temperature due to bias adjustments since the Second World War are found to be larger than uncertainties arising from the choice of analysis technique, indicating that this is an important source of uncertainty in analyses of historical sea surface temperatures. Despite this, trends over the twentieth century remain qualitatively consistent.

  16. On the simultaneous improvement of a satellite orbit and determination of sea surface topography using altimeter data

    NASA Technical Reports Server (NTRS)

    Engelis, Theodossios

    1988-01-01

    A method is presented in satellite altimetry that attempts to simultaneously determine the geoid and sea surface toography with minimum wavelengths of about 500 km and to reduce the radial orbit errors caused by geopotential uncertainties. The modeling of these errors is made using the linearized Lagrangian perturbation theory. Observation equations are developed using sea surface heights and crossover discrepancies as observables. A minimum variance solution with prior information can then provide estimates of parametrs representing the sea surface topography and corrections to the orbit. The potential of the method is demonstrated in a solution where simulated geopotential errors and the Levitus sea surface topography are used to generate the observables for a Seasat 3 day arc. The simulation results suggest that the method can be used to efficiently process real altimeter data.

  17. Use of Skylab EREP data in a sea-surface temperature experiment. [Monroe Reservoir and Key West, Fla.

    NASA Technical Reports Server (NTRS)

    Anding, D. C. (Principal Investigator); Walker, J. P.

    1975-01-01

    The author has identified the following significant results. A sea surface temperature experiment was studied, demonstrating the feasibility of a procedure for the remote measurement of sea surface temperature which inherently corrects for the effect of the intervening atmosphere without recourse to climatological data. The procedure was applied to Skylab EREP S191 spectrometer data, and it is demonstrated that atmospheric effects on the observed brightness temperature can be reduced to less than 1.0 K.

  18. A theory of microwave apparent temperature over the ocean

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Fung, A. K.

    1973-01-01

    In the microwave region combined active (scatterometer) and passive (radiometer) remote sensors over the ocean show promise of providing surface wind speeds and weather information to the oceanographer and meteorologist. This has aroused great interest in the investigation of the scattering of waves from the sea surface. A composite surface scattering theory is investigated. The two-scale scattering theory proposed by Semyonov was specifically extended to compute the emmision and scattering characteristics of ocean surfaces. The effects of clouds and rain on the radiometer and scatterometer observations are also investigated using horizontally stratified model atmospheres with rough sea surfaces underneath. Various cloud and rain models proposed by meteorologist were employed to determine the rise in the microwave temperature when viewing downward through these model atmospheres. For heavy rain-fall rates the effects of scattering on the radiative transfer process are included.

  19. A Newly Distributed Satellite-based Global Air-sea Surface Turbulent Fluxes Data Set -- GSSTF2b

    NASA Astrophysics Data System (ADS)

    Shie, C.; Nelkin, E.; Ardizzone, J.; Savtchenko, A.; Chiu, L. S.; Adler, R. F.; Lin, I.; Gao, S.

    2010-12-01

    Accurate sea surface turbulent flux measurements are crucial to understanding the global water and energy cycle changes. Remote sensing is a valuable tool for global monitoring of these flux measurements. The GSSTF (Goddard Satellite-based Surface Turbulent Fluxes) algorithm was thus developed and applied to remote sensing research and applications. The recently revived and produced daily global (1ox1o) GSSTF2b (Version-2b) dataset (July 1987-December 2008) is currently under processing for an official distribution by NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) due by the end of this month (September, 2010). Like its predecessor product GSSTF2, GSSTF2b is expected to provide the scientific community a longer-period and useful turbulent surface flux dataset for global energy and water cycle research, as well as regional and short period data analyses. We have recently been funded by the NASA/MEaSUREs Program to resume processing of the GSSTF with an objective of continually producing an up-to-date uniform and reliable dataset of sea surface turbulent fluxes, derived from improved input remote sensing data and model reanalysis, which would continue to be useful for global energy and water flux research and applications. The daily global (1ox1o) GSSTF2b dataset has lately been produced using upgraded and improved input datasets such as the Special Sensor Microwave Imager (SSM/I) Version-6 (V6) product (including brightness temperature [Tb], total precipitable water [W], and wind speed [U]) and the NCEP/DOE Reanalysis-2 (R2) product (including sea skin temperature [SKT], 2-meter air temperature [T2m], and sea level pressure [SLP]). The input datasets previously used for producing the GSSTF2 product were the SSM/I Version-4 (V4) product and the NCEP Reanalysis-1 (R1) product. The newly produced GSSTF2b was found to generally agree better with available ship measurements obtained from several field experiments in 1999 than its counterpart

  20. Are South Texas Streamflow Variations Influenced by Sea Surface Temperature Changes in Pacific and Atlantic Oceans?

    NASA Astrophysics Data System (ADS)

    Murgulet, V.; Hay, R.; Ard, R.

    2013-12-01

    The impact of sea surface temperature (SST) anomalies of the Pacific and Atlantic Oceans on several major river basins in the continental U. S. has recently become well documented. Clear relationships have been identified between El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO) and continental U. S. streamflow. Because these relationships can be potentially used to predict streamflow variability, it would also be of great importance to evaluate whether these climate phenomena affect river basins at the sub-regional and/or local scale, objectives that are not usually addressed in previous studies. Therefore, this study is focused on the basin river system of South Texas, an area that encompasses approximately 30,000 km2 and is climatologically defined as subtropical subhumid. Streamflow data (1940-2011) from sixteen unimpaired U.S. Geological Survey gage stations were normalized into a South Texas streamflow data set and evaluated with respect to ENSO, PDO and AMO index time series. The comparison of South Texas annual streamflow with Pacific Decadal Oscillation and El Niño Southern Oscillation Indices shows that the warm phases of ENSO and PDO are generally associated with increased streamflow, whereas cold phases of ENSO and PDO result in lower streamflow volumes. In addition, cross-correlation analyses show a 7-8 month delayed streamflow response to sea surface temperature signals. Furthermore, annual streamflow variability in the South Texas river basins can be also due to sea surface temperature anomalies in the Atlantic Ocean. Higher streamflow values are shown during the cold phase of AMO, while relatively low streamflow values are illustrated during the warm phase of AMO. Thus, preliminary results show that SST anomalies in both Pacific and Atlantic Oceans influence the streamflow variability in the South Texas area. Current research is also focused on evaluating if these climate phenomena

  1. Global scale variations in sea surface topography determined from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Koblinsky, C. J.; Nerem, R. S.; Williamson, R. G.; Klosko, S. M.

    Large scale variations in sea surface topography reflect long-term changes in the ocean circulation and air-sea fluxes. The success of the U.S. Navy's Geosat altimeter mission from 1985 to 1989 has provided the first long-term global measurements from space with the apparent accuracy to observe these phenomena. We have used the observations from Geosat to determine the large scale (wavelengths greater than 1000 km) mean and variable sea surface topography of the ocean relative to the geoid. In this paper we will provide a preliminary discussion of these estimates through comparisons with in situ observations and a description of the most robust signals in the altimeter solutions. A two year time series of sea surface topography has been derived for the global ocean between 60° N and 60° S covering 1987 and 1988. Comparisons with monthly averaged tide gauge observations at 42 island sites show a typical difference of 6 cm rms. There is a strong correlation between the altimetry and in situ measurements when the large scale variations in sea level exceed 6 cm rms (altimeter signal-to-noise ratio greater than 1). Such variations include the monsoon-forced semi-annual undulations of the tropical Indian Ocean, the annual expansion and contraction of the upper ocean in the western sides of mid-latitude basins from seasonal heating, and the interannual wind-forced variations in the tropical Pacific. Interannual trends are also found at midlatitudes, which agree with the in situ measurements, and appear to be of basin scale.

  2. Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production

    USGS Publications Warehouse

    Robinson, M.M.; Valdes, P.J.; Haywood, A.M.; Dowsett, H.J.; Hill, D.J.; Jones, S.M.

    2011-01-01

    The mid-Pliocene warm period (MPWP; ~. 3.3 to 3.0. Ma) is the most recent interval in Earth's history in which global temperatures reached and remained at levels similar to those projected for the near future. The distribution of global warmth, however, was different than today in that the high latitudes warmed more than the tropics. Multiple temperature proxies indicate significant sea surface warming in the North Atlantic and Arctic Oceans during the MPWP, but predictions from a fully coupled ocean-atmosphere model (HadCM3) have so far been unable to fully predict the large scale of sea surface warming in the high latitudes. If climate proxies accurately represent Pliocene conditions, and if no weakness exists in the physics of the model, then model boundary conditions may be in error. Here we alter a single boundary condition (bathymetry) to examine if Pliocene high latitude warming was aided by an increase in poleward heat transport due to changes in the subsidence of North Atlantic Ocean ridges. We find an increase in both Arctic sea surface temperature and deepwater production in model experiments that incorporate a deepened Greenland-Scotland Ridge. These results offer both a mechanism for the warming in the North Atlantic and Arctic Oceans indicated by numerous proxies and an explanation for the apparent disparity between proxy data and model simulations of Pliocene northern North Atlantic and Arctic Ocean conditions. Determining the causes of Pliocene warmth remains critical to fully understanding comparisons of the Pliocene warm period to possible future climate change scenarios. ?? 2011.

  3. Surface Heat Budgets and Sea Surface Temperature in the Pacific Warm Pool During TOGA COARE

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zhao, Wenzhong; Chou, Ming-Dah

    1998-01-01

    The daily mean heat and momentum fluxes at the surface derived from the SSM/I and Japan's GMS radiance measurements are used to study the temporal and spatial variability of the surface energy budgets and their relationship to the sea surface temperature during the COARE intensive observing period (IOP). For the three time legs observed during the IOP, the retrieved surface fluxes compare reasonably well with those from the IMET buoy, RV Moana Wave, and RV Wecoma. The characteristics of surface heat and momentum fluxes are very different between the southern and northern warm pool. In the southern warm pool, the net surface heat flux is dominated by solar radiation which is, in turn, modulated by the two Madden-Julian oscillations. The surface winds are generally weak, leading to a shallow ocean mixed layer. The solar radiation penetrating through the bottom of the mixed layer is significant, and the change in the sea surface temperature during the IOP does not follow the net surface heat flux. In the northern warm pool, the northeasterly trade wind is strong and undergoes strong seasonal variation. The variation of the net surface heat flux is dominated by evaporation. The two westerly wind bursts associated with the Madden-Julian oscillations seem to have little effect on the net surface heat flux. The ocean mixed layer is deep, and the solar radiation penetrating through the bottom of the mixed layer is small. As opposed to the southern warm pool, the trend of the sea surface temperature in the northern warm pool during the IOP is in agreement with the variation of the net heat flux at the surface.

  4. Local Effects of Ice Floes on Skin Sea Surface Temperature in the Marginal Ice Zone from UAVs

    NASA Astrophysics Data System (ADS)

    Zappa, C. J.; Brown, S.; Emery, W. J.; Adler, J.; Wick, G. A.; Steele, M.; Palo, S. E.; Walker, G.; Maslanik, J. A.

    2013-12-01

    downstream the skin SST is mixed within the turbulent wake over 10s of meters. We compare the structure of circulation and mixing of the influx of cold skin SST driven by surface currents and wind. In-situ temperature measurements provide the context for the vertical structure of the mixing and its impact on the skin SST. Furthermore, comparisons to satellite-derived sea surface temperature of the region are presented. The accuracy of satellite derived SST products and how well the observed skin SSTs represent ocean bulk temperatures in polar regions is not well understood, due in part to lack of observations. Estimated error in the polar seas is relatively high at up to 0.4 deg. C compared to less than 0.2 deg. C for other areas. The goal of these and future analyses of the MIZOPEX data set is to elucidate a basic question that is significant for the entire Earth system. Have these regions passed a tipping point, such that they are now essentially acting as sub-Arctic seas where ice disappears in summer, or instead whether the changes are transient, with the potential for the ice pack to recover?

  5. Climatic responses to tropical sea surface temperature changes on a ``greenhouse'' Earth

    NASA Astrophysics Data System (ADS)

    Huber, Matthew; Sloan, L. Cirbus

    2000-08-01

    The uncertainty associated with tropical sea surface temperatures (SSTs) during past "greenhouse" climates may have important and unaccounted for effects. We explore early Paleogene climatic sensitivity to changes in tropical-subtropical SSTs with a general circulation model. We demonstrate that tropical SST changes have local and far-field climatic effects, underscoring their importance in understanding greenhouse climates. The responses of winds, upwelling, and surface water balance to tropical SST changes are substantial. Our results indicate that current tropical SST reconstructions may have a significant cool bias despite corrections and that the existence of hot (>30°C) tropical SSTs may be realistic for greenhouse climate intervals, including the Eocene.

  6. Prediction of Nino 3 sea surface temperatures using linear inverse modeling

    SciTech Connect

    Penland, C.; Magorian, T. )

    1993-06-01

    Linear inverse modeling is used to predict sea surface temperatures (SSTs) in the Nino 3 region. Predictors in three geographical locations are used: the tropical Pacific Ocean, the tropical Pacific and Indian oceans, and the global tropical oceans. Predictions did not depend crucially on any of these three domains, and evidence was found to support the assumption that linear dynamics dominates most of the record. The prediction model performs better when SST anomalies are rapidly evolving than during warm events when large anomalies persist. The rms prediction error at a lead time of 9 months is about half a degree Celsius. 31 refs., 9 figs., 1 tab.

  7. Holocene hydrological and sea surface temperature changes in the northern coast of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Mong-Sin; Zong, Yongqiang; Mok, Ka-Man; Cheung, Ka-Ming; Xiong, Haixian; Huang, Guangqing

    2017-03-01

    In order to reconstruct the Holocene environmental history of a coastal site in the northern South China Sea, this study analysed the organic carbon isotope ratios (δ13Corg) and alkenone unsaturation ratios (UK‧37) from a 36.5 m-long sediment core drilled at seabed in the mouth region of the Pearl River estuary and generated a coupled hydrological and temperature record. This record reveals changes of monsoon-induced sediment discharge and sea surface temperature of the Holocene in four stages. In Stage I, the site was under fluvial conditions prior to postglacial marine transgression. Stage II saw an increase of sea surface temperature from c. 23.0 °C to 27.0 °C, associated with a strengthened summer monsoon from c. 10,350 to 8900 cal. years BP. This was also a period of rapid sea-level rise and marine transgression, during which the sea inundated the palaeo-incised channel, i.e. the lower part of the T-shape accommodation space created by the rising sea. In these 1500 years, fluvial discharge was strong and concentrated within the channel, and the high sedimentation rate (11.8 mm/year) was very close to the rate of sea-level rise. In the subsequent 2000 years (Stage III) sea level continued to rise and the sea flooded the broad seabed above the palaeo-incised channel, resulted in fluvial discharge spreading thinly across the wide accommodation space and a much reduced sedimentation rate (1.8 mm/year). Sea surface temperature in this stage reached 27.3 °C initially, but dropped sharply to 26.1 °C towards c. 8200 cal. years BP. The final stage covers the last 7000 years, and the site was under a stable sea level. Sedimentation in this stage varied a little, but averaged at 1.8 mm/year. Whilst fluvial discharge and sea surface temperature didn't change much, two short periods of hydrological and temperature change were observed, which are related to the climatic cooling events of c. 4200 cal. years ago and the Little Ice Age.

  8. Relationships between near-surface plankton concentrations, hydrography, and satellite-measured sea surface temperature

    NASA Technical Reports Server (NTRS)

    Thomas, A. C.; Emery, W. J.

    1988-01-01

    Sea surface temperatures (SSTs) mapped by IR satellite images and in situ hydrographic measurements off the west coast of British Columbia for early-winter and midsummer periods were correlated with in situ measurements of surface chlorophyll and zooplankton concentration. Correlations between winter log(e) transformed zooplankton concentrations and SSTs demonstrated that IR satellite imagery could explain 49 percent of the sampled zooplankton concentration variance. A least-squares-fit nonlinear equation showed that satellite-measured SST patterns explained 72 percent of the log(e) transformed chlorophyll variance. However, summer zooplankton concentrations were not consistently related to satellite temperature patterns.

  9. Fate and effects of metals in the sea-surface microlayer

    SciTech Connect

    Hardy, J.T.; Apts, C.W.

    1983-05-01

    Although significant portions of the metals from atmospheric particulate matter (APM) dissolve in seawater, the long residence times of metals in the sea-surface microlayer (upper 50 ..mu..m) lead to high microlayer metals concentrations compared to the subsurface water. APM at realistic deposition levels is not toxic to neustonic flatfish eggs, but ionic metals at the same concentrations as those found in the deposited APM inhibit egg hatching and larval survival. APM deposition rates between 2 and 7 mg/m/sup 2//hr negatively impact photosynthesis of phytoneuston, but not phytoplankton. 9 references.

  10. The interannual oscillation of sea surface temperature in the South China Sea

    SciTech Connect

    Zhou Faxiu; Yu Shenyu; Fu Gang; Wang Dongxiao

    1994-12-31

    The South China Sea (SCS) is located in the area of the Asia monsoons and is a quasi-closed deep basin near the tropical western Pacific. The sea surface temperature anomalies (SSTA) in the South China Sea have an influence on the precipitation in flood season in the South China. The anomalies of the Asia monsoons have great effect on SST in the SCS. This paper aims at finding the features of the interannual oscillation of SST and discussing the mechanism of the SST oscillation in the SCS.

  11. [Multiple scattering of visible and infrared light by sea fog over wind driving rough sea surface].

    PubMed

    Sun, Xian-Ming; Wang, Hai-Hua; Lei, Cheng-Xin; Shen, Jin

    2013-08-01

    The present paper is concerned with computing the multiple scattering characteristics of a sea fog-sea surface couple system within this context. The single scattering characteristics of sea fog were studied by Mie theory, and the multiple scattering of sunlight by single sea fog layer was studied by radiative transfer theory. The reflection function of a statistically rough ocean surface was obtained using the standard Kirchhoff formulation, with shadowing effects taken into account. The reflection properties of the combined sea fog and ocean surface were obtained employing the adding method, and the results indicated that the reflected light intensity of sea fog increased with the sea background.

  12. Mediterranean Sea surface radiocarbon reservoir age changes since the last glacial maximum.

    PubMed

    Siani, G; Paterne, M; Michel, E; Sulpizio, R; Sbrana, A; Arnold, M; Haddad, G

    2001-11-30

    Sea surface reservoir ages must be known to establish a common chronological framework for marine, continental, and cryospheric paleoproxies, and are crucial for understanding ocean-continent climatic relationships and the paleoventilation of the ocean. Radiocarbon dates of planktonic foraminifera and tephra contemporaneously deposited over Mediterranean marine and terrestrial regions reveal that the reservoir ages were similar to the modern one (approximately 400 years) during most of the past 18,000 carbon-14 years. However, reservoir ages increased by a factor of 2 at the beginning of the last deglaciation. This is attributed to changes of the North Atlantic thermohaline circulation during the massive ice discharge event Heinrich 1.

  13. Unravelling New Processes at Interfaces: Photochemical Isoprene Production at the Sea Surface

    PubMed Central

    2015-01-01

    Isoprene is an important reactive gas that is produced mainly in terrestrial ecosystems but is also produced in marine ecosystems. In the marine environment, isoprene is produced in the seawater by various biological processes. Here, we show that photosensitized reactions involving the sea-surface microlayer lead to the production of significant amounts of isoprene. It is suggested that H-abstraction processes are initiated by photochemically excited dissolved organic matter which will the degrade fatty acids acting as surfactants. This chemical interfacial processing may represent a significant abiotic source of isoprene in the marine boundary layer. PMID:26355365

  14. A conceptual model of ocean freshwater flux derived from sea surface salinity

    NASA Astrophysics Data System (ADS)

    Nieves, V.; Wang, J.; Willis, J. K.

    2014-09-01

    A conceptual model is proposed to express freshwater flux (evaporation minus precipitation) as a function of sea surface salinity (and vice versa). The model is formulated using an idealized one-dimensional diffusion equation for the ocean surface layer. It is shown to provide good agreement with existing freshwater flux estimates and salinity observations. It also has the potential to enhance our capability of monitoring and modeling global freshwater fluxes and salinity as a data retrieval algorithm for remote sensing. The model may improve physical parameterization in coupled ocean-atmosphere models to study the global water cycle.

  15. Impact of the Sun on Remote Sensing of Sea Surface Salinity from Space

    DTIC Science & Technology

    2005-07-25

    The sun is a sufficiently strong source of radiation at L-band to be an important source of interference for radiometers on future satellite missions such as SMOS, Aquarius, and Hydros designed to monitor soil moisture and sea surface salinity. Radiation from the sun can impact passive remote sensing systems in several ways, including line-of-sight radiation that comes directly from the sun and enters through antenna side lobes and radiation that is reflected from the surface to the radiometer. Examples are presented in the case

  16. Observations of Sea Surface Mean Square Slope During the Southern Ocean Waves Experiment

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Vandemark, D. C.; Wright, C. W.; Banner, M. L.; Chen, W.; Swift, R. N.; Scott, J. F.; Hines, D. E.; Jensen, J.; Lee, S.; Gerlach, John C. (Technical Monitor)

    2001-01-01

    For the Southern Ocean Waves Experiment (SOWEX), conducted in June 1992 out of Hobart, Tasmania, the NASA Scanning Radar Altimeter (SRA) was shipped to Australia and installed on a CSIRO Fokker F-27 research aircraft instrumented to make comprehensive surface layer measurements of air-sea interaction fluxes. The SRA sweeps a radar beam of P (two-way) half-power width across the aircraft ground track over a swath equal to 0.8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 cross-track positions. In realtime, the slant ranges are multiplied by the cosine of the off-nadir incidence angles (including the effect of aircraft roll attitude) to determine the vertical distances from the aircraft to the sea surface. These distances are subtracted from the aircraft height to produce a sea-surface elevation map, which is displayed on a monitor in the aircraft to enable real-time assessments of data quality and wave properties. The sea surface mean square slope (mss), which is predominantly caused by the short waves, was determined from the backscattered power falloff with incidence angle measured by the SRA in the plane normal to the aircraft heading. On each flight, data were acquired at 240 m altitude while the aircraft was in a 7 degree roll attitude, interrogating off-nadir incidence angles from -15 degrees through nadir to +29 degrees. The aircraft turned azimuthally through 810 degrees in this attitude, mapping the azimuthal dependence of the backscattered power falloff with incidence angle. Two sets of turning data were acquired on each day, before and after the aircraft measured wind stress at low altitude (12 meters to 65 meters). Wave topography and backscattered power for mss were also acquired during those level flight segments whenever the aircraft altitude was above the SRA minimum range of 35 m. Data were collected over a wide range of wind and sea

  17. Sea surface thermal structure associated to the small pelagic fish resources distribution in Central Chile

    SciTech Connect

    Yanez, E.; Barbieri, M.A.; Catasti, V.

    1997-06-01

    A survey study was conducted to assess the possibility of introducing the use of sea surface temperatures (SST), obtained from NOAA satellite data, for the small pelagic fisheries resources in Central Chile. Relationships between species yields and thermics gradients (GRT) were found significant. Jack mackerel (Trachuru murphyi) yields were largely related with a strong thermal gradient next to oceanic waters, while anchovy (Engraulis ringens) and common sardine (Clupea bentincki) yields were mainly associated to the development of coastal upwelling events. It is concluded that the use of SST-NOAA images can play an important role in fleet operations, particularly in the case of the kind of boats considered in this paper.

  18. Covariation of Mesoscale Ocean Color and Sea-Surface Temperature Patterns in the Sargasso Sea

    NASA Technical Reports Server (NTRS)

    McGillicuddy, Dennis J., Jr.; Kosnyrev, V. K.; Ryan, J. P.; Yoder, J. A.

    2001-01-01

    During the lifetime of the Coastal Zone Color Scanner, there were 21 instances in which both satellite-derived ocean color and sea-surface temperature are simultaneously available over large areas of the Sargasso Sea. These images reveal close correspondence between mesoscale structures observed in temperature and pigment fields. In general, higher (lower) pigment biomass occurs in mesoscale features consisting of cold (warm) temperature anomalies. This relationship is consistent with the idea that upward displacement of isopycnals at the base of the euphotic zone by mesoscale eddies is an important mechanism of nutrient supply in the region.

  19. Compact, Lightweight Dual- Frequency Microstrip Antenna Feed for Future Soil Moisture and Sea Surface Salinity Missions

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Wilson, William J.; Njoku, Eni; Hunter, Don; Dinardo, Steve; Kona, Keerti S.; Manteghi, Majid; Gies, Dennis; Rahmat-Samii, Yahya

    2004-01-01

    The development of a compact, lightweight, dual frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx. 1 GHz) passive and active sensing systems. The design features will also enable applications to airborne sensors operating on small aircrafts. This paper describes the design of stacked patch elements, 16-element array configuration and power-divider beam forming network The test results from the fabrication of stacked patches and power divider were also described.

  20. Palynology of the late Holocene in Disko Bugt, West Greenland: evidence for centennial variability in sea-surface conditions.

    NASA Astrophysics Data System (ADS)

    Allan, Estelle; de Vernal, Anne; Matthias, Moros; Marie-Michèle, Ouellet-Bernier

    2016-04-01

    The palynological analyses of a sediment core collected in Disko Bay (core 343310; 68° 38,861'N, 53° 49,493'W) provide a dinocyst record of the last 1500 years with 5-30 year time resolution and thus permit reconstruction of changes in surface water, including sea-ice cover, temperature and salinity. Dinocyst assemblages are characterized by high taxonomic diversity (18 taxa) with dominance of Islandinium minutum, Pentapharsodinium dalei, Brigantedinium spp. and Islandinium? cezare and by very high concentrations (>105 cysts.cm-3) leading to calculate fluxes of the order of (>104 cysts.cm-2.years-1). The modern analogue technique (MAT) was applied to dinocyst assemblages to quantitatively reconstruct paleo-sea-surface conditions. The seasonal sea ice cover shows large amplitude variations from 2 to 8 months.yr-1(sea ice coverage >50%), with maxima at 1050-1300 AD, 1400-1500 AD, 1550-1600 AD and 1770-1800 AD, which reflect episodic cooling during the last millennium. In the overall record, sea ice cover and salinity variation are correlated with increase sea ice extent corresponding with decrease salinity and vice versa, which suggests strong linkages between the regional freshwater/meltwater budget and winter sea ice. Relationship between sea ice cover and the North Atlantic Oscillation (NAO) is also possible. The increased sea ice being associated with dominant NAO+ mode can be linked with change of the regional properties of the West Greenland Current, the marked by lower influence of warm and saline Atlantic waters relative to an increase influence of the polar and low salinity in Arctic waters from East Greenland Current under NAO+ situation.